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Abstract
In recent years, sharp or quantitative weighted inequalities have attracted considerable
attention on account of the A2 conjecture solved by Hytönen. Advances have greatly
improved conceptual understanding of classical objects such as Calderón–Zygmund
operators. However, plenty of operators do not fit into the class of Calderón–Zygmund
operators and fail to be bounded on all L p(w) spaces for p ∈ (1,∞) and w ∈ Ap.
In this paper we develop Rubio de Francia extrapolation with quantitative bounds
to investigate quantitative weighted inequalities for operators beyond the (multi-
linear) Calderón–Zygmund theory. We mainly establish a quantitative multilinear
limited range extrapolation in terms of exponents pi ∈ (p−

i , p+
i ) and weights

w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m, which refines a result of Cruz-Uribe
and Martell. We also present an extrapolation from multilinear operators to the corre-
sponding commutators. Additionally, our result is quantitative and allows us to extend
special quantitative estimates in the Banach space setting to the quasi-Banach space
setting. Our proof is based on an off-diagonal extrapolation result with quantitative
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bounds. Finally, we present various applications to illustrate the utility of extrapola-
tion by concentrating on quantitative weighted estimates for some typical multilinear
operators such as bilinear Bochner–Riesz means, bilinear rough singular integrals,
and multilinear Fourier multipliers. In the linear case, based on the Littlewood–Paley
theory, we include weighted jump and variational inequalities for rough singular inte-
grals.

Keywords Rubio de Francia extrapolation · Quantitative weighted estimates ·
Bilinear Bochner–Riesz means · Bilinear rough singular integrals · Multilinear
Fourier multipliers · Weighted jump inequalities · Littlewood–Paley theory

Mathematics Subject Classification 42B20 · 42B25

1 Introduction

1.1 Motivation andMain Results

Themain goal of this paper is to establishmultivariable Rubio de Francia extrapolation
with quantitative bounds in order to investigate quantitative weighted inequalities for
multilinear operators beyond the multilinear Calderón–Zygmund theory. We focus
on the limited range extrapolation with exponents pi ∈ (p−

i , p+
i ) and weights

w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m, which is quite different from [76] for

�w = (w1, . . . , wm) ∈ A �p (or general weights A �p,�r ). The main reason why we study
it is that plenty of operators are beyond the Calderón–Zygmund theory so that they
may not be bounded on all L p(w) spaces for p ∈ (1,∞) and w ∈ Ap. This is
the case for operators with the strong singularity, such as Bochner–Riesz means [6],
rough singular integrals [89], Riesz transforms and square functions associated with
second-order elliptic operators [3], operators associated with the Kato conjecture [4],
and singular “non-integral” operators [9]. As well as the classes Ap are natural for the
Calderón–Zygmund operators and characterize the weighted boundedness of Hardy–
Littlewood maximal operators, the classes A �p are also the natural ones for multilinear
Calderón–Zygmund operators and the multilinear Hardy–Littlewood maximal oper-
ators (cf. Theorem 2.10). In the multilinear setting, there are also many operators so
that weighted inequalities holds for limited ranges. For multilinear Fourier multipli-
ers, it is interesting that different forms of Sobolev regularity appear to determine
whether product of scalar weights or multiple weights A �p could be used. Fujita and
Tomita [43, 44] proved that whenever the symbol satisfies a product type Sobolev
regularity, the weighted boundedness of multilinear Fourier multipliers holds for
�w ∈ Ap1/r1 × · · · × Apm/rm but does not hold for �w ∈ A(p1/r1,...,pm/rm ), while the
latter is valid under the classical Sobolev regularity. Other examples include strongly
singular bilinear Calderón–Zygmund operators [7, Corollary 3.2], bilinear differential
operators associated with fractional Leibniz rules [34, Theorem 1.1], bilinear pseudo-
differential operators with symbols in the Hörmander classes [75, Remark 3.4], and
so on.
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The main contributions of this article are the following.

• Our first main result, Theorem 1.1, improves [30, Theorem 1.3] to an extrapolation
with the quantitative weighted bounds, which in turn covers the multivariable
extrapolation in [40, Theorem 6.1] and [47, Theorem 1.1] by taking p−

i = 1 and
p+

i = ∞, i = 1, . . . , m.
• Our second main result, Theorem 1.2, establishes an extrapolation for commuta-
tors, which extends [8, Theorem 4.3] from the Banach range to the quasi-Banach
range.

• We prove a limited range, off-diagonal extrapolation theorem with sharp weighted
bounds (cf. Theorem 4.8), whose proof is distinct from and much simpler than that
in [30, Theorem 1.8] because it only needs to define a Rubio de Francia iteration
algorithm each time we consider the case q < q0 or q > q0. Thus, we not only
refine [30, Theorem 1.8] to Theorem 4.8 with sharp bounds, but also remove the
restriction 1

q0
− 1

p0
+ 1

p+ ≥ 0.
• Although our weights class is a special case of the class A �p,�r , Theorem 1.1 is
independent of [76, Theorem 2.2], that is, one does not imply another one.

• When the exponents are greater than one, we can obtain quantitative Ap and
off-diagonal extrapolation (cf. Theorems 4.1 and 4.5) by showing a “product-
type embedding” theorem (cf. Theorems 4.2 and 4.6), respectively, which is quite
different from the embedding technique used in [18, Proposition 3.18] to get extrap-
olation on general weighted Banach function spaces.

• Based on Ap extrapolation and interpolation, we present an extrapolation from
weak type inequalities to strong type estimates (cf. Theorem 4.4). This allows us
to obtain quantitative weighted strong estimates from weak (1, 1) type.

• This is the first time to use extrapolation to establish quantitative weighted norm
inequalities for plenty of operators beyond the Calderón–Zygmund theory (cf.
Sect. 5). The strong singularity of those operators leads the weights class to be
Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m, instead of the more general class A �p,�r . It is
totally novel to obtain quantitative estimates for those operators, although we do
not show the sharpness, which goes beyond the scope of this article and will be
our further topic.

In order to state our main results we need some notation. More definitions and
notation are given in Sect. 2. Given 1 ≤ p− < p+ ≤ ∞ and p ∈ [p−, p+] with
p 	= ∞, considering Lemma 2.6, for any w p ∈ Ap/p− ∩ RH(p+/p)′ , we define

[w p]Ap/p−∩R H(p+/p)′ :=
{

[w p(p+/p)′ ]Aτp
, p < p+,

max{[w p]Ap/p− , [w p]R H(p+/p)′ }, p = p+,
(1.1)

where τp := (p+
p

)′( p
p− − 1

)+ 1. Throughout this paper, given pi , qi ∈ [p−
i , p+

i ], we
always denote

γi (pi , qi ) :=
⎧⎨
⎩
max

{
1,

τqi −1
τpi −1

}
, qi < p+

i ,

qi
τpi −1

( 1
p−

i
− 1

p+
i

)
, qi = p+

i .
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Let F denote a family of (m + 1)-tuples ( f , f1, . . . , fm) of non-negative measurable
functions. We would like to present an abstract methodology for extrapolation. We
will see that extrapolation enables us to obtain vector-valued inequalities and weak-
type estimates from extrapolation results immediately. In the current paper, we mainly
apply this methodology to obtain quantitative weighted norm inequalities for plenty
of operators.

Our first main result is formulated as follows.

Theorem 1.1 Given m ≥ 1, let F be a family of extrapolation (m+1)-tuples. Let
1 ≤ p−

i < p+
i ≤ ∞ for each i = 1, . . . , m. Assume that for each i = 1, . . . , m,

there exists an exponent qi ∈ (0,∞) with qi ∈ [p−
i , p+

i ] such that for all weights
v

qi
i ∈ Aqi /p

−
i

∩ RH(p+
i /qi )

′ , i = 1, . . . , m,

‖ f ‖Lq (vq ) ≤
m∏

i=1

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖ fi‖Lqi (v

qi
i )

, ( f , f1, . . . , fm) ∈ F ,

(1.2)

where 1
q = ∑m

i=1
1
qi

, v = ∏m
i=1 vi , and �i : [1,∞) → [1,∞) is an increasing

function. Then for all exponents pi ∈ (p−
i , p+

i ) and all weights w
pi
i ∈ Api /p

−
i

∩
RH(p+

i /pi )
′ , i = 1, . . . , m,

‖ f ‖L p(w p)

≤
m∏

i=1

Ci �i

(
Ci [w pi

i ]γi (pi ,qi )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)
‖ fi‖L pi (w

pi
i )

, ( f , f1, . . . , fm) ∈ F ,

(1.3)

where 1
p = ∑m

i=1
1
pi

, w = ∏m
i=1 wi , Ci := 2

max{ τpi
pi

,
τ ′

pi
qi

}
, and Ci depends only on n,

pi , qi , p
−
i , and p+

i .
Moreover, for the same family of exponents and weights, and for all exponents

ri ∈ (p−
i , p+

i ),

∥∥∥∥(∑
k

| f k |r
) 1

r

∥∥∥∥
L p(w p)

≤
m∏

i=1

C′
i �i

(
C ′

i [w pi
i ]γi (pi ,ri )γi (ri ,qi )

A
pi /p

−
i

∩RH
(p+

i /pi )
′

)∥∥∥∥(∑
k

| f k
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

,

(1.4)

for all {( f k, f k
1 , · · · , f k

m)}k ⊂ F , where 1
r =∑m

i=1
1
ri

, C′
i :=2

max{ τpi
pi

,
τ ′

pi
ri

}+max{ τri
ri

,
τ ′
ri
qi

}
,

and the constant C ′
i depends only on n, pi , qi , ri , p

−
i , and p+

i .

As a result of Theorem 1.1 we can extend weighted estimates only valid in the
Banach range to the quasi-Banach range. For example, weighted norm inequalities
for the commutators of multilinear operators T with BMO functions, more singular
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than operators T , were just proved in the case p ≥ 1 [8] since one used the trick
of so-called Cauchy integral and Minkowski’s inequality. We will use Theorem 1.1
to deal with this problem and obtain a quantitative extrapolation from operators to
the corresponding commutators with full ranges (cf. Theorem 1.2). Concerning the
proof of Theorem 1.1, we borrow the ideas from [30, 40], which essentially reduce
the multilinear problem to a linear extrapolation (cf. Theorem 4.8) by acting on one
function at a time. In the linear case, the core of the proof is to obtain the quantitative
bounds, which is due to the sharp weighted estimate (1.9) and sharp reverse Hölder’s
inequality in Lemma 2.3.

In order to present an extrapolation theorem for commutators, let us introduce
relevant notation and some definitions. Given a function b ∈ L1

loc(R
n), we say that

b ∈ BMO if

‖b‖BMO := sup
Q

 
Q

|b(x) − 〈b〉Q | dx < ∞.

where the supremum is taken over the collection of all cubes Q ⊂ R
n . Here and

elsewhere, we write 〈b〉Q := ffl
Q b dx = 1

|Q|
´

Q b dx .
Let T be anoperator from X1×· · ·×Xm intoY ,where X1, . . . , Xm are somenormed

spaces and and Y is a quasi-normed space. Given �f := ( f1, . . . , fm) ∈ X1×· · ·× Xm ,
b = (b1, . . . , bm) of measurable functions, and k ∈ N, we define, whenever it makes
sense, the k-th order commutator of T in the i-th entry of T as

[T ,b]kei (
�f )(x) := T ( f1, . . . , (bi (x) − bi )

k fi , . . . , fm)(x), 1 ≤ i ≤ m,

where ei is the basis of R
n with the i-th component being 1 and other components

being 0. Then, for a multi-index α = (α1, . . . , αm) ∈ N
m , we define

[T ,b]α := [· · · [[T ,b]α1e1 ,b]α2e2 · · · ,b]αm em .

In particular, if T is an m-linear operator with a kernel representation of the form

T ( �f )(x) :=
ˆ
Rnm

K (x, �y) f1(y1) · · · fm(ym) d �y,

then one can write [T ,b]α as

[T ,b]α( �f )(x) :=
ˆ
Rnm

m∏
i=1

(bi (x) − bi (yi ))
αi K (x, �y) f1(y1) · · · fm(ym) d �y.

Our second main result is the following.

Theorem 1.2 Let T be an m-linear operator and let 1 ≤ p−
i < p+

i ≤ ∞, i =
1, . . . , m, be such that 1

p+ := ∑m
i=1

1
p+

i
< 1. Assume that for each i = 1, . . . , m,
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there exists an exponent qi ∈ (0,∞) with qi ∈ [p−
i , p+

i ] such that for all weights
v

qi
i ∈ Aqi /p

−
i

∩ RH(p+
i /qi )

′ , i = 1, . . . , m, we have

‖T ( �f )‖Lq (vq ) ≤
m∏

i=1

�i

(
[vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′

)
‖ fi‖Lqi (v

qi
i )

, (1.5)

where �f = ( f1, . . . , fm), 1
q = ∑m

i=1
1
qi

, v = ∏m
i=1 vi , and �i : [1,∞) → [1,∞)

is an increasing function. Then for all exponents pi ∈ (p−
i , p+

i ), all weights w
pi
i ∈

Api /p
−
i

∩ RH(p+
i /pi )

′ , for all functions b = (b1, . . . , bm) ∈ BMOm, and for each

multi-index α ∈ N
m,

‖[T , b]α( �f )‖L p(w p)

≤ C0

m∏
i=1

�̃i

(
C ′

i [w pi
i ]γi (pi ,si )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)
‖bi‖αi

BMO‖ fi‖L pi (w
pi
i )

, (1.6)

whenever si ∈ (p−
i , p+

i ), i = 1, . . . , m, satisfy 1
s := ∑m

i=1
1
si

≤ 1, where 1
p =∑m

i=1
1
pi

, w = ∏m
i=1 wi , �̃i (t) := t

αi max{1, 1
τsi −1 }

�i (Ci tγi (si ,qi )), Ci depends only on

n, si , qi , p
−
i , and p+

i , C ′
i depends only on n, pi , si , p

−
i , and p+

i , and C0 depends only
on α, n, pi , qi , si , p

−
i , and p+

i .
Moreover, for the same family of exponents �p, weights �w, functions b, multi-index

α, and for all exponents ri ∈ (p−
i , p+

i ),

∥∥∥∥(∑
k

|[T , b]α( �f k)|r
) 1

r

∥∥∥∥
L p(w p)

≤ C
m∏

i=1

�̃i

(
C ′′

i [w pi
i ]γi (pi ,ri )γi (ri ,si )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)

× ‖bi‖αi
BMO

∥∥∥∥(∑
k

| f k
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

, (1.7)

where �f k = ( f k
1 , . . . , f k

m), 1
r = ∑m

i=1
1
ri

, C depends only on α, n, pi , qi , ri , si , p
−
i ,

and p+
i , and C ′′

i depends only on n, pi , ri , si , p
−
i , and p+

i .

Remark 1.3 Let us see the existence of si ∈ (p−
i , p+

i ), i = 1, . . . , m, satisfying 1
s :=∑m

i=1
1
si

≤ 1. Indeed, by means of Theorem 1.1, the estimate (1.5) can be improved

to all exponents si ∈ (p−
i , p+

i ), i = 1, . . . , m. Given si ∈ (p−
i , p+

i ), i = 1, . . . , m,
there holds

1

s
=

m∑
i=1

1

si
=

m∑
i=1

(
1

si
− 1

p+
i

)
+

m∑
i=1

1

p+
i

→ 1

p+
< 1, if si → p+

i , i = 1, . . . , m.

This means that whenever p+ > 1, one can always choose si (for example, sufficiently
close to p+

i ) such that 1
s ≤ 1.
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To illustrate the existence, we present a special case:

1

p−
− 1

p+
< p+

i

(
1

p−
i

− 1

p+
i

)
, i = 1, . . . , m,

where 1
p± := ∑m

i=1
1
p±

i
. In this scenario, picking

si := p−
i

[
1 +

(
1

p−
− 1

p+

)]
, i = 1, . . . , m,

we easily verify that si ∈ (p−
i , p+

i ) and

1

s
=

m∑
i=1

1

si
= 1

p−

[
1

p−
+
(
1 − 1

p+

)]−1

< 1,

provided p+ > 1.

Remark 1.4 Let T be an m-linear operator. If the hypotheses (1.2) and (1.5) are
assumed for T and all exponents qi ∈ (p−

i , p+
i ), then we will get better estimates.

This means the following extrapolation: Assume that for all exponents pi ∈ (p−
i , p+

i )

and all weights w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m,

‖T ( �f )‖L p(w p) ≤
m∏

i=1

�i

(
[w pi

i ]A
pi /p

−
i

∩R H
(p+

i /pi )
′

)
‖ fi‖L pi (w

pi
i )

,

where 1
p = ∑m

i=1
1
pi
and w = ∏m

i=1 wi . Then for all exponents pi , ri ∈ (p−
i , p+

i ) and

all weights w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m, we have

∥∥∥∥(∑
k

|T ( �f k)|r
) 1

r

∥∥∥∥
L p(w p)

≤ C0

m∏
i=1

�i

(
Ci [w pi

i ]γi (pi ,ri )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)∥∥∥∥(∑
k

| f k
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

,

where �f k = ( f k
1 , . . . , f k

m), 1r = ∑m
i=1

1
ri
, C0 and Ci depend only on n, pi , ri , p

−
i , and

p+
i .
Moreover, for the same family of exponents �p and weights �w, for all functions

b = (b1, . . . , bm) ∈ BMOm , and for each multi-index α ∈ N
m , we have

‖[T ,b]α( �f )‖L p(w p) ≤ C ′
0

m∏
i=1

�̃i

(
C ′

i [w pi
i ]γi (pi ,si )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)
‖bi‖αi

BMO‖ fi‖L pi (w
pi
i )

,
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and

∥∥∥∥(∑
k

|[T ,b]α( �f k)|r
) 1

r

∥∥∥∥
L p(w p)

≤ C ′′
0

m∏
i=1

�̃i

(
C ′′

i [w pi
i ]γi (pi ,ri )γi (ri ,si )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)

× ‖bi‖αi
BMO

∥∥∥∥(∑
k

| f k
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

,

whenever 1
s := ∑m

i=1
1
si

≤ 1 with si ∈ (p−
i , p+

i ), where �̃i (t) := t
αi max{1, 1

τsi −1 }

�i (Ci t), C ′
0 depends only on α, n, pi , si , p

−
i , and p+

i , C ′
i depends only on n, pi , si ,

p−
i , and p

+
i , and C ′′

0 depends only on α, n, pi , ri , si , p
−
i , and p

+
i , and C ′′

i depends only
on n, pi , ri , si , p

−
i , and p+

i . The proof is the same as that of Theorems 1.1 and 1.2.
Details are left to the reader.

1.2 Historical Background

In the last two decades, it has been of great interest to obtain sharp weighted norm
inequalities for operators T , which concerns estimates of the form

‖T ‖L p(w)→L p(w) ≤ Cn,p,T [w]αp(T )

Ap
, ∀p ∈ (1,∞), w ∈ Ap, (1.8)

where the positive constant Cn,p,T depends only on n, p, and T , and the exponent
αp(T ) is optimal such that (1.8) holds. This kind of estimates gives the exact rate
of growth of the weights norm. The first result was given by Buckley [10] for the
Hardy–Littlewood maximal operator M that

‖M‖L p(w)→L p(w) ≤ Cn,p [w]
1

p−1
Ap

, ∀p ∈ (1,∞), w ∈ Ap, (1.9)

and the exponent 1
p−1 is the best possible. The problem (1.8) for singular integrals

gained new momentum from certain important applications to PDE. In the borderline
case, a long-standing regularity problem for the solution of Beltrami equation on
the plane was conjectured by Astala, Iwaniec, and Saksman [1], and first settled by
Petermichl and Volberg [83] based on the sharp weighted estimate for the Ahlfors-
Beurling operator B with α2(B) = 1. Then a question arose whether (1.8) with
α2(T ) = 1 holds for the general Calderón–Zygmund operators T , which is known
as the A2 conjecture. Focusing on the critical case p = 2 results from a quantitative
version of Rubio de Francia extrapolation due to Dragičević et al. [38].

Since then, many remarkable publications came to enrich the literature in this area.
Petermichl [80] applied the method of Bellman function to obtain (1.8) for Hilbert
transform H by showing α2(H) = 1. The same estimate holds for Riesz transforms
R j on R

n , see [81]. Later on, Lacey, Petermichl, and Reguera [62] investigated Haar
shift operators Sτ with parameter τ in order to present a unified approach to obtain the
sharp weighted estimates for B, H , and R j , by proving α2(Sτ ) = 1 and noting that
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such three kinds of operators can be obtained by appropriate averaging of Haar shifts,
see [39, 79, 82]. By means of local mean oscillation and extrapolation with sharp
constants [38], Lerner [64] established the sharp estimates (1.8) for Littlewood–Paley
operators S with αp(S) = max{ 12 , 1

p−1 }, and Cruz-Uribe et al. [33] gave an alternative
and simpler proof of (1.8) for B, H , and R j . In 2012, Hytönen [51] fully solved the A2
conjecture by showing a resulting representation of an arbitrary Calderón–Zygmund
operator as an average of dyadic shifts over random dyadic systems. Significantly,
it opened the study of dyadic analysis in the fields including the multilinear theory,
the multiparameter theory, and the non-homogeneous theory. In particular, in terms
of sharp weighted estimates, it promoted the development of sparse domination for
varieties of operators. To sum up, there are three kinds of sparse domination: identities
with suitable averaging, pointwise dominations, and bilinear forms. The specific type
depends on the singularity of operators. For example, the Calderón–Zygmund operator
[51] and Riesz potential [17] can be recovered from dyadic operators by averaging
over dyadic grids. The pointwise sparse dominations hold for the Calderón–Zygmund
operators [65] and the corresponding commutators [69], the multilinear Calderón–
Zygmund operators [37], the multilinear pseudo-differential operators [20], and the
multilinear Littlewood–Paley operators with minimal regularity [21]. Additionally,
the sparse domination with a bilinear form goes to singular non-integral operators [9],
Bochner–Riesz multipliers [6, 60], rough operators [27], and oscillatory integrals [63].

As aforementioned, one of the most useful and powerful tools in the weighted
theory is the celebrated Rubio de Francia extrapolation theorem [84], which states
that if a given operator T is bounded on L p0(w0) for some p0 ∈ [1,∞) and for all
w0 ∈ Ap0 , then T is bounded on L p(w) for all p ∈ (1,∞) and for all w ∈ Ap.
Indeed, extrapolation theorems allow us to reduce the general weighted L p estimates
for certain operators to a suitable case p = p0, for example, see [20] for the Coifman-
Fefferman’s inequality for p0 = 1, [33, 51] for the Calderón–Zygmund operators
for p0 = 2, [33, 64] for square functions for p0 = 3, and [61] for fractional integral
operators for p0 ∈ (1, n/α)with 0 < α < n. Evenmore, the technique of extrapolation
can refine someweighted estimates, see [31] for the Sawyer conjecture, [66, 67] for the
weakMuckenhoupt–Wheeden conjecture, and [20, 77] for the local exponential decay
estimates.Another interesting point is that bymeans of extrapolation, the vector-valued
inequalities immediately follows from the corresponding scalar-valued estimates.

Over the years, Rubio de Francia’s result has been extended and complemented
in different manners, see [32] and the references therein. Using the boundedness of
the Hardy–Littlewood maximal operator instead of the Muckenhoupt weights, Cruz-
Uribe and Wang [35] presented extrapolation in variable Lebesgue spaces, which was
improved to generalized Orlicz spaces [29] and general Banach function spaces [18].
It is worth mentioning that the latter was stated in measure spaces and for general
Muckenhoupt bases. This leads lots of applications, such as the well-posedness of
the Dirichlet problem in the upper half-space whenever the boundary data belongs to
different function spaces, the weighted boundedness of layer potential operators on
domains, and the local T b theorem for square functions in non-homogeneous spaces.
Recently, a longstanding problem about extrapolation for multilinear Muckenhoupt
classes of weights was solved by Li, Martell, and Ombrosi [71] by introducing some
new multilinear Muckenhoupt classes A �p,�r (cf. Definition 2.7), which contains the
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multivariable nature and is a generalization of the classes A �p introduced in [68] (cf.
(2.31) below). Shortly afterwards, it was improved to the case with infinite exponents
in [72] and with a quantitative bound in [76]. On the other hand, Hytönen and Lappas
[53, 54] established a “compact version” of Rubio de Francia’s extrapolation theorem,
which allows one to extrapolate the compactness of an operator from just one space to
the full range of weighted spaces, provided that the operator is bounded. This result has
been extended to the multilinear setting [19] by means of weighted interpolation for
multilinear compact operators and weighted Fréchet–Kolmogorov characterization of
compactness in the non-Banach case.

1.3 Structure of the Paper

In Sect. 2,we present somepreliminaries and auxiliary results including the embedding
and factorization of Muckenhoupt weights. Section3 includes quantitative weighted
estimates for various operators. Section4 is devoted to showing Theorems 1.1 and
1.2 by means of a limited range off-diagonal extrapolation and extrapolation for
commutators with Banach ranges. We also establish “product-type embedding” theo-
rems to deduce quantitative Ap and off-diagonal extrapolation. In Sect. 5, we include
many applications of Theorems 1.1 and 1.2. First, we give quantitative weighted
norm inequalities for the bilinear Bochner–Riesz means of order δ and commu-
tators, where we utilize the Ap1 × Ap2 weights when δ ≥ n − 1/2, and the
Ap1/p

−
1
∩RH(p+

1 /p1)′ × Ap2/p
−
2
∩RH(p+

2 /p2)′ weights when 0 < δ < n−1/2. The same

weights conditions are used for the bilinear rough singular integrals for� ∈ L∞(Sn−1)

and Lq(Sn−1)with q ∈ (1,∞), respectively. Additionally, under the minimal Sobolev
regularity, we obtain the quantitative weighted bounds for the m-linear Fourier mul-
tipliers, the corresponding higher order commutators, and vector-valued inequalities,
which only hold for product of scalar weights as mentioned before. Beyond that, after
presenting quantitativeweightedLittlewood–Paley theory,we establishweighted jump
and variational inequalities for rough operators with � ∈ Lq(Sn−1) with q ∈ (1,∞).
The proof also needs quantitative weighted estimates for rough singular integrals T�

and rough maximal operators M�, see Sect. 3. They contain many applications to Har-
monic Analysis since variation inequalities not only immediately yield the pointwise
convergence of the family of operators without using the Banach principle, but also
can be used to measure the speed of convergence. Finally, we end up Sect. 5 with Riesz
transforms associated to Schrödinger operators.

2 Preliminaries and Auxiliary Results

A measurable function w on R
n is called a weight if 0 < w(x) < ∞ for a.e. x ∈ R

n .
For p ∈ (1,∞), we define the Muckenhoupt class Ap as the collection of all weights
w on R

n satisfying

[w]Ap := sup
Q

(  
Q

w dx

)( 
Q

w1−p′
dx

)p−1

< ∞,
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where the supremum is taken over all cubes Q ⊂ R
n . As for the case p = 1, we say

that w ∈ A1 if

[w]A1 := sup
Q

(  
Q

w dx

)
ess sup

Q
w−1 < ∞.

Then, we define A∞ := ⋃
p≥1 Ap and [w]A∞ = inf p>1[w]Ap .

Given 1 ≤ p ≤ ∞ and 0 < q ≤ ∞, we say that w ∈ Ap,q if it satisfies

[w]Ap,q := sup
Q

(  
Q

wq dx

) 1
q
(  

Q
w−p′

dx

) 1
p′

< ∞,

where one has to replace the first term by ess supQ w when q = ∞ and the second
term by ess supQ w−1 when p = 1. One can easily check that w ∈ Ap,q if and only

if wq ∈ A1+q/p′ if and only if w−p′ ∈ A1+p′/q with

[w]Ap,q = [wq ]
1
q
A1+q/p′ = [w−p′ ]

1
p′
A1+p′/q

, when 1 < p ≤ ∞, 0 < q < ∞.

If p = 1 and 0 < q < ∞, then w ∈ Ap,q if and only if wq ∈ A1 with [w]Ap,q =
[wq ]

1
q
A1
. If 1 < p ≤ ∞ and q = ∞, w ∈ Ap,q if and only if w−p′ ∈ A1 with

[w]Ap,q = [w−p′ ]
1
p′
A1
.

