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Abstract
The ambiguity function (AF) andWigner distribution (WD) play an important role not
only in non-stationary signal processing but also in radar and sonar systems. In this
paper, we introduce modified ambiguity function and Wigner distribution associated
with quadratic-phase Fourier transform (QAF, QWD). Moreover, many various use-
ful properties of QAF and QWD are also proposed. Marginal properties and Moyal’s
formulas of these distributions have elegance and simplicity comparable to those of
the AF andWD. Besides, convolutions via quadratic-phase Fourier transform are also
introduced. Furthermore, convolution theorems for QAF and QWD are also derived,
which seem similar to those of the classical Fourier transform (FT). In addition, appli-
cations of QAF and QWD are established such as the detection of the parameters of
single-component and multi-component linear frequency-modulated (LFM) signals.

Keywords Ambiguity function · Wigner distribution · Linear canonical transform ·
Convolution · Single-and multi-component LFM signal

Mathematics Subject Classification 81S30 · 42B10 · 44A35 · 42A38 · 65R10

1 Introduction

The AF and WD are effective tools in signal processing as well as in many other
application fields, especially in applications to the detection of LFM signals. As we
all know, the conventional AF and WD of a signal f ∈ L2(R) are defined as [7, 8]

AF f (τ, ω) =
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−iωtdt, (1.1)
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WD f (t, ω) =
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−iωτdτ. (1.2)

Conventional convolution is one of the most extensively used concepts in mathe-
matics with applications across diverse fields of filter designing, optics, and quantum
physics. Namely, it can be used in signal and image processing. We recall that if
f , g ∈ L2(R), then for

( f ∗ g)(t) =
∫
R

f (τ )g(t − τ)dτ. (1.3)

Moreover, the relationships between AF (WD) and the conventional convolution
can be given by [8]

A f ∗g(τ, ω) = 1

2π

∫
R

A f (u, ω) · Ag (τ − u, ω) du, (1.4)

W f ∗g(t, ω) = 1

2π

∫
R

W f (u, ω) · Wg(t − u, ω)du. (1.5)

Let parameters a, b, c, d, e ∈ R (with b �= 0) and � = (a, b, c, d, e). With minor
modifications to the definition of quadratic-phase Fourier transform (QFT) in [3], the
QFT of signal f ∈ L2(R) is defined by

Q�
f (ω) := 1√

2π

∫
R

e−i
(
aω2+bωt+ct2+dω+et

)
f (t)dt . (1.6)

As can be seen, the QFT is a generalization of FT and several other transforms.
Some of the special cases of the QFT are listed in Table 1. Furthermore, some useful
properties of QFT can be found in [3]. Having in mind that the QFT and convolutions
associated with QFT have wide applications in both theory and applications e.g., in
harmonic analysis and differential equations [3, 4] as well as in signal processing [2,
5, 11]. Since two extra parameters d, and e, then the applications of QFT are not only
similar to those of the linear canonical transform (LCT) but they are also more flexible
than the original LCT.

Recently, ambiguity function and Wigner distribution associated with LCT have
become novel signal detection tools, particularly the detection of LFM signals which
are frequently encountered in wireless communications and other fields [1, 8, 9, 11,
13, 15–18]. Therefore, extending and generalizing the ambiguity function, andWigner
distribution associated with LCT would be meaningful and worthwhile.

This paper introduces definitions of QAF and QWD. They depend on only three
parameters b, c, and e. Moreover, they seem simpler than the QWD proposed in [11]
and have a wide range of potential applications. The marginal properties, Moyal’s
formulas, and convolution theorems for QAF and QWD are similar to those of AF
and WD. Besides, five new convolutions associated with QFT as well as their impact
on QAF and QWD are also studied. In addition, as the applications, the detection
of the parameters of single-component and multi-component LFM signals are also
investigated.
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Table 1 Some of special cases of the QFT

Parameter � = (a, b, c, d, e) Corresponding transform

� = (a, b, c, 0, 0) Linear Canonical Transform (LCT)

� =
(
b
2 , b, b

2 , 0, 0
)

Fresnel Transform (FRST)

� =
(
cot θ
2 , csc θ, cot θ

2 , 0, 0
)

Fractional Fourier Transform (FRFT)

� =
(
cot θ
2 , csc θ, cot θ

2 , c, d
)

Offset Fractional Fourier Transform (OFRFT)

� = (0, 1, 0, 0, 0) Fourier Transform (FT)

� = (0, 1, 0, d, e) Offset Fourier Transform (OFT)

� = (0, −1, 0, 0, 0) Inverse Fourier Transform (IFT)

The rest of this paper is organized as follows. Section 2 introduces the definition
of QAF and QWD. Some important properties including the shifting, conjugate-
symmetry, marginal, and Moyal’s formulas are also discussed in detail. Furthermore,
their relationshipswith other time-frequency transforms such as the Short-time Fourier
transform (STFT), the short-time quadratic-phase Fourier transform (STQFT), and the
QFT are also given. More importantly, the convolution theorems for QAF and QWD
are derived in Sect 3. In Sect. 4, the applications of the QAF and QWD for the detec-
tion and parameter estimation of LFM signals embedded in white Gaussian noise are
investigated. The work ends with a conclusion in Sect. 5.

2 TheModified Ambiguity Function andWigner Distribution
AssociatedWith QFT

2.1 Definition of QAF and QWD

Using (1.1), (1.2), and (1.3), we can express the AF andWD through the conventional
convolution as follows

A f (τ, 2ω) = [ f (τ )e−iωτ ] ∗ [ f (−τ)e−iωτ ]∗, (2.7)

W f

(
t

2
, ω

)
= 2[ f (t)e−iωt ] ∗ [ f (t)e−iωt ]∗, (2.8)

where the superscript “*” denotes the complex conjugation. Therefore, replacing e−iωτ

by e−i(aω2+bωτ+cτ 2+dω+eτ) in (2.7) and changing variable y = t + τ

2
, we then have

[ f (τ )e−i(aω2+bωτ+cτ 2+dω+eτ)] ∗ [ f (−τ)e−i(aω2+bωτ+cτ 2+dω+eτ)]∗

=
∫
R

f (y)e−i(aω2+bωy+cy2+dω+ey) f ∗(y − τ)ei
[
aω2+bω(τ−y)+c(τ−y)2+dω+e(τ−y)

]
dy

=
∫
R

f (y) f ∗ (y − τ) e−i(2bω+2cτ+2e)(y− τ
2 )dy
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=
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(2bω+2cτ+2e)tdt . (2.9)

Similarly, replacing e−iωt by e−i(aω2+bωt+ct2+dω+et) in (2.8) and performing the

change of variable x = t

2
+ τ

2
give us

2[ f (t)e−i(aω2+bωt+ct2+dω+et)] ∗ [ f (t)e−i(aω2+bωt+ct2+dω+et)]∗

= 2
∫
R

f (x)e−i(aω2+bωx+cx2+dω+ex)

× f ∗(t − x)ei
[
aω2+bω(t−x)+c(t−x)2+dω+e(t−x)

]
dx

= 2
∫
R

f (x) f ∗ (t − x) e−i(bω+ct+e)(2x−t)dx

=
∫
R

f

(
t

2
+ τ

2

)
f ∗
(
t

2
− τ

2

)
e−i(bω+ct+e)τdτ. (2.10)

Equations (2.10) and (2.9) allow us to have the following definition:

Definition 1 For a given set of parameters � = (a, b, c, d, e) (with b �= 0), the QAF
and QWD of a signal f (t) ∈ L2(R) are defined as

A�
f (τ, ω) =

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2cτ+2e)tdt, (2.11)

W�
f (t, ω) =

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2ct+e)τdτ. (2.12)

We infer directly that

A�
f (τ, 2ω) = [ f (τ )e−i(aω2+bωτ+cτ 2+dω+eτ)]

∗[ f ∗(−τ)ei(aω2+bωτ+cτ 2+dω+eτ)], (2.13)

W�
f

(
t

2
, ω

)
= 2[ f (t)e−i(aω2+bωt+ct2+dω+et)]

∗[ f ∗(t)ei(aω2+bωt+ct2+dω+et)]. (2.14)

As can be seen, (2.7) and (2.8) are special cases of (2.13) and (2.14), respectively.
In the first place, some of the special cases of the QAF and QWD are presented in

the following remark:

Remark 1 (a) When � = (0, 1, 0, 0, 0), Q� is the well-known FT. We would like to
notice that the QAF and QWD are simply the conventional AF andWD, respectively.

