

Affine Phase Retrieval for Sparse Signals via *-***1 Minimization**

Meng Huang[1](http://orcid.org/0000-0003-2971-7585) · Shixiang Sun2,3 · Zhiqiang Xu2,[3](http://orcid.org/0000-0002-3995-4448)

Received: 21 September 2021 / Revised: 27 February 2023 / Accepted: 30 May 2023 / Published online: 12 June 2023 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the ℓ_1 minimization to exploit the sparsity of signals for affine phase retrieval, showing that $O(k \log(en/k))$ Gaussian random measurements are sufficient to recover all *k*-sparse signals by solving a natural ℓ_1 minimization program, where *n* is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural ℓ_1 minimization program for affine phase retrieval is stable.

Keywords Phase retrieval \cdot Sparse signals $\cdot \ell_1$ minimization \cdot Compressed sensing

Mathematics Subject Classification 94A12 · 60B20

Communicated by Jaming Philippe.

 \boxtimes Meng Huang menghuang@buaa.edu.cn

> Shixiang Sun sunshixiang@lsec.cc.ac.cn

Zhiqiang Xu xuzq@lsec.cc.ac.cn

- ¹ School of Mathematical Sciences, Beihang University, Beijing 100191, China
- ² LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- ³ School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

1 Introduction

1.1 Problem Setup

Affine phase retrieval for sparse signals aims to recover a *k*-sparse signal $x_0 \in \mathbb{F}^n$, $\mathbb{F} \in \{ \mathbb{R}, \mathbb{C} \}$, from the observed data

$$
y_j = |\langle \boldsymbol{a}_j, \boldsymbol{x}_0 \rangle + b_j| + w_j, \quad j = 1, \ldots, m,
$$

where $a_j \in \mathbb{F}^n$, $j = 1, \ldots, m$ are given measurement vectors, $b := (b_1, \ldots, b_m)^T \in$ \mathbb{F}^m is the given bias vector, and $\mathbf{w} := (w_1, \dots, w_m)^\mathrm{T} \in \mathbb{R}^m$ is the noise vector. The affine phase retrieval arises in several practical applications, such as holography [\[2](#page-23-0), [20,](#page-24-0) [26,](#page-24-1) [27\]](#page-24-2) and Fourier phase retrieval [\[3](#page-23-1)[–5](#page-23-2), [23](#page-24-3)], where some side information of signals is a priori known before capturing the magnitude-only measurements.

The aim of this paper is to study the following program to recover x_0 from $y :=$ $(v_1, \ldots, v_m)^T \in \mathbb{R}^m$:

$$
\min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{x}\|_1 \quad \text{s.t. } \|\|\mathbf{A}\mathbf{x} + \mathbf{b}\| - \mathbf{y}\|_2 \le \epsilon,
$$
\n⁽¹⁾

where $A := [a_1, \ldots, a_m]^* \in \mathbb{F}^{m \times n}$.

Particularly, we focus on the following questions:

Question 1: Assume that a_j , $j = 1, \ldots, m$, are Gaussian random measurements with $m = O(k \log(en/k))$. In the absence of noise, i.e., $\mathbf{w} = 0$, $\epsilon = 0$, is the solution to (1) $x₀$?

Question 2: In the noisy scenario, is the program [\(1\)](#page-1-0) stable under small perturbation?

For the case where $x_0 \in \mathbb{C}^n$ is non-sparse, it was shown that $m \geq 4n - 1$ generic measurements are sufficient to guarantee the uniqueness of solutions in [\[19\]](#page-24-4), and several efficient algorithms with linear convergence rate was proposed to recover the non-sparse signals x_0 from *y* under $m = O(n \log n)$ Gaussian random measurements in [\[25](#page-24-5)]. However, for the case where x_0 is sparse, to the best of our knowledges, there is no result about it.

1.2 Related Works

1.2.1 Phase Retrieval

The noisy phase retrieval is the problem of recovering a signal $x_0 \in \mathbb{F}^n$, $\mathbb{F} \in \{ \mathbb{R}, \mathbb{C} \}$ from the magnitude-only measurements