For s ∈ (1,∞], the reverse Hölder class RHs is the collection of all weights w

such that

[w]R Hs := sup
Q

( 
Q

ws dx

) 1
s
( 

Q
w dx

)−1

< ∞.

When s = ∞, (
ffl

Q ws dx)1/s is understood as (ess supQ w). Define RH1 :=⋃
1<s≤∞

RHs . Then we see that RH1 = A∞ (cf. [45, Theorem 7.3.3]).

2.1 MuchenhouptWeights

The Hardy–Littlewood maximal operator M is defined by

M f (x) := sup
Q�x

 
Q

| f (y)| dy,

where the supremum is taken over all cubes Q ⊂ R
n containing x . We begin with the

following estimate concerning the growth of Cn,p in (1.9) with respect to n and p.
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Lemma 2.1 For any p ∈ (1,∞) and w ∈ Ap,

‖M‖L p(w)→L p(w) ≤ 2n · 3n
(

p
p−1+ 6

p

)
[w]

1
p−1
Ap

. (2.1)

Proof We follow the proof of [45, Theorem 7.1.9] to track the precise constants. Given
a weightw, the centered weighted Hardy-Littlewood maximal operator Mc

w is defined
by

Mc
w f (x) := sup

Q�x

1

w(Q)

ˆ
Q

| f (y)| dw(y),

where the supremum is taken over all cubes Q ⊂ R
n centered at x . Let Mc denote

Mc
w when w ≡ 1. It was proved in [45, p.509] that

‖Mc
w‖L1(w)→L1,∞(w) ≤ 24n and ‖Mc

w‖L∞(w)→L∞(w) ≤ 1, (2.2)

which together with interpolation theorem gives that for any weight w,

‖Mc
w‖L p(w)→L p(w) ≤ 24

n
p , ∀p ∈ (1,∞). (2.3)

To proceed, we fix w ∈ Ap with p ∈ (1,∞), and set σ := w
− 1

p−1 . As shown in
[45, p. 508] that

M f (x) ≤ 2n Mc f (x) ≤ 2n · 3 np
p−1 [w]

1
p−1
Ap

Mc
w

(
Mc

σ ( f σ−1)p−1w−1)(x)
1

p−1 .

which along with (2.3) in turn implies

‖M‖L p(w)→L p(w) ≤ 2n · 3 np
p−1 [w]

1
p−1
Ap

‖Mc
w‖

1
p−1

L p′
(w)→L p′

(w)
‖Mc

σ ‖L p(σ )→L p(σ )

≤ 2n · 3 np
p−1 · 24 n

p′(p−1)
+ n

p [w]
1

p−1
Ap

< 2n · 3n(
p

p−1+ 6
p )[w]

1
p−1
Ap

.

The proof is complete. ��
Based on the weighted boundedness of Hardy–Littlewoodmaximal operator above,

one can establish Rubio de Francia extrapolation theorem below, whose proof was
contained in [32].

Theorem 2.2 For any p ∈ (1,∞) and w ∈ Ap, there exists an operatorR : L p(w) →
L p(w) such that for every non-negative function h ∈ L p(w),

(a) h ≤ Rh;
(b) ‖Rh‖L p(w) ≤ 2‖h‖L p(w);
(c) Rh ∈ A1 with [Rh]A1 ≤ 2‖M‖L p(w)→L p(w).

Let us recall the sharp reverse Hölder’s inequality.
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Lemma 2.3 Let p ∈ (1,∞) and w ∈ Ap. Then there holds

(  
Q

w1+γw dx

) 1
1+γw ≤ 2

 
Q

w dx, (2.4)

for every cube Q, where

γw =

⎧⎪⎪⎨
⎪⎪⎩

1
2n+1[w]A1

, p = 1,
1

2n+1+2p[w]A p
, p ∈ (1,∞),

1
2n+11[w]A∞

, p = ∞.

(2.5)

In particular, for any measurable subset E ⊂ Q,

w(E)/w(Q) ≤ 2(|E |/|Q|) γw
1+γw . (2.6)

Proof The estimate (2.4) was proved in [26, 55, 66]. Let us prove (2.6). If we set
r := 1 + γw, then (2.4) implies that for any measurable subset E ⊂ Q,

w(E)

|Q| =
 

Q
1E w dx ≤

(  
Q
1r ′

E dx

) 1
r ′ (  

Q
wr dx

) 1
r ≤ 2

( |E |
|Q|

) γw
1+γw w(Q)

|Q| .

This shows (2.6). ��
Lemma 2.4 For any q ∈ (1,∞) and v ∈ Aq, there exist γ ∈ (0, 2−n−3) and q0 ∈
(1, q) such that

q0 = q

1 + ε
,

(q − 1)γ

q(1 + γ )′
< ε <

q − 1

(1 + γ )′
, (1 + γ )′ � [v]max{1, 1

q−1 }
Aq

,

[v1+γ ]Aq ≤ 2q(1+γ )[v]1+γ

Aq
, and [v]Aq0

≤ 2q [v]Aq .

(2.7)

Proof Let q ∈ (1,∞) and v ∈ Aq . Then, v1−q ′ ∈ Aq ′ , and by Lemma 2.3,

( 
Q

v1+γ1dx

) 1
1+γ1 ≤ 2

 
Q

v dx, (2.8)

and

(  
Q

v
− 1+γ2

q−1 dx

) 1
1+γ2 ≤ 2

 
Q

v
− 1

q−1 dx, (2.9)

for any cube Q ⊂ R
n , where

γ1 := 1

2n+1+2q [v]Aq

and γ2 := 1

2n+1+2q [v1−q ′ ]Aq′
. (2.10)
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Setting

γ := min{γ1, γ2} < 2−n−3 and q0 := q

1 + ε
= q + γ

1 + γ
∈ (1, q), (2.11)

we see that

(q − 1)γ

q(1 + γ )′
< ε = (q − 1)γ

q + γ
<

(q − 1)γ

1 + γ
= q − 1

(1 + γ )′
,

and use Jensen’s inequality and (2.8)–(2.10) to obtain

(1 + γ )′ � max{[v]Aq , [v1−q ′ ]Aq′ } = [v]max{1, 1
q−1 }

Aq
,

(  
Q

v1+γ dx

) 1
1+γ
(  

Q
v

− 1+γ
q−1 dx

) q−1
1+γ ≤

(  
Q

v1+γ1dx

) 1
1+γ1

(  
Q

v
− 1+γ2

q−1 dx

) q−1
1+γ2

≤ 2q
(  

Q
v dx

)( 
Q

v
− 1

q−1 dx

)q−1

,

and

(  
Q

v dx

)( 
Q

v
− 1

q0−1 dx

)q0−1

=
(  

Q
v dx

)( 
Q

v
− 1+γ

q−1 dx

) q−1
1+γ

≤
(  

Q
v1+γ dx

) 1
1+γ
(  

Q
v

− 1+γ
q−1 dx

) q−1
1+γ

,

which immediately implies (2.7). ��
Lemma 2.5 The following properties hold:

(a) Let 1 ≤ p ≤ p0 < ∞. Then for any u ∈ Ap and v ∈ A1,

uv p−p0 ∈ Ap0 with [uv p−p0 ]Ap0
≤ [u]Ap [v]p0−p

A1
.

(b) Let 1 ≤ q0, q1 < ∞. Then for any w0 ∈ Aq0 , w1 ∈ Aq1 , and θ ∈ [0, 1],

[w]Aq ≤ [w0]
(1−θ)

q
q0

Aq0
[w1]

θ
q

q1
Aq1

,

where 1
q = 1−θ

q0
+ θ

q1
and w

1
q = w

1−θ
q0
0 w

θ
q1
1 . In particular, for any 1 ≤ p0 < p <

∞, u ∈ Ap, and v ∈ A1,

u
p0−1
p−1 v

p−p0
p−1 ∈ Ap0 with

[
u

p0−1
p−1 v

p−p0
p−1

]
Ap0

≤ [u]
p0−1
p−1

Ap
[v]

p−p0
p−1

A1
.
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Proof We begin with showing part (a). Let u ∈ Ap and v ∈ A1. For each cube Q,

 
Q

uv p−p0 dx ≤
(  

Q
u dx

)
(ess sup

Q
v−1)p0−p. (2.12)

Set r = p′−1
p′
0−1 = p0−1

p−1 ≥ 1. Then r ′ = p0−1
p0−p , and by Hölder’s inequality,

(  
Q
(uv p−p0)1−p′

0dx

)p0−1

≤
(  

Q
u(1−p′

0)r dx

) p0−1
r
( 

Q
v(p−p0)(1−p′

0)r
′
dx

) p0−1
r ′

=
(  

Q
u1−p′

dx

)p−1(  
Q

v dx

)p0−p

. (2.13)

Then it follows from (2.12) and (2.13) that [uv p−p0 ]Ap0
≤ [u]Ap [v]p0−p

A1
.

Next, let us prove part (b). Note that 1
q = 1−θ

q0
+ θ

q1
, and then

1 − θ
q0

q0−1

+ θ
q1

q1−1

= (1 − θ)

(
1 − 1

q0

)
+ θ

(
1 − 1

q1

)
= 1 − 1 − θ

q0
− θ

q1
= q − 1

q
.

Thus, Hölder’s inequality gives

 
Q

w dx =
 

Q

(
w

1−θ
q0
0 w

θ
q1
1

)q
dx ≤

(  
Q

w0 dx

)(1−θ)
q

q0
(  

Q
w1 dx

)θ
q

q1
(2.14)

and

(  
Q

w
− 1

q−1 dx

)q−1

=
(  

Q

(
w

− 1−θ
q0

0 w
− θ

q1
1

) q
q−1

dx

)q−1

≤
( 

Q
w

− 1
q0−1

0 dx

)(q0−1)(1−θ)
q

q0
(  

Q
w

− 1
q1−1

1 dx

)(q1−1)θ q
q1

.

(2.15)

By definition, (2.14), and (2.15),we immediately obtain [w]Aq ≤ [w0]
(1−θ)

q
q0

Aq0
[w1]

θ
q

q1
Aq1

.
To conclude the proof, it suffices to pick

w0 := u, w1 := v, q0 := p, q1 := 1, q := p0, w := u
p0−1
p−1 v

p−p0
p−1 , θ := p − p0

p0(p − 1)
,

and note that w
1−θ
q0
0 w

θ
q1
1 = u

p0−1
p0(p−1) v

p−p0
p0(p−1) = w

1
p0 = w

1
q , and
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1 − θ

q0
+ θ

q1
= p0 − 1

p0(p − 1)
+ p − p0

p0(p − 1)
= 1

p0
= 1

q
.

The proof is complete. ��
We sum up some of the properties of these classes in the following result.

Lemma 2.6 The following statements hold:

(a) For any w1, w2 ∈ A1, w := w
1/s
1 w

1−p
2 ∈ Ap ∩ RHs for all 1 ≤ p < ∞ and

1 < s ≤ ∞. Moreover,

max{[w]Ap , [w]R Hs } ≤ [w1]
1
s
A1

[w2]p−1
A1

. (2.16)

(b) Given 1 ≤ p < ∞ and 1 ≤ s < ∞, w ∈ Ap ∩ RHs if and only if ws ∈ Aτ .
Moreover,

[ws]Aτ ≤ [w]s
Ap

[w]s
R Hs

and max
{[w]s

Ap
, [w]s

R Hs

} ≤ [ws]Aτ , (2.17)

where τ = s(p − 1) + 1.
(c) Let 1 ≤ p− < p+ ≤ ∞ and p ∈ (p−, p+). Then w p ∈ Ap/p− ∩ RH(p+/p)′ if and

only if w−p′ ∈ Ap′/p′+ ∩ RH(p′−/p′)′ with

[w p(p+/p)′ ]Aτp
= [w−p′(p′−/p′)′ ]τp−1

Aτ ′
p

, (2.18)

where τp = (p+
p

)′( p
p− − 1

)+ 1.
(d) Given 1 ≤ p− < p+ ≤ ∞, p ∈ (p−, p+), and w p ∈ Ap/p− ∩ RH(p+/p)′ , there

exists p̃− ∈ (p−, p) such that w p ∈ Ap/̃p− ∩ RH(p+/p)′ with

[w p(p+/p)′ ]Aτ̃p
≤ 2τp [w p(p+/p)′ ]Aτp

and
1
p̃−

1
p̃− − 1

p

< (1 + 2−n−3)

1
p−

1
p− − 1

p

,

(2.19)

where τp = (p+
p

)′( p
p− − 1

)+ 1 and τ̃p = (p+
p

)′( p
p̃− − 1

)+ 1.

Proof Parts (a)–(c) are essentially contained in [3, 56]. We present a detailed proof
to track the weight norms. To show (a), we fix 1 ≤ p < ∞, 1 < s ≤ ∞, and let
w1, w2 ∈ A1. By Jensen’s inequality,

 
Q

w dx ≤
(  

Q
w

1
s
1 dx

)(
ess sup

Q
w−1
2

)p−1 ≤
(  

Q
w1 dx

) 1
s (

ess sup
Q

w−1
2

)p−1

(2.20)



Journal of Fourier Analysis and Applications (2024) 30 :7 Page 17 of 90 7

and

(  
Q

w
− 1

p−1 dx

)p−1
=
( 

Q
w

− 1
s(p−1)

1 w2 dx

)p−1
≤ (

ess sup
Q

w−1
1

) 1
s

( 
Q

w2 dx

)p−1
,

(2.21)

when p = 1, the inequality (2.21) is replaced by

ess sup
Q

w−1 = (
ess sup

Q
w−1
1

) 1
s . (2.22)

Then it follows from (2.20)–(2.22) that

[w]Ap ≤ [w1]
1
s
A1

[w2]p−1
A1

.

Moreover, by definition and Jensen’s inequality, we have

(  
Q

ws dx

) 1
s =

(  
Q

w1w
s(1−p)
2 dx

) 1
s ≤

(  
Q

w1 dx

) 1
s (

ess sup
Q

w−1
2

)p−1

≤ [w1]
1
s
A1

[w2]p−1
A1

(
ess inf

Q
w

1
s
1

)(  
Q

w2 dx

)1−p

≤ [w1]
1
s
A1

[w2]p−1
A1

(
ess inf

Q
w

1
s
1

)(  
Q

w
1−p
2 dx

)

≤ [w1]
1
s
A1

[w2]p−1
A1

( 
Q

w
1
s
1 w

1−p
2 dx

)

= [w1]
1
s
A1

[w2]p−1
A1

(  
Q

w dx

)
,

when s = ∞, the above still holds since (
ffl

Q ws dx)
1
s is replaced by ess supQ w. This

means

[w]R Hs ≤ [w1]
1
s
A1

[w2]p−1
A1

.

Let us next show (b). Assume first that w ∈ Ap ∩ RHs . Note that for any cube Q,

(  
Q

ws(1−τ ′)dx

)τ−1

=
( 

Q
w1−p′

dx

)s(p−1)

. (2.23)

This implies

( 
Q

ws dx

)(  
Q

ws(1−τ ′)dx

)τ−1

≤ [w]s
R Hs

(  
Q

w dx

)s(  
Q

w1−p′
dx

)s(p−1)

,
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and hence,

[ws]Aτ ≤ [w]s
Ap

[w]s
R Hs

. (2.24)

On the other hand, assuming ws ∈ Aτ , we deduce by Jensen’s inequality and (2.23),

( 
Q

w dx

)(  
Q

w1−p′
dx

)p−1

≤
(  

Q
ws dx

) 1
s
(  

Q
ws(1−τ ′)dx

) τ−1
s

, (2.25)

and

( 
Q

ws dx

) 1
s ≤ [ws]

1
s
Aτ

(  
Q

ws(1−τ ′)dx

)− τ−1
s

= [ws]
1
s
Aτ

(  
Q

w1−p′
dx

)−(p−1)

≤ [ws]
1
s
Aτ

(  
Q

wdx

)
, (2.26)

which follows from

1 =
(  

Q
w

1
p w

− 1
p dx

)p

≤
(  

Q
w dx

)(  
Q

w1−p′
dx

)p−1

.

Then, (2.25) and (2.26) imply

[w]Ap ≤ [ws]
1
s
Aτ

and [w]R Hs ≤ [ws]
1
s
Aτ

. (2.27)

Hence, (b) follows from (2.24) and (2.27).
We turn to the proof of (c). One can check that

(
p+
p

)′
(τ ′

p − 1) =
(
p′−
p′

)′
(p′ − 1) and τ ′

p =
(
p′−
p′

)′( p′

p′+
− 1

)
+ 1. (2.28)

Then it follows that

−p′(p′−/p′)′(1 − (τ ′
p)

′) = p(p′ − 1)(p′−/p′)′(τp − 1) = p(p+/p)′,

and for any cube Q,

(  
Q

w p(p+/p)′dx

)(  
Q

w p(p+/p)′(1−τ ′
p)dx

)τp−1

=
[(  

Q
w−p′(p′−/p′)′(1−(τ ′

p)′)dx

)τ ′
p−1( 

Q
w−p′(p′−/p′)′dx

)]τp−1

,
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which implies

[w p(p+/p)′ ]Aτp
= [w−p(p′−/p′)′ ]τp−1

Aτ ′
p

.

Finally, let us demonstrate (d). By part (b), there holds v := w p(p+/p)′ ∈ Aτp ,
which along with (2.7) and (2.11) applied to exponents q = τp and q0 = τ̃p, to arrive
at the first estimate in (2.19) and

p̃− = p

1 + τp−1
(p+/p)′(1+γ )

= 1
1
p + 1

1+γ
( 1
p− − 1

p )
∈ (p−, p).

Moreover,

1
p̃−

1
p̃− − 1

p

= (1 + γ )
p−
p̃−

1
p−

1
p− − 1

p

< (1 + 2−n−3)

1
p−

1
p− − 1

p

,

This proves the second estimate in (2.19) and completes the proof. ��

2.2 Multilinear MuckenhouptWeights

The multilinear maximal operator is defined by

M( �f )(x) := sup
Q�x

m∏
i=1

 
Q

| fi (yi )|dyi , (2.29)

where the supremum is taken over all cubes Q containing x .
We are going to present the definition of the multilinear Muckenhoupt classes A �p,�r

introduced in [71, 72]. Given �p = (p1, . . . , pm) with 1 ≤ p1, . . . , pm ≤ ∞ and
�r = (r1, . . . , rm+1) with 1 ≤ r1, . . . , rm+1 < ∞, we say that �r � �p whenever

ri ≤ pi , i = 1, . . . , m, and r ′
m+1 ≥ p, where

1

p
:= 1

p1
+ · · · + 1

pm
.

Analogously, we say that �r ≺ �p if ri < pi for each i = 1, . . . , m, and r ′
m+1 > p.

Definition 2.7 Let �p = (p1, . . . , pm) with 1 ≤ p1, . . . , pm ≤ ∞ and let �r =
(r1, . . . , rm+1) with 1 ≤ r1, . . . , rm+1 < ∞ such that �r � �p. Suppose that
�w = (w1, . . . , wm) and each wi is a weight on R

n . We say that �w ∈ A �p,�r if

[ �w]A �p,�r := sup
Q

(  
Q

w

r ′
m+1 p

r ′
m+1−p dx

) 1
p − 1

r ′
m+1

m∏
i=1

( 
Q

w

ri pi
ri −pi
i dx

) 1
ri

− 1
pi

< ∞, (2.30)
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where 1
p = ∑m

i=1
1
pi
, w = ∏m

i=1 wi , and the supremum is taken over all cubes Q ⊂
R

n . When p = r ′
m+1, the term corresponding tow needs to be replaced by ess supQ w

and, analogously, when pi = ri , the term corresponding towi should be ess supQ w−1
i .

Also, if pi = ∞, the term corresponding to wi becomes
( ffl

Q w
−ri
i dx

) 1
ri . If p = ∞,

one will necessarily have rm+1 = 1 and p1 = · · · = pm = ∞, hence the term
corresponding to w must be ess supQ w while the terms corresponding to wi become( ffl

Q w
−ri
i dx

) 1
ri . When rm+1 = 1 and p < ∞ the term corresponding to w needs to

be replaced by
( ffl

Q w pdx
) 1

p .

Denote A �p := A �p,(1,...,1) in Definition 2.7, that is,

[ �w]A �p := sup
Q

(  
Q

w p dx

) 1
p

m∏
i=1

( 
Q

w
−p′

i
i dx

) 1
p′
i

< ∞, (2.31)

where 1
p = ∑m

i=1
1
pi

and w = ∏m
i=1 wi . We would like to observe that our definition

of the classes A �p and A �p,�r is slightly different to that in [68] and [71]. Essentially,
they are the same since picking wi = v

pi
i for every i = 1, . . . , m in (2.30) and (2.31),

we see that �v = (v1, . . . , vm) belongs to A �p,�r in [71] and to A �p in [68], respectively.

Lemma 2.8 Let 1 ≤ p−
i < p+

i ≤ ∞, i = 1, . . . , m. Assume that pi ∈ [p−
i , p+

i ] and
w

pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m. Then �w = (w1, . . . , wm) ∈ A�q,�r with

[ �w]A�q,�r ≤
m∏

i=1

[w pi (p
+
i /pi )

′
i ]

1
pi

− 1
p+

i
Aτpi

,

for any �q = (q1, . . . , qm) with 1 ≤ q1, . . . , qm < ∞ and �r = (r1, . . . , rm+1) with
1 ≤ r1, . . . , rm+1 < ∞ such that �r � �q, and

1

q
− 1

r ′
m+1

=
m∑

i=1

(
1

pi
− 1

p+
i

)
,

1

ri
− 1

qi
= 1

p−
i

− 1

pi
, i = 1, . . . , m. (2.32)

Proof By Lemma 2.6 part (b), one has

[
w

pi (p
+
i /pi )

′
i

]
Aτpi

≤
(
[w pi

i ]A
pi /p

−
i
[w pi

i ]R H
(p+

i /pi )
′

)pi (p
+
i /pi )

′
,

where τpi := (p+
i

pi

)′( pi

p−
i

− 1
)+ 1, i = 1, . . . , m. Set

1

ti
:= 1

pi
− 1

p+
i

and
1

si
:= 1 −

(
1

p−
i

− 1

pi

)
, i = 1, . . . , m. (2.33)
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Then it is easy to check that

ti = pi (p
+
i /pi )

′ and s′
i = ti (τ

′
pi

− 1), i = 1, . . . , m, (2.34)

which gives

[wti
i ]Aτpi

= sup
Q

( 
Q

w
ti
i dx

)( 
Q

w
−ti (τ ′

pi
−1)

i

)τpi −1

= sup
Q

[(  
Q

w
ti
i dx

) 1
ti
(  

Q
w

−s′
i

i

) 1
s′i
]ti

= [wi ]ti
Asi ,ti

. (2.35)

On the other hand, let �q = (q1, . . . , qm) with 1 ≤ q1, . . . , qm < ∞ and �r =
(r1, . . . , rm+1) with 1 ≤ r1, . . . , rm+1 < ∞ such that �r � �q and (2.32) holds. It
follows from (2.32) and (2.33) that

1

q
− 1

r ′
m+1

= 1

t1
+ · · · + 1

tm
and

1

ri
− 1

qi
= 1

s′
i
, i = 1, . . . , m. (2.36)

Thus, writing w = ∏m
i=1 wi , we use (2.36) and Hölder’s inequality to obtain

(  
Q

w

r ′
m+1q

r ′
m+1−q dx

) 1
q − 1

r ′
m+1

m∏
i=1

(  
Q

w

ri qi
ri −qi
i dx

) 1
ri

− 1
qi

≤
m∏

i=1

( 
Q

w
ti
i dx

) 1
ti
(  

Q
w

−s′
i

i dx

) 1
s′i ≤

m∏
i=1

[wi ]Asi ,ti
. (2.37)

As a consequence, collecting (2.33), (2.34), (2.35), and (2.37), we conclude that

[ �w]A�q,�r ≤
m∏

i=1

[wi ]Asi ,ti
=

m∏
i=1

[wti
i ]

1
ti
Aτpi

=
m∏

i=1

[w pi (p
+
i /pi )

′
i ]

1
pi

− 1
p+

i
Aτpi

.

This completes the proof. ��

Lemma 2.9 Let 1 ≤ p−
i < p+

i ≤ ∞, i = 1, . . . , m. Assume that pi ∈ [p−
i , p+

i ]
and w

pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m. Write w = ∏m
i=1 wi . Then w p ∈

Ap/p− ∩ RH(p+/p)′ with

[w p(p+/p)′ ]Aτp
≤

m∏
i=1

[
w

pi (p
+
i /pi )

′
i

] 1
pi

− 1
p+

i
1
p − 1

p+
Aτpi

, (2.38)
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where 1
p = 1

p1
+ · · · + 1

pm
and 1

p± = 1
p±
1

+ · · · + 1
p±

m
. In particular, if we take

wm+1 := w−1, pm+1 := p′, p−
m+1 := p′+, and p+

m+1 := p′−, (2.39)

then it follows

[
w

pm+1(p
+
m+1/pm+1)

′
m+1

]
Aτpm+1

≤
m∏

i=1

[
w

pi (p
+
i /pi )

′
i

] 1
pi

− 1
p+

i
1
p− − 1

p

Aτpi

. (2.40)

Proof Set

1

r
:= 1

p
− 1

p+
=

m∑
i=1

( 1

pi
− 1

p+
i

)
=:

m∑
i=1

1

ri
, (2.41)

1

s
:= 1

p−
− 1

p
=

m∑
i=1

( 1

p−
i

− 1

pi

)
=:

m∑
i=1

1

si
. (2.42)

Observe that

pi (p
+
i /pi )

′ = 1
1
pi

− 1
p+

i

and
pi (p

+
i /pi )

′

τpi − 1
= 1

1
p−

i
− 1

pi

, i = 1, . . . , m.

(2.43)

With (2.41)–(2.43) in hand, we use Hölder’s inequality to obtain

S1 :=
(  

Q
w p(p+/p)′dx

) 1
p(p+/p)′ =

( 
Q

w

1
1
p − 1

p+ dx

) 1
p − 1

p+

=
( 

Q

( m∏
i=1

wi

)r
dx

) 1
r ≤

m∏
i=1

(  
Q

w
ri
i dx

) 1
ri

=
m∏

i=1

(  
Q

w

1
1
pi

− 1
p+

i
i dx

) 1
pi

− 1
p+

i =
m∏

i=1

(  
Q

w
pi (p

+
i /pi )

′
i dx

) 1
pi

− 1
p+

i . (2.44)

Analogously, we have

S2 :=
(  

Q
w

− p(p+/p)′
τp−1 dx

) τp−1
p(p+/p)′ =

(  
Q

w
− 1

1
p− − 1

p dx

) 1
p− − 1

p

=
(  

Q

( m∏
i=1

w−1
i

)s
dx

) 1
s ≤

m∏
i=1

( 
Q

w
−si
i dx

) 1
si
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=
m∏

i=1

(  
Q

w

− 1
1
p−

i
− 1

pi

i dx

) 1
p−

i
− 1

pi =
m∏

i=1

( 
Q

w
− pi (p

+
i /pi )

′
τpi −1

i dx

)τpi (
1
pi

− 1
p+

i
)

.

(2.45)

Then gathering (2.44) and (2.45), we arrive at

(  
Q

w p(p+/p)′dx

)(  
Q

w
− p(p+/p)′

τp−1 dx

)τp−1

= (S1 × S2)
p(p+/p)′

≤
m∏

i=1

[(  
Q

w
pi (p

+
i /pi )

′
i dx

)(  
Q

w
− pi (p

+
i /pi )

′
τpi −1

i dx

)τpi −1] 1
pi

− 1
p+

i
1
p − 1

p+ ,

which immediately gives (2.38).
To proceed, we note that by (2.28) and (2.39),

τpm+1 =
(
p+

m+1

pm+1

)′( pm+1

p−
m+1

− 1

)
+ 1 =

(
p′−
p′

)′( p′

p′+
− 1

)
+ 1 = τ ′

p,

which along with Lemma 2.6 part (c) and (2.38) yields

[
w

pm+1(p
+
m+1/pm+1)

′
m+1

]
Aτpm+1

= [w−p′(p′−/p′)′ ]Aτ ′
p

= [w p(p+/p)′ ]
1

τp−1

Aτp

≤
m∏

i=1

[
w

pi (p
+
i /pi )

′
i

] 1
pi

− 1
p+

i
1
p− − 1

p

Aτpi

.

