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Abstract

The ambiguity function (AF) and Wigner distribution (WD) play an important role not
only in non-stationary signal processing but also in radar and sonar systems. In this
paper, we introduce modified ambiguity function and Wigner distribution associated
with quadratic-phase Fourier transform (QAF, QWD). Moreover, many various use-
ful properties of QAF and QWD are also proposed. Marginal properties and Moyal’s
formulas of these distributions have elegance and simplicity comparable to those of
the AF and WD. Besides, convolutions via quadratic-phase Fourier transform are also
introduced. Furthermore, convolution theorems for QAF and QWD are also derived,
which seem similar to those of the classical Fourier transform (FT). In addition, appli-
cations of QAF and QWD are established such as the detection of the parameters of
single-component and multi-component linear frequency-modulated (LFM) signals.

Keywords Ambiguity function - Wigner distribution - Linear canonical transform -
Convolution - Single-and multi-component LFM signal

Mathematics Subject Classification 81S30 - 42B10 - 44A35 - 42A38 - 65R10

1 Introduction

The AF and WD are effective tools in signal processing as well as in many other
application fields, especially in applications to the detection of LFM signals. As we
all know, the conventional AF and WD of a signal f € LZ(R) are defined as [7, 8]

AF (r.0) = fRf (r n %) I (z . %) e i@l ds, (1.1)

Communicated by Maurice De Gosson.

B Tien Minh Lai
minhlt@hau.edu.vn

1 Department of Mathematics, Hanoi Architectural University, Hanoi 100000, Vietnam

Birkhauser


http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-023-10058-8&domain=pdf
https://orcid.org/0000-0003-2656-8246

6 Page2of31 Journal of Fourier Analysis and Applications (2024) 30:6

WD (1, w) = / 7 (r + Z) r* (z - Z) e i dr. (12)
R 2 2
Conventional convolution is one of the most extensively used concepts in mathe-
matics with applications across diverse fields of filter designing, optics, and quantum
physics. Namely, it can be used in signal and image processing. We recall that if
f,g€ L2(R), then for

(f*xg)) = /Rf(r)g(t —1)dT. (1.3)

Moreover, the relationships between AF (WD) and the conventional convolution
can be given by [8]

Afie(t,0) = i/ Ar(u, ) - Ag (T — u, w)du, (1.4)
2 R

Wrag(t, ) = i/ Wyr(u, w) - Wy (t —u, w)du. (1.5)
2 R

Let parameters a, b, ¢, d, e € R (with b # 0) and A = (a, b, ¢, d, ). With minor
modifications to the definition of quadratic-phase Fourier transform (QFT) in [3], the
QFT of signal f € L*>(R) is defined by

Q?(C{)) = \/% Re—i((lw2+bw[+clz+d(l)+el)f(t)dt. (16)

As can be seen, the QFT is a generalization of FT and several other transforms.
Some of the special cases of the QFT are listed in Table 1. Furthermore, some useful
properties of QFT can be found in [3]. Having in mind that the QFT and convolutions
associated with QFT have wide applications in both theory and applications e.g., in
harmonic analysis and differential equations [3, 4] as well as in signal processing [2,
5, 11]. Since two extra parameters d, and e, then the applications of QFT are not only
similar to those of the linear canonical transform (LCT) but they are also more flexible
than the original LCT.

Recently, ambiguity function and Wigner distribution associated with LCT have
become novel signal detection tools, particularly the detection of LFM signals which
are frequently encountered in wireless communications and other fields [1, 8, 9, 11,
13, 15-18]. Therefore, extending and generalizing the ambiguity function, and Wigner
distribution associated with LCT would be meaningful and worthwhile.

This paper introduces definitions of QAF and QWD. They depend on only three
parameters b, ¢, and e. Moreover, they seem simpler than the QWD proposed in [11]
and have a wide range of potential applications. The marginal properties, Moyal’s
formulas, and convolution theorems for QAF and QWD are similar to those of AF
and WD. Besides, five new convolutions associated with QFT as well as their impact
on QAF and QWD are also studied. In addition, as the applications, the detection
of the parameters of single-component and multi-component LFM signals are also
investigated.
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Table 1 Some of special cases of the QFT

Parameter A = (a, b, c,d, e) Corresponding transform

A =(a,b,c0,0) Linear Canonical Transform (LCT)

A= (%, b, %, 0, 0) Fresnel Transform (FRST)

A= (%, csch, #, 0, 0) Fractional Fourier Transform (FRFT)

A= (% csch, C"zt 9 ¢c.d ) Offset Fractional Fourier Transform (OFRFT)
A =(0,1,0,0,0) Fourier Transform (FT)

A=(0,1,0,d,e) Offset Fourier Transform (OFT)

A =(0,-1,0,0,0) Inverse Fourier Transform (IFT)

The rest of this paper is organized as follows. Section 2 introduces the definition
of QAF and QWD. Some important properties including the shifting, conjugate-
symmetry, marginal, and Moyal’s formulas are also discussed in detail. Furthermore,
their relationships with other time-frequency transforms such as the Short-time Fourier
transform (STFT), the short-time quadratic-phase Fourier transform (STQFT), and the
QFT are also given. More importantly, the convolution theorems for QAF and QWD
are derived in Sect 3. In Sect. 4, the applications of the QAF and QWD for the detec-
tion and parameter estimation of LFM signals embedded in white Gaussian noise are
investigated. The work ends with a conclusion in Sect. 5.

