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Abstract

We prove sufficient conditions for a Calderén—Zygmund operator to belong to the
Schatten classes. As in the classical T'1 theory, the conditions are given in terms of
the smoothness of the operator kernel, and the action of both the operator and its
adjoint on the function 1. To show membership to the Schatten class when p > 2 we
develop new bump estimates for composed Calderén—Zygmund operators, and a new
extension of Carleson’s Embedding Theorem.

Keywords Schatten—von Neumann classes - Calderén—Zygmund operator - Compact
operator
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1 Introduction

Operators in the Schatten—von Neumann classes S, play an important role in a variety
of problems in Mathematical Physics, Differential Equations and Functional Analysis.
Trace class operators, for example, are a basic tool in Quantum Mechanics because
pure states of a system are represented by matrices with trace one (which in that
setting are called density matrices). For the pseudo-differential operators that define
most common quantizations (Weyl-Heisenberg, Kohn—Nirenberg, or Born—Jordan
for instance), their membership to S, is crucially used to develop their corresponding
calculi. Hilbert-Schmidt operators appear naturally in the form of resolvents for the
Schrodinger equation with various potentials. They are also used to prove Carleman-
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type estimates, which via spectral analysis intervene in the inversion of differential
operators. Furthermore, the Schatten classes find applications in some non-linear
inverse problems, in particular those related to scattering, and in several methods
of semi-classical analysis (calculi, tauberian theorems, ergodic theorems, etc).

All these examples follow a similar principle. When working with compact oper-
ators one often needs to know how fast their singular values decay. The Schatten
classes just happen to be a convenient way to encode this decay. For that reason,
the Schatten classes of many types of operators have been the subject of research
in papers that span more than fifty years of continued work. The list includes Hardy
operators [23]; Volterra integral operators [16, 32]; Toeplitz [21] and Hankel operators
[25, 37]; paraproducts, and commutators of multiplication operators with Calderén—
Zygmund operators [30]; singular integral operators on compact Lie groups [11], and
on compact manifolds [13, 14]; pseudo-differential operators in the setting of the
Weyl-Hormander calculus [6, 33, 34] (in connection with Cordes-Kato method and
Calderén—Vaillancourt type theorems); and s-nuclear operators on L? spaces from the
point of view of their symbols [12]. The last two cases belong to a fruitful ongoing
program on the study of the Schatten classes of pseudo-differential operators in terms
of the smoothness properties of their symbols (see [2, 4, 5, 12, 20]).

As mentioned before, the Schatten classes of some particular families of Calderén—
Zygmund operators have already been studied. This is the case of paraproducts, and
some particular instances of Double Layer Potential operators (see for example [30]
and [29]). However, results that apply to the whole class of Calderén—Zygmund opera-
tors seem to be missing in the literature. In the current paper, we fill that gap by studying
the Schatten classes of all Calderon—Zygmund operators. More explicitly, we use the
techniques of the 7'1 theory ([10]) to provide sufficient conditions for membership of
a singular integral operator to the Schatten class S, in terms of two properties: the
smoothness of the operator kernel, and the action of the operator and its adjoint over
the function 1. Although the setting in the paper is limited to Euclidean spaces and
the Lebesgue measure, we are certain that the results can be extended to more general
settings like metric spaces with upper-doubling measures and to weighted spaces. The
purpose of this project is to enable the possibility of applying the classical methods
of Spectral Theory to the Double Layer Potential operators that are commonly used
in the study of invertibility of the Laplacian on non-smooth Lipschitz domains.

The paper is organized as follows. In Sects. 2 and 3 we provide short introductions to
the Schatten classes and Calderon—Zygmund operators respectively. Section 4 contains
the statement of the main result in the paper (Theorem 4.2). Section 5 includes recent
results on the characterization of the Schatten classes by means of frames. In Sect. 6
we state known estimates of the action on bump functions of a Calderén—Zygmund
operator that is compact on L*(R%).

The proof of the main result for small exponents, 0 < p < 2, is carried out in
Sect.7. This work is rather direct. However, the proof in the case of large exponents,
2 < p < oo, is much more involved and it is carried out through Sects.8 to 10. In
Sect.8 we provide a number of required technical results, while in Sect.9 we prove
new bump estimates for composed compact Calderén—Zygmund operators, Theorem
9.1. In Sect. 10 we prove the main result for large exponents, which also requires a
new extension of Carleson’s Embedding Theorem, Proposition 10.2.
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The paper ends with an appendix, Sect. 1, that contains an example of an operator
whose compactness is proved by means of Theorem 4.2.

I would like to express my gratitude to Kenley Jung for some early conversations
about this project.

2 The Schatten Classes

Let T be a compact operator on a Hilbert space and let T* denote its adjoint oper-
ator. Then T*T is also compact and positive, and thus diagonalizable with positive
eigenvalues.

Definition 2.1 The singular values of T are defined as the sequence (s;, ), N of square
roots of the eigenvalues of 7*7T, counted according to multiplicity and arranged in a
non-increasing manner.

Alternatively, one can define the singular values of 7 as the sequence of positive
1

eigenvalues of the operator |T| = (T*T)z. Then, if T is self-adjoint and positive, its

singular values are exactly its eigenvalues.

Definition 2.2 Let H be a Hilbert space. For 0 < p < oo, the Schatten p-class of H,
denoted by S, (H) or S, for short, is defined as the family of all compact operators T’
on H whose singular value sequence (s;,),en belongs to /7 (N).

The class S, equipped with [|T'|| , = [|(sn)nenllip(v) is a Banach space for1 < p <
00, and a complete metric space and a quasi-Banach space for 0 < p < 1. It is easy
to see that S, C S, for0 < p < g < 00, and that S, is an ideal of B(H), the space
of all bounded operators on H.

The following Holder’s inequality ||S o T'|l1 < ISl /1Tl holds for 1 < p < oo
and p~! + p’_l = 1. Moreover, one can use the polar decomposition 7 = U |T | with
U a unitary operator (see [28], Theorem VI.10) to show that the eigenvalues of T*T
coincide with the eigenvalues of TT* and so, [|T*|, = T | ,.

Three Schatten classes are of particular interest: p = 1, p = 2 and p = oo. The
trace class S (also known as the class of nuclear operators) is the Banach space of all
operators with finite trace, defined by

tr(T) = Z(Txnv Xn),

neN

where x,, is the eigenvector of T*T associated with the eigenvalue s,%. Itis easy to see
thattr(T) = ), eN{T fu, fu), where f, is any orthonormal basis of H. The trace class
is the dual of the space of compact operators and the pre-dual of the space of bounded
operators.

The Hilbert-Schmidt class S, is a Hilbert space with inner product (7, §) =
tr(7*S). The following factorization holds: an operator is trace class if and only if it
is the product of two Hilbert-Schmidt operators.

Birkhauser
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The class S is the Banach space of all bounded operators on H, B(H), and the
class norm || T ||oo = sup, ¢y S» coincides with the operator norm of B(H).

1
We remark that ||T||, = tr(|T'|”) 7 and that the following duality relationship holds:
for1 < p < oo,

ITNp = sup{l(T, $)| : ISI,» = 1}.

We end this section by noting that, by Rayleigh’s equations, the singular values of
an operator T satisfy s, = inf{||T — F| : F € F,}, where F, is the family of all
linear operators on H with rank less or equal to n and || - || is the operator norm of
B(H). The right hand side of previous expression does not involve singular values
and so it does not require spectral theory for its calculation. Furthermore, the equality
links the Schatten classes with the theory of rational approximation.

For more information on the theory of the Schatten classes, see for example, [17,
38] and [31].

3 Compact Calderén-Zygmund Operators
3.1 Kernel and Operator

We describe those Calderén—Zygmund operators that extend compactly on L%(R?).
For this we use three bounded functions L, S, D : [0, c0) — [0, 0o) satisfying

lim L(x) = lim S(x) = lim D(x) = 0. )
X—>00 x—0 X—>00

Since the dilation of a function satisfying any of the limits in (1) satisfies the
same limit, namely L(»"a) also satisfies the first limit, we omit universal constants
appearing in the argument of these functions.

Definition 3.1 (Compact Calderon—Zygmund Kernel) A measurable function K :
R x RO\{(x,1) € R x R? : x =t} — C is a compact Calderén—Zygmund
kernel if it is bounded on compact sets of its domain and there exist 0 < § < 1 and
functions L, S, D satisfying (1) such that

(It —1'| + |x —x'|)°
|t _x|d+8

IK(t,x) — K", x| S Fg (1, x), @

whenever 2(|t — /| + |x — x’|) < |t — x| with

Fg(t,x) = L(|t —x)S(|r = x)D(| + x]).
We note that under the condition 2(|t — /| + |x — x’|) < |t — x| we have that
[t —x|~ |t —x|=~|t—x'| =~ |t —x|.

If the inequality (2) holds with Fx & 1, we say that K is a standard Calderén—
Zygmund kernel.
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Definition 3.2 A linear operator T : L2(R?) — L%([RY) is associated with a
Calderén—Zygmund kernel if there exists a function K satisfying Definition 3.1 such
that for all bounded functions f with compact support the following integral repre-
sentation

Tf(x) = A;d FOK(, x)dx, (3)
holds for all x ¢ supp (f).

One can define 71 and T*1 as distributions in the dual of the space of smooth
functions with compact support and of zero integral as follows: for each smooth
function f with compact support and integral zero,

(T1, f) =Lm(T1y, f),

where the limit is taken over any sequence of cubes I such that supp f C I and
dist(supp f, R?\I) tends to infinity. More explicitly, for any cube I such that supp f -
I, we can use that the integral of f is zero to write

(T1, f) = <T111,f>+/ FOK (t x) — K (1, x0))didx
I JRA\I

with xg € supp f. By (2) the double integral is absolutely convergent and it is bounded
by || fll1dist(xo, R4\ 7)~?. This last quantity tends to zero for a suitable sequence of
cubes satisfying that dist(supp £, R \ 1) tends to infinity.

3.2 The Weak Compactness Condition

Notation 3.3 We denote by C the family of all cubes I that are tensor product of
intervals of the same length, I = ]_[;1:1 lai, a; +1). We denote by D the subfamily of
all dyadic cubes, that is, cubes of the form I = 2/ ]_[lfd=1 ki, ki + 1) for j, k; € Z. For
every cube I € D, we denote its centre by c(1), its side length by £(I) and its volume
by |1|.

Definition 3.4 A linear operator T on L2(RY) satisfies the weak compactness condi-
tion if there exists a bounded function Fy such that:

T or, ¢ S | Fw (1) 4)
for all I € D and all functions such that |¢;| + |¢;] < 17, with

lim Fw()= lim Fy()= lim Fy()=0.
L(I)—o00 L(1)—0 c(I)—o0

3.3 The Cancellation Condition: The Space SMO, (R")

We now provide the definition of the space to which the functions T'1, T*1 belong
when T is in the p-Schatten class.

Birkhauser
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Let f be alocally integrable function and / € D. We denote the average of f on /
by

(fy1= III"/If(x)dx

and the average oscillation of f on I by

1

oser(f) = (1™ / £ = (fiPdx).
1

Definition 3.5 We define BMO(R?), CMO(R?), and SMO,,(R¢) as the space of all
locally integrable functions f such that we respectively have

(M I flismo = I fllsMOs = sup osc;(f) < oo,

1€D
(2) lim jep osci(f) =lim jep osci(f) =lim ;ep osci(f) =0,
L(I)—o00 L(IH)—0 c(I)—o00

(3) and for 0 < p < o0,

1/ lsmo, = <Z osw(f)”) < o0.

1€D

We note that if (17); is a wavelet frame, then

1
oser ()~ | 1y Yo NF P

JeD
Jci

Therefore, SMO,, (Rd) is also characterized by the condition

P

2

> % STUF NP <oo.

I1eD JeD
Jcl

The following characterization of compactness for Calderén—Zygmund operators
first appeared in [35].

Theorem 3.6 Let T be a linear operator associated with a standard Calderén—
Zygmund kernel.

Then T extends to a compact operator on LP (R?) for all p with 1 < p < oo ifand
only if T is associated with a compact Calderon—Zygmund kernel and it satisfies the
weak compactness condition and the cancellation conditions T1, T*1 € CMO(RY).

Birkhduser
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4 Main Result: Membership of Calderon-Zygmund Operators to the
Schatten Classes

In this section, we extend Theorem 3.6 to the Schatten classes.

4.1 Notation

For any measurable set € R?, we denote by D(Q) the family of all dyadic cubes 1
such that I C .

Given a dyadic cube I/ € D, we denote by T the parent of /, that is, the only dyadic
cube such that I C T and E(T) = 24(I). We also denote by ch(/) the children of I,
that is, the family of dyadic cubes I’ C I such that £(1") = €(1)/2.

For every cube I C R4 and 1 > 0, we denote by Al, the unique cube such that
c(MI) = c(I) and [AI| = AY|I|. We write B = [—1/2,1/2)? and B, = AB =
[—1/2, A/2).

Given two cubes I, J € C, we denote the largest cube by /vJ and the smallest
cube by I~J. Thatis, InJ = J and IvJ = [ if £(J) < €(I), while IAJ = [ and
IvJ = JifeI) < £(J).

We define (7, J) as the unique cube that contains I U J with the smallest possible
side length and whose center has the smallest possible first coordinate. We denote its
side length by diam(/ U J). We note the following equivalence

LI, T)) =~ L)+ |c(T) — ()| +£(J)
~ (1) + dist(I, J) + £(J).

We define the eccentricity and the relative distance of I and J as

eIr) dist(1, J)

ec(l1,J) = v rdist(Z, J) =1+ W

The latter quantity is comparable to max(1, k), where k is the smallest number of
times the larger cube needs to be shifted a distance equal to its side length so that the
translated cube contains the smaller one. We note that

wist(7, 7y ~ L8EID el =]
’ eIy e(IvT)

and so, any of these quantities can be used in the definition of the relative distance.
Given I € D, we denote by 9/ the boundary of / and define the inner boundary of
las®; = U[/ech(l)al/.
We define the inner relative distance of J and I by

dist(J,®y)

inrdist(/, J) =1 + )

Birkhauser
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This quantity is comparable to max(l, j), where j is the smallest number of times
J needs to be shifted a distance equal to its side length so that the translated cube
intersects D ;.

Definition 4.1 For every M € N, let Cp be the family of cubes in R” such that
2~M < ¢(I) < 2™ and rdist(1, Bou) < M. We define Dy = DNCy and Dy () =
D(2) NCy.

For any given M > 0, we call the cubes in Cps and Dy as lagom cubes and dyadic
lagom cubes respectively.

4.2 Conditions for Membership to the Schatten Classes

We state in this section the functions whose summability implies membership of the
operators under study to the Schatten classes.
Letéd >0and L, S, D : [0, 00) — [0, 00) satisfying

lim L(x) = lim S(x) = lim D(x) =0. %)
X— 00 x—0 X—>00

With loss of generality, we assume that L and D are non-decreasing, and S is
non-increasing.
For fixed 0 < 6 < 1, we denote the corresponding dilated functions as

) ~ d
L(x)= sup AT39L(w), D)= sup A2?D(wx).
0<A<l1 0<A<l1

By Lebesgue’s Dominated Convergence Theorem, the functions L and D also
satisfy (5). Given three cubes I, I», I3, we define

Fx(I1, I, I3) = L(£(11))S(€(12)) D(rdist(I3, B))
Fx (I, I, I3) = L(¢(11))S(£(L)) D(rdist(I3, B)),

and the corresponding Fx (I) = Fx (I, 1, 1), Fx(I) = Fx(I,1,1). )
Let Fx(t,x) as in (2), Fw(I) as in (4), and the dilation just defined Fg (/). We
define for0 < p <2,

Fy(I) = Fg(I) + Fyw(I) + osc;(T1) + osc; (T*1). (6)

On the other hand, for 2 < p < oo, given L, S, D as before and 0 < §' < §, we
define

o L) = L)+ L&) 4+ LMD 4 (14 29) 71 =010 1y(x)
o S7(x) = S(x) + Sx'?) + =

14x8% )
e D(x) = D(x) + D(x'7%) + (1 + x%%)~1.
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Now, given these three new functions, we define the corresponding Fz in a similar
way we did before. Then we define

Fi(I) = FY(I) + Fw(I) + osc;(T'1) + osc; (T*1). (7

With these definitions, we can state our main result.

Theorem 4.2 Let T be a linear operator with a compact Calderon—Zygmund kernel
K and associated function F defined in (6).

(1) If0 < p <2and Z Fo(I)? < oo, then T € S,(L*(RY)).
1€D
() If2 < p and Z Fi()? < 0o, then T € S,(L*(RY)).
1D

Remark 4.3 Each of these two conditions implies 71, T*1 € SMO p-

5 Characterization of the Schatten Classes by Means of Frames of
L2(RY)

5.1 Frames on Hilbert Spaces

Operators in the Schatten classes can be characterized by their action on frames.

