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Abstract

In recent years, sharp or quantitative weighted inequalities have attracted considerable
attention on account of the A, conjecture solved by Hytonen. Advances have greatly
improved conceptual understanding of classical objects such as Calderén—-Zygmund
operators. However, plenty of operators do not fit into the class of Calderén—Zygmund
operators and fail to be bounded on all L”(w) spaces for p € (1,00) and w € A,
In this paper we develop Rubio de Francia extrapolation with quantitative bounds
to investigate quantitative weighted inequalities for operators beyond the (multi-
linear) Calderén—Zygmund theory. We mainly establish a quantitative multilinear
limited range extrapolation in terms of exponents p; € (p;, pf) and weights
wip" IS Ap,-/pl-’ N RH(p?/pi)/, i = 1,...,m, which refines a result of Cruz-Uribe
and Martell. We also present an extrapolation from multilinear operators to the corre-
sponding commutators. Additionally, our result is quantitative and allows us to extend
special quantitative estimates in the Banach space setting to the quasi-Banach space
setting. Our proof is based on an off-diagonal extrapolation result with quantitative
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bounds. Finally, we present various applications to illustrate the utility of extrapola-
tion by concentrating on quantitative weighted estimates for some typical multilinear
operators such as bilinear Bochner—Riesz means, bilinear rough singular integrals,
and multilinear Fourier multipliers. In the linear case, based on the Littlewood—Paley
theory, we include weighted jump and variational inequalities for rough singular inte-
grals.

Keywords Rubio de Francia extrapolation - Quantitative weighted estimates -
Bilinear Bochner—Riesz means - Bilinear rough singular integrals - Multilinear
Fourier multipliers - Weighted jump inequalities - Littlewood—Paley theory

Mathematics Subject Classification 42B20 - 42B25

1 Introduction
1.1 Motivation and Main Results

The main goal of this paper is to establish multivariable Rubio de Francia extrapolation
with quantitative bounds in order to investigate quantitative weighted inequalities for
multilinear operators beyond the multilinear Calderén—-Zygmund theory. We focus
on the limited range extrapolation with exponents p; € (p;, p;") and weights
wipi € Am/P,-_ N RH(p,-*/p,»)” i = 1,...,m, which is quite different from [76] for
W= (Wi,...,wy) € Aj (or general weights A 7). The main reason why we study
it is that plenty of operators are beyond the Calderon—Zygmund theory so that they
may not be bounded on all L?(w) spaces for p € (1,00) and w € A,. This is
the case for operators with the strong singularity, such as Bochner-Riesz means [6],
rough singular integrals [89], Riesz transforms and square functions associated with
second-order elliptic operators [3], operators associated with the Kato conjecture [4],
and singular “non-integral” operators [9]. As well as the classes A, are natural for the
Calderén—Zygmund operators and characterize the weighted boundedness of Hardy—
Littlewood maximal operators, the classes A are also the natural ones for multilinear
Calder6n—Zygmund operators and the multilinear Hardy—Littlewood maximal oper-
ators (cf. Theorem 2.10). In the multilinear setting, there are also many operators so
that weighted inequalities holds for limited ranges. For multilinear Fourier multipli-
ers, it is interesting that different forms of Sobolev regularity appear to determine
whether product of scalar weights or multiple weights A ; could be used. Fujita and
Tomita [43, 44] proved that whenever the symbol satisfies a product type Sobolev
regularity, the weighted boundedness of multilinear Fourier multipliers holds for
W E Ap/my X o0 X Ap,/r, but does not hold for w € A(p, /ry,.... p/rm)» While the
latter is valid under the classical Sobolev regularity. Other examples include strongly
singular bilinear Calder6n—Zygmund operators [7, Corollary 3.2], bilinear differential
operators associated with fractional Leibniz rules [34, Theorem 1.1], bilinear pseudo-
differential operators with symbols in the Héormander classes [75, Remark 3.4], and
SO on.
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The main contributions of this article are the following.

e Our first main result, Theorem 1.1, improves [30, Theorem 1.3] to an extrapolation
with the quantitative weighted bounds, which in turn covers the multivariable
extrapolation in [40, Theorem 6.1] and [47, Theorem 1.1] by taking p;” = 1 and
pr=o0,i=1,....,m.

e Our second main result, Theorem 1.2, establishes an extrapolation for commuta-
tors, which extends [8, Theorem 4.3] from the Banach range to the quasi-Banach
range.

e We prove a limited range, off-diagonal extrapolation theorem with sharp weighted
bounds (cf. Theorem 4.8), whose proof is distinct from and much simpler than that
in [30, Theorem 1.8] because it only needs to define a Rubio de Francia iteration
algorithm each time we consider the case ¢ < go or ¢ > go. Thus, we not only
refine [30, Theorem 1.8] to Theorem 4.8 with sharp bounds, but also remove the
restriction + — % + ﬁ > 0.

e Although our weights class is a special case of the class A 7, Theorem 1.1 is
independent of [76, Theorem 2.2], that is, one does not imply another one.

e When the exponents are greater than one, we can obtain quantitative A, and
off-diagonal extrapolation (cf. Theorems 4.1 and 4.5) by showing a “product-
type embedding” theorem (cf. Theorems 4.2 and 4.6), respectively, which is quite
different from the embedding technique used in [ 18, Proposition 3.18] to get extrap-
olation on general weighted Banach function spaces.

e Based on A, extrapolation and interpolation, we present an extrapolation from
weak type inequalities to strong type estimates (cf. Theorem 4.4). This allows us
to obtain quantitative weighted strong estimates from weak (1, 1) type.

e This is the first time to use extrapolation to establish quantitative weighted norm
inequalities for plenty of operators beyond the Calderén—Zygmund theory (cf.
Sect.5). The strong singularity of those operators leads the weights class to be
Api/pf N RH(piJr/pi)/, i =1,...,m,instead of the more general class A 7. It is
totally novel to obtain quantitative estimates for those operators, although we do
not show the sharpness, which goes beyond the scope of this article and will be
our further topic.

In order to state our main results we need some notation. More definitions and
notation are given in Sect.2. Given 1 < p_ < py < oo and p € [p_, p4+] with
p # 00, considering Lemma 2.6, for any w” € A,/,_ N RHy, /py, we define

[wp(m/p)’]ATp’ p<bpsi

max{[w”la,, . (W’lrH, 3 P =P+

(1.1

V4 o—
(WA, ORHG, )y =

where 1), := (%)/(pl_ — 1) + 1. Throughout this paper, given p;, g; € [p; , pj‘], we
always denote

T4 —1
max {1, 25}, ai <,
vi(pi, qi) = gi 1 o+

rpi—l(f_f)’ qi =P -
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Let F denote a family of (m + 1)-tuples (f, fi, ..., fi) of non-negative measurable
functions. We would like to present an abstract methodology for extrapolation. We
will see that extrapolation enables us to obtain vector-valued inequalities and weak-
type estimates from extrapolation results immediately. In the current paper, we mainly
apply this methodology to obtain quantitative weighted norm inequalities for plenty
of operators.

Our first main result is formulated as follows.

Theorem 1.1 Given m > 1, let F be a family of extrapolation (m+1)-tuples. Let

1 <p; < pl.+ < oo for eachi = 1,...,m. Assume that for eachi = 1,...,m,
there exists an exponent q; € (0,00) with q; € [p;, pl.+] such that for all weights
vl € Ay - NRH+0ni=1,....m,

||f||L'i(uq)<l—[CD ([vf" ]A o~ NRH, +/qi),)||ﬁ||Lqi(v?i)» (fs fro.oos fm) € F,

i=1

(1.2)
where é =y", %, v =[]/, vi, and ®; : [1,00) — [1,00) is an increasing
Sunction. Then for all exponents p; € (p; , pl.+) and all weights w{" € Ap,'/p-_ N
RH(p?'/p,-)” i=1,....,m

Il F1lLr e
m
< ¢ (C wpl vi(pi qi) ) X . - , e, Ef,
B E l /! ]Api/p{mRH<nf'/p,->’ il v W) (s fi Jm)
(1.3)
™

where = 21_1 o =1L, wi, € = e ! and C; depends only on n,
Di» Gi» pi , and p;".

Moreover, for the same family of exponents and weights, and for all exponents

Vte(F',vP ),

H(;ukr‘):

m
/ 71 (1’1 ri)Vi(ri,gi) ri\Ti
51‘[ / (c w? LN /), Zlfl'

,
LPi(w])

(1.4)

LP(wP)

forall {(fk7 flk’ . frlrcl)}k C F, where %: Zz—l L @/ _2max{ }+maX{ sl },
and the constant C; depends only on n, p;, q;, r;, p; , and pi .

As a result of Theorem 1.1 we can extend weighted estimates only valid in the
Banach range to the quasi-Banach range. For example, weighted norm inequalities
for the commutators of multilinear operators 7 with BMO functions, more singular
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than operators T, were just proved in the case p > 1 [8] since one used the trick
of so-called Cauchy integral and Minkowski’s inequality. We will use Theorem 1.1
to deal with this problem and obtain a quantitative extrapolation from operators to
the corresponding commutators with full ranges (cf. Theorem 1.2). Concerning the
proof of Theorem 1.1, we borrow the ideas from [30, 40], which essentially reduce
the multilinear problem to a linear extrapolation (cf. Theorem 4.8) by acting on one
function at a time. In the linear case, the core of the proof is to obtain the quantitative
bounds, which is due to the sharp weighted estimate (1.9) and sharp reverse Holder’s
inequality in Lemma 2.3.

In order to present an extrapolation theorem for commutators, let us introduce
relevant notation and some definitions. Given a function b € LllOC (R™), we say that
b € BMO if

IbllBMO = Sup][Q |b(x) — (b)o|dx < oo.
Q

where the supremum is taken over the collection of all cubes Q C R". Here and
elsewhere, we write (b) o := f, bdx = @ Jobdx.

Let T be an operator from X1 x- - -x X, into Y, \lvhere X1, ..., X,, are some normed
spaces and and Y is a quasi-normed space. Given f := (f1, ..., fm) € X1 X+ x Xp,
b = (by, ..., by) of measurable functions, and k € N, we define, whenever it makes

sense, the k-th order commutator of 7 in the i-th entry of T as

[T, blie, (&) =T (firo o i) =) fir ooy f) (), 1 <i<m,

where e; is the basis of R" with the i-th component being 1 and other components
being 0. Then, for a multi-index « = («, ..., ay,) € N, we define

[Tv b]oz = [ t [[T» b]ale1 5 b]azez T, b]amem-
In particular, if T is an m-linear operator with a kernel representation of the form
T = [ KEHAGD - o) 5.
an

then one can write [T, b], as
(7. bla(F)(x) = /R i = b K @ ) 100 - fu ) 5.
i=1

Our second main result is the following.

Theorem 1.2 Let T be an m-linear operator and let 1 < p; < p;r < o0, i =

1,...,m, be such that i = Zlm:l pL* < 1. Assume that for eachi = 1,...,m,
i
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there exists an exponent q; € (0,00) with q; € [p;, pl.+] such that for all weights

v?i e Aq,-/p N RH(p+/q yo i =1,...,m, we have
m
1T () Lasy < 1_[ ( o NRH, +/qi),)||ﬁ||Lq;(U:_ﬁ), (1.5)

where f =(fl,- s ) % =3y, %, v =[1/L, vi, and ®; : [1, 00) — [1,00)

is an increasing function. Then for all exponents p; € (p; , pj‘), all weights wlpi €
Api/pf N RH(pf/p’_),, for all functions b = (by,...,b,) € BMO™, and for each

multi-index « € N,
I, b]o,(f’)nu wP)

< COHcD (c; P BillEol fill oy (16)

m

whenever s; € (p;,p;r), i =1,...,m, satisfy % =y

i=1y
> % w =[], wi, ®i(1) := ®;(C; 176190, C; depends only on
n, si, qi, p; and pj‘, C{ depends only on n, p;, s;, P and pj‘, and Cy depends only
ona, n, pi, qi, si, p; , and p;".
Moreover, for the same family of exponents p, weights W, functions b, multi-index
a, and for all exponents r; € (p;, pj'),

< 1, where % =

1
tai max{l,mfl}

m
=X B (AR

pi/¥; wi /p)

(Z|ﬁk|r,~)%
k

H(D[T,b]a(f")v)1
k

Lp(wP) i=
)

.
x 1bi o ot
i wi

where fk = (flk, R fn];), % = sz e C depends only ona, n, pi, qi, i, Si, P; »

and pl.+, and C!' depends only on n, p;, r;, s;, p;, and p

Remark 1.3 Let us see the existence of s; € (p,, p+) i =1,...,m,satisfying 1=
YL s— < 1. Indeed, by means of Theorem 1.1, the estimate (1 5) can be 1mproved
to all exponents s; € (p; ,pi ), i =1,...,m. Givens; € (p;,p; N,i=1,...,m,
there holds

!
E

1 ¢ SN |
S—=Z<S———> Z—+ —<l ifS,‘—))J;r,l
1 i=1 l

l

This means that whenever p > 1, one can always choose s; (for example, sufficiently
close to pf) such that % <.
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To illustrate the existence, we present a special case:

———<p\=—=) i=1,...,m,
+ p,' p,’

where L =Y | p%. In this scenario, picking
i

P+
B 1 1 .
si =P, [1+<———>i|, i=1....m,
- P+

we easily verify that s; € (p; , p;") and

provided p4 > 1.

Remark 1.4 Let T be an m-linear operator. If the hypotheses (1.2) and (1.5) are
assumed for T and all exponents g; € (p; , p?‘), then we will get better estimates.
This means the following extrapolation: Assume that for all exponents p; € (p; , p?‘)

and all weights w!" € A NRH i=1,...,m,

pi/p; S /pi)

m

s X Pi . .
1Tl < [T @i (000, ora., Vil

Where =", p— and w = ], w;. Then for all exponents p;, r; € (; p;”) and

all Welghts w! e A jp- VRHy+ i =1,...,m, we have

o
H(ZIT(}‘")I ) o

pl vi(pi.ri) kri
<C01_[CD( w; ] 7QRH ot /i) H Z|f |r

pi/p;

LPi(w]h)

Wherefk = (flk,...,fﬁ),%zzl Uy ,CoandC, depend only on n, p;, r;, p; , and

pi.

Moreover, for the same family of exponents p and weights w, for all functions
b= (by,...,b,) € BMO™, and for each multi-index « € N, we have

m
I Bla(Pliriun) < G [ 8 (G G IO o
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and
1 m
H(ZI[T,b]a(f")l’)' =a[le (cf e )
X LP(wP) i=1 Pilp; ;" /pi)
1

< illgo | (L)

k LPi (i)
~ ; 1,1
whenever l =y = 5 = 1 with 5; € (p; p+) where ®; (1) = ¢ maxil, 7T}

D;(Ci 1), C0 depends only on «, n, p;, s;, p; , and p ., C} depends only on n, p;, si,
p; . and p ,and C{ depends only ona, n, pi, ri, Si, p; and p ,and C!’ depends only
on n, p;, i, i, p; , and p . The proof is the same as that of Theorems 1.1 and 1.2.
Details are left to the reader.

1.2 Historical Background

In the last two decades, it has been of great interest to obtain sharp weighted norm
inequalities for operators 7', which concerns estimates of the form

IT Loy ra < Capr Iy, ¥pe (00, we A,  (18)

where the positive constant C, , 7 depends only on n, p, and T, and the exponent
ap(T) is optimal such that (1.8) holds. This kind of estimates gives the exact rate
of growth of the weights norm. The first result was given by Buckley [10] for the
Hardy-Littlewood maximal operator M that

1

1Ml r)—Loay < Cap[wlf T, Vp € (1,00, w e Ay, (1.9)

and the exponent ——¢ is the best possible. The problem (1.8) for singular integrals
gained new momentum from certain important applications to PDE. In the borderline
case, a long-standing regularity problem for the solution of Beltrami equation on
the plane was conjectured by Astala, Iwaniec, and Saksman [1], and first settled by
Petermichl and Volberg [83] based on the sharp weighted estimate for the Ahlfors-
Beurling operator B with a2(B) = 1. Then a question arose whether (1.8) with
a2(T) = 1 holds for the general Calderén—Zygmund operators 7', which is known
as the A, conjecture. Focusing on the critical case p = 2 results from a quantitative
version of Rubio de Francia extrapolation due to Dragicevic et al. [38].

Since then, many remarkable publications came to enrich the literature in this area.
Petermichl [80] applied the method of Bellman function to obtain (1.8) for Hilbert
transform H by showing a2 (H) = 1. The same estimate holds for Riesz transforms
R; on R", see [81]. Later on, Lacey, Petermichl, and Reguera [62] investigated Haar
shift operators S; with parameter t in order to present a unified approach to obtain the
sharp weighted estimates for B, H, and R;, by proving a2(S;) = 1 and noting that
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such three kinds of operators can be obtained by appropriate averaging of Haar shifts,
see [39, 79, 82]. By means of local mean oscillation and extrapolation with sharp
constants [38], Lerner [64] established the sharp estimates (1.8) for Littlewood—Paley
operators S with o, (S) = max{%, +1}’ and Cruz-Uribe et al. [33] gave an alternative
and simpler proof of (1.8) for B, H, and R;. In 2012, Hyt6nen [51] fully solved the A>
conjecture by showing a resulting representation of an arbitrary Calderén—Zygmund
operator as an average of dyadic shifts over random dyadic systems. Significantly,
it opened the study of dyadic analysis in the fields including the multilinear theory,
the multiparameter theory, and the non-homogeneous theory. In particular, in terms
of sharp weighted estimates, it promoted the development of sparse domination for
varieties of operators. To sum up, there are three kinds of sparse domination: identities
with suitable averaging, pointwise dominations, and bilinear forms. The specific type
depends on the singularity of operators. For example, the Calderén—Zygmund operator
[51] and Riesz potential [17] can be recovered from dyadic operators by averaging
over dyadic grids. The pointwise sparse dominations hold for the Calder6n—Zygmund
operators [65] and the corresponding commutators [69], the multilinear Calderén—
Zygmund operators [37], the multilinear pseudo-differential operators [20], and the
multilinear Littlewood—Paley operators with minimal regularity [21]. Additionally,
the sparse domination with a bilinear form goes to singular non-integral operators [9],
Bochner—Riesz multipliers [6, 60], rough operators [27], and oscillatory integrals [63].
As aforementioned, one of the most useful and powerful tools in the weighted
theory is the celebrated Rubio de Francia extrapolation theorem [84], which states
that if a given operator T is bounded on L”°(wy) for some pg € [1, co) and for all
wp € Ap,, then T is bounded on L?(w) for all p € (1,00) and for all w € A,.
Indeed, extrapolation theorems allow us to reduce the general weighted L? estimates
for certain operators to a suitable case p = py, for example, see [20] for the Coifman-
Fefferman’s inequality for pg = 1, [33, 51] for the Calderén—Zygmund operators
for pg = 2, [33, 64] for square functions for py = 3, and [61] for fractional integral
operators for pg € (1, n/a) withO < @ < n. Even more, the technique of extrapolation
can refine some weighted estimates, see [31] for the Sawyer conjecture, [66, 67] for the
weak Muckenhoupt—Wheeden conjecture, and [20, 77] for the local exponential decay
estimates. Another interesting point is that by means of extrapolation, the vector-valued
inequalities immediately follows from the corresponding scalar-valued estimates.
Over the years, Rubio de Francia’s result has been extended and complemented
in different manners, see [32] and the references therein. Using the boundedness of
the Hardy-Littlewood maximal operator instead of the Muckenhoupt weights, Cruz-
Uribe and Wang [35] presented extrapolation in variable Lebesgue spaces, which was
improved to generalized Orlicz spaces [29] and general Banach function spaces [18].
It is worth mentioning that the latter was stated in measure spaces and for general
Muckenhoupt bases. This leads lots of applications, such as the well-posedness of
the Dirichlet problem in the upper half-space whenever the boundary data belongs to
different function spaces, the weighted boundedness of layer potential operators on
domains, and the local T'b theorem for square functions in non-homogeneous spaces.
Recently, a longstanding problem about extrapolation for multilinear Muckenhoupt
classes of weights was solved by Li, Martell, and Ombrosi [71] by introducing some
new multilinear Muckenhoupt classes A 7 (cf. Definition 2.7), which contains the
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multivariable nature and is a generalization of the classes A introduced in [68] (cf.
(2.31) below). Shortly afterwards, it was improved to the case with infinite exponents
in [72] and with a quantitative bound in [76]. On the other hand, Hytonen and Lappas
[53, 54] established a “compact version” of Rubio de Francia’s extrapolation theorem,
which allows one to extrapolate the compactness of an operator from just one space to
the full range of weighted spaces, provided that the operator is bounded. This result has
been extended to the multilinear setting [19] by means of weighted interpolation for
multilinear compact operators and weighted Fréchet—Kolmogorov characterization of
compactness in the non-Banach case.