2 The Modified Ambiguity Function and Wigner Distribution
Associated With QFT

2.1 Definition of QAF and QWD

Using (1.1), (1.2), and (1.3), we can express the AF and WD through the conventional
convolution as follows

Ap(t,20) = [f(T)e T % [f(—T)e 7", 2.7)
Wy (%w) = 2[f (e % [f(1)e "], (2.8)

where the superscript “*” denotes the complex conjugation. Therefore, replacing e ~/¢*

: T
by e~i (@@’ +borter’+do+er) iy (2.7) and changing variable y = 7 + 2o we then have

[f(_L,)e—i(aw2+bwr+cr2+dw+er)] " [f(__[)e—i(aw2+bwr+crz+dw+er)]*

—i 2 Y2 i 2 — —y 2 —
B / fyemiawrthortardotey) pr(y _ pyeilav’thoy)ter=y tdote=n]gy,
R

= / £ f* (y —1) efi(wa+2c't+26)(y7%)dy
R
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- /Rf (t + %) fr (t -~ %) e @GhotacTa0 gy 2.9

Similarly, replacing e~i®! by e~i(@@’+bwi+er’+doten) iy (2 8) and performing the
t T .
change of variable x = 3 + 5 give us
2[f(t)e—i(aa)2+ha)t+ct2+dw+et)] * [f(t)e—i(aa)2+bwt+ct2+dw+et)]*
— Zf f(x)e—i(aw2+wa+cx2+dw+ex)
R

x f*(l‘ _ x)ei[aw2+bw(t—x)+c(t—x)2+dw+e(t—x)]dx

= 2/ f(x) f* (t —x) e—i(hw+ct+e)(2x—t)dx
R

t )
= / f (% + %) r* (5 - %) e beratargy, (2.10)
R

Equations (2.10) and (2.9) allow us to have the following definition:

Definition 1 For a given set of parameters A = (a, b, ¢, d, ¢) (with b # 0), the QAF
and QWD of a signal f(¢) € L2(R) are defined as

A _ TN oo, TN —i(bot2ct42e)
ANz, 0) _/Rf(wr 2)f (r 2)e dt, @2.11)
A _ TN oo, T\ —i(bw+2ci+e)T
W1, o) —/Rf(t—i— 2)f (r 2)e dz. 2.12)
We infer directly that

A (2, 20) = [f (r)e @@ thorter tdoten)

*[f*(__L,)ei(aw2+bwr+crz+dw+er)]’ (213)
W;\ (L w) — 2[f(t)e—i(awz+bwt+ct2+dw+et)]
. 2’

*[f*(t)ei(aw2+ba)t+ct2+dw+et)]. (2.14)

As can be seen, (2.7) and (2.8) are special cases of (2.13) and (2.14), respectively.
In the first place, some of the special cases of the QAF and QWD are presented in
the following remark:

Remark 1 (a) When A = (0, 1,0, 0, 0), Q4 is the well-known FT. We would like to
notice that the QAF and QWD are simply the conventional AF and WD, respectively.

AR (T, 0) = Af(t,0), W, 0) = Wi(t, w).

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:6 Page50f31 6

(b) Let A = (%, csch, %, 0,0). The QAF and QWD become the ambiguity
function and Wigner distribution associated with the FRFT

A _ E * _ E —i(wcsch+1 coth)T
Af(f,w)_/ﬂ;f(urz)f (r-3)e dr,

A _ z LN P E —i(wcscO+t cotO)T
Wf(t,w)_/]Rf(t+2)f (r 2)e dr.

(¢) Let A = (a, b, ¢, 0, 0). In such a particular case, Q, is the LCT. Equations (2.11),
and (2.12) take the form

ANz, 0) = /R f e+ 3) (e =5) e Coreorar,

WAL, w) = A% Fi+3) o (r=3) e @ 20mar,

which are therefore ambiguity function and Wigner distribution associated with the
LCT [16].

Secondly, we will investigate the relationships between the QAF (QWD) with AF

(WD). Assume f.(t) = f (el 2, then the QAF and QWD of f,.(¢), respectively, can
be expressed by the AF and WD of f(¢) as follows

AIJ}C (‘L’, (,()) = Afc (t + %) fc* (l _ %) e—i(bw+20t+26)tdt
T . 732 T . 732 .
= 4 —)eiclt+5)” px (t _ _) —ic(1—3)? gi(bo+2eT 4201 4
,/Rf( + 2)6 f > e e
T T .
= PRI (t _ _) —i(bot20)t 4,
/Rf( + 2) f 2)¢
= Ay (t,bw +2e),

and
T
wp (t,w)=/Rfc (t+§)
_ TN ic(+5) o (, _ T\ —ic(t—=%) —i(bot2ct+e)T
_/Rf(t+2)e 2) f (t Z)e 2) e dr

S e

c

7 (t _ %) e—i(bo+2ei+erT 4o

Therefore, the relationships between the QAF and AF as well as the QWD and WD
are given by

A} (1.w) = A (t.bo +2e), W} (1, 0) = Wy (t,bo +¢).

Birkhauser
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Absolute value

Frequency

(a) The QAF of rect (t). (b) The QWD of rect (t).
2 2
Fig. 1 Magnitude of the continuous-time QAF and QWD of a rectangle function

At the end of this section, we use a rectangular function rect, (t) (with « > 0),
having a duration of 2« and centered at the origin as a test case

I, iflt] <a

recta(t) = {0 i1 > a

The closed-form expressions for QAF and QWD of rect, (), respectively, can be
derived as follows:

2 sin [(bw + 2ct + 2e) (a - %)]

A = <
Arect, (T @) bw + 2ct + 2e o Fl=e
2sin [(bw + 2ct + e) 2o — 2]t])]
A
f, = y 1 <.
Wreer, (1. @) bw+2ct+e <o

The magnitude of the continuous time QAF and QWD of the rectangular function
rect% (r) with A = (a, 1, 1, d, 1) are displayed in Fig. 1.

2.2 Properties of the QAF and QWD

Properties of the QAF and QWD will be obtained in this subsection. For this purpose,

i L sint
using the function sinc ¢ := 5 we recall the next lemma

Lemma1 (cf, e.g., Theorem 12, [12]) The formula
1 LA .
—[f&+0)+ f(t—0)] = lim —/ f(r)sinc [A(t — 7)]dT
2 r—oo T JR

Q)
I+t

holds true if belongs to L*(R).

9 Birkhauser
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From (2.11) and (2.12), the relationship between the QAF and QWD is established as
follows:

: 2
Af(r, 0)elPWonte@=0ldydr = =W, ). (2.15)
RJR b
Proof By applying Lemma 1, we obtain
/ / A?(‘C, v)ei[(b(vtfa)r)Jre(Zz7r)]dvd_c
R JR

_ / f (x + E) £ (x _ E) o~ i (bv2eT+20)x (il —wT)+e =D 4 v qud T
R3

2 2
_ E *( _ E) —i[bot+2ctx+(2x—2t+7)e]
_Azf(x+2>f o 2 ¢
)\' .
X <1im / e’b”(’x)dv> drdx
A—>00 —A

=5 L [ () (-3)

x e—i[bwr+20rx+(2x—2t+r)e] sinc [bA(f — x)]dxdt

27 T T .
= — t — * (t _ _) —l(ba)+26t+e)rd
b /Rf< + 2) f 5 )e T

2
= TW;\(Z‘, w).