Definition 5.1 Let H be a separable Hilbert space. A sequence of functions ( f;,),eNn C
H is a frame for H if there exist constants 0 < C; < C; such that

ClIlFI? < Y I f) P < CallFIP

neN

forall f € H.

For a given frame (f;),en, the largest possible constant C in previous inequality
is called the lower frame bound, while the smallest possible constant C; is called the
upper frame bound.

A frame is called normalized tight if its lower and upper frame bounds are both
equal to 1.

The notion of frame was first introduced by Duffin and Schaeffer [15]. Since then it
has found a multitude of applications both in fundamental and applied analysis. The
literature on frames, most notably Gabor and wavelet frames, is truly vast. See [8, 9,
19, 22] and [7] for a very small sample.

There are several characterizations of the Schatten classes in terms of orthogonal
bases and frames. We use the following results, which are contained in [3]. It should
be noted that the statements in the referenced paper are written in a slightly different
way.

Birkhauser
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Theorem 5.2 Let T be a bounded operator on a separable Hilbert space H and 0 <
p <2.ThenT € S if and only if there is at least one frame ( f,)nen of H such that

Y NTfull? < oe.

neN

Moreover, 1
»
IT1l, = inf (Z ||fn||2—”||Tfn||P> , @®)
neN
where the infimum is calculated over all frames ( f;,)nen of H with lower frame bound

larger or equal to 1.

Theorem 5.3 Let T be a compact operator on a separable Hilbert space H and 2 <
p < 00.Then T € S, if and only if there exists C > 0 such that

S ITHIP<cC

neN

for every frame ( fy)nen of H. Moreover,

IT1l, = sup (Z ||Tfn||”) :

neN

where the supremum is calculated over all frames (fn)nen of H with upper frame
bound smaller or equal to 1.

For small exponents we use Theorem 5.2. However, for large exponents we can-
not directly use Theorem 5.3 because we do not have control of the action of a
Calderén—Zygmund operator over all possible frames (not even on all orthonormal
bases). Instead, we will resort to the following property of the Schatten classes whose
proof when n = 0 is classical (see [38]).

Theorem 5.4 Let T be a compact operator on H, p > 0Oandn > 0. Then T € S, if

1
i1 Moreover, ||T |, = I(T*T)> |12
on+l

and only if (T*T)%" € Sy
Proof By definition, the singular values s, of T are the square roots of the eigenvalues
n of T*T, thatis, s, = )\1/2

Slnce T*T is self-adjoint and positive, its singular values are exactly its eigenvalues
An. Then

1715 —an —ZA =177}

mm (S}
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By areiteration of previous argument, we get that T € S, if and only if T*T € § 2

if and only if (T*T)? = (T*T)*T*T € Sp if and only if (T*T)* € § » . Ineach
2}1
case we have
* % * 2 % * on znl+l
T, =TTy = I(T*T)N}p =---=I(TT)" |2, .
2 4 on+l1
[m}

5.2 A Haar-Type Wavelet Frame

Definition 5.5 For each a dyadic cube I € D, we define the corresponding Haar
wavelet as

yr =172 (1; — 27715),

where I € ch(]), thatis, I C T such that £(1) = £(1)/2.

We denote (f, g) = fRd f(x)g(x)dx. We hope that this non-stardard use of the
notation (, ) which is quite customary in the literature on 7'b theorems will not cause
any confusion.

The following result summarizes the orthogonality properties of the Haar wavelet
frame. The proof follows directly by using Definition 5.5.

Lemma5.6 Let I, J € D. Then
(W1 wy) =8I, DU, J) — 279, )

where$(1, J) = 1ifI = J and zero otherwise. With this we have || ||2 = (1—2_‘1)%.

Lemma 5.7 The following decomposition

£=Y (v

1€D

holds with convergence in Lz(Rd). Moreover, (V1) 1ep is a normalized tight frame of
L2(RY).

Proof Let f € L?(R?). We start by noting that

ST = Y (i =27l = ()7L + 27N )7l

Tech(]) Iech(])

DOl | = (Ol

Iech(])

Birkhauser
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Then, by summing a telescoping series, we get for all x € R?

Yo L= Y DAL | = ()

I1eD 1€D Jech(l)
27N<ey<2V 2-N<g(1y<2V

= (fIr1Ir(x) — (f)sls(x),

where R and S are the only dyadic cubes such that £(R) = 27V, £(S) = 2V and
x € R C S.Now, by Lebesgue’s Differentiation Theorem, the first term tends to f(x)
almost everywhere when N tends to infinity. Meanwhile the second term tends to
zero when N tends to infinity since |{f)s| < |S|_% Ifll2 = 2_dTN Il £ ll2. This proves
a.e.-pointwise convergence.

Furthermore, if we denote by M f the Hardy-Littlewood maximal function

1
Mf(x) = sup—/f(y)dy,
IeC|I| 1

xel

we have by previous calculations

1FG) = D (LY@ < (f@I+ (DRI + (1 fsLs(x)

1D
27 N<py<2N

SIF@P + M fD(x)?,

and the last function is integrable since f, M (| f|) € L?. Then by the a.e. pointwise
convergence and Lebesgue’s Dominated Convergence Theorem, we obtain conver-
gence on L2.

Finally, to prove that (¥7);cp is a normalized tight frame of L?(R?) we start by
noting that norm convergence implies weak convergence, that is, for all g € L?

lim S ()8 (x)dx Z/f(X)g(X)dX~

N—o0
1€D
2-N<py<2V

Then, by previous equality with g = f, we get

7= [ s@sedr= tim [ f@ 3 (fmvieds

1D
2" N<pn<2V

= lim 3" (Fun v =) YDl

N—oo
IeD IeD
2~ N<py<2V

which ends the proof. O
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6 Bump Estimates for Compact Calderon-Zygmund Operators

Theorem 6.1 below, whose proof can be found in [36], describes the bump estimates
satisfied by operators with a compact Calderén—Zygmund kernel for which special
cancellations properties hold.

Proposition 6.1 Let T be a linear operator with a compact Calderon—Zygmund kernel
with parameter 0 < § < 1. We assume that T satisfies the weak compactness condition
and Tl =T*1=0.LetI,J € D.

(1) When rdist(1,7) > 3,

)
(Tyr oy < <L D2 g,

™~ rdist(I, J)4+s

where F1(I,J) = Fx(I~J, I~J, (1, J)). Alternatively, we also have

d
ec(I,J) 2

0 T R ).
inrdist(7, J )4+ 12, )

KTy, )| S

(2) When rdist(1,J) < 3,

d
ec(I,J)2

T paL ),
mrdisez, yp 2 D)

KTy, )l S

where Fr(I,J) = FK(IAJ, INT, (I, ])) + Fw([)é, J), with§(I,J) = 11if
I = J and zero otherwise.

7 The Schatten Classes for Small Exponents

We now start the proof of Theorem 4.2, our main result on singular integral operators
in the Schatten class. We distinguish between exponents smaller than two, which we
treat in this section, and larger than 2, which is dealt in Sect. 9 with preliminary work
in Sect. 8.

In each case we work first the special cancellation case, thatis, when 71 = T*1 = 0,
and treat later the general case of T'1, T*1 € SMO,, by means of paraproducts.

7.1 Proof of Theorem 4.2 Under Special Cancellation Conditionsand 0 < p < 2

Theorem 7.1 Let T be a linear operator with a compact Calderon—Zygmund kernel
and associated function Fy as defined in (6). We assume that T1 = T*1 = 0. Let
O<p<2
If Z Fs(I)? < 00, then T belongs to the Schatten class Sp(LZ(Rd)).
I1eD
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Proof Let (/7)) ep be the Haar wavelet frame of LZ(R9) given in Definition 5.5. By
Theorem 5.2, to prove membership of 7 on the Schatten class S, we just need to show
Y 1ep ITY1115 < co. Once we show that

ITyrll2 S F(D) (10)

we have

STy £ F?,

1€D 1€D

which is finite by hypothesis. To prove (10) we start by writing

1

T2 < (Z Ty, ¢J>|2> :

JeD

In view of the rate of decay stated in the bump estimates of Proposition 6.1, we
parametrize the sums accordingly with the eccentricity, relative distance, and inner
relative distance of the cubes I, J as follows. For fixed ¢ € Z, m € N and every
dyadic cube J, we define the families

Ieon = lemo={J €D: L) =2%J),m < rdist(I, J) <m + 1},
and whenm < 3
Iemk =1{J € loy 1 k < inrdist({, J) < k + 1}.

We note that the cardinality of I, ,, is comparable to 20, d=1 "\yhile the
max(e 0)

cardinality of the family I, x is bounded by a constant times 2m4*(¢: O)(d D=
Then we have

0=

vl S 1D D D KTy vl

ecZ mkeN Je€lo i

By Proposition 6.1, we have for m > 3,
(Tyr, vl S 27D~ @D (),
while when m < 3,

KTy, v)| S 275k P, 0,
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with F(I,J) = Fx((I,J),InJ,(I,J)) or F(I,J) = Fx(IAJ,IrJ, (1,J])) +
Fw(I)§(I, J). We write both estimates in a unified manner as

|<Twl’ ‘//J>| S Ae,m,kF(Ia J)~

With this

Bl—

1Tyl S1DY. Y. Asx D FU.D*| . (11)

e€Z m,keN Jelom k

a) For m > 3, we have
F(I,J)= LI, J)SEUIJT)D(rdist((I, J), B)).
We first show that when J € I, ,,, we have
F(I,J) S LEU)SEU))D (ke rdist(1, B)) = Fem(I). (12)

where A, = omin(e.0),, =1 < 1,

For this, we remind that L is non-increasing and § is non-decreasing. Since
eI, JY) = rdist(I, HEAVI) > m2~ ™m0y > ¢(I), and L(IN]) =
2~ max(e.0 (1) < ¢(I), we have L(£((1, J))) < L(£(I)) and S(L(I~J)) < S((D)).
This enough to control L and S.

On the other hand, since D is non-increasing, we work to prove the lower bound

rdist({{, J), B) = A mrdist(Z, B).

We first we note that since rdist(/,J) < m + 1 < 2m, we have £({I, J)) <
ml(IvJ). Then for e > 0 we have £({I, J)) < mé(I), while for e < 0 we get
eI, 7)) S ml(J) = m27(I). Thatis, £((I, J)) < m2~ ™01y = A7} e(I).
With this 1+ £((1, J)) < A, (1 + £(1)).

Moreover, since c(I) € (I, J) we have [c({I, J)) —c(I)| < £({I, J))/2. Then

E(LT) + e, IDI+1

rdist((1, J),B) =

L+€((I, 7))
le(D)]

> -7

<1+ L+e((1,7))

> le(D)]

Ao (L+£(D)

1 le(D)|
= )\;}ﬂ (1 + 1+£(I))

> Ae,m rdist(Z, B).
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Since D is non-increasing, we then have that D (rdist({, J), B)) < D (e, rdist(, B)).
With the three inequalities, we have

F(1,J) S LUID)SE)) D (hem rdist(, B)) = Fom(D),

as claimed in (12).
Now, using A i = 21el(5+8) py—(d+0) card(l, ) =~ 2mX(€0dpd=1 and that
gmax(e,0)p—min(e,0) — 2lel e bound the corresponding terms in (11) by

1
2

3 3 ol 2, @92 S gy

ecZ m>3 Jele,m
3
5 (Z Z 2—el(d+26)m—2(d+6)2max(e,0)dmd—1Fe’m(1)2>
e€Z m>3

1

2
— (Z Z 2—e|28m—(1+28)2min(e,0)dm—dFe’m(1)2)

ecZ m>3
1

2
— (Z Z 2_e|26m_(1+25))»g’mFe,m(1)2)

ecZ m>3

1
d 2
< sup AlmFem(D) (ZZZ"Q'%‘“”&)

e€Z,m>3 ecZ m>3

S Fs(D).

The last inequality is due to the fact that

sup ,\imFE,m(l)=L(£(1))S(z(1)) sup A2 D)

ecZ,m>3 0<A<l1
= L) SEI)NDU) = Fx(I) < Fy(I)
as defined in (6) at Definition 4.1. This shows that the terms corresponding to this case

satisfy (10).
b) Now we deal with the case 1 < m < 3, for which we have

F(I,J) = Fx(I,J) = LUEUIN)SEUIAT))D(rdist({1, J), B))
+ Fw (DI, J).

We show that 1 <k < pmax(e.0). gince

lc) —c(J)]

> e ist(/ ~ 1
3>m~ rdist(1, J) + T
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we have |[c(I) — c¢(J)| < 2€(IvJ). Then

I —c(J
k ~ inrdist(1, J) <1+ le() — (DI
e(Ind)
g 1 M =1 zmaX(e,O) < Zmax(e,O)-i-l’
(InJ)

which proves the inequality.
As before, we are going to estimate F'(/, J) when J € I, , k. Then, given I € D,
we denote

F.(I) = sup sup F(I,J).
1<=m=<3 Jelem i
lfkumax(e'O)

We also denote M (e) = max(e, 0) and m(e) = min(e, 0). Then we use A,k =

271e15k=9  and card(I, k) < 2M@©@=D (o show that the corresponding terms in
(11) can be bounded by

D=

oM(e)
)IDIERLTS D ST,
ecZ k=1 Je’e,m.k

2M(e) 7

S Z Z 2_|e|dk_262M(e)(d_l)Fg(])2

ecZ k=1

M) 2

E 22 ‘€|daF ([)2 Z k—25 ,

ec’Z

since 2~ leldpM(e)d—1) — p—leld” \ith o = @ Now let 0 = %lﬁ, which satisfies
0 <6 < 1. Then

o M(e) 20M(e) oM(e)
I N
k=20M(©) ]

< 2IM(e) | =280M(pM(e) < M (@) 5557

With this, the corresponding terms in (11) can be bounded by

1

2
(Z 2—|e|d°‘+M(e)281+1Fe(I)2> )

e€Z
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We note that —|e|d* + M (e) 5 28+1 = —|e|B such thatife > Othen 8 =1 — 23+1 =

i35 +25, while if e < 0, then 8 = d. With this, and the inequalities 0 < «, 0 < 0 < 1,
we can bound previous expression by

sup 2l "F(I)(Zz lelp1- 9>) < sup2 150 B ().

ecZ ec? €€l

From now we work to show that 2_“3'%9&(1 ) < F(I). We start dealing with the
first term:

F(I,J) = LUIAD)SEUIA))D(rdist({1, J), B)). (13)

Since £(I~J) < £(I), we immediately have S(¢(I~J)) < S(€(I)). For the factor
given by D, we first note that by the work carried out in the previous case and m < 3
we have

min(e,0)

rdist((1, J), B) > rdist(1, B) > 2Min0 rdist(1, B).

Then we can bound (13) by
LEUIAI)SE)) D™D rdist(1, B)).

To deal with L we reason as follows. When £(I) < £(J), we have e < 0 and
L(I~J) = £(I). Then previous expression equals

L(1)SE(I))D2° rdist(I, B))
and thus

sup2- 1150 £, (1) < LD SEI))2¢%° D2¢ rdist(1, B))

[
e<0

< L) SE))D(rdist(I, B)) < Fy(I).

On the other hand, when £(J) < £(I), we have £(IAJ) = £(J) = 27¢¢(I) with
e >0.Then B = 155 and

sup 21120 F, (1) < sup 275 L0 (1)) S(e(1)) D(rdist(I, B))
eE(Z) e€Z
e=

< L) S)D(rdist(1, B)) < Fy(I). (14)

Finally, by definition we have that Fy (I) < F (I). This completely finishes the
proof of (10). m|
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7.2 Proof of Theorem 4.2 in the General Case. Compact Paraproducts

When T'1, T*1 are arbitrary functions in SMO p(Rd), we construct paraproducts I1ry,
IT%., with compact Calderén—Zygmund kernels such that IT7 (1) = T'1, I} (1) =
0 while I}, (1) = 0, I+ (1) = T*1. This way, the operator

T=T—TMr — M,

satisfies the hypotheses of Theorem 7.1 and so, T belongs to S, (R%). Then, to prove
that the initial operator 7T is alsoin S, (R%), we just need to show that the paraproducts
7 and IT%., are in S,,(Rd).

Definition 7.2 Let (¥;);ep be the Haar wavelet system of Definition 5.5. Let b a
locally integrable function. We define the linear operator

(Tpf.8) = > (b i) f)i(g. Y1) (15)

1€D

forall f, g € Co(RY).
Notation7.3 For I, J € I, we define §;c; = 1 if J C I and zero otherwise.

Proposition7.4 LetT1 € SMO,, (]Rd)forO < p <2.Thenboth 17| and IT;1 can be
associated with a compact Calderon—Zygmund kernel, and they belong to S, (RY) with
I071lls, < IT1smo, and T3 |ls, < T lsmo,. Moreover, (TiT11, g) = (T'1, g)
and (I} 1, f) =0.

Proof The fact that both IT7| and IT},, both have a compact Calder6n—Zygmund kernel
was already proved in [35].
Formally, [T satisfies

(r1l, g) = Z(Tl, V(g ¥ = (Tl g).

