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Abstract
WeproveM-regularity for a class of pseudodifferential operators in ultradifferentiable
classes defined on the torus T

m+n which are globally C∞ hypoelliptic. The same
property is also valid for certain perturbations of these operators by lower order terms.
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Global hypoellipticity with loss of derivatives · Lower order perturbations
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1 Introduction and Statement of the Results

The question that motivates this work is the following: let P be a linear partial dif-
ferential operator with coefficients in Cω(TN ), where T

N denotes the N -dimensional
torus, and suppose that P is globally C∞ hypoelliptic in T

N . Is P globally Gevrey
hypoelliptic in T

N ? When P = P0(D) has constant coefficients the answer is pos-
itive thanks to the Greenfield-Wallach conditions. If it is not the case, then we have
some partial results as in the work of Himonas and Petronilho [6] which proves the
following.
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Theorem 1.1 For (t, x) ∈ T
m+n let P = P(t, Dt , Dx ) be a linear partial differential

operator with coefficients in Cω(Tm) and suppose that P is globally C∞ hypoelliptic
in T

m+n. If u ∈ D′(Tm+n), Pu ∈ Gs(Tm+n), and (t, x, τ, 0) /∈ WFs(u), where
(t, x) ∈ T

m+n, τ ∈ R
m\{0}, and if Ker P ⊂ Gs(Tm+n), then u ∈ Gs(Tm+n).

Here we are denoting by Gs
(
T
N
)
the space of the s-Gevrey functions for some

fixed s ≥ 1. We also recall that Petronilho [8] improved the last result by proving
that the condition ker P ⊂ Gs

(
T
n+m

)
is superfluous in the statement of Theorem 1.1.

Also, Albanese and Jornet [1] generalized the Petronilho’s result to the ultradifferential
frame.

Open question 1: Does Theorem 1 hold true in more general classes of operators
such as pseudodifferential operators in ultradifferentiable classes defined on the torus?

We also are concerned with a very natural problem: the stability of hypoelliptic
operators, i.e., we are going to study the stability of hypoellipticity under lower-
order perturbations. Concernig this question let us recall some results in the literature
about perturbations by lower order terms. Firstly we mention the work by Dickinson,
Gramchev and Yoshino in [3] where they considered perturbations of smooth vector
fields on T

N (constant if N ≥ 3) by zero order smooth classical pseudodifferential
operators.

In [9] Parmeggiani studied the problem of perturbations of C∞ hypoelliptic opera-
tors by lower order terms. He proved that hypoellipticitywith a finite loss of derivatives
of a linear partial differential operator P, alongwith its formal adjoint P∗, is stable under
perturbations by lower order linear partial differential operators whose order depends
on the loss of derivatives, see Theorem 2.3 of [9]. In [11] Parenti and Parmeggiani
proved a stability result that streamlines and generalizes that of Parmeggiani described
above.

In the analytic setup, Chinni and Cordaro, see [2], introduced a new theory about
analytic pseudodifferential operators on the N -dimensional torus T

N . One question
analyzed by them is the following: assuming that P(x, D) is a linear partial differential
operator defined on T

N with real-analytic coefficients, that P(x, D) is ε-subelliptic
for some ε > 0 and that P(x, D) is globally analytic hypoelliptic on T

N they ask
when is it true that P(x, D) remains globally analytic hypoelliptic when one adds to
it an analytic pseudodifferential operator on T

N of order less than ε.
Ferra and Petronilho [4], inspired by the work of Chinni and Cordaro, introduced a

new class of smooth pseudodifferential operators on the torus and used it to show that
perturbations by lower order terms do not destroy the global hypoellipticity of certain
systems of pseudodifferential operators.

We now mention that recently Ferra, Petronilho and Victor [5] generalized Chinni
and Cordaro, [2], for ultradifferentiable pseudodifferential operators defined on the
torus, in particular they proved the following result (for more detais about the notation
see Sect. 2):

Theorem 1.2 Let A = {a j (x, D)}mj=1 be a system of pseudodifferential operators

in DM
pσ

(TN ) that is globally M-hypoelliptic with loss of r ≥ 0 derivatives. If B =
{b j (x, D)}mj=1 is a systemof pseudodifferential operators inDM

pτ
(TN ), with τ < σ−r ,
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then the system C=̇{c j (x, D) = a j (x, D) + b j (x, D)}mj=1 in DM
pσ

(TN ) is globally
M-hypoelliptic.

This result motivates the following
Open question 2: For j = 1, if we replace the hypothesis of global M-

hypoellipticity with loss of derivatives in Theorem 1.2, (see [5]), by global C∞
hypoellipticity or by global C∞ hypoellipticity with loss of derivatives what kind
of results we will get?

Motivated by the results and by the open questions cited above we work on the
problem ofM-regularity of solutions u ∈ C∞ (Tn × T

m) of perturbations of globally
hypoelliptic pseudodifferential operators a(t, Dt , Dx ), where (t, x) ∈ T

m+n . Here
we need to replace the condition (t, x, τ, 0) /∈ WFs(u), where (t, x) ∈ T

m+n, τ ∈
R
m\{0}, given in [6] and in [8], by an appropriate one for the ultradifferentiable classes.

More precisely we will prove the following (see Sect. 2 for the definition of sM(u)).

Theorem 1.3 Let a(t, Dt , Dx ) ∈ DM
pσ

(Tm×T
n), σ ∈ R, be anM-ultradifferentiable

pseudodifferential operator of order σ ∈ R that is globally C∞ hypoelliptic on T
m ×

T
n. Then there exists r ∈ R depending on a(t, Dt , Dx ) such that for every M-

ultradifferentiable pseudodifferential operator b(t, x, Dt , Dx ) ∈ DM
pσ ′ (T

m × T
n) of

order σ ′ ≤ σ − r − 1 the following holds: if u ∈ C∞(Tm × T
n) is such that

[a(t, Dt , Dx ) + b(t, x, Dt , Dx )]u = f ∈ EM
(
T
m × T

n) (1.1)

and (τ, 0) /∈ sM(u) for every τ ∈ R
m\0, then u ∈ EM (Tm × T

n).

Also we have the following application which allow us to consider solutions
u ∈ D′ (Tn × T

m) in Theorem 1.3 instead of smooth solution if the initial operator
a(t, Dt , Dx ) is globally hypoelliptic with loss of derivatives.

Theorem 1.4 Let a(t, Dt , Dx ) ∈ DM
pσ

(Tm×T
n), σ ∈ R, be anM-ultradifferentiable

pseudodifferential operator of order σ ∈ R that is globally C∞ hypoelliptic on T
n+m

with loss of R derivatives and let b(x, t, Dx , Dt ) ∈ DM
pσ ′ (T

m × T
n), σ ′ ∈ R, be an

M-ultradifferentiable pseudodifferential operator of order σ ′ ≤ σ − R − 2. Also
suppose that u ∈ D′(TN ) satisfy

[a(t, Dx , Dt ) + b(x, t, Dx , Dt )]u = f ∈ EM
(
T
m+n) . (1.2)

Assuming that (τ, 0) /∈ sM(u) for every τ ∈ R
m \ {0} we conclude that u ∈

EM
(
T
m+n

)
.