1.3 Structure of the Paper

In Sect. 2, we present some preliminaries and auxiliary results including the embedding
and factorization of Muckenhoupt weights. Section 3 includes quantitative weighted
estimates for various operators. Section4 is devoted to showing Theorems 1.1 and
1.2 by means of a limited range off-diagonal extrapolation and extrapolation for
commutators with Banach ranges. We also establish “product-type embedding” theo-
rems to deduce quantitative A, and off-diagonal extrapolation. In Sect. 5, we include
many applications of Theorems 1.1 and 1.2. First, we give quantitative weighted
norm inequalities for the bilinear Bochner—Riesz means of order § and commu-
tators, where we utilize the A, x Ap,, weights when § > n — 1/2, and the
Ap|/p1’ ﬂRH(pT/pl)/ X Apz/p; ﬂRH(p;/pz)/ weights when 0 < § < n—1/2. The same

weights conditions are used for the bilinear rough singular integrals for Q@ € L>®(S"~1)
and L9(S"!) with g € (1, 00), respectively. Additionally, under the minimal Sobolev
regularity, we obtain the quantitative weighted bounds for the m-linear Fourier mul-
tipliers, the corresponding higher order commutators, and vector-valued inequalities,
which only hold for product of scalar weights as mentioned before. Beyond that, after
presenting quantitative weighted Littlewood—Paley theory, we establish weighted jump
and variational inequalities for rough operators with € L4(S"!) with ¢ € (1, 00).
The proof also needs quantitative weighted estimates for rough singular integrals 7q
and rough maximal operators Mg, see Sect. 3. They contain many applications to Har-
monic Analysis since variation inequalities not only immediately yield the pointwise
convergence of the family of operators without using the Banach principle, but also
can be used to measure the speed of convergence. Finally, we end up Sect. 5 with Riesz
transforms associated to Schrédinger operators.

2 Preliminaries and Auxiliary Results
A measurable function w on R” is called a weight if 0 < w(x) < oo for a.e. x € R".

For p € (1, 00), we define the Muckenhoupt class A, as the collection of all weights
w on R” satisfying

p—1
[w]a, := sup (7[ wdx) (][ w7 dx) < 00,
0 (9] 0

Birkhauser
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where the supremum is taken over all cubes Q C R". As for the case p = 1, we say
that w € Ay if

[w]la, :=sup (][ wdx> esssupw ™! < oo.
0 0 o

Then, we define Ay := Upzl Ap and [w]a,, = inf,o1[wla,.
Givenl < p <oocand 0 < g < oo, we say that w € A, , if it satisfies

1 i
[wla,, = sup (][ w? dx) 1 (][ w_”,dx) " < oo,
Q Q Q

where one has to replace the first term by esssup, w when g = 0o and the second
term by ess sup, w~! when p = 1. One can easily check that w € A p.q if and only
if w € Ay, if and only if w7 € Ay, With

1 1

— 1?19 — TP
w w w
[ ]Ap,q [ ]AHq/p’ [ ]

P’
, when 1l < p<o00,0<qg < o0.
Alipyg P = 1

If p=1and0 < g < oo, then w € A, , if and only if w? € A; with (wla,, =
1

[wq]zl. If1 < p<oocandg = oo, w € A, if and only if wP e A1 with
1

[wla,, = w1} .
For s € (1, oo], the reverse Holder class RH, is the collection of all weights w

such that
1 -1
[w]rH, := sup (][ w® dx) (][ wdx) < o0.
0 9] 0

When s = o0, (fQ w’ dx)'/$ is understood as (ess supy w). Define RH; :=
U RH;. Then we see that RH| = Ao (cf. [45, Theorem 7.3.3]).

l<s<oo

2.1 Muchenhoupt Weights

The Hardy-Littlewood maximal operator M is defined by

Mf(x) = Sup][ [f("ldy,
03xJ0Q

where the supremum is taken over all cubes Q C R” containing x. We begin with the
following estimate concerning the growth of C;, ,, in (1.9) with respect to n and p.
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Lemma 2.1 Forany p € (1,00) and w € Ap,

L_;'_ﬁ %
1Mty < 273" )[w]gpl. @1

Proof We follow the proof of [45, Theorem 7.1.9] to track the precise constants. Given
a weight w, the centered weighted Hardy-Littlewood maximal operator My, is defined

by

M, f(x) == SUP / Lf D ldw(y),

w(Q)

where the supremum is taken over all cubes Q C R” centered at x. Let M€ denote
M, when w = 1. It was proved in [45, p.509] that

IMo Nl Ly Loy < 24" and  [[My (| Lo (wy— Lo w) < 1, (22)
which together with interpolation theorem gives that for any weight w,
Ml Lr wy—Lrwy <247, Vp e (1, 00). (2.3)

1
To proceed, we fix w € A, with p € (1,00), and set o := w »~T. As shown in
[45, p. 508] that

np 1
Mf(r) < 2'MCfx) < 237wl M (MG (fo )P (@) 7

which along with (2.3) in turn implies

ap o L -
IMIlLewy—rr) <2" -3 T[w]}~ ||MC ||£p( )_)Lp( )||M§||Lv(a)—>u’(a)

np

1
<2" 39T 24P(p D) P[w]" =T _on  gn(GErty )[ ]g;l_

The proof is complete. O

Based on the weighted boundedness of Hardy—Littlewood maximal operator above,
one can establish Rubio de Francia extrapolation theorem below, whose proof was
contained in [32].

Theorem 2.2 Forany p € (1,00)andw € A, there exists an operator R : L (w) —
L?(w) such that for every non-negative function h € LP (w),

(a) h < Rh;
(D) IRAllLrw) < 20l Lew)s
(c) Rh € A; with [Rh]Al < 2||M||Lp(w)_>Lp(w).

Let us recall the sharp reverse Holder’s inequality.
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Lemma2.3 Let p € (1,00) and w € Aj. Then there holds

1
T+rw
(7[ w1+7wdx) v 52][ wdx, 2.4)
(@) 0

for every cube Q, where

1 _
T Ty, p=1,
1
Yw = 2n+l+2p[w]Ap , pe(l,00), (2.5)
1
2n+ll[w]AOC ’ p = oQ.

In particular, for any measurable subset E C Q,

w(E)/w(Q) < 2(E|/|Q) ™. (2.6)

Proof The estimate (2.4) was proved in [26, 55, 66]. Let us prove (2.6). If we set
r := 1+ yy, then (2.4) implies that for any measurable subset £ C Q,

W) =][ 1p wdx < (7[ lgdx)r(][ wrdx)r 52<|ﬂ)'”w
10| 0 0 0 10| 10|

This shows (2.6). O

Lemma 2.4 Forany g € (1,00) and v € Ay, there exist y € (0, 273y and qo €
(1, q@) such that

q (¢ =Dy q—1 L7
= s <EL 5
I+¢ q+y) d+yy

1
W', <22 and [ola,, < 29014,

max{
90 (A +y) =],

@.7)

Proof Let g € (1,00) and v € A,. Then, v' =4 ¢ A, and by Lemma 2.3,

1
T
<][ v1+V1dx> " 52][ vdx, 2.8)
o (0]
_n Ty _ L
(][ v a1 dx) 52][ v - Tdx, 2.9)
0 0

for any cube Q C R", where

and

1 1
= 2n+1+2q[v]Aq and = 2n+1+2q[vl—q’]Aq,'

Vit (2.10)

) Birkhduser
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Setting
y =minf ) <273 and go= -1 =97V ca g @i
I+e 14y
we see that
(g — Dy e (g — Dy _ (gq—Dy g-1
g(l+y) q+y 1+y A+

and use Jensen’s inequality and (2.8)—(2.10) to obtain
max{l, q%l}

(1+y) = max{[vla,. '™ 1a, ) = 01, 7,

1 q—1

_ 1 q—1
(7[ v]+7’dx> 1+y<][ vmdx> B - (][ vlﬂ"dx) T+ (][ vl‘lﬁ/lzdx> 172
0 0 Q 0
1 g-1
52‘1(][ vdx)(f v_qldx> ,
0 0
and

(o)) = (o) )
< (f, o1rra) (o)

which immediately implies (2.7). O

<

57
<|=

Lemma 2.5 The following properties hold:
(a) Let1 < p < pg < 0. Then foranyu € Ap andv € Ay,

- , _ -
uvP=P € Ay with [uvPP), < [ula, [015

(b) Let 1 < qo,q1 < oo. Then for any wy € Ay, w1 € Ay, and 6 € [0, 1],

[wla, < [woly, I

q
I]Aqi ’

q 0‘7

1-6 2]

0 * w{". In particular, for any 1 < po < p <

1
whereé:lq;og—i—q—landwq = w,
oo, u € Ap, andv € Ay,

Po—1 p—po po—1  p—pro ”p"—_ll ”p_”l"
p—1 p—1 / p—1 p—1 - -
u v € Ap, with [u v ]Apo < [M]Ap [v]A] .

) Birkhduser
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Proof We begin with showing part (a). Letu € A, and v € A;. For each cube Q,

][ uvP P dx < (][ udx> (esssupvH)PO~P. (2.12)
0 0 (0]
Setr = % = ,;):11 > 1. Thenr' = 1[7)(()):117’ and by Holder’s inequality,

po—1 po—1

0—1 I 7
<][ (uvl?—m)l—l?()dx>p < (7[ u(l—[?())rdx> ! (7[ U(p-[?o)(l—p{))r’dx) :
9] o 9
, p—1 po=p
- <7[ ul=r dx) <][ vdx> ) (2.13)
0 0

Then it follows from (2.12) and (2.13) that [uvp_pO]ApO < [u]Ap[v]f;?fp.
Next, let us prove part (b). Note that é = 1;—09 + q%, and then

1-6 6 1 1 1-9 6 g-1
- +T=(1—9)(1——)+9<1——>= - B Sty
To—1 -1 q0 q0 q1 q

Thus, Holder’s inequality gives

6 6y -0y 0k
][ wdx :7[ (wo"o w[“) dx < <][ wodx) (][ wldx) (2.14)
9] 9] o 0

and

1 q-1
<][ w 4T dx)
0

—Le _6 4. g—1
(7[ (wo 0w, ‘”)(F dx)
0
_ L \@-hi-0% L \@he g
< <][ W a0-1 dx) (7[ w, -t dx> "
o (9]

(2.15)
- . . . 1-0) L I
By definition, (2.14), and (2.15), we immediately obtaln[w]Aq < [wO]Aq 0 [wl]A‘;l.
0 1
To conclude the proof, it suffices to pick
ro—!l  p—p —
wo i=u, w1 :=v,q0 :=p,q1:=1,q:=po, wW:=u PO*I v P*IO,Q = P = Po s
po(p—1)

1-0 o ro—1 P—Po

and note that w"

i 1
wlql — uﬂ()(l’*l) UPO(P*I) — wl’() = w9 y and
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1
@ @ polp=1  po(p—1  po g

1-6 6 —1 - 1
N Po p—po 1

The proof is complete. O
We sum up some of the properties of these classes in the following result.

Lemma 2.6 The following statements hold:

(a) For any wi,wy € A, w = w}/

1 < s < 00. Moreover,

‘Yw;p € Ap N RH; forall1 < p < oo and

max{[wla,, [wlrh,} < [wllil[wﬂz.—l'

(2.16)
(b) Given1 < p <ocandl <s < oo, w € A, N RH; if and only if w* € A.
Moreover,

[wla, < (W]} [wlgy, and max{[wl} ,[wlgy} < [w'la,, (217

wheret =s(p — 1) + 1.
(c) Let1 <p_ <py <ocoandp € (p—,p4). Thenw? € Ap/p_ N RHp, /py if and
only ifw_l’/ € Ap//p/+ N RHy py with

[wP® /'], = [w P @ (2.18)

193

where T, = (%*)/(p% — 1) + 1.

(d) Givenl <p_ <py <00, pe (p_,py), andw? € Ay, N RHp, /py, there
exists p_ € (p_, p) such that w’ € Ay N RHy, /py with

! X
b <2

p- p
(2.19)

[wP(P+/P)’]A?p < er[wP(PJr/P)’]Arp and :

(.

S| =

where T, = (%*)/(p% —1)+1land?, = (%)/(Fpj —1)+1.

Proof Parts (a)—(c) are essentially contained in [3, 56]. We present a detailed proof
to track the weight norms. To show (a), we fix 1 < p < 00,1 < s < o0, and let
w1, wy € Ar. By Jensen’s inequality,

1
| B 5 _
][ wdx < (7[ w; dx)(esssupwz_l)P "< <][ wldx) (esssupw, ')’ !
0 0 0 0 e
(2.20)
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and
N p—1 1 . p—1 N p—1
(7[ w P dx) = <][ w, sp= )wzdx> < (esssupw; ")¥ <][ wzdx> ,
0 0 o 0
(2.21)
when p = 1, the inequality (2.21) is replaced by
-1 _ —1y+
esssupw™ ' = (esssupw;')*. (2.22)
Q 0

Then it follows from (2.20)—(2.22) that

1
[wla, < [wil}, [walf .

Moreover, by definition and Jensen’s inequality, we have

1 1
<][ wsdx) = (7[ wlwg(l_p)dx) < <][ wldx) (esssupUJZ_I)p_1
o o o 9]
1 1 I=p
< [wl]gl[wz]ﬁl_l(essQinf wf)(f wy dx)
o
1 1
< [wl]f;l[wz]zl_l(essginf wf)(f wé_” dx)
o
§ rpo1P—l o 1-p
= [wily, [waly, 0 wiw, ©dx

1
= [wlul[wz]z,‘l(fg wdx>,

when s = oo, the above still holds since (fQ w?’ dx)% is replaced by ess supy w. This
means

1
[wirn, < [wil}, [wal}, "

Let us next show (b). Assume first that w € A, N R Hy. Note that for any cube Q,

, T—1 , s(p—1)
(][ wsd-T )dx) = (7[ w!=P dx> ) (2.23)
0 0

This implies

, 7—1 K , s(p—1)
(7[ w® dx)(f w17 )dx> < [w]‘}mr(][ wdx) (7[ w!'=P dx) ,
(@) 0 ) 0 0
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and hence,

[(w’]a, = [wly [wlky,-

(2.24)

On the other hand, assuming w* € A;, we deduce by Jensen’s inequality and (2.23),

(foa)(forso < (o) ()"

and

1 , —(p—D 1
= [w']} (f w!=? dx) < [w']} (f wdx),
‘\Jo ‘\Jo

which follows from

(b () o)

Then, (2.25) and (2.26) imply

1 1
[wla, <[w’l} and [wlgy, < [W']} .

Hence, (b) follows from (2.24) and (2.27).
We turn to the proof of (c). One can check that

p ' ’ p/— ' ’ ’ pl ' 4
() e-o=(G)w-n ma 5= (5) (5 1)+

Then it follows that

=p'0L/pN A= (x)) = p(p' = DG/ (xp = 1) = ph+/p),

and for any cube Q,

7,—1
(7[ wP(P+/I’>’dx><][ wp(m/p)/(l—r,;)dx) ’
0 0
/ ’ AV 1A réil / / AV tp71
_ [<][ WP B (=) )dx> (7[ - <P/P>dx)] 7
0 0

Birkhauser
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which implies

/ _ ’ N Ty —1
[wP®+/P) ]Arp = [w™P®=/P) ]AIT;,

Finally, let us demonstrate (d). By part (b), there holds v := w” ®+/P) ¢ A,p,
which along with (2.7) and (2.11) applied to exponents ¢ = 7, and go = T, to arrive
at the first estimate in (2.19) and

~ p 1
o r T
Moreover,
L p_ €L
] _ -y —n—3y P
,L_L_(l+y)'ﬁ_,L_l<(l+2n)L_L
p- P p- 14 p- p
This proves the second estimate in (2.19) and completes the proof. O

2.2 Multilinear Muckenhoupt Weights

The multilinear maximal operator is defined by

M) = supH ][ A ODId, (2.29)

Bxl 1

where the supremum is taken over all cubes Q containing x.
We are going to present the definition of the multilinear Muckenhoupt classes A 7
introduced in [71, 72]. Given p = (p1,..., pm) With 1 < p{,..., p» < oo and

F=(@r1, ..., rmy1) with 1 <7y, ..., e < 00, we say that 7 < p whenever
. , 1 1
ri<pi,i=1,...,m, andrm_H > p, where — :== — 4+ -+ 4+ —.
p P1 Pm
Analogously, we say that 7 < p if r; < p; foreachi =1, ..., m, and r,/nJrl > p.

Definition2.7 Let p = (p1,...,pm) With 1 < p1,...,pn < oo and let ¥ =

(1, ..., rma1) with 1 < rq,...,7uy1 < o0 such that 7 < p. Suppose that
w = (wy, ..., wy) and each w; is a weight on R". We say that w € Aprif

1

Ll” l,— A m ri i ,.L,—F
[W]a- . = sup w'mt P dx e l—[ w/dx ) < o0, (2.30)
"o W 1 \Jg !
i=

Birkhauser
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where % => " 15 i w = []iL, w;, and the supremum is taken over all cubes Q C
R". When p = r/ ]
and, analogously, when p; = r;, the term corresponding to w; should be ess sup, w;

the term corresponding to w needs to be replaced by ess sup, w
~1

Also, if p; = oo, the term correspondlng to w; becomes ( fQ i dx)': If p = oo,
one will necessarily have r,,11 = 1 and p; = --- = p,, = 00, hence the term
corresponding to w must be ess sup, w while the terms corresponding to w; become

( fow; Cdx) i G . When rm+1 = 1and p < oo the term corresponding to w needs to

be replaced by ( f, w’dx) v

Denote Aj := Ap 1,1 in Definition 2.7, that is,

.....

Lom

1
[W]a; := sup <][ w? dx) ! <][ wi_p’{dx> " < 0, (2.31)
0\ H 0

i=1

where % =y 1o L and w =[]/, w;. We would like to observe that our definition
of the classes Aj and Ap 7 is slightly different to that in [68] and [71]. Essentially,
they are the same since picking w; = vl.pi foreveryi = 1,...,min (2.30) and (2.31),
we see that v = (vy, ..., vy) belongs to Ap 7 in[71] and to A in [68], respectively.