1D
Moreover, since 1; has mean zero, we have (Ilry f, 1) = 0.
Since 0 < p < 2, to prove membership to S, we just need to show that

Y orep M1 ||§ is finite. As before, we start with

P
2

IMrwill} < (Z (71, wmz)

JeD
By definition of the paraproduct and the orthogonality property (9),
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(Mg yr) = Y ATL k)W) k (Y. Vo)

KeD

D ATL Y)Wk, K) —

Kech(J)

_d)

Since lﬂl is supported on T and it has mean zero, we have that ({;)x = 0O unless

K C 1. With this and K € ch(J) we get 7 - 7 and so

(Mriyr, ¥r) =85cr Y, (TL Y)Yk, K) —
Kech(D)
Now, since [§(K, J) — 279 < 2 and |(y) k| < —L+, we get
1712
1
(v )l < 287c;— . WTL k)l
171> Kech(])
Then
P
2
1
Ty 15 < |_|Z (T i)

(S|

N

Since || Y7l = (1 — 2_d)% < land p < 2, by (8) this finally shows

ITrall§, < > ITryrlls S ) osep(T D

I1eD 1D
< Z osc; (TP = ||Tl||§Mop.
1D

On the other hand, [T}, = ITI71ll, S I71llsmo,-

8 Technical Results

<osci(T1)P.

—dy, (16)

7)

Theorem 6.1 shows the estimates satisfied by Calderén—Zygmund operators 7' that
extend compactly on L? (R9). In Theorem 9.1, we prove an extension of Theorem 6.1

satisfied by dyadic powers of T*T
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Prior to the proof of Theorem 9.1, we need to develop nine technical lemmata that
will be used in its demonstration. These results are classified in four groups, depending
on the object being estimated: elementary integrals, convolutions, distances, and the
function F.

8.1 Estimates on Elementary Integrals

We start with a lemma on estimates of some elementary integrals.

Lemma8.1 LetO0 <8 <1,a € RY R>0and0 < R, < Ry. Then

(14 |x —ah™“*dx < (1 +max(la| — R, 0)~°, (18)
B(0,R)
(14 x —ah)~“*Pdx <1+ max(lal — Ra, Ry = lal, 0)~°, (19)
B(0,R)\B(0,R1)
f (1+|x —aD)Pdx < (R +la])?°. (20)
B(O,R)
Proof A) We start by proving some related inequalities, (21) to (24), prior to demon-

strate the inequalities in the statement.
1) To prove the new inequalities, we first assume a = 0. Let 0 < 6 # d. Then

R
(1+|x|)—9dxxe/ (1 +nr~ritar
R
B(O,R)\B(O,R1) 1

max(min(1,R),R1) Ry
~ / rldr + f r =1 =0dr
min(max(1,R»),R1) max(min(1,R2),R1)

= d~ ' (max(min(1, R,), R1)¢ — min(max(1, R»), R)?%)
+(d — 6)" 1 (R{™? — max(min(1, Ry), R1)?~?)
~ max(min(1, Ry), R;))¢ — min(max(1, R2), R})?

+|RY™? — max(min(1, Ra), R1)?79|. 1)

Now we consider two cases in previous equivalence.
l.a)If Ry =0and R, = R > 1, then from (21) we have

/ (A + |x)"%dx < min(1, R)? + |R?~ — min(1, R)?~
B(0,R)

< R0 (R) + (14 (R4 — 1) 11,001 (R)
S R0 (R) + (14 R0 111001 (R).
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If0 =d + 8§, we have
/ A+xD “ax <1+ 1+R?P <, (22)
B(0,R)
while if 6 = § < d, we get
(14 |x])"%dx < RU1jo.11(R) + R4 1001 (R) < RS, (23)
B(0,R)

1.b) On the other hand, if Ry = R and Ry = 00, and 8 = d + & then from (21), we
get

/ (1+ x)”"“agx < max(1, R)? — R? + max(1, R)~°.

R4\ B(0,R)

If R > 1, we have

/ A+ xD~“dx < max(1, R) " ~ 1+ R)7?,

RI\B(0,R)

while if R < 1 we get

/ A+x) " “ax <1-RI<1<A+ R

RI\B(0,R)

With both things,

/ A+ x)~“ax <A+ R)C. (24)

R4\ B(0,R)

2) Now for general a € R? we reason as follows. We first note that if u, = ﬁ is
the unit vector in the direction of &, then

R

|Rug + al®> = R*> £ 2(Rug,a) + |a|> = R> £ 2 |(a, a) + la)?

la

= R?> £ 2Rla| + |a* = (R £ |a|)?

and so, |[Ru, —a| = |R — |a|| and |Ru, + a| = R + |a|.
B) With all this preliminary work, we can now prove (18). We start by showing

that if R < |a|, then B(—a, R) C R4 \ B(0, |Ruy, — al): for x € B(—a, R) we have
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x = —a + Rv with |v] < 1 and so
lx| = la] — R|v| = |a| — R = |Ruq — al.

With this,

A+ |x —a) 9 Dax = / A+ x4 gx
B(0,R) B(—a,R)

< f (1 + [x)~ 4 gx

RI\B(O,|Rug—al)
< (4 [Rug —a)™ = (1 + |la] — R])°,

where we used (24) in the last inequality.
On the other hand, if |a] < R, we have that B(—a, R) C B(0, |a| + R). Then by
(22)

f(1+|x—a|)—<d+‘”dx: / (1 + x)~*Dgx
B(0,R) B(—a,R)

< / (1 + |x)~“4ax < 1.
B(0,R+]al)

Both inequalities prove (18).
C) To show (19) we reason as follows.

[ = f (14 |x —al)~ @D gx
B(0,R2)\B(0,Ry)

= / A+ |x)~HDgx.
B(—a,R2)\B(—a,Ry)

Let C = B(—a, Ry) \ B(—a, Ry).If Ry < |a| then C C R¢\ B(0, |Rouy — al).

Meanwhile, if |a] < Ry then C C R4 \ B(0, |Riuy —a|). Therefore, by (24), we have
in each case:

IS+ |Roug —a)™ = (1+1al — R,
and
IS+ |Rug—a)™® =1 +R —la)?,

respectively. Meanwhile, if Ry < |a| < R», we have B(—a, Ry) \ B(—a, Ry) C
B(0, |al + Ry) and so I < 1. This ends the proof of (19).
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D) To prove (20) we use that B(—a, R) C B(0, |Ru, + al) and so

/ 1+ |x —a|)bdx = / 1+ |x])~"%dx
B(0,R)
B(—a,R)

< / (14 |x)~dx
B(0,|Rug+al)\B(0,|Ru,—al)
S |Rug +al’=% = (R +|a])??,

where the last inequality follows from (23). This proves (20). O

8.2 Estimates on Convolutions

The next two results consist on pointwise estimates for the convolution of integrable
and non-integrable functions, Lemma 8.2 and Lemma 8.4 respectively.

Lemma 8.2 We denote w(x) = (1 + |x|)_(d+5). Form € 7%, and ) € R, we have

Z wim —mYwm') < wim),

m'eZ4
and
Z w(m — amHw(m’) < Lﬁ?
I+ ()
m'eZ4 L+|m|

1
+ A8+ ———) w(A| + |m]).
L] + |m|

In both cases, the implicit constants are of the order of §".

Remark 8.3 We will mostly use the second inequality when 0 < A < 1 < |m| and so,
in that case the inequality simplifies to

Z w(m — AmHwm') < wim).

m'eZ4
Proof (1) When Am = 0, the first inequality holds trivially since we have
Y wrezd w(m’)? < 1.
To prove the inequality when Am # 0, we denote ¢ = AT'”, we consider the line L =

(Am), and the affine space of codimension one H = ¢+ L~ defined as the perpendicular
complement of L translated to c. For i € {0, 1}, let H; be the d-dimensional sets
defined by the closure of the connected components of R? \ H. Since Am # 0, we
can assume without loss of generality that 0 € Hy and 2¢c = Am € Hj. Finally, we
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write f(x) = w(x — Am) and g(x) = w(x). We also denote the left hand side of the
first inequality by S. Then, by Holder inequality,

S= Y fomhgm)y= Y Y fm)gm))

m’eZd i=0,1m'eH;

< W oo ) 18 Nt gy + I Mot oy N1 g ooy -

On Hy we have || f ||,y < (1+]c—am])~@+) < (14 [am|) =@+ = w(rm), and
||g||11(HO) < ligll;r < 1, which accounts for the first term. On H; we have ||g || (p,) <
(1 4 )= < (1 + |Am|)~@+) = w(im), and

I £l oy 5/ (1+|x—xm|)—<d+5)dx=/ (1 + |x)~U*Hgx < 1.
R4 R4

This ends the proof of the first inequality.

(2) We denote again by S the left hand side of the second inequality. When A = 0,
wehave S =),/ za wim)w(m’) < w(m).

When A # 0 and m # 0, we can assume by symmetry that A > 0. Then we apply

previous reasoning to ¢ = %, Hy, H; defined as before with 0 € Hy, and 2¢ € Hj,
f(x) =w(x —m), and g(x) = w(x). Then

S< Y Y fmhgm)

i=0,1m'eH;
< min(|| fllzo ro) 18 111 (ag) » 11 11 (220) 118 110 (1))
+ min(ll f 1l gy 181l ey 1 Mooy 118 Nt gay)-

On Hy, we have || fllie,) < (1 + |he — m|)~9@+D < (1 + |m[)~@+% and
gl (rr) < 1. On the other hand, we have that Hy C R4\ B(A~"'m, ¢). Then by (19)
witha =0, R; = Ac and R, = 00, we have

I F 1l gy < / (14 |ax — m|)—(d+8)dx
Rd\B()flm,c)

=24 / A+ x4 gx
R4\ B(0,Ac)
<27+ AeT <A+ Im)

1
— (1 + jm])~ @) ﬁ'm')

Moreover, ||glliooHy) < 1. With all four inequalities we get
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d
> Fmygm') < (14 ml)~ @ min (1, (H'm') )

A
m’eHy
1

~w(m) ————
1+ (m)d

which accounts for the first term in the statement. Meanwhile on H; we have
1 Wiy < / A+ x —m) ™ dx <74
R4

and gl < (14 [e)™@ < (1 + 27 m|)~@*D. On the other hand,
Il fllzoe(h;) < 1. Moreover, by (19) witha =0, Ry = |c|, and R, = oo, we have

gl ) < / (1 + )~ @D dx < f (1 + [x)~ @Dy
H, RI\B(0,|c])

SU+[eD? S A+ mp™
= (1+ 27" m))= 9D (1 4+ 27 m).

Therefore
1
M4+ A+ r"Ym)—d

1 1
— 34 4 )@+
(A +1mD W1+ (h+ m)) 4

> fomhgmy < A+ 27 mp) @

m'eH

~ANh A+ m) " ————
(& Iml) (14 1+ |m)?

s+ A+ |m]? 1
B O+ mDS (14 A+ [m[)a+s

=20+ Yw + m)).

A+ |m|
This accounts for the second term in the statement.
Finally, when A # 0 and m = 0, for each ¢ > 0 we apply previous reasoning to
m=c¢ce; =¢€(1,0,...,0) to obtain

§
wlee
S; = Z w(m — amHw(m’) < % + A (1 + ) w(|A] + €).
=t I+ (o) ke
m’ e +e

Now, by taking the limit when € tends to zero we get

S= Y wimhwm) g + (4 D w),

m'eZd

1
14+ |x9
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which coincides with the statement when m = 0. O

Lemma 8.4 We denote o(x) = (1 + |x|)~%. For» € R, k € Z¢, and R > 0, we have

Z oMk — K)o (k') < o (k)(1+ RS,
k'ezd
|K'|<R

Moreover,

> ok —ro (k) S o)1+ Ry
k' ezd
K]<R

In both cases, the implicit constants are of the order of (d — 8)~\.

Proof In both inequalities, we assume that R > 1 since otherwise the sums reduce to
o (Ak)o (0) < o(Ak) and o (k)o (0) < o (k) respectively.
1) To prove the first inequality when Ak = 0, we have by (20)

> a(k’)25/ (1+ |x])"#dx
B(0O,R)

k'eZ4NB(0,R)

5/ (1 +|x])%dx < RS, (25)
B(O,R)

When Ak # 0, we denote ¢ = Ak and B(0, R) the d-dimensional ball of center the
origin andradius R. We consider the line L = (Ak), and the affine space of codimension
one H = ¢ + L' defined as the perpendicular complement of L translated to c. For
i € {0, 1}, let H; g be the d-dimensional sets defined by the intersection of B(0, R)
with the closure of each connected component of R? \ H. Since Ak # 0, we can
assume without loss of generality that 0 € Hp g. We write f(x) = o(x — Ak) and
g(x) = o(x), and denote the left hand side of the first inequality by S. By Holder
inequality,

S= Y fEgE)< Y > fkDg)

k’EZdﬁB(O,R) i=0,1k/€Hi’R

= ||f||l°°(H0,R)||g||11(H0,R) + ||f||11(1-11,R)||g||l°0(H|,R)-

On Hp g, we have the following situation. When R < |[c¢| = |ik|/2, then
I fllioocry )y < (1 + |Rug — Ak|)_5, where u; = % is the unit vector in the direc-
tion of k. Moreover, |Ruy — Ak|| > |Ak| — R > | k|/2. When |c|] < R, we have
| f ool z) < (1 + | — Ak|)~%. Moreover, |c — Ak| = |Ak|/2. Then, in both cases
we get || fllioHy p) S (1+ 12k ™0 = o (Ak).

On the other hand, since Hy C B(0, R) we have by (20)

gl o) = / (1 + e ~Pdx <RI,
B(O,R)
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Then the first term is bounded by o (Ak)RAS.

On Hj g, we have that if R < |c| then H] g = ¥ and so the second term is zero.
Then we can assume |c| < R.Inthis case, || gllioo(m, z) < (141c)h~? < (14 |rk)~8 =
o (Ak). Moreover, we know Hj gp C B(0, R), and so, by (20), we have

LS Wi oy gy < f (14 |x = kD "2dx < (R + Ak S R,
B(0,R)

since R > |c| = |Ak|/2. Then also the second term is bounded by o (Ak) R%_ which
proves the first inequality.

2) For the second inequality, we apply similar ideas as before. When A = 0, we
have by (20)

S = ko (k') < ok 1+ [x])~%d
> “()“()”“()/B@,m( x)"dx

k'eZ4NB(0,R)
<o (k)RS

When A # 0 and k # 0, we can assume without loss of generality that A > 0.

Then we apply previous reasoning to ¢ = %, Ho g and H) g defined as before with
0 € Ho.g and 2c € Hy g, f(x) =0 (Ax — k), g(x) = o(x). Then

S= Y flhegkh= Y Y fK)g)
k’'eZ4NB(0,R) i=0,1k'eH; r
< min([| f llzo ro, o) 181111 1o gy NS i1 (g, ) 118 lioe (Ho 2))
+min(”f”zl(HLR)||g||l°°(H1,R), ||f||l°°(H1vR)||g||11(H1,R))~

On Hp r we have the following situation. When R < [c| = [A~1k|/2, then
I llieery ) < (1 + [ARuy — k|)~?, where u; = % is the unit vector in the direc-
tion of k. Moreover, |ARuy — k| > |k| — AR > |k|/2. When |c| < R, we have
£ lliee by ) < (1+1Ac—k[) ™% & (1+]k[)~? since [\c—k| = |k|/2. Then, in both cases
we get || f 1oty ) S (1 + k)™ = o (k). Moreover, as before, || g1 (s, o) < R
On the other hand, since Hy g C B(0, R), we have by (20)

I it g ) < / (1+|ax —k])Pdx = ,\—d/ (1 + |x — k) °dx
B(0,R) B(0,AR)

<A R + k)2,

and ||g|l;o(my ) S 1. Therefore,

Y fK)g() S min(o (k)R ATIOR + k).
k’eHp g
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Meanwhile on Hj g we have that if R < |c| then H; g = ¥ and so the second
term is zero. Then we can assume |c| = |A~'k|/2 < R and so, |k| < AR. Since
Hi g C B(0, R), we have by (20)

£ oy < / (1+ Jhx — k) ~dx = 1~ / (1+ Ix — k) ~*dx
B(0,R) B(0,AR)
<ATOR 4 kDT < ATPRIS,

Moreover, ||gllie) < (1+0)7% < (1 + A7k ™° = o (A ~'k). With both things
we get

1l car, llgllioeqey S AT°PRIP(+A71KD™ = (u + kDT RO,

On the other hand, || f[l;oo(#, ) < 1 and since R > |c| = A~ k|/2,

el ey o) 5/ (14 |x])%dx < RIS,
' B(0,R)

Therefore

Y fEDg() S min(O+ k)7, DR
k'eH r

1+ (A + |k])?
~ o+ k)R <o k)R,

8.3 Estimates on Distances

We now prove four different results that provide estimates on the distance between
sets, and the relative distance, and inner relative distance between cubes.