$$
y'_{j} = | \langle a_{j}, x_{0} \rangle | + w_{j}, \quad j = 1, \ldots, m,
$$

where $a_j \in \mathbb{F}^n$ are given measurement vectors and $w_j \in \mathbb{R}$ are noises. It arises naturally in many areas such as X-ray crystallography $[21, 22, 28]$ $[21, 22, 28]$ $[21, 22, 28]$ $[21, 22, 28]$ $[21, 22, 28]$, coherent diffractive imaging [\[30](#page-24-9)], and optics [\[14,](#page-23-3) [15,](#page-23-4) [32\]](#page-24-10). In these settings, optical detectors record only the intensity of a light wave while losing the phase information. Note that $|(a_j, x_0)|^2$ = $|\Psi_j, \mathbf{x}_{0'}|$ $|\langle a_j, e^{i\theta} x_0 \rangle|^2$ for any $\theta \in \mathbb{R}$. Therefore the recovery of x_0 for the classical phase $\begin{bmatrix} (u_j, e^{-u_j})' \end{bmatrix}$ for any $v \in \mathbb{R}$. Therefore the recovery of x_0 for the classical phase
retrieval is up to a global phase. In the absence of noise, it has been proved that $m > 2n - 1$ generic measurements suffice to guarantee the uniqueness of solutions for the real case [\[1](#page-23-5)], and $m > 4n - 4$ for the complex case [\[6](#page-23-6), [13,](#page-23-7) [38\]](#page-24-11), respectively. Moreover, several efficient algorithms have been proposed to reconstruct x_0 from $y' := [y'_1, \ldots, y'_m]^T$, such as alternating minimization [\[29\]](#page-24-12), truncated amplitude flow [\[37](#page-24-13)], smoothed amplitude flow [\[7](#page-23-8)], trust-region [\[33\]](#page-24-14), and the Wirtinger flow (WF) variants [\[9,](#page-23-9) [10,](#page-23-10) [41\]](#page-24-15).

1.2.2 Sparse Phase Retrieval

For several applications, the underlying signal is naturally sparse or admits a sparse representation after some linear transformation. This leads to the sparse phase retrieval:

$$
\min_{\mathbf{x} \in \mathbb{F}^n} \|\mathbf{x}\|_0 \quad \text{s.t. } \|\|A\mathbf{x}\| - \mathbf{y}'\|_2 \le \epsilon,
$$
\n(2)

where $A := [a_1, \ldots, a_m]^*$. In the absence of noise, it has been established that $m = 2k$ generic measurements are necessary and sufficient for uniquely recovering of all *k*sparse signals in the real case, and $m \ge 4k - 2$ are sufficient in the complex case [\[39](#page-24-16)]. In the noisy scenario, $O(k \log(en/k))$ measurements suffice for stable sparse phase retrieval [\[12\]](#page-23-11). Due to the hardness of ℓ_0 -norm in [\(2\)](#page-2-0), a computationally tractable approach to recover x_0 is by solving the following ℓ_1 minimization:

$$
\min_{\mathbf{x} \in \mathbb{F}^n} \|\mathbf{x}\|_1 \quad \text{s.t. } \|\|A\mathbf{x}\| - \mathbf{y}'\|_2 \le \epsilon. \tag{3}
$$

For the real case, based on the strong restricted isometry property (SRIP) estab-lished by Voroninski and Xu [\[34\]](#page-24-17), the authors in [\[18](#page-23-12)] proved that, if a_1, \ldots, a_m $1/\sqrt{m} \cdot \mathcal{N}(0, I_n)$ are i.i.d. Gaussian random vectors with $m \geq O(k \log(en/k))$, then the solution $\hat{x} \in \mathbb{R}^n$ to [\(3\)](#page-2-1) satisfies

$$
\min\left\{\|\widehat{\mathbf{x}}-\mathbf{x}_0\|,\|\widehat{\mathbf{x}}+\mathbf{x}_0\|\right\}\lesssim \epsilon+\frac{\sigma_k(\mathbf{x}_0)_1}{\sqrt{k}},
$$

where $\sigma_k(x_0)_1 := \min_{|\text{supp}(x)| \leq k} ||x - x_0||_1$. Lately, this result was extended to the complex case by employing the "phaselift" technique in [\[36\]](#page-24-18). Specifically, the authors in [\[36](#page-24-18)] showed that, for any *k*-sparse signal $x_0 \in \mathbb{C}^n$, the solution $\hat{x} \in \mathbb{C}^n$ to the program

$$
\underset{\mathbf{x}\in\mathbb{C}^n}{\text{argmin}} \quad \|\mathbf{x}\|_1 \quad \text{s.t. } \|\mathcal{A}(\mathbf{x}) - \mathcal{A}(\mathbf{x}_0)\|_2 \leq \epsilon
$$

satisfies

$$
\min_{\theta \in [0,2\pi)} \|\widehat{\mathbf{x}} - e^{i\theta} \mathbf{x}_0\|_2 \lesssim \frac{\epsilon}{\sqrt{m} \|\mathbf{x}_0\|_2},
$$

provided $a_1, \ldots, a_m \sim \mathcal{N}(0, I_n)$ are i.i.d. complex Gaussian random vectors and $m \ge O(k \log(en/k)).$ Here, $\mathcal{A}(x) := (|a_1^* x|^2, \ldots, |a_m^* x|^2).$