Lemma28 Let 1 < p; < pl* <oo, i =1,...,m. Assume that p; € [pi_,p;L] and
wipi € Ap,-/pl-’ N RH(p;r/p[),, i=1,....,m Thenw = (wy, ..., wy) € Az ; with

1 1
F

m , .
1—[ Pi (i /pi ) PPy
Ajr = AT,, ’

forany ¢ = (q1,....qm) with1 < q1,...,qm < 00 and 7 = (r1, ..., ms1) With
1<71,...,7my1 <00 suchthat¥ < g, and

1 1 Wy 1 11 1 1
- = — ), ———=———= i=1,...,m. (232

Proof By Lemma 2.6 part (b), one has

pito] /i) pi P )pim* /i)
I:wi ]Arp = <[wi ]Al’i/Fi_ [wi ]RH(p?'/pi)/ >
N/ ps
where 7, = (p—’l) (”—i 1)+ Li=1,...,m. Set
1 1 1 1 1 1
—i=——— and —:=1—<———), i=1,...,m. (2.33)
li pi p; Si p; Di
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Then it is easy to check that
t=pip;/p) and si=1(r, —1), i=1,...,m, (2.34)

which gives

ti
} = [wil} - (2.35)

On the other hand, let ¢ = (g1,...,qn) With 1 < g1,...,qn < 00 and ¥ =
(r1y...,rme1) With 1 < r{,...,rmy1 < oo such that 7 < ¢ and (2.32) holds. It
follows from (2.32) and (2.33) that

1 1 1 1 1 |
- =4 +— and ———=—, i=1....m  (2.36)
n Im ri qi S;

Thus, writing w = [/, w;, we use (2.36) and Holder’s inequality to obtain

N LN o N
(f wmr19 dx) mt H(][ w, dx)
0 1 \Jo
L
]_[(][ wl dx) (7[ 'dx)" H[wl]A” (2.37)
0

As a consequence, collecting (2.33), (2.34), (2.35), and (2.37), we conclude that

- - S e/ s
[l < [ [lwila,, = H ]A,p = [Tl 0,
i=1 i=1 i=1 '
This completes the proof. O
Lemma.2.9 Let1 < p; < pj‘ < oo, i =1,...,m. Assume that p; € [pi_,p?']
and wip’ € Api/Pi_ N RH(p’gf/p’_),, i =1,....m Writew = [[/L, w;. Then w? €

App- N RHp, /py with

11
m L e
[wr®+/P, <] [wi” Ak ””} [ (2.38)
i= A'[/?,'
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L1 .. 4 1L B . i j
where s=o Tt o and LT pE 4+ -+ oE In particular, if we take
. -1 . - . .
Wil =W Pyt :=p, Py =p,, and p;H =y, (2.39)

then it follows

-

; o
+ ’ Y !
[ PP/ Pr) - [wi”"(p? /m] = (2.40)
A, Ae,
Pm+1 i=1 Pi
Proof Set
111 11 1
_=___=Z(___+)=:Zf, (2.41)
r p p"r i=1 Di pi i=1 Ti
1 11 &1 1 1
_:___zz<7__)=;z_, (2.42)
N p* )4 i=1 PI- Di i=1 §i
Observe that
1 pi(7 /pi) 1 .
pite/p) = — ad = —— . i=l.m
- T Ty — 1 _ =
Pi p; p; Pi
(2.43)

With (2.41)—(2.43) in hand, we use Holder’s inequality to obtain

_ 1 1_ 1
S = <][ wP<P+/P>’dx> e (7[ wPPE dx)” -
0 0
mo L, NE M +
( wi> dx) < <][ w.ridx)
(fg l—[ H o '

i=l1 i=1

mo,o. T 1l 1 om . SR
Pi Pi p] (0 /i) Pi
— (][ w, " dx> W= (][ w! /p’)dx> T4
i \Jo 1 \Jo

Analogously, we have

_pi/p) p<;1)+7i>>' — T =
S = (][ w ! dx) :(][ w - pdx)
0 Q
m s Al m %
1 =i !
_ (é(gwi ) dx) §H<][Qwi de)
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1

m p%_% p%_plfl m _Pi(rljg—iﬁl’i)/ rpi(pi’_—p#)
:l_[ ][wi‘ dx | = ][wi ! dx .
i=1 N/ @ i=1 N2
(2.45)
Then gathering (2.44) and (2.45), we arrive at
, _pw/p) -l ,
(][ wP®+/p) dx)<][ w_ -l dx) = (Y x yz)P(PHP)
0 o
gk
., i) Ty —1 pl' "11'
fn[(][ wim-(p,- /m)dx)(][ w dx) ]p+’
i=1 0 0
which immediately gives (2.38).
To proceed, we note that by (2.28) and (2.39),
+ / / / /
= G2 (22 )= () ()
1) \p,4 p Pl
which along with Lemma 2.6 part (c) and (2.38) yields
/ 1
I:wrl:lril:l] (p;:+1/Pz11+l) :| _ [wfp/(p/_/p/)/]Ar/ _ [wP(P+/P)/]fI’r’1
ATPerl 4 b
1
pi +
- i(p/pi) 13 pil
< 1_[ I:wip:(P, /pi ]Apjfﬁ )
i=1 Pi
This shows (2.40). O
2.3 Multilinear Calderén-Zygmund Operators
Given 8 > 0, we say that a function K : R"”*+D\{x =y = ... =y,} > Cisa

8-Calderén—Zygmund kernel, if there exists a constant A > 0 such that

. A
IK (x, )| < ,
(Z;'n:l lx — y.i|)mn
Alx —x'|°

K (x,5) = K&, )| <

(ZTZI |)C _ yj|)mn+5 ’
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whenever |x — x/| < % max |x —y;|,and foreachi =1,...,m,
1<j<m

Alyi = yiI°
5
(27;1 lx — yi|)mn

|K('x’5;)_K(-xay15"'7yl{7"-7ym)|S

whenever |y; — y/| < 3 max |x — yj].
1<j<m

An m-linear operator 7 : S(R") x --- x S(R") — S&’(R") is called a §-Calderén—
Zygmund operator if there exists a 6-Calderén—Zygmund kernel K such that

T(f)(x>=/ KT fiOn) - fn )5,

( n)m

whenever x ¢ (/L supp(fi) and F=f1,ees fn) € CORY) x -+ x CO(RM),
and 7 can be boundedly extended from L?' (R") x - - - x L% (R") to L4(R") for some
l=qil+'~-+Lwithl < qly.-sqm < OO.

q m
Given a symbol o, the m-linear Fourier multiplier 7, is defined by

To (@) = /( e OO G ),

forall f; € SR"),i = 1,...,m. The operator T, is called an m-linear Coifman—
Meyer multiplier, if the symbol o € ¥ (R™" \ {0}) satisfies

|020®)] < Ca(EDT™, V& e R"™ \ {0},

for each multi-indix « = (@1, .. ., ap) with || = Y /L | |o;| < mn + 1.

It was shown in [48, Proposition 6] that Coifman—Meyer multipliers are examples
of multilinear Calder6n—Zygmund operators.

Below, the sharp weighted inequality for multilinear Calderén—Zygmund operators
was given in [73, Theorem 1.4] with p > 1 and extended to the case p < 1 in [76,
Corollary 4.4].

Theorem 2.10 Let T be an m-linear Calderon—Zygmund operator. Then for all 1 <

DPls.-.Pm <00 and w € Ay,

. max{p, Py, P}
||T||Lp1 W]y LPm (wh™ )= LP (wP) N [w]Aﬁ ",

=TT w; l_ym 1
where w = [[/; w; andp—zizl o

Theorem 2.11 [8, Theorem 4.3] Let T be an m-linear operator. Fix 6; > 0 and r; €
(1,00),i=1,...,m. Let% =y", % <1withl < pi,..., pm < 00. Assume

that there exist increasing functions V; : [1, o0) — [0, 0o) such that for all v?i €A,
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1T llerer = TTE QAN fill iy (2.46)

i=1

where v = [/, vi. Then, for all weights w;’igi € Ay, with some n; € (1, 00), for all

b= (by,...,by) € BMO", and for each multi-index a € N,

m 1
7 —a i0; 1,100 i i
N7, Bla(HlLrqury < et T T8 Wi (4% w13 YIbi gl fill o upiy (247

i=1
where w = [/ wi, and §; = min{1, r; — 1}/(n6;), i =1,...,m.

Let us record Marcinkiewicz—Zygmund inequalities contained in [22, Proposition
5.3].

Lemma2.12 LetO < p,q1,...,qm <t <2o0rr=2and0 < p,q1,...,qm < 0.
Let (1, ..., uy and v be arbitrary o-finite measures on R”". Let T be an m-linear
operator. Then, there exists a constant C > 0 such that the following estimates hold:

(i) If T is bounded from L' (ju1) X -+ x LI (u,,) to LP(v), then

1 m
H( > |T<fkﬂ,...,f;:j;)|’> <caIri]]
i=1

(Df;i,w’)’

)

ke o LP(v) L9 ()
where |T| := ”THL‘II(/j,l)x'nqum(ltn,)%Ll’(v)'
(it) If T is bounded from L' (1) X - -+ x LI (u,y,) to LP°°(v), then
1 m 1
| r N7
H<kl,§<m |T(fk,,...,f,:fn)|r) . C||T||weaki1;[1 (kz |f,§i|r) sy’

where || T [lweak := 1T 291 (ju1) - x L4m ()= L2+ (v)-

3 Quantitative Weighted Estimates

The goal of this section is to establish quantitative weighted estimates for (rough)
maximal operators and singular integrals. We begin with the following interpolation
result with change of measures due to Stein and Weiss [87], which plays an important
role in dealing with weighted estimates.

Theorem 3.1 [87] Let po, p1 € [1, o], and let wo and wy be weights. If the sublinear
operator T satisfies

T fllzei )y < Kill fllzei . @ =0,1,
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then for any 6 € (0, 1),

ITfllLrwy < KN fllLrqwy with K < KOI_QK?,

The sharp maximal functionM* is defined by
M* f(x) = sup][ |f — foldy, where fo ::][ fdy.
03xJ0 0

The following Fefferman-Stein inequality was shown in [16, Remark 1.9].

Lemma 3.2 Forevery p € (0,00) and w € Aso,

IMS Loy < Cop [wla I1M* fllzo
whenever Mf € LP(w) or f € L°(R").
We present a sharp weighted vector-valued Fefferman-Stein inequality.
Lemma3.3 Foranyl < p,r <ooandw € Ap,

H(Xk:|Mfk|r>i

11 1
max{;,ﬁ} 7

(;mr)

<
LP(w) ~ [w]AP ’
(w) LP(w)

Moreover, the exponent max{%, ﬁ} is the best possible.

Proof This inequality was given in [33, Theorem 1.12]. We here present a different
proof. Let r € (1, 00). It was proved in [23, Theorem 1.11] that there exist 3" dyadic
lattices D; and sparse families S; C D; such that

1

1 3" 1
(X Mp@r) =, ZA@((Z |fk|f)’>(x), ac.xeR', (1)
k j=1 k

where
1
Sf(x) = (Z<|f|>fQ1Q<x)> : (32)
QeS
It follows from [13, Theorem2.1] that for all p € (1, 00) and w € A,
v max(5. 517}
”-Agf”LI’(w) =< Cn,p,y[w]Ap ”f”LI’(w), Yy > 0. (33)
Thus, (3.1) and (3.3) imply the desired estimate. O
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Lemma 3.4 Let % and 9B, be Banach spaces, and let L (B, B>) be the Banach
space defined by all bounded linear operators from P\ to B with the operator norm
Il 22, .2, LetT bealinear operator mapping %8 -valued functions into %> -valued
functions satisfying

(i) T is bounded from L2(R", B)) into L>*(R", B>).
(ii) There exists a kernel function K (x) € L (A8, %) such that
—n—1

IK(x —y) = KX)ll2#,2,) < Cklyllx| 2yl < |xl,

and for every f € L*>(R", %) with compact support,

Tf(x) = /R KG=0f0)dy,  aex ¢ supp()),

Then for every p € (1,00) and w € A,

7max{l,ﬁ}

ITF Loz S [0l 1 lLr o, 20)-
Proof It was shown in [85, p. 41-42] that
ITfllLro@e 2y S Cr I fllpime ) (3.4)

MY (ITfll,)(x) S Cr M (1 fllz)(x), 2<r <00, x €R”, (3.5)

where C1 := ||T || L2(rn, %,)— 12 (R, ,) T Ck - Then interpolating between the assump-
tion (i) and (3.5) yields that forany 1 <rg <7 < 2,

1
ITfNLoe, ) S Cr (ro = 1) 0 || fllLro e, ) (3.6)

where the implicit constant is independent of ry. As argued in the proof of (3.5), the
inequality (3.6) implies forany 1 <rg <r <2,

M*(ITfl,)(x) S Cr (ro — 1)_%Mr(||f||331)(X), x eRY, (3.7

Now let p € (1, 00) and w € A. Then, by Lemma 2.4, there exists y € (0, 2‘”‘3)
1
_ D p—1 p—1 ~ max{l, =7}
and go € (1, p) such that gg = Tre 201y <€ < dmoy° (1+y) ~ [w]Ap =1

and [w],a;q0 < 2P[w]Ap. Setr :=p/qo =1+ ¢&.Ifr > 2, it follows from Lemma 3.2
and (3.5) that

ITf e, < IMATF ) Lrw) S [wla, IM*AITf 121 Lrw)

1
@D
S wla, IMe (L ) e S [w]A,,[w]AZg I f e w,2)

. 1
mdx{l,ﬁ}

1 3
Stwly, " 1 2w,z < wly, 1 zr w20

) Birkhduser
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since

p—1 _p-1__p-1 _p-1
A+y)y 14y 14273 3/2

p—r=p—l—e>p—-1-

If 1 <r <2, wechoose ro = 1 + —5— and invoke Lemma 3.2 and (3.7) to obtain

P<1+V)
that
1T N Lrw,2,) S Tlwla, IM-(1Lf ) e o)
p(l +y) ‘,
S —[w G N e w, 20
p—1
%max{l =
S [wly, ”f”L!’(w By)-
This completes the proof. O

Lemma 3.5 Let ¢ € S(R") be such that fR,, @dx =0andsupp(¢) C{E eR" : ¢] <
|E| < 2} for some 0 < ¢] < ¢z < 00. Set gy (x) = 2K (2% x) for any k € 7. Then
forevery p € (1,00) and w € A,

3 max(}, -1}
(Xres )| Sl T e, (3:8)
keZ LP (w)
zmax{l,%} 1
Sofi|  Stwpy T (Z|fk|2)2 , (3.9
keZ LP(w) keZ LP (w)
3 max(}, 11}
(Xloessi?)?]  Stwrg 7 <Z|fk|2>2 (3.10)
keZ, LP(w) Ll’(w)
If we assume in addition that )", ., |92~ key 2 = Cy > 0 forall§ # 0, then
i 5
e Sl T (S s 1)’ (3.11)
LP(w)

keZ

Proof Since ¢ € S(R"), one can check that there exists C(; > 0 such that for any
B € (0,1]andany y € R", [p(x)| < C,(1 + |x|)~"F and

ly|# lyl# }

e n el =€ [(1+||>"+1+ﬁ (14 [x — y) 157

) Birkhiuser
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Recalling that fRn odx = 0, we see that ¢/ C(; € Cg,1, which is defined in [90,
Definition 6.2]. Then by [90, Theorem 6.3],

1
Spf @) = (Y lonx fOP) Fp1f(0) S 0pf (1) S Gpfo), xR,
keZ
(3.12)

where the implicit constant is independent of f and x. Thus, (3.8) follows from (3.12)
and the sharp weighted estimate for Gg in [64, Theorem 1.1].

To show (3.9), we will use vector-valued singular integrals. By the support of @,
there exist jo, ji € N such that supp(¢;4+x) N supp(¢;) = ¥ whenever k < —jo — 1
or k > j; + 1. This and Plancherel’s identity give

/R‘ k%‘p" | dx = /R \%@(&)ﬁ@)\zdg

= / P 27e) f(6)9; (277 8) fr(6)dE
K jez” R
J+i R o
=2 > /R DO PO fe(®)ds

JE€Lk=j—jo

J1 _
=22 /R B @O0, E) fia €) fu(§)dé

JEZ k=—jo

J1
s> /RHDEH@)nﬁ(s)ws

k=—jo JEL

J1 % R %
n> (/RHDE%@)%) ( /R an(snzds)

k=—jo JEZ JEZ

2
5 ”{fk}keZ”l}(Rn’gZ)-

This means that the operator 7' defined by T ({ fi}xez) = Y ez @k * fk, is a bounded
linear operator from L2(R", £2) to L>(R"), with the kernel K (x) = {¢x (x)}rez sat-
isfying ||[VK (x) ||$(82,(C) < lx|7"~! for all x # 0. Hence, Lemma 3.4 implies (3.9).
Note that the inequality (3.10) is a consequence of Lemma 3.3 and that |y * f|
M fi uniformly in k € Z.
Finally, to get (3.11), we use Parseval’s identity and Y, |@k(£)]?
> iez 19(27FE)|? = C, to get that for any f, g € L2(R"),

A

/Rn Zwk * f(X) g g(x)dx = Cy /Rn f)gx)dx.

keZ
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Then it follows that for g € S(R") with gl @i-ry =1,

’/ f(x)g(x) dx 5'/ D ok () gr % g(x) dx
Rn Rn keZ
S/R Sp f(X)Seg(x)dx < Sy fllLrw)lISp&ll ' (11—
_ymax{z.t) max{1, 5155}
S TS ey =twly, T S f e
where we have used (3.8) in the last inequality. This gives at once (3.11). O

Lemma 3.6 Given ¢ > 0 and a pairwise disjoint family of cubes {Q ;}, we set

K(Qj)n_H?
x — xQ.i |n+£ + E(Qj)n-i-g ’

Q:=J0o; and M. (x) :=Z| xeR". (3.13)
j j

Then |Mell 2y S [Wlaw(R)2 for any w € Ay.

Proof Note that

1 nte n+e
() < < 1o.(x) 7,
f)n(X)NZ|:(|X_XQJ_|/£(Q].))11+11| sz:M Q/(x)

J

which together with Lemma 3.3 gives that for any w € A»,

n_ 2(nte)

R wie\ 7 RIED)
M, (x)2 d) 5(/ M1y, (x)5" )" " d)
( [ mew? i dx R(X]j 0,(0'%) W) dx

P n
max{5 s

1 n
7} R —
2nte) | 2 2(n+te) i n
Sy, " (/ (ZlQJ (x)> w(x) dx) < (W]} w(Q) T,
= Rn N
J
where we have use the disjointness of {Q ;}. This implies the desired estimate. m|
Given Q € L!(S"™!), the rough maximal operator Mg and singular integral Tq

are defined by

Mg f(x) = Sup][ QOIS =yl dy, (3.14)
B(0,r)

r>0
and

Q")
[y"

Tof(x) :=p.v. /]R f(x—y)dy. (3.15)
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Theorem 3.7 Let g € (1, 00) and Q € L4 (S”*l) be such that fSVH Qdo = 0. Then
forall p € (q',00) and forallw € Ay,

1

1Mo fllr < WwIE I f e, (3.16)

max{1

}+max{1
”TSZf”LP(w) S_, [w]Ap/q’

1
ple' -1

1
sl
PN lLe w)- (3.17)
Moreover, the vector-valued inequality holds for g > 2:

H(?Mgfnz); (;mﬁ)é

1
<Twl? ¢
S ]Ap/q’

(3.18)

LP(w) LP(w)

Proof By definition and Holder’s inequality, one has
Ma f(x) < 1920 a1y My f(x), x € R,
which together with (2.1) immediately gives (3.16). Then (3.18) is a consequence of
(3.16), Theorem 1.1, and Remark 1.4.
To treat (3.17), we choose a radial nonnegative function ¢ € € °(R") such that

suppe C {|x| < 1/4} and fRngodx = 1. Set ¢;(x) := 272"/ x) and vi(x) ==

S‘Z)E—f,,’)l{zj5|x|<2j+l}(x) for each j € Z. Define

Tif:=Kj*f and Kj:=ka>x<(pk_j, JjEZ.
keZ

Then,

o
To=Ti+Y (Tj1—T)). (3.19)
j=1

It was proved in [89, p. 396] that for some §y > O,

1T flleny S Wfl2qnys J = 1, (3.20)
1T = TP fll2ny S 270 f 2@ 4= 1, (3.21)

where the implicit constants are independent of j.
On the other hand, it follows from [89, Lemma 2] that

K ; satisfies the LY-Hormander condition, (3.22)
which together with [89, Theorem 2] gives

T; is bounded fromL'(R") toL">(R"), (3.23)
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T;j is bounded on L”(R"), 1 < p < oo. (3.24)
In particular, (3.24) implies
T; is bounded fromL9 (R")toLY " ®(R"), 1 < ¢ < oo, (3.25)
and the interpolation theorem, (3.21), and (3.24) yield that for some § > 0,
I(Tjs1 = TP fller@ny S 270 flle@n, j=1,1<p<oo. (3.26)

Hence, by (3.22), (3.25), and [70, Theorem 1.2], we obtain that for any f € L>°(R")
there exists a sparse family S; such that

1
p

1 1
TS Y 11000 = ALAFIY0T, aex R, (27)
QESJ'

where the dyadic operator Ag is defined in (3.2) and the implicit constant is inde-
pendent of j. Accordingly, we use (3.3), (3.27), and a density argument to arrive
at

max{l,qu/} ,
IT; fllry S [v]Ap/q, I fllLry, Vp€(g,00), veEA,. (3.28)

Now fix p € (¢’,00) and w € Ap/q- By Lemma 2.4, there exists y € (0, 1) such
that

1
X1,

ma:
A7) =calul, —c,Bo, and w14 S [wly”
P

’ bl
q plq ~ rld

which along with (3.28) implies

1

(I4y) max{l, =}
ITj1 = T florony Sl 1 Doty (3.29)
In light of Theorem 3.1 with wy = 1, w; = w!t” and 6 = ﬁ, interpolating

between (3.26) and (3.29) gives

1
7

—(1-0)sj, mxll = .
I(Tjr1 = T) fllLrw S 2 [w]AP/q’ I fllerwy, J=1. (3.30)

Note that 1 — 6 = %}/)/ and e~ < 272 for any r > 0. As a consequence, (3.19),
(3.28), and (3.30) imply
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o
“n]

ax{l, -}
1T fllLrw) S Z Bo[w]A TS L

1
(Z Z)z ) S N

J=<Bo j>Bo

x{l )
(Bo+ > 2BO)[w]A "N Nz
J>Bo
1

max{l,ﬁ}
< Bo [W]Am, P f e w)

max{1,
= [w]A

1 1
——— }+max{1, }
] — 7
, vl P ”f”Ll’(w)-

rlq
This completes the proof. O

Theorem 3.8 Let g € (1, 00) and 2 € L1(S"™"). Then for all p € (1, q) and for all
1-p’
w € Apyq's

, max{l, — }+max{1

1 1
— /_ ’ /_/}
IMa fllLrawy S Tw'™7P1, 7! PR F Nl - (3.31)

r'/q

Proof Fix p € (l1,q) and w'™? € Ay, For j € Z, set vg ;(x) =
%1{2j5|x|<2j+1}(.x).Deﬁne

1

Seofx) = (Z |T§2Jf(x)|2>2, where Tgq ;f :=vq ;* f.