A�
f (τ, ω) = A f (τ, ω), W�

f (t, ω) = W f (t, ω).
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(b) Let � = ( cot θ
2 , csc θ, cot θ

2 , 0, 0
)
. The QAF and QWD become the ambiguity

function and Wigner distribution associated with the FRFT

A�
f (τ, ω) =

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(ω csc θ+τ cot θ)τdt,

W�
f (t, ω) =

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(ω csc θ+t cot θ)τdτ.

(c) Let� = (a, b, c, 0, 0). In such a particular case,Q� is the LCT. Equations (2.11),
and (2.12) take the form

A�
f (τ, ω) =

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2cτ)tdt,

W�
f (t, ω) =

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2ct)τdτ,

which are therefore ambiguity function and Wigner distribution associated with the
LCT [16].

Secondly, we will investigate the relationships between the QAF (QWD) with AF
(WD). Assume fc(t) = f (t)eict

2
, then the QAF and QWD of fc(t), respectively, can

be expressed by the AF and WD of f (t) as follows

A�
fc (τ, ω) =

∫
R

fc
(
t + τ

2

)
f ∗
c

(
t − τ

2

)
e−i(bω+2cτ+2e)tdt

=
∫
R

f
(
t + τ

2

)
eic(t+

τ
2 )

2
f ∗ (t − τ

2

)
e−ic(t− τ

2 )
2
e−i(bω+2cτ+2e)tdt

=
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2e)tdt

= A f (τ, bω + 2e) ,

and

W�
fc (t, ω) =

∫
R

fc
(
t + τ

2

)
f ∗
c

(
t − τ

2

)
e−i(bω+2ct+e)τdτ

=
∫
R

f
(
t + τ

2

)
eic(t+

τ
2 )

2
f ∗ (t − τ

2

)
e−ic(t− τ

2 )
2
e−i(bω+2ct+e)τdτ

=
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+e)τdτ = W f (t, bω + e) .

Therefore, the relationships between the QAF and AF as well as the QWD and WD
are given by

A�
fc (τ, ω) = A f (τ, bω + 2e) , W�

fc (t, ω) = W f (t, bω + e) .
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Fig. 1 Magnitude of the continuous-time QAF and QWD of a rectangle function

At the end of this section, we use a rectangular function rectα(t) (with α > 0),
having a duration of 2α and centered at the origin as a test case

rectα(t) =
{
1, if |t | ≤ α

0, if |t | > α.

The closed-form expressions for QAF and QWD of rectα(t), respectively, can be
derived as follows:

A�
rectα (τ, ω) =

2 sin
[
(bω + 2cτ + 2e)

(
α − |τ |

2

)]

bω + 2cτ + 2e
, |τ | ≤ α,

W�
rectα (t, ω) = 2 sin [(bω + 2ct + e)(2α − 2|t |)]

bω + 2ct + e
, |t | ≤ α.

The magnitude of the continuous time QAF and QWD of the rectangular function
rect 1

2
(t) with � = (a, 1, 1, d, 1) are displayed in Fig. 1.

2.2 Properties of the QAF and QWD

Properties of the QAF and QWDwill be obtained in this subsection. For this purpose,

using the function sinc t := sin t

t
, we recall the next lemma

Lemma 1 (cf., e.g., Theorem 12, [12]) The formula

1

2
[ f (t + 0) + f (t − 0)] = lim

λ→∞
λ

π

∫
R

f (τ ) sinc [λ(t − τ)]dτ

holds true if
f (t)

1 + |t | belongs to L2(R).
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From (2.11) and (2.12), the relationship between the QAF and QWD is established as
follows: ∫

R

∫
R

A�
f (τ, v)ei[(b(vt−ωτ)+e(2t−τ)]dvdτ = 2π

b
W�

f (t, ω). (2.15)

Proof By applying Lemma 1, we obtain

∫
R

∫
R

A�
f (τ, v)ei[(b(vt−ωτ)+e(2t−τ)]dvdτ

=
∫
R3

f
(
x + τ

2

)
f ∗ (x − τ

2

)
e−i(bv+2cτ+2e)xei[(b(vt−ωτ)+e(2t−τ)]dxdvdτ

=
∫
R2

f
(
x + τ

2

)
f ∗ (x − τ

2

)
e−i[bωτ+2cτ x+(2x−2t+τ)e]

×
(

lim
λ→∞

∫ λ

−λ

eibv(t−x)dv

)
dτdx

= 2π

b

∫
R

lim
λ→∞

bλ

π

∫
R

f
(
x + τ

2

)
f ∗ (x − τ

2

)

× e−i[bωτ+2cτ x+(2x−2t+τ)e] sinc [bλ(t − x)]dxdτ

= 2π

b

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
)e−i(bω+2ct+e)τdτ

= 2π

b
W�

f (t, ω).

Thus, the proof of (2.15) is completed. 	

(1) Shifting Properties

(i) Time- shift Property: The QAF and QWD of f̄ (t) = f (t − t0) can be
presented by

A�

f̄
(τ, ω) = ei(bω+2cτ+2e)t0A�

f (τ, ω) , W�

f̄
(t, ω) = W�

f

(
t − t0, ω + 2ct0

b

)
.

(ii) Frequency Shifting Property: Let f̂ (t) = f (t)eiu0t then

A�

f̂
(τ, ω) = eiu0τA�

f (τ, ω) , W�

f̂
(t, ω) = W�

f

(
t, ω − u0

b

)
.

(iii) Joint Time-Frequency Shifting Property: The QAF and QWD of f ′(t) =
f (t − t0)eiu0t can be expressed as

A�
f ′(τ, ω) = eiu0τ ei(bω+2cτ+2e)t0A�

f (τ, ω) ,

W�
f ′(t, ω) = W�

f

(
t − t0, ω − u0

b
+ 2ct0

b

)
.

Proof We prove properties (i) and (ii), since the proof of property (iii) is straightfor-
ward.
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(i) Due to the formulas (2.11) and (2.12), it is easy to see that

A�

f̄
(τ, ω) =

∫
R

f̄
(
t + τ

2

) [
f̄
(
t − τ

2

)]∗
e−i(bω+2cτ+2e)tdt

=
∫
R

f
(
t − t0 + τ

2

)
f ∗ (t − t0 − τ

2

)
e−i(bω+2cτ+2e)tdt

= e−i(bω+2cτ+2e)t0

∫
R

f
(
t − t0 + τ

2

)
f ∗ (t − t0 − τ

2

)
e−i(bω+2cτ+2e)(t−t0)dt

= e−i(bω+2cτ+2e)t0A�
f (τ, ω) ,

and

W�

f̄
(t, ω) =

∫
R

f̄
(
t + τ

2

) [
f̄
(
t − τ

2

)]∗
e−i(bω+2ct+e)τdτ

=
∫
R

f
(
t − t0 + τ

2

)
f ∗ (t − t0 − τ

2

)
e−i(bω+2ct+e)τdτ

=
∫
R

f
(
t − t0 + τ

2

)
f ∗ (t − t0 − τ

2

)
e
−i
[
b
(
ω+ 2ct0

b

)
+2c(t−t0)+e

]
τ
dτ

= W�
f

(
t − t0, ω + 2ct0

b

)
.

(ii) By simple computations, we have

A�

f̂
(τ, ω) =

∫
R

f̂
(
t + τ

2

) [
f̂
(
t − τ

2

)]∗
e−i(bω+2cτ+2e)tdt

=
∫
R

f
(
t + τ

2

)
eiu0(t+

τ
2 ) f ∗ (t − τ

2

)
e−iu0(t− τ

2 )e−i(bω+2cτ+2e)tdt

= eiu0τ
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2ct+2e)tdt

= eiu0τA�
f τ, ω).