Lemma 8.5 Let A, B, C be three sets in R4, Then
dist(A, B) < dist(A, C) + dist(B, C) + diam(C). (26)

Remark 8.6 By changing the roles played by B and C, the inequality can be rewritten
as

dist(A, B) > dist(A, C) — dist(B, C) — diam(B). 27)
Proof Letx € A,y € B, and z, 7/ € C arbitrary. Then
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dist(A,B) < |x —y| < |x—z|+ |y —Z |+ |z = 7|
<I|x —z|+ |y — Z'| +diam(C).

Taking infima in x, y, z, 7’ all independently, we have
dist(A, B) < inf |x — z| + inf |y — 7| + diam(C)
xeA yeB

2eC JeC

= dist(A, C) + dist(B, C) + diam(C).

Lemma 8.7 Given three cubes I, J, K such that £(J) < £(I), we have
rdist(/, K) < rdist(1, J) + rdist(J, K),

and

e(Ivy) st/ J) — ((JVK)

dist(1, K) > 1
wdistZ. K) 2 1+ 19008 (IVK)

rdist(J, K)| .

Remark 8.8 The condition £(J) < £(I) is necessary.
Proof (1) We denote £ = £(I)+£(J)+£(K). Since £(J) < £(I), we have £(Iv]) =
£(I) < £(IvK) and also £(JvK) < £(IvK). Moreover, £ < 20(]) + £(K) <

3¢(IvK). With this and dist(/, K) < dist(/, J) + dist(J, K) + ¢, we can prove
the first inequality:

dist(/, K) - dist(Z, J) dist(J, K) L
L(IvK) — L(IVvK) L(IVK) L(IVK)
- dist(Z, J) dist(J, K)
L(IvJ) L(JVK)

+ 3.

Then

dist(/,K) _,  dist(/,J)  dist(/, K)
((IVK) ¢(IvT) ¢(JVK)
< 2(xdist(Z, J) + rdist(J, K)).

rdist(/, K) =1+

dist(J, K) 4+ £ and dist(J, K) < dist(/, K) + dist(, J) + £ we have

(2) We now work on the second inequality. From dist(/,J) < dist(/,K) +

dist(I, K) > |dist(Z, J) — dist(J, K)| — £.

With this and rdist(Z, J) — 1 = 94D e o6t

V)
dist(/, K) _ |dist(Z, ) £(dvJ)  dist(J, K) LUVK)| €
C(IvK) ~ | edv)) €IvK) eJvK) CUvK)| CIVK)
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> raisecr, 2D i YR L
((IVK) CIVK)Y | tIvEK)
i) LUK ¢

¢(IvK) €(IvK) €(IvK)

As we saw before, £(IvJ) < £L(IVK),L(JvK) < £(IvK),and £ < 3¢(IvK). Hence

dist(I, K , eIy . LIVK
distl. &) 1 isecr, n 2D i ko SO
(1K) U(IVK) IV K)
Finally then
. | dist(1, K)
dist(1, K) > - (64 o 2
risl )—6< e )
1 eIvy CIVK
> U g Ldiser, 22D i k) SV E T
6 L(IVK) L(IVK)

m}

Lemma 8.9 Given three cubes I, J, K such that £(J) < £(I) and £(K) < £(I), we
have

Langy . (JAK)
UK (inrdist(Z, J) — 1) — —Z(IAK)

inrdist(/, K) > 1 + inrdist(J, K). (28)

Proof From £(J) < £(I), and (26), we have dist(®;,J) = dist(D;,D;) <
dist(®y, K) + dist(D y, K) 4+ £(K). Then

dist(®Dy, K) > dist(Dy, J) — dist(D, K) — £(K).

If in addition £(J) < (K), then using that O C K, the closure of K, we also have
dist(Dy, J) < dist(®D;, K)+dist(J, K)+L€(K) < dist(D, K)+dist(J, Dg)+L(K).
With this

dist(®y, K) > dist(Dy, J) — dist(J, Dg) — £(K).

Now, inrdist(/, J) — 1 = % If¢(K) < €(J) we have inrdist(J, K) — 1 =

IELK) Meanwhile, if £(J) < €(K) we have inrdist(J, K) — 1 = %
Then we denote rj ¢ = dist(Dy, K) if £(K) < £(J), and rj x = dist(J, Dg) if

£(J) < £(K). With this and previous two inequalities, we get
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dist(®y, K) - dist(®y, J) L(IAT) rik L(JAK) L(K)

CINK) = €(IAT) C(IAK)  L(JAK) L(IrK)  L(IAK)
> Ginedist(Z. ) — 1) S dise s, k) &K
> (1inrdist(/, UK inrdist(J, K

LK) UK)
(IrK)  CLUAK)

Since ¢(J) < £(1I), we have £(JAK) < £(I~rK). Moreover, Since £(K) < £(I), we
have ¢(K) = £(IvK). Then

dist(® . K o eindy . tUrK
BAOLED . Ginedist (1, ) = DT inedise (s, ) SR
(1K) tIrK) U
With this
dist K
inrdist(/, K) 2 3 + &
L(I~K)
L i ) 1){(“1) inrdist(J K)K(J/\K)
mrais — —— — 1nrais VTN
= ’ (K LK)

Lemma 8.10 Given three cubes I, J, K such that £(J) < £(I), we have

CIVE)  odist(1, K)
s
21+ | ST Ginvdist(r, ) — 1) = S8 indisi(s, k)
LI K) LK)

Proof We denote again £ = £(I) + £(J) + £(K) ~ £(IVvK).

(a) We first assume that £(K) < £(J). Since £(J) < £(I), we have dist(Dy, J) =
dist(®7, Dy) < dist(®y, K) +dist(Dy, K) + £, and also

dist(®,, K) < dist(Dy, K) +dist(D;, D) + £
=dist(Dy, K) +dist(Dy, J) + L.

Then we get
dist(®y, K) > |dist(Dy, J) — dist(Dy, K)| — £.

Moreover, from the assumptions £(K) < ¥£(J) < ¥£(I), we have that

inrdist(7, J) — 1 = SBLD and inrdist(J, K) — 1 = SELE. With this

and previous inequality, we get
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dist(D7, K) _ |dist(Dy, ) £UnJT)  dist(Dy, K) (JAK) | £
LUAK) T | LUAJ) LUAK) (JrK) LK) K
> |(inrdist(Z, J) — 1) fIA) _ inrdist(J, K)E(JAK)
LIAK) ((IrK)

L(JAK) ¢
CU(IAK)  LAK)

Since £(J) < £(I), we have £(JAK) < £(I~AK). Moreover, £ < 3¢(IvK). Then

dist(®;, K) o LAangy . L(JAK)
—Z(IAK) > |(inrdist(/, J) — I)E(IAK) —inrdist(J, K)E(IAK)
- 3€(IvK).
L(IAK)

With this and ﬁgXllg > 1, we have

inrdist(7, k) > LUK SUIVE) | dist®Dr, K)
S¢(IvVK) " L(I~K) ¢(IrK)
- tUAK) ( L(IVK)

~eavk) \Teank)
o 11029 ) N L(JAK)
+ |(inrdist(Z, J) — 1)m — inrdist(J, K)—E(I/\K) D
C(IAK) o tanJ)
> e <1 + | (inrdist(1, J) — DE([AK)
— inrdist(J, K)E(JAK) D )
L(IAK)

which proves the inequality.

(b) Now we assume that £(J) < £(K) < £(I). Since ©x C K, the closure of K, we
have dist(Dy, J) < dist(D;, K)+dist(J, K)+£ < dist(D;, K) +dist(J, Dg)+
£. Since £(K) < £(I), we getdist(J, D) < dist(D;, Dg) +dist(Dy, J) + £ =
dist(®y, K) + dist(Dy, J) + £. With both things,

dist(®y, K) > |dist(Dy, J) — dist(J, Dg)| — L.

Moreover, from the assumptions £(J) < £(I) and £(J) < £(K), we have that
inrdist(7, J) — 1 = SR and inrdist(J, K) — 1 = SUDE) . With this and
previous inequality, we have
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diSt(@], K) - diSt(@], J) E(I/\J) _ dlst(‘]’ @K) E(J/\K) B 2
LUIAK) T | LUAJ) L(UAK) (IrK) LUAK) WK
> |(inrdist(Z, J) — 1) HIA) _ inrdist(J, K)E(JAK)
LIAK) ((IrK)

L(JAK) ¢
CU(IrK)  LAK)

Since £(JAK) < £(I~K),and £ < 3¢(IvK), we have

dist(/, K L L(IvJ L L(JVvK
distZ, K | inrdiser, 7y — 28D ndisecr, k) 2K
L(IVK) L(IVK) L(IVK)
L(IVK)
LUIAK)'
Finally then since ﬁng > 1, we get as before
inrdist(/, K)
- LIAK) (5¢(IvK) dist(I, K)
T 5¢(IvK) \ L(IAK) L(I~K)
L(INK LUnJd L(JAK
> LK) (4 Gnedist(r, 1) — DS aises, k) S KO
L(IVK) L(INK) L(I~K)

(c) Finally we assume that £(J) < £(I) < €(K). Since £(I) < £(K), we have
dist(Dy, J) < dist(®D;, Dg) +dist(J, Dg) + £ = dist(I, Dg) + dist(J, Dg) +
£, and dist(J,Dg) < dist(D;, Dg) + dist(Dy, J) + £ = dist(/,Dg) +
dist(®7, J) + £. Then

dist(1, k) > |dist(D;, J) — dist(J, Dg)| — L.

From here we can work as in case b) since we only used the inequalites £(J) < £(I)

and £(J) < £(K), £ < 3¢(IvK), and 57533 > 1, all of which still hold in this case.
a

The next result displays a direct relationship between the relative distance and the
inner relative distance.

Lemma8.11 Let I, J € D. Then
ec(I, J)inrdist(/, J) < rdist(Z, J) <1 +ec(l, J)inrdist(Z, J). 29)

Proof By symmetry we assume that £(J) < £(I). The upper estimate can be obtained
directly from the definition: since ®; C I, and £(J) < £(I), we have

dist(1, J) <1 dist(®y, J)

rdist(/, J) =1+ 70 < 0
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(inrdist(1, J) — 1)€(J)

=1+ 10
IO B E -
=1 %) + %) inrdist(/, J)

A

1+ ec(Z, J)inrdist(/, J).

For the lower estimate, we divide in two cases. If I N J = @ then dist(D;, J) =
dist(/, J) and so we have with previous reasoning that

P €) ST B
rdist(/, J) =1 — 0 + o) inrdist(Z, J)

>ec(/, J)inrdist(Z, J).

On the other hand, if J C I, we have instead rdist(/, J) = 1 and also

dist(®;, J o
indist(7, J) = 1 4+ 3Py 6D

L) - LJ)’
Then
istt ) = Y9 i 7e))
ec(I, J)inrdist(Z, J) = 0 inrdist(Z, J) < 0 +1

<2 < rdist(Z, J).

8.4 An Estimate on the Function F

We end this section of technical results with a lemma that shows how to estimate the
product of two outcomes of the auxiliary function F.

Lemma8.12 Let I,J € D. Then

ec(R, K)

5/
— ) < Fyd,J))?,
rdist(R,K)) S Foll, J)

sup [[ F(R. K)(
K€D ge(r, 1y

with Fo(I, J) = L (€(I~J))SC (L(I~J)) DO (rdist((I, J), B))+ Fw (1)8(I, J) where
LY. 8% DY are given at the end of Sect. 4.2

Proof According to Proposition 6.1, F(I, J) = F1(I, J) + F>(I, J) where

ec(, ) \°
wdist(Z,J))

Fi(I,J) = L) SEUIAI))D(rdist(1, J), ]B))(
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and F>(1,J) = Fw(I)3(I, J). Then to prove the Lemma we need to estimate the
following four products F; (I, K)F;(J, K) fori, j € {1, 2}.

We first work with F1 (I, K)F1(J, K). From now, to simplify notation we assume
without loss of generality that £(J) < €(1).

Since rdist(R, K) > 1, we first we deal with the factor L by showing that

LUUIAK))LEUIAK)) [T ec(R K)Y < L (e
Re(l,J)}

(a) If £(J) < £(K) then £(IAK) > £(J) and £(JAK) = £(J). Then, since L is
non-increasing, and ec(R, K) < 1, we have

LEUANKNLEIAK)) [ ec(R, K)Y' < L)) < L7 @)™
Re(l,J)

(b) If £(K) < £(J), then we have

(K2 \°
LUUINK)L(L(JAK R,K“’:L@KZ(—). 30
(L(IAK))L(£( ))Rel;ll}ec( ) € s (30)

(1) Now, if £(K) > £(J)'~? /2, we can estimate (30) as

2(K)?

5
1-0\2 _ 76 2
E(I)E(J)) < LEWJ) ") = L7EWU)".

L(K(K))2<

(2) If€(K) < £(J)'=7/2, we divide the study in two new cases.
(2.a) If £(J) > 1, then

Nt )‘3' 20-0% <z(1)>‘3’ 1
LEED (@(I)E(J) = enYen® ) ey
BRACARAS 1+0)0 ) — '

(2.b) If £(J) < 1, we consider the last two cases:

1/8'
o If¢(K) < (ﬁ‘;%%{) (Z(I)Z(J))%, then (30) can be estimated as

2(K)?

8/
0 2
w)e(f)) = LD

L(E(K»Z(
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1/8'
e We now consider the case when £(K) > (Iig(%(,(])))) ) et ))%. Since

LO(x) > x'"% for0 < x < 1 and L(£(K)) < 1, we have
(K) 2 L)Y (eI 2 6() T 6y = e+
With this

0(K)?

2
HEED <5(1)€(J)

»
) < L(¢(K))?
< L)) < LO (e

We continue with the factor S for which we show that

SEUNK)SEUIAK) ] ec(R, K)Y < 8%e(1~0))2.
Re{l,J}

Since £(IAK) < £(I), £(JAK) < £(J) and S is non-decreasing, we have

SUUAK))SU(IJAK)) 1_[ ec(R, K)‘S'§S(Z(I))S(£(J)) ]_[ ec(R,K)‘s/.
Re{I,J} Refl,J}

Since L(INK) < £(K), L(JAK) < £(J),L(IVvK) > £(I), and £(JVvK) > £(K),
we have

ec(I, K)ec(J. K) = f;(IAK) LK) D) _ < D
(IVK) LIVK) — 2D THENI0)
Then, since S(£(J)) < Sy (L(J)),
/ e\
SEU))SEJT)) 1—[ ec(R, K)° 55(5(1))<m> SO ().

Re(l,J}

We now prove that the first two factors are bounded by a constant times SO ().
If (1) < 20(J)'?, we have

e(J)

5/
_— < 1-6 0
1) +z(1)) <8 < s ).

5(5(1))<
On the other hand, if £() > 2¢(J)' ", we get

)\ eJ) ¥
S(K(I))<£(I) + E(J)> e (5(1)1_9 +5(J)>
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— E(J)H 3 < ¢t
- (zu)@ - 1) < Se).

. . . 0 /
In the last inequality we used the assumption that S (x) > (ch I )%
Now, to estimate the factor D, we show that

ec(R, K)

8/
. 2
astR. K) K)) < Dy(rdist({Z, J), B)) (31

1‘[ D(rdist((R, K),]B))(

Re{l,J)}
for 6 € (0, 1) arbitrarily small. For this we define k = rdist({/, J), B), fix 6, and
consider two cases.

A) If &(K) + dist(K, (I, J)) < k(1 + ¢((I, J))), we first prove that
min(rdist((Z, K), B), rdist((J, K), B)) > rdist((I, J), B)' 0. (32)

To show (32), we assume without loss of generality rdist({J, K),B) >
rdist({/, K), B). Since I C (I, K) N {I, J), we have dist({I, K), (I, J)) = 0. Then

dist((1, J), B) < dist((I, K), B) +dist((I, K}, (I, J)) + £({I, K))
= dist({1, K), B) + ¢({1, K)). (33)

We show now that
(I, K)) KL+ eI, 1)).
First, since dist(/, (I, J)) = 0and £(I) < £({I, J)), we have

dist(1, K) < dist(K, (1, J)) +dist(I, (I, J)) + €({1, J))
= dist(K, (I, J)) + (I, J)).

Then, since k > 1,

LI, K)) S o)+ ¢(K) +dist(1, K)
< e + ¢(K) +dist(K, (I, J)) + L1, J))
< UK) +dist(K, (I, J)) +2¢(1, JT))
< 3K7(1+ eI, T)),

where the last inequality follows from the assumption. With this we continue the
reasoning started at (33) as follows:

dist((Z, K), B) > dist((, J), B) — £({1, K))
> dist((1, J), B) — CKP (1 + ¢({1, J))).
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With all this, since C > 1,

dist((I, K), B)

1+ 2((1,K))

N Cc~ldist((I, K), B)

- 1+ ¢((1,K))

CUdist((I, J),B) —k?(1 + £((1, J)))

L+k0(1+2((1,J)))

. C~ldist((I, J), B)

~ L+ k1 +e((1, 7))
dist({, J), B)

1+ k01 +2((1,J)))

rdist((1, K), B) > 2 +

=2+

>c a1+

).