JEZL

If we set Qo(x") 1= [Q ()| — fgu—1 |Q] do forany x” € S"~1, there there holds
Qo € LI(S™ D, / Qodo =0, and Maf < Mf+Sa,(f). (3.32)
sn—1

Since w! 7 e Ap g C Ay, wesee thatw € A, and by (2.1),

1
IMfllLrw) S [w]A N lra) = [w'™ ]Ap/ IflLraw) < [w!'=P 14, 1 ILp (w)-
(3.33)

In order to estimate Sq,, we define a linear operator

?20 = Z emTqym, Wwhere ¢:={g, = £1}.

mez
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Writing

k= Z EmVQy.m and ko = vQym, M €L,

mez

one can verify that [89, Lemmas 1 and 2] hold for k and k™ with bounds independent
of e. This means that T§20 behaves as Tq in Theorem 3.7. Then by (3.17),

. max{l,s/q%il}+max{l,qu/}
sup [ To, fllLsw) S [U]As/z/ I lLs ) - (3.34)
. :

forany s € (¢', 00) and v € Ay, By duality, (3.34) implies

ax{1

. , m }+max{1,p/i
sup [|TS, fllLra) < [w'™? I,
&

1
By 7}
e ey (339)
We would like to use (3.35) tobound Sq,. Let {r, (-)},nen be the system of Rademacher
functions in [0, 1). By Khintchine’s inequality (cf. [45, p. 586]) and (3.35) applied to

e(t) := {rm(t)}mez, we have

Sq f I Lr(w) = H(/ ‘Zrm(t)TQO mf‘ df)

meZ LP (w)
1
» _ o max{l, ——L—}4max(1, 1}
( / ||T€<”f||mw)dr> S, T M.
(3.36)
Therefore, (3.31) follows from (3.32), (3.33), and (3.36). O

Lemma3.9 Let ¢y € €°(R") be a radial function such that 0 < ¢ < 1, suppy C
{1/2 < |&] <2} and Y, ¥ (271E)? = 1 for |€| ;é o Define the multiplier A; by

A f(E) = ¢(2_l§)f($). For j € Z, setvj(x) := |x|,, 1{21<|x|<2/+1}(x) where Q2 is
the same as in Theorem 3.7. Then for all p € (q',00) and w € A, y,

1
2
(D 1ok = AL fP)

keZ

2

) I £ llLr ). (3.37)

3 max{l
S [w]A

~

LP(w) rlq

sup
SEL

’

Proof Let p € (¢',00) and w € A,. Observe that

supsup [vics + fil < Ma( supl fil)- (3.38)
seZ kel keZ
This and (3.16) yield
sup || sup v *fk|H ] su |fk|‘ . (3.39)
seg keg * LP(w ) keg LP(w)
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1—r

In light of Theorem 3.8, (3.38) implies that for any r € (1, g) and v € Ayl
1 r’ max{l,r,/{;L1 }+max{1,r,+q,}
sup || sup |Vigs * Sk ‘ , sup | fk )
seg ke§| +s % Jil L (v ) Ar'lg ke§|f | L7 (v)
which together with duality gives
max{1, i , l}—Q—mdx{l
sup || Y ks * fel S [wly DUIAI (3.40)
€2 W pez, LP (w) o keZ LP (w)
Then, interpolating between (3.39) and (3.40), we obtain
1 1 max{1, —— }4+max{1, 1 B 1
sup ‘(Z s * 12)7] Sy, E H(Z A2
sez = LP (w) p/e P LP (w)

Combining (3.10) with (3.8) and that [w] A, < [w] Ay this immediately implies
(3.37). O
4 Proof of Main Theorems

In this section, we will prove Theorems 1.1 and 1.2. The first step is to show Theorem
1.1, which will follow from Theorem 4.8, a limited rang, off-diagonal extrapolation

with quantitative weights norms. Before proving the latter, we present some other
quantitative extrapolation.

4.1 Ap Extrapolation

We begin with the A, extrapolation with quantitative bounds.

Theorem 4.1 Let F be a family of extrapolation pairs. Assume that there exist expo-
nents po € [1, 00] such that for all weights vP° € A,

[ fvllre < @714, lIgvliLeo, (f.8) € F, (4.1)

where ®@ : [1,00) — [1, 00) is an increasing function. Then for all exponents p €
(1, 00) and all weights w? € A,

max{l,ppo—:ll}
Ifwler <20(Cplwl e " igwler, (fp)eF, 42

where C, = 3"P 9000 if b < po and C, = 3"P*S if p > py.

Theorem 4.1 was shown in [38, 40] without the explicit constant C,. We restudy it
by presenting a stronger result as follows.
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Theorem4.2 Let g € [1,00] and p € (1, 00). Then for any w? € A,, f € LP(wP),

g—1
max{l, = }

and g € Lp/(wfl’/), there exists v1 € A, with [vq]Aq <C, [u)p]Ap such that

I fvllzallgo™ 1,y < 20 fwlerlgw™ ", . (4.3)

where Cp, = 3P +8)(q=p) ifp<gq,and Cp = 3nP+8) i p > .
Proof Let p € (1,00), w” € Ap, f € LP(w¥),and g € LP/(w*P,). We may assume
that f and g are nonnegative and non-trivial. Let us first consider the case p < g. By

w? € A, and Theorem 2.2, there exists an operator R : L?(w”) — L?(w”) such
that

f=Rf, NWRflLrwry <20 fllLrwry, and  [Rf1a, <2 M|lLpwry. (4.4)
Define
(RfHY . 4.5)
Then by Lemma 2.5, the last estimate in (4.4), and (2.1),
) a=1
(W4, = WP RPN, < (w14, [RfIYP < 3"PHIEP P T (4.6)

On the other hand, it follows from the first two estimate in (4.4) that

_14+2 P )4 2 L
Ifollea =I1f(Rf) ~ willps <I(Rf-w)illpa =IIRSf-wlly, < Cllfwlrr)d.

4.7
In view of p < ¢, we set % = % — 5 Then, % = # + % and by Holder’s inequality,
lgv™" 1l = llGgw™ v Dl < llgw™ "l llwo ™l 4.8)

Observe that

1-2

1_1 _p
lwo o = IRf-w)’ T~ = |1RF-wl,,? < Qlfwler) "7, (4.9)

where the second estimate estimate in (4.4) was used in the last step. Now collecting
(4.7)—-(4.9), we obtain

-1 —1
lfollzaligv™ Il =20 fwlizeligw™ Il -

This and (4.6) show (4.3) in the case p < q.
Let us deal with the case ¢ < p, which is equivalent to p’ < ¢’. Also, w? € A, is

equivalent to w P e A, . Note that g € L",(w_f’,) and f € L?(w”). Invoking (4.3)
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forp’.q', g, f, wlin place of p, g, f, g, and w, respectively, one can find a weight
u? e Ay with

/

q -1

[u—fI']A < 3n(p+8)(q’—p’)[w—p’]/§’*1 (4.10)
¢ = »
such that
lgull oIl fu= ze < 2lgw™ ol fwllze. (4.11)

Picking v = u~! and using (4.10), we see that

1

1 -
- g7~ n(p4+8) Ly
(0714, = [™a, = 713 " <3 TP < 3wl
and (4.11) can be rewritten as
-1 —1
I fvllzallgv™ Il e <2l fwlerligw™ Nl

This shows (4.3) in the case g < p. O

Proof of Theorem 4.1. Let p € (1, 00) and w” € A,,. By duality,

Ifwller = sup [{f, M)l (4.12)
0<heL? (w="")
lhw=", =1

Fix a nonnegative function 2 € LP/(w’P/) with [[hw™! ll,»» = 1. In view of Theorem
4.2, one can find a weight v”° € A, such that

max{1, ];9:11}
[v7°]4,, < Cplwl, : (4.13)
lgvllzeo lhv™" 1y < 2llgwlizelhw™" s (4.14)

where C, = 3" 901 if p < po, and C, = 3"P+9) if p > po. Hence, by (4.1),
(4.13), and (4.14),

< I follr o™ty < @714, lIgvllLr v~

max{1 ”07*1}

< Zq)(cp[wP]Ap »p—1

LP0
-1
Megwlerllhw™ |l 7,

which along with (4.12) yields at once (4.2) as desired. O

Next, we would like to use Theorem 4.1 to get additional results.
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Theorem 4.3 Let F be a family of extrapolation pairs. Assume that there exist expo-
nents po € (0, 00) and qo € [1, 00) such that for all weights v € Ay,

Ifllzroy < P([]a,)lIgliLrow),. (f.8) € F, (4.15)

where ® : [1,00) — [1,00) is an increasing function. Then for all exponents p €
(1, 00) and all weights w € A,

ax{1, %91 )
1l <20 @(Cplwly "Il (1 8) € F, (416)

where C, = 3"W+9@=1) if b < g0, and C,, = 3"+ if p > go.

Proof Set
Fo={(F.G)=(f®.gn): (f.g) € F).

Note that (4.15) implies that for all weights v € Ay,

PO 0 o
1F o) = 1180 < 01ay) o gl = D([vla,) ® 1G o0,
4.17)

forall (F, G) € F. Then it follows from (4.17) and Theorem 4.1 with pg replaced by
qo that for all exponent p € (1, co) and for all weights w € A,

ax{1, 0= b
1E N Lp (w) <2<I>(Cp [w]A - )qO 1GllLeo@w), (F,G) e F,

which can be rewritten as

(1,9

490 max —}
”f”LPI’O/GO(w) <2n CID(C[, [w]A], ! )”g”LPP()/Q()(w)a (f.g)eF,

where C, = 3"W+9@-1) if p < gy, and C, = 3"P* if p > go. This shows
(4.16). O

Theorem 4.4 Let T be a sublinear operator. Assume that there exists pg € [1, 00)
such that for all v € A,

ITflLrowy = Pvla,)ILfIILro @), (4.18)

where ® : [1,00) — [1, 00) is an increasing function. Then for all p € (1, 00) and
Jorallw € Ay,

max{l,];()—:ll}
1T lrocqy < 20(CpwP Ty " Y If Lo, (4.19)
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3 1
x{1 (Po )

1Tl < 20(Cp Py 7T ) ifla. (420
Proof Given an arbitrary number A > 0, we denote

Fr i=A{F, G) = AMzern 7r0) >0 f) o 1
The hypothesis (4.18) implies that for all weights v € A,

1
I Fillzrowy = 2v({x € R" 1 [Tf(x)] > A} 20 < [T flLro-()
= @(la, I fllzrow) = Pv]a, IIGlLrow), 4.21)

for all (Fy, G) € F,. Thus, (4.21) means that (4.1) is satisfies for the family ). Then
Theorem 4.1 yields that for all exponents p € (1, o0) and all weights w € A,

1
Aw(x e R" [T > AP = [IFallLrw)

max(1, 2051 ax(1, 20 )
<20(Cplwly, " ) IGHLo) =20(Cp Ty 7)1 e,

where C, = 3" *+8P0=p) if p < py and C, = 3"P+Y if p > py, which along
with the arbitrariness of A implies (4.19).

To prove (4.20), we fix ¢ € (1,00) and w € A,. By Lemma 2.4, there exist
y € (0, 1) and gp € (1, g) so that

max{1, -}
Aty =Dy, 7 [wla, <27wla,.

(4.22)

q
1+¢

q0 = , 0<e<

qg—1
1+y)’

We may assume that ¢ < % since in this case (4.22) still holds. Choose g1 := qug €
L _ 120 4 0 ;i =1
(g, 2q) such that 7= % + 7 with 6 = 3 Then,
weA; CA,  with [w]Aq1 < [wla,- (4.23)

Then it follows from (4.22), (4.23), and (4.19) (with the exact constant C,, see the
proof above) that

ax{1, 2057

ITF oy < 20(Coo lwly, )1 F L), (4.24)
ax{l,Z(l’—:ll}

ITf e = 20(Cop Tl ™ ) f o . (4.25)

where

i=0,1.

3@ A8)(Po=4)) if g < po,
CQ: = 18 .
3, if gi > po,
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Additionally, by the choice of g¢ and ¢, and that ¢ < (¢ — 1)/2, we have

q qg—1 g—-1 q /
1= —1 =9 oy 426
q0 T3 Z5ite 3 90 q_1_8<q (4.26)
{1,202y el
Cy = Cl, and [w]r:z_x a1 g[w]f:"{ o 4.27)

where C(; depends only on n, pg, and g. Thus, invoking (4.27), we interpolate between
(4.24) and (4.25) to conclude

3(pg—1
{ (po—1D

SN e,

ma
I7f g = 20(C TwPTy
This completes the proof. o

4.2 Off-Diagonal Extrapolation

We next present a quantitative off-diagonal extrapolation below, which improves The-
orem 4.1 to the limited range case.

Theorem 4.5 Let F be a family of extrapolation pairs and 1 < p_ < py < oo.
Assume that there exist exponents py € [p—, p+] and qo € (1, 00) such that for all
weights vP0 € Apy/p_ N RHp, /poy>

1fvllzo < @(P®/P 0, Yigulim, (f,8) € F, (4.28)

where ® : [1,00) — [1, 00) is an increasing function. Then for all exponents p €
(p—, p4) and q € (1, c0) satisfying % - qi =L L andall weights w? € App_N

Po q0°
RHp. /py>

‘(pofl}

max{1, 1

tro Tp /
I Fwle < 2" 08 T (C, g P e Jlgwler, (f.9) € F.

(4.29)

P

To show Theorem 4.5, we present a more general result below.

Theorem 4.6 Let B € (0, 00), po, qo € [1,00), p,q € (1, 0), and letry, r € (/13, 00)

1 1 1 1 1 1 .
be such that T w Ty T T o Then for all weights w" € A,g and for all

functions f € LP(wP)and g € L9 (w™1"), there exists a weight v'° € A, g such that

. roBf—1
W], . < [w’]m““’gﬁ“} (4.30)
Argp ~ Arg ’ :
- (L, 8y -
Ifollmllgo™ I g <277 fwlleeligw™ - (4.31)
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Proof Fix w" € A,g, f € LP(w”),and g € L‘f/(w"f/). We first consider the case
q < qo (equivalently, p < po and r < rp). Pick

)4

hi=frwr® sothat |l = Ifwll). (4.32)

By w" € A,g and Theorem 2.2, there exists an operator R : LA — L")
such that

h<Rh, Rhlsqr < 200w, and  [RAla, < 20M s (433)

Define

o (r—rg)B
v:i=wo(Rh) 0 . (4.34)

Then by Lemma 2.5 part (a), the last inequality in (4.33), and (2.1),

roB—1
[0,y = [w" (RA) P70y, < ' la, [RAV TP SQwr))? T (435)
It follows from (4.32), (4.33), and (4.34) that
B L4l <r*rro)ﬂ 1_1
I follem = (a7 w? ™70 ) R0 Hm Ry P ol o
B B f)
= IRAN 7 ) = (2||h||L'ﬂ(wr))p0 = (2||wa|Lp)1’ — 2% Ifwliph-
(4.36)
To proceed, we set % = [ll - ql—o, equivalently q]—, = % + % By Holder’s inequality,
0
lgv™ "l g < gw™ g lwv™ "o, (4.37)

and by (4.32)—(4.34),

rBGi—5)

- pU—L) 1-L rB(—1)
fwo ™ e = | R0 w7 oy = @Il n) P70

L, = IRl
L gl L PUE=7)
= QUrwlIZY PO = 2P puly (4.38)
Now collecting (4.36), (4.37), and (4.38), we deduce that

-1
[

IfvllzroligvIl, ¢ < <27 Lfwllzrllgw™ "l (4.39)

provided 1 — L =1_ 1 —
q r

L _ L This shows the case q < qo-
490 o P PO
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Next let us deal with the case ¢ > go (equivalently, p > po and r > rgp). Set

ro

,
g1 M 0T e (440)
Recall that w” € A, 5. Then we see that
" , , d 1 1 1 1 1 1 1 1
w , <qy, and - — — = — ——-= — — — = — — —,
6> 4 =40 s so ro r popy 4 q
4.41)

Hence, the conclusion in the preceding case applied to the tuple (¢', p', s, g,
p6, 50,8, f» w_l) in place of (p, q.r, po,qo, 70, f, &, w) gives that there exists a
weight u® € Ay g so that

b1
[0 a,s S w100 (4.42)
lgull g fu " llLro <27 ||gw—1||Lq/||fw||Lp (4.43)

Note that by (4.40),
rB—DEB—1=1 and (@roB — D(soB —1) = 1. (4.44)

Pick v := u~'. Then by (4.41), (4.42), and (4.44),

P _
[0 = 070N, = 0P TP = [P

Awopy — Asop
_ T — L rp—1
St = A=A

and (4.43) can be rewritten as

B
-1 -1
Ifvllrollgv™ Nl g =2 ¢ I fwlzrligw™ Ly

In the case g = qo, taking v := w, the conclusion is trivial. This completes the proof.
O

The following conclusion is a particular case of Theorem 4.6.

Theorem 4.7 Let 1 < po < p+ < oo po €[p—,p4+] p € (p—,p+), and let qo, q €
(1, o0) be such that = — ql—o = ; Thenfor all weights w? € Ap/m_ N RHy, /py

and for allfunctzons f e LP(wP) and g € LY (w9, there exists a weight v" €
Apo/p_ N RHp, pgy Such that

r,;ofl
A < [wp(m/p)/]mam’ =T )
T ~Y

po(p+/po)’
[v ] Po

, (4.45)

™

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:7 Page430f90 7

w
I follzrlign™ g < 2™ 77l fwloligw™" Iy (4.46)
Proof Denote
, , 1 1
ri=pWm+/p), ro:=pop+/po), and p:= P (4.47)
- P+

Then one can check that

11 1 1 11
rB=1p rof=1p, and -— — =—— — =—— —, (4.48)
roro p P04 4o

Let w” € App_ N RHyp, py, f € LP(wP), and g € LY (w™7). Then it follows
from Lemma 2.6 part (b) and (4.48) that w” € A, g, which together with Theorem 4.6
implies that there exists a weight v'° € A, such that

max{l,rf)ﬂ:l}
[V STy, 77 (4.49)

- ’
max{ % Lﬁ) }

fvllzellgo™"l 4 <2 Ifwlieellgw ", (4.50)

In view of (4.47), (4.48), and Lemma 2.6 part (b), we conclude from (4.49) and (4.50)
that v” € A/ N RHp, /pyy 0 that (4.45) and (4.46) hold. O
Let us see how we deduce Theorem 4.5 from Theorem 4.7.

Proof of Theorem 4.5. By duality,

I fwlre = sup [{f, h)l. (4.51)
0<held (w1
hw =], =1
Fix a nonnegative function i € Lq/(w_q/) with ||hw™! I, = 1. By Theorem 4.7,

there exists a weight v”° € Ap /- N RH . /pey such that

, , max(1, 20}
[pPo(P+/P0) ]Arpo < [wP®+/P)y Y - , (4.52)
» D
lgvlle o™, g < 2™ gwile lhw ™l (4.53)

Then, in view of (4.52), we use (4.28) and (4.53) to obtain

= Dol AV g < @AQPP/P T Sllgollzao v |

L9
©» ,qmax(1, 271
< 2max{ r’q }(I) (C I:wl’(p+/l’) :|A pl ”gw”LP”hw_IHLq’-

P

This along with (4.51) gives at once (4.29) as desired. O
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4.3 Multilinear Extrapolation

If we use Theorem 4.5 to show Theorem 1.1, it requires all the exponents are Banach.
Thus, we have to improve Theorem 4.5 to the non-Banach ranges as follows. But in
this case, we cannot establish a “product-type embedding” as Theorem 4.7.