Before proceeding, we would like to make a few comments about the Theorems
1.3 and 1.4. In Theorem 1.3, assuming that b(t, x, Dt , Dx ) is identically equal to
zero we can replace the hypothesis u ∈ C∞(Tm × T

n) by u ∈ D′(Tm × T
n) since

EM (Tm × T
n) ⊂ C∞(Tm × T

n). Thereby, we answer positively to the open ques-
tion 1. Concerning the open question 2, in Theorem 1.3, we consider the case that
the operator a(t, Dt , Dx ) is globally C∞ hypoelliptic and prove that all solutions
u ∈ C∞ (Tn × T

m) of certains perturbations of operator a(t, Dt , Dx ) areM-regular,
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i.e., u ∈ EM (Tm × T
n), provided that (τ, 0) /∈ sM(u) for every τ ∈ R

m\{0}.
While in Theorem 1.4 we consider the case that operator a(t, Dt , Dx ) is globally C∞
hypoelliptic with loss of derivatives and as an application of Theorem 1.3 we show
that all solutions u ∈ D′ (Tn × T

m) of certain perturbations of operator a(t, Dt , Dx )

are M-regular, i.e., u ∈ EM (Tm × T
n), provided that (τ, 0) /∈ sM(u) for every

τ ∈ R
m \ {0}.

We also would like to point out that in the case b = 0 the Theorem 1.4 is a simple
consequence of Theorem 1.3 since global C∞ hypoellipticity with loss of derivatives
implies globalC∞ hypoellipticity. Finally, we call attention to the fact that in Theorem
1.3 the order of the perturbation operator b(t, x, Dt , Dx ) is σ ′ < σ +r −1, where r is
not explicit because it comes from a Functional Analysis result whereas in Theorem
1.4 the order of the operator b(t, x, Dt , Dx ) is σ ′ < σ +R−1 and R is well determined
because it is the loss of derivatives of the hypoelicity of the operator a(t, Dt , Dx ).

The paper is structured as follows. In Sect. 2 we recall the basic definitions
and results about ultradifferentiable functions and the more important facts on an
ultradifferentiable pseudodifferential operators. In Sect. 3 we prove some important
inequalities about smooth pseudodifferential operators on the torus. In Sect. 4 we
present some technical results about the condition (τ, 0) /∈ sM(u) that will be used in
the proof of our main theorems. In Sect. 5 we prove Theorem 1.3 and finally, in Sect.
6, we present the proof of Theorem 1.4.

2 Basic Results

In this section we present the basic definitions and results that will be used throughout
this text. We denote by T

N the N -dimensional torus.

2.1 Ultradifferentiable Functions

We say that a sequence of positive real numbersM = {mn}n∈Z+ is a weight sequence
if it satisfies the following properties:

m0 = m1 = 1, (2.1)

m2
n ≤ mn−1mn+1, ∀ n ∈ N, (2.2)

sup
j,k∈N

(
m j+k

m jmk

) 1
j+k

< H , with H > 1. (2.3)

We recall that a weight sequence M = {mn}n∈Z+ is called quasianalytic if

∞∑

k=1

mk−1

mk
= ∞.

If the sum if finite, thenM = {mn}n∈Z+ is called a non-quasianalyticweight sequence.
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Definition 2.1 Let M = {mn}n∈Z+ be a weight sequence. We say that a function
f ∈ C∞ (

T
N
)
is periodic ultradifferentiable of class {M} if there exist constants

C, h > 0 such that

∣∣Dα f (x)
∣∣ ≤ Ch|α|m|α||α|!, ∀ x ∈ T

N , ∀α ∈ Z
N+ .

The space of the periodic ultradifferentiable functions of class {M} will be denoted
by EM

(
T
N
)
. This class is also known as the space of the periodic ultradifferentiable

functions of Roumieu type. The space D′
M

(
T
N
)
is the topological dual of EM

(
T
N
)
.

When mn = n!s−1 we recover the Gevrey (periodic) functions, in particular for s = 1
we have the space of periodic analytic functions.

Now we state certain results that we need below. For its proofs or more results on
weight sequences we refer the reader to Komatsu [7], Pilipović [10], Ferra et al. [5]
and to the references in these papers.

Proposition 2.2 If M = {mn}n∈N is a weight sequence then we have the following
properties:
(i) mn ≥ 1 for all n ∈ Z+;
(ii) the sequence {m1/n

n }n∈N is increasing;
(iii) m jmk ≤ m j+k for all j, k ∈ Z+;
(iv) for each k ∈ Z+ we can find a constant Ak ≥ 1 such that

mn+k(n + k)! ≤ An+1
k mnn!, ∀ n ∈ Z+ . (2.4)

Remark 2.3 It follows from item (i) of Proposition 2.2 that EM
(
T
N
)
contains the

space of all periodic analytic functions Cω
(
T
N
)
since |α|! ≤ m|α||α|! for all α ∈ Z

N+ .

Also, there is a characterization of the space of ultradifferentiable functions in terms
of the Fourier transform. Recall that for u ∈ D′

M
(
T
N
)
, we define

û(ξ) = 1

(2π)N

〈
u, e−i〈x,ξ〉〉 , ξ ∈ Z

N .

Theorem 2.4 Let M = {mn}n∈Z+ be a weight sequence. A function ϕ ∈ C∞ (
T
N
)

belongs to EM
(
T
N
)
if and only if there exists C, h > 0 such that

∣
∣ϕ̂(ξ)

∣
∣ ≤ C inf

n∈Z+

(
hnmnn!

(1 + |ξ |)n
)

, ∀ ξ ∈ Z
N . (2.5)

Moreover, if {Cξ }ξ∈ZN is a sequence such that (2.5) holds true with Cξ in place of

ϕ̂(ξ), then there exists an unique function ϕ ∈ EM
(
T
N
)
such that ϕ̂(ξ) = Cξ for all

ξ ∈ Z
N .

The latter result motivates us to introduce the following (see also [2], Sect. 3)
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Definition 2.5 Given u ∈ D′
M

(
T
N
)
, we denote by sM(u) the complementary set of

every ξ0 ∈ R
N \ 0 such that there exist C, h > 0 and an open cone 
 ⊂ R

N \ 0
containing ξ0 satisfying

∣
∣û(ξ)

∣
∣ ≤ C inf

n∈Z+

(
hnmnn!