In addition

W�

f̂
(t, ω) =

∫
R

f̂
(
t + τ

2

) [
f̂
(
t − τ

2

)]∗
e−i(bω+2ct+e)τdτ

=
∫
R

f
(
t + τ

2

)
eiu0(t+

τ
2 ) f ∗ (t − τ

2

)
e−iu0(t− τ

2 )e−i(bω+2ct+e)τdτ

=
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i

[
b
(
ω− u0

b

)+2ct+e
]
τdτ

= W�
f

(
t, ω − u0

b

)
.
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Symplectic covariance is the fundamental property of the WD and AF [6, 14]. We
will consider some special cases of these properties for QAF andQWD inwhat follows

(2) Conjugation properties

(i) Conjugation-Covarriance Property:

[
A�

f (τ, ω)
]∗ = A�1

f (−τ,−ω),
[
W�

f (t, ω)
]∗ = W�

f (t, ω) ,

where �1 = (a, b, c, d,−e).
(ii) Symmetry-Conjugation Property: The QAF and QWD of f̆ (t) = f (−t) have the

forms

A�

f̆
(τ, ω) = A�2

f (τ, ω), W�

f̆
(t, ω) = W�3

f (−t, ω) ,

where �2 = (a,−b,−c, d,−e), �3 = (a, b,−c, d, e). Moreover

A�
f ∗(τ, ω) = A�3

f (−τ, ω), W�
f ∗(t, ω) = W�2

f (t, ω) .

Proof We prove (i). From (2.11), we derive

[
A�

f (τ, ω)
]∗ =

∫
R

f ∗ (t + τ

2

)
f
(
t − τ

2

)
ei(bω+2cτ+2e)tdt

=
∫
R

f

(
t + −τ

2

)
f ∗
(
t − −τ

2

)
e−i[b(−ω)+2c(−τ)+2(−e)]tdt

= A�1
f (−τ,−ω),

where �1 = (a, b, c, d,−e).
Furthermore, based on (2.12), we can write

[
W�

f (t, ω)
]∗ =

∫
R

f ∗ (t + τ

2

)
f
(
t − τ

2

)
ei(bω+2ct+e)τdτ.

Let −τ = x , the desired relation can be achieved as follows

[
W�

f (t, ω)
]∗ =

∫
R

f
(
t + x

2

)
f ∗ (t − x

2

)
e−i(bω+2ct+e)xdx

= W�
f (t, ω) .

Moreover, QAF and QWD of f̆ (t) can be presented as

A�

f̆
(τ, ω) =

∫
R

f
(
−t + τ

2

) [
f
(
−t − τ

2

)]∗
e−i(bω+2cτ+2e)tdt
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=
∫
R

f
(
−t + τ

2

)
f ∗ (−t − τ

2

)
e−i[(−b)ω+2(−c)τ+2(−e)](−t)dt

= A�2
f (τ, ω),

and

W�

f̆
(t, ω) =

∫
R

f
(
−t − τ

2

) [
f
(
−t + τ

2

)]∗
e−i(bω+2ct+e)τdτ

=
∫
R

f
(
−t − τ

2

)
f ∗ (−t + τ

2

)
e−i[bω+2(−c)(−t)+e]τdτ

= W�3
f (−t, ω) ,

where �2 = (a,−b,−c, d,−e),�3 = (a, b,−c, d, e). Hence, (ii) is proved. The
QAF and QWD of f ∗(t) can be obtained in a similar way. The proof is completed. 	

Furthermore, the marginal properties of QAF and QWD are elegance and similar to
those of the AF and WD, which will be obtained in properties (3) and (4) as follows

(3) Time and time delay marginal properties

For any f , g ∈ L2(R), we have

∫
R

A�
f (τ, ω)dω = 2π

b
f
(τ

2

)
f ∗ (−τ

2

)
, (2.16)

∫
R

W�
f (t, ω)dω = 2π

b
| f (t)|2. (2.17)

Proof We prove (2.16). Invoking (2.11) and Lemma 1, we can compute the left-hand
side of (2.16) as

∫
R

A�
f (τ, ω)dω =

∫
R

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2cτ+2e)tdtdω

=
∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(2cτ+2e)t

(
lim

λ→∞

∫ λ

−λ

e−ibωtdω

)
dt

= 2π

b
lim

λ→∞
bλ

π

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(2cτ+2e)t sinc (bλt)dt

= 2π

b
f
(τ

2

)
f ∗ (−τ

2

)
.

We ignore the proof of (2.17) because it is very similar to the proof of (2.16). 	

(4) QFT marginal properties

The time and frequencymarginal properties of the QAF andQWD can be presented
by

∫
R

A�
f (τ, ω)dτ = 2πQ�

f

(ω

2

) [
Q�

f̆

(ω

2

)]∗
, (2.18)
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∫
R

W�
f (t, ω)dt = 2π

∣∣∣Q�
f (ω)

∣∣∣2 . (2.19)

where f̆ (t) = f (−t).

Proof It is straightforward to get

∫
R

A�
f (τ, ω)dτ =

∫
R

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2cτ+2e)tdtdτ,

∫
R

W�
f (t, ω)dt =

∫
R

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2ct+e)τdτdt .

Let x = t + τ

2
, y = t − τ

2
, we then have

∫
R

A�
f (τ, ω)dτ =

∫
R

∫
R

f (x) f ∗ (y) e−i[bω+2c(x−y)+2e] (x+y)
2 dxdy

=
(∫

R

f (x)e
−i
[
a( ω

2 )
2+b( ω

2 )x+cx2+d( ω
2 )+ex

]
dx

)

×
(∫

R

f ∗(y)ei
[
a( ω

2 )
2+b( ω

2 )(−y)+c(−y)2+d( ω
2 )+e(−y)

]
dy

)

= 2πQ�
f

(ω

2

) [
Q�

f̆

(ω

2

)]∗
,

where f̆ (t) = f (−t). In addition

∫
R

W�
f (t, ω)dt =

∫
R

∫
R

f (x) f ∗ (y) e−i[bω+c(x+y)+e](x−y)dxdy

=
(∫

R

f (x)e−i(aω2+bωx+cx2+dω+ex)dx

)
·
(∫

R

f ∗(y)ei(aω2+bωy+cy2+dω+ey)dy

)

= 2πQ�
f (ω)

[
Q�

f (ω)
]∗ = 2π

∣∣∣Q�
f (ω)

∣∣∣2 .

Thus, we obtain (2.18) and (2.19). The proof is completed. 	
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(5) Moyal formula

Assume that f , g ∈ L2(R), the Moyal formula of the QAF and QWD can be repre-
sented as

∫
R

∫
R

A�
f (τ, ω)[A�

g (τ, ω)]∗dτdω = 2π

b
|〈 f , g〉|2, (2.20)

∫
R

∫
R

W�
f (t, ω)[W�

g (t, ω)]∗dtdω = 2π

b
|〈 f , g〉|2, (2.21)

where 〈., .〉 denotes the usual inner product in L2(R) given by 〈 f , g〉
= ∫

R
f (t)g∗(t)dt .

Proof We will just prove (2.20). For (2.21), we proceed in a similar way. By virtue of
Lemma 1, we derive that

∫
R

∫
R

A�
f (τ, ω)[A�

g (τ, ω)]∗dτdω

=
∫
R4

f
(
t + τ

2

)
f ∗ (t − τ

2

)
e−i(bω+2cτ+2e)t

g∗ (x + τ

2

)
g
(
x − τ

2

)
ei(bω+2cτ+2e)xdtdxdτdω

=
∫
R3

f
(
t + τ

2

)
f ∗ (t − τ

2

)
g∗ (x + τ

2

)
g
(
x − τ

2

)
e−i(2cτ+2e)tei(2cτ+2e)x

×
(

lim
λ→∞

∫ λ

−λ

eibω(x−t)dω

)
dτdxdt

= 2π

b

∫
R

∫
R

g∗ (x + τ

2

)
g
(
x − τ

2

)
ei(2cτ+2e)x

×
{
lim

λ→∞
bλ

π

∫
R

f
(
t + τ

2

)
f ∗ (t − τ

2

)
)e−i(2cτ+2e)t [bλ(x − t)] dt

}
dxdτ

= 2π

b

∫
R

∫
R

g∗ (x + τ

2

)
g
(
x − τ

2

)
f
(
x + τ

2

)
f ∗ (x − τ

2

)
dxdτ.