Theorem 4.8 Let F be a family of extrapolation pairs and 1 < p_ < py < oo.
Assume that there exist exponents pg, qo € (0, 00) such that po € [p—, p+] and for
all weights vP° € Ay N RHp, /poys

1fvllzo < @([0™1a, 0 ARH,, ) Ig0lm. (f.0) €F.  (454)
where @ : [1,00) — [1, 00) is an increasing function. Then for all exponents p €
(p—, p+) and q € (0, 00) satisfying % - % = % — qLo’ and all weights w? € Ap/p_ N
RH., /py
Lfwles < 2" R(ColwP L Py Ylgwlir, (f.g) € F
- Ap/piﬂRH(er/p)/ ’ ’ >
(4.55)
where the constant Cy depends only on n, p, po, p—, and p+, and
-1
_max {1 2] po < py
vp.ro) =9 0 1" _
T,—1 (p__ —57)s Po= P
Proof Fix p € (p—,p4+) and ¢ € (0, 00) satisfying % - % = % — ql—o, and let

wP € Apjp_NRHy /py. Fix (f, g) € F. Without loss of generality we may assume
that 0 < |lgwl|Lr < oo. Indeed, if ||gw]|L» = oo there is nothing to prove, and if
lgwlLr = 0, then g = 0 a.e. and by (4.54) we see that f = 0 a.e., which trivially
implies (4.55). We split the proof into two cases.

Casel: g < go.Recallthatt, = (p%)/(p% —1)+1forany? € [p_, p4]. Obviously,
7; is an increasing function in 7. Lemma 2.6 part (b) gives

wP®+/P e AL (4.56)

Set

L Pl—(py/p)] &
hi= g w sothat (1Al pes oy = llgwllfhy <00, (457)

which along with (4.56) and Theorem 2.2 implies that there exists an operator R :
L% (wP®+/P)y — LT (wP®+/P)"y guch that

h<Rh, R, ) <20l and [Rh]a, <2|M|,

™ (wPP+/P) Y = T (wP /Py

(4.58)

(wP®+/p
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Then (4.57) and the second estimate in (4.58) yield

P

IRAN Loy yrivs sy < 2NgWI - (4.59)

Assume first that pg < p+. Pick

pp+/p) Tp—Tpgy

v = w P®+/20) (Rh) Po®+/p0) (4.60)

Considering p < po, (4.56), and the last estimate in (4.58), we use Lemma 2.5 and
(2.1) to get vPo®+/P0) € A, with

rpo—]
[UPU(P+/P0)’]AIPO < [wp(p+/P)/]Ar,, [Rh]x{rrﬁ < Cl[wp(m—/P)/]Afp*1 ’ (4.61)
™

where the constant C; depends only on n, p, po, p—, and p, which together with
Lemma 2.6 part (b) implies

V7 € Apysp_ OV RHp. oy (4.62)

On the other hand, note that

1 1 1 1 1 1
- = = - — === —, (4.63)
pp+/p) pop+/p0) P P04 9o
1 1
T—I’/:_—_:#’ (4.64)
p+/p) p— p+  po(P+/po)
provided
/ 1 _1 1 _ 1
T,,:(p_+> <£_1>+1: R (4.65)
P/ AP- » R » R

which also implies

T ™ — o [ L 1T-t/t ]
Ly LN |- —L
P po+/p0)  "Lp o potpi/po)

1
1o/ 1 e
- T,,[— + <— - —)(1 - —”T)] 2 (466)
4 po P+ ~ s Po

By (4.57), the first estimate in (4.58), (4.63), and (4.66),

3|5 1-

17 i ppy/p) Th—Tpy
lgvllpro = H hp w(p+/p) I Po(P+/p0) (Rh) Po(P+/p0)

LPo

—
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=T

2 Nr_(__t 1
)P ot ro) g P(p+/p) [F (p(p+/p)/ po<p+/po)/)]

= ||Rh||”°

L (wP®+/p)y’

4.67)

Po

To proceed, we denote % = é — qlo > 0. Then in light of (4.60), (4.63), and (4.64),

it follows from Holder’s inequality that

pp4/p) p—Tpy ™ (1_ P(P+/I7)//)
I fwlre = H [f w Po®+/P0) (RI) Poe+/poY ] [(Rh) p(p4/p) w] Po(p+/po)
L4
p 1_ _pey/p)
< I fvllpao |[[(RR) P®+/7 w] ™ polei/ro)
Lr
;a1
= I/ vllao | [(RR)PwP/PJa a0 |
1
(i1
= [ fvllLwIRA] ,pjw,,(p+,p)/)
Furthermore, invoking (4.61), (4.62), and (4.54), we arrive at
/ p( L
| fwlze = @R, YlgolnIRALS
< @([U[’O(P+/[’O)/] )||Rh|| ”(%Jriii)
Afpo fp(wp(p+/p) )
p / M
=27 & (1w T gwliL, (4.68)
19
11 _ 1 1
where we have used (4.67), (4.59), and that P 7= z qO
Let us next treat the case pp = p4. Choose v := (Rh) P+ ?—_ Then it follows from
Lemma 2.6 part (a) that
1— 20
V0 = (Rh) P- € Apo/p- VRHoo = Apyjp_ N RHp, /poy (4.69)

with

A1 A (g —5)
max {[v7]a, o [071Re ) < [RALY S [wP®/P) ]A” DU 470)

P

where we have used the last estimate in (4.58) and (2.1). In the current scenario,

Tp 1 1 1 1 1 T 19

—+———=‘L’P—— _—— = — = —, (471)

P P+ P p J N A P+ Po

polps/py —11= L2 = PPy, 4.72)
P+—pP P+—P

11 11 1.1 t_ 1 @)

r - q q p po p p+ ph+/p)
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L1\
and r|—— — )| = —F =1,. 4.74)
p- py ! i

In view of (4.57), (4.71), and (4.72), there holds

Tp

T ’ J S
lgvlizr = |17 w®/P = REyw o | < RA S (475)

L7 (wP®P+/P)y

Hence, invoking (4.69)—(4.75), Holder’s inequality, and (4.54), we deduce

I Fwlee = | [ £ R |[RAY P55 w]

11
< [l fvllzao || (RR)P-

1
P( po)
L (wP®+/P))

Ld

= [ fvllzao IRA

1

Po Po G
< ®(max{[v™]a, , - [V ]RH(H/I,O)/})”gU”LPO||Rh|| L w p(p+/,,)/)

.
Po r
= (max{[v71a s 0 NRm, 0 DIREN, oo,

,J_ o ——5-)
<2P <I><C1[w”(p+/p) 14 o= )||gw||L1’,

™?»

where (4.59) was used in the last step.
Case II: g9 < g. By Lemma 2.6 parts (b) and (c),
1

w e Ay with [wla, = [wP®+/P 77T (4.76)
1

™

T This and Theorem 2.2 yield that there exists an
P— P
operator R : L% (w™) — L (w™*) such that for any nonnegative function hoe

L% (w™),

where s = p'(p"_/p’) =

~ ~

W< R NRRN g <2000 o and [REDA, < 20M1 g o (477)

9)’ )
1 1 _ 1 _ 1 _ I : :
erte TN T =™ ’ > 0, equivalently, e qo = qO.By duality there exists
a nonnegative function 1 € L9-% T (w?) with ||h|| % () < 1 such that
(0(
90 _ | £490 q0 q
w hw?dx. 4.78
Il =10, = [ foht (4.78)
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’
s+q _ p90

- N\ F (s+q) . .
Setting H := R(h P90 p w™ P , we utilize (4.77) to obtain that h < H,
and by (2.1) and (4.76),
r s+q r s+q

1
[H/pqo w P ]A = [R(h a0 4 T )]A < [w—s];p/*l - [wP(PJr/P)']Arp’ (4.79)
1 ™

1

provided that
r s+q /r /r
7 7 T4 Tp4a
IRrow ™ || o =h"S =kl
L7 (w™) L0 (w4) L9790 (w4)
which also gives
s stg 290 Gy || L 4
IHI » = HR(h’P"Ow % ) . <2 | hhw
L 90 (w9) Ltp (w=*) -

g 1
Now picking v := w9 H % , we see that by (4.80)

1
lvw Ml = IHI®, <27 <2
L 90 (w9)

S 17
qu <"
L' (w=s) —
(4.80)
(4.81)

To proceed, we observe that pg < p < p+ and use (4.65) to deduce that

1 1
T, 0 P T T
Ty o/ po)'/r = —F P = - i1(“?)2
P 0 TR P g
-1 1 1 1 g -1l 1
p(by/p) v p s po(p+/po)  p-

which in turn implies

Tp — Tpo
_ 4.82
E— (4.82)

1
= —, (4.83)

Po S0

ps/p) Ty — 1

9 _q9_s_, 5 <1 1) <1 1) s
- e =l—-=-=sl-—-—=)=sl—— — )= — = .
g r r r s r p—  po so  po(p+/po) tp —1

Hence, it follows from (4.82) and (4.84) that

(4.84)

; r stq
pPoW+/p0) w(%*%*%)PO(F@/PO)/ (H a0 4y T )T;PO(P+/P0)’/r
rpo—l r s+q Tp—Tpy

= (wp(p‘F/p)/)?(Hr[/JqO w ) =1

) Birkhiuser
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which along with (4.56), (4.79), and Lemma 2.5 part (b), yields

Tpo—1 _ Tp—Tpy
[UPO(P+/P0)/]A < [wP(P+/P)/] ’1?*1 [H r;rqo wY:—Tq] T!”lo < Cz[wP(P+/P)/]
Ty — Az, Ay — Aq,

(4.85)

where the constant C, depends only on n, p, po, p—, and p. By Lemma 2.6 part (b),
this means that

v € Apysp- OVRHp, pyy- (4.86)

With (4.78) and (4.86) in hand, the hypothesis (4.54) implies

€1
a0 ’
Ifwiize < ( /R O H w dx) = I fvlizao < @(PPHP, Hligulle

T

= @ ([P @ /P ligwlze fow™ L < 270 S(ColwP PP 1, YlgwliLe,
(4.87)

ks~

where (4.81) and (4.85) were used in the last inequality. As a consequence, (4.55)
follows at once from (4.68) and (4.87). O

Proof of Theorem 1.1 Fix v’ € Ay NRHt o i =2, ... m. Set

FITL, vi

Fir=yF,G) = =r—"7"7"",
: {( ) (Hizznﬁv,-um

fl) : (faf1’~--7fm)€‘7:}'
By hypothesis (1.2), we see that for every vi“ € Aq1/p( N RH(pT/qu)’

Ifvllze
[T I fivill Lo

m
Fv = <1_[d>~ vl v
| FuillLe =11 i([v] ]Aqi/p;ﬁRH(p;r/q’_),)”fl tliLa
i=

m
=[T®i(vfla, , arn,., IGilLa. (F.G) e Fi.

/ (Crarny
i=1

where % =37, % and v = [[/_, v;. This verifies the hypothesis (4.54) for the
family 7. Then Theorem 4.8 implies that for every p1 € (p;, pT) and every wf le

Appr D RHpt ),y
Il fwi [T/ vill Lo - .
— = Fwillpn <M | | @i(vf1a  _nrE GwillLm
l_[;nzz Il fivill Lai I I l_l_£ l( b /v; (P?—/(h‘)/)” I
m
=M @, ([v w , (F,G)eF,
[T (v ]Aqi/p;ﬂRH(p;r/qi),)||fl tler, (F,G) € Fy

i=2
(4.88)
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1 1 _1_ 1
wherea—ﬂ— 7 " o
L Ty
N = oM }d>1(C1 [wfl]zl<pl’fRRH N /), (4.89)
P1/p] (| /rD)
-1
max {1, :q‘_l Looa <t
yl(pla CIl) = q1 (Lpl_ L) _ + (490)
Thl_l Py p;r o _pl ’

Considering (4.88), we have

m m
wal [Toi] =oulfiwilen [T, orm ., )fivilla, @91
j=2 L% i=2 . P
forall (f, fi,..., fm) € F,forall p € (py, p}), forallw!! e Ay ORH )y

and for all v’ € Agp- DRHpt i =2,...,m.
R S gi
Now fix p1 € (p;,p]), w;' € Am/pl-ﬂRH(pT/pl)/,andvi IS Aq,-/p,.‘mRH(pf’/q,-)”
i=3,...,m.Set

Juwi [T/ vi
fz:z{(F,G):z( — ) AL f) € F i
I frwille TTSs I fivill o "
It follows from (4.91) that for every U;zz € qu/p; N RH(p;/qz),,

I fwi [T/ vill o
1
I frwillze [Ti3 Il fivill zai

[ FoallLs: =
m
=M | |q)i([qu]A nrH_, )If2v2le
- - b /vy (0" /a;)
=

m
=N @, ([v
111 i([v; ]Aqi/pi_ﬁRH
i=

JIGvallpe, (F,G) € Fo.

(CR

Invoking Theorem 4.8 applied to F3, we have that for every p> € (p, , p;r) and every

wi? e A NRH

p2/Py (3 /p2)">

I fwiws [T/5 villzs

IAvwillie [Tizs I fivill o

= [[Fwzl L2

m
<MNN, 1_[ ;i ([v]14 /o~ NRH, JIGwall e

J 4 w /ey
i=3

m
=M [ [ @i (o4,
i=3

i/pi,mRH(p;r/qi),)||f2w2||LP2, (F,G)eF, (492

) Birkhduser
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1 1 _ 1 _ 1
where 52 P2~ s1 Q@

‘ﬁz — 2max P q2 }q)z(c [wPZ]Vz(PZ q%)RH )’ (493)
p2/vy ®F/p)
—1
max {1, 22—}, ¢ <pj,
(P2 @) =1 ( 2T ) ga=pt (4.94)
T -T\py pf) 2 =P
It follows from (4.92) that for every pi € (p;, p.+), for every wip e A pi/pT

RH(p+/p),,l=12andf0reveryv eA/ ﬂRH(p+/q)/,]=3,...,

m
walwz [1v;
Jj=3

willyai,
7nRH(pj.r/qj)’)”f] j”L Jj

2 m
i
<[l fiwillen [] ®;(v;'1a
L52 el j=3 CIJ/PJ

forall (f, f1,..., fm) € F.

Inductively, one can show that for each k € {1, ..., m}, for every p; € (p; , p+)
for every wip" S Ap,-/p N RH(p+/p ) i €{l,...,k}, and for every v? S Aq /b7
RHgt)q,y>J =1k +1,....m},

k m )
Hf]'[w, < [Toulfiwillen [T @507 _arE . il
LSk o - qj/p; (0} /aj)
i=1 Jj=k+1 i=1 Jj=k+1
(4.95)
for all (f, f1,..., fm) € F, where 5o := ¢,
1 1 1 1
_——= = (4.96)
Sk Pk Sk—1 qk
Ny = 2m'clx{ P K }q)k (Ck [ ]Vk(Pk l]l%)R )’ (4.97)
/Py CrarIng
-1
max {1, T‘”‘_l boooa <p)
a0 =) L 1) = pt (4.98)
=1\, p ) I = Pk
To conclude the proof, we take — == 1 ;> and then (4.96) is satisfied. The

inequality (4.95) immediately glves (lp3) as de51red
It remains to show the vector—valued inequality (1.4). Fix r; € (p;, p;L), i =
1,...,m,andset%=Zl 15 . Given N € N, we define

N . i(p, Fi,...,Fy) = <( > |fk|r)%’< 3 |f{‘|n)%,

k| <N [k|<N
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(> |f,f;|’m)”") U S ke J-'}.

|k|<N

By (1.3),forall (F, Fy, ..., Fy) € ]—';N,andforall weights vl.r’ S Ar,-/p.’ ﬂRH(pf/ri),,
i=1,....m

IFllror) = H( S sty

[k|<N

( DO Pl i )

L) k| <N
1

rl Vi (ri gi) kyr "
( Z Hcl l¢> ( ] /7ﬂRH +/ )/) ”fl ”L’i(viri))

k|<N i=1

1
. ri1Vi(ri gi) kyri K
¢z,lq) (C [U ] s 7ﬂRH +/ )/)< Z “f ”L’t (vl.ri))

k| <N

=

—

1

Il

I
-

@L]@ (C [vrr]}’t (7 zlﬂRH +/ )/) || F; ”Lri (vi’i), (499)

!
7. T
max{-L,-L

where €; | = 2 %4 ) This corresponds to (1.2) for the family .7-";N and the
exponent ¥ = (r1, ..., I'y). Then the estimate (1.3) applied to .7-";N gives that for all
exponents p; € (p; , p;’) and all weights wl.p" € Api/pf N RH(pfr/pi)/, i=1,...,m,

m

1 l(l 1 l(l l)
1oy < [T €€ o€ wf 14" i%VRZI(‘i/ VEN gy, (@100)
i=l1 !

’
Tp: T
max{ 2L, -LL
Pi

for all (F, Fy,..., Fy) € }1 where &; 5 := 2 i }. The estimate (4.100) in

turn implies

1 m
kyr\ 7 < Q C PiVi(pisri )y,(rl qi) ‘ ri\’i 4.101
H(V;N |f | ) LP(wP) - ll:[l ( [w ] ﬁ'/F (F+/ >/) <Z |f | ) LPi (w(fi) )
™, l’z /i
for all {(fk flk’ . frﬁ)}k C F, where Q:/ — max{ , }+max{ } , and the

constant C; depends only onn, p;, g, ri, p; , and p Lettmg N — oo, we conclude
(1.4) as de51red O

Proof of Theorem 1.2. Lets; € (p; ,p;),i = 1, ..., m, be such that% =", % <
1. It follows from (1.5) and Theorem 1.1 that for all vfi S Asi/p¢ N RH+ /0y
i=1,...,m,
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1 l(l 1
TPl < o] o (G P k)i (4102
i=1

where both Cp and C; depend only on n, s;, g;, p; , and p
Fixb = (by, ..., by,) € BMO™ and multi- 1ndex o € N’". Given vfi € Asl,/pf N

RH(pgf/S’_),, i =1,...,m,in light of Lemma 2.6 part (b), we see that

si(p;/s)!
v

; € Afxl_, (4.103)
which together with Lemma 2.4 yields that there exists n; € (1, 2) such that
Y L RN R ot ey
nl/ ~ I:vfl (P, /Sl) ] S 1 , and I:v;]tsl (P, /St) ]77, S Z-L'J,l_ [v;t (F', /Sl) :I
Ar, Ar, Ag,
(4.104)

Then in view of (4.102)—(4.104), Theorem 2.11 appliedto p := s > 1, p; := 5,1 :=

Ty, and 0; := s5;(p; /s;), gives that for all v}’ € A NRH+ gy i =1,...,m,

si/p;i

m 1
= . isi(p7 /i) V77 Vi (sinqi)
1T Bla (Al sy < Co [[ @))% @ (Ci Lo/ il ol fill s o,

i=1 i
si(p; /v)’ o max{l, 77} 5i(pi /i) 77i (51240
=Co 1_[[ (e R e [ P T
(4.105)
where C; depends only on n, s;, g;, p;

parameters and additionally on .
Observe that foreachi =1, ..., m,

; »and p , and C¢ depends only on the same

a, max{1,

(1) =1t i o) ®; (C; 17414y is an increasing function. (4.106)

1.
Now with (4.105) and (4.106) in hand, we use Theorem 1.1 applied to s; and Cj' ®;
in place of g; and ®; to deduce that for all exponents p;,r; € (p; , p;r) and for all
weights w/" € Ay p- VRHy+ i =1,...m,

m
2 p,(P /P i (pi.si
ILT, ble(llrary < Co H (Cf Tw L) i gt i o iy
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where Cy depends only on a, n, p;, gi, si, p; , and p:r, le depends only on n, p;, s;,

pi s and p?‘, and

<c[]% (c;/ [w
1

[’i])’i([’i,"i)Vi(’”i,si) )
i 1A ~NRH
b ire; w;/p)

H(Z bl (For )
k

m

LP(wP) ;

1
< biligo | (o147
P LPiw")
where % =y, r_l,-’ C depends only ona, n, p;,qi,ri,si,p; ,and p;", and C/ depends
only on n, p;, ri, si, p; , and pj. This completes the proof of Theorem 1.2. O

5 Applications
This section is dedicated to using extrapolation to prove quantitative weighted inequal-

ities for a variety of operators. This also shows that extrapolation theorems are useful
and powerful.