1.2.3 Affine Phase Retrieval

The affine phase retrieval aims to recover a signal $x_0 \in \mathbb{F}^n$, $\mathbb{F} \in \{ \mathbb{R}, \mathbb{C} \}$, from the measurements

$$
y_j = | \langle a_j, x_0 \rangle + b_j |, \quad j = 1, \ldots, m,
$$

where $a_j \in \mathbb{F}^n$, $j = 1, \ldots, m$ are measurement vectors, $b := (b_1, \ldots, b_m)^T \in \mathbb{F}^m$ is the bias vector. The problem can be regarded as the classic phase retrieval with a priori information, and is raised in many areas, such as holographic phase retrieval [\[16,](#page-23-13) [17,](#page-23-14) [27\]](#page-24-2) and Fourier phase retrieval [\[3](#page-23-1)[–5,](#page-23-2) [23](#page-24-3)]. In such scenarios, one needs to employ some additional information about the desired signals to ensure the uniqueness of solutions. Specifically, in holographic optics, a reference signal $r \in \mathbb{C}^k$, whose structure is a priori known, is included in the diffraction patterns alongside the signal of interest $x_0 \in \mathbb{C}^n$ [\[2](#page-23-0), [20](#page-24-0), [26](#page-24-1)]. Set $x'_0 = (x_0^T, r^T)^T \in \mathbb{C}^{n+k}$. Then the magnitude-only measurements we obtain that

$$
y_j = |\langle \boldsymbol{a}'_j, \boldsymbol{x}'_0 \rangle| = |\langle \boldsymbol{a}_j, \boldsymbol{x}_0 \rangle| \langle \boldsymbol{a}''_j, \boldsymbol{r} \rangle| = |\langle \boldsymbol{a}_j, \boldsymbol{x}_0 \rangle| + b_j|, \quad j = 1, \ldots, m,
$$

where $a'_j = (a_j^T, a_j'^T)^T \in \mathbb{C}^{n+k}$ are given measurement vectors and $b_j = \langle a''_j, r \rangle \in \mathbb{C}$ are known. Therefore, the holographic phase retrieval can be viewed as the affine phase retrieval.

Another application of affine phase retrieval arises in Fourier phase retrieval problem. For one-dimensional Fourier phase retrieval problem, it usually does not possess the uniqueness of solutions $[35]$ $[35]$. Actually, for a given signal with dimension *n*, beside the trivial ambiguities caused by shift, conjugate reflection and rotation, there still could be 2^{n-2} nontrivial solutions. To enforce the uniqueness of solutions, one approach is to use additionally known values of some entries [\[4](#page-23-15)], which can be recast as affine phase retrieval. More related works on the uniqueness of solutions for Fourier phase retrieval can be seen in [\[11](#page-23-16), [31\]](#page-24-20).

1.3 Our Contributions

In this paper, we focus on the recovery of sparse signals from the magnitude of affine measurements. Specifically, we aim to recover a *k*-sparse signal $x_0 \in \mathbb{F}^n$ ($\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) from the data

$$
y=|Ax_0+b|+w,
$$

where $A := [a_1, \ldots, a_m]^* \in \mathbb{F}^{m \times n}$ is the measurement matrix, $b \in \mathbb{F}^m$ is the bias vector, and $\mathbf{w} \in \mathbb{R}^m$ is the noise vector. Our aim is to present the performance of the following ℓ_1 minimization program:

$$
\underset{x \in \mathbb{F}^n}{\operatorname{argmin}} \|x\|_1 \quad \text{s.t. } \| |Ax + b| - y \|_2 \le \epsilon. \tag{4}
$$

We say a triple (A, b, Δ) is *instance optimal of order* k_0 if it holds

$$
\|\Delta(|Ax+b|)-x\|_p \leq C \cdot \sigma_{k_0}(x)_q \tag{5}
$$

for all $x \in \mathbb{F}^n$. Here, $\Delta : \mathbb{R}^m \to \mathbb{F}^n$ is a decoder for reconstructing $x, \sigma_k(x)_a :=$ $\min_{|\text{supp}(z)| \leq k} ||z - x||_q$ and $C := C_{k_0, p, q}$ is a constant depending on k_0 , p and q .

Theorem 1 *Assume that there exists a matrix* $A \in \mathbb{F}^{m \times n}$, *a vector* $b \in \mathbb{F}^m$, *a decoder* Δ : $\mathbb{F}^m \to \mathbb{F}^n$ *and positive integers* k_0 , p , q *such that [\(5\)](#page-4-0) holds for all* $\mathbf{x} \in \mathbb{F}^n$. *Then* $b \notin \{Az : z \in \mathbb{F}^n\}.$

Proof We assume that $b = Az_0$ where $z_0 \in \mathbb{F}^n$. We next show that there exits $x \in \mathbb{F}^n$ such that [\(5\)](#page-4-0) does not hold. For the aim of contradiction, we assume that [\(5\)](#page-4-0) holds. Since $\sigma_{k_0}(-x)_q = \sigma_{k_0}(x)_q$, we have

$$
\|\Delta(|Ax - b|) + x\|_p = \|\Delta(|A(-x) + b|) - (-x)\|_p \le C\sigma_{k_0}(x)_q.
$$
 (6)