Thus, the proof of (2.15) is completed. O
(1) Shifting Properties

(1) Time- shift Property: The QAF and QWD of f(t) = f(t — 1) can be
presented by

A 2t
Al (z, ) = /PR AR (2, 0) | W2, w) = W (z w0+ %) .

(ii) Frequency Shifting Property: Let f (1) = f(t)e™o! then

Ab(r, 0) = AR (1, @), WAL @) = WP (t, w— 7) .
(iii) Joint Time-Frequency Shifting Property: The QAF and QWD of f "t) =
f(t — 1)’ can be expressed as

A?/(T, (1)) — eiuotei(bw+ch+2€)l()A/f\ (T, (,()) ,

ugp 2cty
WA, 0) =W [t — 19,0 — — + == ).
f( ) f< 0, @ b+ b>

Proof We prove properties (i) and (ii), since the proof of property (iii) is straightfor-
ward.

Birkhauser
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(i) Due to the formulas (2.11) and (2.12), it is easy to see that

Aj;(f, W) = /Rf (t + %) []E (t _ %)]* o—i(bot2eT2e)t g,

= / f (t — 1+ %) f* (t — ity — %) o—i(bot2ctt2e) 4,
R

— o—ibw+2et+20)10 / f (t it + E) I (t - E) i (bo+2ct+2e)(1—10)
R 2 2
— e—z(bw+20r+2e)t0A1f\ ('L’, (1)) ;
and

I:f (t _ z):l* efi(bw+2ct+e)rd_[
2
) f* (t —ty — %) e—i(bw+20t+e)rd_[

T
2
t—1y+ %) fr (t — 1ty — %) e_i[b<w+2$)+zc(t_t0)+e]rdr

(ii) By simple computations, we have

o= [ Fee Y-

= / f ([ 4 %) eiuo(l—i—%)f* (t _ %) e—iuo(l—%)e—i(bw+2cr+25)tdt
R

— itor / f (t + %) 1 (t _ %) e—i(bo+2er+2e)t 4,
R

= el““tA/f\-t, ).

In addition

A _
)/Vf(l‘,a))_/R

_|_

L—

f-‘ (l‘ _ %)]* e—i(bw+20t+e)rdl_

|
S A
~

~ ~»
_
+
YT ST ST

+

eiuo(t-i-%)f* (l‘ _ E) e—iu0(1—%) g—ibwt2ct+e)T .
2

S— —— —r

r* (t _ %) o—i[b(o—"2)+2ct+e]r 4,

).

>
——~
>
S
|
=
SIS
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Symplectic covariance is the fundamental property of the WD and AF [6, 14]. We
will consider some special cases of these properties for QAF and QWD in what follows

(2) Conjugation properties
(i) Conjugation-Covarriance Property:
* *
[ o] = A r -0, W o] =W o,
where A| = (a, b, c,d, —e).

(i) Symmetry-Conjugation Property: The QAF and QWD of f (t) = f(—t) have the
forms

A?(r, ) = A?Z(t, ), W]/;\(t, w) = W?z (—t, w),
where Ay = (a, —b, —c,d, —e), A3 = (a, b, —c, d, e). Moreover
AT, 0) = AP (=1, 0), Wh(t,0) = W (1, ).

Proof We prove (i). From (2.11), we derive

[A?(r, a))]* _ /Rf* (t n E) f (t _ %) oi (bo+2ct+2e)t 4,

2
:/f t_|___r f* t_—_‘r e—i[b(—w)+20(—r)+2(—€)]ldt
R 2 2
= A} (—7, —w),

where A; = (a, b, c,d, —e).
Furthermore, based on (2.12), we can write

i) = /R f(1+3) 7 (1= 5)etorerorar,

Let —7 = x, the desired relation can be achieved as follows

[W}‘ (t, a))]* = ,/];{f (, + %‘) s (, _ %) e—ilbot2ettor g

=W} (1, 0).

Moreover, QAF and QWD of f (t) can be presented as

Aj}(r, ) = /Rf <_t + %) [f (—t _ %)]* o—ilbot2c2e)t g,

Birkhauser
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_ / ¥ (—t n %) = (_t _ %) e il(D 2T +2(-Ol-1) 4
R
= APz, o),

and

W}é‘(r, W) = /Rf (—t - Z) f (—t + E)]* o—i(bot2cr+oT g

2 2
_ TN k(L T —ilbo+2(—c) (=) +elt
—/Rf(t 2)f(t+2>e dr
=W (—1, ),

where A> = (a, —b, —c,d, —e), A3 = (a, b, —c, d, e). Hence, (ii) is proved. The
QAF and QWD of f*(¢) can be obtained in a similar way. The proof is completed. O

Furthermore, the marginal properties of QAF and QWD are elegance and similar to
those of the AF and WD, which will be obtained in properties (3) and (4) as follows

(3) Time and time delay marginal properties

For any f, g € L*(R), we have

A _ 2 T " T
/RA]»(T, wdo == f (5) 7 (-5) , (2.16)
/ WA (1, 0)dw = o, 2.17)
e b

Proof We prove (2.16). Invoking (2.11) and Lemma 1, we can compute the left-hand
side of (2.16) as

/ .A?('C, w)dw = / / f ([ + E) f* <[ _ z) e —i(bo+2cT+2e)t 4,4,
R R JR 2 2

s
[+2)r (=2 (m [ i)

2 b T T i
== = =) f* (t — —) —iQetH20 gine (bAr)dr
b oo 7 Rf(+2>f 2)°¢ sinc (bA1)
b \2 2/
We ignore the proof of (2.17) because it is very similar to the proof of (2.16). O

(4) QFT marginal properties

The time and frequency marginal properties of the QAF and QWD can be presented
by

/RA?(r, w)dt =27Q’ (%) [Q? (%)]* (2.18)

Birkhauser
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2
/RWfA(t,w)dtzzn)Q?(w)‘ . (2.19)

where f(1) = f(—1).