By making the change of variables y = x + τ

2
, z = x − τ

2
, we obtain

∫
R

∫
R

A�
f (τ, ω)[A�

g (τ, ω)]∗dτdω = 2π

b

∫
R

∫
R

g∗ (y) g (z) f (y) f ∗ (z) dydz

= 2π

b

[∫
R

f (y)g∗ (y) dy

]
·
[∫

R

f (z) g∗ (z) dz

]∗

= 2π

b
|〈 f , g〉|2 ,

which is the desired result. 	
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(6) Relationship with the STFT

The STFT of a signal f (t) is defined as [18]

S f (t, ω) =
∫
R

f (τ )g∗(τ − t)e−iωτdτ,

where g(t) is the window function.
The relationships between the QAF (QWD) and the STFT can be presented by

A�
f

(
τ,

ω − 2cτ − 2e

b

)
= ei

ωτ
2 S f (τ, ω),

W�
f

(
t

2
,
ω − 2ct − 2e

2b

)
= 2ei

ωt
2 S f (t, ω).

Proof By changing variable x = t + τ

2
, we then have

A�
f (τ, ω) =

∫
R

f (x) f ∗ (x − τ) e−i(bω+2cτ+2e)(x− τ
2 )dx,

W�
f (t, ω) = 2

∫
R

f (x) f ∗ (2t − x) e−2i(bω+2ct+e)(x−t)dx . (2.22)

Therefore, by substituting ω with
ω − 2cτ − 2e

b
and g(t) = f (t), we get

A�
f

(
τ,

ω − 2cτ − 2e

b

)
= ei

ωτ
2

∫
R

f (x) f ∗ (x − τ) e−iωxdx = ei
ωτ
2 S f (τ, ω).

Likewise, if g(t) = f̆ (t) = f (−t), we then have

W�
f

(
t

2
,
ω − 2ct − 2e

2b

)
= 2ei

ωt
2

∫
R

f (x) f ∗ (t − x) e−iωxdx

= 2ei
ωt
2

∫
R

f (x) f̆ ∗ (x − t) e−iωxdx = 2ei
ωt
2 S f (t, ω),

which yields the desired result. 	

(7) Relationship with the STQFT

The STQFT of a signal f (t) with the window function g(t) is defined as

S�
f (t, ω) =

∫
R

f (τ )g∗(τ − t)e−i(aω2+bωτ+cτ 2+dω+eτ)dτ.

The relationships between the QAF (QWD) and STQFT can be given by

A�
f (τ, ω) = ei(aω2+ 1

2 bωτ+dω)S�
f (τ, ω),
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W�
f

(
t

2
,
ω

2

)
= 2ei(aω2+ 1

2 bωt+dω)S�
f (t, ω).

Proof With the aid of (2.22), we can write

A�
f (τ, ω) =

∫
R

f (t) f ∗ (t − τ) e−i(bω+2cτ+2e)tei(bω+2cτ+2e) τ
2 dt

= ei(aω2+ 1
2 bωτ+dω)

∫
R

f (t)
(
f ∗ (t − τ) ei

[
c(t−τ)2−e(t−τ)

])

× e−i(aω2+bωt+ct2+dω+et)dt

= ei(aω2+ 1
2 bωτ+dω)

∫
R

f (t) g∗ (t − τ) e−i(aω2+bωt+ct2+dω+et)dt

= ei(aω2+ 1
2 bωτ+dω)S�

f (τ, ω),

where the window function g(t) = f (t)e−i
(
ct2−et

)
.

Similarly, if the window function is chosen as g(t) = f (−t)e−i
(
ct2−et

)
, we then have

W�
f

(
t

2
,
ω

2

)
= 2

∫
R

f (τ ) f ∗ (t − τ) e−i(bω+2ct+2e)τ e−i(bω+2ct+2e) t
2 dτ

= 2ei(aω2+ 1
2 bωt+dω)

∫
R

f (τ )
(
f ∗ (t − τ) ei

[
c(t−τ)2+e(t−τ)

])

× e−i(aω2+bωτ+cτ 2+dω+eτ)dτ

= 2ei(aω2+ 1
2 bωt+dω)

∫
R

f (τ ) g∗ (τ − t) e−i(aω2+bωτ+cτ 2+dω+eτ)dτ

= 2ei(aω2+ 1
2 bωt+dω)S�

f (t, ω).

This indicates that W�
f

( t
2 ,

ω
2

) = 2ei(aω2+ 1
2 bωt+dω)S�

f (t, ω). 	

(8) Relationship with the QFT

For any f , g ∈ L2(R), we have

A�

Q�
f
(τ, ω) = e−i(dτ+el)

b
A�

f

(
−2(a + c)τ

b
− 2e

b
− ω, τ − 2e

b

)
, (2.23)

W�

Q�
f
(t, ω) = 2

b
W�

f

(
−2(a + c)

b
t − d + e

b
− ω, t

)
, (2.24)

where l = −2(a + c)τ

b
− 2e

b
− ω.

Proof Let fe(t) = e−i(ct2+et), we may observe that

Q�
f (ω) = 1√

2π

∫
R

e−i
(
aω2+bωt+dω

)
fe(t)dt .
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Table 2 Some useful properties of QAF

Conjugation-Covarriance
Property

[
A�

f (τ, ω)
]∗ = A�1

f (−τ,−ω), �1 = (a, b, c, d, −e)

Symmetry-Conjugation
Property

A�

f̆
(τ, ω) = A�2

f (τ, ω), �2 = (a,−b,−c, d, −e), f̆ (t) = f (−t)

A�
f ∗ (τ, ω) = A�3

f (−τ, ω), �3 = (a, b,−c, d, e).

Time shifting property A�
f̄
(τ, ω) = ei(bω+2cτ+2e)t0A�

f (τ, ω) , f̄ (t) = f (t − t0)

Frequency shifting
property

A�

f̂
(τ, ω) = eiu0τA�

f (τ, ω) , f̂ (t) = f (t)eiu0t

Joint Time-Frequency
Shifting Property

A�
f ′ (τ, ω) = eiu0τ ei(bω+2cτ+2e)t0A�

f (τ, ω) , f ′(t) = f (t − t0)eiu0t

Time and time delay
marginal property

∫
R
A�

f (τ, ω)dω = 2π
b f

(
τ
2
)
f ∗ (− τ

2
)

QFT marginal property
∫
R
A�

f (τ, ω)dτ = 2πQ�
f

(
ω
2
) [Q�

f̆

(
ω
2
)]∗

, f̆ (t) = f (−t)

Moyal formula
∫
R

∫
R
A�

f (τ, ω)[A�
g (τ, ω)]∗dτdω = 2π

b |〈 f , g〉|2

Relationship with the
STFT

A�
f

(
τ, ω−2cτ−2e

2b

)
= ei

ωτ
2 S f (τ, ω)

Relationship with the
STQFT

A�
f (τ, ω) = ei(aω2+ 1

2 bωτ+dω)S�
f (τ, ω)

Relationship with the
QFT

A�

Q�
f
(τ, ω) =

e−i(dτ+el)

b A�
f

(
− 2(a+c)τ

b − 2e
b − ω, τ − 2e

b

)
, l =

− 2(a + c)τ

b
− 2e

b
− ω

The equation above, Lemma 1, and equation (2.11) allow us to recognize that

A�

Q�
f
(τ, ω) =

∫
R

Q�
f

(
t + τ

2

) [
Q�

f

(
t − τ

2

)]∗
e−i(bω+2cτ+2e)tdt

= 1

2π

∫
R3

e
−i
[
a(t+ τ

2 )
2+b(t+ τ

2 )u+d(t+ τ
2 )
]
e
i
[
a(t− τ

2 )
2+b(t− τ

2 )v+d(t− τ
2 )
]

× fe(u) f ∗
e (v)e−i(bω+2cτ+2e)tdudvdt

= 1

2π

∫
R3

fe(u) f ∗
e (v)e

−i
[
b
2 (u+v)+d

]
τ
e−i[2(a+c)τ+2e+bω+b(u−v)]tdudvdt

= 1

2π

∫
R

∫
R

fe(u) f ∗
e (v)e

−i
[
b
2 (u+v)+d

]
τ

×
(

lim
λ→∞

∫ λ

−λ

e−i[2(a+c)τ+2e+bω+b(u−v)]tdt

)
dudv

= 1

b

∫
R

e
−i
[
b
2 u+d

]
τ
fe(u)

×
{
lim

λ→∞
bλ

π

∫
R

e− ibvτ
2 f ∗

e (v) sinc {λ [2(a + c)τ + 2e + bω + b(u − v)]}dv
}
du
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Table 3 Some useful properties of QWD

Conjugation-covarriance
property

[
W�

f (t, ω)
]∗ = W�

f (t, ω)

Symmetry-conjugation
property

W�

f̆
(t, ω) = W�3

f (−t, ω) , �3 = (a, b,−c, d, e), f̆ (t) = f (−t)

W�
f ∗ (t, ω) = W�2

f (t, ω) , �2 = (a, −b,−c, d, −e).