Assume that $x_0 \in \mathbb{F}^n$ is k_0 -sparse, i.e. $\sigma_{k_0}(x_0)_q = 0$. According to [\(5\)](#page-4-0) and [\(6\)](#page-4-1), we obtain that

$$
\Delta(|Ax_0 + b|) = x_0, \quad \Delta(|Ax_0 - b|) = -x_0. \tag{7}
$$

Taking $x = rx_0 + 2z_0$ in [\(6\)](#page-4-1), we have

$$
\|\Delta(|A(rx_0+2z_0)-\boldsymbol{b}|)+rx_0+2z_0\|_p\leq C\sigma_{k_0}(rx_0+2z_0)_q\leq C\sigma_{k_0}(2z_0)_q,\quad (8)
$$

where $r > 0$. Observe that

$$
\Delta(|A(rx_0+2z_0)-b|)=\Delta(|A(rx_0)+b|)=rx_0.
$$
 (9)

Here, we use x_0 is k_0 -sparse. Substituting [\(8\)](#page-4-2) into [\(9\)](#page-4-3), we obtain that

$$
||2rx_0 + 2z_0||_p \leq C\sigma_{k_0}(2z_0)_q \tag{10}
$$

holds for any *r* > 0. Note $\lim_{r\to\infty} ||2rx_0 + 2z_0||_p = \infty$. Hence, [\(10\)](#page-4-4) does not hold provided *r* is large enough. A contradiction! provided *r* is large enough. A contradiction!

For the case where $m \le n$ and A is full rank, we have $b \in \{Az : z \in \mathbb{F}^n\}$. According to Theorem[1,](#page-4-5) we know that it is impossible to build the instance-optimality result under this setting. This is quite different from the earlier results on standard phase retrieval [\[18](#page-23-12)], where the instance-optimality is

$$
\min_{|c|=1} \|\Delta(|Ax|) - cx\|_p \le C \cdot \sigma_{k_0}(x)_q, \text{ for all } x \in \mathbb{F}^n.
$$
 (11)

The instance-optimality result for the standard phase retrieval, as expressed in equation (11) , is established in [\[18\]](#page-23-12).

1.3.1 Real Case

Our first result gives an upper bound for the reconstruct error of (4) in the real case, under the assumption of $a_1, \ldots, a_m \in \mathbb{R}^n$ being real Gaussian random vectors and $m \geq O(k \log(en/k))$. It means the ℓ_1 -minimization program is stable under small perturbation, even for the approximately *k*-sparse signals. To begin with, we need the following definition of strong RIP condition, which was introduced by Voroninski and Xu [\[34\]](#page-24-17).

Definition 1 (Strong RIP in [\[34](#page-24-17)]) The matrix $A \in \mathbb{R}^{m \times n}$ satisfies the Strong Restricted Isometry Property (SRIP) of order *k* and constants θ_l , $\theta_u > 0$ if the following inequality

$$
\theta_l \|x\|^2 \le \min_{I \subset [m], |I| \ge m/2} \|A_I x\|^2 \le \max_{I \subset [m], |I| \ge m/2} \|A_I x\|^2 \le \theta_u \|x\|^2
$$

holds for all *k*-sparse signals $x \in \mathbb{R}^n$. Here, A_I denotes the sub-matrix of *A* whose rows with indices in *I* are kept, $[m] := \{1, \ldots, m\}$ and $|I|$ denotes the cardinality of *I*.

The following result indicates that the matrix $\begin{bmatrix} A & b \end{bmatrix} \in \mathbb{R}^{m \times (n+1)}$ satisfies strong RIP condition with high probability under some mild conditions on $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^m$.

Theorem 2 *Let* $A \in \mathbb{R}^{m \times n}$ *be a Gaussian random matrix with entries* $a_{k,j} \sim$ $\mathcal{N}(0, 1/m)$ *. Suppose that the vector* $\mathbf{b} \in \mathbb{R}^m$ *satisfies* $\alpha \leq ||\mathbf{b}_I||_2 \leq \beta$ for all $I \subseteq [m]$ $\mathsf{with} \, |I| \geq m/2, \, \mathsf{where} \, \alpha \leq \beta \, \mathsf{are} \, \mathsf{two} \, \mathsf{positive} \, \mathsf{constants}. \, \mathsf{Set} \, A' := \bigl[A \,\, b \bigr] \in \mathbb{R}^{m \times (n+1)}.$ *If* $m \geq Ct(k+1)\log(en/k)$ *with* $t(k+1) \leq n$ *and* $1 < t \in \mathbb{Z}$ *, then there exist constants* θ'_{l} , θ'_{u} , independent with t, such that the matrix A' satisfies the strong RIP of *order tk* + 1 *and constants* θ'_{l} , θ'_{u} *with probability at least* 1 − 4 exp($-c'm$)*. Here,* $C, c' > 0$ *are constants depending only on* α *and* β *.*

The following theorem shows that if we add some restrictions on the signal x , then the instance-optimality result can be established.