Proof 1t is straightforward to get

/ -A?(‘L', w)dr = / / f t+ E f* (l‘ _ %) e—i(bw+2c'7:-i-2e)tdtd_r7
/ Wf (t, w)dt = / / t"r‘ ( 2) e i(bot2ci+e)T o qp

Letx =1t + =t — —, we then have
2’ 2’

/RA?(L w)dr = /R/%f(x) £* (y) e bt 2c(x=y)+2e] 130 # dxdy
_ (/ f(x)ei[a(g)2+b(o;)x+cx2+d(g)+ex}dx>
(/ el e () et y)]dy)
=270} (3 )[QA( )]
where f(f) = f(—t). In addition
/RW}‘(t,w)dtszfRf(x) £ (y) e-lboteG el g dy
— < /R ()o@t Hhoxter’ +dartex) dx) . < /R F¥(y)el @t +boytey rdateny y>
20 [}@)] =2 || .

Thus, we obtain (2.18) and (2.19). The proof is completed. O

Birkhauser
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(5) Moyal formula

Assume that f, g € L*>(R), the Moyal formula of the QAF and QWD can be repre-
sented as

//A?(r, w)[ A (T, w)]*drdw:%ruf,gﬂz, (2.20)
RJR

//W}(r,w)[wg{\(t,w)]*dtdwz2—”|<f,g>|2, (2.21)
R JR b

where (.,.) denotes the usual inner product in L?(R) given by (f,g)

= [g f(Dg*(t)dr.

Proof We will just prove (2.20). For (2.21), we proceed in a similar way. By virtue of
Lemma 1, we derive that

/ / A (T, 0)[Af (1, 0)]*drde
RJR

= / f (l‘ + E) f* <l‘ _ E) e—i(bw+2cr+2e)z
R4 2 2

= / f (I + %) f* (t — %) g* (x + %) g (x _ %) e—i(261+2€)tei(2cr+2e)x
R3

X < hm glbox— ”dw) drdxdr

A— 00

f/ x+ (
{kll)ngo = f ( %) r* ( ))e*’@““f)’ [bA(x — t)]dt}dxdr
)s(

// x+ g(x— )( §>f*<x—§)dxdr

T T
By making the change of variables y = x + > 7=Xx— > we obtain

x — ) i(2ct42e)x

2
/ / Az, 0)[AL (1, )" drdw = 7” / / g* (g @ f () f*(z)dydz
RJR RJR

- 7”[ / FO)g* <y>dy] - [ / Qg (z)dz]
R R

2 >
3 (f. 8N,
which is the desired result. O

Birkhauser
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(6) Relationship with the STFT
The STFT of a signal f(¢) is defined as [18]

Sr(t, w) :/ f(0)g*(r — e “dx,
R

where g(¢) is the window function.
The relationships between the QAF (QWD) and the STFT can be presented by

—2ct —2 - wr
Af ( wT) = T8 (1, 0),

A<t w — 2ct — 2e

(5 o ) =2'5S(t, w).

Proof By changing variable x = ¢ + %, we then have

A?(T, w) = / f(x) f* (x — 1) e—i(bw+201+2e)(x—%)dx’
R
W, ) =2 / f ) f* @t —x)e  Hbor2eta=n gy (2.22)
’ R

w—2ct — 2e

Therefore, by substituting @ with 3

and g(t) = f (1), we get

A? (7:, #) = ei%/ f(x) f*(x—1)e i “%dx = einrSf(t, ).
R

Likewise, if g(¢) = f(t) = f(—t), we then have
t —2ct —2 ‘o .
W}\ <§, %) —2¢!% /]Rf(x) @ —x)e " dx

=2¢!% / @) f*(x— e @ dx =265 541, w),
R

which yields the desired result. O
(7) Relationship with the STQFT
The STQFT of a signal f(¢) with the window function g(¢) is defined as

5pw) = / F(D)g*(x — i@t bortertdoten g,
R
The relationships between the QAF (QWD) and STQFT can be given by
.A? (1, w) = ei(aw2+%bwr+d(u)8}\ (r. ).

Birkhauser
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A o _ i(aw2+lbwt+dw) A
Wi (2 2)_2e 2 SH1. w).

Proof With the aid of (2.22), we can write
A/f\ (T, (1)) — f f(t)f* (t _ T) e—i(bw+2€1’+2€)lei(bw+2€‘[+2€)%dt
R

— ei(aw2+%bwr+dw) / f (t) (f* (f _ T) ei[c(t—r)z—e(t—r)]>
R

a2 2
x e i(aw”+bwt+ct +dw+et)dt

— ei(awz-‘r%ba)r-ﬁ—dw) / f (t) g* (l‘ _ ‘L’) e—i(awz+bwt+ct2+dw+et)dt

: 2,1
— ez(acu +§bwt+da))8]1c\(.c’ a))’

where the window function g(¢) = f (t)e_i(Ctz_E’).

Similarly, if the window function is chosen as g (1) = f(—t)e™ (er?=e1) e then have

WfA (L’ 8) — 2[ f (T) f* (t _ 'L') e—i(bw+2€l+2€)‘fe—i(bw+2cl+2€)%d,[
22 ®
— 2pi(aw? +3bor+dw) / £ () (f* t—1) ei[c(tfz)2+e(t7r)])
R

Y] 2
x e i(aw”+bwt+ct +dw+et)d1_

_ 2ei(aw2+%bwt+dw)/ F@) g (t—1) o1 (@0’ thot+er’ +doter) §o
R

: 2,1
— Zet(aw +7bwt+a'w)SJIC\ (Z, (1)).

This indicates that WA (5.%)=2¢ (ae’+3 b“”+dw)SA (t, w). o

(8) Relationship with the QFT
For any f, g € L*(R), we have

e i(drtel) 2@+t 2e 2e
A (r o) = A (2etor ce 2 223
0)(m =" f( b b7 b> 223
2 2(a + d+
Wy (t.0) = S W} (— (“b 9 ; S z), (2.24)
B b b

Proof Let f,(t) = (et ter ), we may observe that

—i aw2+bwt+dw)f (I)dt

Q) = = — [
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Table2 Some useful properties of QAF

*
Conjugation-Covarriance [A/f\ (z, w)} = A?] (=1, —w), Ay =(a,b,c,d,—e)
Property
Symmetry-Conjugation AL (1, w) = A?z(r, ), Ay = (a,—b,—c,d, —e), f(t) = f(-1)
Property !

A?* (1, 0) = A?S (—t,w), A3 =(a,b,—c,d,e).