(1 + |ξ |)n
)

, ∀ ξ ∈ Z
N ∩
. (2.6)

2.2 Pseudodifferential Operators

Here we present the basic properties of the pseudodifferential operators which we
work with in this text. The discrete symbol of a continuous and linear operator A :
C∞(TN ) −→ C∞(TN ) is the function a : T

N × Z
N −→ C defined by a(x, η) =

e−i〈x,η〉A
(
ei〈x,η〉) and we shall use the notation A = a(x, D) and call a(x, D) a

pseudodifferential operator. If ϕ ∈ C∞(TN ) then by linearity and continuity we have

a(x, D)ϕ(x) =
∑

ξ∈ZN

a(x, D)
(
ei〈x,ξ〉) ϕ̂(ξ) =

∑

ξ∈ZN

ei〈x,ξ〉a(x, ξ)ϕ̂(ξ) ∈ C∞(TN ),

from which one can prove that

̂(a(x, D)u)(ξ) =
∑

η∈Z
â(ξ − η, η)û(η). (2.7)

The main object of this work is a specific class of pseudodifferential operators which
was introduced in [5]. There the reader can find the proofs of the statements used in
this section that we did not include here as well as more properties satisfied by these
operators. This class is more appropriate to the ultradifferentiable framework.

Definition 2.6 LetM be a weight sequence and σ ∈ R. We say that a continuous and
linear operator a(x, D) : C∞(TN ) → C∞(TN ) belongs to DM

pσ
(TN ) if its discrete

symbol a(x, ξ) satisfies one of the following equivalent conditions:

1. There exist positive constants C1 and h1 such that

|Dα
x a(x, η)| ≤ C1h

|α|
1 m|α||α|!(1 + |η|)σ , ∀ x ∈ T

N , η ∈ Z
N , α ∈ Z

N+ . (2.8)

2. There exist positive constants C2, h2 > 0 such that

|̂a(ξ, η)| ≤ C2hk2mkk!(1 + |η|)σ
(1 + |ξ |)k , ∀ k ∈ Z+, (ξ, η) ∈ Z

2N . (2.9)

We also say that a(x, D) is an M-ultradifferentiable pseudodifferential operator
of order σ . Also, if a(x, D) ∈ DM

pσ
(TN ), then one can prove that a(x, D) defines a

continuous and linear operator on EM(TN ).
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Remark In [4] the authors introduced a class of smooth pseudodifferential operators
(of order σ )Spσ (TN ), σ ∈ R, which consists of all operators a(x, D) such that given
α ∈ Z

N+ , one can find Cα > 0 such that

∣∣Dα
x a(x, η)

∣∣ ≤ Cα(1 + |η|)σ , ∀ η ∈ Z
N , x ∈ T

N . (2.10)

Since (2.8) implies (2.10), it is clear that DM
pσ

(TN ) ⊂ Spσ (TN ). Also, the oper-
ators belonging to this broader class define a continuous linear operator a(x, D) :
D′ (

T
N
) −→ D′ (

T
N
)
. More precisely, a(x, D) can be extend to a linear and

continuous operator a(x, D) : Hs
(
T
N
) −→ Hs−σ

(
T
N
)
for every s ∈ R. ��

3 Globally Hypoelliptic Operators

In this section we are going to prove some inequalities about globally hypoelliptic
operators in the classSpσ (TN ) that will be useful for our main results. Recall that an
operator a(x, D) is globally C∞ hypoelliptic in T

N when the conditions u ∈ D′ (
T
N
)

and a(x, D)u ∈ C∞ (
T
N
)
imply u ∈ C∞ (

T
N
)
.

In order to deal with perturbations of globally hypoelliptic operators we are going
to state and prove some results. They are basically an extension of the results in [6]
for the pseudodifferential operators.

Lemma 3.1 If a(x, D) ∈ Spσ (TN ) is a globally hypoelliptic operator in T
N then

given �, k ∈ Z, there exist j ∈ Z+ and C > 0 such that

‖ϕ‖� ≤ C
(‖a(x, D)ϕ‖ j + ‖ϕ‖k

)
, ∀ϕ ∈ C∞ (

T
N
)

.

In particular, there exist j ∈ Z+ and C > 0 such that

‖ϕ‖1 ≤ C
(‖a(x, D)ϕ‖ j + ‖ϕ‖−1

)
, ∀ϕ ∈ C∞ (

T
N
)

.

Proof We consider in C∞ (
T
N
)
the locally convex, metrizable topology defined by

the seminorms

‖ϕ‖ j,k = ‖a(x, D)ϕ‖ j + ‖ϕ‖k , ∀ϕ ∈ C
∞ (

T
N
)

, j ∈ Z+, k ∈ Z,

where ‖·‖s denotes the usual Sobolev norm on T
N . Since a(x, D) is globally hypoel-

liptic,C∞ (
T
N
)
endowed with this topology becomes a Fréchet. By the open mapping

theorem, this topology must coincide with the standard one in C∞ (
T
N
)
, whence the

result. ��
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4 About the Condition (�, 0) /∈ sM(u)

In viewof ourmain result Theorem1.3we shall denote fromnowon the N -dimensional
torus by T

N = T
m
t × T

n
x and in the next result we recall that ‖·‖s , s ∈ R, stands for

the usual Sobolev norm in the space Hs
(
T
N
)
.

Proposition 4.1 Suppose that f ∈ EM(Tm × T
n). Given s ∈ R, there exist constants

C, h > 0 such that

∥∥
∥(1 + |
x |1/2)k f

∥∥
∥
s

≤ Chkmkk!, ∀ k ∈ Z+.

Proof Since f ∈ EM(TN ), there exist constants C0, h0 > 0 such that

∣∣
∣Dα

t D
β
x f (t, x)

∣∣
∣ ≤ C0h

|α|+|β|
0 m|α|+|β|(|α| + |β|)!, ∀ t ∈ T

m , x ∈ T
n, α ∈ Z

m+, β ∈ Z
n+.

We know that given ζ = (ζ1, . . . , ζN ) ∈ Z
N and q ∈ Z+ there exist γ =

(γ1, . . . , γN ) ∈ Z
N+ such that |γ | = q and |ζ |q ≤ cq |ζ γ |, where c = √

N . By
using this fact for N = n + m and putting ζ = (τ1, . . . , τm, ξ1, . . . , ξn) = (τ, ξ) and
α = (γ1, . . . , γm) andβ = (γm+1, . . . , γm+n), we obtain the following: given τ ∈ Z

m ,
ξ ∈ Z

n and q ∈ Z+, there exist αq ∈ Z
m+ and βq ∈ Z

n+ such that |αq | + |βq | = q and

|(τ, ξ)|q ≤ cq
∣∣ταq ξβq

∣∣ ,

where c > 0 does not depend on either (τ, ξ) or q. Now we take p ∈ N such that
p ≥ |s| and we obtain that

∥
∥∥(1 + |
x |1/2)k f

∥
∥∥
2

s

≤
∥∥
∥(1 + |
x |1/2)k f

∥∥
∥
2

p
=

∑

τ∈Zm ,ξ∈Zn
(1 + |(τ, ξ)|)2p (1 + |ξ |)2k

∣∣
∣ f̂ (τ, ξ)