Now we note that 1 + k(1 4+ €((I, J)) > 1 + £({I, J)) and so,

wdist(1. K). B) > L+e((I,J)) <1 dist(([,]),IB))
U4k 4+ 6L, T))) 14+2((1,J))

1 .
2 AT el ) T4k rdist({, J), B)

2 — o st (L, 0, B)

> irdist((l, J),B) > rdist((Z, J),B)! 79,
~ 2k? ~

by the definition of k. This proves the claim at (32).
5/

Hence, since [ | Re(l,J) (%) < I and D is non-increasing, the right hand

side of (31) can be bounded by

D(rdist((1, K), B))D(rdist((J, K), B)) < D(rdist({1, J), B)'~%)?
< DY (rdist((1, J), B))>.
B) On the other hand, if £(K) + dist(K, (I, J)) > k?(1 + €((1, J))), since R C
(I, J) forboth R € {I, J}, we have
C((R, K)) > £(K) + dist(R, K)
> 0(K) + dist((I, J), K)
> k(1 + 21, J))).

Moreover,

ec(R,K) _ U(RAK) £(RVK)  U(RAK)

rdist(R, K)  ¢(RvK) ¢((R,K)) _¢((R,K))
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With this and D(x) < 1, the right hand side of (31) is bounded by

1—[ < ec(R, K) )‘S/< 1—[ <£(RAK) )5'
Req.gy \HAISUR, K)o 2 NER, K))

1—[< C(R) )‘S'
ke(l—f—ﬁ((l,l))

Re(l,J}

_ ( e >5< ¢J) )‘3/
= k208 (1. 7)) TR,
1
< p? ; 2
= rdist((1, J), B)208" ~ D" (xdist((1, J), B))".

A

In the last inequality we used the assumption that DY(x) > (1+ xe‘s/)’1 and the fact
that rdist((/, J), B) > 1.

The work developed for the factors L, S, and D finally shows that Fi (I, K)Fi(J, K) <
Fo(l )2. The next terms to be considered are

F,U,K)YF;(J,K)=Fy({,K)S(I,K)Fw(J,K)§(J, K)
= Fw(D)*8(1,J) < Fo(I, J)?,

and
Fi(I,K)F>,(J,K) = LEUAK))SEUAK))D(rdist({I, K), B))
Fw(J, K)8(J, K)
= LUUIAN)SEUIAT))D(rdist({I, J), B)) Fw (J)
< Fy(I, )%
The estimate for F> (1, K)F;(J, K) follows by symmetry. O

9 Bump Estimates for Powers of Compact Calderon-Zygmund
Operators

We remind that for 7' a Calder6n—Zygmund operator with associated function F and
such that 71 = T*1 = 0, we have

KTy, vyl S ArgFULJT)
where A; ; = ec(l, J) 3+ rdist (1, J)~ @+ if say rdist(1, J) > 10, while A; ; =
ec(/, J)% inrdist(1, J)~?% otherwise.

We now prove the following extension of previous inequality to powers of T*T.
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Theorem 9.1 Let T be a Calderon—Zygmund operator with associated function F such
that T1 =T*1 = 0. For everyn > 0,

n n+1
T Y )| S Ay Fad, DY

where Fy is defined in Lemma 8.12, A} , = ec(l, J)TH rdist(1, J)=@+9) jf

rdist(/, J) > 10, and A;,; = ec(, J)(l_g)% inrdist(/, J)_‘S/ otherwise, with
8 = (1 — 0)68 such that 0 € (0, 1) can be arbitrarily chosen.

We note that exactly the same ideas can be used to prove the following result:

Corollary 9.2 Let Ty and T» be two Calderéon—Zygmund operators with associated
Sfunctions F; such that T;1 = T*1 = 0. Then

Ty, )| S Ay Fo(L, J).
Proof Let e € Z, m € N be such that J € I, that is, £(I) = 2°¢(J) and m <
rdist(Z, J) < m + 1. By symmetry, we can assume that £(J) < £(I), namely, that
e>0.

We prove the inequality by induction, starting with the case n = 0, that is, we show
that

UT*Tyr, 1) S AemFo(l, )2

By the orthogonality properties of the Haar wavelets in (9), we have

(T* Ty, Yy) = (T, Tpy) = Z (TYr1, YTy, Y)Yk, Yir)

K.K'eD
= > Y AT YN T Y. Yi) (K, K') =27,
KeD l{\’e’l?\
K'=K

We now enumerate the 2¢ cubes K’ € chK , so that

2d

(T*Tyr, sy =) > K, Ki) = 27N Tyr, YW Ty, Yk, )-

i=1 KeD

Since |§(K, K') — 2_d| < 2, we just need to estimate the inner sum uniformly in the
index i. Since the same argument works for any cube K;, to simplify notation we only
show the work when K; = K.

We parametrize the cubes K according to eccentricity and relative size with respect
to J: for each ¢’, m’, we rewrite the parameterization used in Theorem 7.1 as

Joon = Jemo=1{I € D: 0(I) =2°(J), m < rdist(I, J) <m + 1},
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and whenm < 3
Jomk =1 € Jom 1 k < inrdist({, J) < k + 1}.

We then consider the cubes K € (IAJ)y/ ' = Jor . Then

UT* Ty vl ~ (DY Y ATy, YTy, vk) |- (34)

e'eZm'eNKel, .

We divide the long proof into multiple cases depending on the relative sizes and
distances of I, J, and K.

1) We first consider the case rdist(/, J) > m > 3, which we divide into three
sub-cases depending on the relative distances of K with respect to J and /. We aim
to prove that

(T Ty, v < ec(l, )3 H8 dist(1, 1)~ Fy(1, 7)
~ 25y~ @+ (. (35)

a) When rdist(J, K) > 3 and rdist(/, K) > 3, we can bound the terms in (67)
corresponding to this case as follows:

SN (T vINT Y. k)]

eelm'eNKedy
m'>3

d . _
<> D D el K)T P rdist(1, K)" TV (1, K)

e'eZ m'eN KEJK/.W/

ec(J, K) 2P rdist(J, K)" @ F(J, K). (36)
Since ¢(J) < £(I), by Lemma 8.7,

() rdist(I, J) — LIVK)
((IVK) ¢(IVK)

rdist(1, K) > 1+ dist(J, K)|. (37

We note that £(1) = 2°¢(J) and £(J) = 28/E(K) imply £(I) = 2"”/2([(). Then we
subdivide in three more cases now depending on the eccentricities.

a.l) If £(K) < £(J) we have ¢/ > 0 and then e + ¢ > 0. Then the inequality in
(37) stands as

rdist(I, K) 2 1 + | rdist(/, J)—%rd st(J,K)| 2 1+ |m —2"°m/|.
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The last inequality is proved as follows. We denote the middle expression as 1 + | - |.
Since m < rdist(I,J) <m +1,and m’ < rdist(J, K) <m’ + 1, we have

eJ
L4 |- > 1+ rdist(Z, J) — %rdisw, K)

>14+m—-2"m+1)>m—-2"°m.

On the other hand,

L]Jy . .
141> l—}—mrdmt(J,K) — rdist(Z, J)

>14+2"m —(m+1)=2"°mn"—m.
With both things, 1 + | - | > |m — 27¢m’|, and so

eJ
141-1=27"Q + | rdist(1, J) — %rdistu, K)|)
>27' 1+ 1m=27m')).

as claimed. Since ec(/, K) = % = 2—(€+e’)7 and ec(J, K) = % = 2_3/, the

terms in (36) related to this case can be written as

Y XY e OEI A g — 2w ) E LK)

e>0m'>3 Kely

276,(%+3)m/7(d+5)F(J’ K)

We denote 69 = (1 — 0)48. By using that the cardinality of J,/ ,, is comparable to
2¢d =1 we can bound previous expression by

Z Z hed, 1d—1 2—(e+e’)(g+ag)(1 +|m _2—em/|)—(d+89)

e>0m’'>3
R. K 08
2—6/(%+56)m/—(d+86) sup l_[ F(R, K) (—CC( . K) )
KeD petro) rdist(R, K)
5 Fg(], J)2—E(%+(s) Z 2—6/252 (1 4 |m _ 2—em/|)—(d+5)m/—(d+5)m/d—l.
e'>0 m'>3

The last inequality follows from Lemma 8.12, by which we have

08
sup [[ F(R. K) ) < Fo(l, ).

KeD peir, gy

< ec(R, K)
rdist(R, K)
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To simplify notation, we denote 8y as § again. Now, we note that the cardinality of
the integers inside the ball of radius m’ is comparable to m’*~!. Then we denote
m = me; = (m,0,...,0) and we use the second inequality of Lemma 8.2 with
A = 27¢ < 1 (or rather Remark 8.3) to rewrite and estimate the inner sum as follows:

Z (1 + |m _ 2—€m/|)—(d+5)(1 + m/)—(d-‘r(s)m/d—l

m'>3
S ) Ul =27 TR A T
m'ezd
max;—| 4 |m;|>3

=1,..., i

< (1 +m)~ @,

With this, the terms in (36) corresponding to this case can be bounded by a constant
times

F@([,J)2_8(%+8)Z 2—@’28(1+m)—(d+8)5 2—6(%+8)(1+m)—(d+5)F6(1’ J)

e'>0

a.2) When £(J) < £(K) < (I) we have that ¢’ < 0 and e + ¢’ > 0. Then (37)
holds as

¢(K)

rdist(J, K)| > 14 [m — 27|,
% ( Nz | |

rdist(I, K) 2 1+ |rdist(I, J) —

where the last inequality can be proved as we did before.

Now, ec(I, K) = l;z((—ll()) = 2—(e+g/)’ ec(J,K) = % — 2¢ and the cardinality of

Jo' p is comparable to m’ d=1 These are the only changes with respect previous case.
Then by Lemma 8.12

Z Z 27(e+e’)(%+8)(1 t | — 2 (e )= d+D)

—e<e'<0m’>3
2€/(548) =@+ pd=1 p (1 KYF (], K)
< Fy, 1)2—9(%4-5) Z Z(] +|m _2—(€+€’)m/|)—(d+8)m/—(1+5).

—e<e'<0m’>3
By the second inequality of Lemma 8.2 with A = 2-(ete) <1

Z (1 4 |m — 27+ /|y =(@+) y—(148) < (14 m)~@+d,

m’'>3

With this we get the bound

Fo(I, 1)2~¢G+) S 1+ m)y@

—e<e’<0
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< Fo(l, 12~ (1 4 m)~@+d
<27 G 4wy~ Ry (1, 1)
for 8’ < 6.

a.3) Finally, when £(J) < £(I) < £(K) we have ¢/ < 0 and e + ¢’ < 0 and thus,
(37) stays as

e ,
rdist(1, K) > 1 + |£((K)) rdist(1, J) — rdist(J, K)| > 1+ [2¢7m — m'|,

where the last inequality is proved as we did in case a).

Moreover, ec(I, K) = % = pete ,ec(J,K) = % = 2¢ and the cardinality

of J v is comparable to m'@=1 Then, with similar ideas as before, we have

Z Z 2(€+e/)(%+5)(1 + |2€+e’m _ m/l)—(d-HS)

e/<—e<0m’>3
2e/(%+6)m/7(d+8)m/d71F(I’ K)F(J. K)
< Fo(l, 1)26(%4'5) Z 26’(a’+25) Z a1+ |22+g’m _m/|)—(d+6)m/—(d+5)

e'<—e<0 m'eZ4
|m}]>3

< Fy(I, J)2¢3+) Z 2€/@+28) (| 4 gete’yy=(d+D)

e/<—e<0

where in the last step we used the first inequality in Lemma 8.2 with A = 2¢t¢ Since
m > 1, we now estimate the last expression by

Fy(I, J)2¢(5+9 Z ¢ (d+28) 5 —(e+€)(d+3) ) —(d+5)

e'<—e<0
< Fo(I, 1)27¢% (1 4+ m)~@+9) 3 08
e'<—e<0

S22 m) T E (1, ).

b) We continue with the case rdist(/, K) < 3 and rdist(J, K) > 3. Note that the
first inequality and rdist(/, J) being large do not imply that rdist(J, K) is large. We
can bound the terms in (67) corresponding to this case as follows:

SN KT vINT Y k)]

c'elm'eNKel,
m'>3

<> > N ec(I, K)? inrdist(1, K) " F(I, K)

e'eZ m'eN Ke‘]e’,m’
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ec(J, K)ot rdist(J, K)" T F(J, K). (38)

Then we consider the same three sub-cases as before depending on the eccentricities.
b.1) If £(K) < £(J) we have as before ¢/ > 0 and e + ¢’ > 0, and

eJ
3> rdist(/, K) > 1+ |rdist(I, J) — %rdisw, K)

> 12)7' (A + jm —27m')),

as we saw in Lemma 8.7 and case (a.1). Then |m — 27 °m’| < 35 and so 27 °m’ >
m — 35 > m/2 provided that m > 70. With this, rdist(J, K) > m’ 2 2°m.

Now the cubes K € J,/ , need to be parametrized in terms of their relative size
and distance with respect to /. Namely, we write K € I,y ;. Then we define
1J = Jy ' N Ioyo m k, Wwhere we omit the parameters in the notation. For K € 1J we
have k < inrdist(/, K) <k + 1.

Then, since ec(/, K) = 2—(e+¢) and ec(J,K) = 27¢ the expression in (38) is
bounded by a constant times

28+e/

Y3 Y 2T R, K2 B ey O K
>0 k=1 KelJ

2e+e/

S 2_6(%+5)m_((1+6)F€(1, J) Z Z Z k—52—€/(d+5). (39)
/>0 k=1 KelJ

We remind that the last inequality follows from Lemma 8.12 because

ec(I,K) _ C(RAK) C(RVK)  U(RAK) 1
rdist(I, K)  €(RVK) €((R, K)) _ €((R,K))  inrdist(I, K)

The cardinality of 1J is bounded by the cardinalities of J,/ > and I, ;, k, and so
it can be estimated by
min(ze’(d—l)m/d—l’ 2(e+e’)(d—1)) — p¢d-D min(m’, 2¢)%~!
< 2¢@=D min(2¢(m + 35), 2¢)4~!

_ olete)d-1).

Moreover, we note that for any » > 0 and y = ——

1+6§°
2" 2vr—1 2"
DL DR SR D DY SIS AL 40)
k=1 k=1 k=2v"r

. . ete’ ete
With this Y7, k™0 < 2755
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Then we can estimate the inner sum in (39) by

e+e’
Z 9—€'(d+9) 22 k75|IJ| < Z 2*8/(d+5)2(€+6/)(d71)2(e+e’)ﬁ
e'>0 k=1 >0
— neld—1+15) Z 7—¢/(14+8—115)
>0

< 2e(d—l+ﬁ)

1

sincel—i—é—m

> (. With this, the expression in (39) is bounded by
pe(§ 41— 155) , —(d+5) Fo(I.]) < 2—2(%+8)m—(d+8)F9(17 .

since 1 — 1+L5 > 0.
b.2) When £(J) < £(K) < (I) wehave ¢’ < 0and e + ¢ > 0. Then

0(K)
()

3 > rdist({, K) 2 1+ |rdist(I, J) — rdist(J, K)|

21+ |m — 27|,

which implies [m — 2=©+m’| < 1, that is m’ ~ 2¢*¢m as long as m > 70. Then
rdist(J, K) > 2¢¢ m. This, together with ec(I, K) = 27(€+¢) ec(J, K) = 2¢, are
the only changes with respect previous case and so, the similar work leads to

2e+e/
S Y D IR R, K2 B et ) "I F (g, )
—e<e'<0 k=1 KelJ

2ﬂ+(’/

5 2—6(%+5)m_(d+5)F9(1’ J) Z Z Z k—52—e/d. (41)

—efe’f() k=1 KelJ

The cardinality of J, ,, is now comparable to m” d=1 "but this stills provides the same
estimate for the cardinality of 1J as we see:

1d—1 2(e+e’)(d71)) — 2e+e’)d71

min(m min(m’
< min(2¢t¢ (m + 35), 2¢+¢yd-1

— 2(e+e’)(d—l).

e+e/ / 1 . .
Moreover, Y 7| k=% < 2*¢)755  Then the inner sum at (41) can be estimated by
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Z y—edr(e+e)(d—Dnlete) iy _ He(d—1+1i5) Z 7—¢ (- 155)
—e<e'<0 —e<e’'<0

< peld=14iz)pe(l—1i5) _ ped
since 1 — ﬁ > 0 and ¢’ < 0. Then the expression in (41) is bounded by
2—e(%+s>m—(d+a)F9(1, 7)2¢d = 2—e(%+a>m—<d+a)F9(,’ D).

b.3) Finally, when £(J) < £(I) < £(K) we have ¢’ < 0 and ¢ + ¢’ < 0 and thus,

o)
¢(K)

3> rdist(1, K) > 1+ | rdist(I, J) — rdist(J, K)| > 1+ 2T m — m/|,

which implies |m — 2¢t¢'m’| < 1, and so m’ ~ 2=+ for m > 70. With this
rdist(J, K) > 27ty

The cardinality of /.4, m  is now bounded by a constant times M(eteHd=1) —
where as in the proof of Theorem 7.1, we denote M (e) = max(e, 0). Moreover, for
any fixed cube J there is only one value of 1 < kg < 2lete'l such that Iote' m k 1S DON
empty. Then

Y 2N R, K2 )@ B K

e<—eKel, i

g 26(%+5)m_(a’+5)F9(1’ J) Z Z 26/2(d+5)’ (42)
e<—eKell

where we used Lemma 8.12 once more.