Time shifting property A}\-,(r, ) = ei(hw"'z”"'ze)toA? (t,w), ft) = f(t —19)
Frequency shifting AL (1, 0) = ei“OTA[I,} (1, w), f(t) — f(t)eiuot
property Y ’
Joint Time-Frequency A?,(r, ) = eiuofei(bw"'z‘fr"'ze)'OA[f\- (T, ), f(t) = f(t — tp)e'to!
Shifting Property ’
Time and time delay Iz .A/f\-(r, w)dw = —” f (%) (%)
marginal property '
QFT marginal property f]R 'Af (7, w)dt =21 QA |: % i| (t) = f(-1)
Moyal formula f]R I]R AA(‘[ w)[AA(f w)*drdw = 27”
Relationship with the A? (t, %) —el 9 Sr(r, w)
STFT
Relationship with the .A?(r, w) = l(m‘) 2 bwt+dw)SA (1, w)
STQFT
Relationship with the AL (7, w) =
QFT eved
—tldrel A 2(a+c)T 2 2 _
Ay (*T*f*w’f*f)~ I=
2a+c)t  2e
b b

The equation above, Lemma 1, and equation (2.11) allow us to recognize that

Ag? (T, w) =/ o4 (t + )[Qf ( ;)]*e—i(ba)+2cr+2e)tdt
= L[ et sy et e - 5)va-5)]
2

x fe (u)f:(U)e—i(bw+20r+26)tdudvdt

= ZL/ fe(u)fe*(U)eii[%(u+v)+d]tef"[2(”+")T+23+b“’+b(”7”)]tdudvdt
T JR3

- 2L/ f fotwy frye TR
7T JRJR

A
x < lim / e—i[2(a+c)r+26+bw+b(u—v)]td[) dudv
A

A—oo J_
_ l/ e—i[%u+d]rfe(u)
R

X { lim b—A / — 1t 2 fX(v)sinc{A[2(a + )T + 2e + bo + b(u — v)]}dv} du
R
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Table 3 Some useful properties of QWD

Conjugation-covarriance
property

Symmetry-conjugation
property

Time shifting property
Frequency shifting
property

Joint time-frequency
shifting property

Time and time delay
marginal property

QFT marginal property
Moyal formula

Relationship with the
STFT

Relationship with the
STQFT

Relationship with the
QFT

[Whe o] =wh .o

WAL @) =W (—1.0), A3 = @b, —c.d.e). f) = f(=1)
WAL (1, 0) = W2 (t,0), Ay = (a,—b, —c,d, —e).

WAG0) = Wi (1 =100+ 22). f() = /¢ =10)

W @) =Wh (1o = ). f0) = foeo"

WAt w) = Wh (1= 10,0 = 5 + 250) () = £ = tg)ei0"

fa Wi 0)do = F( f ()]

Jr A} (. 0)dt =21 Q3 (%) [QA (%)]
Jo e W )W 1, o))" dido = ZE|(f g)

W? (% 7“’7226;729) = 2eiw7t8f(t, )

Wf,»\ (%’ %) Zet(aw +5 bwt+dw)SA(t o)

QA(t L) = %W;‘ (—L“;")t — dfe —w,t)

/ﬁ( )[ (Z(a—l—c)r +%+w+u>i| e_ibr[(a+()r+ +3+45 +“]du.

b

(a+co)t e

Then, by talkingu =x - —— — — — ;) we derive

b b

A _ a4+t e w
R R O e 1 &

e

Furthermore, considering [ = —

rewritten as

) Birkhduser
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_ e—i(t:+el> / ; (x . é) [f (x . é)}*e—i[b(r—z,f)+2cz+2@]xdx
R

e—i(drtel) 2e
=A==
b f< ! b)

_ ei(c:+el> A? <_2(a +o)Tr  2e o T 2e>7

which yields (2.23).
Now, for proving (2.24), making use of the definition of the QWD, we start by inter-
preting the left-hand side of it:

WIQ\;\_(t,w) / 0% <;+ )[Qf( Z):I*efi(bw+2ct+e)rdr

_ i/ e—l[a(t+§) +b(r+7)u+d(z+7)]ei[a(z—%)2+b(t—§)v+d(t—%)]
2 R3

X fe(u)fe*(v)e—i(bw+2ct+e)rdudvd_[

. i . o b
- L/ Fow) fr ()i rderbor ey, 4 g
i b
//fe(u)f (v)elbt(v u)(hm / e z[2t(a+c)+d+e+bw+2(u+v)]rd_[) dudv
2

_ = —ibtu
= b/;@e Se(u)x

i g5 f el oo ]fo]
lim —/e f. (v)sinc A 2t(a+c)—|—d+e+bw+5(u+v) dv ¢ du
R

_2 _4(a+c)t_2(d+e)_ _ *
= Zﬁléfe(u) |:fe< b b 2w Lt):| X

—ibr[ 4439 L 2050 450420
€

du.

2(a + o)t B d+e)

X
Again, talkingu = — —w+ 3 the equation above can be recast

b b
as
2a@+ot (d+e) X
Whs(t.0) = /f( for <2 —w+§>
X | fe _Hator @+e) —w-—2 *e_ibtxdx.
b b 2
2 t d
Next, considering k = — @+o) —( te) — w, it follows that

b b

Wg?(l‘,a)) = %Afe <k+ %) [fe <k— %):I*e—ibtxdx

— I%/Rf (k n %) [f (k _ %)]*efi(chJre)xefibtxdx

) Birkhduser
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SIS I

2
= Wi kD)
2 2a+c)t  (d+e)
=Wh (- - —w,t],
bt ( b b ¢ >
which is the desired result. |

3 Convolution Theorems for the QAF and QWD

Convolutions are used in the modeling of a great diversity of applied problems such
as signal and image processing, optics as well as filter designing [2, 5]. In this section,
two convolutions associated with the QFT and their convolution theorems will be
introduced. Moreover, the relationships between proposed convolutions and QAF as
well as QWD will be given, which are different from those in [11, 13], in the sense that
they are simpler, more elegant, and similar to (1.5) and (1.4). Furthermore, convolution
theorems for the QAF and QWD of three convolutions proposed in [3] will be also
presented in the rest of this section.