Time shifting property W�
f̄
(t, ω) = W�

f

(
t − t0, ω + 2ct0

b

)
, f̄ (t) = f (t − t0)

Frequency shifting
property

W�

f̂
(t, ω) = W�

f

(
t, ω − u0

b

)
, f̂ (t) = f (t)eiu0t

Joint time-frequency
shifting property

W�
f ′ (t, ω) = W�

f

(
t − t0, ω − u0

b + 2ct0
b

)
, f ′(t) = f (t − t0)eiu0t

Time and time delay
marginal property

∫
R
W�

f (t, ω)dω = 2π
b | f (t)|2

QFT marginal property
∫
R
A�

f (τ, ω)dτ = 2πQ�
f

(
ω
2
) [Q�

f̆

(
ω
2
)]∗

Moyal formula
∫
R

∫
R
W�

f (t, ω)[W�
g (t, ω)]∗dtdω = 2π

b |〈 f , g〉|2

Relationship with the
STFT

W�
f

(
t
2 , ω−2ct−2e

2b

)
= 2ei

ωt
2 S f (t, ω)

Relationship with the
STQFT

W�
f

( t
2 , ω

2
) = 2ei(aω2+ 1

2 bωt+dω)S�
f (t, ω)

Relationship with the
QFT

W�

Q�
f
(t, ω) = 2

bW�
f

(
− 2(a+c)

b t − d+e
b − ω, t

)

= 1

b

∫
R

fe(u)

[
fe

(
2(a + c)τ

b
+ 2e

b
+ ω + u

)]∗
e
−ibτ

[
(a+c)τ

b + e
b + ω

2 + d
b +u

]
du.

Then, by talking u = x − (a + c)τ

b
− e

b
− ω

2
, we derive

A�

Q�
f
(τ, ω) =

∫
R

fe

(
x − (a + c)τ

b
− e

b
− ω

2

)
×

[
fe

(
x + (a + c)τ

b
+ e

b
+ ω

2

)]∗
e
−ibτ

(
x+ d

b

)
dx .

Furthermore, considering l = −2(a + c)τ

b
− 2e

b
− ω, the above relation can be

rewritten as

A�

Q�
f
(t, ω) = 1

b

∫
R

fe

(
x + l

2

)[
fe

(
x − l

2

)]∗
e
−ibτ

(
x+ d

b

)
dx

= 1

b

∫
R

f

(
x + l

2

)[
f

(
x − l

2

)]∗
e−i(2cx+e)le

−ibτ
(
x+ d

b

)
dx
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= e−i(dτ+el)

b

∫
R

f

(
x + l

2

)[
f

(
x − l

2

)]∗
e
−i
[
b
(
τ− 2e

b

)
+2cl+2e

]
x
dx

= e−i(dτ+el)

b
A�

f

(
l, τ − 2e

b

)

= e−i(dτ+el)

b
A�

f

(
−2(a + c)τ

b
− 2e

b
− ω, τ − 2e

b

)
,

which yields (2.23).
Now, for proving (2.24), making use of the definition of the QWD, we start by inter-
preting the left-hand side of it:

W�

Q�
f
(t, ω) =

∫
R

Q�
f

(
t + τ

2

) [
Q�

f

(
t − τ

2

)]∗
e−i(bω+2ct+e)τdτ

= 1

2π

∫
R3

e
−i
[
a(t+ τ

2 )
2+b(t+ τ

2 )u+d(t+ τ
2 )
]
e
i
[
a(t− τ

2 )
2+b(t− τ

2 )v+d(t− τ
2 )
]

× fe(u) f ∗
e (v)e−i(bω+2ct+e)τdudvdτ

= 1

2π

∫
R3

fe(u) f ∗
e (v)eibt(v−u)e

−i
[
2t(a+c)+d+e+bω+ b

2 (u+v)
]
τ
dudvdτ

= 1

2π

∫
R

∫
R

fe(u) f ∗
e (v)eibt(v−u)

(
lim

λ→∞

∫ λ

−λ

e
−i
[
2t(a+c)+d+e+bω+ b

2 (u+v)
]
τ
dτ

)
dudv

= 2

b

∫
R

e−ibtu fe(u)×
{
lim

λ→∞
bλ

2π

∫
R

eibtv f ∗
e (v) sinc

{
λ

[
2t(a + c) + d + e + bω + b

2
(u + v)

]}
dv

}
du

= 2

b

∫
R

fe(u)

[
fe

(
−4(a + c)t

b
− 2(d + e)

b
− 2ω − u

)]∗
×

e
−ibt

[
4(a+c)t

b + 2(d+e)
b +2ω+2u

]
du.

Again, talking u = −2(a + c)t

b
− (d + e)

b
−ω+ x

2
, the equation above can be recast

as

W�

Q�
f
(t, ω) = 2

b

∫
R

fe

(
−2(a + c)t

b
− (d + e)

b
− ω + x

2

)

×
[
fe

(
−2(a + c)t

b
− (d + e)

b
− ω − x

2

)]∗
e−ibt xdx .

Next, considering k = −2(a + c)t

b
− (d + e)

b
− ω, it follows that

W�

Q�
f
(t, ω) = 2

b

∫
R

fe
(
k + x

2

) [
fe
(
k − x

2

)]∗
e−ibt xdx

= 2

b

∫
R

f
(
k + x

2

) [
f
(
k − x

2

)]∗
e−i(2ck+e)xe−ibt xdx
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= 2

b

∫
R

f
(
k + x

2

) [
f
(
k − x

2

)]∗
e−i(bt+2ck+e)xdx

= 2

b
W�

f (k, t)

= 2

b
W�

f

(
−2(a + c)t

b
− (d + e)

b
− ω, t

)
,

which is the desired result. 	


3 Convolution Theorems for the QAF and QWD

Convolutions are used in the modeling of a great diversity of applied problems such
as signal and image processing, optics as well as filter designing [2, 5]. In this section,
two convolutions associated with the QFT and their convolution theorems will be
introduced. Moreover, the relationships between proposed convolutions and QAF as
well as QWDwill be given, which are different from those in [11, 13], in the sense that
they are simpler, more elegant, and similar to (1.5) and (1.4). Furthermore, convolution
theorems for the QAF and QWD of three convolutions proposed in [3] will be also
presented in the rest of this section.

Definition 2 For any functions f , g ∈ L2(R), we define two new convolution opera-
tors f 	

i
g (i ∈ {1, 2}) via the QFT as follows:

( f 	
1
g)(t) = 1√

2π

∫
R

f (τ )g

(
t − τ − d

b

)
e
−i

[
cτ 2−ct2+c

(
t−τ− d

b

)2− ed
b

]
dτ,

( f 	
2
g)(t) = 1√

2π

∫
R

f (τ )g(t − τ)e2icτ(t−τ)dτ. (3.25)

After simple computation, we recognize that the proposed convolutions have the fol-
lowing properties. Namely, for any f , g, h ∈ L2(R) and i ∈ {1, 2}, we have
(i) Commutativity: f 	

i
g = g	

i
f .

(ii) Associativity: ( f 	
i
g)	

i
h = f 	

i
(g	

i
h).

(iii) Distributivity: f 	
i
(g + h) = f 	

i
g + f 	

i
h.