Theorem 3 Assume that $A' := [A \ b] \in \mathbb{R}^{m \times (n+1)}$ satisfies the strong RIP of order $(a + 1)(k + 1)$ *with constants* $\theta_u \geq \theta_l > 0$. If $a > \theta_u/\theta_l$, then the following holds: *for any vector* $\mathbf{x}_0 \in \mathbb{R}^n$, the solution $\hat{\mathbf{x}}$ *to* [\(4\)](#page-4-7) with $\mathbf{y} = |A\mathbf{x}_0 + \mathbf{b}| + \mathbf{w}$ and $\|\mathbf{w}\|_2 \leq \epsilon$ *obeys*

$$
\|\widehat{\mathbf{x}}-\mathbf{x}_0\|_2 \leq K_1\epsilon + K_2 \frac{\sigma_k(\mathbf{x}_0)_1}{\sqrt{a(k+1)}},
$$

provided $K_1 \epsilon + K_2 \frac{\sigma_k(x_0)_1}{\sqrt{a(k+1)}} < 2$ *. Here,*

$$
K_1:=\frac{2\left(1+1/\sqrt{a}\right)}{\sqrt{\theta_l}-\sqrt{\theta_u}/\sqrt{a}}>0,\quad K_2:=\sqrt{\theta_u}K_1+2.
$$

From Theorem [2,](#page-5-0) we know that if $A \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix with entries $a_{k,i} \sim \mathcal{N}(0, 1/m)$ and the sampling complexity $m \geq C(a+1)(k+1)$ 2) $\log(en/k)$, then with high probability the matrix $A' := [A \ b]$ satisfies strong RIP condition of order $(a+1)(k+1)$ with constants θ_l , $\theta_u > 0$ under some mild conditions on \boldsymbol{b} . Here, the constants θ_l , θ_u are independent with *a*. Therefore, taking the constant $a > \theta_u/\theta_l$, the conclusion of Theorem [3](#page-5-1) holds with high probability.

In the absence of noise, i.e., $\mathbf{w} = 0$, $\epsilon = 0$, Theorem [3](#page-5-1) shows that if $\mathbf{a}_1, \ldots, \mathbf{a}_m$ ∼ $1/\sqrt{m} \cdot \mathcal{N}(0, I_n)$ are real Gaussian random vectors and $m \geq O(k \log(en/k))$, then all the *k*-sparse signals $x_0 \in \mathbb{R}^n$ could be reconstructed exactly by solving the program [\(4\)](#page-4-7) under some mild conditions on *b*. We state it as the following corollary:

Corollary 1 *Let* $A \in \mathbb{R}^{m \times n}$ *be a Gaussian random matrix with entries* a_{ik} ∼ $\mathcal{N}(0, 1/m)$ *, and* $\mathbf{b} \in \mathbb{R}^m$ *be a vector satisfying* $\alpha \leq ||\mathbf{b}_I||_2 \leq \beta$ *for all* $I \subseteq [m]$ *with* $|I| \ge m/2$, where $\alpha \le \beta$ are two positive universal constants. If $m \ge Ck \log(en/k)$, *then with probability at least* $1-4 \exp(-cm)$ *it holds: for any k-sparse signal* $x_0 \in \mathbb{R}^n$, *the* -¹ *minimization*

$$
\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|x\|_1 \quad \text{s.t.} \quad |Ax + b| = y
$$

with $y = |Ax_0 + b|$ *has a unique solution* x_0 *. Here C,* $c > 0$ *are constants depending only on* α *and* β *.*

1.3.2 Complex Case

We next turn to consider the estimation performance of [\(4\)](#page-4-7) for the complex-valued signals. Let $\mathbb{H}^{n \times n}$ be the set of Hermitian matrix in $\mathbb{C}^{n \times n}$ and $\|H\|_{0,2}$ denotes the number of non-zero rows in *H*. Given $a_1, \ldots, a_m \in \mathbb{C}^n$ and $b_1, \ldots, b_m \in \mathbb{C}$, we define a linear map $A' : H' \in \mathbb{H}^{(n+1)\times(n+1)} \to \mathbb{R}^m$ as follows:

$$
\mathcal{A}'(\boldsymbol{H}') = (\boldsymbol{a}_1'^* \boldsymbol{H}' \boldsymbol{a}_1', \dots, \boldsymbol{a}_m'^* \boldsymbol{H}' \boldsymbol{a}_m'),\tag{12}
$$

where $a'_j := \begin{pmatrix} a_j \\ b_j \end{pmatrix}$ $\Big) \in \mathbb{C}^{n+1}.$