Definition 2 For any functions f, g € L*>(R), we define two new convolution opera-
tors fxg (i € {1, 2}) via the QFT as follows:
]

. 1 d fi|:cr27ct2+c<zfrf%)2—%‘l:|
(ng)(f)—E/Rf(f)g (t—r—z)e dr,

_ L _ 2ict(t—71) 2
(f;g)(t)— \/E/Rf(r)g(t T)e dr. (3.25)

After simple computation, we recognize that the proposed convolutions have the fol-
lowing properties. Namely, for any f, g, h € Lz(R) andi € {1, 2}, we have

(i) Commutativity: fxg = gxf.
1 l
(ii) Associativity: (fxg)xh = fx(gxh).
] 14 1 ]
(iii) Distributivity: fx(g +h) = fxg + f*h.
L 1 1

Theorem 2 For any pair of square integrable functions f, g € L*(R), the following
identities are satisfied

Qb (@) = e Q% () - QM (), (3.26)
N o~ R bot2e) R .
Ang(r, w) = T/RAJC()/, w) - Ay (r —y,w)dy, (3.27)
WR (1, 0) = %/ WEu, ) - Wi (r —u— ;—Z, w) du. (3.28)
1 R
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Proof First, we prove factorization identity (3.26). Due to the formula (1.6), we have

e QR () - Q2 (w)

1 .- o 2 2 2
— z_eata) / / f(u)g(v)e i(aw”+bwu-+cu +dw+eu)e i(aw”+bwv+cv +dw+ev)dudv
T RJR

:%//f(u)g(v)e"[“‘”2”‘“(”*”*‘;)*"“2“’”2*‘1“’“(“”%)ﬂdudv.
T JrJR

. d . .
Setting s = u +v + 3 it is easy to see that

iw* AA A —i(aw?+b 52 :
edio Qf (w) . Qg (a)) — i(aw*+bws+cs“+dw+es)

7w L

X %A{f(u)g(s—u—%)e

1
N 21

2
—i I:cuz—cs2+c(s—u— %) - %]
du ; ds

—i(aw*+bws+cs +dw+es) d
fR e (f*g)(s)ds.
Now, owing to (2.11) and (3.25), we obtain

A?Tg(f7 ) = A(ng) (n + %) . [(f,l,g) (77 _ %)] e—i(bw+2n+2e)y]dn

_ 1 T d —i cxzfc(r]+%)2+c(n+§7)(7%)27%
_‘é{m/Rf(x)gQ?—i-z—b—x)e [ ]dx]

x efi (bw+2cr+2e) ndn .

Setting x = p + g andy =p — %, the above equation becomes

1 .
A _ —i\bw+2ct+2e)n
.Ang(‘C,a)) =on /Re ( )

y t d v\ et 5) =t 1) (5 -p-5 )’
X/Rf("+§)g(”+5‘5""§>e [ by

. 2 )2 .
. IRA T i B 14 z[c(p—% —c(n-%) +c<r]7§7p+
X/Rf (r=3)e ('7 27 b p+2)e

(S

_d 2]
b> dydn.
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d
By talking n = p 4+ g + 7 such that dn = dgq. It is easy to verify that the above

expression has the following form

—ﬁ(bw+26)
_¢ b Z * _ Z —i(bw+20y+2€)p
f*g(t W)= ———— /R{fRf(erz)f (p 2)6 dp
« {/g(q_i_f_)/)g* <q_T_V)e—i[bw+2c(r—y)+2e]qdq}dy
R 2 2

4 (bw+2e)
:—/.Af(u w) - .AA(T y,w)dy,

which is (3.27).
Next, we turn to the proof of (3.28). It follows from (2.11) that

f*g(t ) = /(f*g) r+ ) |:(f g)( ):|*e’i(b‘“+26’+e)"dn

NS n_d )t ]
—/R{m[;{fﬁ)g(l—l—z b r)e dr
L A S N L G e G
X{m/R“Wg (-2-4-0): by

~ e—i (hw+2(t+e) ndn )

Performing the change of variables t = u + g andy =u — g we achieve

1 —i( ) p n d 14
A _ o ilbo+2ct+e)n r A
Wng(t,w)_]zmuzn/e v/R‘f<u+2>g<t+2 b u 2)

e—l[c(u+p) —c(t+3) +e(r+ 7—u—§—%)2}

[ (=3)e (-3-5-v+5)

ei[‘(’“*) —c(t=3) +‘( Jfﬁfii)z]dudn-

By talking n = p + ¢ such that dn = dg, the above equation turns into

A _ L / p * _p —i(bw+2cu+€)p
Wit = o [ (e g) (= 5)e a
o g g « o g _ g 7i[ba)+2c(t—u—%)+e]q
x{/Rg<t u b+2>g (t u b 2)6 dg ¢ du
L/WA( )W (1 — ~40)a
< )V u, i U= |fdu,

which proves (3.28). The proof is concluded. O
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The following theorem can be derived in the same way as Theorem 2, and so we omit
its proof.

Theorem 3 Assume that f, g € L*(R), two following identities hold
.2
Qf (@) = "7 Q@) - Q¢ (),
b A A
f*g(r w) = e Ar(y.0) - Ay (T —y, 0) dy, (3.29)

and

1
A A A
ngg(t, W) = o / Wf (u, w) - Wg (t — u, w)du. (3.30)

As can be seen, the identities (1.5) and (1.4) can be deduced from the identities (3.29)
and (3.30) when A = (0, 1, 0, 0, 0). We now recall some of the convolutions which
can be found in [3].

Definition3 If f,g € L?(R) then the new elements f*g, (i € {3,4,5}) below
l

introduced define convolutions followed by their factorization identities:

(fgg)(t) = Zi / f(u)g(v)e*i(C”2+Cv2*0t2+‘3”+ev*et)*Wdudv’
T JR2

O (@) = e 2" QY @) - O} (@),

hv)

(f*g)(t) — / f(u)g(v)e l(cu +LU —ct +eu+ev et)— (bt—bu=bv)~ hu dl/th,

Qfye(@) = e —yeraietido Qb () L QM (w),

. 2 —bu—bv—2 2)2
—l(ct¢2+cv2—c’7+eu+ev—%)—(ht bu bvz d+dv/2)

(f*g)(t) = fu)g()dudv,

f
O (@) =72 Q? (@) - Q1 ().

The next theorems introduce the relationships between the three convolutions above
and QAF (QWD).