∣∣
∣
2

≤
∑

τ∈Zm ,ξ∈Zn
(1 + |(τ, ξ)|)−2n−2m (1 + |(τ, ξ)|)2p+2k+2n+2m

∣∣∣ f̂ (τ, ξ)

∣∣∣
2

=
∑

τ∈Zm ,ξ∈Zn
(1 + |(τ, ξ)|)−2n−2m

(
(1 + |(τ, ξ)|)p+k+n+m

∣∣∣ f̂ (τ, ξ)

∣∣∣
)2

≤
∑

τ∈Zm ,ξ∈Zn
(1 + |(τ, ξ)|)−2n−2m

⎛

⎝
p+k+m+n∑

j=0

(
p + k + m + n

j

)
|(τ, ξ)| j

∣
∣∣ f̂ (τ, ξ)

∣
∣∣

⎞

⎠

2

≤ cp+k+m+n
∑

τ∈Zm ,ξ∈Zn
(1 + |(τ, ξ)|)−2n−2m

⎛

⎝
p+k+m+n∑

j=0

(
p + k + m + n

j

) ∣
∣∣τα j ξ

β j
∣
∣∣
∣
∣∣ f̂ (τ, ξ)

∣
∣∣

⎞

⎠

2

= cp+k+m+n
∑

τ∈Zm ,ξ∈Zn
(1 + |(τ, ξ)|)−2n−2m

⎛

⎝
p+k+m+n∑

j=0

(
p + k + m + n

j

) ∣∣
∣∣∣

̂
D

α j
t D

β j
x f (τ, ξ)

∣∣
∣∣∣

⎞

⎠

2

.



Journal of Fourier Analysis and Applications (2024) 30 :3 Page 9 of 21 3

Since
∣∣∣∣

̂
D

α j
t D

β j
x f (τ, ξ)

∣∣∣∣ ≤ 1

(2π)m+n

∫

Tm×Tn

∣∣∣D
α j
t D

β j
x f (t, x)

∣∣∣ dtdx

≤ C0h
|α j |+|β j |
0 m|α j |+|β j |(|α j | + |β j |)!

= C0h
j
0m j j !,

and since {mn}n∈N is increasing (recall Proposition 2.2 item (iii) and that m1 = 1),
if we set C1 = cp+m+n(1 + h0)p+m+nC2

0

∑
τ∈Zm ,ξ∈Zn (1 + |(τ, ξ)|)−2n−2m then it

follows that

∥
∥
∥(1 + |
x |1/2)k f

∥
∥
∥
2

s

≤ cp+k+m+n
∑

τ∈Zm ,ξ∈Zn

(1 + |(τ, ξ)|)−2n−2m

⎛

⎝
p+k+m+n∑

j=0

(
p + k + m + n

j

)
C0h

j
0m j j !

⎞

⎠

2

≤ cp+k+m+nC2
0 (1 + h0)

p+k+m+n
∑

τ∈Zm ,ξ∈Zn

(1 + |(τ, ξ)|)−2n−2m mp+k+m+n(p + k + m + n)!

= ckC1(1 + h0)
km p+k+m+n(p + k + m + n)!

and the proof follows since the last inequalities and (2.4) show that

∥∥∥(1 + |
x |1/2)k f
∥∥∥
s

≤ Chkmkk!,

for some C, h > 0.

We need one more auxiliary result to prove our main theorem.

Lemma 4.2 Suppose that u ∈ C∞ (Tm × T
n) satisfy the following conditions:

1. (τ, 0) /∈ sM(u) for every τ ∈ R
m \ 0.

2. There exist constants C0, h0 > 0 such that
∥∥(1 + |
x |1/2)ku

∥∥
0 ≤ C0hk0mkk! for

every k ∈ Z+.

Then u ∈ EM(TN ).

Proof We first consider

A = {
(τ, ξ) ∈ R

m × R
n : |τ | = 1, ξ = 0

}
.

By using that (τ, 0) /∈ sM(u) for every |τ | = 1 and the compactness of A, it follows
that there exist open cones 
1, . . . , 
k ⊂ R

m+n such that A ⊂ 
1 ∪ . . .∪
k and there
exist constants C, h > 0 such that

∣∣û(τ, ξ)
∣∣ ≤ C inf

p∈Z+

(
h pm p p!

(1 + |(τ, ξ)|)p
)

, ∀ (τ, ξ) ∈ (
Z
m × Z

n) ∩ (
1 ∪ . . . ∪ 
k) .
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Note that if Z
m × Z

n ⊂ 
1 ∪ . . . ∪ 
k the result is proved. Otherwise, since A is
compact, R

m+n \ (
1 ∪ . . . ∪ 
k) is closed and they are disjoint, we have that

0 < α =̇ d
(
A, R

m+n \ (
1 ∪ . . . ∪ 
k)
)

and then (τ, ξ) ∈ 
1∪. . .∪
k whenever d((τ, ξ), A) < α. If c > 0 satisfy 1− c2

1+c2
≤

α2

2 then

(τ, ξ) ∈ Sm+n−1, |τ | > c|ξ | �⇒ d((τ, ξ), A) < α. (4.1)

Indeed, suppose that (τ, ξ) ∈ Sm+n−1 and |τ | > c|ξ |. Since ξ = 0 and |τ |2+|ξ |2 = 1
ensure that (τ, ξ) is already an element of A we can suppose that ξ �= 0. So we have
that

c2|ξ |2 < |τ |2 = 1 − |ξ |2,

which in turn implies that

|ξ |2 <
1

1 + c2
.

Thus

|τ |2 = 1 − |ξ |2 > 1 − 1

1 + c2
= c2

1 + c2

and then

|ξ |2 = 1 − |τ |2 < 1 − c2

1 + c2
≤ α2

2
. (4.2)

Since |τ | ≤ 1, we obtain from (4.2) that

(1 − |τ |)2 ≤ 1 − |τ |2 <
α2

2
(4.3)

If τ0 = τ
|τ | then (τ0, 0) ∈ A and from (4.2) and (4.3) we obtain that

d((τ, ξ), A)2 ≤ |(τ, ξ) − (τ0, 0)|2 = |τ − τ0|2 + |ξ |2 =
∣∣∣
∣τ − τ

|τ |
∣∣∣
∣

2

+ |ξ |2

<

∣∣∣∣

(
1 − 1

|τ |
)

τ

∣∣∣∣

2

+ α2

2
= (1 − |τ |)2 + α2

2
≤ α2,

which proves (4.1). Now let (τ, ξ) ∈ Z
m ×Z

n, |τ | > c|ξ |. If λ = 1
|(τ,ξ)| and (τ ′, ξ ′) =

λ(τ, ξ) then (τ ′, ξ ′) ∈ Sm+n−1 and |τ ′| > c|ξ ′|, so (τ ′, ξ ′) ∈ A. Hence there exists
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j ∈ {1, . . . , k} such that (τ ′, ξ ′) ∈ 
 j and since the latter is a cone, we obtain that
(τ, ξ) ∈ 
 j , from which we conclude that

∣∣û(τ, ξ)
∣∣ ≤ C inf

p∈Z+

(
h pm p p!