Definition 2 We say the linear map A' defined in [\(12\)](#page-6-0) satisfies the restricted isometry property of order (r, k) with constants $c, C > 0$ if the following holds

$$
c\|H'\|_F \le \frac{1}{m}\|\mathcal{A}'(H')\|_1 \le C\|H'\|_F
$$
\n(13)

for all $\boldsymbol{H}^\prime := \begin{bmatrix} \boldsymbol{H} & \boldsymbol{h} \\ \boldsymbol{h}^* & 0 \end{bmatrix}$ *h*∗ 0 $\left[\in \mathbb{H}^{(n+1)\times(n+1)} \text{ with } \text{rank}(\bm{H}) \leq r, ||\bm{H}||_{0,2} \leq k \text{ and } ||\bm{h}||_{0} \leq k. \right]$

The following theorem shows that the linear map A' satisfies the restricted isometry property over low-rank and sparse matrices, provided $a_1, \ldots, a_m \in \mathbb{C}^n$ are i.i.d. complex Gaussian random vectors and $\mathbf{b} := (b_1, \ldots, b_m)^T \in \mathbb{C}^m$ satisfies some mild conditions.

$$
\frac{\theta^{-}}{12} \|\boldsymbol{H}'\|_{F} \leq \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}')\|_{1} \leq 3\theta^{+} \|\boldsymbol{H}'\|_{F}
$$

for all \boldsymbol{H} ' $:=$ $\begin{bmatrix} \boldsymbol{H} & \boldsymbol{h} \\ \boldsymbol{h}^* & 0 \end{bmatrix}$ *h*∗ 0 \leq $\mathbb{H}^{(n+1)\times(n+1)}$ *with* rank $(H) \leq 2$, $\|H\|_{0,2} \leq k$ *and* $\|h\|_{0} \leq k$. *Here,* $\theta^- := \min(1, c_1/\sqrt{2}), \theta^+ := \max(\sqrt{6}, c_2),$ *and* $C', c' > 0$ *are constants depending only on c₁, c₂.*

With abuse of notation, we denote $A'(x') := A'(x'x'^*)$ for any vector $x' \in \mathbb{C}^{n+1}$. Then we have

Theorem 5 *Assume that the linear map* $\mathcal{A}'(\cdot)$ *satisfies the RIP condition [\(13\)](#page-6-1) of order* $(2, 2ak)$ *with constants c, C > 0. For any k-sparse signal* $x_0 \in \mathbb{C}^n$, *if*

$$
c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right) > 0,
$$

then the solution $\hat{\mathbf{x}} \in \mathbb{C}^n$ *to*

$$
\underset{\mathbf{x}\in\mathbb{C}^n}{\text{argmin}} \quad \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \|\mathcal{A}'(\mathbf{x}') - \tilde{\mathbf{y}}\| \le \epsilon \quad \text{and} \quad \mathbf{x}' = (\mathbf{x}^T, 1)^T
$$

with $\tilde{y} = A'(x'_0) + w$ *,* $||w|| \le \epsilon$ *and* $x'_0 = (x_0^T, 1)^T$ *obeys*

$$
\min_{\theta \in \mathbb{R}} \left(\|\widehat{\mathbf{x}} - e^{i\theta} \mathbf{x}_0\|_2 + \left|1 - e^{i\theta}\right|\right) \leq \frac{C_0 \epsilon}{(\|\mathbf{x}_0\| + 1) \sqrt{m}},
$$

where

$$
C_0 := 2\sqrt{2} \cdot \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)}.
$$

Based on Theorem [4,](#page-6-2) if $a_1, \ldots, a_m \in \mathbb{C}^n$ are i.i.d. complex Gaussian random vectors and $m \geq C'ak \log(en/ak)$, then with high probability the linear map *A*^{*d*} defined in [\(12\)](#page-6-0) satisfies RIP condition of order (2, 2*ak*) with constants $c = \theta^{-1/2}$ and $C = 3\theta^+$ under some mild conditions on **b**. For the noiseless case where $w = 0$, $\epsilon = 0$, taking the constant $a > (8C/c)^2$ and combining with Theorem [5,](#page-7-0) we can obtain the following result.

Corollary 2 *Suppose* $a_1, ..., a_m$ ∼ $1/\sqrt{2} \cdot \mathcal{N}(0, I_n) + i/\sqrt{2} \cdot \mathcal{N}(0, I_n)$ *are i.i.d. complex Gaussian random vectors and* $\mathbf{b} \in \mathbb{C}^m$ *is a independent sub-gaussian random vector (it also may be deterministic) with sub-gaussian norm* $||\boldsymbol{b}||_{\psi_2} \leq C$ and $\mathbb{E}||\boldsymbol{b}||_1 \geq c_1 m$, $\mathbb{E} \|\bm{b}\|_2 \leq c_2 \sqrt{m}$, where $C > 0$, $c_2 \geq c_1 > 0$ are universal constants. If $m \geq$ $C''k \log(en/k)$ *, then with probability at least* $1 - 5 \exp(-c''m)$ *, then the solution to*

$$
\underset{x \in \mathbb{C}^n}{\text{argmin}} \quad \|x\|_1 \quad s.t. \quad |Ax + b| = |Ax_0 + b|
$$

is x_0 *exactly. Here,* C'' , $c'' > 0$ *are constants depending only on c₁, c₂.*