Theorem 4 Given a pair of square integrable functions f, g € L*(R), the following
results hold

_%(‘”"’2178)2 _i<w+2bi>d iet
Ay (1, 0) = be . ff AD (p.w) - AL (g, 0) x

47
e—%(r—p—qﬂ —ie(p+4)q pdq, (3.31)
b
,*g(z w) = ;’f /WA(M ) - W (v, e PP =dP qudy, - (3.32)
T
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Proof In order to prove (3.31), we proceed as

Aj‘\'gg(rvw) /(f*g) f+ )|:(f*g)< )] e—i(bw+2m’+2£)ldt

= f F@Dg(m) f*(y)g* (e~ Potaertaen

2
b(1+L )b —bry—
% e—i[cr12+cr22—c(t+%)2+er|+er2—e(t+%)]——[ (+5) bZT] -d]

A2 2 e TN, (T _[b(’_%)_byl_[’m_d]z
% el[LV] +eyy —c(t=5) +eyi+eya—e(t 2):I 7 drydradyrdysdr.

By changing variables 11 = u + g, Vi =u— g, T =v+ %1, Y = v — %, we
realize

A= [ (5 (o= D)s 4 D) ()

% efi (2cup+2cvg+ep+eq—ert)

y efi(bw+28)tef[btfb(u+v)fd]zef%(rfpfq)zdudvdpdth

2
L [ - D Do ()

x et (2cup+2cvg+ep+eq—ert)

e G T—p—q) (/ e[btb(u+v)dlzei(bw+2e)tdt> dudvd pdg.
R

Having now in mind the following well-known identity (see [10, 12]),

1 +ixt —kt? | R
—— | ee™dt = —e #" (k> 0, x €R), (3.33)
V2 /JR 2k
it follows that

2
/e—[ht—b(u+v)—d]ze—i(ha)+2e)tdt _ %ﬁe—i(bw%)(wv%) z(w+ )
R

holds true. Then

_%((uﬁ—%)z
o e e el ) 6

. d
x efi(2('up+2('vq+ep+eqfer)e_l (bo+2e) <N+U+ 17)

A%g(r, w) =

e T=p=a)? dudvdpdg

—Hot+2) —i(o+2)d ;
_ be 4( bi;\/}( b) eiet /15{2 ];{f <u+ g) * (u _ B)efi[bw+2cp+2(e]udu
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X(/Rg(wg)g*(v_g)

e—i[bw+2aq+2e]vdv) e 5 == oier+) g g

1 2e\2 _fn2e
be_Z(‘”+F) e_’(")+7)d iet
= ey // A} (p, o) - A} (g, )

e %(ffpfq)zefie(pﬂl)dpdq.

Therefore, we obtain (3.31). To verify (3.32), we proceed as

Wf*g(t w) = /(f*g) t+ )[(f g)( )] e—ibort2tong,

f Fang@) f*(n)g* (yp)e bot2eteamy

2
e—i [ct12+cr22 —C([+%)2+gfl +ers —e(H-%)]— w »

= a2

2

lortrer—e(-d sentene(-p]- dridrydyidyady.

Then, considering 71 = u + g, yi=u— g, D =v+ %, Hh =V — %, the above

relation can be expressed as

Wiyt = o [ (e D) (- D) a(or 1Yo (o)

i Qeup+2cvq-tepeq) g—ibon bt —butv)~dP o~ (1-p=07 g dud pdgdn

~ [+ (- D)o (o D) e (- D)

472
e—iQeup+2evgtepteq) o ef[btfb(u+v)fd]2 (/ ef%(nfpfq)zefibwndn) dudvdpdg.
R

Thanks to formula

/ e—%(n—p—q)ze—ibwndn _ Q’ﬁe—ibw(p+q)e—w2’
R b

the relation

2
be™® p p q q
WA (. w) = ( 7) *< _7) < 7) *< _7>
feto)=o o LSt g) u=g)elvt3)s (v=3
x e—i(2€up+2wq+ep+eq)e—[ht—h(u+v>—d12e—ibw(p+q)dudvdp
2
be’® P\ e« 1’) —i(bo+2cu+e)p
T oadm 5 -5 d
Zﬂﬁ ]Rz(./Rf<u+2)f (M 5 e P
R 2 2
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A [bt—b(u+v)—d?
271\/,/‘/ Wf (u, w) - W (v, w)e™ dudv

holds. Thus, we deduce (3.32). The proof is completed. O

The two following theorems will be omitted because their proofs are very similar to
the proof of Theorem 4.

Theorem 5 If f, g € L*(R), then the following holds

w+
be ”

Af*g(r,w) 47_[\/— // Af (va)Aé\ (q’a))

% e—T(T—P—q) —ie(P-Hl)dpdq

W, (1, 0) = / W, ) - Wi (v, w)e P10 gy dy,
4

be™®
N
Theorem 6 For any pair of functions f, g € L*(R), we have

1 2 . — i
be_ﬁ[hw+CI+2e] e—l[bw+cr+26]7‘[(2 bﬁ) ei‘e‘{ir

(t,0) =

f*g 47 f
Q- f)
A be ¥ [”‘”“” W L2+ 2= Ve
Pt ) = Fleotr =%
X WA (v, w4 Z”sz_\@e) e [br—bu+v)~2d+dV2P g, g,

4 Applications

The LFM signals are frequently encountered in applications such as radar and sonar
[7].

In this section, the applications of QAF and QWD in the detection of single-
component and multi-component LFM signals will be investigated. Besides, simu-
lations are given to verify the proposed methods.

4.1 Single-Component LFM Signal

Let us consider the single-component LEM signal with the amplitude Ay, initial fre-
quency wy, and frequency rate mg as follows

f(t) — Aoei(wol+m012) _Z
’ 2

T
<t < —.
-2

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:6 Page250f31 6

The QAF of f(¢) is computed as

.,4?(,’:7 w) = /g Aoei[wo(t+%)+mo(t+%)2]

N

. z 2] .
XAée z[wo(t 3)+mo(1=3%) ]e—z(bw+2cr+2@)tdt

T

. 7.
— |A0|2e1wor/ et(2m0r—bw—2cr—2e)tdt
_T

2
sin {% 2mot — bw — 2ct — 2e)}

2mot — bw — 2¢ct — 2e

— 2|A0|Zeia}0‘f
: T
= |Ao|*Te'™7 sinc {5 2mot — bw — 2ct — 26)} . (4.34)