This shows (2.40). ��

2.3 Multilinear Calderón–Zygmund Operators

Given δ > 0, we say that a function K : R
n(m+1)\{x = y1 = · · · = ym} → C is a

δ-Calderón–Zygmund kernel, if there exists a constant A > 0 such that

|K (x, �y)| ≤ A(∑m
j=1 |x − y j |

)mn ,

|K (x, �y) − K (x ′, �y)| ≤ A |x − x ′|δ(∑m
j=1 |x − y j |

)mn+δ
,
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whenever |x − x ′| ≤ 1
2 max
1≤ j≤m

|x − y j |, and for each i = 1, . . . , m,

|K (x, �y) − K (x, y1, . . . , y′
i , . . . , ym)| ≤ A |yi − y′

i |δ(∑m
j=1 |x − y j |

)mn+δ
,

whenever |yi − y′
i | ≤ 1

2 max
1≤ j≤m

|x − y j |.
An m-linear operator T : S(Rn) × · · · ×S(Rn) → S ′(Rn) is called a δ-Calderón–

Zygmund operator if there exists a δ-Calderón–Zygmund kernel K such that

T ( �f )(x) =
ˆ

(Rn)m
K (x, �y) f1(y1) · · · fm(ym)d �y,

whenever x /∈ ⋂m
i=1 supp( fi ) and �f = ( f1, . . . , fm) ∈ C∞

c (Rn) × · · · × C∞
c (Rn),

and T can be boundedly extended from Lq1(Rn)×· · ·× Lqm (Rn) to Lq(Rn) for some
1
q = 1

q1
+ · · · + 1

qm
with 1 < q1, . . . , qm < ∞.

Given a symbol σ , the m-linear Fourier multiplier Tσ is defined by

Tσ ( �f )(x) :=
ˆ

(Rn)m
σ(�ξ)e2π i x ·(ξ1+···+ξm ) f̂1(ξ1) · · · f̂m(ξm)d�ξ,

for all fi ∈ S(Rn), i = 1, . . . , m. The operator Tσ is called an m-linear Coifman–
Meyer multiplier, if the symbol σ ∈ C s(Rnm \ {0}) satisfies

∣∣∂α
�ξ σ (�ξ)

∣∣ ≤ Cα(|�ξ |)−|α|, ∀�ξ ∈ R
nm \ {0},

for each multi-indix α = (α1, . . . , αm) with |α| = ∑m
i=1 |αi | ≤ mn + 1.

It was shown in [48, Proposition 6] that Coifman–Meyer multipliers are examples
of multilinear Calderón–Zygmund operators.

Below, the sharp weighted inequality for multilinear Calderón–Zygmund operators
was given in [73, Theorem 1.4] with p ≥ 1 and extended to the case p < 1 in [76,
Corollary 4.4].

Theorem 2.10 Let T be an m-linear Calderón–Zygmund operator. Then for all 1 <

p1, . . . pm < ∞ and �w ∈ A �p,

‖T ‖L p1 (w
p1
1 )×···×L pm (w

pm
m )→L p(w p)

� [ �w]max{p,p′
1,...,p′

m }
A �p ,

where w = ∏m
i=1 wi and 1

p = ∑m
i=1

1
pi

.

Theorem 2.11 [8, Theorem 4.3] Let T be an m-linear operator. Fix θi > 0 and ri ∈
(1,∞), i = 1, . . . , m. Let 1

p = ∑m
i=1

1
pi

≤ 1 with 1 < p1, . . . , pm < ∞. Assume

that there exist increasing functions �i : [1,∞) → [0,∞) such that for all v
θi
i ∈ Ari ,
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i = 1, . . . , m,

‖T ( �f )‖L p(v p) ≤
m∏

i=1

�i ([vθi
i ]Ari

)‖ fi‖L pi (v
pi
i )

, (2.46)

where v = ∏m
i=1 vi . Then, for all weights w

ηi θi
i ∈ Asi with some ηi ∈ (1,∞), for all

b = (b1, . . . , bm) ∈ BMOm, and for each multi-index α ∈ N
m,

‖[T , b]α( �f )‖L p(w p) ≤ α!
m∏

i=1

δ
−αi
i �i

(
4δi θi [wηi θi

i ]
1
ηi
Ari

)‖bi‖αi
BMO‖ fi‖L pi (w

pi
i )

, (2.47)

where w = ∏m
i=1 wi , and δi = min{1, ri − 1}/(η′

iθi ), i = 1, . . . , m.

Let us record Marcinkiewicz–Zygmund inequalities contained in [22, Proposition
5.3].

Lemma 2.12 Let 0 < p, q1, . . . , qm < r < 2 or r = 2 and 0 < p, q1, . . . , qm < ∞.
Let μ1, . . . , μm and ν be arbitrary σ -finite measures on R

n. Let T be an m-linear
operator. Then, there exists a constant C > 0 such that the following estimates hold:

(i) If T is bounded from Lq1(μ1) × · · · × Lqm (μm) to L p(ν), then

∥∥∥∥
( ∑

k1,...,km

|T ( f 1k1 , . . . , f m
km

)|r
) 1

r
∥∥∥∥

L p(ν)

≤ C‖T ‖
m∏

i=1

∥∥∥∥
(∑

ki

| f i
ki

|r
) 1

r
∥∥∥∥

Lqi (μi )

,

where ‖T ‖ := ‖T ‖Lq1 (μ1)×···×Lqm (μm )→L p(ν).
(ii) If T is bounded from Lq1(μ1) × · · · × Lqm (μm) to L p,∞(ν), then

∥∥∥∥
( ∑

k1,...,km

|T ( f 1k1 , . . . , f m
km

)|r
) 1

r
∥∥∥∥

L p,∞(ν)

≤ C‖T ‖weak
m∏

i=1

∥∥∥∥
(∑

ki

| f i
ki

|r
) 1

r
∥∥∥∥

Lqi (μi )

,

where ‖T ‖weak := ‖T ‖Lq1 (μ1)×···×Lqm (μm )→L p,∞(ν).

3 QuantitativeWeighted Estimates

The goal of this section is to establish quantitative weighted estimates for (rough)
maximal operators and singular integrals. We begin with the following interpolation
result with change of measures due to Stein and Weiss [87], which plays an important
role in dealing with weighted estimates.

Theorem 3.1 [87] Let p0, p1 ∈ [1,∞], and let w0 and w1 be weights. If the sublinear
operator T satisfies

‖T f ‖L pi (wi ) ≤ Ki‖ f ‖L pi (wi ), i = 0, 1,
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then for any θ ∈ (0, 1),

‖T f ‖L p(w) ≤ K‖ f ‖L p(w) with K ≤ K 1−θ
0 K θ

1 ,

where 1
p = 1−θ

p0
+ θ

p1
and w

1
p = w

1−θ
p0

0 w

θ
p1
1 .

The sharp maximal functionM# is defined by

M# f (x) := sup
Q�x

 
Q

| f − fQ | dy, where fQ :=
 

Q
f dy.

The following Fefferman-Stein inequality was shown in [16, Remark 1.9].

Lemma 3.2 For every p ∈ (0,∞) and w ∈ A∞,

‖M f ‖L p(w) ≤ Cn,p [w]A∞‖M# f ‖L p(w),

whenever M f ∈ L p(w) or f ∈ L∞
c (Rn).

We present a sharp weighted vector-valued Fefferman-Stein inequality.

Lemma 3.3 For any 1 < p, r < ∞ and w ∈ Ap,

∥∥∥∥(∑
k

|M fk |r
) 1

r
∥∥∥

L p(w)
� [w]max{ 1r , 1

p−1 }
Ap

∥∥∥∥(∑
k

| fk |r
) 1

r

∥∥∥∥
L p(w)

.

Moreover, the exponent max{ 1r , 1
p−1 } is the best possible.

Proof This inequality was given in [33, Theorem 1.12]. We here present a different
proof. Let r ∈ (1,∞). It was proved in [23, Theorem 1.11] that there exist 3n dyadic
lattices D j and sparse families S j ⊂ D j such that

(∑
k

|M fk(x)|r
) 1

r ≤ Cn,r

3n∑
j=1

Ar
S j

((∑
k

| fk |r
) 1

r
)

(x), a.e. x ∈ R
n, (3.1)

where

Ar
S f (x) :=

(∑
Q∈S

〈| f |〉r
Q1Q(x)

) 1
r

. (3.2)

It follows from [13, Theorem2.1] that for all p ∈ (1,∞) and w ∈ Ap,

‖Aγ

S f ‖L p(w) ≤ Cn,p,γ [w]max{ 1
γ

, 1
p−1 }

Ap
‖ f ‖L p(w), γ > 0. (3.3)

Thus, (3.1) and (3.3) imply the desired estimate. ��
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Lemma 3.4 Let B1 and B2 be Banach spaces, and let L (B1,B2) be the Banach
space defined by all bounded linear operators from B1 to B2 with the operator norm
‖·‖L (B1,B2). Let T be a linear operator mappingB1-valued functions intoB2-valued
functions satisfying

(i) T is bounded from L2(Rn,B1) into L2(Rn,B2).
(ii) There exists a kernel function K (x) ∈ L (B1,B2) such that

‖K (x − y) − K (x)‖L (B1,B2) ≤ CK |y||x |−n−1, 2|y| < |x |,

and for every f ∈ L2(Rn,B1) with compact support,

T f (x) =
ˆ
Rn

K (x − y) f (y) dy, a.e. x /∈ supp( f ),

Then for every p ∈ (1,∞) and w ∈ Ap,

‖T f ‖L p(w,B2) � [w]
7
2 max{1, 1

p−1 }
Ap

‖ f ‖L p(w,B1).

Proof It was shown in [85, p. 41–42] that

‖T f ‖L1,∞(Rn ,B2)
� CT ‖ f ‖L1(Rn ,B1)

, (3.4)

M#(‖T f ‖B2)(x) � CT Mr (‖ f ‖B1)(x), 2 ≤ r < ∞, x ∈ R
n, (3.5)

whereCT := ‖T ‖L2(Rn ,B1)→L2(Rn ,B2)
+CK . Then interpolating between the assump-

tion (i) and (3.5) yields that for any 1 < r0 < r < 2,

‖T f ‖Lr0 (Rn ,B2) � CT (r0 − 1)
− 1

r0 ‖ f ‖Lr0 (Rn ,B1), (3.6)

where the implicit constant is independent of r0. As argued in the proof of (3.5), the
inequality (3.6) implies for any 1 < r0 < r < 2,

M#(‖T f ‖B2)(x) � CT (r0 − 1)
− 1

r0 Mr (‖ f ‖B1)(x), x ∈ R
n, (3.7)

Now let p ∈ (1,∞) andw ∈ Ap. Then, by Lemma 2.4, there exists γ ∈ (0, 2−n−3)

and q0 ∈ (1, p) such that q0 = p
1+ε

, p−1
p(1+γ )′ < ε <

p−1
(1+γ )′ , (1+ γ )′ � [w]max{1, 1

p−1 }
Ap

,
and [w]Aq0

≤ 2p[w]Ap . Set r := p/q0 = 1 + ε. If r ≥ 2, it follows from Lemma 3.2
and (3.5) that

‖T f ‖L p(w,B2) ≤ ‖M(‖T f ‖B2)‖L p(w) � [w]Ap‖M#(‖T f ‖B2)‖L p(w)

� [w]Ap‖Mr (‖ f ‖B1)‖L p(w) � [w]Ap [w]
1

r(q0−1)

Aq0
‖ f ‖L p(w,B1)

� [w]1+
1

p−r
Ap

‖ f ‖L2(w,B1)
≤ [w]

5
2 max{1, 1

p−1 }
Ap

‖ f ‖L p(w,B1),
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since

p − r = p − 1 − ε > p − 1 − p − 1

(1 + γ )′
= p − 1

1 + γ
>

p − 1

1 + 2−n−3 >
p − 1

3/2
.

If 1 < r < 2, we choose r0 = 1 + p−1
p(1+γ )′ and invoke Lemma 3.2 and (3.7) to obtain

that

‖T f ‖L p(w,B2) � 1

r0 − 1
[w]Ap‖Mr (‖ f ‖B1)‖L p(w)

� p(1 + γ )′

p − 1
[w]1+

1
p−r

Ap
‖ f ‖L p(w,B1)

� [w]
7
2 max{1, 1

p−1 }
Ap

‖ f ‖L p(w,B1).

This completes the proof. ��

Lemma 3.5 Let ϕ ∈ S(Rn) be such that
´
Rn ϕ dx = 0 and supp(ϕ̂) ⊂ {ξ ∈ R

n : c1 ≤
|ξ | ≤ c2} for some 0 < c1 < c2 < ∞. Set ϕk(x) := 2knϕ(2k x) for any k ∈ Z. Then
for every p ∈ (1,∞) and w ∈ Ap,

∥∥∥∥(∑
k∈Z

|ϕk ∗ f |2
) 1

2

∥∥∥∥
L p(w)

� [w]max{ 12 , 1
p−1 }

Ap
‖ f ‖L p(w), (3.8)

∥∥∥∥∑
k∈Z

ϕk ∗ fk

∥∥∥∥
L p(w)

� [w]
7
2 max{1, 1

p−1 }
Ap

∥∥∥∥(∑
k∈Z

| fk |2
) 1

2

∥∥∥∥
L p(w)

, (3.9)

∥∥∥∥(∑
k∈Z

|ϕk ∗ fk |2
) 1

2

∥∥∥∥
L p(w)

� [w]max{ 12 , 1
p−1 }

Ap

∥∥∥∥(∑
k∈Z

| fk |2
) 1

2

∥∥∥∥
L p(w)

. (3.10)

If we assume in addition that
∑

k∈Z |ϕ̂(2−kξ)|2 = Cϕ > 0 for all ξ 	= 0, then

‖ f ‖L p(w) � [w]max{1, 1
2(p−1) }

Ap

∥∥∥∥(∑
k∈Z

|ϕk ∗ f |2
) 1

2

∥∥∥∥
L p(w)

. (3.11)

Proof Since ϕ ∈ S(Rn), one can check that there exists C ′
ϕ > 0 such that for any

β ∈ (0, 1] and any y ∈ R
n , |ϕ(x)| ≤ C ′

ϕ(1 + |x |)−n−β and

|ϕ(x − y) − ϕ(x)| ≤ C ′
ϕ

[ |y|β
(1 + |x |)n+1+β

+ |y|β
(1 + |x − y|)n+1+β

]
.
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Recalling that
´
Rn ϕ dx = 0, we see that ϕ/C ′

ϕ ∈ Cβ,1, which is defined in [90,
Definition 6.2]. Then by [90, Theorem 6.3],

Sϕ f (x) :=
(∑

k∈Z
|ϕk ∗ f (x)|2

) 1
2 ≤ σ̃β,1 f (x) � σβ f (x) � Gβ f (x), x ∈ R

n,

(3.12)

where the implicit constant is independent of f and x . Thus, (3.8) follows from (3.12)
and the sharp weighted estimate for Gβ in [64, Theorem 1.1].

To show (3.9), we will use vector-valued singular integrals. By the support of ϕ̂,
there exist j0, j1 ∈ N such that supp(ϕ̂ j+k) ∩ supp(ϕ̂ j ) = ∅ whenever k ≤ − j0 − 1
or k ≥ j1 + 1. This and Plancherel’s identity give

ˆ
Rn

∣∣∣∑
k∈Z

ϕk ∗ fk(x)

∣∣∣2dx =
ˆ
Rn

∣∣∣∑
k∈Z

ϕ̂k(ξ) f̂k(ξ)

∣∣∣2dξ

=
∑

k, j∈Z

ˆ
Rn

ϕ̂k(2
−kξ) f̂k(ξ)ϕ̂ j (2

− jξ) f̂k(ξ)dξ

=
∑
j∈Z

j+ j1∑
k= j− j0

ˆ
Rn

ϕ̂k(2
−kξ) f̂k(ξ)ϕ̂ j (2

− jξ) f̂k(ξ)dξ

=
∑
j∈Z

j1∑
k=− j0

ˆ
Rn

ϕ̂ j+k(2
− j−kξ)ϕ̂ j (2

− jξ) f̂ j+k(ξ) f̂k(ξ)dξ

�
j1∑

k=− j0

ˆ
Rn

∑
j∈Z

| f̂ j+k(ξ)|| f̂k(ξ)|dξ

�
j1∑

k=− j0

( ˆ
Rn

∑
j∈Z

| f̂ j+k(ξ)|2dξ

) 1
2
(ˆ

Rn

∑
j∈Z

| f̂ j (ξ)|2dξ

) 1
2

� ‖{ fk}k∈Z‖2L2(Rn ,�2)
.

This means that the operator T defined by T ({ fk}k∈Z) := ∑
k∈Z ϕk ∗ fk , is a bounded

linear operator from L2(Rn, �2) to L2(Rn), with the kernel K (x) = {ϕk(x)}k∈Z sat-
isfying ‖∇K (x)‖L (�2,C) � |x |−n−1 for all x 	= 0. Hence, Lemma 3.4 implies (3.9).

Note that the inequality (3.10) is a consequence of Lemma 3.3 and that |ϕk ∗ fk | �
M fk uniformly in k ∈ Z.

Finally, to get (3.11), we use Parseval’s identity and
∑

k∈Z |ϕ̂k(ξ)|2 =∑
k∈Z |ϕ̂(2−kξ)|2 = Cϕ to get that for any f , g ∈ L2(Rn),

ˆ
Rn

∑
k∈Z

ϕk ∗ f (x) ϕk ∗ g(x) dx = Cϕ

ˆ
Rn

f (x)g(x) dx .
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Then it follows that for g ∈ S(Rn) with ‖g‖L p′
(w1−p′

)
= 1,

∣∣∣∣
ˆ
Rn

f (x)g(x) dx

∣∣∣∣ �
∣∣∣∣
ˆ
Rn

∑
k∈Z

ϕk ∗ f (x) ϕk ∗ g(x) dx

∣∣∣∣
≤
ˆ
Rn

Sϕ f (x)Sϕg(x) dx ≤ ‖Sϕ f ‖L p(w)‖Sϕg‖L p′
(w1−p′

)

� [w1−p′ ]max{ 12 , 1
p′−1

}
Ap′ ‖Sϕ f ‖L p(w)=[w]max{1, 1

2(p−1) }
Ap

‖Sϕ f ‖L p(w),

where we have used (3.8) in the last inequality. This gives at once (3.11). ��
Lemma 3.6 Given ε > 0 and a pairwise disjoint family of cubes {Q j }, we set

� :=
⋃

j

Q j and Mε(x) :=
∑

j

�(Q j )
n+ε

|x − xQ j |n+ε + �(Q j )n+ε
, x ∈ R

n . (3.13)

Then ‖Mε‖L2(w) � [w]A2w(�)
1
2 for any w ∈ A2.

Proof Note that

Mε(x) �
∑

j

[
1

(|x − xQ j |/�(Q j ))n + 1

]n+ε

�
∑

j

M1Q j (x)
n+ε

n ,

which together with Lemma 3.3 gives that for any w ∈ A2,

(ˆ
Rn

Mε(x)2 w(x) dx

) n
2(n+ε)

�
( ˆ

Rn

(∑
j

M1Q j (x)
n+ε

n

) n
n+ε

· 2(n+ε)
n

w(x) dx

) n
2(n+ε)

� [w]
max{ n

n+ε
, 1
2(n+ε)

n −1
}

A 2(n+ε)
n

(ˆ
Rn

(∑
j

1Q j (x)
)2

w(x) dx

) n
2(n+ε) ≤ [w]

n
n+ε

A2
w(�)

n
2(n+ε) ,

where we have use the disjointness of {Q j }. This implies the desired estimate. ��
Given � ∈ L1(Sn−1), the rough maximal operator M� and singular integral T�

are defined by

M� f (x) := sup
r>0

 
B(0,r)

|�(y′)|| f (x − y)| dy, (3.14)

and

T� f (x) := p. v.
ˆ
Rn

�(y′)
|y|n f (x − y) dy. (3.15)
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Theorem 3.7 Let q ∈ (1,∞) and � ∈ Lq(Sn−1) be such that
´
Sn−1 � dσ = 0. Then

for all p ∈ (q ′,∞) and for all w ∈ Ap/q ′ ,

‖M� f ‖L p(w) � [w]
1

p−q′
Ap/q′ ‖ f ‖L p(w), (3.16)

‖T� f ‖L p(w) � [w]max{1, 1
p/q′−1

}+max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w). (3.17)

Moreover, the vector-valued inequality holds for q > 2:

∥∥∥∥(∑
j

|M� f j |2
) 1

2

∥∥∥∥
L p(w)

� [w]
1

p−q′
Ap/q′

∥∥∥∥(∑
j

| f j |2
) 1

2

∥∥∥∥
L p(w)

. (3.18)

Proof By definition and Hölder’s inequality, one has

M� f (x) ≤ ‖�‖Lq (Sn−1) Mq ′ f (x), x ∈ R
n,

which together with (2.1) immediately gives (3.16). Then (3.18) is a consequence of
(3.16), Theorem 1.1, and Remark 1.4.

To treat (3.17), we choose a radial nonnegative function ϕ ∈ C∞
c (Rn) such that

suppϕ ⊂ {|x | < 1/4} and ´
Rn ϕ dx = 1. Set ϕ j (x) := 2−njϕ(2− j x) and ν j (x) :=

�(x ′)
|x |n 1{2 j ≤|x |<2 j+1}(x) for each j ∈ Z. Define

Tj f := K j ∗ f and K j :=
∑
k∈Z

νk ∗ ϕk− j , j ∈ Z.

Then,

T� = T1 +
∞∑
j=1

(Tj+1 − Tj ). (3.19)

It was proved in [89, p. 396] that for some δ0 > 0,

‖Tj f ‖L2(Rn) � ‖ f ‖L2(Rn), j ≥ 1, (3.20)

‖(Tj+1 − Tj ) f ‖L2(Rn) � 2−δ0 j‖ f ‖L2(Rn), j ≥ 1, (3.21)

where the implicit constants are independent of j .
On the other hand, it follows from [89, Lemma 2] that

K j satisfies theLq -Hörmander condition, (3.22)

which together with [89, Theorem 2] gives

Tj is bounded fromL1(Rn) toL1,∞(Rn), (3.23)
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Tj is bounded on L p(Rn), 1 < p < ∞. (3.24)

In particular, (3.24) implies

Tj is bounded fromLq ′
(Rn)toLq ′,∞(Rn), 1 < q < ∞, (3.25)

and the interpolation theorem, (3.21), and (3.24) yield that for some δ > 0,

‖(Tj+1 − Tj ) f ‖L p(Rn) � 2−δ j‖ f ‖L p(Rn), j ≥ 1, 1 < p < ∞. (3.26)

Hence, by (3.22), (3.25), and [70, Theorem 1.2], we obtain that for any f ∈ L∞
c (Rn)

there exists a sparse family S j such that

Tj f (x) �
∑

Q∈S j

〈| f |q ′ 〉
1
q′
Q 1Q(x) = A

1
q′
S j

(| f |q ′
)(x)

1
q′ , a.e. x ∈ R

n, (3.27)

where the dyadic operator Aγ

S is defined in (3.2) and the implicit constant is inde-
pendent of j . Accordingly, we use (3.3), (3.27), and a density argument to arrive
at

‖Tj f ‖L p(v) � [v]max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(v), ∀p ∈ (q ′,∞), v ∈ Ap/q ′ . (3.28)

Now fix p ∈ (q ′,∞) and w ∈ Ap/q ′ . By Lemma 2.4, there exists γ ∈ (0, 1) such
that

(1 + γ )′ = cn[w]max{1, 1
p/q′−1

}
Ap/q′ =: cn B0, and [w1+γ ]Ap/q′ � [w]1+γ

Ap/q′ ,

which along with (3.28) implies

‖(Tj+1 − Tj ) f ‖L p(w1+γ ) � [w](1+γ )max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w1+γ ). (3.29)

In light of Theorem 3.1 with w0 ≡ 1, w1 = w1+γ , and θ = 1
1+γ

, interpolating
between (3.26) and (3.29) gives

‖(Tj+1 − Tj ) f ‖L p(w) � 2−(1−θ)δ j [w]max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w), j ≥ 1. (3.30)

Note that 1 − θ = 1
(1+γ )′ and e−t < 2t−2 for any t > 0. As a consequence, (3.19),

(3.28), and (3.30) imply
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‖T� f ‖L p(w) �
∞∑
j=0

2
− c′n j

B0 [w]max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w)

=
( ∑

j≤B0

+
∑
j>B0

)
2
− c′n j

B0 [w]max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w)

�
(

B0 +
∑
j>B0

j−2B2
0

)
[w]max{1, 1

p−q′ }
Ap/q′ ‖ f ‖L p(w)

� B0 [w]max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w)

= [w]max{1, 1
p/q′−1

}+max{1, 1
p−q′ }

Ap/q′ ‖ f ‖L p(w).

This completes the proof. ��
Theorem 3.8 Let q ∈ (1,∞) and � ∈ Lq(Sn−1). Then for all p ∈ (1, q) and for all
w1−p′ ∈ Ap′/q ′ ,

‖M� f ‖L p(w) � [w1−p′ ]max{1, 1
p′/q′−1

}+max{1, 1
p′−q′ }

Ap′/q′ ‖ f ‖L p(w). (3.31)

Proof Fix p ∈ (1, q) and w1−p′ ∈ Ap′/q ′ . For j ∈ Z, set ν�, j (x) :=
�(x ′)
|x |n 1{2 j ≤|x |<2 j+1}(x). Define

S� f (x) :=
(∑

j∈Z
|T�, j f (x)|2

) 1
2

, where T�, j f := ν�, j ∗ f .

If we set �0(x ′) := |�(x ′)| − ffl
Sn−1 |�| dσ for any x ′ ∈ S

n−1, there there holds

�0 ∈ Lq(Sn−1),

ˆ
Sn−1

�0 dσ = 0, and M� f � M f + S�0(| f |). (3.32)

Since w1−p′ ∈ Ap′/q ′ ⊂ Ap′ , we see that w ∈ Ap and by (2.1),

‖M f ‖L p(w) � [w]
1

p−1
Ap

‖ f ‖L p(w) = [w1−p′ ]Ap′ ‖ f ‖L p(w) ≤ [w1−p′ ]Ap′/q′ ‖ f ‖L p(w).

(3.33)

In order to estimate S�0 , we define a linear operator

Tε
�0

:=
∑
m∈Z

εmT�0,m, where ε := {εm = ±1}.
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Writing

k :=
∑
m∈Z

εmν�0,m and k(m) := ν�0,m, m ∈ Z,

one can verify that [89, Lemmas 1 and 2] hold for k and k(m), with bounds independent
of ε. This means that Tε

�0
behaves as T� in Theorem 3.7. Then by (3.17),

sup
ε

‖Tε
�0

f ‖Ls (v) � [v]max{1, 1
s/q′−1

}+max{1, 1
s−q′ }

As/q′ ‖ f ‖Ls (v). (3.34)

for any s ∈ (q ′,∞) and v ∈ As/q ′ . By duality, (3.34) implies

sup
ε

‖Tε
�0

f ‖L p(w) � [w1−p′ ]max{1, 1
p′/q′−1

}+max{1, 1
p′−q′ }

Ap′/q′ ‖ f ‖L p(w). (3.35)

Wewould like to use (3.35) to boundS�0 . Let {rm(·)}m∈N be the systemofRademacher
functions in [0, 1). By Khintchine’s inequality (cf. [45, p. 586]) and (3.35) applied to
ε(t) := {rm(t)}m∈Z, we have

‖S�0 f ‖L p(w) �
∥∥∥∥
(ˆ 1

0

∣∣∣∑
m∈Z

rm(t)T�0,m f
∣∣∣p

dt

) 1
p
∥∥∥∥

L p(w)

=
( ˆ 1

0
‖Tε(t)

�0
f ‖p

L p(w)dt

) 1
p

� [w1−p′ ]max{1, 1
p′/q′−1

}+max{1, 1
p′−q′ }

Ap′/q′ ‖ f ‖L p(w).