Theorem 2 For any pair of square integrable functions f , g ∈ L2(R), the following
identities are satisfied

Q�
f 	
1
g(ω) = eaiω

2 Q�
f (ω) · Q�

g (ω), (3.26)

A�
f 	
1
g(τ, ω) = e− id

b (bω+2e)

2π

∫
R

A�
f (γ, ω) · A�

g (τ − γ, ω) dγ, (3.27)

W�
f 	
1
g(t, ω) = 1

2π

∫
R

W�
f (u, ω) · W�

g

(
t − u − d

b
, ω

)
du. (3.28)
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Proof First, we prove factorization identity (3.26). Due to the formula (1.6), we have

eaiω
2 Q�

f (ω) · Q�
g (ω)

= 1

2π
eaiω

2
∫
R

∫
R

f (u)g(v)e−i(aω2+bωu+cu2+dω+eu)e−i(aω2+bωv+cv2+dω+ev)dudv

= 1

2π

∫
R

∫
R

f (u)g(v)e
−i
[
aω2+bω

(
u+v+ d

b

)
+cu2+cv2+dω+e

(
u+v+ d

b

)
− ed

b

]
dudv.

Setting s = u + v + d

b
, it is easy to see that

eaiω
2 Q�

f (ω) · Q�
g (ω) = 1√

2π

∫
R

e−i(aω2+bωs+cs2+dω+es)

×
⎧⎨
⎩

1√
2π

∫
R

f (u)g

(
s − u − d

b

)
e
−i

[
cu2−cs2+c

(
s−u− d

b

)2− ed
b

]
du

⎫⎬
⎭ ds

= 1√
2π

∫
R

e−i(aω2+bωs+cs2+dω+es)( f 	
1
g)(s)ds.

Now, owing to (2.11) and (3.25), we obtain

A�
f 	
1
g(τ, ω) =

∫
R

( f 	
1
g)
(
η + τ

2

)
·
[
( f 	

1
g)
(
η − τ

2

)]∗
e−i

(
bω+2cτ+2e

)
ηdη

=
∫
R

⎧⎨
⎩

1√
2π

∫
R

f (x)g

(
η + τ

2
− d

b
− x

)
e
−i

[
cx2−c(η+ τ

2 )
2+c

(
η+ τ

2 −x− d
b

)2− ed
b

]
dx

⎫⎬
⎭

×
⎧⎨
⎩

1√
2π

∫
R

f ∗(y)g∗
(

η − τ

2
− d

b
− y

)
e
i

[
cy2−c(η− τ

2 )
2+c

(
η− τ

2 − d
b −y

)2− ed
b

]
dy

⎫⎬
⎭

× e−i
(
bω+2cτ+2e

)
ηdη.

Setting x = p + γ

2
and y = p − γ

2
, the above equation becomes

A�
f 	
1
g(τ, ω) = 1

2π

∫
R

e−i
(
bω+2cτ+2e

)
η

×
∫
R

f
(
p + γ

2

)
g

(
η + τ

2
− d

b
− p − γ

2

)
e
−i

[
c(p+ γ

2 )
2−c(η+ τ

2 )
2+c

(
η+ τ

2 −p− γ
2 − d

b

)2]
dp

×
∫
R

f ∗ (p − γ

2

)
g∗
(

η − τ

2
− d

b
− p + γ

2

)
e
i

[
c(p− γ

2 )
2−c(η− τ

2 )
2+c

(
η− τ

2 −p+ γ
2 − d

b

)2]
dγ dη.
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By talking η = p + q + d

b
such that dη = dq. It is easy to verify that the above

expression has the following form

A�
f 	
1
g(τ, ω) = e− id

b (bω+2e)

2π

∫
R

{∫
R

f
(
p + γ

2

)
f ∗ (p − γ

2

)
e−i

(
bω+2cγ+2e

)
pdp

}

×
{∫

R

g

(
q + τ − γ

2

)
g∗
(
q − τ − γ

2

)
e−i[bω+2c(τ−γ )+2e]qdq

}
dγ

= e− id
b (bω+2e)

2π

∫
R

A�
f (u, ω) · A�

g (τ − γ, ω) dγ,

which is (3.27).
Next, we turn to the proof of (3.28). It follows from (2.11) that

W�
f 	
1
g(t, ω) =

∫
R

( f 	
1
g)
(
t + η

2

)
·
[
( f 	

1
g)
(
t − η

2

)]∗
e−i

(
bω+2ct+e

)
ηdη

=
∫
R

⎧⎨
⎩

1√
2π

∫
R

f (τ )g

(
t + η

2
− d

b
− τ

)
e
−i

[
cτ 2−c(t+ η

2 )
2+c

(
t+ η

2 −τ− d
b

)2− ed
b

]
dτ

⎫⎬
⎭

×
⎧⎨
⎩

1√
2π

∫
R

f ∗(γ )g∗
(
t − η

2
− d

b
− γ

)
e
i

[
cγ 2−c(t− η

2 )
2+c

(
t− η

2 −γ− d
b

)2− ed
b

]
dγ

⎫⎬
⎭

×e−i
(
bω+2ct+e

)
ηdη.

Performing the change of variables τ = u + p

2
and γ = u − p

2
, we achieve

W�
f 	
1
g(t, ω) = ]imu

1

2π

∫
R

e−i
(
bω+2ct+e

)
η

∫
R

f
(
u + p

2

)
g

(
t + η

2
− d

b
− u − p

2

)

e
−i

[
c(u+ p

2 )
2−c(t+ η

2 )
2+c

(
t+ η

2−u− p
2 − d

b

)2]
dp ×∫

R

f ∗ (u − p

2

)
g∗
(
t − η

2
− d

b
− u + p

2

)

e
i

[
c(u− p

2 )
2−c(t− η

2 )
2+c

(
t− η

2−u+ p
2 − d

b

)2]
dudη.

By talking η = p + q such that dη = dq, the above equation turns into

W�
f 	
1
g(t, ω) = 1

2π

∫
R

{∫
R

f
(
u + p

2

)
f ∗ (u − p

2

)
e−i

(
bω+2cu+e

)
pdp

}

×
{∫

R

g

(
t − u − d

b
+ q

2

)
g∗
(
t − u − d

b
− q

2

)
e
−i
[
bω+2c

(
t−u− d

b

)
+e

]
q
dq

}
du

= 1

2π

∫
R

W�
f (u, ω) · W�

h

(
t − u − d

b
, ω

)
du,

which proves (3.28). The proof is concluded. 	
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The following theorem can be derived in the same way as Theorem 2, and so we omit
its proof.

Theorem 3 Assume that f , g ∈ L2(R), two following identities hold

Q�
f 	
2
g(ω) = eaiω

2+idω Q�
f (ω) · Q�

g (ω),

A�
f 	
2
g(τ, ω) = 1

2π

∫
R

A�
f (γ, ω) · A�

g (τ − γ, ω) dγ, (3.29)

and

W�
f 	
2
g(t, ω) = 1

2π

∫
R

W�
f (u, ω) · W�

g (t − u, ω)du. (3.30)

As can be seen, the identities (1.5) and (1.4) can be deduced from the identities (3.29)
and (3.30) when � = (0, 1, 0, 0, 0). We now recall some of the convolutions which
can be found in [3].

Definition 3 If f , g ∈ L2(R) then the new elements f 	
i
g, (i ∈ {3, 4, 5}) below

introduced define convolutions followed by their factorization identities:

( f 	
3
g)(t) = b

2π

∫
R2

f (u)g(v)e−i(cu2+cv2−ct2+eu+ev−et)− (bt−bu−bv−d)2
2 dudv,

Q�
f 	
3
g(ω) = e− 1

2ω2+aiω2 Q�
f (ω) · Q�

g (ω),

( f 	
4
g)(t) = b

2π

∫
R2

f (u)g(v)e−i(cu2+cv2−ct2+eu+ev−et)− (bt−bu−bv)2
2 dudv,

Q�
f 	
4
g(ω) = e− 1

2ω2+aiω2+idω Q�
f (ω) · Q�

g (ω),

( f 	
5
g)(t) = b√

2π

∫
R2

e
−i(cu2+cv2−c t2

2 +eu+ev− et√
2
)− (bt−bu−bv−2d+d

√
2)2

2 f (u)g(v)dudv,

Q�
f 	
5
g(ω) = e− 1

2ω2 Q�
f (ω) · Q�

g (ω).

The next theorems introduce the relationships between the three convolutions above
and QAF (QWD).