Similarly, the QWD of f(¢) can be given by

T
2 i z 72
W‘If\(t,a)) = /2 Aoel[wo(t+7)+m0(t+7) ]x

T
2

Azﬁ)e_i [wo (r=5)+mo(1— %)2] e (bw+20t+e)r dr

T
= |Ao|?T sinc {E (wo + 2mot — bw — 2ct — e)} , (4.35)

which is only dependent on parameters b, ¢, and e. Since the QAF and QWD of
a single-component LFM signal f(¢) generates impulses at a straight line 2mot —
bw — 2ct — 2e¢ = 0 in the (7, w)-plane and wy + 2mot — bw — 2ct — e = 0 in the
(t, w)-plane, respectively, then the QAF and QWD can be used to detect a single-
component LFM signal by suitably choosing the parameters b, ¢, and e in (4.34)
and (4.35). For instance, the detection and estimation for single-component LFM
signal 7(1) = e ©3+06) (|1 < 10) with SNR = -5dB by QAF and QWD for
A = (a,—0.5,—-0.125,d, 1) are displayed in Fig. 2. Moreover, Fig. 3 shows the
QWD of LEM signal v(r) = e!©2+03™) (|| < 5) with SNR = 10dB at different
valuesof A = (1,—1,—1,1,¢e),e = —3,e=1,and e = 5.

4.2 Multi-component LFM signal

We now consider the general form of multi-component LFM signal, which is given
by

o

fO =) fild),

k=1

=r=

where fi (1) = Agel @Mt g — (1. .} (n € N).
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Ampltude.

(a) The real and imaginary parts of

r(t).

(c) The QAF of r(t).

Absoluts value

(e) The QWD of r(t).

R ) 2 4« & 8w

o
Time ()

(b) The real and imaginary parts of r(t)
with noise.

o
Time 1

(d) The contour picture of QAF of r(t).

2 o 2 4 & 8
Time ()

(f) The contour picture of QWD of r(t).

Fig.2 The detection and parameters estimation for r(#) with SNR =-5dB by QAF and QWD

It is easily proven that

Afrw) =) Af@ o)+ Y A}, (o).

k=1

k1#ky=1

Meanwhile, the QAF of cross-term Aj}kl i (7, w) can be calculated as

A?kl,sz (t,w) = ‘[R fkl ([ + %) [sz (t _ %)]* eii(bw+2cr+2e)tdt

o~

Ap,e

-/

N

9 Birkhauser
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; # g
i- £
¢ /w
(a) The QWD of v(t) with e = —3. (b) The contour picture of QWD of v(t)
with e = —3.
i
5.
i :
s s
Froquency 5«5 -4 -3 2 1 “mﬂ. m 1 3 4 5
(c) The QWD of v(t) with e = 1. (d) The contour picture of QWD of v(t)
with e = 1.
/\VE
LI ® Froqueney T s a9 Tme ot
(e) The QWD of v(t) with e = 5. (f) The contour picture of QWD of v(t)

with e = 5.

Fig. 3 The detection and parameters estimation for v(z) with SNR = 10dB at different values of A =

(1, -1,-1,1¢

% e—i (ba)+2c1:+2e)tdt

= Ay Akze

T
2 .
% / el [(mk1 —Mg, )t2+(a)kl — Wiy +Mp THME, r—bw—Zcr—Ze)t] dr.
T
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—— e part

imaginary part

Ampitude

Ampitude

o
Time ()

T\mne(l)
(b) The real and imaginary parts of s(t)

(a) The real and imaginary parts of
with noise.

s(t).

Absolute value

Time 57, 2 , = = 0
L 9 Frequency Time ()

(c) The QAF of s(t). (d) The contour picture of QAF of s(t).

Absolute valua
Frequency

El 0 1 2 3 4 s
Tme ()

[
Frequency

(e) The QWD of s(t). (f) The contour picture of QWD of s(t).

Fig.4 The detection and parameters estimation for bi-component LFM signal s(¢) with SNR = 10dB

Therefore, the QAF of f(¢) = Y ;_, fi() has the form

n
: T
.A?('L’, ) = Z |Ag|>Te! k" sinc {E 2myt — bw — 2cT — Ze)}
k=1

[ ey e,

n
+ ) AuAje
k1#ka=1

T
% /2 ei[(mkl—mkz)t2+(a)k1—wkz-‘rmklr+mk2r—bw—20r—26)t]dt' (4.36)

N
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Despite the fact that the existence of cross-terms can not generate the impulse in
(r, w)-plane but they still have an influence on the detection performance. Therefore,
the relation (4.36) indicates that the QAF is an effective tool for detecting multi-
component LFM signals. When m| = my = ... = m, = m, we obtain

n
. T
A (1, 0) = [Z |Ak|26“"”:| - T sinc {3 (2mt — bow — 2cT — 2e)}
k=1

n N ; (wkl +mk2)
+ ) ARALTe T T
k1#ky=1

T

. T
sinc {5 (wr, — Wiy +2mT — b — 2cT — 2e)} .

In the same way, the QWD of f(r) = > ;_, fx(¢) has the form

n
T
ch\(t, w) = Z |Ak|2T sinc {— (wg 4+ 2mypt — bw — 2ct — e)}
2
k=1

n
+ Z Ak1 Az ei[(wkl _wkz)t""(mkl _mkz)tz] X
2
k1#ko=1

T _ Wy +oF,
/2 ; ok 4'"k2)TZei[(mkl+mk2—20)t+1f2—bw—e]r

e dr,

]

When m; = my = ... = m, = m, the QWD of multi-component LFM signal f(¢)
can be given by

n
T
W}\(t, w) = Z |Ak|2T sinc {5 (wg +2mt — bw — 2ct — e)}
k=1

n

. T 5

+ Y Ag AL Te @) sine {5 (Z(m o T g, e)} :
k1#ky=1

For the purpose of illustration, considering a bi-component LEM signal

s(t) = @l (0:2+40.31%) | (i(0.4140.31%) (1] < 5).

For the choices A = (a, 1, 1,d, 1) and SNR =10 dB, the graphical representation of
AL (t, w) and W2 (t, w) are plotted in Fig. 4.

5 Conclusion

In the present study, the modified ambiguity function and Wigner distribution associ-
ated with the quadratic-phase Fourier transform are defined. Some useful properties of

Birkhauser
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them are studied. The convolutions associated with QFT as well as convolution theo-
rems for QAF and QWD are presented, which are so simple and similar to the FT case.
As the main application, the detection and parameter estimation of one-component and
multi-component LFM signals are investigated by using the QAF and QWD. Some
simulations are illustrated to verify the derived results.
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