(3.36)

Therefore, (3.31) follows from (3.32), (3.33), and (3.36). ��
Lemma 3.9 Let ψ ∈ C∞

c (Rn) be a radial function such that 0 ≤ ψ ≤ 1, suppψ ⊂
{1/2 ≤ |ξ | ≤ 2} and

∑
l∈Z ψ(2−lξ)2 = 1 for |ξ | 	= 0. Define the multiplier �l by

�̂l f (ξ) = ψ(2−lξ) f̂ (ξ). For j ∈ Z, set ν j (x) := �(x ′)
|x |n 1{2 j ≤|x |<2 j+1}(x), where � is

the same as in Theorem 3.7. Then for all p ∈ (q ′,∞) and w ∈ Ap/q ′ ,

sup
s∈Z

∥∥∥∥(∑
k∈Z

|νk+s ∗ �2
l−k f |2

) 1
2

∥∥∥∥
L p(w)

� [w]
5
2 max{1, 1

p/q′−1
, 2

p−1 }
Ap/q′ ‖ f ‖L p(w). (3.37)

Proof Let p ∈ (q ′,∞) and w ∈ Ap/q ′ . Observe that

sup
s∈Z

sup
k∈Z

|νk+s ∗ fk | ≤ M�

(
sup
k∈Z

| fk |
)
. (3.38)

This and (3.16) yield

sup
s∈Z

∥∥∥ sup
k∈Z

|νk+s ∗ fk |
∥∥∥

L p(w)
� [w]

1
p−q′
Ap/q′

∥∥∥ sup
k∈Z

| fk |
∥∥∥

L p(w)
. (3.39)
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In light of Theorem 3.8, (3.38) implies that for any r ∈ (1, q) and v1−r ′ ∈ Ar ′/q ′ ,

sup
s∈Z

∥∥∥ sup
k∈Z

|νk+s ∗ fk |
∥∥∥

Lr (v)
� [v1−r ′ ]max{1, 1

r ′/q′−1
}+max{1, 1

r ′−q′ }
Ar ′/q′

∥∥∥ sup
k∈Z

| fk |
∥∥∥

Lr (v)
,

which together with duality gives

sup
s∈Z

∥∥∥∥∑
k∈Z

|νk+s ∗ fk |
∥∥∥∥

L p(w)

� [w]max{1, 1
p/q′−1

}+max{1, 1
p−q′ }

Ap/q′

∥∥∥∥∑
k∈Z

| fk |
∥∥∥∥

L p(w)

.(3.40)

Then, interpolating between (3.39) and (3.40), we obtain

sup
s∈Z

∥∥∥∥(∑
k∈Z

|νk+s ∗ fk |2
) 1

2
∥∥∥∥

L p(w)

� [w]
1
2 max{1, 1

p/q′−1
}+max{1, 1

p−q′ }
Ap/q′

∥∥∥∥(∑
k∈Z

| fk |2
) 1

2
∥∥∥∥

L p(w)

.

Combining (3.10) with (3.8) and that [w]Ap ≤ [w]Ap/q′ , this immediately implies
(3.37). ��

4 Proof of Main Theorems

In this section, we will prove Theorems 1.1 and 1.2. The first step is to show Theorem
1.1, which will follow from Theorem 4.8, a limited rang, off-diagonal extrapolation
with quantitative weights norms. Before proving the latter, we present some other
quantitative extrapolation.

4.1 Ap Extrapolation

We begin with the Ap extrapolation with quantitative bounds.

Theorem 4.1 Let F be a family of extrapolation pairs. Assume that there exist expo-
nents p0 ∈ [1,∞] such that for all weights v p0 ∈ Ap0 ,

‖ f v‖L p0 ≤ �([v p0 ]Ap0
)‖gv‖L p0 , ( f , g) ∈ F , (4.1)

where � : [1,∞) → [1,∞) is an increasing function. Then for all exponents p ∈
(1,∞) and all weights w p ∈ Ap,

‖ f w‖L p ≤ 2�
(

C p [w p]max{1, p0−1
p−1 }

Ap

)
‖gw‖L p , ( f , g) ∈ F , (4.2)

where C p = 3n(p′+8)(p0−p) if p < p0, and C p = 3n(p+8) if p > p0.

Theorem 4.1 was shown in [38, 40] without the explicit constant C p. We restudy it
by presenting a stronger result as follows.
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Theorem 4.2 Let q ∈ [1,∞] and p ∈ (1,∞). Then for any w p ∈ Ap, f ∈ L p(w p),

and g ∈ L p′
(w−p′

), there exists vq ∈ Aq with [vq ]Aq ≤ C p [w p]max{1, q−1
p−1 }

Ap
such that

‖ f v‖Lq ‖gv−1‖Lq′ ≤ 2‖ f w‖L p‖gw−1‖L p′ , (4.3)

where C p = 3n(p′+8)(q−p) if p < q, and C p = 3n(p+8) if p > q.

Proof Let p ∈ (1,∞), w p ∈ Ap, f ∈ L p(w p), and g ∈ L p′
(w−p′

). We may assume
that f and g are nonnegative and non-trivial. Let us first consider the case p < q. By
w p ∈ Ap and Theorem 2.2, there exists an operator R : L p(w p) → L p(w p) such
that

f ≤ R f , ‖R f ‖L p(w p) ≤ 2‖ f ‖L p(w p), and [R f ]A1 ≤ 2‖M‖L p(w p). (4.4)

Define

v := w
p
q (R f )

−1+ p
q . (4.5)

Then by Lemma 2.5, the last estimate in (4.4), and (2.1),

[vq ]Aq = [w p(R f )p−q ]Aq ≤ [w p]Ap [R f ]q−p
A1

≤ 3n(p′+8)(q−p)[w p]
q−1
p−1
Ap

. (4.6)

On the other hand, it follows from the first two estimate in (4.4) that

‖ f v‖Lq = ‖ f (R f )
−1+ p

q w
p
q ‖Lq ≤ ‖(R f · w)

p
q ‖Lq = ‖R f · w‖

p
q
L p ≤ (2‖ f w‖L p )

p
q .

(4.7)

In view of p < q, we set 1
r := 1

p − 1
q . Then,

1
q ′ = 1

p′ + 1
r , and by Hölder’s inequality,

‖gv−1‖Lq′ = ‖(gw−1)(wv−1)‖Lq′ ≤ ‖gw−1‖L p′ ‖wv−1‖Lr . (4.8)

Observe that

‖wv−1‖Lr = ‖(R f · w)
p( 1

p − 1
q )‖Lr = ‖R f · w‖1−

p
q

L p ≤ (2‖ f w‖L p )
1− p

q , (4.9)

where the second estimate estimate in (4.4) was used in the last step. Now collecting
(4.7)–(4.9), we obtain

‖ f v‖Lq ‖gv−1‖Lq′ ≤ 2‖ f w‖L p‖gw−1‖L p′ .

This and (4.6) show (4.3) in the case p < q.
Let us deal with the case q < p, which is equivalent to p′ < q ′. Also, w p ∈ Ap is

equivalent to w−p′ ∈ Ap′ . Note that g ∈ L p′
(w−p′

) and f ∈ L p(w p). Invoking (4.3)
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for p′, q ′, g, f , w−1 in place of p, q, f , g, and w, respectively, one can find a weight
uq ′ ∈ Aq ′ with

[u−q ′ ]Aq′ ≤ 3n(p+8)(q ′−p′)[w−p′ ]
q′−1
p′−1
Ap′ (4.10)

such that

‖gu‖Lq′ ‖ f u−1‖Lq ≤ 2‖gw−1‖L p′ ‖ f w‖L p . (4.11)

Picking v = u−1 and using (4.10), we see that

[vq ]Aq = [u−q ]Aq = [u−q ′ ]
1

q′−1
Aq′ ≤ 3

n(p+8) q′−p′
q′−1 [w−p′ ]

1
p′−1
Ap′ < 3n(p+8)[w p]Ap ,

and (4.11) can be rewritten as

‖ f v‖Lq ‖gv−1‖Lq′ ≤ 2‖ f w‖L p‖gw−1‖L p′ .

This shows (4.3) in the case q < p. ��
Proof of Theorem 4.1. Let p ∈ (1,∞) and w p ∈ Ap. By duality,

‖ f w‖L p = sup
0≤h∈L p′

(w−p′
)

‖hw−1‖
L p′ =1

|〈 f , h〉|. (4.12)

Fix a nonnegative function h ∈ L p′
(w−p′

) with ‖hw−1‖L p′ = 1. In view of Theorem
4.2, one can find a weight v p0 ∈ Ap0 such that

[v p0 ]Ap0
≤ C p [w p]max{1, p0−1

p−1 }
Ap

, (4.13)

‖gv‖L p0 ‖hv−1‖
L p′

0
≤ 2‖gw‖L p‖hw−1‖L p′ , (4.14)

where C p = 3n(p′+8)(p0−p) if p < p0, and C p = 3n(p+8) if p > p0. Hence, by (4.1),
(4.13), and (4.14),

|〈 f , h〉| ≤ ‖ f v‖L p0 ‖hv−1‖
L p′

0
≤ �([v p0 ]Ap0

)‖gv‖L p0 ‖hv−1‖
L p′

0

≤ 2�(C p[w p]max{1, p0−1
p−1 }

Ap
)‖gw‖L p‖hw−1‖L p′ ,

which along with (4.12) yields at once (4.2) as desired. ��
Next, we would like to use Theorem 4.1 to get additional results.



7 Page 38 of 90 Journal of Fourier Analysis and Applications (2024) 30 :7

Theorem 4.3 Let F be a family of extrapolation pairs. Assume that there exist expo-
nents p0 ∈ (0,∞) and q0 ∈ [1,∞) such that for all weights v ∈ Aq0 ,

‖ f ‖L p0 (v) ≤ �([v]Aq0
)‖g‖L p0 (v), ( f , g) ∈ F , (4.15)

where � : [1,∞) → [1,∞) is an increasing function. Then for all exponents p ∈
(1,∞) and all weights w ∈ Ap,

‖ f ‖L pp0/q0 (w) ≤ 2
q0
p0 �

(
C p [w]max{1, q0−1

p−1 }
Ap

)
‖g‖L pp0/q0 (w), ( f , g) ∈ F , (4.16)

where C p = 3n(p′+8)(q0−p) if p < q0, and C p = 3n(p+8) if p > q0.

Proof Set

F̃ := {
(F, G) = (

f
p0
q0 , g

p0
q0
) : ( f , g) ∈ F

}
.

Note that (4.15) implies that for all weights v ∈ Aq0 ,

‖F‖Lq0 (v) = ‖ f ‖
p0
q0
L p0 (v)

≤ �([v]Aq0
)

p0
q0 ‖g‖

p0
q0
L p0 (v)

= �([v]Aq0
)

p0
q0 ‖G‖Lq0 (v),

(4.17)

for all (F, G) ∈ F̃ . Then it follows from (4.17) and Theorem 4.1 with p0 replaced by
q0 that for all exponent p ∈ (1,∞) and for all weights w ∈ Ap,

‖F‖L p(w) ≤ 2�
(

C p [w]max{1, q0−1
p−1 }

Ap

) p0
q0 ‖G‖Lq0 (w), (F, G) ∈ F̃,

which can be rewritten as

‖ f ‖L pp0/q0 (w) ≤ 2
q0
p0 �

(
C p [w]max{1, q0−1

p−1 }
Ap

)
‖g‖L pp0/q0 (w), ( f , g) ∈ F ,

where C p = 3n(p′+8)(q0−p) if p < q0, and C p = 3n(p+8) if p > q0. This shows
(4.16). ��
Theorem 4.4 Let T be a sublinear operator. Assume that there exists p0 ∈ [1,∞)

such that for all v ∈ Ap0 ,

‖T f ‖L p0,∞(v) ≤ �([v]Ap0
)‖ f ‖L p0 (v), (4.18)

where � : [1,∞) → [1,∞) is an increasing function. Then for all p ∈ (1,∞) and
for all w ∈ Ap,

‖T f ‖L p,∞(w) ≤ 2�
(

C p [w p]max{1, p0−1
p−1 }

Ap

)
‖ f ‖L p(w), (4.19)
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‖T f ‖L p(w) ≤ 2�
(

C p [w p]max{1, 3(p0−1)
p−1 }

Ap

)
‖ f ‖L p(w). (4.20)

Proof Given an arbitrary number λ > 0, we denote

Fλ := {(Fλ, G) := (λ1{x∈Rn :|T f (x)|>λ}, f ) : f }.

The hypothesis (4.18) implies that for all weights v ∈ Ap0 ,

‖Fλ‖L p0 (v) = λ v({x ∈ R
n : |T f (x)| > λ}) 1

p0 ≤ ‖T f ‖L p0,∞(v)

≤ �([v]Ap0
)‖ f ‖L p0 (v) = �([v]Ap0

)‖G‖L p0 (v), (4.21)

for all (Fλ, G) ∈ Fλ. Thus, (4.21) means that (4.1) is satisfies for the familyFλ. Then
Theorem 4.1 yields that for all exponents p ∈ (1,∞) and all weights w ∈ Ap,

λ w({x ∈ R
n : |T f (x)| > λ}) 1

p = ‖Fλ‖L p(w)

≤ 2�
(

C p [w p]max{1, p0−1
p−1 }

Ap

)
‖G‖L p(w) = 2�

(
C p [w p]max{1, p0−1

p−1 }
Ap

)
‖ f ‖L p(w),

where C p = 3n(p′+8)(p0−p) if p < p0, and C p = 3n(p+8) if p > p0, which along
with the arbitrariness of λ implies (4.19).

To prove (4.20), we fix q ∈ (1,∞) and w ∈ Aq . By Lemma 2.4, there exist
γ ∈ (0, 1) and q0 ∈ (1, q) so that

q0 = q

1 + ε
, 0 < ε <

q − 1

(1 + γ )′
, (1 + γ )′ � [v]max{1, 1

q−1 }
Aq

, [w]Aq0
≤ 2q [w]Aq .

(4.22)

We may assume that ε < 1
2 since in this case (4.22) still holds. Choose q1 := q

1−ε
∈

(q, 2q) such that 1
q = 1−θ

q0
+ θ

q1
with θ = 1

2 . Then,

w ∈ Aq ⊂ Aq1 with [w]Aq1
≤ [w]Aq . (4.23)

Then it follows from (4.22), (4.23), and (4.19) (with the exact constant C p, see the
proof above) that

‖T f ‖Lq0,∞(w) ≤ 2�
(

Cq0 [w]max{1, p0−1
q0−1 }

Aq0

)
‖ f ‖Lq0 (w), (4.24)

‖T f ‖Lq1,∞(w) ≤ 2�
(

Cq1 [w]max{1, p0−1
q1−1 }

Aq1

)
‖ f ‖Lq1 (w), (4.25)

where

Cqi =
{
3n(q ′

i +8)(p0−qi ), if qi < p0,

3n(qi +8), if qi > p0,
i = 0, 1.
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Additionally, by the choice of q0 and q1, and that ε < (q − 1)/2, we have

q0 − 1 = q

1 + ε
− 1 >

q − 1

2(1 + ε)
>

q − 1

3
, q ′

0 = q

q − 1 − ε
< 2q ′, (4.26)

Cqi ≤ C ′
q , and [w]max{1, p0−1

qi −1 }
Aqi

≤ [w]max{1, 3(p0−1)
q−1 }

Aq
, i = 0, 1, (4.27)

whereC ′
q depends only on n, p0, and q. Thus, invoking (4.27), we interpolate between

(4.24) and (4.25) to conclude

‖T f ‖Lq (w) ≤ 2�
(

C ′
q [w p]max{1, 3(p0−1)

q−1 }
Ap

)
‖ f ‖Lq (w).

This completes the proof. ��

4.2 Off-Diagonal Extrapolation

We next present a quantitative off-diagonal extrapolation below, which improves The-
orem 4.1 to the limited range case.

Theorem 4.5 Let F be a family of extrapolation pairs and 1 ≤ p− < p+ ≤ ∞.
Assume that there exist exponents p0 ∈ [p−, p+] and q0 ∈ (1,∞) such that for all
weights v p0 ∈ Ap0/p− ∩ RH(p+/p0)′ ,

‖ f v‖Lq0 ≤ �
([v p0(p+/p0)′ ]Aτp0

)‖gv‖L p0 , ( f , g) ∈ F , (4.28)

where � : [1,∞) → [1,∞) is an increasing function. Then for all exponents p ∈
(p−, p+) and q ∈ (1,∞) satisfying 1

p − 1
q = 1

p0
− 1

q0
, and all weights w p ∈ Ap/p− ∩

RH(p+/p)′ ,

‖ f w‖Lq ≤ 2
max{ τp0

p0
,
τp
p }

�
(

C p,q [w p(p+/p)′ ]max{1, τp0−1
τp−1 }

Aτp

)
‖gw‖L p , ( f , g) ∈ F .

(4.29)

To show Theorem 4.5, we present a more general result below.

Theorem 4.6 Let β ∈ (0,∞), p0, q0 ∈ [1,∞), p, q ∈ (1,∞), and let r0, r ∈ ( 1
β
,∞)

be such that 1
q − 1

q0
= 1

r − 1
r0

= 1
p − 1

p0
. Then for all weights wr ∈ Arβ and for all

functions f ∈ L p(w p) and g ∈ Lq ′
(w−q ′

), there exists a weight vr0 ∈ Ar0β such that

[vr0 ]Ar0β � [wr ]max{1, r0β−1
rβ−1 }

Arβ
, (4.30)

‖ f v‖L p0 ‖gv−1‖
Lq′

0
≤ 2

max{ rβ
p ,

(rβ)′
q′ }‖ f w‖L p‖gw−1‖Lq′ . (4.31)
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Proof Fix wr ∈ Arβ , f ∈ L p(w p), and g ∈ Lq ′
(w−q ′

). We first consider the case
q < q0 (equivalently, p < p0 and r < r0). Pick

h := f
p

rβ w
p−r
rβ so that ‖h‖Lrβ (wr ) = ‖ f w‖

p
rβ

L p . (4.32)

By wr ∈ Arβ and Theorem 2.2, there exists an operator R : Lrβ(wr ) → Lrβ(wr )

such that

h ≤ Rh, ‖Rh‖Lrβ(wr ) ≤ 2‖h‖Lrβ (wr ), and [Rh]A1 ≤ 2‖M‖Lrβ (wr ). (4.33)

Define

v := w
r

r0 (Rh)
(r−r0)β

r0 . (4.34)

Then by Lemma 2.5 part (a), the last inequality in (4.33), and (2.1),

[vr0 ]Ar0β = [wr (Rh)rβ−r0β ]Ar0β ≤ [wr ]Arβ [Rh]r0β−rβ
A1

� [wr ]
r0β−1
rβ−1
Arβ

. (4.35)

It follows from (4.32), (4.33), and (4.34) that

‖ f v‖L p0 =
∥∥∥(h rβ

p w
r
p −1+ r

p0
)
(Rh)

(r−r0)β

r0

∥∥∥
L p0

≤
∥∥∥[(Rh)rβwr ] 1

p − 1
r + 1

r0

∥∥∥
L p0

= ‖Rh‖
rβ
p0
Lrβ(wr )

≤ (2‖h‖Lrβ (wr ))
rβ
p0 = (

2‖ f w‖
p

rβ

L p

) rβ
p0 = 2

rβ
p0 ‖ f w‖

p
p0
L p .

(4.36)

To proceed, we set 1
t := 1

q − 1
q0
, equivalently 1

q ′
0

= 1
q ′ + 1

t . By Hölder’s inequality,

‖gv−1‖
Lq′

0
≤ ‖gw−1‖Lq′ ‖wv−1‖Lt , (4.37)

and by (4.32)–(4.34),

‖wv−1‖Lt =
∥∥∥(Rh)

β(1− r
r0

)
w

1− r
r0

∥∥∥
Lt

= ‖Rh‖rβ( 1r − 1
r0

)

Lrβ (wr )
≤ (

2‖h‖Lrβ(wr )

)rβ( 1r − 1
r0

)

= (
2‖ f w‖

p
rβ

L p

)rβ( 1r − 1
r0

) = 2
rβ( 1r − 1

r0
)‖ f w‖p( 1r − 1

r0
)

L p . (4.38)

Now collecting (4.36), (4.37), and (4.38), we deduce that

‖ f v‖L p0 ‖gv−1‖
Lq′

0
≤ 2

rβ
p ‖ f w‖L p‖gw−1‖Lq′ , (4.39)

provided 1
q − 1

q0
= 1

r − 1
r0

= 1
p − 1

p0
. This shows the case q < q0.
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Next let us deal with the case q > q0 (equivalently, p > p0 and r > r0). Set

s := r

rβ − 1
and s0 := r0

r0β − 1
. (4.40)

Recall that wr ∈ Arβ . Then we see that

w−s ∈ Asβ, q ′ < q ′
0, and

1

s
− 1

s0
= 1

r0
− 1

r
= 1

p′ − 1

p′
0

= 1

q ′ − 1

q ′
0
.

(4.41)

Hence, the conclusion in the preceding case applied to the tuple (q ′, p′, s, q ′
0,

p′
0, s0, g, f , w−1) in place of (p, q, r , p0, q0, r0, f , g, w) gives that there exists a

weight us0 ∈ As0β so that

[us0 ]As0β � [w−s]
s0β−1
sβ−1

Asβ
, (4.42)

‖gu‖
Lq′

0
f u−1‖L p0 ≤ 2

sβ
q′ ‖gw−1‖Lq′ ‖ f w‖L p . (4.43)

Note that by (4.40),

(rβ − 1)(sβ − 1) = 1 and (r0β − 1)(s0β − 1) = 1. (4.44)

Pick v := u−1. Then by (4.41), (4.42), and (4.44),

[vr0 ]Ar0β = [u−r0 ]Ar0β = [u
r0

r0β−1 ]r0β−1
A(r0β)′ = [us0 ]r0β−1

As0β

� [w−s]
1

sβ−1
Asβ

= [w− r
rβ−1 ]rβ−1

A(rβ)′ = [wr ]Arβ ,

and (4.43) can be rewritten as

‖ f v‖L p0 ‖gv−1‖
Lq′

0
≤ 2

(rβ)′
q′ ‖ f w‖L p‖gw−1‖Lq′ .

In the case q = q0, taking v := w, the conclusion is trivial. This completes the proof.
��

The following conclusion is a particular case of Theorem 4.6.

Theorem 4.7 Let 1 ≤ p− < p+ ≤ ∞, p0 ∈ [p−, p+], p ∈ (p−, p+), and let q0, q ∈
(1,∞) be such that 1

q − 1
q0

= 1
p − 1

p0
. Then for all weights w p ∈ Ap/p− ∩ RH(p+/p)′

and for all functions f ∈ L p(w p) and g ∈ Lq ′
(w−q ′

), there exists a weight v p0 ∈
Ap0/p− ∩ RH(p+/p0)′ such that

[v p0(p+/p0)′ ]Aτp0
� [w p(p+/p)′ ]max{1, τp0−1

τp−1 }
Aτp

, (4.45)
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‖ f v‖L p0 ‖gv−1‖
Lq′

0
≤ 2

max{ τp
p ,

τ ′
p

q′ }‖ f w‖L p‖gw−1‖Lq′ . (4.46)

Proof Denote

r := p(p+/p)′, r0 := p0(p+/p0)
′, and β := 1

p−
− 1

p+
. (4.47)

Then one can check that

rβ = τp, r0β = τp0 , and
1

r
− 1

r0
= 1

p
− 1

p0
= 1

q
− 1

q0
. (4.48)

Let w p ∈ Ap/p− ∩ RH(p+/p)′ , f ∈ L p(w p), and g ∈ Lq ′
(w−q ′

). Then it follows
from Lemma 2.6 part (b) and (4.48) that wr ∈ Arβ , which together with Theorem 4.6
implies that there exists a weight vr0 ∈ Ar0β such that

[vr0 ]Ar0β � [wr ]max{1, r0β−1
rβ−1 }

Arβ
, (4.49)

‖ f v‖L p0 ‖gv−1‖
Lq′

0
≤ 2

max{ rβ
p ,

(rβ)′
q′ }‖ f w‖L p‖gw−1‖Lq′ . (4.50)

In view of (4.47), (4.48), and Lemma 2.6 part (b), we conclude from (4.49) and (4.50)
that v p0 ∈ Ap0/p− ∩ RH(p+/p0)′ so that (4.45) and (4.46) hold. ��

Let us see how we deduce Theorem 4.5 from Theorem 4.7.

Proof of Theorem 4.5. By duality,

‖ f w‖Lq = sup
0≤h∈Lq′

(w−q′
)

‖hw−1‖
Lq′ =1

|〈 f , h〉|. (4.51)

Fix a nonnegative function h ∈ Lq ′
(w−q ′

) with ‖hw−1‖Lq′ = 1. By Theorem 4.7,
there exists a weight v p0 ∈ Ap0/p− ∩ RH(p+/p0)′ such that

[v p0(p+/p0)′ ]Aτp0
� [w p(p+/p)′ ]max{1, τp0−1

τp−1 }
Aτp

, (4.52)

‖gv‖L p0 ‖hv−1‖
Lq′

0
≤ 2

max{ τp
p ,

τ ′
p

q′ }‖gw‖L p‖hw−1‖Lq′ . (4.53)

Then, in view of (4.52), we use (4.28) and (4.53) to obtain

|〈 f , h〉| ≤ ‖ f v‖Lq0 ‖hv−1‖
Lq′

0
≤ �([v p0(p+/p0)′ ]Aτp0

)‖gv‖Lq0 ‖hv−1‖
Lq′

0

≤ 2
max{ τp

p ,
τ ′

p
q′ }

�

(
C
[
w p(p+/p)′

]max{1, τp0−1
τp−1 }

Aτp

)
‖gw‖L p‖hw−1‖Lq′ .

This along with (4.51) gives at once (4.29) as desired. ��
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4.3 Multilinear Extrapolation

If we use Theorem 4.5 to show Theorem 1.1, it requires all the exponents are Banach.
Thus, we have to improve Theorem 4.5 to the non-Banach ranges as follows. But in
this case, we cannot establish a “product-type embedding” as Theorem 4.7.

Theorem 4.8 Let F be a family of extrapolation pairs and 1 ≤ p− < p+ ≤ ∞.
Assume that there exist exponents p0, q0 ∈ (0,∞) such that p0 ∈ [p−, p+] and for
all weights v p0 ∈ Ap0/p− ∩ RH(p+/p0)′ ,

‖ f v‖Lq0 ≤ �
([v p0 ]Ap0/p−∩R H(p+/p0)′

)‖gv‖L p0 , ( f , g) ∈ F , (4.54)

where � : [1,∞) → [1,∞) is an increasing function. Then for all exponents p ∈
(p−, p+) and q ∈ (0,∞) satisfying 1

p − 1
q = 1

p0
− 1

q0
, and all weights w p ∈ Ap/p− ∩

RH(p+/p)′ ,

‖ f w‖Lq ≤ 2
max{ τp

p ,
τ ′

p
p0

}
�
(
C0 [w p]γ (p, p0)

Ap/p−∩R H(p+/p)′
)‖gw‖L p , ( f , g) ∈ F ,

(4.55)

where the constant C0 depends only on n, p, p0, p−, and p+, and

γ (p, p0) :=
{
max

{
1,

τp0−1
τp−1

}
, p0 < p+,

p0
τp−1

( 1
p− − 1

p+
)
, p0 = p+.

Proof Fix p ∈ (p−, p+) and q ∈ (0,∞) satisfying 1
p − 1

q = 1
p0

− 1
q0
, and let

w p ∈ Ap/p− ∩ RH(p+/p)′ . Fix ( f , g) ∈ F . Without loss of generality we may assume
that 0 < ‖gw‖L p < ∞. Indeed, if ‖gw‖L p = ∞ there is nothing to prove, and if
‖gw‖L p = 0, then g = 0 a.e. and by (4.54) we see that f = 0 a.e., which trivially
implies (4.55). We split the proof into two cases.