Since the cardinality of J, ,, ¢ is bounded by 1, we have that the cardinality of 1/
is estimated by min(m’¢~1, 1) = 1.

Then the expression in (42) is bounded by

26 +8),, ~d+8) By (] )22 d+) — p=e(5+8), ~d+d) g (1 p).

¢) Now we consider the case when rdist(J, K) < m’ + 1 < 4 (regardless of

rdist(/, K)). As in case b), we cannot conclude that rdist(/, K) is large. But by

Lemma 8.7 and the inequality ﬁ((x g < 1, we have

eIV CIVK
ist(7, K) > 10+ <P i,y — SO i k)
((IVK) ((IVK)
vy vy
> 10 dist(I, J) —4 > 1 dist(1,J). (43
> +E(1vK)r15( ) > +e(vi)rIS( ) (43)

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:9 Page490of75 9

We now define A,y J = {x € J : dist(x, 3J) < 2¢0}. Since 1Ay I S 20@=D 7,

W2, 5y = |,|—1/ (1;(x) =271 7(x)) dx
N0] Ae(/).]
= 7171 =272 |a, J) < 206D,

We then fix a negative parameter ¢, so that

s d—1

ol d=1 D~—e(d —
Wil 5 S 29077 < ITI227 G m= @Dy, ) (44)
0

and we divide the study in two cases.
c.1) When £(K) < 2%4£(J), we can reason as in cases a) and b). Since £(K) <
£(J) < £(I), we have that

L(J)
€(K)

rdist(/, K) 2 1 + rdist(I, J) > 1+m >m > 3. (45)

We note that £(K) < 2¢0(J) = 2¢1¢'¢(K) and so, ¢/ > —e, = 0. Moreover
e+ ¢’ > 0. We then can bound the terms in (67) corresponding to this case as follows:

Do D KTV vINT Yy, ¥l

ecZm'eNKel,
e'>0m'<3

/

2€
d . _
< Y ) D el K)Ixdist(I, K)” TV F(I, K)

ezt k=1 KE]el m' k'
1<m’<3 '

ec(J, K)? inrdist(J, K) S F(J, K)

2¢
< FoI, ) Z Z Z 2—(€+e’)(%+6)m—(d+8)2—e’%k/—5
¢>0 k=1Kel,

e .m! k'
1<m’<3
2¢
S 2y~ @ D py (1, ) 327 @ S S s, (46)
e'>0 k=1 Ke‘]e’,m/.k’
Since the cardinality of J, ,/, is comparable to MEd=1) = 2¢@d=1) gpq

e r 1 . .
,%/21 k'8 < 2¢ 145, previous sum can be estimated by

Zz—e’(d-i-é)ze’(d—l)ze’l—}ra _ Z 2= (I+8—155) < |

¢'>0 e'>0
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In the last inequality we used that 1 + § —
bounded by

ﬁ > 0. With this, expression (46) is

2—e(%+5)m—(d+8) Fo(1, J).

c¢.2) When £(K) > 283£(J ), we use a different argument. We write the terms
corresponding to this case in the initial decomposition (67) as follows:

S Ty v TV )

eeZ m'eNKely
ep<e' m'<3

=<T1/f1, DI <Tw1,1/u<>w>. (47)

eeZ meNKeJy
eg<e m'<3

3 8
Now, since I and J are fixed, we choose M > 0 so that 2Y > 2°am!'*Ta¢(I). Then
we sum a telescoping series to obtain

Yo Ty vkk = Y (Tyklk — (TY)) g1z,

g(’)fg’ KE‘IB’,m’ Ke‘leé),ml
m'<3

where K € Dsuchthat I UJ C K and £(K) =2M > 2e%m1+%£(l). With this, we
rewrite (47) as

<Tw1, S (Tys)klk) - (Tyr, <T¢J>1211§>~ (48)
Kedy v
-
Since the cubes K € J,/ , are pairwise disjoint and their union is included in Ay,
we have by Holder’s inequality

2
Yoo Tynklk| = > KTy)kPIK|
Kedy Ked,y
0 0
< ) /ITt/fJ<x>|2dx=||ij||iz(A,,).
KEly K

With this the modulus of the first term in (48) can be estimated by

7l E Tyl =TTz, 0 = ”T”z”wJ”LZ(Ae, 7
0 0

KeJ,
EO.

m

2
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S 276(%+8)m7(d+6)F0(1, J),

by the choice of ¢, in (44).
For the second term in (48), since I U J C K and ¥, ¥ have mean zero, we
can apply the bump estimates of Proposition (6.1). Then we note that (T )z =

K|~ Ty, 1z) to write

T ATYs) g 1) = (T, IR 21 ) (T, |72 1 )]
<ec(I, K)ec(J, K)IF(I, R)F(J, K).

Now
- eI 1
ec(/, K) = (~) S —3
LK) 2¢am'ta
while
- LJ 27¢4(I 27¢
ec(J,K) = (~)= ~()§ 3 -
L(K) L(K) 2¢amlta
Then
d
1 27¢
|(T¢15<T1/f1>1§ ]2>|< s dxs 8 MF(‘)(IaJ)

2¢9m 2 2m 2
— 278(%+5)m7(d+3) F@(I, J)

2) Now we study the case when rdist(/, J) < m + 1 < 4. For this case we need to
prove that

NT*T . ¥s)| < ec(l, ) inedist(1, J) 2 Fo (1, J)
~ 273k Fy(1, ). (49)

Since ec(/, J) =27¢ < 1and k < inrdist(/, J) < k + 1, the relationship (29) in
Lemma 8.11 stands as

27k < rdist(1, J) < 1 +27¢(k+ 1) <2 +2 %k,

Now we divide the study into the same sub-cases as in case 1).
a) When rdist(J, K) > 3 and rdist(/, K) > 3, we can bound the terms in (67)
corresponding to this case as follows:

S 3 Y KT eI T )|

e'elm’ eN Kedy
m'>3
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d . p—
<> D ) el K)T P rdist(1, K)" YV F (1, K)

eelZm'eNKeld, v

ec(J, K)5H rdist(J, K)" U F(J, K). (50)

Now, if m’ + 1 > rdist(J, K) > m’ > 3, by Lemma 8.7 and the inequality

L(IvJ
Z((I;/K)) < 1, we have
CIVK v
wist(7, K) >3+ I iser, k) — LD i
L(IVK) L(IVK)
L(JVK) . L(vJ) _
>3 dist(J, K) — 242 %
23 % Sk S K = p e G2
CIVK eIV
> 14 QYK st k) — e B
L(IVK) L(IVK)
and also
eIvJ CIVK
st (7, K) > 1+ 2 giaeer, 1y — B9 i k)
L(IVK) L(IVK)
eIvJ CIVK
o4 LD ey EUVE) a6,
C(IvK) (1K)
That is
. CIVK) vy
dist(1, K) > 1 dist(J, K) — 2-¢k|. 51
rdist( )2 +|£(IVK)TIS( ) VK | (5D

Now we subdivide into the same three cases as before depending on eccentricities.
al)If £(K) < £(J) < £(I) wehave ¢’ > 0 and e + ¢’ > 0. Then the inequality in
(51) stands as

e(J
rdist(/, K) > 1+ % rdist(J, K) —2 % > 14+2"(m’ — k),

and also
oJ
rdist(/, K) 22+ 2% — Q rdist(J, K)
1208
>242 %%k —m +1)>14+2"%%k—m).
Then

rdist(7, K) > 1 +27¢|m’ — k.
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With all this, the terms in (50) corresponding to this case can be written as

S Y 2 IEI A 2 k)T F (LK)

8/20 m'>3 Ke‘le’,m’

2—6'(%+5)ml—(d+8)F(J’ K)

Now, by using that the cardinality of J, ,, is comparable to 2¢dm'd=1 and Lemma
8.12, we can bound previous expression by

e'>0m'>3
2=/ (§0) = +8)p€'dyd=1 b1 KV (], K)
< Fy(l, J)z—e(§+3) Z y—e'28 Z (1 4+ 27| — k|)~ @+ /= (d+8) pyrd =1,

>0 m'>3

(52)

If we denote k = ke;, we can rewrite and estimate the innermost sum by using the
second inequality in Lemma 8.2 with A =27¢ < 1:

Z (l + |2—€k _ 2—em/|)—(d+5)(l +m/)—(d+5)m/d—1

m'>3

g Z (1 + |27€]€ _ 27(3’,’—1/')*((14’8)(1 + |n_1/|)7(d+5)

m'ezd
max |m}|>3
i=l,.,d '

5(1 +2—ek)—(d+8) < +2—ek)—5 Szesk—(s.

With this, the expression in (52) is bounded by a constant times

Fo(1, 1)27 ¢ +9)9e0=0 3" 0=¢2 < g =y (p ),

e'>0

a.2) When £(J) < £(K) < £(I) we have thate’ < Oand e+¢’ > 0. Now inequality
(51) holds as

(K /
rdist(/, K) 2 1+ Z((I)) rdist(J, K) =27k > 14+27°Q°“m' — k),
and also as
L(K
rdist(1, K) 22 +2"% — E((I)) rdist(J, K)

>24 27Uk =27 m +1) > 1+27%%k —27m).
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Then
rdist(Z, K) > 142727 m’ — k|.

Moreover the cardinality of J./ , is now comparable to m'=1. These are the only
changes with respect previous case and so, similar work as before leads to estimate
the corresponding terms in (50) by

Z Z 2—(e+e/)(%+3)(1 + 2—€|2—€’m/ _ kl)—(d-i-S)

—e<e'<0m’>3
2€/ (340 /= +0) =1 p (1 KYF (T, K)
F 1,J
< 2965 +a))z Z(1+|2 (e+e) —ek|)—(d+8)m/—(d+6)m/d—1. (53)

—e<e’<0m’>3

By the second inequality in Lemma 8.2 with A = 27(et€) < 1, we rewrite and estimate
the innermost sum by

S A2 2Ry @ (1 4
' ez

n11ax |m >3

g 1+ 2_ek)—(d+5) g a1+ 2_ek)_0'96 < 20'928]{_0‘96,

sinced+68 > d > 1 > 0.95. With this, the expression in (53) is bounded by a constant
times

FQ(I, J)z—e(%-i-g) Z 20.9€5k—0.95 5 2_6(%+'18)€k_0'98F9 (I, J)

—e<e’'<0

<27k Fy(l, ),

since 2791¢%¢ < 1 and we choose 8’ = 0.9 < 6.
a.3) When £(J) < £(I) < £(K) wehave ¢/ < 0and e+ ¢’ < 0and thus, (51) stays
as

eI /
rdist(/, K) 2 1+ rdist(J, K) — QZ_ek >14+m' —2%,
L(K)
and also as
rdist(/, K) 2 2 + QZ “k — rdist(J, K)
L(K)

>24 2% —(m +1)>14+2k —m'.
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With this
rdist(, K) > 1+ [m' — 2°k|.

Therefore, we can now estimate the corresponding terms in (50) by

Z Z 2(e+e’>(%+a)(l + 2k — m/|)~@+9)

e'<—e<0m’'>3
2€/(5+8) /=48 prd=1 b (1 KYF(J, K)
< F@(I, J)ze(%+5) Z 23’(d+25)

e'<—e<0

D A2k = )T A 4 @), (54)

m'eZ4
nllax |m >3

By the first inequality in Lemma 8.2 with A = 2¢, the innermost sum is bounded by
(a+ 2e’k)—(d+8) 5 1+ 2e’k)—8 5 2—6,8](—8'
Then we estimate (54) by

Fo(l, 1)2¢3+0 Z 2€@+) =8 < Fo(I, J)2e 30 g0 —e(d+9)

e'<—e<0

<27k Ry (1, ).
b) We now study the case when rdist(J, K) < 3. By Lemma (8.7) we have
rdist(1, K) < rdist(1, J) + rdist(J, K) < 6.

Note that we do not need to study the extra case rdist(J, K) > 3 and rdist(/, K) <3
because then we have

rdist(J, K) < rdist(1, J) + rdist(/, K) < 6.

and we can treat it like case b).
Then we can bound the terms in (67) corresponding to this case as follows:

SN (T vINT Y k)]

e'el m'eN KE]e/ '
m'<3

ole/]|

d
< Y > > e, K)Tinedist(I, K) T F(I, K)
e'e?7 k'=1 KE]e’,m/.k’
1<m’<3
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ec(J, K)? inrdist(J, K) " F(J, K). (55)

Now, by the inequalities in Lemma (8.10) and Lemma (8.9) respectively, we have

CIVK
VKD edist(7, K) > 1
((I~K)
CLANT) LJAK) .
UK (inrdist(Z, J) — 1) — (UK inrdist(J, K)|,
and
inrdist(7, K) > 1+ 9D Gondisecr, ) — 1) — S9KD G dise s )
mrdis . mrdis . — — mrdis s .
~ T UINK) (IrK)

Then we divide the study into the three usual cases depending on eccentricities.
b.1) When £(K) < £(J) < £(I) wehave e’ > 0and e+¢’ > 0. Moreover, previous
inequality stands as

e(J)
LK)

inrdist(/, K) = 1 + (inrdist(Z, J) — 1) — inrdist(J, K),

that is
inrdist(Z, K) > 1 +2°( — 1) — k.

Ifk > 2wethenhave2e/(k—1) > 2¢ > k" and so inrdist(I, K) 2> 1+|2€l(k—1)—k’|.
With this (55) can be bounded by

2!
YN 2@ a4 k- 1)~ KDPFUL K)

¢>0k'=1 Ke"e’.m/,k’

2SS, K)

/

28
<27 Ry, ) 27N S ARk - =KD

e'>0 kK'=1KelJ,

e/ .m’ k'

Since the cardinality of J,/ ; is comparable to M=) — pe'td=1) by Lemma 8.4
with R =2¢,d = 1,1 =2¢ and 8’ < § < 1, we have

2
Z Z (T4 12¢%k = 1) =Kk °

k'=1 Ke‘le’,m’,k’

2¢
SN A+ k- - KD
k'=1
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5 26/((1—1)(1 + |26/(k _ 1)|)—5/2€/(1—5/)
< €/ (d=1)p—€'8'j=8'9e'(1=8") _ pe'(d=28")}—5'

Then previous expression is estimated by a constant times

2—e% Fo(1.]) Z y—edne (d—28') ¢
e'>0
<28 R, ) Y 2 etk Ry, ).

e'>0

On the other hand, when k = 1, we simply estimate rdist(/, K) > 1 and so, (55) can
be bounded by

29/
Y53 S k2 (LK)

e>0k'=1 Keje/,m/,k’

2
SyUERULNY Y Y K

e'>0 k=1 Ke"e"m’,k/

Now we use once more that the cardinality of J,/ x is comparable to 2M©)@=1 —

¢ _ o . .
2¢'@=D and the estimate Z/%/:] K8 < 27+ to bound previous expression by

279 Fy(1, J) > 2= d=Doi%s = 2-¢% (1, ) > 2=¢ (=155

e'>0 e'>0

<2CTF (1, 1) S 2Tk Fe(1, ),

~

since 1 > ﬁ andk = 1.
b.2) When £(J) < £(K) < £(I) we have

inrdist(I, K) 2 1 +

) Gndist(r, 1) — 1) — ) nrdist(, &)
E(K) mrdis N E(K) mrdis s

and also of course inrdist(/, K) > 1. Then

inrdist(7, K) > max(1, 1 +2¢ (k — 1 — k')).