5.1 Bilinear Bochner-Riesz Means

Given § € R, the bilinear Bochner—Riesz means of order § is defined by
B (fi, () = /R A= 181P = 18P 7i6) )™ EH g dg,.

Theorem 5.1 Letn > 2 and § > n—1/2. Then for all p; € (1, 00), for all wipi €Ay,
forallb = (b1, by) € BMO?, and for each multi-index o € N2,

2
i1Bi (8
18° (o llzrany S TT00l Y4 1l o e (5.1)

i=1

2
i17i (8 i
IB°. bl (fr. lLrany S [Tl T8 10iliEmo L il sy (52)
i=1

whenever% = % + % < 1 with sy, sy € (1, 00), where w = wiws, % = % + é,
1
Py §>n—1/2,
Bi@® =71
max{1, ﬁ}’ d=n—-—1/2,
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and

ni(8) = i( i+ 1)max{1, Y,—]’ pl_l, Si.__ll}, §>n—1/2,
i(8) =

(o + l)max{l l,p__l,sl_—l} §=n—1/2.

Proof Let us first consider the case § > n — 1/2. In this case, it was shown in [58,
Lemma 3.1] that

1B (f1, L)) < MfIx)Mfr(x), x €R", (5.3)

where the implicit constant is independent of x, fi, and f>. Combining (5.3) with (2.1)
and Holder’s inequality, we obtain that for all p; € (1, co) and for all wp ‘e Ay,

1B (1, Pllerwry S H[w"'] Ll iy (5.4)

where w = wjw, and % = pi + %. Then it follows from (5.4), Theorem 1.2, and
Remark 1.4 that for allb = (b1, by) € BMO? and for each multi-index o € N2,

2 1 s;—1
. (@it 5 p) max (1, & =
1B Bl f1. ) Loy S [Twf1, e RN 16i Igio i s
whenever s1, s € (1, 00) satisfy % = % + é <.

Next, we turn to the case § = n — 1/2. Given ¢1 € (0, %), and gy > 0, we write
3@) =U+end—-60)+0n—1/2+¢e), 0€(,1). 5.5
We first claim that for any u, uy € Ay,
1B (f1, ey < d1(en)' ™ dalen)’ H[u Ul fill 2y, V6 € 0. 1),
- (5.6)
where u = uju; and the constant ¢, ¢, are non-negative function and ¢; is increasing.

Indeed, (5.6) can be obtained by following the proof of [58, Theorem 1.8]. We here
only mention the difference:

sup [Y(in)| = pr(eD) 1Al Loorn) 1_[ I fill 2wy

teR i=1

sup V(1 +in)| < ¢a(e2) 1hll oo rn) H[u 1 1 fill 2 @y s
te i=1

Birkhauser



7 Page 56 of 90 Journal of Fourier Analysis and Applications (2024) 30:7

provided the sharp estimate for the Hardy-Littlewood maximal operator in (2.1).
Now let v%, v% € Ap, v := viv2, and by Lemma 2.4, there exists y € (0, 2’”’3)
such that

2(1 1
w7 7, = 2202 (5.7)

2(1+y)

Then, (5.6) applied to u; = v, ,i =1, 2, gives the for any 6 € (0, 1),

2
- 2(1+
1B fr f)lraasnsy < dr(en' ™ gaten)” [Tor 10, 1Al 2 20000,
i=1

1470
< gi(en)! P (er)’ 24(1+’/)01_[ 75 Ifill 220000,
i=1 !
(5.8)

where (5.7) was used in the last step. Picking 6 = (1 + y)" L e =1/4,and &r =
(n —17/4)y, we utilize (5.5) and (5.8) to deduce that §(8) =n — 1/2 and

2
IB"2(f1, ey S T [071a 1l 20), (5.9)
i=1

where we had used that ¢ (1) =0 ¢ (e2)? < max{1, ¢1(1/4), ¢ (n)}, and the implicit
constant depends only on 7.
Having proved (5.9) and invoking Theorems 1.1 and 1.2 applied to p;” = 1, pt =

1

o0, ¢i = 2, and ®;(¢) = ¢, we conclude (5.1) and (5.2). O

The next result considers the case § < n— %, which can be viewed as a complement
of Theorem 5.1.

Theorem5.2 Letn >2,0 <6 < n—%, and 0 < 81,62 < %besuchthatb‘l—i—éz < 4.

Set py = —nf%l, p, = —nf§52, and pf = p;‘ := 2. Then for all wi2 c AZ/P,-_ n
RH iy 1= 1.2,
2
B )l iy S H o R o Ll 2 (5.10)
Moreover, for all p; € (p; , pj‘) and for all wfi S Ap’_/p; N RH(P,»*/pi)” i=1,2,
1B (1, P llerary S H[w’" “(_’" S, ML (5.11)

1 1 1
where w = wiwy and - = — + —.
12 P T m
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Proof We modify the proof of [74, Theorem 2] into the current setting. First, choose a
nonnegative function ¢ € 4:°(0, oo) satistying supp ¢ C (%, 2)and ) jen 9 (2)s) =
1 for any s > 0. For each j > 0, we define the bilinear operator

o0 oo
Tj(fl,fz)::/ / P30, M) Ry, f1 Roy o X' 05 dny dia,
0 0
where
P(s1.52) == (1 =57 =598 07 (1 =57 — D)),

Ry f(x) := /S - FOrw)e¥ ™ do(w), A > 0.

Here do is the surface measure on S"~!. Then one has
B =31 (5.12)

Given j > 0,let B; = {x e R" : |x]| < 27047} with y > 0 chosen later, and split
the kernel function K ; of 7 into four parts:

K} (vi,y2) = Kj(y1, y)1p;(y)1g; (32), sz'(yuyz) =K. y2)1; (y)1pe (32).

K} (1, y2) = KO, y2)1pe(yD1g; (v2). ki1, 2) = KO, y2)1pe(yD1pe(y2).
Letting Tf denote the bilinear operator with kernel K f, ¢ =1,2,3,4, we see that
_ 7l 2 3 4
Tj=T +T;+T +T;. (5.13)
Note that a straightforward calculation gives

IK(xr, x0)| S 277277 (0 4+ 27 e DV A + 27 )™, YN >0,
(5.14)

and

S =nl Lf & — y)I
E oo dY
s (14+27 flyI)N ¢ Jakriten <y <akriviten (14277 yDN

(2k+2+j(1+y))n
_— d
- = (1 4+ 2k+jr)N é(x’2k+2+j(l+y)) 7l dy

o0
< 3 2 KN == Ny =7 pg ()
k=0
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<27 I WNy=HEImpr £ (x),  provided N > n.  (5.15)

In view of Theorem 1.1, it suffices to prove (5.10). Now let g1 = ¢q2 = 2, v%

ql/p n RH(W/%)/ = Al+2‘31 N RHoo, and v2 € qu/lJ N RH(N/C]Z)/ = Al-;-z‘52 N

R H,. Considering (5.12)—(5.13), we are reduced to showing that there exists ¢ > 0
such that

TS i PNy S 279 H[v 1a,,,-nRH

i=1

||ﬁ||L2(U12)’ ]209 62172’374'

w2y

(5.16)

To control T;‘, note that v} € A, 2 C Azand v} e A, 2 C A since max{n +

281, n+28,} < 2n. Using (5.14), Cauchy—Schwarz inequality, (5.15), (2.1), and (1.1),
we have

4 < [filx =yl [falx — y)
I (fl’f””“(““/w/;/; (4 2Ty (1 + 277 [y p¥ P2V

1
[ f1(x — y1) 2, 2
: </ </B mdyl) vi (x)dx>
1
[ f2(x — )| z, 2
X </,, (/ng wdyz) vz(x)dx>

S 2N M A a2 M2 22

—&jr.,2 2
< 278 [v1]A2[v2]A2||f1 ||L2(v%)”f2”L2(v§)

<27 ﬂ[v o RH o il 12029, (5.17)

w2y

where in the second-to-last inequality we have picked N > 0 large enough so that
Ny > (1 4 y)n, and then taken 0 < ¢ < Ny — (1 4+ y)n. Similarly,

1

3 |fi(x =y 2, )
177 (frs Py S </ </|y.|zzf<'+y> A+ 27D +2‘j|y1|)Ndy]> vy (x)dx

1
| f2(x — ) 2, >
. </R (/Iyz|<2j(1+y) (14277 [y2hN dy2> v

S 2 W=t MM a2y 1M 2 202

< 2/ g 3ol il 22y 1 2 22y

2
“ T T0ia,,, v 1 ill 22 (5.18)
i=1 ' '
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where we have chosen N > 0 sufficiently large so that Ny — 2(1 + y)n > e.
Symmetrically to 77(f1, f2), there holds

w2y I1fi ||L2(vi2)’

2
2 —&j 2
177 e S 27 [, ke
i=l

Finally, to prove (5.16) for le, we proceed as follows. For fixed y € R", set

Bi(y,r)={x e R": |x — y| <2/04)r} with r > 0, and split f; and f; into three
parts, respectively:

fi=fir+fiz+ fiz, and for= o1+ oo+ fr3,

where

fl,l = fllgj(y’%)a f1,2 = fllBj(y,%)\Bj(y,%)’ f1,3 = fllBj(y,%)"’
f2,l = leBj(y,%)’ f2,2 = f2lBj(y,%)\B_,-(y,%)’ f2,3 = leBj(y,%)"

We should mention that each f1; and f2;,i = 1, 2, 3, depend on the variable y. Let
x € Bj(y, %).Since f1,31s supportedon R"\ B; (y, %),itfollows from f13(x—y1) #0
that [x — y; — y| > 227049 and so |y;| > 2/(47). Noting that the kernel Kjl. is
supported on B; x Bj, we get le(f1’3, f2) = 0. Similarly, le(fl, f2.3) = 0. Hence,
for any x € B;(y, JT),

T/ (fi, )®) =T} (i1, L)@ + T} (fir, f22)(x)
+ T} (fr2, L) + T} (fiz, L)@, (5.19)

Since f1,2 and f3 > are supported on B (y, %) \ B;(y, %), it follows from f] 2(x —
y1) fo.2(x — y2) # O that |y;| > 2/0+") =1 and |y,| > 2/0+Y)=1 Then, repeating the
proof of (5.17) yields

2
1 —&j 2
1T} (fr2: 220l 00y < 27 [ T1i I, ,-0RH o 1fi2 ) (5:20)
i=1

Since f1,1 is supported on B;(y, %), it follows from f1 1(x — y1) f22(x —y2) # 0

that |y;| < 2/ and |y,| > 2/04Y)~1 Thus, we calculate much as in (5.18) to get

2
177 s 220,y = 27 0704, , ke i D22y
i=1
(5.21)
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Symmetrically,

2
1 —&j 2
; < : ; .
1T} (fras L0l 01y <2 q[”l 14y R H o i3l 202)-
1=

(5.22)

It remains to consider le(fl,l, f2.1). Given m € L®(R), set Tmh = fol m(X)
R, h A"~ 1 d). Then [74, Lemma 3.1] states that

I Tmhll 2@y S Imllze@n hliLr@n, 1= p=<2. (5.23)

Letr =1+ 28,/n. Then v% € A N RHy. Using (5.23) and Holder’s inequality, we
have that for 1 € Lz(vg) with supph C B (y, 43'1)’

2\2
Tzl 2, 1y < Tl 2 0,3y (55 5P 3)
Bj(v.7)
1

1 2
S Il @ 03T M2 g o (ﬁ n v3 dz)
’ JASEY

1 r=1
S Imlloe@n w2l g, 10v2ll 25,3 1B (s 3/4)1 2

r—1 1
y (][ U;(l_,,)dz> : (][ U%dz>z
Bj(y.3) Bj(y.3)

1 1
(1 S 212 212
2R | ooy (W3 g (313, IR 2 02

J1+p)8 oo [2
<2 Il Loo (i )[Uz]qu/p;ﬂRH(p+/qz>/ ”hUZHLZ(Bj(y,%)’ (5.24)
where the definition (1.1) was used in the last inequality. Similarly,

i(147)8 2
T vill 2,19 S 2/0+7) iz vila, | —nrHg 0 1AV 2850, 3))-
(5.25)
Observe that
T} (fi1. o)) =Tj(fi1. 1)), x € Bj(y, 1/4). (5.26)

As argued in [74, (3.7)], we utilize (5.24)—(5.26) to get that for any fixed 0 < « < §,

1
”T] (fl,la fz’l)v”Ll(Bj(y,i))

2
—j(6—K)+j(d+y)(51+6 2
S 270D T2, ka2,
1 13

i=1
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2
e 2
S/ 2-¢l H[vi ]A2/pf ”RH@lfr/zy Il fi1 ”LZ(viZ)» (5.27)

i=1

provided choosing «, y, € small enough so that § —k — (1 +y) (51 +52) > €. Summing
(5.19)—(5.22) and (5.27) yields

2
1 —&j 2
”T] (f1, fZ)UHL](Bj(y,%)) 5 27 | |[Ul~ ]Az/pifﬁRH(p?ﬂ), ”ﬁlBj(y,%)”U(U,-z)' (5.28)

i=1

Now, integrating the both sides of (5.28) with respect to y, using Cauchy—Schwarz
inequality, and interchanging the order of integration, we conclude

2
1 —&j 2
IT; (frs Py S 2 8]| |[v,- ]Az/pi,mRH

®; /2 il 202 -

i=1

This shows (5.16) for le and completes the whole proof. O

5.2 Bilinear Rough Singular Integrals

Given Q € Lq(S2”’1) with 1 < ¢ < oo and sz,l,l Qdo = 0, we define the rough
bilinear singular integral operator T by

Ta(f. §)(x) = pv. /R Ko~ y,x — 0 f()g(dydz,

where the rough kernel K¢ is given by Kq(y, z) = W

A typical example of the rough bilinear operators is the Calderén commutator
defined in [14] as

A(x) — A(Y)
Ix — y|?

Ca(f)(x) = p~V-/R f(ydy,

where a is the derivative of A. C. Calderén [15] established the boundedness of C, in
the full range of exponents 1 < pj, p» < oo. It was shown in [14] that the Calder6n
commutator can be written as

Ca(S)(x) = P‘V~/

Rx

. K(x—y,x—2)f(ya(z)dydz,

where the kernel is given by

e@) —ez—y)  Q©,2/I(y, 2D

Ko, = )2 BTN
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where e(t) = 1ift > 0 and e(t) = 0 if t < 0. Observe that K (y, z) is odd and
homogeneous of degree —2 whose restriction on S' is Q(y, z). It is also easy to check
that 2 is odd and bounded, and hence Theorems 5.3-5.4 below can be applied to C,,.

Theorem 5.3 Let @ € L®(S*Y) and .1 Qdo = 0. Then for all p; € (1, 00),
for all wipi € Ay, forallb = (b1, b) € BMO?, and for each multi-index o € NZ,

1
ax{l,pi—_l}

(5.29)

3m
1Ta(f1, 2 Lrwr) < [wipl]Ap’,

—

il

i=1

¢ —1
(o3 max(l, L, L S :

Pi—1'p, o
[w?] P T bl

Tty

[T, bla (f1, 2 Lrwr) S Wi 4, Mol fill i !y’
i=1

(5.30)

1._ 1,1 i — 1_ 1,1

whenever 1= 5 + 5 = 1 with sy, s2 € (1, 00), where w = wiwy and b= + o

Proof Pickingr; = rp =r3 = 1and p; = p2 = q1 = g2 = 2, we see that (2.32)
holds and p; € (1, 00),i = 1, 2. Then Lemma 2.8 gives that

1 1
[0]an, < [wil, w31} . (5.31)

On the other hand, it was proved in [24] that for every W = (wy, wz) € An2),

3 3
1Tl 22y x 22 21y S 1QAL2[BT ) S IQ1[wil} 3]}, (532)

where (5.31) was used in the last step. Thus, (5.29) and (5.30) follow at once from
(5.32) and Theorems 1.1 and 1.2 applied to p;” =1, pf =00,q;i =2, P;(t) = t%. O

Theorem5.4 Let @ € LI(S*"~Y) with ¢ > % and [g.-1 Qdo = 0. Let my <

p, < pf < 00 I = 1,2,besuchthatl, < L .= L+L+ < 1, where
by

g P+ T pf

24n+3g—4 24n+ - ;
Ty = max {%, Sn”+qq } Then for all p; € (p; ,pj‘), for all wlp € Api/p,»_ N
RH(p+

_ /pi),,for allb = (b1, by) € BMO?, and for each multi-index o € N2,

oL —_1_
& pfr)

2
i (07 /pi) ;
1Tt ey € [T 0, " il i (5.33)

i=1

2
PP /P i (pi.si ;
ITe. Blo(f1. D) llrar < [ ] Wi ([w, LaP ) 1bili g i o e
i=1 : '

(5.34)
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1 ._ 1 1 g - o+ _ 1 _ 1 4, 1
whenever T =5 + 5 = L with s; € (p; ,p,"), where w = wiwy, = + oy
1 _ 1,1
T r + r’

p% 1 — L o; max {1 1 l}+9(i—%r)

0 = max { —— 5 p;r , and V() =t i e
i=12| L 171 _ 1
p; pi P P+

Proof By assumption, po := min{p| , p, , p’.} > m,, which together with [49, Theo-
rem 1.1] gives

|<TQ(flaf2)’ .f3>| g sup AS,(po,po,po)(fl? f27.f3) < sup AS,(pl’,pZ’,p;)(fh f27 f3)’
S: sparse S: sparse

(5.35)

forall fi, f2, f3 € €>°(R"). This and Theorem 5.6 below imply (5.33) and (5.34) as
desired. O

Remark 5.5 In Theorem 5.3, the exponent p,; > m, can be relaxed to p; > m,, at
the cost of a larger exponent appearing in (5.33) and (5.34). Indeed, to get the first
inequality in (5.35), it requires that pg is strictly greater than m,. When p;” = 7,
and wlp" € Api/pf N RH(pjr/p,-)” Lemma 2.4 implies that there exists p;,” < Ff < pi

such that w!" € A N RH+ ),y = 1,2. Then po := min{p,, b, , py} > 7.

pilP;
Combining this with Lemma 2.4 and the result in the case p;” > 7,4, we can formulate
similar estimates as in Theorem 5.3. Details are left to the reader.

Recall that a family S of cubes is called sparse if for every cube Q € S, there exists
Ep C QO suchthat |[Eg| > n|Q] for some 0 < < 1 and the collection {Ep}pes is
pairwise disjoint.

Given a sparse family S and § = (s1,...,5,41) Withs; > 1,i =1,...,m+ 1,
we define the (m + 1)-sparse form

m+1 %
A1 fur) = Y10 T] <]{2|fi|ﬁfdx> .

QeS i=1

We are interested in those operators 7 that dominated by certain sparse form

T (fiseeos fn)s fnt1)] = CE) sup Ass(fis .oy fins), (5.36)

S: sparse
forall fi, ..., fiut1 € € [R").
Theorem5.6 Let 1 < p, < p;r < oo, i =1,...,m. Assume that the operator T
satisfies (5.36) for the exponents s = (py, ..., p;,,p’), where i =", pL* <
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1. Then for all exponents p;,r; € (p; ,p+) and for all weights u)p’ € A
RH iy

Pt/p,

1
=)

m
2 pi(e; /pi)
ITPOllerawry S TTHw; JATP.

il iy (537)
i=l1 !