Case I: q < q0. Recall that τt = (p+
t

)′( t
p− −1)+1 for any t ∈ [p−, p+]. Obviously,

τt is an increasing function in t . Lemma 2.6 part (b) gives

w p(p+/p)′ ∈ Aτp . (4.56)

Set

h := g
p

τp w
p

τp
[1−(p+/p)′]

so that ‖h‖Lτp (w p(p+/p)′ ) = ‖gw‖
p

τp
L p < ∞, (4.57)

which along with (4.56) and Theorem 2.2 implies that there exists an operator R :
Lτp (w p(p+/p)′) → Lτp (w p(p+/p)′) such that

h ≤ Rh, ‖Rh‖
Lτp (w p(p+/p)′ ) ≤ 2‖h‖

Lτp (w p(p+/p)′ ), and [Rh]A1 ≤ 2‖M‖
Lτp (w p(p+/p)′ ).

(4.58)
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Then (4.57) and the second estimate in (4.58) yield

‖Rh‖Lτp (w p(p+/p)′ ) ≤ 2‖gw‖
p

τp
L p . (4.59)

Assume first that p0 < p+. Pick

v := w
p(p+/p)′

p0(p+/p0)′ (Rh)

τp−τp0
p0(p+/p0)′ . (4.60)

Considering p < p0, (4.56), and the last estimate in (4.58), we use Lemma 2.5 and
(2.1) to get v p0(p+/p0)′ ∈ Aτp0

with

[v p0(p+/p0)′ ]Aτp0
≤ [w p(p+/p)′ ]Aτp

[Rh]τp0−τp

A1
≤ C1[w p(p+/p)′ ]

τp0−1
τp−1

Aτp
, (4.61)

where the constant C1 depends only on n, p, p0, p−, and p+, which together with
Lemma 2.6 part (b) implies

v p0 ∈ Ap0/p− ∩ RH(p+/p0)′ . (4.62)

On the other hand, note that

1

p(p+/p)′
− 1

p0(p+/p0)′
= 1

p
− 1

p0
= 1

q
− 1

q0
, (4.63)

τp

p(p+/p)′
= 1

p−
− 1

p+
= τp0

p0(p+/p0)′
, (4.64)

provided

τp =
(
p+
p

)′( p

p−
− 1

)
+ 1 =

1
p− − 1

p
1
p − 1

p+
+ 1 =

1
p− − 1

p+
1
p − 1

p+
, (4.65)

which also implies

τp

p
+ τp − τp0

p0(p+/p0)′
= τp

[
1

p
+ 1 − τp0/τp

p0(p+/p0)′

]

= τp

[
1

p
+
(

1

p0
− 1

p+

)(
1 −

1
p − 1

p+
1
p0

− 1
p+

)]
= τp

p0
. (4.66)

By (4.57), the first estimate in (4.58), (4.63), and (4.66),

‖gv‖L p0 =
∥∥∥∥h

τp
p w

(p+/p)′−1+ p(p+/p)′
p0(p+/p0)′ (Rh)

τp−τp0
p0(p+/p0)′

∥∥∥∥
L p0



7 Page 46 of 90 Journal of Fourier Analysis and Applications (2024) 30 :7

≤
∥∥∥∥(Rh)

τp
p + τp−τp0

p0(p+/p0)′ w
p(p+/p)′

[
1
p −
(

1
p(p+/p)′ − 1

p0(p+/p0)′
)]∥∥∥∥

L p0

= ‖Rh‖
τp
p0

Lτp (w p(p+/p)′ )
.

(4.67)

To proceed, we denote 1
r := 1

q − 1
q0

> 0. Then in light of (4.60), (4.63), and (4.64),
it follows from Hölder’s inequality that

‖ f w‖Lq =
∥∥∥∥[ f w

p(p+/p)′
p0(p+/p0)′ (Rh)

τp−τp0
p0(p+/p0)′

][
(Rh)

τp
p(p+/p)′ w

](1− p(p+/p)′
p0(p+/p0)′

)∥∥∥∥
Lq

≤ ‖ f v‖Lq0

∥∥∥[(Rh)
τp

p(p+/p)′ w
]1− p(p+/p)′

p0(p+/p0)′
∥∥∥

Lr

= ‖ f v‖Lq0

∥∥∥[(Rh)τpw p(p+/p)′] 1q − 1
q0

∥∥∥
Lr

= ‖ f v‖Lq0 ‖Rh‖τp( 1q − 1
q0

)

Lτp (w p(p+/p)′ )
.

Furthermore, invoking (4.61), (4.62), and (4.54), we arrive at

‖ f w‖Lq ≤ �
([v p0(p+/p0)′ ]Aτp0

)‖gv‖L p0 ‖Rh‖τp( 1q − 1
q0

)

Lτp (w p(p+/p)′ )

≤ �
([v p0(p+/p0)′ ]Aτp0

)‖Rh‖τp( 1
p0

+ 1
q − 1

q0
)

Lτp (w p(p+/p)′ )

≤ 2
τp
p �

(
C1[w p(p+/p)′ ]

τp0−1
τp−1

Aτp

)
‖gw‖L p , (4.68)

where we have used (4.67), (4.59), and that 1
p − 1

q = 1
p0

− 1
q0
.

Let us next treat the case p0 = p+. Choose v := (Rh)
1
p+ − 1

p− . Then it follows from
Lemma 2.6 part (a) that

v p0 = (Rh)
1− p0

p− ∈ Ap0/p− ∩ RH∞ = Ap0/p− ∩ RH(p+/p0)′ (4.69)

with

max
{[v p0 ]Ap0/p− , [v p0 ]R H∞

} ≤ [Rh]
p0
p− −1

A1
� [w p(p+/p)′ ]

p0
τp−1 ( 1

p− − 1
p+ )

Aτp
, (4.70)

where we have used the last estimate in (4.58) and (2.1). In the current scenario,

τp

p
+ 1

p+
− 1

p−
= τp

[
1

p
−
(
1

p
− 1

p+

)]
= τp

p+
= τp

p0
, (4.71)

p0[(p+/p)′ − 1] = p0 p

p+ − p
= p+ p

p+ − p
= p(p+/p)′, (4.72)

1

r
:= 1

q
− 1

q0
= 1

p
− 1

p0
= 1

p
− 1

p+
= 1

p(p+/p)′
, (4.73)
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and r

(
1

p−
− 1

p+

)
=

1
p− − 1

p+
1
p − 1

p+
= τp. (4.74)

In view of (4.57), (4.71), and (4.72), there holds

‖gv‖L p0 =
∥∥∥h

τp
p w(p+/p)′−1(Rh)

1
p+ − 1

p−
∥∥∥

L p0
≤ ‖Rh‖

τp
p0

Lτp (w p(p+/p)′ )
. (4.75)

Hence, invoking (4.69)–(4.75), Hölder’s inequality, and (4.54), we deduce

‖ f w‖Lq =
∥∥∥[ f (Rh)

1
p+ − 1

p−
][

(Rh)
1
p− − 1

p+ w
]∥∥∥

Lq

≤ ‖ f v‖Lq0

∥∥(Rh)
1
p− − 1

p+ w
∥∥

Lr

= ‖ f v‖Lq0 ‖Rh‖τp( 1
p − 1

p0
)

Lτp (w p(p+/p)′ )

≤ �
(
max{[v p0 ]Ap0/p− , [v p0 ]R H(p+/p0)′ }

)‖gv‖L p0 ‖Rh‖τp( 1
p − 1

p0
)

Lτp (w p(p+/p)′ )

≤ �
(
max{[v p0 ]Ap0/p− , [v p0 ]R H(p+/p0)′ }

)‖Rh‖
τp
p

Lτp (w p(p+/p)′ )

≤ 2
τp
p �

(
C1[w p(p+/p)′ ]

p0
τp−1 ( 1

p− − 1
p+ )

Aτp

)
‖gw‖L p ,

where (4.59) was used in the last step.

Case II: q0 < q. By Lemma 2.6 parts (b) and (c),

w−s ∈ Aτ ′
p

with [w−s]Aτ ′
p

= [w p(p+/p)′ ]
1

τp−1

Aτp
, (4.76)

where s = p′(p′−/p′)′ = 1
1
p− − 1

p
. This and Theorem 2.2 yield that there exists an

operator R : Lτ ′
p (w−s) → Lτ ′

p (w−s) such that for any nonnegative function h̃ ∈
Lτ ′

p (w−s),

h̃ ≤ Rh̃, ‖Rh̃‖
Lτ ′

p (w−s )
≤ 2‖h̃‖

Lτ ′
p (w−s )

, and [Rh̃]A1 ≤ 2‖M‖
Lτ ′

p (w−s )
. (4.77)

Write 1
r := 1

q0
− 1

q = 1
p0

− 1
p > 0, equivalently, q

q−q0
= r

q0
. By duality there exists

a nonnegative function h ∈ L
q

q−q0 (wq) with ‖h‖
L

q
q−q0 (wq )

≤ 1 such that

‖ f w‖q0
Lq = ‖ f q0‖

L
q

q0 (wq )
=
ˆ
Rn

f q0h wq dx . (4.78)
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Setting H := R
(

h
r

τ ′
pq0 w

s+q
τ ′

p

) τ ′
pq0
r

w− (s+q)q0
r , we utilize (4.77) to obtain that h ≤ H ,

and by (2.1) and (4.76),

[
H

r
τ ′

pq0 w

s+q
τ ′

p
]

A1
=
[
R
(

h
r

τ ′
pq0 w

s+q
τ ′

p

)]
A1

� [w−s]
1

τ ′
p−1

Aτ ′
p

= [w p(p+/p)′ ]Aτp
, (4.79)

provided that

‖h
r

τ ′
pq0 w

s+q
τ ′

p ‖
Lτ ′

p (w−s )
= ‖h‖

r
τ ′

pq0

L
r

q0 (wq )
= ‖h‖

r
τ ′

pq0

L
q

q−q0 (wq )

≤ 1,

which also gives

‖H‖
L

r
q0 (wq )

=
∥∥∥R(h

r
τ ′

pq0 w

s+q
τ ′

p

)∥∥∥ τ ′
pq0
r

Lτ ′
p (w−s )

≤ 2
τ ′

pq0
r

∥∥∥h
r

τ ′
pq0 w

s+q
τ ′

p

∥∥∥ τ ′
pq0
r

Lτ ′
p (w−s )

≤ 2
τ ′

pq0
r .

(4.80)

Now picking v := w
q

q0 H
1

q0 , we see that by (4.80)

‖vw−1‖Lr = ‖H‖
1

q0

L
r

q0 (wq )
≤ 2

τ ′
p
r ≤ 2

τ ′
p

p0 . (4.81)

To proceed, we observe that p0 < p < p+ and use (4.65) to deduce that

τ ′
p p0(p+/p0)

′/r = τp

τp − 1

1
p0

− 1
p

1
p0

− 1
p+

= τp

τp − 1

(
1 − τp0

τp

)
= τp − τp0

τp − 1
, (4.82)

τp − 1

p(p+/p)′
= 1

p−
− 1

p
= 1

s
, and

τp0 − 1

p0(p+/p0)′
= 1

p−
− 1

p0
=: 1

s0
, (4.83)

which in turn implies

q

q0
− q

r
− s

r
= 1 − s

r
= s

(
1

s
− 1

r

)
= s

(
1

p−
− 1

p0

)
= s

s0
= p(p+/p)′

p0(p+/p0)′
τp0 − 1

τp − 1
.

(4.84)

Hence, it follows from (4.82) and (4.84) that

v p0(p+/p0)′ = w
(

q
q0

− s
r − q

r )p0(p+/p0)′ (H r
τ ′

pq0 w

s+q
τ ′

p
)τ ′

p p0(p+/p0)′/r

= (
w p(p+/p)′) τp0−1

τp−1
(
H

r
τ ′

pq0 w

s+q
τ ′

p
) τp−τp0

τp−1 ,
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which along with (4.56), (4.79), and Lemma 2.5 part (b), yields

[v p0(p+/p0)′ ]Aτp0
≤ [

w p(p+/p)′] τp0−1
τp−1

Aτp

[
H

r
τ ′

pq0 w

s+q
τ ′

p
] τp−τp0

τp−1

A1
≤ C2

[
w p(p+/p)′]

Aτp
,

(4.85)

where the constant C2 depends only on n, p, p0, p−, and p+. By Lemma 2.6 part (b),
this means that

v p0 ∈ Ap0/p− ∩ RH(p+/p0)′ . (4.86)

With (4.78) and (4.86) in hand, the hypothesis (4.54) implies

‖ f w‖Lq ≤
( ˆ

Rn
f q0 H wq dx

) 1
q0 = ‖ f v‖Lq0 ≤ �

([v p0(p+/p0)′ ]Aτp0

)‖gv‖L p0

≤ �
([v p0(p+/p0)′ ]Aτp0

)‖gw‖L p ‖vw−1‖Lr ≤ 2
τ ′

p
p0 �

(
C2[w p(p+/p)′ ]Aτp

)‖gw‖L p ,

(4.87)

where (4.81) and (4.85) were used in the last inequality. As a consequence, (4.55)
follows at once from (4.68) and (4.87). ��
Proof of Theorem 1.1 Fix v

qi
i ∈ Aqi /p

−
i

∩ RH(p+
i /qi )

′ , i = 2, . . . , m. Set

F1 :=
{
(F, G) :=

(
f
∏m

i=2 vi∏m
i=2 ‖ fivi‖Lqi

, f1

)
: ( f , f1, . . . , fm) ∈ F

}
.

By hypothesis (1.2), we see that for every v
q1
1 ∈ Aq1/p

−
1

∩ RH(p+
1 /q1)′

‖Fv1‖Lq = ‖ f v‖Lq∏m
i=2 ‖ fivi‖Lqi

≤
m∏

i=1

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖ f1v1‖Lq1

=
m∏

i=1

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖Gv1‖Lq1 , (F, G) ∈ F1,

where 1
q = ∑m

i=1
1
qi

and v = ∏m
i=1 vi . This verifies the hypothesis (4.54) for the

family F1. Then Theorem 4.8 implies that for every p1 ∈ (p−
1 , p+

1 ) and every w
p1
1 ∈

Ap1/p
−
1

∩ RH(p+
1 /p1)′ ,

‖ f w1
∏m

i=2 vi‖Ls1∏m
i=2 ‖ fivi‖Lqi

= ‖Fw1‖Ls1 ≤ N1

m∏
i=2

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖Gw1‖L p1

= N1

m∏
i=2

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖ f1w1‖L p1 , (F, G) ∈ F1,

(4.88)



7 Page 50 of 90 Journal of Fourier Analysis and Applications (2024) 30 :7

where 1
s1

− 1
p1

= 1
q − 1

q1
,

N1 := 2
max{ τp1

p1
,
τ ′

p1
q1

}
�1

(
C1 [w p1

1 ]γ1(p1,q1)
A

p1/p−
1

∩R H
(p+
1 /p1)′

)
, (4.89)

γ1(p1, q1) :=
⎧⎨
⎩
max

{
1,

τq1−1
τp1−1

}
, q1 < p+

1 ,

q1
τp1−1

( 1
p−
1

− 1
p+
1

)
, q1 = p+

1 .
(4.90)

Considering (4.88), we have

∥∥∥∥ f w1

m∏
i=2

vi

∥∥∥∥
Ls1

≤ N1‖ f1w1‖L p1

m∏
i=2

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖ fivi‖Lqi , (4.91)

for all ( f , f1, . . . , fm) ∈ F , for all p1 ∈ (p−
1 , p+

1 ), for allw p1
1 ∈ Ap1/p

−
1
∩ RH(p+

1 /p1)′ ,

and for all vqi
i ∈ Aqi /p

−
i

∩ RH(p+
i /qi )

′ , i = 2, . . . , m.

Nowfix p1 ∈ (p−
1 , p+

1 ),w p1
1 ∈ Ap1/p

−
1
∩RH(p+

1 /p1)′ , andv
qi
i ∈ Aqi /p

−
i
∩RH(p+

i /qi )
′ ,

i = 3, . . . , m. Set

F2 :=
{
(F, G) :=

(
f w1

∏m
i=3 vi

‖ f1w1‖L p1
∏m

i=3 ‖ fivi‖Lqi
, f2

)
: ( f , f1, . . . , fm) ∈ F

}
.

It follows from (4.91) that for every v
q2
2 ∈ Aq2/p

−
2

∩ RH(p+
2 /q2)′ ,

‖Fv2‖Ls1 = ‖ f w1
∏m

i=2 vi‖Ls1

‖ f1w1‖L p1
∏

i=3 ‖ fivi‖Lqi

≤ N1

m∏
i=2

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖ f2v2‖Lq2

= N1

m∏
i=2

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖Gv2‖Lq2 , (F, G) ∈ F2.

Invoking Theorem 4.8 applied to F2, we have that for every p2 ∈ (p−
2 , p+

2 ) and every
w

p2
2 ∈ Ap2/p

−
2

∩ RH(p+
2 /p2)′ ,

‖ f w1w2
∏m

i=3 vi‖Ls2

‖ f1w1‖L p1
∏

i=3 ‖ fivi‖Lqi
= ‖Fw2‖Ls2

≤ N1N2

m∏
i=3

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖Gw2‖L p2

= N1N2

m∏
i=3

�i
([vqi

i ]A
qi /p

−
i

∩R H
(p+

i /qi )
′
)‖ f2w2‖L p2 , (F, G) ∈ F2, (4.92)
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where 1
s2

− 1
p2

= 1
s1

− 1
q2
,

N2 := 2
max{ τp2

p2
,
τ ′

p2
q2

}
�2

(
C2 [w p2

2 ]γ2(p2,q2)
A

p2/p−
2

∩R H
(p+
2 /p2)′

)
, (4.93)

γ2(p2, q2) :=
⎧⎨
⎩
max

{
1,

τq2−1
τp2−1

}
, q2 < p+

2 ,

q2
τp2−1

( 1
p−
2

− 1
p+
2

)
, q2 = p+

2 .
(4.94)

It follows from (4.92) that for every pi ∈ (p−
i , p+

i ), for every w
pi
i ∈ Api /p

−
i

∩
RH(p+

i /pi )
′ , i = 1, 2, and for every v

q j
j ∈ Aq j /p

−
j

∩ RH(p+
j /q j )

′ , j = 3, . . . , m,

∥∥∥∥ f w1w2

m∏
j=3

v j

∥∥∥∥
Ls2

≤
2∏

i=1

Ni ‖ fi wi ‖L pi

m∏
j=3

� j
([vq j

j ]A
q j /p

−
j
∩R H

(p+
j /q j )

′
)‖ f j w j ‖Lq j ,

for all ( f , f1, . . . , fm) ∈ F .
Inductively, one can show that for each k ∈ {1, . . . , m}, for every pi ∈ (p−

i , p+
i ),

for every w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i ∈ {1, . . . , k}, and for every v
q j
j ∈ Aq j /p

−
j

∩
RH(p+

j /q j )
′ , j = {k + 1, . . . , m},

∥∥∥∥ f
k∏

i=1

wi

m∏
j=k+1

v j

∥∥∥∥
Lsk

≤
k∏

i=1

Ni ‖ fi wi ‖L pi

m∏
j=k+1

� j
([vq j

j ]A
q j /p

−
j
∩R H

(p+
j /q j )

′
)‖ f j v j ‖Lq j ,

(4.95)

for all ( f , f1, . . . , fm) ∈ F , where s0 := q,

1

sk
− 1

pk
= 1

sk−1
− 1

qk
, (4.96)

Nk := 2
max{ τpk

pk
,
τ ′

pk
qk

}
�k

(
Ck [w pk

k ]γk (pk ,qk )

A
pk /p−

k
∩R H

(p+
k /pk )′

)
, (4.97)

γk(pk, qk) :=
⎧⎨
⎩
max

{
1,

τqk −1
τpk −1

}
, qk < p+

k ,

qk
τpk −1

( 1
p−

k
− 1

p+
k

)
, qk = p+

k .
(4.98)

To conclude the proof, we take 1
sm

= 1
p := ∑m

i=1
1
pi
, and then (4.96) is satisfied. The

inequality (4.95) immediately gives (1.3) as desired.
It remains to show the vector-valued inequality (1.4). Fix ri ∈ (p−

i , p+
i ), i =

1, . . . , m, and set 1
r = ∑m

i=1
1
ri
. Given N ∈ N, we define

FN
�r :=

{
(F, F1, . . . , Fm) :=

(( ∑
|k|<N

| f k |r
) 1

r
,
( ∑

|k|<N

| f k
1 |r1

) 1
r1 , . . . ,
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( ∑
|k|<N

| f k
m |rm

) 1
rm

)
: {( f k, f k

1 , · · · , f k
m)}k ⊂ F

}
.

By (1.3), for all (F, F1, . . . , Fm) ∈ FN
�r , and for all weights v

ri
i ∈ Ari /p

−
i
∩ RH(p+

i /ri )
′ ,

i = 1, . . . , m,

‖F‖Lr (vr ) =
∥∥∥∥( ∑

|k|<N

| f k |r
) 1

r

∥∥∥∥
Lr (vr )

=
( ∑

|k|<N

‖ f k‖r
Lr (vr )

) 1
r

≤
( ∑

|k|<N

m∏
i=1

Ci,1�i

(
Ci [vri

i ]γi (ri ,qi )

A
ri /p

−
i

∩R H
(p+

i /ri )
′

)r‖ f k
i ‖r

Lri (v
ri
i )

) 1
r

≤
m∏

i=1

Ci,1�i

(
Ci [vri

i ]γi (ri ,qi )

A
ri /p

−
i

∩R H
(p+

i /ri )
′

)( ∑
|k|<N

‖ f k
i ‖ri

Lri (v
ri
i )

) 1
ri

=
m∏

i=1

Ci,1�i

(
Ci [vri

i ]γi (ri ,qi )

A
ri /p

−
i

∩R H
(p+

i /ri )
′

)
‖Fi‖Lri (v

ri
i )

, (4.99)

where Ci,1 := 2
max{ τri

ri
,
τ ′
ri
qi

}
. This corresponds to (1.2) for the family FN

�r and the
exponent �r = (r1, . . . , rm). Then the estimate (1.3) applied to FN

�r gives that for all
exponents pi ∈ (p−

i , p+
i ) and all weights w

pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m,

‖F‖L p(w p) ≤
m∏

i=1

Ci,1Ci,2 �i

(
C ′

i [w pi
i ]γi (pi ,ri )γi (ri ,qi )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)
‖Fi‖L pi (w

pi
i )

, (4.100)

for all (F, F1, . . . , Fm) ∈ FN
�r , where Ci,2 := 2

max{ τpi
pi

,
τ ′

pi
ri

}
. The estimate (4.100) in

turn implies

∥∥∥∥( ∑
|k|<N

| f k |r
) 1

r

∥∥∥∥
L p(w p)

≤
m∏

i=1

C′
i �i

(
C ′

i [w pi
i ]γi (pi ,ri )γi (ri ,qi )

A
pi /p

−
i

∩RH
(p+

i /pi )
′

)∥∥∥∥(∑
k

| f k
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

,(4.101)

for all {( f k, f k
1 , · · · , f k

m)}k ⊂ F , where C′
i := 2

max{ τpi
pi

,
τ ′

pi
ri

}+max{ τri
ri

,
τ ′
ri
qi

}
, and the

constant C ′
i depends only on n, pi , qi , ri , p

−
i , and p

+
i . Letting N → ∞, we conclude

(1.4) as desired. ��
Proof of Theorem 1.2. Let si ∈ (p−

i , p+
i ), i = 1, . . . , m, be such that 1

s := ∑m
i=1

1
si

≤
1. It follows from (1.5) and Theorem 1.1 that for all v

si
i ∈ Asi /p

−
i

∩ RH(p+
i /si )

′ ,
i = 1, . . . , m,
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‖T ( �f )‖Ls (vs ) ≤ C0

m∏
i=1

�i

(
Ci [vsi

i ]γi (si ,qi )

A
si /p

−
i

∩R H
(p+

i /si )
′

)
‖ fi‖Lsi (v

si
i )

, (4.102)

where both C0 and Ci depend only on n, si , qi , p
−
i , and p+

i .
Fix b = (b1, . . . , bm) ∈ BMOm and multi-index α ∈ N

m . Given v
si
i ∈ Asi /p

−
i

∩
RH(p+

i /si )
′ , i = 1, . . . , m, in light of Lemma 2.6 part (b), we see that

v
si (p

+
i /si )

′
i ∈ Aτsi

, (4.103)

which together with Lemma 2.4 yields that there exists ηi ∈ (1, 2) such that

η′
i �

[
v

si (p
+
i /si )

′
i

]max{1, 1
τsi −1 }

Aτsi

, and
[
v

ηi si (p
+
i /si )

′
i

] 1
ηi

Aτsi

≤ 2τsi

[
v

si (p
+
i /si )

′
i

]
Aτsi

.

(4.104)

Then in view of (4.102)–(4.104), Theorem 2.11 applied to p := s ≥ 1, pi := si , ri :=
τsi , and θi := si (p

+
i /si ), gives that for all v

si
i ∈ Asi /p

−
i

∩ RH(p+
i /si )

′ , i = 1, . . . , m,

‖[T , b]α( �f )‖Ls (vs ) ≤ C0

m∏
i=1

(η′
i )

αi �i

(
Ci

[
v
ηi si (p

+
i /si )

′
i

] 1
ηi

γi (si ,qi )

Aτsi

)
‖bi ‖αi

BMO‖ fi ‖Lsi (v
si
i )

≤ C0

m∏
i=1

[vsi (p
+
i /si )

′
i ]

αi max{1, 1
τsi −1 }

Aτsi
�i

(
Ci

[
v

si (p
+
i /si )

′
i

]γi (si ,qi )

Aτsi

)
‖bi ‖αi

BMO‖ fi ‖Lsi (v
si
i )

,

(4.105)

where Ci depends only on n, si , qi , p
−
i , and p+

i , and C0 depends only on the same
parameters and additionally on α.

Observe that for each i = 1, . . . , m,

�̃i (t) := t
αi max{1, 1

τsi −1 }
�i (Ci tγi (si ,qi )) is an increasing function. (4.106)

Now with (4.105) and (4.106) in hand, we use Theorem 1.1 applied to si and C
1
m
0 �̃i

in place of qi and �i to deduce that for all exponents pi , ri ∈ (p−
i , p+

i ) and for all
weights w

pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m,

‖[T ,b]α( �f )‖L p(w p) ≤ C0

m∏
i=1

�̃i
(
C ′

i [w pi (p
+
i /pi )

′
i ]γi (pi ,si )

Aτpi

)‖bi‖αi
BMO‖ fi‖L pi (w

pi
i )

,
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where C0 depends only on α, n, pi , qi , si , p
−
i , and p+

i , C ′
i depends only on n, pi , si ,

p−
i , and p+

i , and

∥∥∥∥(∑
k

|[T ,b]α( �f k)|r
) 1

r

∥∥∥∥
L p(w p)

≤ C
m∏

i=1

�̃i

(
C ′′

i [w pi
i ]γi (pi ,ri )γi (ri ,si )

A
pi /p

−
i

∩R H
(p+

i /pi )
′

)

× ‖bi‖αi
BMO

∥∥∥∥(∑
k

| f k
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

,

where 1
r = ∑m

i=1
1
ri
,C depends only on α, n, pi , qi , ri , si , p

−
i , and p

+
i , andC ′′

i depends

only on n, pi , ri , si , p
−
i , and p+

i . This completes the proof of Theorem 1.2. ��

5 Applications

This section is dedicated to using extrapolation to prove quantitative weighted inequal-
ities for a variety of operators. This also shows that extrapolation theorems are useful
and powerful.

5.1 Bilinear Bochner–Riesz Means

Given δ ∈ R, the bilinear Bochner–Riesz means of order δ is defined by

Bδ( f1, f2)(x) :=
ˆ
R2n

(1 − |ξ1|2 − |ξ2|2)δ+ f̂1(ξ1) f̂2(ξ2)e
2π i x ·(ξ1+ξ2)dξ1dξ2.