Theorem 4 Given a pair of square integrable functions f , g ∈ L2(R), the following
results hold

A�
f 	
3
g(τ, ω) = be

− 1
4

(
ω+ 2e

b

)2
e
−i
(
ω+ 2e

b

)
d
eieτ

4π
√

π

∫
R

∫
R

A�
f (p, ω) · A�

g (q, ω) ×

e− b2
4 (τ−p−q)2e−ie(p+q)dpdq, (3.31)

W�
f 	
3
g(t, ω) = be−ω2

2π
√

π

∫
R

∫
R

W�
f (u, ω) · W�

g (v, ω)e−[bt−b(u+v)−d]2dudv. (3.32)
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Proof In order to prove (3.31), we proceed as

A�
f 	
3
g(τ, ω) =

∫
R

( f 	
3
g)
(
t + τ

2

) [
( f 	

3
g)
(
t − τ

2

)]∗
e−i(bω+2cτ+2e)tdt

= b2

4π2

∫
R5

f (τ1)g(τ2) f
∗(γ1)g∗(γ2)e−i(bω+2cτ+2e)t

× e
−i
[
cτ 21 +cτ 22 −c(t+ τ

2 )
2+eτ1+eτ2−e(t+ τ

2 )
]
− [b(t+ τ

2 )−bτ1−bτ2−d]2
2

× e
i
[
cγ 2

1 +cγ 2
2 −c(t− τ

2 )
2+eγ1+eγ2−e(t− τ

2 )
]
− [b(t− τ

2 )−bγ1−bγ2−d]2
2 dτ1dτ2dγ1dγ2dt .

By changing variables τ1 = u + p

2
, γ1 = u − p

2
, τ2 = v + q

2
, γ2 = v − q

2
, we

realize

A�
f 	
3
g(τ, ω) = b2

4π2

∫
R5

f
(
u + p

2

)
f ∗ (u − p

2

)
g
(
v + q

2

)
g∗ (v − q

2

)

× e−i(2cup+2cvq+ep+eq−eτ)

× e−i(bω+2e)te−[bt−b(u+v)−d]2e− b2
4 (τ−p−q)2dudvdpdqdt

= b2

4π2

∫
R4

f
(
u + p

2

)
f ∗ (u − p

2

)
g
(
v + q

2

)
g∗ (v − q

2

)

× e−i(2cup+2cvq+ep+eq−eτ)

× e− b2
4 (τ−p−q)2

(∫
R

e−[bt−b(u+v)−d]2e−i(bω+2e)t dt

)
dudvdpdq.

Having now in mind the following well-known identity (see [10, 12]),

1√
2π

∫
R

e±i xte−kt2dt = 1√
2k

e− 1
4k x

2
(k > 0, x ∈ R), (3.33)

it follows that

∫
R

e−[bt−b(u+v)−d]2e−i(bω+2e)tdt =
√

π

b
e
−i(bω+2e)

(
u+v+ d

b

)
e
− 1

4

(
ω+ 2e

b

)2

holds true. Then

A�
f 	
3
g(τ, ω) = be

− 1
4

(
ω+ 2e

b

)2

4π
√

π

∫
R4

f
(
u + p

2

)
f ∗ (u − p

2

)
g
(
v + q

2

)
g∗ (v − q

2

)

× e−i(2cup+2cvq+ep+eq−eτ)e
−i(bω+2e)

(
u+v+ d

b

)

e− b2
4 (τ−p−q)2 dudvdpdq

= be
− 1

4

(
ω+ 2e

b

)2
e
−i
(
ω+ 2e

b

)
d
eieτ

4π
√

π

∫
R2

∫
R

f
(
u + p

2

)
f ∗ (u − p

2

)
e−i[bω+2cp+2e]udu
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×
(∫

R

g
(
v + q

2

)
g∗ (v − q

2

)

e−i[bω+2cq+2e]vdv
)
e− b2

4 (τ−p−q)2 e−ie(p+q)dpdq

= be
− 1

4

(
ω+ 2e

b

)2
e
−i
(
ω+ 2e

b

)
d
eieτ

4π
√

π

∫
R

∫
R

A�
f (p, ω) · A�

g (q, ω)

× e− b2
4 (τ−p−q)2 e−ie(p+q)dpdq.

Therefore, we obtain (3.31). To verify (3.32), we proceed as

W�
f 	
3
g(t, ω) =

∫
R

( f 	
3
g)
(
t + η

2

) [
( f 	

3
g)
(
t − η

2

)]∗
e−i(bω+2ct+e)ηdη

= b2

4π2

∫
R5

f (τ1)g(τ2) f
∗(γ1)g∗(γ2)e−i(bω+2ct+e)η×

e
−i
[
cτ 21 +cτ 22 −c(t+ η

2 )
2+eτ1+eτ2−e(t+ η

2 )
]
− [b(t+ η

2 )−bτ1−bτ2−d]2
2 ×

e
i
[
cγ 2

1 +cγ 2
2 −c(t− η

2 )
2+eγ1+eγ2−e(t− η

2 )
]
− [b(t− η

2 )−bγ1−bγ2−d]2
2 dτ1dτ2dγ1dγ2dη.

Then, considering τ1 = u + p

2
, γ1 = u − p

2
, τ2 = v + q

2
, γ2 = v − q

2
, the above

relation can be expressed as

W�
f 	
3
g(t, ω) = b2

4π2

∫
R5

f
(
u + p

2

)
f ∗ (u − p

2

)
g
(
v + q

2

)
g∗ (v − q

2

)

× e−i(2cup+2cvq+ep+eq)e−ibωηe−[bt−b(u+v)−d]2 e− b2
4 (η−p−q)2dudvdpdqdη

= b2

4π2

∫
R4

f
(
u + p

2

)
f ∗ (u − p

2

)
g
(
v + q

2

)
g∗ (v − q

2

)

e−i(2cup+2cvq+ep+eq) × e−[bt−b(u+v)−d]2
(∫

R

e− b2
4 (η−p−q)2 e−ibωηdη

)
dudvdpdq.

Thanks to formula

∫
R

e− b2
4 (η−p−q)2e−ibωηdη = 2

√
π

b
e−ibω(p+q)e−ω2

,

the relation

W�
f 	
3
g(t, ω) = be−ω2

2π
√

π

∫
R4

f
(
u + p

2

)
f ∗ (u − p

2

)
g
(
v + q

2

)
g∗ (v − q

2

)

× e−i(2cup+2cvq+ep+eq)e−[bt−b(u+v)−d]2 e−ibω(p+q)dudvdp

= be−ω2

2π
√

π

∫
R2

(∫
R

f
(
u + p

2

)
f ∗ (u − p

2

)
e−i(bω+2cu+e)pdp

)

×
(∫

R

g
(
v + q

2

)
g∗ (v − q

2

)
e−i(bω+2cu+e)qdq

)
e−[bt−b(u+v)−d]2dudv
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= be−ω2

2π
√

π

∫
R

∫
R

W�
f (u, ω) · W�

g (v, ω)e−[bt−b(u+v)−d]2dudv

holds. Thus, we deduce (3.32). The proof is completed. 	

The two following theorems will be omitted because their proofs are very similar to
the proof of Theorem 4.

Theorem 5 If f , g ∈ L2(R), then the following holds

A�
f 	
4
g(τ, ω) = be

− 1
4

(
ω+ 2e

b

)2
eieτ

4π
√

π

∫
R

∫
R

A�
f (p, ω) · A�

g (q, ω)

× e− b2
4 (τ−p−q)2e−ie(p+q)dpdq,

W�
f 	
4
g(t, ω) = be−ω2

2π
√

π

∫
R

∫
R

W�
f (u, ω) · W�

g (v, ω)e−b2(t−u−v)2dudv.

Theorem 6 For any pair of functions f , g ∈ L2(R), we have

A�
f 	
5
g(τ, ω) = be− 1

b2
[bω+cτ+2e]2 e−i[bω+cτ+2e] d(2−√

2)
b e

ie
√
2τ

2

4π
√

π

×
∫
R

∫
R

A�
f

(
p, ω + cτ

b

)
A�

g

(
q, ω + cτ

b

)
e− b2

4 (τ−p−q)2 e−ie(p+q)dpdq,

W�
f 	
5
g(t, ω) = be

− 1
b2

[
bω+ct+ (2−√

2)
2 e

]2

2π
√

π

∫
R

∫
R

W�
f

(
u, ω + 2ct + (2 − √

2)e

2b

)

× W�
g

(
v, ω + 2ct + (2 − √

2)e

2b

)
e−[bt−b(u+v)−2d+d

√
2]2dudv.