For fixed J, there is at most one value of 1 < k' < 2!¢! for which inrdist(J, K) ~ k'.
We denote that value by k;. Moreover, in that case, there is only a quantity of cubes
K comparable to 1 satisfying inrdist(J/, K) & k(. In other words, the cardinality of
Jo' k1S comparable to 2M(@)@=1) — 1 and we can even consider the cube K to be
uniquely determined by J.
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a) With all this, when k < kj + 1 < k;, we use that inrdist(/, K) > 1.
Then (55) can be bounded by

YooY S k2 k(LK)

—e<e’'<0 Keje’.m/.k(’)

SR Y K <2 ek Ryl )
—e<e’'<0

_pU=0)d

=2 e k1, J) < 27¢

(a—0yd
2

kP Fy(1, ),

by using that the cardinality of J,/ ;- is comparable to M=) — 1
b) When k > k;, + 1, we get

inrdist(1, K) > 142k —1—kj)) = 1+ 2 [k — 1 — k).
Then (55) can be bounded by

YooY et 2 k- 1 - KD FUL K2 Sk (L K)
—856/50’(6/3/4,,1/,/(6
<27 F,(I, ) 32k = 1= kD,

—e<e’'<0

where we used again that the cardinality of J,/ ,, ¢ is comparable to M=) = 1,
Now we maximize the function f(x) = (14+2¢ (k—1—x))?x % whenl < x < k—1.
By elementary optimization, one finds a local maximum at x = 271(27¢ + k) and
S0,

fO<A+207007¢ 41070 <27 + k)70 ~ min2¢, k1)?

If k > 27¢, we have

e'0s

-6
fx) Sk Sm-

Ifk < 2_8/, we get the same final estimate:

€08

f) < 28/8 =< m

Then previous expression is estimated by a constant times

2SRy Y 29k (08 Soesphi (1, ),

—e<e’'<0
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where 89 = (1 — )5 < 6.
b.3) When £(I) < ¢(K) we have
LK) ) e(J)

J
0] inrdist(/, K) 2 1 + m(inrdist(l, J)—1) — ) inrdist(J, K)|,

that is
2@t inrdist(1, K) > 1 + 27 ¢k — 1 — /).
Then (55) can be bounded by

Z Z 2(e+e’)%2*(€+6/)5(1 +27 %%k —1— k6|)*‘3F(1, K)
e'<—e<0KeJy v 1
2K F (LK)
2R Y 22— 1 — k)

e/'<—e<0

where we used once more that the cardinality of J/ , 4 is comparable to 2M (€)@= —
1. Now, we have as before that the function f(x) = (1+27¢(k—1 —x))"sx"s satisfies

fG) Smin@™¢ k7 <k
Then previous expression is bounded by

26(%_3)F9(1, 7 Z €/ (d=8) =5 52e(%—a)k—5Fe(LJ)Z—e(d—s)

e/'<—e<0

=275k Fy(1, ).

We end the proof with the induction step. For this, we assume the statement for a
fixedn — 1 € Nwithn > 1. Then

(T T2 10y = (T2 (T T2 )
= @ T Y@ v (56)

KeD

By the induction hypothesis we have for R € {I, J},

(T*T) " Yr. ¥k < Agk Fo(R, K)Y

Then, by repeating all the work developed for the case n = 0, we can prove in the
same way that the absolute value of the expression in (56) is bounded by a constant
times A’I’ sFe(l, J )2”+l , with A’I’ 7 obtained by modifying Ag g in the way described
in the statement. O
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10 The Schatten Classes for Large Exponents

For small exponents we used Theorem 5.2. However, as mentioned before, for large
exponents we cannot use the analog result, Theorem 5.3, since we do not have control
of the action of a Calderén—Zygmund operator over all possible frames. Instead, we
make use of Theorem 5.4, Theorem 5.2 again, and the bump estimates for powers of
T*T, that is, Corollary 9.2.

Theorem 10.1 Let T be a linear operator with a compact Calderon—Zygmund kernel
and associated function F; as defined at the end of Sect. 4.2. Let 2 < p < oo. We
assume T1 =T*1 = 0.
If Z Fi(I)? < o0, then T belongs to the Schatten class Sp(Lz(]Rd)).
I1eD

Proof Let n > 0 such that 2"+! < p < 2"*2 By Theorem 5.4, T € S, if and only
if (T*T)% € § Lo Since 0 < 2,,% < 2, to show that (T*T)?" € § p ., We can use
n on

Theorem 5.2 and simply check that

ST T Y 17 < oo,

I1eD
where (y7); is the Haar wavelet frame. Now

%
IT*T)Y> il S <Z<(T*T)2"w1, w1>2> :

JeD

By Corollary 9.2, (T*T)?" satisfies similar bump estimates as 7, namely

|(T*T)2n U, U S AemFo(l, J)Z"H. Then we can repeat the same reasoning of
Theorem 7.1 to conclude similar result:

=

n n+2 n+1
WDyl S Y Y AL Fel, DY | SEM™,

em Jel

and thus

ST g7 < Y R S 1

I1€D 1€D

The only modifications with respect the argument in Theorem 7.1 worth to mention
are included in the estimates below. When dealing with the case 1 < m < 3, due to
the weaker bump estimates satisfied by 2" powers of the composed operator 7*T,

. lel(1—g)2d , _ .
we have the coefficients A’E mk =2 lel(1=60)" 3 =3 Hence, we have to deal with the
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following sum:

o M(e) 2
DD D RS S S Al I
ecZ k=1 JE€lom k

where F(I,J) = LEUANT)SEUAJT))D(xdist({I, J),B)) + Fw()S(I, J), and
M (e) = max(e,0). We note that in that sum the previous factor 2-leld has to be
changed by 2-lel1=07d with 9 ¢ (0, 1) arbitrary. We then choose 6 such that
1-(1-6>"d < % and so we can proceed as before. By denoting

F.(I) = sup sup F(I,J).
1<m<3 Je,e‘m,k
lskszmax(e.o)

and using card(Z, ;) S 2M(@)d-1) we have

D=

2M(e)
SN o kl-0T a2 S g gy
ecZ k=1 JEIe,m.k

oM(e) 3

< Z Z 2f\e|(l79)2ndk7282M(e)(d71)Fe(l)z

ecZ k=1

o M(e) 3

S 22—|€|daFe(1)2 Z k—25

e€l k=1

Now 2-1el1=0*"daM(@@=1 _ y~lele with o = 1 — (1 — (1 — 6)2")d if e > 0 and
n M (e 1

a=(1—-0)"dife < 0. Since Z,%z(] "2 < oM@ 55T | the previous expression is

bounded by

1
2
(Z 2—|e\a+M(9)251? Fe(l)2> :

ec’

Now —le|d® +M(e) 357 = —le|B suchthatife > Othen g = (1—(1—(1-6)*")d —
so1) = 75 — (1= (1 = 0)*)d > 0, while if e < 0, then 8 = (1 — 6)*'d > 0.
Then we can bound previous expression by

1

2
B B
sup2_|e|29Fe(1)(§ 2—6“—9)/3) < sup2~ 29 F,(1).

e€Z el ec
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From here there are no more modifications, and the final result follows working exactly
as before with a slightly different value of . O

To prove the boundedness of the paraproduct we need an extension of the classical
Carleson Embedding Theorem to the setting of the Schatten classes. For its proof we
modify the standard stopping time argument presented in [1].

Proposition 10.2 (Carleson Embedding Theorem) Let 2 < p < oo and (fy)neN be a
frame of L*(RY). Then

1

PONANRERDS oW (57)

neN IeD 1€D JeD(I)

for any (ay)jep collection of non-negative numbers. The implicit constant depends
on the upper frame bound of (f)neN-

Proof When p = oo this result is the classical Carleson Embedding Theorem, which
can be written as

1
Za1|<fn>1|2§§up — > as | lfula

1eD cc \ 1 7DD

Since p/2 > 1, by duality, there is a sequence (yn)neN € ! ﬁ(N) with
_P_
Y nen 1¥a1772 < 1 and such that

2
<Z<Za1|<fn>1|2>’5> SY D S anl(fadiPyn =Y ar Y [Py

neN IeD neNI1eD I1eD neN

<> a (Z |<fn>1|f’) : (58)

I1eD neN

Since p > 2 and (f;,)nen is a frame of L2(RY), we have

1

= |I|_% < 00.
7]

2

3 Lo
<Z|<fn>1|”> §<Z|<fn,|7[|>|2> 5‘
neN

neN

Without loss of generality, we assume that the family of cubes in the sum is finite,
namely, Djs. With this, there exists kg = M € Z such that

%
(Z |<fn>1|P) <2 (59)

neN
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for all cubes in I € Dyy. Let By, = {I : I € Dy} be the initial buffering collection of
cubes. We now proceed by iteration: for k € Z, k < ko, we assume that By € By,
has already been constructed. We then define My to be the family of cubes / with
I € Dys such that I € Biyy,

(Z |<fn>1|1’> > 2k (60)

neN

and they are maximal in By; with respect to the inclusion. For each I € M; we
define

&) ={JeD:JCI,andJ € I' forany I’ € My, withk' > k}.

We then define the next buffering collection as By = By41\ U Ex (D).
Te My
By maximality, for every k < ko, the cubes in M are pairwise disjoint. Moreover,
forevery k, k' < kopand I € My, I’ € My withI # I’, wehave E(I)NEy (1) = 0.
We now prove that for each k < kg, I € My and J € & (I) we have

(Z |<fn>J|”) <2t (61)

neN

For k = ko — 1 this is clear since all cubes in By, satisfy (59).

Letk < ko— 1. We reason by contradiction and assume that there exist I € My and
J € & (I) satisfying the opposite inequality in (61). By definition of & (7), we have
that J € Byy1 C Byyo. Then, since By1; is non-empty, we can consider I’ € Byyo,
with J C I, satisfying the opposite inequality in (61) and maximal in By4, with
respect the inclusion. Such cube exists since at least J' satisfies the given conditions.
By construction, I’ € My and so J € &1 (I'). But this is contradictory with the
choice J € & (I). Therefore, for each I € My and J € &.(I), we have that (61)
holds. 1

We now note that for all J € Dy such that (3°,cn [(fu)s|P)? # 0, there exists
unique I € | J, ko My with J € & (I). With this and inequality (61), we can estimate
the expression in (58) as follows:

" (D(f"mp)i:Z 2. 2 (Zuﬁl),i”)i

1€D neN k<ko Ie My Je& (1) neN

S ) W

k<ko TeMy Je& ()

S22 )

k<ko Ie My Jcli
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P

=12 X (ﬁ;m) 2(2 3 <22k|1|>v52)

k<ko Ie My, k<ko Ie My

p—2
P

Now, we work to prove that the second factor is bounded by a constant. From the
choice of I € My in (60), we have

A1 < (Zlflfn(x)dxl”)p. ©2)

neN

Then, since ﬁ > 1, we write

p=2 p=2
P P
(Z 3 (22k|1|>/5> < Z( 3 (22"|1|>/2)
k<ko Ie M, k<ko ~IeMy
p=2
P
-y 2k< 3 (2’<|1|)p”2) =) 2 (63)
k<ko Te My k<ko

We fix k < ko, and use duality on the mixed norm space / P (N x N), to estimate
Ay as follows:

p=2 1 p—2

m=( T em®) " <( X (Ze [ pwar)T)’

Te My Ie My “neN

(i),
1 n {117 522 (NxN)

= Z/Ifn(x)dx’zn,z

Ie My neN
= ¥ [ st (64)
Te My !
where (z,,1)n,1 € [P/%(N x N) with ”(Z"’I)"’I”l”’%(NxN) <1, and
gy =Y (an(x)zn,l)ﬂl(m.
IeM; “neN

We note that in the last equality we used that the cubes I € Mj, are pairwise disjoint.

-2
We now set A = (1 —I—Z,eMk |I|)*1(Z,EMk |I|ﬁ)pT and we denote the level
sets Ex = {x € R? : |g(x)| > 2KA} and Ex(I) = Ex N 1. Since |g(x)| < 21 in
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I\ Er_1(I), we have

p—2

_p_ A
Z f g(x)dx| <281 Z |1|52k—1< Z |1|p’—z) _ 2k
I IN\Eg—1(I) 2
eM; Te My TeM;
Then, with previous inequality and (64), we get
[ ewiar=| > [ goa
TeM; Y Be-1(D) TeM, ¢ Be-1(D)
> Z /g(x)dx— Z/ g(x)dx
rem, V! Tem, Y I\Ee-1()
Ak
> —.
2

With this, we continue (63) as follows:

p—

2
(Z 3 (22’<|1|>p”2) EED IO

k<ko Ie M, k<ko

YN 2k/ g (x)ldx

k<ko Te M, Ep ()

<Y 2"‘1/ lgWldx =T, (65

k<kg B

where we used again that the cubes I € M are pairwise disjoint.
Now we divide the last integral in two parts

/ g ldx < / g(0)ldx + / 18(0)ldx,
Er_1 Er—1\Eg E

k
and we treat each term separately.

On the one hand, since Ex_1\Ex = {x € R4 ; 2k > lg(x)| > 2"_1} are pairwise
disjoint sets, we get

sz—I/ g(x)ldx < Z/ lg)Pdx < llgl3. (66)

k<kg Er—1\Ek k<ko ¥ Ex—1\Ek
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< 1, the condition

We now estimate the norm of g by usin /
g by g ||(Zn,1)n,1||l,,,g(NxN) <

p > 2, and that (f,),en is a frame of L*(R?):

g3 =(g.8)= > > znslfu-gLs)
Ie My neN

3 (Zz,ff,>p1/<z<fn,gﬂz>”)p

IeM; “neN neN

(2(5) ) (5 (5eer))

neN Ie My “neN

IA

p—2
P

IA

p

(X (Stperr)™)
IeM; “neN

N
5( > ||g111||;2> .

Te My

Now, for 2 < p < 4 we have that # > 2 and so,

1

2
||g||%§< > ||g1u||§) < llgll2.

IeM;

< 1, and we continue the

~

by disjointness of the cubes I € M. This implies | g||2
estimate in (66) as

)IE S IR R

k<ko Ex—1\Ex

On the other hand, by the definition of Ey,_; and T', we have

> oot fE lg(x)ldx = ) 2+? / |g(x)ldx
k

k<ko k<ko Ex—1

1
- 2’<0—2/E lg)ldx + 5 > 2"—1[ lg(x)dx
ko—1

k<ko B
s 1
< | lgx)] dx+§T§1+§T

With both things, T < 2 4 %T and we finish the estimate at (65) as

Z Z 2211 <1 <.

k<ko Ie My
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This ends the proof when 2 < p < 4. The remaining values of p follow by interpolation
with p = oo, which is the classical Carleson Embedding Theorem. O

We now prove membership to the Schatten class of the paraproduct, for which we
are able to use Theorem 5.3.

Proposition 10.3 Let T1 € SMOp(Rd)forZ < p < o00. Then both Il and H;l can
be associated with a compact Calderén—Zygmund kernel, and they belong to S, (RY)
with [Trills, S 1T smo, and T, Ils, < 1T Ulsmo,. Moreover; (Tzi1, g) =
(T'1, g) and (1T}, 1, f) = 0 and similar for T17},.
Proof By Theorem 5.3, to prove membership of 7' on the Schatten class S, we need
to show that }°,, .y ITI71 full5 < oo for any (f,)en frame of L2(RY).

Let (fn)nen be an arbitrary fixed frame of L?(R9) and let (Y1) 1ep be the Haar
wavelet frame of LQ(Rd) given in Definition 5.5.

By definition of the paraproduct and (9),

(71 Wa) = Y _(TLYK)(fudk (WK, Y1)

KeD

D ATL YN )k BT, K) =279,

Kech(J)

Then, if we enumerate the elements of ch(J) in the same order independently of the
cube J, we have

1
2
>

! 2
ITTr1 full2 = ( > UMz f, w1>|2) S ( Yo ourt, I/ff,->|2|<fn>1,-|2>

JeD JeD i=1

where J; € ch(f). Now by Proposition 10.2,

24 £
P LEVAISDS ( DT, wj,.>2<fn>%,.)
neN neN *JjeD i=1
24 £
S ( > o, wj,.>2<fn>3,.)
i=1neN “JeD
p
2
<2y ( > o, wn%m%)
neN “JjeD
{ 5
) (m > T, w1>2) < ITIgyo, -
1D JeD()
With this,

1

p
[TI71]lp, = sup <Z ||HT1fn||g> S T Hismo,,

neN
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where the supremum is taken over all frames (f;),en With upper frame bound less
than or equal to one.
Finally, [[TT71l, = [ITI71ll, < 1T 1lsmo,- o
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Appendix

In this section, we show how to use the main result in the paper, Theorem 4.2, to prove
membership to the Schatten classes S), of a family of singular integral operators whose
kernels do not belong to the corresponding L? spaces.

Definition of the Class of Operators

For each fixed 1 < p < oo, we define an operator 7 that depends on the actual value
of p, although such dependence is not always reflected in the notation. We later prove
that 7 belongs to S,,. Let then T be the operator defined by

Q )
T(f)x) = f 2Oy ar,
R I—X

where 2 is a positive, piecewise-linear function whose values depend on p, and it is
supported on the sequence of cubes (Qx)kez, With Qx = It ® Ji, Iy = (2-2K,3.25),
and J, = —I.