Theorem 5.1 Let n ≥ 2 and δ ≥ n −1/2. Then for all pi ∈ (1,∞), for all w
pi
i ∈ Api ,

for all b = (b1, b2) ∈ BMO2, and for each multi-index α ∈ N
2,

‖Bδ( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ]βi (δ)

Api
‖ fi‖L pi (w

pi
i )

, (5.1)

‖[Bδ, b]α( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ]ηi (δ)

Api
‖bi‖αi

BMO‖ fi‖L pi (w
pi
i )

, (5.2)

whenever 1
s := 1

s1
+ 1

s2
≤ 1 with s1, s2 ∈ (1,∞), where w = w1w2, 1

p = 1
p1

+ 1
p2

,

βi (δ) =
{

1
pi −1 , δ > n − 1/2,

max{1, 1
pi −1 }, δ = n − 1/2,
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and

ηi (δ) =
{

(αi + 1
pi −1 )max{1, 1

si −1 ,
1

pi −1 ,
si −1
pi −1 }, δ > n − 1/2,

(αi + 1)max{1, 1
si −1 ,

1
pi −1 ,

si −1
pi −1 }, δ = n − 1/2.

Proof Let us first consider the case δ > n − 1/2. In this case, it was shown in [58,
Lemma 3.1] that

|Bδ( f1, f2)(x)| � M f1(x)M f2(x), x ∈ R
n, (5.3)

where the implicit constant is independent of x , f1, and f2. Combining (5.3) with (2.1)
and Hölder’s inequality, we obtain that for all pi ∈ (1,∞) and for all w pi

i ∈ Api ,

‖Bδ( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ]

1
pi −1

Api
‖ fi‖L pi (w

pi
i )

, (5.4)

where w = w1w2 and 1
p = 1

p1
+ 1

p2
. Then it follows from (5.4), Theorem 1.2, and

Remark 1.4 that for all b = (b1, b2) ∈ BMO2 and for each multi-index α ∈ N
2,

‖[Bδ, b]α( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ](αi + 1

pi −1 )max{1, 1
si −1 , 1

pi −1 ,
si −1
pi −1 }

Api
‖bi ‖αi

BMO‖ fi ‖L pi (w
pi
i )

,

whenever s1, s2 ∈ (1,∞) satisfy 1
s := 1

s1
+ 1

s2
≤ 1.

Next, we turn to the case δ = n − 1/2. Given ε1 ∈ (0, 1
2 ), and ε2 > 0, we write

δ(θ) := (1 + ε1)(1 − θ) + θ(n − 1/2 + ε2), θ ∈ (0, 1). (5.5)

We first claim that for any u1, u2 ∈ A2,

‖Bδ(θ)( f1, f2)‖L1(uθ ) ≤ φ1(ε1)
1−θφ2(ε2)

θ
2∏

i=1

[ui ]θA2
‖ fi‖L2(uθ

i ), ∀θ ∈ (0, 1),

(5.6)

where u = u1u2 and the constantφ1, φ2 are non-negative function andφ2 is increasing.
Indeed, (5.6) can be obtained by following the proof of [58, Theorem 1.8]. We here
only mention the difference:

sup
t∈R

|ψ(i t)| ≤ φ1(ε1)‖h‖L∞(Rn)

2∏
i=1

‖ fi‖L2(Rn),

sup
t∈R

|ψ(1 + i t)| ≤ φ2(ε2)‖h‖L∞(Rn)

2∏
i=1

[ui ]A2‖ fi‖L2(Rn),
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provided the sharp estimate for the Hardy–Littlewood maximal operator in (2.1).
Now let v21, v

2
2 ∈ A2, v := v1v2, and by Lemma 2.4, there exists γ ∈ (0, 2−n−3)

such that

[v2(1+γ )

i ]A2 ≤ 22(1+γ )[v2i ]1+γ

A2
. (5.7)

Then, (5.6) applied to ui = v
2(1+γ )

i , i = 1, 2, gives the for any θ ∈ (0, 1),

‖Bδ(θ)( f1, f2)‖L1(v2(1+γ )θ ) ≤ φ1(ε1)
1−θφ2(ε2)

θ
2∏

i=1

[v2(1+γ )

i ]θA2
‖ fi‖L2(v

2(1+γ )θ
i )

≤ φ1(ε1)
1−θφ2(ε2)

θ24(1+γ )θ
2∏

i=1

[v2i ](1+γ )θ

A2
‖ fi‖L2(v

2(1+γ )θ
i )

,

(5.8)

where (5.7) was used in the last step. Picking θ = (1 + γ )−1, ε1 = 1/4, and ε2 =
(n − 7/4)γ , we utilize (5.5) and (5.8) to deduce that δ(θ) = n − 1/2 and

‖Bn−1/2( f1, f2)‖L1(v2) �
2∏

i=1

[v2i ]A2‖ fi‖L2(v2i ), (5.9)

where we had used that φ1(ε1)
1−θφ2(ε2)

θ ≤ max{1, φ1(1/4), φ2(n)}, and the implicit
constant depends only on n.

Having proved (5.9) and invoking Theorems 1.1 and 1.2 applied to p−
i = 1, p+

i =
∞, qi = 2, and �i (t) = t , we conclude (5.1) and (5.2). ��

The next result considers the case δ < n− 1
2 , which can be viewed as a complement

of Theorem 5.1.

Theorem 5.2 Let n ≥ 2, 0 < δ < n − 1
2 , and 0 < δ1, δ2 ≤ n

2 be such that δ1 + δ2 < δ.
Set p−

1 := 2n
n+2δ1

, p−
2 := 2n

n+2δ2
, and p+

1 = p+
2 := 2. Then for all w2

i ∈ A2/p−
i

∩
RH(p+

i /2)′ , i = 1, 2,

‖Bδ( f1, f2)‖L1(w) �
2∏

i=1

[w2
i ]A

2/p−
i

∩R H
(p+

i /2)′ ‖ fi‖L2(w2
i ). (5.10)

Moreover, for all pi ∈ (p−
i , p+

i ) and for all w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, 2,

‖Bδ( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ]γi (pi ,2)

A
pi /p

−
i

∩R H
(p+

i /pi )
′ ‖ fi‖L pi (w

pi
i )

, (5.11)

where w = w1w2 and 1
p = 1

p1
+ 1

p2
.
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Proof Wemodify the proof of [74, Theorem 2] into the current setting. First, choose a
nonnegative functionϕ ∈ C∞

c (0, ∞) satisfying suppϕ ⊂ ( 12 , 2) and
∑

j∈Z ϕ(2 j s) =
1 for any s > 0. For each j ≥ 0, we define the bilinear operator

Tj ( f1, f2) :=
ˆ ∞

0

ˆ ∞

0
ϕδ

j (λ1, λ2)Rλ1 f1 Rλ2 f2 λn−1
1 λn−1

2 dλ1 dλ2,

where

ϕδ
j (s1, s2) := (1 − s21 − s22 )

δ+ ϕ(2 j (1 − s21 − s22 )),

Rλ f (x) :=
ˆ
Sn−1

f̂ (λω)e2π i x ·λω dσ(ω), λ > 0.

Here dσ is the surface measure on S
n−1. Then one has

Bδ =
∞∑
j=0

Tj . (5.12)

Given j ≥ 0, let B j = {x ∈ R
n : |x | < 2 j(1+γ )} with γ > 0 chosen later, and split

the kernel function K j of Tj into four parts:

K 1
j (y1, y2) := K j (y1, y2)1B j (y1)1B j (y2), K 2

j (y1, y2) := K j (y1, y2)1B j (y1)1Bc
j
(y2),

K 3
j (y1, y2) := K j (y1, y2)1Bc

j
(y1)1B j (y2), K 4

j (y1, y2) := K j (y1, y2)1Bc
j
(y1)1Bc

j
(y2).

Letting T �
j denote the bilinear operator with kernel K �

j , � = 1, 2, 3, 4, we see that

Tj = T 1
j + T 2

j + T 3
j + T 4

j . (5.13)

Note that a straightforward calculation gives

|K j (x1, x2)| � 2− jδ2− j (1 + 2− j |x1|)−N (1 + 2− j |x2|)−N , ∀N > 0,

(5.14)

and

ˆ
Bc

j

| f (x − y)|
(1 + 2− j |y|)N

dy =
∞∑

k=0

ˆ
2k+ j(1+γ )≤|y|<2k+1+ j(1+γ )

| f (x − y)|
(1 + 2− j |y|)N

dy

≤
∞∑

k=0

(2k+2+ j(1+γ ))n

(1 + 2k+ jγ )N

 
Q(x,2k+2+ j(1+γ ))

| f (y)| dy

�
∞∑

k=0

2−k(N−n)2− j(Nγ−(1+γ )n)M f (x)
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� 2− j(Nγ−(1+γ )n)M f (x), provided N > n. (5.15)

In view of Theorem 1.1, it suffices to prove (5.10). Now let q1 = q2 = 2, v21 ∈
Aq1/p

−
1

∩ RH(p+
1 /q1)′ = A

1+ 2δ1
n

∩ RH∞, and v22 ∈ Aq2/p
−
2

∩ RH(p+
2 /q2)′ = A

1+ 2δ2
n

∩
RH∞. Considering (5.12)–(5.13), we are reduced to showing that there exists ε > 0
such that

‖T �
j ( f1, f2)‖L1(v) � 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi‖L2(v21)

, j ≥ 0, � = 1, 2, 3, 4.

(5.16)

To control T 4
j , note that v21 ∈ A

1+ 2δ1
n

⊂ A2 and v22 ∈ A
1+ 2δ2

n
⊂ A2 since max{n +

2δ1, n+2δ2} ≤ 2n. Using (5.14), Cauchy–Schwarz inequality, (5.15), (2.1), and (1.1),
we have

‖T 4
j ( f1, f2)‖L1(v) �

ˆ
Rn

ˆ
Bc

j

ˆ
Bc

j

| f1(x − y1)|
(1 + 2− j |y1|)N

| f2(x − y2)|
(1 + 2− j |y2|)N

dy1dy2 v(x)dx

≤
(ˆ

Rn

(ˆ
Bc

j

| f1(x − y1)|
(1 + 2− j |y1|)N

dy1

)2

v21(x)dx

) 1
2

×
(ˆ

Rn

(ˆ
Bc

j

| f2(x − y2)|
(1 + 2− j |y2|)N

dy2

)2

v22(x)dx

) 1
2

� 2− j[Nγ−(1+γ )n]‖M f1‖L2(v21)
‖M f2‖L2(v22)

� 2−ε j [v21]A2 [v22]A2‖ f1‖L2(v21)
‖ f2‖L2(v22)

≤ 2−ε j
2∏

i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi‖L2(v2i ), (5.17)

where in the second-to-last inequality we have picked N > 0 large enough so that
Nγ > (1 + γ )n, and then taken 0 < ε < Nγ − (1 + γ )n. Similarly,

‖T 3
j ( f1, f2)‖L1(v) �

(ˆ
Rn

(ˆ
|y1|≥2 j(1+γ )

| f1(x − y1)|
(1 + 2− j |y1|)N

dy1

)2

v21(x)dx

) 1
2

×
(ˆ

Rn

(ˆ
|y2|<2 j(1+γ )

| f2(x − y2)|
(1 + 2− j |y2|)N

dy2

)2

v22(x)dx

) 1
2

� 2− j[Nγ−(1+γ )n]2 j(1+γ )n‖M f1‖L2(v21)
‖M f2‖L2(v22)

� 2− j[Nγ−2(1+γ )n][v21]A2 [v22]A2‖ f1‖L2(v21)
‖ f2‖L2(v22)

≤ 2−ε j
2∏

i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi‖L2(v2i ), (5.18)
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where we have chosen N > 0 sufficiently large so that Nγ − 2(1 + γ )n > ε.
Symmetrically to T 3

j ( f1, f2), there holds

‖T 2
j ( f1, f2)‖L1(v) � 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi‖L2(v2i ).

Finally, to prove (5.16) for T 1
j , we proceed as follows. For fixed y ∈ R

n , set

B j (y, r) = {x ∈ R
n : |x − y| ≤ 2 j(1+γ )r} with r > 0, and split f1 and f2 into three

parts, respectively:

f1 = f1,1 + f1,2 + f1,3, and f2 = f2,1 + f2,2 + f2,3,

where

f1,1 := f11B j (y, 34 ), f1,2 := f11B j (y, 54 )\B j (y, 34 )
, f1,3 := f11B j (y, 54 )c ,

f2,1 := f21B j (y, 34 ), f2,2 := f21B j (y, 54 )\B j (y, 34 )
, f2,3 := f21B j (y, 54 )c .

We should mention that each f1,i and f2,i , i = 1, 2, 3, depend on the variable y. Let
x ∈ B j (y, 1

4 ). Since f1,3 is supportedonR
n\B j (y, 5

4 ), it follows from f1,3(x−y1) 	= 0
that |x − y1 − y| ≥ 5

42
j(1+γ ), and so |y1| ≥ 2 j(1+γ ). Noting that the kernel K 1

j is

supported on B j × B j , we get T 1
j ( f1,3, f2) = 0. Similarly, T 1

j ( f1, f2,3) = 0. Hence,

for any x ∈ B j (y, 1
4 ),

T 1
j ( f1, f2)(x) = T 1

j ( f1,1, f2,1)(x) + T 1
j ( f1,1, f2,2)(x)

+ T 1
j ( f1,2, f2,1)(x) + T 1

j ( f1,2, f2,2)(x). (5.19)

Since f1,2 and f2,2 are supported on B j (y, 5
4 ) \ B j (y, 3

4 ), it follows from f1,2(x −
y1) f2,2(x − y2) 	= 0 that |y1| ≥ 2 j(1+γ )−1 and |y2| ≥ 2 j(1+γ )−1. Then, repeating the
proof of (5.17) yields

‖T 1
j ( f1,2, f2,2)v‖L1(B j (y, 14 )) ≤ 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi,2‖L2(v2i ). (5.20)

Since f1,1 is supported on B j (y, 3
4 ), it follows from f1,1(x − y1) f2,2(x − y2) 	= 0

that |y1| ≤ 2 j(1+γ ) and |y2| ≥ 2 j(1+γ )−1. Thus, we calculate much as in (5.18) to get

‖T 1
j ( f1,1, f2,2)v‖L1(B j (y, 14 )) ≤ 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi,i‖L2(v2i ).

(5.21)
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Symmetrically,

‖T 1
j ( f1,2, f2,1)v‖L1(B j (y, 14 )) ≤ 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi,3−i‖L2(v2i ).

(5.22)

It remains to consider T 1
j ( f1,1, f2,1). Given m ∈ L∞(R), set Tmh := ´ 1

0 m(λ)

Rλh λn−1 dλ. Then [74, Lemma 3.1] states that

‖Tmh‖L2(Rn) � ‖m‖L∞(Rn)‖h‖L p(Rn), 1 ≤ p ≤ 2. (5.23)

Let r = 1 + 2δ2/n. Then v22 ∈ Ar ∩ RH∞. Using (5.23) and Hölder’s inequality, we
have that for h ∈ L2(v22) with supp h ⊂ B j (y, 3

4 ),

‖(Tmh)v2‖L2(B j (y, 14 )) ≤ ‖Tmh‖L2(B j (y, 14 ))

(
ess sup
B j (y, 14 )

v22

) 1
2

� ‖m‖L∞(Rn)[v22]
1
2
R H∞‖h‖

L
2
r (B j (y, 34 ))

( 
B j (y, 14 )

v22 dz

) 1
2

� ‖m‖L∞(Rn)[w2]
1
2
R H∞‖hv2‖L2(B j (y, 34 )|B j (y, 3/4)| r−1

2

×
( 

B j (y, 34 )

v
2(1−r ′)
2 dz

) r−1
2
( 

B j (y, 14 )

v22 dz

) 1
2

� 2 j(1+γ )δ2‖m‖L∞(Rn)[v22]
1
2
R H∞[v22]

1
2
A1+2δ2/n

‖hv2‖L2(B j (y, 34 )

≤ 2 j(1+γ )δ2‖m‖L∞(Rn)[v22]A
q2/p−

2
∩R H(p+/q2)′ ‖hv2‖L2(B j (y, 34 ), (5.24)

where the definition (1.1) was used in the last inequality. Similarly,

‖(Tmh)v1‖L2(B j (y, 14 )) � 2 j(1+γ )δ1‖m‖L∞(Rn)[v21]A
q1/p−

2
∩R H(p+/q1)′ ‖hv1‖L2(B j (y, 34 )).

(5.25)

Observe that

T 1
j ( f1,1, f2,1)(x) = Tj ( f1,1, f2,1)(x), x ∈ B j (y, 1/4). (5.26)

As argued in [74, (3.7)], we utilize (5.24)–(5.26) to get that for any fixed 0 < κ < δ,

‖T 1
j ( f1,1, f2,1)v‖L1(B j (y, 14 ))

� 2− j(δ−κ)+ j(1+γ )(δ1+δ2)
2∏

i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi,1‖L2(v2i )
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� 2−ε j
2∏

i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi,1‖L2(v2i ), (5.27)

provided choosing κ, γ, ε small enough so that δ−κ−(1+γ )(δ1+δ2) > ε. Summing
(5.19)–(5.22) and (5.27) yields

‖T 1
j ( f1, f2)v‖L1(B j (y, 14 )) � 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi1B j (y, 54 )

‖L2(v2i ). (5.28)

Now, integrating the both sides of (5.28) with respect to y, using Cauchy–Schwarz
inequality, and interchanging the order of integration, we conclude

‖T 1
j ( f1, f2)‖L1(v) � 2−ε j

2∏
i=1

[v2i ]A
2/p−

i
∩R H

(p+
i /2)′ ‖ fi‖L2(v2i ).

This shows (5.16) for T 1
j and completes the whole proof. ��

5.2 Bilinear Rough Singular Integrals

Given � ∈ Lq(S2n−1) with 1 ≤ q ≤ ∞ and
´
S2n−1 � dσ = 0, we define the rough

bilinear singular integral operator T� by

T�( f , g)(x) = p.v.
ˆ
R2n

K�(x − y, x − z) f (y)g(z)dydz,

where the rough kernel K� is given by K�(y, z) = �((y,z)/|(y,z)|)
|(y,z)|2n .

A typical example of the rough bilinear operators is the Calderón commutator
defined in [14] as

Ca( f )(x) := p.v.
ˆ
R

A(x) − A(y)

|x − y|2 f (y)dy,

where a is the derivative of A. C. Calderón [15] established the boundedness of Ca in
the full range of exponents 1 < p1, p2 < ∞. It was shown in [14] that the Calderón
commutator can be written as

Ca( f )(x) := p.v.
ˆ
R×R

K (x − y, x − z) f (y)a(z) dydz,

where the kernel is given by

K (y, z) = e(z) − e(z − y)

y2
= �((y, z)/|(y, z)|)

|(y, z)|2 ,
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where e(t) = 1 if t > 0 and e(t) = 0 if t < 0. Observe that K (y, z) is odd and
homogeneous of degree −2 whose restriction on S

1 is �(y, z). It is also easy to check
that � is odd and bounded, and hence Theorems 5.3–5.4 below can be applied to Ca .

Theorem 5.3 Let � ∈ L∞(S2n−1) and
´
S2n−1 � dσ = 0. Then for all pi ∈ (1,∞),

for all w
pi
i ∈ Api , for all b = (b1, b2) ∈ BMO2, and for each multi-index α ∈ N

2,

‖T�( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ]

3
2 max{1, 1

pi −1 }
Api

‖ fi ‖L pi (w
pi
i )

, (5.29)

‖[T�, b]α( f1, f2)‖L p(w p) �
2∏

i=1

[w pi
i ](αi + 3

2 )max{1, 1
si −1 , 1

pi −1 ,
si −1
pi −1 }

Api
‖bi ‖αi

BMO‖ fi ‖L pi (w
pi
i )

,

(5.30)

whenever 1
s := 1

s1
+ 1

s2
≤ 1 with s1, s2 ∈ (1,∞), where w = w1w2 and 1

p = 1
p1

+ 1
p2

.

Proof Picking r1 = r2 = r3 = 1 and p1 = p2 = q1 = q2 = 2, we see that (2.32)
holds and pi ∈ (1,∞), i = 1, 2. Then Lemma 2.8 gives that

[ �w]A(2,2) ≤ [w2
1]

1
2
A2

[w2
2]

1
2
A2

. (5.31)

On the other hand, it was proved in [24] that for every �w = (w1, w2) ∈ A(2,2),

‖T�‖L2(w2
1)×L2(w2

2)→L1(w) � ‖�‖L∞[ �w]3A(2,2)
� ‖�‖L∞[w2

1]
3
2
A2

[w2
2]

3
2
A2

, (5.32)

where (5.31) was used in the last step. Thus, (5.29) and (5.30) follow at once from

(5.32) and Theorems 1.1 and 1.2 applied to p−
i = 1, p+

i = ∞, qi = 2, �i (t) = t
3
2 . ��

Theorem 5.4 Let � ∈ Lq(S2n−1) with q > 4
3 and

´
S2n−1 � dσ = 0. Let πq <

p−
i < p+

i ≤ ∞, i = 1, 2, be such that 1
π ′

q
< 1

p+ := 1
p+

i
+ 1

p+
2

< 1, where

πq := max
{ 24n+3q−4

8n+3q−4 ,
24n+q
8n+q

}
. Then for all pi ∈ (p−

i , p+
i ), for all w

pi
i ∈ Api /p

−
i

∩
RH(p+

i /pi )
′ , for all b = (b1, b2) ∈ BMO2, and for each multi-index α ∈ N

2,

‖T�( f1, f2)‖L p(w p) �
2∏

i=1

[w pi (p
+
i /pi )

′
i ]

θ( 1
pi

− 1
p+

i
)

Aτpi
‖ fi‖L pi (w

pi
i )

, (5.33)

‖[T�, b]α( f1, f2)‖L p(w p) �
2∏

i=1

�i
([w pi (p

+
i /pi )

′
i ]γi (pi ,si )

Aτpi

)‖bi‖αi
BMO‖ fi‖L pi (w

pi
i )

,

(5.34)
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whenever 1
s := 1

s1
+ 1

s2
≤ 1 with si ∈ (p−

i , p+
i ), where w = w1w2, 1

p = 1
p1

+ 1
p2

,
1
r = 1

r1
+ 1

r2
,

θ = max
i=1,2

{ 1
p−

i

1
p−

i
− 1

pi

,
1 − 1

p+
1
p − 1

p+

}
, and �i (t) := t

αi max{1, 1
τsi −1 }+θ( 1

pi
− 1

p+
i

)

.

Proof By assumption, p0 := min{p−
1 , p−

2 , p′+} > πq , which together with [49, Theo-
rem 1.1] gives

|〈T�( f1, f2), f3〉| � sup
S: sparse

�S,(p0,p0,p0)( f1, f2, f3) ≤ sup
S: sparse

�S,(p−
1 ,p−

2 ,p′+)( f1, f2, f3),

(5.35)

for all f1, f2, f3 ∈ C∞
c (Rn). This and Theorem 5.6 below imply (5.33) and (5.34) as

desired. ��

Remark 5.5 In Theorem 5.3, the exponent p−
i > πq can be relaxed to p−

i ≥ πq , at
the cost of a larger exponent appearing in (5.33) and (5.34). Indeed, to get the first
inequality in (5.35), it requires that p0 is strictly greater than πq . When p−

i = πq

and w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , Lemma 2.4 implies that there exists p−
i < p̃−

i < pi

such that w
pi
i ∈ Api /̃p

−
i

∩ RH(p+
i /pi )

′ , i = 1, 2. Then p0 := min{̃p−
1 , p̃−

2 , p′+} > πq .

Combining this with Lemma 2.4 and the result in the case p−
i > πq , we can formulate

similar estimates as in Theorem 5.3. Details are left to the reader.

Recall that a family S of cubes is called sparse if for every cube Q ∈ S, there exists
EQ ⊂ Q such that |EQ | ≥ η|Q| for some 0 < η < 1 and the collection {EQ}Q∈S is
pairwise disjoint.

Given a sparse family S and �s = (s1, . . . , sm+1) with si ≥ 1, i = 1, . . . , m + 1,
we define the (m + 1)-sparse form

�S,�s( f1, . . . , fm+1) :=
∑
Q∈S

|Q|
m+1∏
i=1

(  
Q

| fi |si dx

) 1
si

.

We are interested in those operators T that dominated by certain sparse form

|〈T ( f1, . . . , fm), fm+1〉| ≤ C(�s) sup
S: sparse

�S,�s( f1, . . . , fm+1), (5.36)

for all f1, . . . , fm+1 ∈ C∞
c (Rn).

Theorem 5.6 Let 1 ≤ p−
i < p+

i ≤ ∞, i = 1, . . . , m. Assume that the operator T
satisfies (5.36) for the exponents �s = (p−

1 , . . . , p−
m, p′+), where 1

p+ := ∑m
i=1

1
p+

i
<
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1. Then for all exponents pi , ri ∈ (p−
i , p+

i ) and for all weights w
pi
i ∈ Api /p

−
i

∩
RH(p+

i /pi )
′ ,

‖T ( �f )‖L p(w p) �
m∏

i=1

[w pi (p
+
i /pi )

′
i ]

θ( 1
pi

− 1
p+

i
)

Aτpi
‖ fi ‖L pi (w

pi
i )

, (5.37)

∥∥∥∥(∑
j

|T ( �f j )|r
) 1

r

∥∥∥∥
L p(w p)

�
m∏

i=1

[w pi (p
+
i /pi )

′
i ]

θ( 1
pi

− 1
p+

i
)γi (pi ,ri )

Aτpi

∥∥∥∥(∑
j

| f j
i |ri

) 1
ri

∥∥∥∥
L pi (w

pi
i )

,

(5.38)

where

w =
m∏

i=1

wi ,
1

p
=

m∑
i=1

1

pi
,

1

r
=

m∑
i=1

1

ri
, and θ = max

1≤i≤m

{ 1
p−

i

1
p−

i
− 1

pi

,
1 − 1

p+
1
p − 1

p+

}
.

If in addition T is an m-linear linear operator, then for the same exponents and
weights as above, for all b = (b1, . . . , bm) ∈ BMOm, and for each multi-index α, we
have

‖[T , b]α( �f )‖L p(w p) �
m∏

i=1

�i
([w pi (p

+
i /pi )

′
i ]γi (pi ,si )

Aτpi

)‖bi‖αi
BMO‖ fi‖L pi (w

pi
i )

, (5.39)

and∥∥∥∥(∑
j

∣∣[T , b]α( �f j )
∣∣r) 1

r

∥∥∥∥
L p(w p)

�
m∏

i=1

�i
([w pi (p

+
i /pi )

′
i ]γi (pi ,ri )γi (ri ,si )

Aτpi

)

× ‖bi‖αi
BMO

∥∥∥∥(∑
j

∣∣ f j
i

∣∣ri
) 1

ri

∥∥∥∥
L pi (w

pi
i )

, (5.40)

whenever 1
s := ∑m

i=1
1
si

≤ 1 with si ∈ (p−
i , p+

i ), where �i (t) :=
t
αi max{1, 1

τsi −1 }+θ( 1
pi

− 1
p+

i
)

.

Proof Let pi ∈ (p−
i , p+

i ) and w
pi
i ∈ Api /p

−
i

∩ RH(p+
i /pi )

′ , i = 1, . . . , m. By density,

we may assume that f1, . . . , fm ∈ C∞
c (Rn) in this sequel. By Lemma 2.8, one has

�w ∈ A �p,�r with

[ �w]A �p,�s ≤
m∏

i=1

[w pi (p
+
i /pi )

′
i ]

1
pi

− 1
p+

i
Aτpi

. (5.41)

Then it follows from (5.41) and [76, Corollary 4.2] that

‖T ( f1, . . . , fm)‖L p(w p) � [ �w]θA �p,�s

m∏
i=1

‖ fi‖L pi (w
pi
i )

, (5.42)
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Thus, (5.37) is a consequence of (5.41) and (5.42). With Theorem 1.1 and Remark
1.4 in hand, the estimate (5.37) in turn gives (5.38). Additionally, (5.39) and (5.40)
follow from (5.37), Theorem 1.2, and Remark 1.4. The proof is complete. ��

We close the subsection with the following remark, which shows Theorems 1.1–1.2
and Theorem 5.6 contain a lot of applications. Details are left to the interested reader.

Remark 5.7 Now let us present some examples in terms of the hypothesis in Theorem
5.6.