Remark 1 We give an upper bound for $\min_{\theta \in \mathbb{R}} (\|\hat{\mathbf{x}} - e^{i\theta} \mathbf{x}_0\|_2 + |1 - e^{i\theta}|)$ in Theorem 5. However, since the affine phase retrieval can recover a signal exactly (not just up to **[5.](#page-7-0)** However, since the affine phase retrieval can recover a signal exactly (not just up to $5.$ However, since the affine phase retrieval can recover a signal exactly (not just up to a global phase), one may wonder: is there a stable recovery bound for $\|\hat{\mathbf{x}} - \mathbf{x}_0\|_2$? We believe that the answer is no, especially for the case where the noise vector $||\mathbf{w}||_2 \geq 0$ \sqrt{m} . We defer the proof of it for the future work.

1.4 Notations

Throughout the paper, we denote $\mathbf{x} \sim \mathcal{N}(0, I_n)$ if $\mathbf{x} \in \mathbb{R}^n$ is a standard Gaussian random vector. A vector *x* is *k*-sparse if there are at most *k* nonzero entries of *x*. For simplicity, we denote $[m] := \{1, ..., m\}$. For any subset $I \subseteq [m]$, let $A_I = [a_j : j \in I]^*$ be the submatrix whose rows are generated by $A = [a_1, ..., a_m]^*$. Denote $\sigma_k(x_0)_p := \min_{|\text{supp}(x)| \leq k} ||x - x_0||_p$ as the best *k*-term approximation error of x_0 with respect to ℓ_p norm. For a complex number *b*, we use b_{\Re} and b_{\Im} to denote the real and imaginary part of *b*, respectively. For any *A*, $B \in \mathbb{R}$, we use $A \leq B$ to denote $A \leq C_0 B$ where $C_0 \in \mathbb{R}_+$ is an absolute constant. The notion \geq can be defined similarly. Throughout this paper, *c*, *C* and the subscript (superscript) forms of them denote constants whose values vary with the context.

2 Proof of Theorem [2](#page-5-0) and Theorem [3](#page-5-1)

In this section, we consider the estimation performance of the ℓ_1 -minimization program [\(4\)](#page-4-7) for the real-valued signals. Before proceeding, we need the following lemma which shows that if $A \in \mathbb{R}^{m \times n}$ is a real Gaussian random matrix with entries $a_{k,i} \sim \mathcal{N}(0, 1/m)$, then *A* satisfies the strong RIP with high probability.

Lemma 1 (Theorem 2.1 in *[\[34](#page-24-17)]) Suppose that* $t > 1$ *and that* $A \in \mathbb{R}^{m \times n}$ *is a Gaussian random matrix with entries* $a_{k,j} \sim \mathcal{N}(0, 1/m)$ *. Let m* = $O(tk \log(en/k))$ where $k \in [1, d] \cap \mathbb{Z}$ *and* $t \geq 1$ *is a constant. Then there exist constants* θ_l , θ_u *with* $0 < \theta_l$ θ*^u* < 2*, independent with t, such that A satisfies SRIP of order t* · *k and constants* θ_l , θ_u *with probability at least* $1 - \exp(-cm)$ *, where c* > 0 *is a universal constant.*

2.1 Proof of Theorem [2](#page-5-0)

Proof From the definition, it suffices to show there exist constants θ'_l , $\theta'_u > 0$ such that the following inequality

$$
\theta'_l \|x'\|^2 \le \min_{I \subset [m], |I| \ge m/2} \|A'_I x'\|^2 \le \max_{I \subset [m], |I| \ge m/2} \|A'_I x'\|^2 \le \theta'_u \|x'\|^2 \tag{14}
$$

holds for all $(tk + 1)$ -sparse signals $x' \in \mathbb{R}^{n+1}$. To this end, we denote $x' = (x^T, z)^T$, where $x \in \mathbb{R}^n$ and $z \in \mathbb{R}$. We first consider the case where $z = 0$. From Lemma [1,](#page-8-0) we know that if $m \ge t(k + 1) \log(en/(k + 1))$ and $t > 1$, then there exist two positive constants θ_l , $\theta_u \in (0, 2)$ such that

$$
\theta_{l} \|x\|_{2}^{2} \leq \min_{I \subseteq [m], |I| \geq m/2} \|A_{I}x\|_{2}^{2} \leq \max_{I \subseteq [m], |I| \geq m/2} \|A_{I}x\|_{2}^{2} \leq \theta_{u} \|x\|_{2}^{2} \qquad (15)
$$

holds for all $(tk + 1)$ -sparse vector $x \in \mathbb{R}^n$ with probability at least $1 - \exp(-cm)$. Here, $c > 0$ is a universal constant. Note that $A'x' = Ax$. We immediately obtain [\(14\)](#page-9-0) for the case where $z = 0$.