(1 + |(τ, ξ)|)p
)

, ∀ (τ, ξ) ∈ (
Z
m × Z

n) , |τ | > c|ξ |. (4.4)

Our objective now is to extend (4.4) for every (τ, ξ) ∈ Z
m × Z

n , so we have to prove
that

∣∣û(τ, ξ)
∣∣ ≤ C inf

p∈Z+

(
h pm p p!

(1 + |(τ, ξ)|)p
)

, ∀ (τ, ξ) ∈ (
Z
m × Z

n) , |τ | ≤ c|ξ |. (4.5)

If (τ, ξ) ∈ Z
m × Z

n is such that |τ | ≤ c|ξ | and p ∈ Z+. Then

|(τ, ξ)|2 = |τ |2 + |ξ |2 ≤ (1 + c)|ξ |2,

which yields

(1 + |(τ, ξ)|)p ≤ (1 + (1 + c)1/2|ξ |)p ≤ (1 + c)p/2(1 + |ξ |)p.

From this inequality and our hypothesis we obtain the following:

(1 + |(τ, ξ)|)p ∣∣û(τ, ξ)
∣∣ ≤ (1 + c)p/2(1 + |ξ |)p ∣∣û(τ, ξ)

∣∣

≤ (1 + c)p/2

⎛

⎝
∑

τ ′∈Zm ,ξ ′∈Zn

(1 + |ξ ′|)2p ∣∣û(τ ′, ξ ′)
∣∣2
⎞

⎠

1/2

= (1 + c)p/2
∥∥∥(1 + |
x |1/2)pu

∥∥∥
0

≤ C0

(
(1 + c)1/2h0

)p
m p p!

and since p ∈ Z+ is arbitrary, we conclude that

∣∣û(τ, ξ)
∣∣ ≤ C0 inf

p∈Z+

((
(1 + c)1/2h0

)p
m p p!

(1 + |(τ, ξ)|)p
)

.

By increasing C and h if necessary we obtain (4.5). ��
Now we are able to prove our main result of this work.

5 Proof of Theorem 1.3

Proof We first use Lemma 3.1: since we are assuming that a(t, Dt , Dx ) is globally
hypoelliptic in T

m × T
n , there exists j ∈ Z+ such that
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∥∥
∥(1 + |
x |1/2)ku

∥∥
∥
0

≤ C

(∥∥
∥a(t, Dt , Dx )(1 + |
x |1/2)ku

∥∥
∥
j
+

∥∥
∥(1 + |
x |1/2)ku

∥∥
∥−1

)
, ∀ k ∈ Z+.

In particular, if we take

r = j + σ, (5.1)

then for every k ∈ Z+

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥
0

≤ C

(∥
∥∥a(t, Dt , Dx )(1 + |
x |1/2)ku

∥
∥∥
r−σ

+
∥
∥∥(1 + |
x |1/2)ku

∥
∥∥−1

)
,

(5.2)

Now we observe that if P = a(t, Dt , Dx ) + b(t, x, Dt , Dx ) then

∥∥∥a(t, Dt , Dx )(1 + |
x |1/2)ku
∥∥∥
r−σ

=
∥∥∥(1 + |
x |1/2)ka(t, Dt , Dx )u

∥∥∥
r−σ

≤
∥∥∥(1 + |
x |1/2)k Pu

∥∥∥
r−σ

+
∥∥∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u

∥∥∥
r−σ

,

so from (5.2) we obtain

∥∥∥(1 + |
x |1/2)ku
∥∥∥
0

≤ C
( ∥∥∥(1 + |
x |1/2)k Pu

∥∥∥
r−σ

+
∥∥∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u

∥∥∥
r−σ

+

+
∥∥∥(1 + |
x |1/2)ku

∥∥∥−1

)
(5.3)

for every k ∈ Z+. Let us estimate now the term
∥∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u

∥∥
r−σ

.
It follows from (2.9) that there exist constants C, h > 0 such that

|̂b(τ ′, ξ ′, τ, ξ)| ≤ Chkmkk!(1 + |(τ, ξ)|)σ ′

(1 + |(τ ′, ξ ′)|)k , ∀ k ∈ Z+, τ, τ ′ ∈ Z
m, ξ, ξ ′ ∈ Z

n .

(5.4)

If we denote v = (1+|
x |1/2)kb(t, x, Dt , Dx )u, then keeping inmind that τ, τ ′ ∈ Z
m

and ξ, ξ ′ ∈ Z
n in the all the sums below we have by (2.7) that

‖v‖2r−σ =
∑

τ,ξ

(1 + |(τ, ξ)|)2r−2σ ∣∣v̂(τ, ξ)
∣∣2

≤
∑

τ,ξ

(1 + |(τ, ξ)|)2r−2σ
∣
∣∣(1 + |ξ |)k ̂(b(t, x, Dt , Dx )u)(τ, ξ)

∣
∣∣
2

=
∑

τ,ξ

(1 + |(τ, ξ)|)2r−2σ
∣
∣∣(1 + |ξ |)k

∑

τ ′,ξ ′
b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)û(τ ′, ξ ′)

∣
∣∣
2
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≤
∑

τ,ξ

(1 + |(τ, ξ)|)2r−2σ
( ∑

τ ′,ξ ′
(1 + |ξ − ξ ′| + |ξ ′|)k |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|

)2

≤
∑

τ,ξ

(1+|(τ, ξ)|)2r−2σ
( ∑

τ ′,ξ ′

k∑

j=0

(
k

j

)
(1+|ξ−ξ ′|) j |ξ ′|k− j |b̂(τ −τ ′, ξ−ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|

)2
,

so

‖v‖r−σ ≤
(∑

τ,ξ

(1 + |(τ, ξ)|)2r−2σ

( k∑

j=0

∑

τ ′,ξ ′

(
k

j

)
(1 + |ξ − ξ ′|) j |ξ ′|k− j |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|

)2)
1
2

.

By the Minkowisky inequality for integrals the right side of the last inequality can be
majored by

k∑

j=0

(
k

j

)(∑

τ,ξ

(1 + |(τ, ξ)|)2r−2σ
( ∑

τ ′,ξ ′
(1 + |ξ − ξ ′|) j |ξ ′|k− j |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|

)2

︸ ︷︷ ︸
=̇ (A)

) 1
2
.