• In [9], Bernicot et al. established a bilinear sparse domination �S,p0,q ′
0
for singu-

lar non-integral operators under certain assumptions. This verifies the hypothesis
(5.36) for r1 = p0 and r2 = q ′

0. Note also that our extrapolation theorems above
can be extended to spaces of homogeneous type since the corresponding sharp esti-
mate for the Hardy–Littlewood operator (2.1) was established in [52, Proposition
7.13].

• For Bochner–Riesz meansBα inR
2, the authors [6] proved a similar spare bilinear

form to (5.36) with r1 = 6/5 and r2 = 2 whenever α > 1/6. Much as before,
one can not only recover [6, Theorem 1.2], but also obtain quantitative weighted
estimates and vector-valued inequalities.

• Bui et. al [12] studied the Schrödinger operator L = � + V on R
n with n ≥ 3,

where V ∈ RHq and q ∈ (n/2, n). Letting p0 = ( 1
q − 1

n

)−1 and K (x, y) be the

kernel of the Riesz transform L−1/2∇, we see that K satisfies the Bui-Duong’s
condition (cf. [12, Theorem 5.6]). The latter implies Lr -Hörmander condition
(cf. [70, Proposition 3.2]). Then, combining the L p bounds for ∇L−1/2 with
p ∈ (1, p0] (cf. [86]) and the pointwise sparse domination in [70], we use
a duality argument to conclude that there exists a sparse family S such that
|〈∇L−1/2 f , g〉| � �S,1,p0( f , g). That is, the hypothesis (5.36) is satisfied for
the Riesz transform ∇L−1/2.

• For the m-linear Calderón–Zygmund operators and the corresponding maximal
truncation, pointwise sparse dominations were obtained in [28, 37], which imme-
diately implies (5.36) with �r = (1, . . . , 1). Then one can improve Corollaries 8.2
and 8.3 in [47] to the quantitative weighted estimates.

• Let 1 ≤ r < ∞ and g be the square function with the kernel Kt satisfies the
m-linear Lr -Hörmander condition defined in [21]. Under the assumption that g
is bounded from Lr (Rn) × · · · × Lr (Rn) to Lr/m,∞(Rn), Cao and Yabuta [21]
obtained a pointwise control of g by �S,�r , where �r = (r , . . . , r , 1). Then, the
square function g verifies (5.36).

• The operators satisfying (5.36) also include the discrete cubic Hilbert transform
[36] and oscillatory integrals [63].

5.3 Multilinear Fourier Multipliers

Given s, m ∈ N, a function σ ∈ C s(Rnm\{0}) is said to belong toMs(Rnm) if

∣∣∂α1
ξ1

· · · ∂αm
ξm

σ(�ξ)
∣∣ ≤ Cα(|ξ1| + · · · + |ξm |)−

∑m
i=1 |αi |, ∀�ξ ∈ R

nm \ {0},
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for each multi-index α = (α1, . . . , αm) with
∑m

i=1 |αi | ≤ s.
Given s ∈ R, the (usual) Sobolev space W s(Rnm) is defined by the norm

‖ f ‖W s (Rnm) :=
( ˆ

Rnm
(1 + |�ξ |2)s | f̂ (�ξ)|2d�ξ

) 1
2

,

where f̂ is the Fourier transform in all the variables. For �s = (s1, . . . , sm) ∈ R
m , the

Sobolev space of product type W �s(Rnm) consists of all f ∈ S ′(Rnm) such that

‖ f ‖W �s (Rnm) :=
( ˆ

Rnm
(1 + |ξ1|2)s1 · · · (1 + |ξm |2)sm | f̂ (�ξ)|2d�ξ

) 1
2

< ∞.

Given a function σ on R
nN , we set

σ j (�ξ) := �(�ξ)σ (2 j �ξ), j ∈ Z, (5.43)

where � ∈ S(Rnm) satisfy supp� ⊂ {1/2 ≤ |�ξ | ≤ 2}, and∑k∈Z �(2−k �ξ) = 1 for
all �ξ ∈ R

nm\{0}. Denote

Ws(Rnm) := {
σ ∈ L∞(Rnm) : sup

j∈Z
‖σ j‖W s (Rnm) < ∞}

,

W�s(Rnm) := {
σ ∈ L∞(Rnm) : sup

j∈Z
‖σ j‖W �s (Rnm) < ∞}

.

Then one has

Ms(Rnm) � Ws(Rnm) � W( s
m ,..., s

m )(Rnm).

For a bounded function σ on R
nm , the m-linear Fourier multiplier Tσ is defined by

Tσ ( �f )(x) :=
ˆ
Rnm

e2π i x ·(ξ1+···+ξm )σ (�ξ) f̂1(ξ1) · · · f̂m(ξm) d�ξ,

for all f1, . . . fm ∈ S(Rn).
Be means of extrapolation theorems, we improve Theorems 1.2 (i) and 6.2 in

[43] to the weighted estimates with quantitative bounds. We can also establish the
corresponding weighted estimates for the higher order commutators and vector-valued
inequalities as follows.

Theorem 5.8 Let m ≥ 2, n/2 < si ≤ n, i = 1, . . . , m. Assume that σ ∈ W�s(Rnm).
Then for every pi > n/si , for every w

pi
i ∈ Api si /n, i = 1, . . . , m, for all b =

(b1, . . . , bm) ∈ BMOm, and for each multi-index α ∈ N
m,

‖Tσ ( �f )‖L p(w p) �
m∏

i=1

[w pi
i ]

3
2 γi (pi ,2m)

Api si /n
‖ fi‖L pi (w

pi
i )

, (5.44)



Journal of Fourier Analysis and Applications (2024) 30 :7 Page 67 of 90 7

‖[Tσ , b]α( �f )‖L p(w p) �
m∏

i=1

[w pi
i ](αi + 3

2 )γi (pi ,2m)

Api si /n
‖bi‖αi

BMO‖ fi‖L pi (w
pi
i )

, (5.45)

where 1
p = ∑m

i=1
1
pi

and w = ∏m
i=1 wi .

Moreover, for any r ∈ (n/si , 2], i = 1, . . . , m,

∥∥∥∥
( ∑

k1,...,km

|Tσ ( f 1k1 , . . . , f m
km

)|r
) 1

r
∥∥∥∥

L p(w p)

�
m∏

i=1

[w pi
i ]βi (r)

Api si /n

∥∥∥∥
(∑

ki

| f i
ki

|r
) 1

r
∥∥∥∥

L pi (w
pi
i )

,

∥∥∥∥
( ∑

k1,...,km

|[Tσ , b]α( f 1k1 , . . . , f m
km

)|r
) 1

r
∥∥∥∥

L p(w p)

�
m∏

i=1

[w pi
i ]ηi (r)

Api si /n
‖bi ‖αi

BMO

∥∥∥∥
(∑

ki

| f i
ki

|r
) 1

r
∥∥∥∥

L pi (w
pi
i )

,

where

βi (r) :=
{

3
2γi (pi , 2m), r = 2,
3
2γi (pi , qi )γi (qi , 2m), r 	= 2,

ηi (r) :=
{

(αi + 3
2 )γi (pi , 2m), r = 2,

(αi + 3
2 )γi (pi , qi )γi (qi , 2m), r 	= 2,

provided qi ∈ (n/si , r), i = 1, . . . , m.

Proof We borrow some ideas from [43], but nowwe can give a proof without using the
weighted Hardy space argument. Let p−

i := n/si and p
+
i := ∞ for each i = 1, . . . , m.

Letq = 2 andqi = 2m for 1 ≤ i ≤ m. Then,qi ∈ (p−
i , p+

i ). Checking the proof of [43,
Theorem 6.2], we can obtain that for any weight vqi

i ∈ Aqi si /n = Aqi /p
−
i

∩ RH(p+
i /qi )

′ ,
i = 1, . . . , m,

‖Tσ ( �f )‖Lq (vq ) �
m∏

i=1

[vqi
i ]

3
2
Aqi si /n

‖ fi‖Lqi (v
qi
i )

. (5.46)

Thus, (5.44) follows from (5.46) and Theorem 1.1 applied to �i (t) = t3/2.
Note that in the current scenario, γi (qi , qi ) = 1, τqi = 2msi/n, and hence,

�̃i (t) := t
αi max{1, 1

τqi −1 }
�i (Ci tγi (qi ,qi )) = C

3
2
i t

3
2+αi max{1, 1

2Nsi /n−1 } = C
3
2
i t

3
2+αi .

Then in view of (5.46), Theorem 1.2 applied to si = qi = 2m implies (5.45).
On the other hand, Lemma 2.12 and (5.44) give that for every qi > n/si , for every

w
qi
i ∈ Aqi si /n , i = 1, . . . , m,

∥∥∥∥
( ∑

k1,...,km

|Tσ ( f 1k1 , . . . , f m
km

)|r
) 1

r
∥∥∥∥

Lq (vq )

�
m∏

i=1

[vqi
i ]

3
2 γi (qi ,2m)

Aqi si /n

∥∥∥∥
(∑

ki

| f i
ki

|r
) 1

r
∥∥∥∥

Lqi (v
qi
i )

,

provided r = 2 or r ∈ (n/si , 2) and qi ∈ (n/si , r), where 1
q = ∑m

i=1
1
qi

and v =∏m
i=1 vi . Therefore, the vector-valued inequalities above follow from Theorem 1.1

applied to �i (t) = t
3
2 γi (qi ,2m). ��
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Theorem 5.9 Let 1 ≤ r ≤ 2 and s1, s2 > 1/r . Let σ be a bounded function on R
2

satisfying

sup
j∈Z

∥∥(I − �ξ1)
s1
2 (I − �ξ2)

s2
2 σ j

∥∥
Lr (R2)

< ∞,

where σ j is given in (5.43) with n = 1. Assume that 1 ≤ p−
1 , p−

2 < ∞ and max
1≤i≤2

1
si

<

min
1≤i≤2

p−
i . Then for all exponents pi ∈ (p−

i ,∞) and all weights w
pi
i ∈ Api /p

−
i

, i =
1, 2,

‖Tσ ( �f )‖L p(w p) �
2∏

i=1

[w pi
i ]

15
pi

+2max{ 12 , 1
pi −p−

i
}

A
pi /p

−
i

‖ fi‖L pi (w
pi
i )

,

where 1
p = 1

p1
+ 1

p2
≥ 1 and w = w1w2.

Proof We will use the same notation as [46]. By the same argument as [46, p. 970],
we are deduced to showing the boundedness of Tσ1 and Tσ2 , which satisfy

|�θ
j (Tσ1( f1, f2))| � M(| f1|ρ)

1
ρ M

(|�η
j f2|ρ

) 1
ρ , (5.47)

Tσ2( f1, f2) =
∑
j∈Z

Tσ2( f1,�
θ
j f2), (5.48)

Tσ2( f1,�
θ
j f2) � M

(|�ζ
j f1|ρ

) 1
ρ M

(|�θ
j f2|ρ

) 1
ρ . (5.49)

Here, ρ ∈ (1, 2) satisfies max
i=1,2

1
si

< ρ < min{p−
1 , p−

2 , r} if r > 1, and ρ = 1 if

r = 1. The multiplier �θ
j is defined by ̂�θ

j f = θ̂ (2− j ·) f̂ , for each j ∈ Z, where

θ ∈ S(R) satisfies supp(θ̂) ⊂ {ξ ∈ R : 1/c0 ≤ |ξ | ≤ c0}, for some c0 > 1, and∑
j∈Z θ̂ (2− jξ) = Cθ for all ξ ∈ R \ {0}. Considering the same property of �θ

j and

�
ζ
j , we will suppress θ and ζ in this sequel.

Let w pi
i ∈ Api /p

−
i
, i = 1, 2. By the choice of ρ, we have

w
pi
i ∈ Api /ρ ⊂ Api with [w pi

i ]Api
≤ [w pi

i ]Api /ρ
≤ [w pi

i ]A
pi /p

−
i
, i = 1, 2.

(5.50)

Let us control Tσ1 and Tσ2 . Invoking (5.48)–(5.50), (2.1), and Lemma 3.3, we use
Hölder’s inequality to conclude that
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‖Tσ2( f1, f2)‖L p(w p) �
∥∥∥∥∑

j∈Z
M
(|� j f1|ρ

) 1
ρ M

(|� j f2|ρ
) 1

ρ

∥∥∥∥
L p(w p)

≤
2∏

i=1

∥∥∥∥(∑
j∈Z

M
(|� j fi |ρ

) 2
ρ

) 1
2

∥∥∥∥
L pi (w

pi
i )

�
2∏

i=1

[w pi
i ]max{ 12 , 1

pi −ρ
}

Api /ρ

∥∥∥∥(∑
j∈Z

|� j fi |2
) 1

2

∥∥∥∥
L pi (w

pi
i )

�
2∏

i=1

[w pi
i ]max{ 12 , 1

pi −ρ
}

Api /ρ
[w pi

i ]max{ 12 , 1
pi −1 }

Api
‖ fi‖L pi (w

pi
i )

�
2∏

i=1

[w pi
i ]

2max{ 12 , 1
pi −p−

i
}

A
pi /p

−
i

‖ fi‖L pi (w
pi
i )

,

where the inequality (3.8) was used in the second-to-last step. To estimate Tσ1 , we
note that by Lemma 2.9,

[w p]A2 ≤ [w p]Ap/p− ≤
2∏

i=1

[w pi
i ]

p
pi
A

pi /p
−
i

, (5.51)

since 1
p− := 1

p−
1

+ 1
p−
2

≤ 2 and p ≤ 1 ≤ 2p−. Therefore, in view of Lemma 5.10

applied to r = 2 and v = w p, (5.51), and (5.47), we proceed as above to obtain

‖Tσ1( f1, f2)‖L p(w p) � [w p]
15
p

A2

∥∥∥∥
(∑

j∈Z
|� j (Tσ1( f1, f2))|2

) 1
2
∥∥∥∥

L p(w p)

�
2∏

i=1

[w pi
i ]

15
pi
A

pi /p
−
i

∥∥∥∥M(| f1|ρ)
1
ρ

(∑
j∈Z

M
(|� j f2|ρ

) 2
ρ

) 1
2
∥∥∥∥

L p(w p)

�
2∏

i=1

[w pi
i ]

15
pi
A

pi /p
−
i

∥∥M(| f1|ρ)
1
ρ
∥∥

L p1 (w
p1
1 )

∥∥∥∥
(∑

j∈Z
M
(|� j f2|ρ

) 2
ρ

) 1
2
∥∥∥∥

L p2 (w
p2
2 )

� [w p1
1 ]

15
p1

+ 1
p1−ρ

Ap1/ρ
[w p2

2 ]
15
p2

+max{ 12 , 1
p2−ρ

}
Ap2/ρ

‖ f1‖L p1 (w
p1
1 )

∥∥∥∥
(∑

j∈Z
|� j f2|2

) 1
2
∥∥∥∥

L p2 (w
p2
2 )

�
m∏

i=1

[w pi
i ]

15
pi

+2max{ 12 , 1
pi −p−

i
}

A
pi /p

−
i

‖ fi‖L pi (w
pi
i )

.

This completes the proof. ��
In this subsection, we always choose φ ∈ S(Rn) with

´
Rn φ dx = 1, and set

φt (x) := t−nφ(x/t) for any x ∈ R
n and t > 0. And let ψ, � ∈ S(Rn) satisfy
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0 ≤ ψ̂(ξ) ≤ 1{1/2≤|ξ |≤2}, ψ̂(ξ) ≥ 0 for 1/2 ≤ |ξ | ≤ 2,
∑

j∈Z ψ̂(2 jξ) = 1 for

|ξ | 	= 0, and 1{1/2≤|ξ |≤2} ≤ �̂(ξ) ≤ 1{1/3≤|ξ |≤3}. Denote ψ j (x) = 2− jnψ(x/2 j ) and
� j (x) = 2− jn�(x/2 j ) for each j ∈ Z.

Lemma 5.10 For all 0 < p ≤ 1 ≤ r ≤ 2 and for all v ∈ Ar ,

‖ f ‖L p(v) ≤
∥∥∥∥ sup

t>0
|φt ∗ f |

∥∥∥∥
L p(v)

� [v]
11+2r ′

p
A2

∥∥∥∥
(∑

j∈Z
|� j f |2

) 1
2
∥∥∥∥

L p(v)

.

Proof It suffices to show the second inequality since | f (x)| ≤ supt>0 |φt ∗ f (x)| for
all x ∈ R

n . By Lemma 5.11–5.12 below and estimates in [11, p. 588], we have

‖ f ‖H p(v) =
∥∥∥∑

j

� j ∗ ψ j ∗ f
∥∥∥

H p(v)
� [v]

9
p + 2r ′

p
A2

∥∥∥ sup
t>0

(∑
j

|φt ∗ ψ j ∗ f |2
) 1

2
∥∥∥

L p(v)

≤ [v]
9
p + 2r ′

p
A2

∥∥∥(∑
j

sup
t>0

|φt ∗ ψ j ∗ f |2
) 1

2
∥∥∥

L p(v)
� [v]

9
p + 2r ′

p
A2

∥∥∥(∑
j

|ψ∗
jλ f |2

) 1
2
∥∥∥

L p(v)

� [v]
9
p + 2r ′

p
A2

∥∥∥∥[∑
j

M(|ψ j ∗ f |s)(x)
2
s

] s
2

∥∥∥∥
1
s

L p/s (v)

� [v]
9
p + 2r ′

p
A2

[v]max{ 12 , 1
p−s }

Ap/s

∥∥∥∥[∑
j

|ψ j ∗ f (x)|2
] 1

2

∥∥∥∥
L p(v)

where we used Lemma 3.3 and that λ > max{ nr
p , n

2 } = nr
p , so s := n

λ
<

p
r and

[v]Ap/s ≤ [w]r . If we take n
λ

= p(1−ε)
r for some ε ∈ (0, 1), then p − s = p − n

λ
=

p(1 − 1−ε
r ) ≥ p(1 − (1 − ε)) = pε. This means max{ 12 , 1

p−s } < 1
pε
. Consequently,

taking ε = 1/2, we get the desired estimate. ��
We use the maximal operators N , N+, N∗ defined in [11]. Moreover, given a

sequence f = { f j }, a function u on R
n+1+ , and α, κ > 0, we define

N∗∗
κ f(x) := sup

y∈Rn ,t>0

(∑
j

|φt ∗ f j (x)|q
) 1

q
(

t

t + |x − y|
)κ

,

Ñαu(x) := sup
|x−y|<αt

|u(y, t)|, Ñ∗∗
κ u(x) := sup

y∈Rn ,t>0
|u(y, t)|

(
t

t + |x − y|
)κ

.

Lemma 5.11 For any p ∈ (0,∞), r ∈ (1,∞), and w ∈ Ar ,

‖Ñ∗∗
κ u‖L p(w) � [w]

r ′
p
Ar

‖Ñ1u‖L p(w), (5.52)

‖N∗f‖L p(w) � [w]
r ′
p
Ar

‖N f‖L p(w), (5.53)

‖N f‖L p(w) � [w]
r ′
p
Ar

‖N+f‖L p(w). (5.54)
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Proof The inequality (5.52) follows from the following

Ñ∗∗
κ u � sup

m∈N
2−mn Ñ2m u and w({Ñβu > η}) � (1 + β/α)nr [w]r ′

Ar
w({Ñαu > η}),

for all η > 0, where the first estimate is trivial and the second one is contained in
[50]. The inequality (5.53) is a consequence of (5.52) and the pointwise estimate
N∗f � Ñ∗∗

κ f.
To show (5.54), we trace the proof of ‖N f‖L p(w) � ‖N+f‖L p(w) in [11]. Firstly,

by (5.52) we have

‖N∗∗
λ f ‖L p(w) � [w]

r ′
p
Ar

‖N f‖L p(w).

Setting Ñμui (x) := supt>0,|x−y|<μt

(∑
j∈Z |φ(i)

t ∗ f j (y)|q) 1q , where φ(i) = ∂φ
∂xi

and
μ > 1, we use (5.53) to get

‖Ñμui‖L p(w) � [w]
r ′
p
Ar

‖N f‖L p(w). (5.55)

Since r > 1 and w ∈ Ar , Lemma 2.4 gives that r > inf{ρ > 0 : w ∈ Aρ}. So, for
s ∈ (0, 1]with p/s = r > inf{ρ > 0 : w ∈ Aρ}, and δ > 0 satisfying�δ(y) ⊂ �μ(x)

for all (y, t) ∈ �1(x), we get

N f(x)s ≤ (1 + 1/δ)n M((N+ f )s)(x) + δs
n∑

i=1

Ñμui (x)s .

Hence, taking L p/s(w)-norm of both sides of the above, and using (5.55), we see that

‖N f‖s
L p(w) ≤ C1(1 + 1/δ)n[w]

1
p/s−1
Ap/s

‖N+f‖s
L p(w) + C2δ

s‖N f‖L p(w).

Choosing δ so small that C2δ
s < 1/2, we obtain

‖N f‖L p(w) � [w]
1

p−s
Ap/s

‖N+f‖L p(w) = [w]
r ′
p
Ar

‖N+f‖L p(w).

This completes the proof of (5.54). ��

Lemma 5.12 Then for any p ∈ (0, 1] and w ∈ A2,

∥∥∥∥ sup
0<t<∞

∣∣∣φt ∗
(∑

j

� j ∗ f j

)∣∣∣∥∥∥∥
L p(w)

� [w]
9
p
A2

‖N∗f‖L p(w).
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Proof Fix w ∈ A2 and λ > 0. It suffices to show

Jλ := w
({

x ∈ R
n : sup

t>0

∣∣∣φt ∗
(∑

j

� j ∗ f j

)
(x)

∣∣∣ > λ
})

� [w]9A2

{
λ−2

ˆ
Rn\�λ

∑
j

| f j (x)|2w(x) dx + w(�λ)

}
, (5.56)

where the implicit constant is independent of λ, and �λ := {N∗f > λ} (cf. [85, p.
190]).

It follows fromWhitney decomposition that one can find a pairwise disjoint family
of cubes {Q j } such that �λ = ⋃

k Qk and dist(Rn\�λ, Qk) � �(Qk). Then we
choose a sequence of nonnegative functions {ϕk}k such that 1�λ = ∑

k ϕk , with the
following properties

supp(ϕk) ⊂ 6

5
Qk, ak :=

ˆ
Rn

ϕk dx � |Qk |, ‖∂αϕk‖L∞(Rn) � �(Qk)
−|α|.

Setting

f̃ j (x) := f j (x)1Rn\�λ
+
∑

k

bk, j ϕk and bk, j := 1

ak

ˆ
Rn

f j (x)ϕk(x) dx,

we see that for all x ∈ R
n ,

∑
j

| f̃ j (x)|2 �
∑

j

| f j (x)|21Rn\�λ
+
∑

j

|bk, j (x)|2 � λ2 + N∗f(x j ) � λ2,

where x j ∈ C0Q j ∩ (Rn\�λ) 	= ∅ for all j and for some C0 > 0, which follows from
the construction of Whitney decomposition of �.

Writing

J ′
λ := w

({
x ∈ R

n \ �λ : sup
t>0

∣∣∣φt ∗
(∑

j

� j ∗ ( f j − f̃ j )
)
(x)

∣∣∣ > λ
})

,

and observing that

sup
t>0

∣∣∣φt ∗
(∑

j

� j ∗ ( f j − f̃ j )
)
(x)

∣∣∣ � λM1(x), x ∈ R
n\�λ,

where M1(x) is defined in (3.13), we invoke Lemma 3.6 to deduce

J ′
λ � ‖M1‖2L2(w)

� [w]2A2
w(�λ). (5.57)
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By Chebyshev’s inequality and (2.1),

J ′′
λ := w

({
x ∈ R

n : sup
t>0

∣∣∣φt ∗
(∑

j

� j ∗ f̃ j

)
(x)

∣∣∣ > λ
})

≤ λ−2
∥∥∥∥ sup

t>0

∣∣∣φt ∗
(∑

j

� j ∗ f̃ j

)∣∣∣∥∥∥∥
2

L2(w)

� λ−2
∥∥∥∥M

(∑
j

� j ∗ f̃ j

)∥∥∥∥
2

L2(w)

� λ−2[w]2A2

∥∥∥∥∑
j

� j ∗ f̃ j

∥∥∥∥
2

L2(w)

= λ−2[w]2A2

ˆ
Rn

∣∣∣∑
j

� j ∗ f̃ j (x)

∣∣∣2w(x) dx .

(5.58)

To control the last term, we let T be the singular integral with L (�2(Z), C)-valued
kernel � = {� j } j∈Z defined by T (g) := ∑

j∈Z � j ∗ g j for good �2-valued functions

g = {g j } j∈Z. One can check that T is bounded from L2(Rn, �2) to L2(Rn, �2),
‖�‖L (�2(Z),C) � |x |−n , and ‖∇�‖L (�2(Z),C) � |x |−n−1 (cf. [88, p. 165]). Hence,
this, Lemma 3.4, and (5.58) yield

J ′′
λ � λ−2[w]9A2

ˆ
Rn

∑
j

| f̃ j (x)|2w(x)dx

≤ λ−2[w]9A2

ˆ
Rn\�λ

∑
j

| f j (x)|2w(x)dx + [w]9A2
w(�λ). (5.59)

As a consequence, (5.56) immediately follows from (5.57) and (5.59). ��

5.4 Weighted Jump Inequalities for Rough Operators

Let F := {Ft (x)}t>0 be a family of Lebesgue measurable functions defined on R
n .

Given λ > 0, we introduce the λ-jump function Nλ(F) of F , its value at x is the
supremum over all N such that there exist s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sN < tN with

|Ftk (x) − Fsk (x)| > λ, ∀k = 1, . . . , N .

Given ρ > 0, the value of the strong ρ-variation function Vρ(F) at x is defined by

Vρ(F)(x) := sup
{tk }k≥0

(
|Ft0(x)|ρ +

∑
k≥1

|Ftk (x) − Ftk−1(x)|ρ
) 1

ρ

,

where the supremum runs over all increasing sequences {tk}k≥0.
Given � ∈ L1(Sn−1) and ε > 0, the truncated singular integral operator Tε is

defined by

T�,ε f (x) :=
ˆ

|y|≥ε

�(y′)
|y|n f (x − y)dy.
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The principal value singular integral and its maximal version are defined by

T� f (x) := lim
ε→0+ T�,ε f (x) and T�,# f (x) := sup

ε>0
|T�,ε f (x)|, x ∈ R

n .

In this sequel, we write T := {T�,ε}ε>0.

Theorem 5.13 Let ρ > 2 and � ∈ Lq(Sn−1) with q ∈ (1,∞) be such that´
Sn−1 � dσ = 0. Then for all p ∈ (q ′,∞) and for all w ∈ Ap/q ′ ,

‖T f ‖L p(w) � [w]7max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w), (5.60)

where T ∈ { sup
λ>0

λ
√

Nλ ◦ T ,Vρ ◦ T , T�,#
}
.

It suffices to show (5.60) forT = sup
λ>0

λ
√

Nλ ◦ T , which immediately implies (5.60)

for T ∈ {Vρ ◦ T , T�,#} since the following pointwise domination holds

T�,# f (x) ≤ Vρ(T f )(x) ≤ sup
λ>0

λ
√

Nλ(T f )(x), x ∈ R
n,

provided that �2,∞(N) embeds into �ρ(N) for all ρ > 2.
Let us turn to the proof of (5.60) for T = sup

λ>0
λ
√

Nλ ◦ T . It was proved in [57,

Lemma 1.3] that

λ
√

Nλ(T f )(x) � S2(T f )(x) + λ

√
Nλ/3({T�,2k f })(x), x ∈ R

n,

where

S2(T f )(x) :=
(∑

j∈Z
V2, j (T f )(x)2

) 1
2

,

V2, j (T f )(x) :=
⎛
⎜⎝ sup

t1<···<tN
[tl ,tl+1]⊂[2 j ,2 j+1]

N−1∑
l=1

|T�,tl+1 f (x) − T�,tl f (x)|2
⎞
⎟⎠

1
2

.