We note that |Ix| = |Jx| = 2%, and that for each (¢, x) € Qy we have t — x > 0
andt — x ~ 2k (more explicitly, k=3 < 4.2k <t _x<6.2F< 2k+3). Moreover,
if we denote by A be the diagonal of R2, we have that dist(Qp, A) ~ 2k,

The family of cubes is sketched in the following diagram:
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X

= t Q. x) = L1 @Hn@ak)sek)

:

1
1
N 1
1
1
1

. 271g, Ok

Ok

To fix the values of 2 on each cube Qg, we first define some functions. For com-
pactness on L? for 1 < p < 2, the focus is on the functions L;.
Let

4-2¢-2p

Li(x) =) +x 27 Ipeo)(x)1,2)(p),

with 0 < € < 2 — p. We note that L1 #£ 0 for p < 2. We also note that L; is a
positive, non-increasing, bounded function supported on R* such that L(27'x) <
L(x), L(x) = 1forx < 1,and [} L;(x)?x~"dx < oo.

Let & be a bounded function with A(x) € {0, 1} with h(x) = 1if |x|] < 1, and

such that the function Lo(r) = (r~! flr h(x) dx)% satisfies lim, _, oo Lo(r) = 0, and
[77 La(x)Px~ldx < o0.
To ensure that the kernel is not in L? for 1 < p < 2, we add the condition that
f loo h(x)x~1t€ dx = co. The existence of such function % is shown later in Remark
2.

Let

)

Sx)=( 7 Lo+ LX) 12,00 (P),

with 0 < €/ < p — 2. We note that S # 0 for p > 2. Moreover, S is a positive, non-
decreasing, bounded function supported on R such that S(x) < § Q2 %), Sx) =1
for x > 1, and fol Sx)Pxldx < 0.

We denote by 2-1 Qi be the concentric cube with half side length: c(27! Or =
c(Qp) and £2710y) = 271(Qy). With all this, we define Q as the continuous
function such that:

e Q(t,x) = L1 (25252 in 271 0y,
e Q(t,x) =0inR?\ (Ugez Ox), and
e Qlinearin O \ 271Qy).

These conditions imply [3; 2(z, x)| < 27KL1(2%)h(2%)S(2%) for almost all (¢, x) €
0\ Qp).
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Proof of Compactness

Proposition 10.4 The operator T previously defined belongs to the Schatten class S ).

Proof We need to check that the operator satisfies the hypotheses of Theorem 4.2,
which in this case can be written as follows:

(D) 1K (t,x) = K@, 0| S 4= Lie = xDSIe = xDD (1t + x),

@) U7 (T (r, ¢ S L2(IDSAIN DA + 553D,

3) losc; (NI S La(IDSAINDA + b,

with

S LIy <co, Y SAIN <oo. Y b+ <Dy

[I|—o00 [1|—0 c(l)—0 T+

We first note that the kernel K (¢, x) = Q(t x) is supported on Ugez Ok, where the

inequality |t + x| < 2|t — x| holds. Then, for (t x) or I with growing |f + x| or |c(])],

we can use that also |t — x| or || grow. That means we can use the function L to
control distant cubes, namely, the function D can be chosen to be for example D = L
when needed. Then we only need to work with the functions L; and S (which are the
functions defined before).

(1) We first check the kernel condition. Let (7, x) € R?, k € Z with |r — x| ~ 2k
and (', x) € R? such that 2|t — /| < |t — x].
If K(z, x) # 0, we have (¢, x) € Q; for some j € Z. Then 2J ~ |t —x| ~ 2K and
so j ~ k. Without loss of correctness, we can assume that j = k. Similar for (', x)
since |t' — x| ~ |t — x|. Then, since h(r) < 1, we have |Q(z, x)| < L;(2%)S(2%)
if (t, x) € Qy and zero otherwise, while |9;2(¢, x)| < 27%L,(25)5(25).
With this, we have for 2|t — /| < |t — x|:

K (t,x) — K(t, x)|

1 1 1Q(t, x) — (', %)
=lREOl— — I+ ;

t—x t'—x [t — x|

[/
<Ly (2")5(2’<)|| ||2 +L1(2’<)S(2’<)2—k|t—ﬂ|ﬁ
— X
|t =7 |t =1l

S Li(je —xDS(r —XI)| NE + Li(jt = x[)S(|r —x|)|t L

For the last inequality, we reason as follows. Since S is non-decreasing, and S(x) <
C-5(2~'x), wehavethat273.2F < |r—x|implies S(2F) < S@8|r—x|) < C3 (|t —
x]). Symmetrically, since L is non-increasing, and L 127 1x) < C - Li(x), we
have that |t — x| < 23 - 2% implies L;(2¥) < L1871t — x|) < C3L (|t — x|).
Moreover,

> Li(In? ~ Zz_k# =Y 2k c o,

[{|—00 k>0 k>0
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since € < 2 — p. Finally, since ¢’ < p — 2, we have

3 srpr & Y2k <o,

11]—0 k<0

(2) and (3). We now check the weak boundedness and testing conditions at the same
time. For each interval I, we have

IT11ll2.

1

AViE:

Moreover, we can also control |J|~'[(Tey, ;)| for functions such that

los| + 1971 < 1 by expressions of the form |I|_%||T111||2 for any interval I.
Then we only need to control the latter quantity.

We start with the small intervals. Let I be an interval with || ~ 2k and k < 0, and
let Q =1® I.Then T1; # 0 implies there is j € Z with Q; N Q # . With this,

2/ ~ dist(Q;, A) < dist(Q, A) +dist(Q;, Q) + £(Q) ~ 0+ 0+ 2F,
that is, j < k. Without loss of correctness, we can assume that j < k. Then

2
Q(t, x) Q(1, x)
71115, = [ | 252 Z/J (/1 . dt) dx

J<k J

2
4 . . 1
< ZLl(zl)Zh(zf)S(zl)Z/Jj (/1, — dt) dx. 67)

Jj=<k

Since L1 (x)h(x) < 1, we have

||T111||L2(,)NZS(21)2/ (/ —dt)2dx

J<k

Now, since (¢, x) € Qj, wehavet > xandf —x ~ 2/ = |Ij|,andsof,_ %dt <L
J
Then

1T 11072y S Y S@DII =) S22 <525 ) 2/

j=k i<k jsk
< 82522k ~ 52?1,

where we used that S is non-decreasing. With this,

1
TITL) S 3 5@ ~ | seoratax
0

|1|%0 k=<0
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1 1
_,_ p— _/_
=/x”€2xldx=/xp€3dx<oo
0 0

since € < p — 2 implies p — ¢’ —3 > —1.
We now deal with the large intervals. For an interval I with || ~ 2% and k > 0,
let Q = I ® I. Then, as before in (67),

2
1
||TIL]||L2(1)_ZLl(ZJ)Zh(ZJ)S(ZJ)Z/ (/I :dt) dx.

i<k
Since Li(x)S(x) <1,
”T11”L2(1) ~ Zh(zl)/ (/ _dt) dx.
Jj<k

Since (r,x) € Qj, wegett > x,t —x ~ |I|Thenfllx
separating into two sums, using 4 (r) < 1, and the definition of L,, we have

< 1. By

~

T L0720y S D RCOIGIS Y 11+ Zh(zw,

J<k j=0
A Zz/ +Zh(2/)2f < 1+/ h(x)dx
J=0

=2 k2k+L2(2k)22k Q7 4+ L,25H)|1).

With this,

Z (— I/ Ll2)? < Zz‘f" +L2MHP <1 +/ Lo(x)? dx < o0
X

—oo 112 k=0

This work shows that the operator satisfies the hypotheses of Theorem 4.2 and so,
it belongs to the Schatten class S),. O

We end with a couple of remarks about the operator just studied.

Remark 1 We first show now that the kernel K does not belong to L? for any 1 < p.
We know that when (7, x) € Qx, we have |t — x| ~ 2K, Then

Q(, x) ¢ x? x)
1K1, = Z/k“_xlpdd ~Z/ dt dx

keZ keZ
2y 2k / Q(t, x)? dt dx
keZ 2710
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= 270, 257h@N s @727 4
keZ

2 227 L@ R s @92
keZ

> Y 2FCPI L 25PR2Y + ) 2K sk
k>0 k<0

In the last equality we used that L1(x) = 1 for |x| < 1, h(x) € {0, 1}, h(x) = 1 for
|x] < 1,and S(x) = 1 for |x| > 1. Then, by the definition of L; and S, we have

00 1
L O R

1 x 0 x
o0 1 ,

:/ x_2+€+ph(x)x1_pdx+/ xP=€=2,1-p 44
! 0
o 1 ,

= [ e an s [x

1 0

Both integrals diverge.

Remark 2 To finish, we check now that the conditions
o0 o0
/ Lr(x)Px Vdx < oo, and / h(x)x" € dx = 00
1 1

are compatible. For this, we reason as follows.

We denote A, = {y € [1, x]/h(y) = 1}. We choose & so that A, is a numerable
union of intervals and such that its Lebesgue measure is m(A,) ~ x“ for fixed
1 —§ <a < 1. Then, since ;" h(y)dy = m(Ay) ~ x*, we have

00 % 71 X 2
/ Lo(x)Pxdx :/ (—/ h(y)dy) x ldx
1 1 x J1

14
2

= /00 (/Xh(y) dy) x~ D gy
1 1

X ap p © p
%/ x 2 x~ D) gy =/ 2~ IHI=9D) gx < o0,
1 1

since @ < 1. On the other hand,

o0 R
/ h()x™*€dx = lim / h(x)x~ ' dx = lim x e dx.
1 R—o0 Jq

R—00 JAp

Now,

R“%m(AR)zf x 22t dx
AR
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1 1 1

1 2 K 1 : 1 L. =
< (/ x e dx) (/ X edx) ~ (/ x~ +€dx> R7.
AR 1 AR

Then

/ X2 dx pe RU@-1+5),
AR

€

which diverges since, by the choice of «, we have 1 — 5 < a.

References

10.

11.

12.

13.

14.

15.

17.

18.

19.

20.

21.
22.

Auscher, P., Hofmann, S., Muscalu, C., Tao, T., Thiele, C.: Carleson measures, trees, extrapolation,
and T(b) theorems. Publ. Math. 46(2), 257-325 (2002)

Arsu, G.: On Schatten-von Neumann class properties of pseudo-differential operators. The Cordes-
Kato method. J. Oper. Theory 59(1), 81-114 (2008)

. Bingyang, H., Khoi, L.H., Zhu, K.: Frames and operators in Schatten classes. Houston J. Math. 41,

1191-1219 (2015)

Birman, M.S., Solomyak, M.Z.: Estimates of singular numbers of integral operators. Russ. Math.
Surveys 32(1), 15-89 (1977)

Buzano, E., Nicola, F.: Pseudo-differential operators and Schatten-von Neumann classes. Oper. Theory
Adv. Appl. 155, 117-130 (2004)

Buzano, E., Toft, J.: Schatten-von Neumann properties in the Weyl calculus. J. Funct. Anal. 259(12),
3080-3114 (2010)

Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhduser, Boston (2003)

Chui, C.K.: An Introduction to Wavelets (Wavelet Analysis and Its Applications), vol. 1. Academic
Press, Boston (1992)

Daubechies, I.: Ten Lectures on Wavelets, vol. CBMS-NSF Lecture Notes, vol. 61. Society for Industrial
Mathematics (SIAM), Philadelphia (1992)

David, G., Journé, J.L.: A boundedness criterion for generalized Calderén-Zygmund operators. Ann.
Math. 120, 371-397 (1984)

Delgado, J., Ruzhansky, M.: Schatten classes and traces on compact Lie groups. Math. Res. Lett. 24(4),
979-1003 (2017)

Delgado, J., Ruzhansky, M.: Lp-nuclearity, traces, and Grothendieck-Lidskii formula on compact Lie
groups. J. Math. Pures Appl. 102, 153-172 (2014)

Delgado, J., Ruzhansky, M.: Schatten classes on compact manifolds: kernel conditions. J. Funct. Anal.
267, 772-798 (2014)

Delgado, J., Ruzhansky, M.: Schatten-von Neumann classes of integral operators. J. Math. Pures Appl.
154, 1-29 (2021)

Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341-366
(1952)

Edmunds, D.E., Stepanov, V.D.: On the singular numbers of certain Volterra integral operators. J.
Funct. Anal. 134(1), 222-246 (1995)

Gohberg, 1.C., Krein, M.G.: Introduction to the Theory of Linear Non-self-adjoint Operators, Trans-
lations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969)
Heil, C., Walnut, D.F.: Fundamental Papers in Wavelet Theory. Princeton University Press, Princeton
(2006)

Hernédndez, H., Weiss, G.: A First Course in Wavelets. Studies in Advanced Mathematics. CRC Press,
Boca Raton (1996)

Hormander, L.: On the asymptotic distribution of the eigenvalues of pseudo-differential operators in
R"™. Ark. Mat. 17(2), 297-313 (1979)

Luecking, D.H.: Trace ideal criteria for Toeplitz operators. J. Funct. Anal. 73, 345-368 (1987)
Meyer, Y.: Wavelets and Operators, vol. 37. Cambridge University Press, New York (1992)

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:9 Page750f75 9

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Nowak, K.: Schatten ideal behavior of a generalized Hardy operator. Proc. Am. Math. Soc. 118(2),
479-483 (1993)

Olsen, J.-F., Villarroya, P.: Endpoint estimates for compact Calderén-Zygmund operators. Rev. Mat.
Iberoam. 33, 1285-1308 (2017)

Peller, V.V.: Hankel operators of class S, and their applications (rational approximation, Gaussian
processes, the problem of majorization of operators). Math. USSR Sb 41, 443-479 (1982)

Perfekt, K.-M., Pott, S., Villarroya, P.: Endpoint compactness of singular integrals and perturbations
of the Cauchy integral. Kyoto J. Math. 57(2), 365-393 (2017)

Pietsch, A.: Operator Ideals. North-Holland Mathematical Library, vol. 20. North-Holland, Amsterdam
(1980)

Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. 1. Academic Press, New York
(1980)

Rochberg, R.: Size estimates for eingenvalues of singular integral operators and Schrodinger operators
and for derivatives of quasiconformal mappings. Am. J. Math. 117(3), 711-771 (1995)

Rochberg, R., Semmes, S.: Nearly weakly orthonormal sequences, singular value estimates, and
Calderon-Zygmund operators. J. Funct. Anal. 86(2), 237-306 (1989)

Simon, B.: Trace Ideals and Their Applications. Mathematical Surveys and Monographs, vol. 120.
American Mathematical Society, Providence (2005)

Stepanov, V.D.: On the lower bounds for Schatten-von Neumann norms of certain Volterra integral
operators. J. Lond. Math. Soc. 61(2), 905-922 (2000)

Toft, J.: Schatten-von Neumann properties in the Weyl calculus, and calculus of metrics on symplectic
vector spaces. Ann. Glob. Anal. Geom. 30(2), 169-209 (2006)

Toft, J.: Schatten properties for pseudo-differential operators on modulation spaces. In: Rodino, L.,
Wong, M.W. (eds.) Pseudo-Differential Operators. Lecture Notes in Mathematics, vol. 1949, pp. 175—
202. Springer, Berlin (2008)

Villarroya, P.: A characterization of compactness for singular integrals. J. Math. Pures Appl. 104,
485-532 (2015)

Villarroya, P.: A global T'b theorem for compactness and boundedness of Calderén-Zygmund operators.
J. Math. Anal. Appl. (2019). https://doi.org/10.1016/J.JMAA.2019.07.013

Zhu, K.: Schatten class Hankel operators on the Bergman space of the unit ball. Am. J. Math. 113(1),
147-167 (1991)

Zhu, K.: Operator Theory in Function Spaces. Marcel Dekker, New York (1990)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Birkhauser


https://doi.org/10.1016/J.JMAA.2019.07.013

	The Schatten Classes of Calderón–Zygmund Operators
	Abstract
	1 Introduction
	2 The Schatten Classes
	3 Compact Calderón–Zygmund Operators
	3.1 Kernel and Operator
	3.2 The Weak Compactness Condition
	3.3 The Cancellation Condition: The Space SMOp(mathbbRn)

	4 Main Result: Membership of Calderón–Zygmund Operators to the Schatten Classes
	4.1 Notation
	4.2 Conditions for Membership to the Schatten Classes

	5 Characterization of the Schatten Classes by Means of Frames of L2(mathbbRd)
	5.1 Frames on Hilbert Spaces
	5.2 A Haar-Type Wavelet Frame

	6 Bump Estimates for Compact Calderón–Zygmund Operators
	7 The Schatten Classes for Small Exponents
	7.1 Proof of Theorem 4.2 Under Special Cancellation Conditions and 0<pleq2
	7.2 Proof of Theorem 4.2 in the General Case. Compact Paraproducts

	8 Technical Results
	8.1 Estimates on Elementary Integrals
	8.2 Estimates on Convolutions
	8.3 Estimates on Distances
	8.4 An Estimate on the Function F

	9 Bump Estimates for Powers of Compact Calderón–Zygmund Operators
	10 The Schatten Classes for Large Exponents
	Appendix
	Definition of the Class of Operators
	Proof of Compactness

	References