Now it follows from the Cauchy-Schwarz inequality that

(A) ≤
( ∑

τ ′,ξ ′
(1 + |ξ − ξ ′|)2 j |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)|

)

︸ ︷︷ ︸
=̇ (B)

( ∑

τ ′,ξ ′
|ξ ′|2k−2 j |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|2

)
. (5.5)

We choose q ∈ N such that |σ ′| ≤ q and it follows from (5.4), fromPeetre’s inequality,
(2.4), (2.3) and the inequality (2 j)! ≤ 22 j j !2 that

(B) ≤
∑

τ ′,ξ ′
(1 + |ξ − ξ ′|)2 j Ch2 j+q+2Nm2 j+q+2N (2 j + q + 2N )!(1 + |(τ ′, ξ ′)|)σ ′

(1 + |(τ − τ ′, ξ − ξ ′)|)2 j+q+2N

≤ (1 + |(τ, ξ)|)σ ′ ∑

τ ′,ξ ′
(1 + |ξ − ξ ′|)2 j Ch2 j+q+2Nm2 j+q+2N (2 j + q + 2N )!(1 + |(τ − τ ′, ξ − ξ ′)|)|σ ′ |

(1 + |(τ − τ ′, ξ − ξ ′)|)2 j+q+2N

≤ (1 + |(τ, ξ)|)σ ′ ∑

τ ′,ξ ′
(1 + |ξ − ξ ′|)2 j Ch2 j+q+2Nm2 j+q+2N (2 j + q + 2N )!

(1 + |(τ − τ ′, ξ − ξ ′)|)2 j+2N

≤ (1 + |(τ, ξ)|)σ ′ ∑

τ ′,ξ ′
(1 + |ξ − ξ ′|)2 j Chq+2N (Aq+2N h)2 j m2 j (2 j)!

(1 + |(τ − τ ′, ξ − ξ ′)|)2 j+2N

≤ (1 + |(τ, ξ)|)σ ′
Chq+2N (Aq+2N h)2 j m2 j (2 j)!

∑

τ ′,ξ ′

1

(1 + |(τ − τ ′, ξ − ξ ′)|)2N

≤ (1 + |(τ, ξ)|)σ ′
Chq+2N (2H Aq+2N h)2 j (m j j !)2

∑

τ ′,ξ ′

1

(1 + |(τ − τ ′, ξ − ξ ′)|)2N .
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So if we take C2
1 = Chq+2N ∑

τ ′,ξ ′ 1
(1+|(τ ′,ξ ′)|)2N and h2 = 2H Aq+2Nh, then

(B) ≤ C2
1h

2 j
2 (1 + |(τ, ξ)|)σ ′

(m j j !)2

and from (5.5) we obtain that

(A) ≤ C2
1h

2 j
2 (1 + |(τ, ξ)|)σ ′

(m j j !)2
(∑

τ ′,ξ ′
|ξ ′|2k−2 j |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|2

)
,

which in turn gives that

‖v‖r−σ ≤ C1

k∑

j=0

(
k

j

)
h j
2m j j !(C), (5.6)

where

(C) =
(∑

τ,ξ

∑

τ ′,ξ ′
(1 + |(τ, ξ)|)2r−2σ+σ ′ |ξ ′|2k−2 j |b̂(τ − τ ′, ξ − ξ ′, τ ′, ξ ′)||û(τ ′, ξ ′)|2

) 1
2
.

Recalling that q ∈ N satisfy |σ ′| ≤ q, we use again (5.4), the Peetre’s inequality,
(2.4) and (2.3) to obtain the following:

(C) ≤
(∑

τ,ξ

∑

τ ′,ξ ′
(1 + |(τ, ξ)|)2r−2σ+σ ′ |ξ ′|2k−2 j Chq+2Nmq+2N (q + 2N )!(1 + |(τ ′, ξ ′)|)σ ′

(1 + |(τ − τ ′, ξ − ξ ′)|)q+2N |û(τ ′, ξ ′)|2
) 1

2

≤
(∑

τ,ξ

∑

τ ′,ξ ′

(
1 + ∣∣(τ ′, ξ ′)

∣∣)2r−2σ+2σ ′ |ξ ′|2k−2 j Chq+2Nmq+2N (q + 2N )!
(1 + |(τ − τ ′, ξ − ξ ′)|)2N |û(τ ′, ξ ′)|2

) 1
2

=
(∑

τ ′,ξ ′

(∑

τ,ξ

Chq+2Nmq+2N (q + 2N )!
(1 + |(τ − τ ′, ξ − ξ ′)|)2N

) (
1 + ∣∣(τ ′, ξ ′)

∣∣)2r−2σ+2σ ′ |ξ ′|2k−2 j |û(τ ′, ξ ′)|2
) 1

2

.

Taking C2
2 = ∑

τ,ξ

Chq+2Nmq+2N (q+2N )!
(1+|(τ,ξ)|)2N we conclude that

(C) ≤ C2

∑

τ ′,ξ ′

(
1 + ∣

∣(τ ′, ξ ′)
∣
∣)2r−2σ+2σ ′ |ξ ′|2k−2 j |û(τ ′, ξ ′)|2

) 1
2

≤ C2

∑

τ ′,ξ ′

(
1 + ∣∣(τ ′, ξ ′)

∣∣)2r−2σ+2σ ′ (
1 + |ξ ′|)2k−2 j |û(τ ′, ξ ′)|2

) 1
2

= C2

∑

τ ′,ξ ′

(
1 + ∣∣(τ ′, ξ ′)

∣∣)2r−2σ+2σ ′ | ̂
(
(1 + |
x |1/2)k− j u

)
(τ ′, ξ ′)|2

) 1
2
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= C2

∥∥
∥(1 + |
x |1/2)k− j u

∥∥
∥
r−σ+σ ′ .

Hence (5.6) and the last inequalities show that

∥∥∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u
∥∥∥
r−σ

≤ C3

k∑

j=0

(
k

j

)
h j
2m j j !

∥∥∥(1 + |
x |1/2)k− j u
∥∥∥
r−σ+σ ′ ,

where C3 = C1C2. Hence we can write (for k ≥ 1)

∥∥
∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u

∥∥
∥
r−σ

≤ C3

( ∥
∥∥(1 + |
x |1/2)ku

∥
∥∥
r−σ+σ ′ + hk2mkk! ‖u‖r−σ+σ ′ + (D)

)
, (5.7)

where

(D) =
k−1∑

j=1

(
k

j

)
h j
2m j j !

∥∥∥(1 + |
x |1/2)k− j u
∥∥∥
r−σ+σ ′

=
k−1∑

j=1

k!
(k − j)!h

j
2m j

∥∥
∥(1 + |
x |1/2)k− j u

∥∥
∥
r−σ+σ ′ .

In order to estimate (D) we first recall the Young’s inequality:

ab ≤ a p

p
+ bq

q
, ∀a, b ≥ 0,

1

p
+ 1

q
= 1.