Thus, we are reduced to proving

∥∥∥ sup
λ>0

λ

√
Nλ({T�,2k f })

∥∥∥
L p(w)

� [w]7max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w), (5.61)

‖S2(T f )‖L p(w) � [w]4max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w). (5.62)
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5.4.1 Dyadic Jump Estimates

We are going to show (5.61) in this subsection. Let φ ∈ S(Rn) be a radial function
such that φ̂(ξ) = 1 for |ξ | ≤ 2 and φ̂(ξ) = 0 for |ξ | > 4. Define φ̂k(ξ) = φ̂(2kξ) for
each k ∈ Z. For each j ∈ Z, set ν j (x) := �(x)

|x |n 1{2 j ≤|x |<2 j+1}(x). Then for any k ∈ Z,

T�,2k f (x) =
ˆ

|x−y|≥2k

�(x − y)

|x − y|n f (y) dy =
∑
j≥k

ν j ∗ f (x)

= φk ∗ T� f +
∑
s≥0

(δ0 − φk) ∗ νk+s ∗ f − φk ∗
∑
s<0

νk+s ∗ f

=: T 1
k f + T 2

k f − T 3
k f ,

where δ0 is the Dirac measure at 0. LetT i f denote the family {T i
k f }k∈Z, i = 1, 2, 3.

Hence, to get (5.61) it suffices to prove the following:

∥∥∥ sup
λ>0

λ

√
Nλ(T i f )

∥∥∥
L p(w)

� [w]7max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w), i = 1, 2, 3. (5.63)

We begin with showing (5.63) for i = 1. Define

D j f := E j f − E j−1 f , E f := {E j f } j∈Z, where E j f :=
∑

Q∈D j

〈 f 〉Q1Q,

where D j is the family of dyadic cubes with sidelength 2 j .

Lemma 5.14 For any p ∈ (1,∞) and w ∈ Ap,

‖T f ‖L p(w) � [w]max{1, 1
p−1 }

Ap
‖ f ‖L p(w), (5.64)

where T f ∈ {(∑ j∈Z |D j f |2) 12 , supλ>0 λ
√

Nλ(E f )
}
.

Proof For p = 2, the estimate (5.64) for dyadic operators is contained in [62], which
established a sharp weighted inequality for the Haar shift operators. The general case
is a consequence of the case p = 2 and Theorem 4.1. Then (5.64) for jump opera-

tors follows at once from (5.64) for T f = (∑
j∈Z |D j f |2) 12 and the proof of [59,

Proposition 4.1]. ��
Define the square function as follows:

S f :=
(∑

k∈Z
|φk ∗ f − Ek f |2

) 1
2

. (5.65)
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Lemma 5.15 For any w ∈ A1,

‖S‖L2(w)→L2(w) � [w]2A1
and ‖S‖L1(w)→L1,∞(w) � [w]5A1

, (5.66)

where the implicit constant is independent of [w]A1 .

Proof We claim that for all k, j ∈ Z,

‖Ik, j‖L2(w) := ‖φk+ j ∗ D j f − Ek+ j D j f ‖L2(w) � 2−θ |k|[w]A1‖D j f ‖L2(w),

(5.67)

for some θ > 0, where the implicit constant and θ are independent of k and j . To
show (5.67), we first note that by [57, p. 6722], for any k ≥ 0,

Ek+ j D j f = 0 and |φk+ j ∗ D j f | � 2−k M(D j f ),

which along with (2.1) gives

‖Ik, j ‖L2(w) � 2−k‖M(D j f )‖L2(w) � 2−k [w]A2‖D j f ‖L2(w) ≤ 2−k [w]A1‖D j f ‖L2(w).

To control the case k < 0, we use the argument in [25, p. 2461–2463] and that

w(λQ) ≤ λn[w]A1w(Q), for any cube Q,

to see Ik, j (x) = ∑
d≥0 Id(x), where for some δ > 0,

‖Id‖L2(w) � 2−δ|k|n/4[w]
1
2
A1

‖D j f ‖L2(w), d ≤ |k|/2,
‖Id‖L2(w) � 2−d [w]

1
2
A1

‖D j f ‖L2(w), d ≥ |k|/2,

Then summing these estimates up, we obtain (5.67) as desired.
Having shown (5.67), we use f (x) = ∑

j∈Z D j f (x), a.e. x ∈ R
n , to deduce that

‖S f ‖L2(w) =
∥∥∥∥
(∑

k∈Z

∣∣∣∑
j∈Z

(
φk ∗ D j f − EkD j f

)∣∣∣2)
1
2
∥∥∥∥

L2(w)

≤
(∑

k∈Z

(∑
j∈Z

‖φk ∗ D j f − EkD j f ‖L2(w)

)2) 1
2

� [w]A1

(∑
k∈Z

(∑
j∈Z

2−θ |k− j |‖D j f ‖L2(w)

)2) 1
2

� [w]A1

[∑
k∈Z

(∑
j∈Z

2−θ |k− j |)(∑
j∈Z

2−θ |k− j |‖D j f ‖2L2(w)

)] 1
2
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� [w]A1

[∑
j∈Z

(∑
k∈Z

2−θ |k− j |)‖D j f ‖2L2(w)

] 1
2

� [w]A1

∥∥∥∥(∑
j∈Z

|D j f |2
) 1

2

∥∥∥∥
L2(w)

� [w]2A1
‖ f ‖L2(w),

where we have used Minkowski’s inequality, (5.67), Cauchy–Schwarz inequality, and
(5.64). This shows the first estimate in (5.66). Then, using the first inequality in (5.66)
andCalderón–Zygmund decomposition as in [25, p. 2458–2460], we obtain the second
estimate in (5.66). The proof is complete. ��
Lemma 5.16 Let U be a family of operators given by U f := {φk ∗ f }k∈Z. Then for
all p ∈ (1,∞) and for all w ∈ Ap,

∥∥∥ sup
λ>0

λ
√

Nλ(U f )

∥∥∥
L p(w)

� [w]max{5, 1
p−1 }

Ap
‖ f ‖L p(w).

Proof Since Nλ is subadditive,

Nλ(U f ) ≤ Nλ(D f ) + Nλ(E f ), (5.68)

where D f := {φk ∗ f − Ek f }k∈Z and E f := {Ek f }k∈Z. Recall the square function
in (5.65) and observe that supλ>0 λ

√
Nλ(D f ) ≤ S f , which together with (5.66) and

Theorem 4.4 applied to p0 = 1 implies∥∥∥ sup
λ>0

λ
√

Nλ(D f )

∥∥∥
L p(w)

� [w]5Ap
‖ f ‖L p(w).

In view of (5.64) and (5.68), this gives at once the desired estimate. ��
Now using Lemma 5.16 and (3.17), we obtain

∥∥∥ sup
λ>0

λ

√
Nλ(T 1 f )

∥∥∥
L p(w)

=
∥∥∥ sup

λ>0
λ
√

Nλ({φk ∗ (T� f )})
∥∥∥

L p(w)

� [w]max{5, 1
p−1 }

Ap
‖T� f ‖L p(w) � [w]7max{1, 1

p/q′−1
}

Ap/q′ ‖ f ‖L p(w),

which shows (5.63) for i = 1.
For the term with T 2, it was shown in [25, p. 2453] that

sup
λ>0

λ

√
Nλ(T 2 f ) ≤

∑
s≥0

(∑
k∈Z

∣∣(δ0 − φk) ∗ νk+s ∗ f
∣∣2) 1

2 =:
∑
s≥0

Gs f , (5.69)

where

Gs f ≤
∑
l∈Z

(∑
k∈Z

|(δ0 − φk) ∗ νs+k ∗ �2
l−k f |2

) 1
2 =:

∑
l∈Z

Gl
s f ,
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with

‖Gl
s f ‖L2(Rn) � 2−γ0s min{2l , 2−γ0l}‖ f ‖L2(Rn). (5.70)

It follows from Lemmas 3.5 and 3.9 that for any v ∈ Ap/q ′ ,

‖Gl
s f ‖L p(v) � [v]

1
2 max{1, 2

p−1 }
Ap

∥∥∥∥(∑
k∈Z

|νs+k ∗ �2
l−k f |2

) 1
2

∥∥∥∥
L p(v)

� [v]
1
2 max{1, 2

p−1 }+ 5
2 max{1, 2

p/q′−1
}

Ap
‖ f ‖L p(v) � [v]3max{1, 2

p/q′−1
}

Ap
‖ f ‖L p(v).

(5.71)

Then interpolating between (5.70) and (5.71) with v ≡ 1 gives

‖Gl
s f ‖L p(Rn) � 2−αs2−β|l|‖ f ‖L p(Rn), for some α, β > 0. (5.72)

On the other hand, for w ∈ Ap/q ′ , by Lemma 2.4, there exists γ = γw ∈ (0, 1) such
that

(1 + γ )′ = cn[w]max{1, 1
p/q′−1

}
Ap/q′ =: cn B0, and [w1+γ ]Ap ≤ [w1+γ ]Ap/q′ � [w]1+γ

Ap/q′ ,

which along with (5.71) implies

‖Gl
s f ‖L p(w1+γ ) � [w]3(1+γ )max{1, 2

p/q′−1
}

Ap/q′ ‖ f ‖L p(w1+γ ). (5.73)

Considering Theorem 3.1 with w0 ≡ 1, w1 = w1+γ , and θ = 1
1+γ

, we interpolate
between (5.72) and (5.73) to arrive at

‖Gl
s f ‖L p(w) � 2−αs(1−θ)2−β|l|(1−θ)[w]3max{1, 2

p/q′−1
}

Ap/q′ ‖ f ‖L p(w). (5.74)

Note that e−t < 2t−2 for any t > 0, and

∑
s≥0

2−αs(1−θ) =
∑

0≤s≤B0

2
− αs

cn B0 +
∑

s>B0

2
− αs

cn B0 � B0 +
∑

s>B0

s−2B2
0 � B0. (5.75)

Similarly, ∑
l∈Z

2−β|l|(1−θ) � B0. (5.76)

Hence, (5.69) and (5.74)–(5.76) imply

∥∥∥ sup
λ>0

λ

√
Nλ(T 2 f )

∥∥∥
L p(w)

� [w]4max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w).
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This shows (5.63) for i = 2.
To control the term with T 3, we note that by [25, p. 2456],

sup
λ>0

λ

√
Nλ(T 3 f ) ≤

∑
s<0

(∑
k∈Z

∣∣φk ∗ νk+s ∗ f
∣∣2) 1

2 =:
∑
s<0

Hs f ,

where

‖Hs f ‖L p(w) ≤
∑
l∈Z

∥∥∥∥(∑
k∈Z

|φk ∗ νk+s ∗ �2
l−k f |2

) 1
2

∥∥∥∥
L p(w)

=:
∑
l∈Z

‖Hl
s f ‖L p(w),

with

‖Hl
s f ‖L2(Rn) � 2s min{2l , 2−γ l}‖ f ‖L2(Rn).

Analogously to (5.74), one has

‖Hl
s f ‖L p(w) � 2−αs(1−θ)2−β|l|(1−θ)[w]3max{1, 2

p/q′−1
}

Ap/q′ ‖ f ‖L p(w),

and eventually,

∥∥∥ sup
λ>0

λ

√
Nλ(T 3 f )

∥∥∥
L p(w)

� [w]4max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w).

This shows (5.63) for i = 3.

5.4.2 Short Variation Estimates

We will prove (5.62) in this subsection. As did in [25],

S2(T f )(x) ≤
∑
k∈Z

S2,k(T f )(x), (5.77)

‖S2,k(T f )‖L p(Rn) � 2−δ|k|‖ f ‖L p(Rn), ∀k ∈ Z, (5.78)

S2,k(T f )(x) �
(∑

j∈Z
|M�(�2

k− j f )(x)|
) 1

2

, ∀k ∈ Z, (5.79)

and for q < 2,

∥∥S2,k(T f )
∥∥

L p(w)
≤ ‖I1,k f ‖

1
2
L p(w)‖I2,k f ‖

1
2
L p(w), (5.80)
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where

‖I1,k f ‖L p(w) ≤
(ˆ 2

1

∥∥∥∥(∑
j∈Z

|ν j,t ∗ �2
k− j f |2

) 1
2

∥∥∥∥
2

L p(w)

dt

t

) 1
2

,

‖I2,k f ‖L p(w) �
( ˆ

Rn
M�2−q (gw)(x)

∑
j∈Z

|�2
k− j f (x)|2 dx

) 1
2

,

where ν j,t (x) := �(x)
|x |n 1{2 j t≤|x |≤2 j+1}(x).

We claim that

∥∥S2,k(T f )
∥∥

L p(w)
� [w]3max{1, 2

p/q′−1
}

Ap/q′ ‖ f ‖L p(w). (5.81)

Once (5.81) is obtained, we use (5.77), (5.78), and Stein-Weiss’s interpolation Theo-
rem 3.1 as before to get

∥∥S2(T f )
∥∥

L p(w)
� [w]4max{1, 2

p/q′−1
}

Ap/q′ ‖ f ‖L p(w),

which shows (5.62) as desired.
It remains to demonstrate (5.81). If q > 2, we invoke (5.79), (3.18), (3.10), and

(3.8) to deduce

∥∥S2,k(T f )
∥∥

L p(w)
� [w]

1
p−q′
Ap/q′

∥∥∥∥(∑
j∈Z

|�2
k− j f |2

) 1
2

∥∥∥∥
L p(w)

� [w]
1

p−q′ + 1
2 max{1, 2

p−1 }
Ap/q′

∥∥∥∥(∑
j∈Z

|�k− j f |2
) 1

2

∥∥∥∥
L p(w)

� [w]
1

p−q′ +max{1, 2
p−1 }

Ap/q′ ‖ f ‖L p(w) � [w]
3
2 max{1, 2

p−q′ }
Ap/q′ ‖ f ‖L p(w).

To treat the case q < 2 (trivially, p > 2), we observe that much as (3.37),

‖I1,k f ‖L p(w) � [w]
7
2 max{1, 2

p/q′−1
}

Ap/q′ ‖ f ‖L p(w), (5.82)

and

�2−q ∈ L
q

2−q (Sn−1),
(
w1−(p/2)′)1−p/2 = w ∈ Ap/q ′ = A(p/2)/( q

2−q )′ .
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The latter, along with by Hölder’s inequality, Theorem 3.8 applied to (p/2)′ and q
2−q

instead of p and q, (3.10), and (3.8), gives

‖I2,k f ‖L p(w) �
∥∥M�2−q (gw)‖

1
2

L(p/2)′ (w1−(p/2)′ )

∥∥∥∥(∑
j∈Z

|�2
k− j f |2

) 1
2

∥∥∥∥
L p(w)

� [w]max{1, 1
p/q′−1

}+ 1
2 max{1, 2

p−1 }
Ap/q′

∥∥∥∥(∑
j∈Z

|�k− j f |2
) 1

2

∥∥∥∥
L p(w)

� [w]max{1, 1
p/q′−1

}+max{1, 2
p−1 }

Ap/q′ ‖ f ‖L p(w) � [w]2max{1, 2
p/q′−1

}
Ap/q′ ‖ f ‖L p(w).

(5.83)

Therefore, in the case q < 2, (5.81) follows from (5.80), (5.82), and (5.83). ��

5.5 Riesz Transforms Associated to Schrödinger Operators

Consider a real vector potential �a = (a1, . . . , an) and an electric potential V . Assume
that

0 ≤ V ∈ L1
loc(R

n) and ak ∈ L2
loc(R

n), k = 1, . . . , n. (5.84)

Denote

L0 = V 1/2 and Lk = ∂k − iak, k = 1, . . . , n.

We define the form Q by

Q( f , g) =
n∑

k=1

ˆ
Lk f (x)Lk g(x) dx +

ˆ
Rn

V f (x)g(x) dx

with domain

D(Q) := { f ∈ L2(Rn) : Lk f ∈ L2(Rn), k = 0, 1, . . . , n}.

Let us denote by A the self-adjoint operator associated with Q. Then A is given by
the expression

A f =
n∑

k=1

L∗
k Lk f + V f ,

and the domain of A is given by

D(A) =
{

f ∈ D(Q), ∃g ∈ L2(Rn) such that Q( f , ϕ) =
ˆ
Rn

gϕ dx,∀ϕ ∈ D(Q)
}
.
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Formally, we write

A = −(∇ − i �a) · (∇ − i �a) + V .

For convenience, denote

Rk := Lk A−1/2, k = 0, 1, . . . , n.

Duong et al. [41, 42] consecutively established the L p boundedness of Riesz trans-
form Rk and its commutator [Rk, b], k = 0, 1, . . . , n. More specifically, under the
assumption (5.84), we have for any 1 < p < 2

Rk, [Rk, b] : L p(Rn) → L p(Rn), k = 0, 1, . . . , n, (5.85)

provided by b ∈ BMO.
We would like to establish weighted version of (5.85) as follows.

Theorem 5.17 Assume that �a and V satisfy (5.84). Let b ∈ BMO. Then for every
p ∈ (1, 2), for every weight w p ∈ Ap ∩ RH(2/p)′ , and for every k = 0, 1, . . . , n, both
Rk and [Rk, b] are bounded on L p(w p).

A particular case is the operator LV = −� + V , where V ∈ L1
loc(R

n) is a non-

negative function. The L2(Rn) boundedness of RV := ∇L
−1/2
V was given in [78,

Theorem8.1], while it was proved in [41] thatRV is bounded from H1
L (Rn) to L1(Rn).

Then the interpolation implies

RV is bounded on L p(Rn), ∀p ∈ (1, 2]. (5.86)

However, (5.86) fails for general potentials V ∈ L1
loc(R

n) when p > 2, see [86]. Now
Theorem 5.17 immediately implies the following weighted inequalities.

Theorem 5.18 Let LV = −�+ V with 0 ≤ V ∈ L1
loc(R

n), and set RV := ∇L
−1/2
V .

Then for any p ∈ (1, 2), for any w p ∈ Ap ∩ RH(2/p)′ , and for any b ∈ BMO, both
RV and [RV , b] are bounded on L p(w p).

The rest of this subsection is devoted to showing Theorem 5.17. For this purpose,
we present two useful lemmas below.

Lemma 5.19 [3] Fix 1 < q ≤ ∞, a ≥ 1 and w ∈ RHs′ , 1 ≤ s < ∞. Assume that F,
G, H1 and H2 are non-negative measurable functions on R

n such that for each ball
B there exist non-negative functions G B and HB with F(x) ≤ G B(x) + HB(x) for
a.e. x ∈ B and for all x, x̄ ∈ B,

 
B

G B dy ≤ G(x) and

( 
B

Hq
B dy

) 1
q ≤ a

(
M F(x) + H1(x) + H2(x̄)

)
.

(5.87)
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Then for all p ∈ (0, q/s),

‖M F‖L p(w) ≤ C
(‖G‖L p(w) + ‖H1‖L p(w) + ‖H2‖L p(w)

)
, (5.88)

where the constant C depends only on n, a, p, q, and [w]R Hs′ .

To proceed, we introduce some notation. Given a ball B we set C j (B) := 4B for
j = 1 and C j (B) := 2 j+1B\2 j B for j ≥ 2, and

 
C j (B)

f (x) dx := 1

|2 j+1B|
ˆ

C j (B)

f (x) dx .

Lemma 5.20 Let 1 ≤ q ≤ 2 and B be a given ball and f ∈ Lq(Rn) with supp( f ) ⊆ B.
Let ArB = I − (I − e−r2B A)m with a given integer m ≥ 1. Then for all j ≥ 1 and
k = 0, 1, . . . , n,

(  
C j (B)

|ArB f (x)|qdx

) 1
q

� e−4 j C1

(  
B

| f (x)|qdx

) 1
q

, (5.89)

and

(  
C j (B)

|Rk(I − ArB ) f (x)|qdx

) 1
q

� 2−(n+1) j
( 

B
| f (x)|qdx

) 1
q

, (5.90)

where the implicit constants are independent of B, f , j and k.

Proof We begin with showing (5.89). It follows from (3.1) and (3.2) in [42] that the
kernel pt (x, y) of e−t A satisfies

|pt (x, y)| ≤ (4π t)−
n
2 exp

(
− |x − y|2

4t

)
, ∀t > 0 and a.e. x, y ∈ R

n,

|∂k
t pt (x, y)| ≤ Ckt−(n/2+k) exp

(
− |x − y|2

ckt

)
, ∀t > 0 and a.e. x, y ∈ R

n .

Thus for all x ∈ C j (B) and j ≥ 2, we have |x − y| � 2 j rB for any y ∈ B and

∣∣e−kr2B A f (x)
∣∣ �

ˆ
B

r−n
B exp

(
− |x − y|2

4r2B

)
| f (y)| dy � e−4 j C1

 
B

| f |dy. (5.91)

The above inequality also holds for j = 1. The desired estimate (5.89) immediately
follows from (5.91) and the expansion

ArB = I − (I − e−r2B A)m =
m∑

k=1

(−1)k+1Ck
me−kr2B A.
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Now we turn to the proof of (5.90). Recalling that

A−1/2 = 1√
π

ˆ ∞

0
e−t A dt√

t
,

one has

Rk(I − ArB ) f =
ˆ ∞

0
grB (t)Lke−t A f dt,

where gr (t) = ∑m
�=0(−1)�C�

m
1{t>�r2}√

t−�r2
. Now we claim that

ˆ ∞

0
|gr (t)|e− 4 j r2

ct

(
r

t1/2

)n−1 dt√
t

≤ Cm 2−nj . (5.92)

Moreover, it was proved in [42, Proposition 3.1] that for any j ≥ 2, there exist positive
constants c1 and c2 such that

( 
C j (B)

|Lk pt (x, y)|2dx

) 1
2 ≤ c1

t−n/2

2 j rB
exp

(
− 4 j r2B

c2t

)
, ∀t > 0, y ∈ R

n .

which along with (5.92) gives

( 
C j (B)

|Rk(I − ArB ) f (x)|qdx

) 1
q

≤
ˆ ∞

0
|grB (t)|

ˆ
B

| f (y)|
(  

C j (B)

|Lk pt (x, y)|qdx

) 1
q

dy dt

� 2− j
ˆ ∞

0
|grB (t)|e− 4 j r2

ct

(
rB

t1/2

)n−1 dt√
t

·
(  

B
| f (x)|qdx

) 1
q

≤ C12
−(n+1) j

(  
B

| f (x)|qdx

) 1
q

.

It remains to demonstrate (5.92). We will use the elementary estimates for gr (t):

|gr (t)| ≤ Cm√
t − �r2

, �r2 < t ≤ (� + 1)r2, � = 0, 1, . . . , m, (5.93)

|gr (t)| ≤ Cmr2mt−m− 1
2 , t > (m + 1)r2. (5.94)

The first one is easy. The second one is an application of Taylor’s formula, see [2, Sec.
3]. Denote α = 4 j/c. Then the inequality (5.94) gives that

ˆ ∞

(m+1)r2
|gr (t)|e− 4 j r2

ct

(
r

t1/2

)n−1 dt√
t

≤ Cm

ˆ ∞

(m+1)r2

(
r

t1/2

)2m+n−1

e− 4 j r2
ct

dt

t
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= Cmα−(m+ n
2+ 1

2 )

ˆ α
m+1

0
sm+ n

2− 3
2 e−sds ≤ Cm2

− j(2m+n−1)�
(

m + n

2
+ 1

2

)
.

(5.95)

Write φ(s) = s− n
2 e− α

s , s > 0. It is easy to see that φ′(s) = s− n
2−2e− α

s (α − n
2 s) and

φ(s) ≤ φ(2α/n) = (2α/n)−
n
2 e− n

2 ≤ Cn2
−nj , ∀s > 0. (5.96)

Thus, by (5.93), changing variables and (5.96), we have for any 0 ≤ � ≤ m,

I� :=
ˆ (�+1)r2

�r2
|gr (t)|e− 4 j r2

ct

(
r

t1/2

)n−1 dt√
t

≤ Cm

ˆ (�+1)r2

�r2

e− 4 j r2
ct√

t − �r2

(
r

t1/2

)n−1 dt√
t

= Cm

ˆ �+1

�

s− n
2 e− α

s√
s − �

ds = Cm

ˆ �+1

�

φ(s)√
s − �

ds

= 2Cmφ(� + 1) − 2Cm

ˆ �+1

�

(s − �)
1
2 φ′(s)ds

≤ Cm2
−nj + Cm4

j
ˆ ∞

0
s− n

2−2e− α
s ds

= Cm2
−nj + Cm4

jα− n
2−1

ˆ ∞

0
t

n
2 e−t dt

= Cm2
−nj + Cmc

n
2+12−nj�

(n

2
+ 1

)
≤ Cm2

−nj , (5.97)

where the constantCm depending only onm and n varies from line to line.Accordingly,
the inequality (5.92) follows from (5.95) and (5.97). This completes the proof. ��
Proof of Theorem 5.17 Let p ∈ (1, 2) and w p ∈ Ap ∩ RH(2/p)′ .We follow the ideas in
[5]. Choose p0 and q0 such that 1 < p0 < p < q0 < 2 and w p ∈ Ap/p0 ∩ RH(q0/p)′ .
This together with Lemma 2.6 part (c) gives thatw−p′ ∈ Ar ∩ RHs′ , where r = p′/q ′

0,
s = p′

0/p′, and τp = ( q0
p

)′( p
p0

− 1
) + 1. Note that w−p′ ∈ ∩RHs′ implies w−p′ ∈

RHs′
0
for some s0 ∈ (1, s).

Fix f ∈ L∞
c and a ball B with the radius rB . Write

F := |R∗
k f |q ′

0 and ArB := I − (I − e−r2B A)m,

where m ∈ N is large enough. Observe that

F ≤ 2q ′
0−1
∣∣(I − A∗

rB
)R∗

k f
∣∣q ′

0 + 2q ′
0−1
∣∣A∗

rB
R∗

k f
∣∣q ′

0 =: G B + HB .
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We first control G B . By duality, there exists g ∈ Lq0(B, dx/|B|) with norm 1 such
that for all x ∈ B,

( 
B

G B dy

) 1
q′
0 �

( 
B

∣∣(I − A∗
rB

)R∗
k f
∣∣q ′

0dy

) 1
q′
0 � 1

|B|
ˆ
Rn

| f ||Rk(I − ArB )g| dy

�
∞∑
j=1

2 jn
(  

C j (B)
| f |q ′

0

) 1
q′
0

(  
C j (B)

∣∣Rk(I − ArB )g
∣∣q0) 1

q0

� M(| f |q ′
0 )(x)

1
q′
0

∞∑
j=1

2− j ‖g‖Lq0 (dx/|B|) � M(| f |q ′
0 )(x)

1
q′
0 , (5.98)

where we have used (5.90). To estimate HB , we set q := p′
0/q ′

0 and observe that by
duality there exists h ∈ L p0(B, dx/|B|) with norm 1 such that for all x ∈ B,

(  
B

Hq
B dy

) 1
qq′

0 � 1

|B|
∣∣∣∣
ˆ
Rn

A∗
rB
R∗

k f · h dy

∣∣∣∣ ≤ 1

|B|
ˆ
Rn

|R∗
k f ||ArB h| dy

�
∞∑
j=1

2 jn
( 

C j (B)

|R∗
k f |q ′

0

) 1
q′
0

(  
C j (B)

|ArB h|q0
) 1

q0

� M F(x)
1

q′
0

∞∑
j=1

2 jne−4 j C1

( 
B

|h|q0
) 1

q0 � M F(x)
1

q′
0 , (5.99)

where (5.89) was used in the last step.
Consequently, (5.98) and (5.99) verify the hypotheses (5.87) with G(x) =

M(| f |q ′
0)(x) and H1 = H2 ≡ 0. Observe that r = p′/q ′

0 = q/s < q/s0. Then,
invoking (5.88) applied to r , s0, and w−p′

in place of p, s, and w, respectively, we
obtain

‖R∗
k f ‖q ′

0

L p′
(w−p′

)
= ‖F‖Lr (w−p′

)
≤ ‖M F‖Lr (w−p′

)
� ‖M(| f |q ′

0 )‖Lr (w−p′
)
� ‖ f ‖q ′

0

L p′
(w−p′

)
,

which together with duality yields the L p(w p)-boundedness of Rk . This along with
Theorem 1.2 implies the L p(w p)-boundedness of [Rk, b]. ��
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