1
1 n + ——)Vi(pi.ri) Nt
7j r pi(p; /pi) p; Jir\ 7
(i) l (1) ,
H ZJ: Lr(wr) l:[ Arp’ 2]: l LPi(w]")
(5.38)
where
= i —= — —= —, d 6= max { ——, LA
v sz ;P: r ;Vi an lgig)in{%_i_ l_L}
= = = p; pi P P+

If in addition T is an m-linear linear operator, then for the same exponents and
weights as above, for allb = (by, ..., by) € BMO", and for each multi-index o, we
have

3

- Pi(P:r/Pi)/ i (PisSi i
T Bla(DllLrawry < [ Wi (1w} T 1B o L fill oy (5:39)

and
v - p(p*/p (piori)Vi(riusi)
reNILAYE i i) i (Pi i) Vi(risSi
H(Z|[T,b]a(ff>|) < wilw Jrp Prorn sy
F Lrwr) i "
n
< il | (D 1417)" L (5.40)
j Ll
whenever% = Ziﬂlé < 1 with s; € (p;,p;), where V(1) =
o; max{l, —}+9(7——)
t
Proof Let p; € (pf,p:r) and w!" € A g VRHe i =1, m. By density,

we may assume that fi, ..., f, € €-°(R") in this sequel. By Lemma 2.8, one has
w e Ap p with

1 1

5 - il /o) P T
(W], < ]_[ ]A% : (5.41)
Then it follows from (5.41) and [76, Corollary 4.2] that
m
1T (oo ooy S 01 TTAill o s (5.42)
i=1
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Thus, (5.37) is a consequence of (5.41) and (5.42). With Theorem 1.1 and Remark
1.4 in hand, the estimate (5.37) in turn gives (5.38). Additionally, (5.39) and (5.40)
follow from (5.37), Theorem 1.2, and Remark 1.4. The proof is complete. O

We close the subsection with the following remark, which shows Theorems 1.1-1.2
and Theorem 5.6 contain a lot of applications. Details are left to the interested reader.

Remark 5.7 Now let us present some examples in terms of the hypothesis in Theorem
5.6.

e In [9], Bernicot et al. established a bilinear sparse domination Ag 4, for singu-
lar non-integral operators under certain assumptions. This verifies the hypothesis
(5.36) forr; = ppand rp = q(’). Note also that our extrapolation theorems above
can be extended to spaces of homogeneous type since the corresponding sharp esti-
mate for the Hardy—Littlewood operator (2.1) was established in [52, Proposition
7.13].

e For Bochner-Riesz means B% in R?, the authors [6] proved a similar spare bilinear
form to (5.36) with r; = 6/5 and r, = 2 whenever « > 1/6. Much as before,
one can not only recover [6, Theorem 1.2], but also obtain quantitative weighted
estimates and vector-valued inequalities.

e Bui et. al [12] studied the Schrodinger operator L = A + V on R” withn > 3,

where V € RH, and g € (n/2, n). Letting pg = (% - %)_1 and K (x, y) be the
kernel of the Riesz transform L~!/2V, we see that K satisfies the Bui-Duong’s
condition (cf. [12, Theorem 5.6]). The latter implies L"-Hormander condition
(cf. [70, Proposition 3.2]). Then, combining the L” bounds for VL2 with
p € (1, po] (cf. [86]) and the pointwise sparse domination in [70], we use
a duality argument to conclude that there exists a sparse family S such that
(VL™V2f )] < As.1.p(f, &) That is, the hypothesis (5.36) is satisfied for
the Riesz transform VL“D/ 2,

e For the m-linear Calder6n—Zygmund operators and the corresponding maximal
truncation, pointwise sparse dominations were obtained in [28, 37], which imme-
diately implies (5.36) with 7 = (1, ..., 1). Then one can improve Corollaries 8.2
and 8.3 in [47] to the quantitative weighted estimates.

e Let ] < r < oo and g be the square function with the kernel K, satisfies the
m-linear L"-Hormander condition defined in [21]. Under the assumption that g
is bounded from L™ (R") x --- x L"(R") to L"/™°°(R"), Cao and Yabuta [21]
obtained a pointwise control of g by Ag 7, where ¥ = (r,...,r,1). Then, the
square function g verifies (5.36).

e The operators satisfying (5.36) also include the discrete cubic Hilbert transform
[36] and oscillatory integrals [63].

5.3 Multilinear Fourier Multipliers
Given s, m € N, a function o € €*(R"\{0}) is said to belong to M*(R"™) if

081 - 9fm o (B)| < CallEr] + -+ + &) " 221 11 VE € R™ \ {0},
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for each multi-index o = (a1, ..., o) With Y 72| |ai| < s.
Given s € R, the (usual) Sobolev space W*(R"") is defined by the norm

1
2
)

I s oy = ( /R (s |§|2>S|f<§-)|2d§)

where fis the Fourier transform in all the variables. For S=(s1,...,85.) € R™ the
Sobolev space of product type W* (R"™) consists of all f € S’(R") such that

1

2 2 TrENI2 gE 2
I s oy == (/an(l FIEDT (4 18D FE)] ds) < o0.

Given a function o on R™V | we set
0;(€) = V() (E), jeZ, (5.43)

where W € S(R™) satisfy supp ¥ C {1/2 < |§| <2} and ) ;, \11(2_1‘55) =1 for
all £ € R""\{0}. Denote

WS R"™) := {o € L®R™) : sup [0l ws @mm)y < 0o},
7

je
WE(R’”") = {O’ € L°°(R") : sup o ll s qgnmy < oo}
JEL
Then one has

MS(RI‘LM) g Ws(an) g W(% ..... %)(an).

For a bounded function ¢ on R"™", the m-linear Fourier multiplier 7, is defined by

T, ()(x) := / i Crt ) 6 (8) fi(81) - -+ fon(Em) dE,

Rnm

forall fi,... fi € SR").

Be means of extrapolation theorems, we improve Theorems 1.2 (i) and 6.2 in
[43] to the weighted estimates with quantitative bounds. We can also establish the
corresponding weighted estimates for the higher order commutators and vector-valued
inequalities as follows.

Theorem5.8 Letm > 2, n/2 <s; <n,i =1,...,m. Assume that o € WE(R"”’).
Then for every p; > n/s;, for every wipi € Apsim i = 1,...,m, forallb =
(b1, ...,by) € BMO™, and for each multi-index « € N,
ps - Pi %Vi([’i,Zm)
ITo (Dlleany < T T 300 1l - (5.44)
i=1
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e (@i +3)yi (pi.2m)
Il Ta,b]a(f)llmwp) ]_[[ ”]Ap[xjn 1125 IIBMOIIﬁIILp,-(wfi), (5.45)

1 1
where - = > o and w = [TL, wi.
Moreover, foranyr € (n/s;,2),i =1,...,m,

m 1
H( Tl S >l) ST, ()]
ki Lrwr) ) ki L7 /")
1 m 1
H( To. Bla(fl . fkm)|> ST 15 ibilEvo <Z|f,§i|")
ki, LP(wP) i=1 ki LPi(w;")
where
By o | 27iCP12m), r=2 o @ e om, r=2,
3vi(pi.ai)vigi. 2m), r #2, (@i + 3)vi(pi. g)vi(gi. 2m), r #2,

provided g; € (n/si,r),i =1,...,m

Proof We borrow some ideas from [43], but now we can give a proof without using the
weighted Hardy space argument. Letp;” := n/s; and pf :=ooforeachi =1,...,m.
Letg =2andg; =2mforl <i < m.Then,q; € (pl_, pl*).Checking the proof of [43,
Theorem 6.2], we can obtain that for any weight v} 7 ¢ Agisiin = Aq,-/pl-_ N RH(p?’/qi)/,
i=1,...,m,

. o3
1To (e S l_[[v?’ ]j%/n I fill a Wiy (5.46)

i=1

Thus, (5.44) follows from (5.46) and Theorem 1.1 applied to ®; (¢) = 32,
Note that in the current scenario, y;(q;, ;) = 1, t;, = 2ms; /n, and hence,

L 3 3., 1 3
{l,rqi_l}q)i(ci tyl(q“ql)) — Clz t§+(¥1 max{l,ZNSi/n,l} — Clz t%+

Then in view of (5.46), Theorem 1.2 applied to s; = ¢g; = 2m implies (5.45).
On the other hand, Lemma 2.12 and (5.44) give that for every ¢; > n/s;, for every

w?‘ € Agsim-i=1,...,m,

m

3
- 5vi(qi,2m)
< l.]l Zyl(qtv
~ l_[[vl ]Aqixi/n
1

i=

L4 (v9) LYi (v;“)

(Z i |’>:

1
H( > |To<fk11,...,f,:t;)|’>
k],...,km

provided r = 2 orr € (n/s;,2) and g; € (n/s;,r), where - =y 1— and v =
T2, vi. Therefore, the vector-valued inequalities above follow from Theorem 1.1
applied to ®; (¢) = £37i(@i.2m) O

Birkhauser



7 Page 68 of 90 Journal of Fourier Analysis and Applications (2024) 30:7

Theorem5.9 Let 1 < r < 2 and sy,s» > 1/r. Let o be a bounded function on R?
satisfying

sup (1 — Ag) 7 (I — Ag) 7 o;

JEZ

LT(RZ) < 00,

where o is given in (5.43) withn = 1. Assume that 1 < p,p, < oo and 1max2 l <
<j<2 i

min_p;". Then for all exponents p; € (p; , 00) and all weights wip €A /
1<i<2 pi/p;

1,2,

—+2 mdx{2

}
i Pi— p[
1T (PllLrawn < ]"[[w” ]A U 1 Frps

i

here L = L + L > 1 and w = wyws.
W p=m T m 2 12

Proof We will use the same notation as [46]. By the same argument as [46, p. 970],
we are deduced to showing the boundedness of Ty, and T,, which satisfy

YT, (i f2)I S MUY M(AT £17)7, (5.47)
T, (fi, f2) = ) Toy (f1, A f2), (5.48)

JEZ
Toy(f1, A f2) S M(IAS f117)7 M(IA% fo1°) 7 (5.49)

Here, p € (1,2) satisfies malu%% < p < min{p,p,,r}ifr > 1,and p = 1if
i=1,2"

r = 1. The multiplier A? is defined by Zg? =6/ -)f, for each j € Z, where
0 e SQR) satisﬁes supp(@) C {£ e R : 1/cp < |&] < cop}, for some ¢p > 1, and
> jen0(@2778) = Cp forall § € R\ {0}. Considering the same property of A? and
Aj., we will suppress 6 and ¢ in this sequel.

Letw! € A

pifpr i = 1, 2. By the choice of p, we have

wi € App C Ay with [w/1a, <[w/la,, <wla _, i=12

Pilp;
(5.50)

Let us control T, and T,,. Invoking (5.48)—(5.50), (2.1), and Lemma 3.3, we use
Holder’s inequality to conclude that
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D=

1
15, 1y S NLrwry S M(|A; fl?)7

ZM(|Ajf1|p)

jeZ LP(wP)
2

TS moammi)]

i=1 JEZ LPi(w;")

2 » max{s, >—} 2 %
STTwrns, (S ane)|

i=1 /GZ Lp’(w,'l)

2 i max{2 ] pi {2 p_]
S H[wi ]APi/P [ ]A ' ”ft”Lp, (wpl)

i=1

2max{2,p_71p7}

< H[wpl ! ”fi”LPi (wl.l’i)’

where the inequality (3.8) was used in the second-to-last step. To estimate T, we
note that by Lemma 2.9,

2 l’
[wP)a, < [WPa,,. ]_[ wrh (5.51)
e P,/p
since pl = p— + p— < 2and p <1 < 2p_. Therefore, in view of Lemma 5.10
- 1

applied to r = 2 and v = w?, (5.51), and (5.47), we proceed as above to obtain

(Z AT, (fr, fz))|2>2

15
176, (f1s P ILrry S WPy,

Jez LP(wP)
;
< oot (s )],
JjE€Z

1

(ZM 1A fzv’)?)

- 1
S l_[[w,-’”]kp_/p_ [ A7 o i
i=1 v

jez LP2(wy?)

» 15 1 » 15 {7 1 } ) %

11P1 " P1p 2 *Pr—p
] O U O T I (Zm;m ) i

jez LP2 (wy”)
—&-2max{2 - }
i Pi—P;
< l_[[wlp ]A om ’ ||ﬁ||L1>i(wf’i)'
This completes the proof. O

In this subsection, we always choose ¢ € S(R") with fRn ¢dx = 1, and set
¢r(x) := t7"¢p(x/t) forany x € R" and ¢t > 0. And let v, ® € S(R") satisty
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0 < V(&) < lujp<g<a), Y€ = 0for 1/2 < €] <2, 3,5, ¥(2/&) = 1 for
€] # 0, and 1{1/2<jg<2y < P(§) =< 1j1/3<j<3}. Denote ¢ (x) = 277" (x/2/) and
®;(x) =27/"P(x/2/) foreach j € Z.

Lemma5.10 Forall0 < p <1 <r <2andforallv € A,,

(Zm fl)

JEZ

1142r"

I fllLry < Sl

sup | * f|
>0

L"(v) LP(v)

Proof 1t suffices to show the second inequality since | f (x)| < sup,. ¢ |¢; * f(x)| for
all x € R". By Lemma 5.11-5.12 below and estimates in [11, p. 588], we have

9,2 1
9 2 o
= | oo <008 <z>
2! 1
T ) 2)2 7*7
<lf, (;fgg\dn*w,*ﬂ) pr SR (wa,m) o
9,2 sy
Swli, [ZM(W,*ﬂ i
LP/s(v)
=4 mx{f.j 1
<tpt et [Z 5+ s
; LP(v)
where we used Lemma 3.3 and that A > max{”’ 5} ="%,50s5 1= % < f and

[vla,,, < [w],.If we take § = M for some ¢ € (0, 1), thenp —s =p—1% =

1— : 1 _1
p(lo - =) =pl-(1- 8))'2 pE. Th1s means max{ 5, =
taking ¢ = 1/2, we get the desired estimate. O

We use the maximal operators N, N *, N* defined in [11]. Moreover, given a
sequence f = { f;}, a function u on R’J’rﬂ, and o, k > 0, we define

1

skk . ; K
N¥f(x) == sup <Z|¢t*f/(x)|q) <t+|x—)’|> ’

yeR" >0

~ t K
Nou(x):= sup |u(y,t)], N u(x):= sup |M(y,t)|<—)-
r+lx —yl

[x—yl<at yeR" >0
Lemma 5.11 Forany p € (0,00), r € (1,00), and w € A,,

r/

INull Loy S (wly, N1l L0 () (5.52)
IN*fllLrw) S [w],f INfllLP (w) (5.53)
INAllLr wy S [w]A INTAUl L w)- (5.54)
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Proof The inequality (5.52) follows from the following

Nfu < sup 27 Nymu and - w({Ngu > n)) £ (1+ B/o)™ [wy w({Nau > ).
meN

for all » > 0, where the first estimate is trivial and the second one is contained in
[50]. The inequality (5.53) is a consequence of (5.52) and the pointwise estimate
N*f < N*f.

To show (5.54), we trace the proof of | Nfl|Lrw) < INTEl[Le(w) in [11]. Firstly,
by (5.52) we have

Y

[N fllray S Twly INElLr ).

~ . 1 . P
Setting Ny u; (X) = SUP;—¢ |x—y|<pr (Z/ez |¢,(l) * fi(»)]7)4, where ¢V = % and
w > 1, we use (5.53) to get

Y

INwttillLrwy S [wl} [Nl Lp .- (5.55)

Since r > 1 and w € A,, Lemma 2.4 gives that r > inf{p > 0 : w € A,}. So, for
s € (0,1]withp/s =r > inf{p > 0: w € Ay},and§ > Osatisfying I's(y) C ', (x)
for all (y, 1) € I'1(x), we get

n
NE)' < (14 1/8)"M(NT £))0x) + 8" Nyui(x)°.
i=1
Hence, taking L /% (w)-norm of both sides of the above, and using (5.55), we see that

1

INEIL by < Cr1+1/8)" Twl}” INTHI7p ) + C28° INFI L (-

Choosing 6 so small that C26° < 1/2, we obtain

’

1 r
INFll Lrwy S [w]f{;jxllNJrfllLﬂ(w) =[wlj N flLr ).

This completes the proof of (5.54). O

Lemma 5.12 Then for any p € (0, 1] and w € As,

e (S005)
J

9
S Wl IN*AlLe )
LP(w)

sup
O<t<oo
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Proof Fix w € A, and A > 0. It suffices to show

t>0

T = w({x e R" :sup ‘(/)t * (Zd)j * f,-)(x)‘ > /\})
J
< wly, {r2 /]R o ; £ @) Pw(x) dx + w(szx)}, (5.56)

where the implicit constant is independent of A, and 2, := {N*f > A} (cf. [85, p.
190]).

It follows from Whitney decomposition that one can find a pairwise disjoint family
of cubes {Q;} such that Q) = |J, Ok and dist(R"\,, Qr) =~ €(Qk). Then we
choose a sequence of nonnegative functions {g}x such that 1o, = Y, ¢, with the
following properties

n

6 _
Supp(pr) C 3 Ok, ax = / edx = 10cl. 9%kl < €001,

Setting
~ 1
Fi) = fiIgng, + > bijor and by j = o Joy J1 @000 dx,
k

we see that for all x € R”,

STIFH@PE S 1@ Rng, + ) b (0 $ 22+ N*(x)) < 2%
J J J

where x; € CoQ; N(R"\;) # @ for all j and for some Co > 0, which follows from
the construction of Whitney decomposition of €2.
Writing

J; = w({x e R"\ Qy : sug
t>

g (205 (i = F)w)| > 2]),
J
and observing that

sup
t>0

1 * (ZCD./ *(fj = f,'))(x)’ SAMi(x), x € R"N\Q;,
J

where 91 (x) is defined in (3.13), we invoke Lemma 3.6 to deduce

T SN2, S [whh,w(). (5.57)

(w) ~
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By Chebyshev’s inequality and (2.1),

or(Ze 7o)
L2(w ),S (Z(D *f])

= 2 2[w] Az/ ‘ZCD *f](x)‘ w(x) dx.
L2(w)
(5.58)

T = w({x e R" : sup

t>0

<X

fgg\@ (X *ff)\
ZCD *f]

L2 (w)

w]A2

To control the last term, we let T be the singular integral with & (£2(Z), C)-valued
kernel @ = {®;} ez defined by T'(g) := >,z P; * g; for good ¢%-valued functions
g = {gj}jez- One can check that T is bounded from L2(R", ¢%) to L2(R", ¢2),
1@l 22z).c) S 1xI7" and [V w22y 0) S |x|7"~1 (cf. [88, p. 165]). Hence,
this, Lemma 3.4, and (5.58) yield

TS AP wl), /R @ Pw)dx
J
<2l [ o D @R @) 659
A

As a consequence, (5.56) immediately follows from (5.57) and (5.59). O

5.4 Weighted Jump Inequalities for Rough Operators

Let F := {F;(x)};~0 be a family of Lebesgue measurable functions defined on R”".
Given A > 0, we introduce the A-jump function N, (F) of F, its value at x is the
supremum over all N such that there exist s; < ] < sy <tr < ... < sy <ty with

|Ftk(x)_ka(x)|>)\, szl,,N

Given p > 0, the value of the strong p-variation function V, (F) at x is defined by

1

Vp(F)(x) == sup (|Ffo<x>|p+Z|F,k<x>—ka1(x>|p)”,

{tidi=0 >1
where the supremum runs over all increasing sequences {# }x>0-

Given Q € L'(S"™!) and ¢ > 0, the truncated singular integral operator T} is
defined by

To.e f(x) i= /| i |(|yn)f( — y)dy.
ylze
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The principal value singular integral and its maximal version are defined by

Tof(x):= lim Tg.f(x) and Tq#f(x):=sup|Tq.f(x)], xeR"
e—0t >0

In this sequel, we write 7 := {Tq ¢}e~o0-

Theorem5.13 Let p > 2 and Q € LI(S""') with ¢ € (1,00) be such that
fS"—l Qdo = 0. Then for all p € (q', 00) and for all w € Ay,

max {1

7 2
5 7
ITflray S lwly "

}
If e w), (5.60)

where T € { SupAs/Ny o7 ,V,0T, Tg,#}.
A>0

It suffices to show (5.60) for T = sup A/ N, o 7, which immediately implies (5.60)
>0
for T € {V, o T, Tq 4} since the following pointwise domination holds

Tosf(x) <V (TfHx) < Supok\/Nx(Tf)(x), x eR",
A>

provided that £2°°(N) embeds into £°(N) for all p > 2.