4 Applications

The LFM signals are frequently encountered in applications such as radar and sonar
[7].

In this section, the applications of QAF and QWD in the detection of single-
component and multi-component LFM signals will be investigated. Besides, simu-
lations are given to verify the proposed methods.

4.1 Single-Component LFM Signal

Let us consider the single-component LFM signal with the amplitude A0, initial fre-
quency ω0, and frequency rate m0 as follows

f (t) = A0e
i(ω0t+m0t2), −T

2
≤ t ≤ T

2
.
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The QAF of f (t) is computed as

A�
f (τ, ω) =

∫ T
2

− T
2

A0e
i
[
ω0(t+ τ

2 )+m0(t+ τ
2 )

2
]

× A∗
0e

−i
[
ω0(t− τ

2 )+m0(t− τ
2 )

2
]
e−i

(
bω+2cτ+2e

)
tdt

= |A0|2eiω0τ

∫ T
2

− T
2

ei(2m0τ−bω−2cτ−2e)tdt

= 2|A0|2eiω0τ
sin

{ T
2 (2m0τ − bω − 2cτ − 2e)

}
2m0τ − bω − 2cτ − 2e

= |A0|2T eiω0τ sinc

{
T

2
(2m0τ − bω − 2cτ − 2e)

}
. (4.34)

Similarly, the QWD of f (t) can be given by

W�
f (t, ω) =

∫ T
2

− T
2

A0e
i
[
ω0(t+ τ

2 )+m0(t+ τ
2 )

2
]
×

A∗
0e

−i
[
ω0(t− τ

2 )+m0(t− τ
2 )

2
]
e−i

(
bω+2ct+e

)
τdτ

= |A0|2T sinc

{
T

2
(ω0 + 2m0t − bω − 2ct − e)

}
, (4.35)

which is only dependent on parameters b, c, and e. Since the QAF and QWD of
a single-component LFM signal f (t) generates impulses at a straight line 2m0τ −
bω − 2cτ − 2e = 0 in the (τ, ω)-plane and ω0 + 2m0t − bω − 2ct − e = 0 in the
(t, ω)-plane, respectively, then the QAF and QWD can be used to detect a single-
component LFM signal by suitably choosing the parameters b, c, and e in (4.34)
and (4.35). For instance, the detection and estimation for single-component LFM
signal r(t) = ei(0.5t+0.6t2) (|t | ≤ 10) with SNR = -5dB by QAF and QWD for
� = (a,−0.5,−0.125, d, 1) are displayed in Fig. 2. Moreover, Fig. 3 shows the
QWD of LFM signal v(t) = ei(0.2t+0.3t2) (|t | ≤ 5) with SNR = 10dB at different
values of � = (1,−1,−1, 1, e), e = −3, e = 1, and e = 5.

4.2 Multi-component LFM signal

We now consider the general form of multi-component LFM signal, which is given
by

f (t) =
n∑

k=1

fk(t),
T

2
≤ t ≤ T

2
,

where fk(t) = Akei(ωk t+mkt2), k = {1, . . . n} (n ∈ N).
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with noise.

(c) The QAF of r(t). (d) The contour picture of QAF of r(t).

(e) The QWD of r(t). (f) The contour picture of QWD of r(t).

Fig. 2 The detection and parameters estimation for r(t) with SNR = -5dB by QAF and QWD

It is easily proven that

A�
f (τ, ω) =

n∑
k=1

A�
fk (τ, ω) +

n∑
k1 �=k2=1

A�
fk1 , fk2

(τ, ω).

Meanwhile, the QAF of cross-term A�
fk1 , fk2

(τ, ω) can be calculated as

A�
fk1 , fk2

(τ, ω) =
∫
R

fk1
(
t + τ

2

) [
fk2
(
t − τ

2

)]∗
e−i

(
bω+2cτ+2e

)
tdt

=
∫ T

2

− T
2

Ak1e
i
[
ωk1(t+ τ

2 )+mk1(t+ τ
2 )

2
]
A∗
k2e

−i
[
ωk2(t− τ

2 )+mk2(t− τ
2 )

2
]
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Fig. 3 The detection and parameters estimation for v(t) with SNR = 10dB at different values of � =
(1, −1,−1, 1, e)

× e−i
(
bω+2cτ+2e

)
tdt

= Ak1 A
∗
k2e

i

[
(mk1

−mk2
)

4 τ 2+ (ωk1
+ωk2

)

2 τ

]

×
∫ T

2

− T
2

ei
[
(mk1−mk2 )t2+(ωk1−ωk2+mk1 τ+mk2 τ−bω−2cτ−2e)t

]
dt .
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(c) The QAF of s(t). (d) The contour picture of QAF of s(t).

(e) The QWD of s(t). (f) The contour picture of QWD of s(t).

Fig. 4 The detection and parameters estimation for bi-component LFM signal s(t) with SNR = 10dB

Therefore, the QAF of f (t) = ∑n
k=1 fk(t) has the form

A�
f (τ, ω) =

n∑
k=1

|Ak |2T eiωkτ sinc

{
T

2
(2mkτ − bω − 2cτ − 2e)

}

+
n∑

k1 �=k2=1

Ak1 A
∗
k2e

i

[
(mk1

−mk2
)

4 τ 2+ (ωk1
+ωk2

)

2 τ

]

×
∫ T

2

− T
2

ei
[
(mk1−mk2 )t2+(ωk1−ωk2+mk1 τ+mk2 τ−bω−2cτ−2e)t

]
dt . (4.36)
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Despite the fact that the existence of cross-terms can not generate the impulse in
(τ, ω)-plane but they still have an influence on the detection performance. Therefore,
the relation (4.36) indicates that the QAF is an effective tool for detecting multi-
component LFM signals. When m1 = m2 = . . . = mn = m, we obtain

A�
f (τ, ω) =

[
n∑

k=1

|Ak |2eiωkτ

]
· T sinc

{
T

2
(2mτ − bω − 2cτ − 2e)

}

+
n∑

k1 �=k2=1

Ak1 A
∗
k2T e

i
(ωk1

+ωk2
)

2 τ

sinc

{
T

2

(
ωk1 − ωk2 + 2mτ − bω − 2cτ − 2e

)}
.

In the same way, the QWD of f (t) = ∑n
k=1 fk(t) has the form

W�
f (t, ω) =

n∑
k=1

|Ak |2T sinc

{
T

2
(ωk + 2mkt − bω − 2ct − e)

}

+
n∑

k1 �=k2=1

Ak1 A
∗
k2e

i
[
(ωk1−ωk2 )t+(mk1−mk2 )t2

]
×

∫ T
2

− T
2

ei
(mk1

−mk2
)

4 τ 2e
i
[
(mk1+mk2−2c)t+ ωk1

+ωk2
2 −bω−e

]
τ
dτ,

When m1 = m2 = . . . = mn = m, the QWD of multi-component LFM signal f (t)
can be given by

W�
f (t, ω) =

n∑
k=1

|Ak |2T sinc

{
T

2
(ωk + 2mt − bω − 2ct − e)

}

+
n∑

k1 �=k2=1

Ak1 A
∗
k2T e

i(ωk1−ωk2 )t sinc

{
T

2

(
2(m − c)t + ωk1 + ωk2

2
− bω − e

)}
,

For the purpose of illustration, considering a bi-component LFM signal

s(t) = ei(0.2t+0.3t2) + ei(0.4t+0.3t2), (|t | ≤ 5).

For the choices � = (a, 1, 1, d, 1) and SNR =10 dB, the graphical representation of
A�

s (τ, ω) and W�
s (t, ω) are plotted in Fig. 4.

5 Conclusion

In the present study, the modified ambiguity function and Wigner distribution associ-
ated with the quadratic-phase Fourier transform are defined. Some useful properties of
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them are studied. The convolutions associated with QFT as well as convolution theo-
rems for QAF and QWD are presented, which are so simple and similar to the FT case.
As themain application, the detection and parameter estimation of one-component and
multi-component LFM signals are investigated by using the QAF and QWD. Some
simulations are illustrated to verify the derived results.
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