For 1 ≤ j ≤ k − 1 we choose p = k
k− j and q = k

j . Thus for any ξ ∈ Z
n and ρ > 0

we have

(1 + |ξ |)k− j = (1 + |ξ |)k− j ρ
k− j
k ρ

j−k
k

≤
(
(1 + |ξ |)k− j ρ

k− j
k

) k
k− j

k
k− j

+
(
ρ

j−k
k

) k
j

k
j

= k − j

k
(1 + |ξ |)kρ + j

k
ρ

− k− j
j .

Now for each j ∈ {1, . . . , k − 1} and ρ j > 0 that will be chosen later we obtain

∥∥∥(1 + |
x |1/2)k− j u
∥∥∥
2

r−σ+σ ′

=
∑

τ ′,ξ ′
(1 + |(τ, ξ)|)2r−2σ+2σ ′

(1 + |ξ |)2k−2 j ∣∣û(τ, ξ)
∣
∣2

≤
∑

τ ′,ξ ′
(1 + |(τ, ξ)|)2r−2σ+2σ ′

(
k − j

k
(1 + |ξ |)kρ j + j

k
ρ

− k− j
j

j

)2
∣
∣û(τ, ξ)

∣
∣2
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≤ 2
∑

τ ′,ξ ′
(1 + |(τ, ξ)|)2r−2σ+2σ ′

⎡

⎣
(
k − j

k

)2
(1 + |ξ |)2kρ2j +

(
j

k
ρ

− k− j
j

j

)2
⎤

⎦
∣∣û(τ, ξ)

∣∣2

= 2

(
k − j

k

)2
ρ2j

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥
2

r−σ+σ ′ + 2

(
j

k
ρ

− k− j
j

j

)2

‖u‖2r−σ+σ ′ .

Thus we conclude that

(D) ≤ √
2
k−1∑

j=1

k!
(k − j)!h

j
2m j

(
k − j

k

)
ρ j

∥∥
∥(1 + |
x |1/2)ku

∥∥
∥
r−σ+σ ′

+ √
2
k−1∑

j=1

k!
(k − j)!

j

k
h j
2m jρ

− k− j
j

j ‖u‖r−σ+σ ′

= √
2
k−1∑

j=1

(k − 1)!
(k − j − 1)!h

j
2m jρ j

∥∥∥(1 + |
x |1/2)ku
∥∥∥
r−σ+σ ′

︸ ︷︷ ︸
=̇ (D1)

+ √
2
k−1∑

j=1

(k − 1)!
(k − j)! jh

j
2m jρ

− k− j
j

j ‖u‖r−σ+σ ′

︸ ︷︷ ︸
=̇ (D2)

. (5.8)

If we take ρ j = h− j
2 m−1

j
(k− j−1)!
(k−1)!

1√
22 j , then

(D1) ≤
k−1∑

j=1

1

2 j

∥∥∥(1 + |
x |1/2)ku
∥∥∥
r−σ+σ ′ ≤

∥∥∥(1 + |
x |1/2)ku
∥∥∥
r−σ+σ ′ . (5.9)

In order to deal with (D2) first notice that

(D2) = √
2
k−1∑

j=1

(k − 1)!
(k − j)! jh

j
2m jρ

− k
j

j ρ j ‖u‖r−σ+σ ′

≤
k−1∑

j=1

j

2 j

(k − j − 1)!
(k − j)! ρ

− k
j

j ‖u‖r−σ+σ ′

=
k−1∑

j=1

j

2 j

(k − j − 1)!
(k − j)!

(
h− j
2 m−1

j
(k − j − 1)!

(k − 1)!
1√
22 j

)− k
j ‖u‖r−σ+σ ′

=
k−1∑

j=1

j

2 j

(k − j − 1)!
(k − j)!

(
h j
2m j

(k − 1)!
(k − j − 1)!

√
22 j

) k
j ‖u‖r−σ+σ ′
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≤
k−1∑

j=1

j

2 j

(k − j − 1)!
(k − j)! (2

√
2h2)

k
(
m j

(k − 1)!
(k − j − 1)!

) k
j ‖u‖r−σ+σ ′ . (5.10)

Since

j
(k − j − 1)!

(k − j)! ≤ j ≤ k ≤ 2k, ∀1 ≤ j ≤ k − 1

and (recall Proposition 2.2 (item ii))

(
m j

(k − 1)!
(k − j − 1)!

) k
j ≤

[
m j (k − 1) j

] k
j ≤

(
m

1
j
j

)k

kk ≤
(
m

1
k
k

)k

ekk! = ekmkk!

we obtain from (5.10) that

(D2) ≤ (4
√
2h2e)

kmkk! ‖u‖r−σ+σ ′
k−1∑

j=1

1

2 j
≤ hk3mkk! ‖u‖r−σ+σ ′ , (5.11)

where h3 = 4
√
2h2e. From (5.8), (5.9) and (5.11) we have that

(D) ≤ (D1) + (D2) ≤
∥∥∥(1 + |
x |1/2)ku

∥∥∥
r−σ+σ ′ + hk3mkk! ‖u‖r−σ+σ ′ .

This last inequality and (5.7) yield

∥∥∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u
∥∥∥
r−σ

≤ C3

(
2
∥∥∥(1 + |
x |1/2)ku

∥∥∥
r−σ+σ ′ +

(
hk2 + hk3

)
mkk! ‖u‖r−σ+σ ′

)
. (5.12)

If h4 = max{h2, h3} then

hk2 + hk3 ≤ 2hk4

and from (5.12) we conclude, taking C4 = 2C3, that

∥
∥∥(1 + |
x |1/2)kb(t, x, Dt , Dx )u

∥
∥∥
r−σ

≤ C4

( ∥∥∥(1 + |
x |1/2)ku
∥∥∥
r−σ+σ ′ + hk4mkk! ‖u‖r−σ+σ ′

)
. (5.13)

From (5.3), (5.13), the inequality r − σ + σ ′ ≤ −1 and supposing that C4 ≥ 1, we
obtain that
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∥∥∥(1 + |
x |1/2)ku
∥∥∥
0

≤ C
( ∥∥
∥(1 + |
x |1/2)k Pu

∥∥
∥
r−σ

+ C4

( ∥∥
∥(1 + |
x |1/2)ku

∥∥
∥
r−σ+σ ′

+ hk4mkk! ‖u‖r−σ+σ ′
)

+
∥∥
∥(1 + |
x |1/2)ku

∥∥
∥−1

)

≤ C4C
( ∥∥∥(1 + |
x |1/2)k Pu

∥∥∥
r−σ

+ hk4mkk! ‖u‖r−σ+σ ′ + 2
∥∥∥(1 + |
x |1/2)ku

∥∥∥−1

)

≤ C5

( ∥∥∥(1 + |
x |1/2)k Pu
∥∥∥
r−σ

+ hk4mkk! ‖u‖r−σ+σ ′ +
∥∥∥(1 + |
x |1/2)ku

∥∥∥−1

)
,

where C5 = 2C4C . Now we can use Proposition 4.1 and we obtain C6, h5 > 0
such that