Let us turn to the proof of (5.60) for T = sup A+/Nj, o 7. It was proved in [57,
A>0
Lemma 1.3] that

A NUT 1)) S S2(T H(x) +?»\/N»\/3({Tg,2kf})(X), x e R,

where

1

ST f)(x) = <Z Va, (Tf)(x)z) g

JEZ

D=

N—-1

Vo i (T f)(x) = sup Y ATau, ) = Taq f)

f<-<Iy =1
[t.t411C[27,27H]

Thus, we are reduced to proving

|

2

)\, N ({ })H S [ ]7 aX{LP/II/*l}”f” (5 1)
su 1 ¢ ] w .6
A>I(; \ YA Q,2k. LP (w) ~ Ap/q/ LP(w)>

4max{l, 2}
12T HllLra < wly 1 lp - (5.62)
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5.4.1 Dyadic Jump Estimates

We are gqing to show (5.61) in thisA subsection. Let ¢ € S(R") He a radigl function
such that ¢(£) = 1 for || < 2 and ¢(£) = O for |€| > 4. Define ¢y (&) = ¢ (2K¢) for
each k € Z. Foreach j € Z, setv;(x) := —X)l{zjf‘x|<2j+l}(x). Then for any k € Z,

x|

Q —
Toufw=[  ZE ey =Y vy f00)

—yl=2k |x —yI" P

=drxTaf + Y (80— O) % Vigs * f —Pr* ) virs* f

s>0 s<0

=T f+T2f -T2,

where 8 is the Dirac measure at 0. Let .77 f denote the family {Tki fleez, i =1,2,3.
Hence, to get (5.61) it suffices to prove the following:

| sup i/ No.(77 )

A>0

max{1

7 o) )
S [w]Ap/q/ PN Flleeawy, §=1,2,3. (5.63)

LP(w)
We begin with showing (5.63) for i = 1. Define

Djf :=Ejf —E;j1f, &f:={Ejf}jez. where E;f:= Y (f)olo,
0eD;

where D; is the family of dyadic cubes with sidelength 2/,

Lemma5.14 Forany p € (1,00) and w € Ap,
max{l,%}
ITf Neran S Tty 71 f o, (5.64)

where Tf € {(Zjez |]D)jf|2)%, supbo)\,/Nx(éof)}.

Proof For p = 2, the estimate (5.64) for dyadic operators is contained in [62], which
established a sharp weighted inequality for the Haar shift operators. The general case
is a consequence of the case p = 2 and Theorem 4.1. Then (5.64) for jump opera-

1
tors follows at once from (5.64) for T f = (ZjeZ |]D)A,~f|2)z and the proof of [59,
Proposition 4.1]. O

Define the square function as follows:

1

&f = (Z ek f — ]Ekf|2>2- (5.65)

keZ
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Lemma 5.15 Forany w € Ay,
181 22wy 2200y S W1, and (18]l 11 ) Loy S (W1, (5.66)

where the implicit constant is independent of [w] ;.

Proof We claim that for all k, j € Z,

1Tkl 22wy = ks * D) f — B D) Fll 2y S 27 M wla, 1D £ 1l L2
(5.67)

for some 6 > 0, where the implicit constant and 6 are independent of k and j. To
show (5.67), we first note that by [57, p. 6722], for any k > 0,

EryDjf =0 and |gpyj xDjf| S27*MD;f),

which along with (2.1) gives

1Zk, il 22 () < 27k IM@D; Ol L2 < Z_k[w]Az 1D fll 2y < Z_k[w]Al 1D Il p2 )
To control the case k < 0, we use the argument in [25, p. 2461-2463] and that
w(rQ) < M'[w]a,w(Q), forany cube Q,

to see Iy j (x) = Zdzo I;(x), where for some § > 0,

1

Ml 20y < 274 w13 1D fll 20y d < 1KI/2,
1

Ml 2y S 27 w13 D) fll 2, d = 1KI/2,

Then summing these estimates up, we obtain (5.67) as desired.
Having shown (5.67), we use f(x) = ZjeZ D; f(x),ae. x € R", to deduce that

16/ 1l 20m) = H(Z | > (dexDyf —Eijf)\z)z

kel jeZ

L2 (w)

1
< (Z (Z e % D; f —EkID)ijLz(w))z)z
keZ jeZ

< [wla, (Z (2:2_9k_jl||H]>jf||L2(w))2)2
keZ jeZ

St | X (2 ) (20, £i,) |

keZ jeZ JEZ
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1

< [wla, [Z (Zz—mk—jl)HD]’f”iZ(w)} 2

JEL keZ

(X m,rp)’

JEZ

= [w]Al

S Wl 1 22
L2(w)

where we have used Minkowski’s inequality, (5.67), Cauchy—Schwarz inequality, and
(5.64). This shows the first estimate in (5.66). Then, using the first inequality in (5.66)
and Calder6n—Zygmund decomposition as in [25, p. 2458-2460], we obtain the second
estimate in (5.66). The proof is complete. O

Lemma 5.16 Let % be a family of operators given by % f .= {¢r * f}rez. Then for
all p € (1, 00) and for all w € A,

Proof Since N, is subadditive,

max{S,%}
R VAACE) S ) M g P

>0

N, (% ) = Na(Z f) + No(Ef), (5.68)
where Z f := {¢x * [ — Ei flkez and & f := {Ey f }xez. Recall the square function

in (5.65) and observe that sup, . o A/ N (Z f) < & f, which together with (5.66) and
Theorem 4.4 applied to pg = 1 implies

|sup /M@, ) S 00 1

In view of (5.64) and (5.68), this gives at once the desired estimate. m]

Now using Lemma 5.16 and (3.17), we obtain

s 7)., = s rv Rt s )|

5,1} 7max{l, ——}
"I f ey STwly o S s

LP(w) - ‘ LP(w)

max
S [w]Ap

which shows (5.63) fori = 1.
For the term with .72, it was shown in [25, p. 2453] that

sup/Nu(72f) < 3 (D160 =0 s 5 /) =3 Gof. (569
= s>0  keZ >0

where

1

Gef <) (D(ao = k) * Vi k A?kﬂz)Z =2 Gif.

leZ ~keZ IeZ
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with
||G f”Lz(R") < 2 Vovmln{2l 2 VO }”f”LZ(R") (570)

It follows from Lemmas 3.5 and 3.9 that forany v € A/,

max{1, 527} 3
1G. fllerw S [v]A TN vk s AL AP
keZ LP(v)
! max{1, 52 }+3 max(1, —2—} 3max{l,—2—}
sl T e Sl e,
(5.71)
Then interpolating between (5.70) and (5.71) with v = 1 gives
IGL fller@ny S 27427 £llLp ey, for some a, B > 0. (5.72)

On the other hand, for w € A, /,/, by Lemma 2.4, there exists y = y,, € (0, 1) such
that

max{l, } 1
I+ =calwly T . By, and (w7 1a, < w74, ]
which along with (5.71) implies
3(14+y) max{l, p/q 1
IG! Flor@itry S [w]Ap/ , I Lpqutry- (5.73)
Considering Theorem 3.1 with wg = 1, w; = wlt? and § = ﬁ we interpolate
between (5.72) and (5.73) to arrive at
3 max{1, —
G fllpr ) < 27250927 I”(l_@)[w]AP/q, e ||f||LP(w) (5.74)

Note that ™" < 2¢72 for any 7 > 0, and
szas(lfm - Z 2 wby 4 Z 2 Wby < By + Z s72B2 < Bo. (5.75)
s>0 0<s<By s> By s> By

Similarly,

Zz—ﬂ”‘(‘—ﬁ’) < By. (5.76)
leZ

Hence, (5.69) and (5.74)—(5.76) imply

| supy/Ns(72)

A>0

max{l
LP(w ) Apry!

2
p/q’*l}

1 flLr w)-

) Birkhduser
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This shows (5.63) fori = 2.
To control the term with .73, we note that by [25, p. 2456],
2\2
sup iy Nu(T3 1) = D7 (D [ viws  £17) = D Hef,
>0 s<0  keZ 5<0
where
7
ESIEEDS (Z |k # e A,{mz) =: Y IH! flLrw),
1ez. " ke Lrw) ez
with
1H] £l 2y S 2 ming2), 27| £l 2 gy
Analogously to (5.74), one has
, 3max{l,—2—)
IS flray < 270002700y, Loy
and eventually,
3 max(l, )
[spr/mizop| ,  Swre 1o
A>0 pla
This shows (5.63) fori = 3.
5.4.2 Short Variation Estimates
We will prove (5.62) in this subsection. As did in [25],
SUT £)(x) <Y (T FHx), (5.77)
keZ
1S26(T Hller@n S 27N Flr@ny, Vi € Z, (5.78)
) :
$16(T)x) S (Z |Ma (A} ,f)(x)|> . VkeZ (5.79)
JEZL
and for g < 2,
1 1
126 T P Loy = M1k P oy 12 F 1 2 (5.80)
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where

2

1
dt)2
Lr(w) t ’

2
s f oy < (/
1
1

2
Ik f e S ( /R Mga-y (gw)() D147 jf(x)|2dx) :

JEZ

1
2
(D wjuxad,r?)

JEZ

where v; /(x) 1= 2857, <o) ().
We claim that

3max{1,#}
|S2.(T ) ||Lp(w) S [wly £ lLe ) (5.81)

Once (5.81) is obtained, we use (5.77), (5.78), and Stein-Weiss’s interpolation Theo-
rem 3.1 as before to get

4max{l,ﬁ}
12T ) oy STy, 11y

which shows (5.62) as desired.

It remains to demonstrate (5.81). If ¢ > 2, we invoke (5.79), (3.18), (3.10), and
(3.8) to deduce

1 1
26T Pl oy S 10157 (D182, 1)

JEZ

LP(w)
1 1 2 1
=712 max{l,m} 2\ 2
Stwip* (D12 12)
prlq jGZ LP(w)
plq, +max{l,%} %max{l,pfq,}
S [w]A,,/q/ e S [w]Ap/q/ I fllLpqw)-

To treat the case ¢ < 2 (trivially, p > 2), we observe that much as (3.37),

%max{l,ﬁ
M fllrw) S [w]Ap/ )

}
1 f e w)s (5.82)
and

2— L qn—1 1—(p/2)'\1=p/2
Qe L7 ", (WP T = w e Ay = A,

q .
=)
) Birkhduser
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The latter, along with by Holder’s inequality, Theorem 3.8 applied to (p/2)" and zf—q
instead of p and ¢, (3.10), and (3.8), gives

(> 1at ,f|2)

”IZkf”LV(w) ||A4Q2 q(gw)”L(p/Z)’ wl- (p/2)’

jez Lr(w)
max{1, 1,7 }++ 4 max{l, }
S gy ’”‘”(Z'A" ,f|)
JEZL LP(w)
max{1, ——}+max{1, -2} 2 max{l, —2—}
wly T ey Sl T I .
(5.83)
Therefore, in the case ¢ < 2, (5.81) follows from (5.80), (5.82), and (5.83). O
5.5 Riesz Transforms Associated to Schrodinger Operators
Consider a real vector potential ¢ = (ay, . .., a,) and an electric potential V. Assume
that
0<VeLl (R and a €L} (R"), k=1,...,n. (5.84)
Denote

Lo:VI/2 and Lp =0 —iar, k=1,...,n.

We define the form Q by

0(f.0)= Y [ Luf®Ligtwids + [ Viwitdx
k=1
with domain

D(Q):={f € L>(R") : Ly f € L>*(R"), k=0,1,...,n}.

Let us denote by A the self-adjoint operator associated with Q. Then A is given by
the expression

Af =) LiLcf + VY.

k=1

and the domain of A is given by

D(A) = {f € D(0), 3g € L*(R") such that O(f, ¢) = /R gGdx, Vo € D(Q)}.
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Formally, we write
A=—(V—ia)-(V—ia)+V.
For convenience, denote
Ry =Ly A™V2 k=0,1,...,n.

Duong et al. [41, 42] consecutively established the L? boundedness of Riesz trans-
form Ry and its commutator [Rg, b], k = 0, 1, ..., n. More specifically, under the
assumption (5.84), we have forany 1 < p <2

R, [Re, b1 : LP(R") — LP(R"Y), k=0,1,...,n, (5.85)

provided by b € BMO.
We would like to establish weighted version of (5.85) as follows.

Theorem 5.17 Assume that a and V satisfy (5.84). Let b € BMO. Then for every
p € (1,2), for every weight w? € A, N RHy,py, and foreveryk =0, 1, ..., n, both
Ry and [Ry, b] are bounded on LP (w?).

A particular case is the operator £y = —A + V, where V € Llloc (R™) is a non-

negative function. The L?(R") boundedness of Ry := Ve, 2 was given in [78,
Theorem 8.1], while it was proved in [41] that Ry is bounded from H Ll (R™) to L' (R™).
Then the interpolation implies

Ry is bounded on L”(R"), Vp € (1,2]. (5.86)

However, (5.86) fails for general potentials V < L} (R") when p > 2,see [86]. Now

loc
Theorem 5.17 immediately implies the following weighted inequalities.

Theorem 5.18 Let %y = —A+V with0 < V € LL (R"), and set Ry := V.%; '/,
Then for any p € (1,2), for any w? € A, N RH(y,py, and for any b € BMO, both
Ry and [Ry, b] are bounded on LP (w?).

The rest of this subsection is devoted to showing Theorem 5.17. For this purpose,
we present two useful lemmas below.

Lemma5.19 [3] Fix1 < g <o0,a > land w € RHy, 1 <5 < 0o. Assume that F,
G, Hy and H> are non-negative measurable functions on R" such that for each ball
B there exist non-negative functions Gp and Hp with F(x) < Gp(x) + Hp(x) for
a.e.x € Bandforall x,x € B,

][ Gpdy < G(x) and <][ H dy)q <a(MF(x) + Hi(x) + Hy(%)).
B B
(5.87)
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Then for all p € (0, q/s),
IMFllrwy < C (IGLrw) + 1 HillLr) + 1 H2llLew)) (5-88)

where the constant C depends only onn, a, p, q, and [w]rH,,-

To proceed, we intro_duce some notation. Given a ball B we set C;(B) := 4B for
j=1land Cj(B) :=2/*'B\2/B for j > 2, and

1
x)dx = ——— (x)dx.
][cj(B)f |2/+1B| cj(B)f

Lemma5.20 Letl < g < 2and B beagivenballand f € L1 (R")withsupp(f) € B.
Let Ay =1 —( — e_’lziA)m with a given integer m > 1. Then for all j > 1 and
k=0,1,...,n,

( f |Ar3f<x>|qu)” < e v ( ][ If(x)lqu)q, (5.89)
Ci(B) B

and

1 1
( ][ Rl — Ar3>f<x)|qu) " < 2—<"+”f( ][ If(x)lqu> " (5.90)
C;(B) B

where the implicit constants are independent of B, f, j and k.

Proof We begin with showing (5.89). It follows from (3.1) and (3.2) in [42] that the
kernel p;(x, y) of "4 satisfies

2
|pi(x, y)| < (47n)*% exp ( — X 4ty| ), Vt >0andae. x,y € R",
k 21k lx — y?
10K pr (x, y)| < Crt =20 exp ( — : ), Vt > 0and a.e. x,y € R".
Ck

Thus for all x € C;(B) and j > 2, we have |x — y| = 2/rp forany y € B and

e ,
et sl 5 [ e (= B roay se ¥ f iy 6o

2
4rg

The above inequality also holds for j = 1. The desired estimate (5.89) immediately
follows from (5.91) and the expansion

m
AVB =I1—( - e_rIZS’A)m — Z(_l)k-i-lcr/;e—kréA'
k=1
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Now we turn to the proof of (5.90). Recalling that

A—I/ZZL/OOe—tAﬂ
V7 Jo NG

one has

Ri(I — Ay f = / gy Lie " f dt,
0

1
where g, (1) = Y1 (= 1)¢C, % Now we claim that

© w2 r \"dt i
/0 lgr(D)|e™ e <m> ﬁfcmz I (5.92)

Moreover, it was proved in [42, Proposition 3.1] that for any j > 2, there exist positive
constants ¢ and ¢, such that

2 2 /2 472
(][ |Lixps(x, y)| dx) <cl1— exp(— B), vVt >0, y e R".
C;i(B) 2/rg cat

which along with (5.92) gives

1

(][ |Rk(1—ArB>f<x)|qu)q
Ci(B)
1
E/ |gr3<r>|/ If(y)|<][ |Lkp,<x,y>|qu>"dydt
0 B C;(B)

i
_i [~ _wi2 (g \"dt ‘
S2 ]/() |grg (D)]e™ e (m) ﬁ : (]i |f(x)|qu>
< Clz—(n-i-l)j(][ |f(x)|qu)q.
B

It remains to demonstrate (5.92). We will use the elementary estimates for g, (¢):

C

|gr(t)|§ﬁ, bl <t<@E+Drre=0,1,...,m, (5.93)
— Lr

lgr ()] < Cpur?™ ™2, 1 > (m + D). (5.94)

The first one is easy. The second one is an application of Taylor’s formula, see [2, Sec.
3]. Denote o = 4/ /c. Then the inequality (5.94) gives that

/OO | (z‘)l _4i2 r n-l dt <C /OO r Zmtn—1 _4)s2 dt
e ct —_— B — —_— e cl —
(2 8r 11/2 N m (2 1172 t
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n ﬁ n_ 3 . n 1
= Cma_(”’+7+%)/ s"T272e75ds < Cm2_1(2m+"_l)F<m + > + 5)
0

(5.95)

3 =

Write ¢ (s) = sT2e”5,s > 0. Itis easy to see that ¢'(s) = s_z_ze_%(a — 5s) and
#(s) < pQa/n) = Qa/n)"Ze”7 < C,27", Vs > 0. (5.96)

Thus, by (5.93), changing variables and (5.96), we have for any 0 < £ < m,

(12 g2 r \""dr
Iy = e a | —= —
= [ woe () G

<C /(ZH)rZ ot <r )”_ldt
=" e Vi—erZ\1/? NG

41 s*%e—% 41 ¢(S)
=C —ds =C, ds
m/z s =4t m/z s =L

+1 ]
=2Cp(L+ 1) —2Cy / (s — £)2¢/(s)ds
14

oo
< Cu2™ + Cpd/ / sT27%eT v ds
0

oo
=Cn27" + cm41a—r1/ t2e”"dt
0
—Cp2 4 cmc’z*‘+12*"fr(g + 1) < Cp2M, (5.97)

where the constant C,,, depending only on m and n varies from line to line. Accordingly,
the inequality (5.92) follows from (5.95) and (5.97). This completes the proof. O

Proof of Theorem 5.17 Let p € (1,2) and w” € A, N RHy,,y.We follow the ideas in
[5]. Choose pg and gg such that 1 < pg < p < qo < 2and w” € Ap;p0 N RH gy py-

This together with Lemma 2.6 part (c) gives thatw™?" € A, NRHy, where r = p’/ 490

s = py/p,and T, = (%0)/(% — 1) + 1. Note that w" € NRHy implies w7 €
RHS(/) for some 59 € (1, s).

Fix f € L2° and a ball B with the radius rp. Write
Fi=|Rifl% and A, :=1— (I —e 54",
where m € N is large enough. Observe that
F <297 (1 = A7 )REF|% + 2971 A% Ry £|% =: Gy + Hp.
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We first control G p. By duality, there exists g € L% (B, dx/|B|) with norm 1 such
that for all x € B,

(fyonn)"=

1
’ al 1
][B}u A?Bm;’if!%dy)q“ S E/Rn IR = Ary)gldy

1 1
2jn<][ |f|q6)<10 (][ |Rk(1 _ ArB)g|q()>q
C;j(B) Ci(B)

J

<§\\~
/-\

N
2

1

.
Il

1 oo 1
S MAF19) @) 0 Y 27 gl pao (s S ML D, (5.98)
j=1

where we have used (5.90). To estimate Hp, we set ¢ := p(/q, and observe that by
duality there exists & € LP°(B, dx/|B|) with norm 1 such that for all x € B,

B
1

J

1
LRy = o [IREAAbdy

1
|Ar3h|q0)q°

1 00 . % 1
< MF(x)% sz"e‘“Cl(][ |h|‘1’0>q0 <MF(x)%, (5.99)
B

J=1

where (5.89) was used in the last step.

Consequently, (5.98) and (5.99) verify the hypotheses (5.87) with G(x) =
M(|f|q(3)(x) and Hy = H> = 0. Observe that r = p'/q), = q/s < q/so. Then,
invoking (5.88) applied to 7, 59, and w " in place of p, s, and w, respectively, we
obtain

IREFI, o = 1F ey < IMFl ey S IMAFIO ey S 11,

LY (w=r') LY (w=r'y’

which together with duality yields the L” (w”)-boundedness of Ry. This along with
Theorem 1.2 implies the L? (w?)-boundedness of [Ry, b]. O
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