∥
∥∥(1 + |
x |1/2)k Pu

∥
∥∥
r−σ

≤ C6h
k
5mkk!, ∀ k ∈ Z+,

so by supposing that C6 ≥ 1 and considering h6 = max {h4, h5} we have
∥∥∥(1 + |
x |1/2)ku

∥∥∥
0

≤ C5

(
C6h

k
5mkk! + hk4mkk! ‖u‖r−σ+σ ′ +

∥∥∥(1 + |
x |1/2)ku
∥∥∥−1

)

≤ C5

(
(C6h

k
5 + hk4) ‖u‖r−σ+σ ′ mkk! +

∥∥∥(1 + |
x |1/2)ku
∥∥∥−1

)

≤ C5C6

(
2hk6 ‖u‖r−σ+σ ′ mkk! +

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥−1

)

≤ C5C62
(
hk6 ‖u‖r−σ+σ ′ mkk! +

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥−1

)

≤ C5C62(1 + ‖u‖r−σ+σ ′ )
(
hk6mkk! +

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥−1

)

= C7

(
hk6mkk! +

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥−1

)
, (5.14)

where C7 = 2C5C6(1 + ‖u‖r−σ+σ ′). Since

∥
∥∥(1 + |
x |1/2)ku

∥
∥∥
2

−1
=

∑

τ,ξ

(1 + |(τ, ξ)|)−2(1 + |ξ |)2k |û(τ, ξ)|2

≤
∑

τ,ξ

(1 + |ξ |)−2(1 + |ξ |)2k |û(τ, ξ)|2

=
∥∥
∥(1 + |
x |1/2)k−1u

∥∥
∥
2

0
,

from (5.14) we obtain

∥∥∥(1 + |
x |1/2)ku
∥∥∥
0

≤ C7

(
hk6mkk! +

∥∥∥(1 + |
x |1/2)k−1u
∥∥∥
0

)
, ∀k ∈ N.(5.15)

Nowwe claim that ifC8 > 0 and M > 1 satisfyC8 ≥ ‖u‖0 andC7

(
1
C8

+ 1
Mh6

)
≤

1 then
∥∥∥(1 + |
x |1/2)ku

∥∥∥
0

≤ C8(Mh6)
kmkk!, ∀k ∈ Z+. (5.16)
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The proof of (5.16) will be done by induction on k ∈ Z+. For k = 0, (5.16) is a
consequence of our choice of C8 and for the induction step we first use (5.15) and it
follows from the induction hypothesis that

∥∥∥(1 + |
x |1/2)ku
∥∥∥
0

≤ C7

(
hk6mkk! + C8(Mh6)

k−1mk−1(k − 1)!
)

= C8(Mh6)
kmkk!C7

(
1

C8Mk
+ mk−1(k − 1)!

Mh6mkk!
)

.

Hence it suffices to prove that C7

(
1

C8Mk + mk−1(k−1)!
Mh6mkk!

)
≤ 1 for every k ∈ Z+. By

using again that the sequencemkk! is increasing and our choices ofC8 and M we have

C7

(
1

C8Mk
+ mk−1(k − 1)!

Mh6mkk!
)

≤ C7

(
1

C8Mk
+ 1

Mh6

)

≤ C7

(
1

C8
+ 1

Mh6

)

≤ 1.

We now use Lemma 4.2 and the proof is complete. ��

6 Proof of Theorem 1.4

Since DM
pσ

(TN ) ⊂ Spσ (TN ), see 2.2, in this section we shall prove that when the
operator a(t, Dt , Dx ) is globally hypoelliptic with loss of derivatives, then the hypoth-
esis u ∈ C∞ (Tm × T

n) of Theorem 1.3 can be dropped. First we recall the notion of
global hypoellipticity with loss of derivatives (see [4]).

Definition 6.1 We say that the an operator a(x, D) ∈ Spσ (TN ) is globally hypoel-
liptic with loss of R derivatives if for any distribution u ∈ D′(TN ) such that
a j (x, D)u ∈ Ht (TN ) for some t ∈ R, we have u ∈ Ht+σ−R(TN ).

The next result improves the information of Lemma 3.1 when the operator is
globally hypoelliptic with loss of derivatives.

Lemma 6.2 Let a(x, D) ∈ Spσ (TN ) be a globally hypoelliptic pseudodifferential
operator with loss of R ≥ 0 derivatives. If σ ′ < σ − R then for each t ∈ R there
exists a constant C = Ct > 0 such that

‖ϕ‖t+σ−R ≤ C
(‖a(x, D)ϕ‖t + ‖u‖t+σ ′

)
, ∀ϕ ∈ C∞(TN ). (6.1)

Proof For t ∈ R fixed we define the set

Ft (T
N ) =

{
v ∈ Ht+σ ′

(TN ) : a j (x, D)v ∈ Ht (TN ), j = 1, . . . ,m
}
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and we consider the following norm in Ft (T
N ):

|||v|||=̇ ‖v‖t+σ ′ + ‖a(x, D)v‖t , ∀ v ∈ Ft .

Since (Ft (T
N ), |||v|||) is a Banach space then by using the Closed Graph Theorem

one can prove that the inclusion i : Ft (T
N ) −→ Ht+σ−R(TN ) is continuous and the

proof is complete. ��
Proof of Theorem 1.4 Since a(t, Dx , Dt ) has order σ ∈ R and is globally hypoelliptic
with loss of R > 0 derivatives then a(t, Dx , Dt ) is globally hypoelliptic on T

N . By
using that σ ′ ≤ σ −R−2 < σ −R, it follows fromTheorem 3.4 in [4] that the operator
a(t, Dx , Dt ) + b(x, t, Dx , Dt ) has order σ and loses R derivatives what guarantees
that it is globally hypoelliptic on T

N . Thus we conclude that u ∈ C∞(TN ).
Now if we take t = R − σ + 1 in (6.1), we obtain C > 0 such that

‖ϕ‖1 ≤ C
(‖a(x, D)ϕ‖R−σ+1 + ‖ϕ‖R−σ+1+σ ′

)

≤ C
(‖a(x, D)ϕ‖R−σ+1 + ‖ϕ‖−1

)
, ∀ϕ ∈ C∞ (

T
m × T

n) .

Let j ∈ Z be the smallest integer greater than or equal to R − σ + 1. Then

‖ϕ‖1 ≤ C
(‖a(x, D)ϕ‖ j + ‖u‖−1

)

that is precisely the inequality of Lemma 3.1. Now the proof is an easy consequence
of Theorem 1.3, or more specifically, of its proof: from (5.1), if

σ ′ ≤ σ − r − 1 = σ − j − σ − 1 = − j − 1 ≤ σ − R − 2,

then u ∈ EM
(
T
N
)
. The proof is complete. ��
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