Next, we turn to the case where $z \neq 0$. A simple calculation shows that

$$
||A'_I x'||_2^2 = ||A_I x + z b_I||_2^2 = ||A_I x||_2^2 + 2z \langle A_I x, b_I \rangle + z^2 ||b_I||_2^2 \qquad (16)
$$

for any $I \subseteq [m]$. Denote $A = [a_1, \ldots, a_m]^T$. Note that $\sqrt{ma_j} \sim \mathcal{N}(0, I_n)$. Taking $\zeta = \frac{\min(\theta_l, \alpha^2)}{200\beta}$ in Lemma [5,](#page-20-0) we obtain that there exists a constant $C > 0$ depending only on θ_l , α , β such that when $m \geq Ct(k+1)\log(en/k)$, with probability at least $1 - 3 \exp(-c_1 m)$, it holds

$$
|\langle A_I x, b_I \rangle| = |\langle Ax, b_I \rangle| \le \frac{\min\{\theta_I, \alpha^2\}}{200\beta} ||x||_2 ||b||_2 \tag{17}
$$

for all $(tk + 1)$ -sparse vectors *x* and all $I \subseteq [m]$. Here, we view $b_I = bI_I \in \mathbb{R}^m$ $(I_I(j) = 1$ if $j \in I$ and 0 if $j \notin I$), and $c_1 > 0$ is a constant depending only on θ*l*, α, β. Note that the vector *b* satisfies

$$
\alpha \leq \|\boldsymbol{b}_I\|_2 \leq \beta \tag{18}
$$

for all $I \subseteq [m]$ with $|I| \ge m/2$. Putting [\(15\)](#page-9-1), [\(17\)](#page-9-2) and [\(18\)](#page-9-3) into [\(16\)](#page-9-4), we obtain that when $m \geq Ct(k + 1)\log(en/k)$, with probability at least $1 - 4\exp(-cm)$, the following two inequalities

$$
\|A'_I\mathbf{x}'\|_2^2 \geq \theta_I \|\mathbf{x}\|_2^2 - 2\|z\| \frac{\min\{\theta_I, \alpha^2\}}{200\beta} \|\mathbf{x}\|_2 \beta + \alpha^2 z^2 \geq 0.99 \min\{\theta_I, \alpha^2\} \|\mathbf{x}'\|_2^2,
$$

$$
\|A'_I \mathbf{x}'\|_2^2 \le \theta_u \|\mathbf{x}\|_2^2 + 2\|z\| \frac{\min{\{\theta_l, \alpha^2\}}}{200\beta} \|\mathbf{x}\|_2 \beta + \beta^2 z^2 \le 1.01 \max{\{\theta_u, \beta^2\}} \|\mathbf{x}'\|_2^2
$$

hold for all $(tk + 1)$ -sparse vector $x' \in \mathbb{R}^{n+1}$ and for all $I \subseteq [m]$ with $|I| \ge m/2$. Here, $c > 0$ is a constant depending only on θ_l , α , β . In other words, we have

$$
\theta'_l \|x'\|_2^2 \le \min_{I \subseteq [m], |I| \ge m/2} \|A'_I x'\|_2^2 \le \max_{I \subseteq [m], |I| \ge m/2} \|A'_I x'\|_2^2 \le \theta'_u \|x'\|_2^2
$$

for all $(tk + 1)$ -sparse vector *x*['] with probability at least $1 - 4 \exp(-cm)$. Here, $\theta'_{l} = 0.99 \min{\{\theta_l, \alpha^2\}}$ and $\theta'_{u} = 1.01 \max{\{\theta_u, \beta^2\}}$. Combining the above two cases and noting that θ_l , $\theta_u > 0$ are universal constants, we complete the proof.

2.2 Proof of Theorem [3](#page-5-1)

Proof Denote $A' = [A \ b], \hat{\boldsymbol{x}}' = (\hat{\boldsymbol{x}}^T, 1)^T \text{ and } \boldsymbol{x}'_0 = (\boldsymbol{x}_0^T, 1)^T.$ Set $I := \{i : ((a, \hat{x}) + b_i)((a, x_0) + b_i) > 0\}.$

$$
I := \{j : (\langle a_j, x \rangle + b_j)(\langle a_j, x_0 \rangle + b_j) \geq 0\}
$$

We next divide the proof into the following two cases.

Case 1: $|I| \ge m/2$. Set $h = \hat{x}' - x'_0$. For any $a > 1$, we decompose *h* into the sum h_x . h_x of h_{T_0}, h_{T_1}, \ldots , where T_0 is an index set which consists the indices of the $k+1$ largest coordinates of x_0' in magnitude, T_1 is the index set corresponding to the $a(k+1)$ largest coordinates of $\mathbf{h}_{T_0^c}$ in magnitude, T_2 is the index set corresponding to the $a(k + 1)$ largest coordinates of $h(T_0 \cup T_1)^c$ in magnitude, and so on. For simplicity, we denote $T_{il} := T_i \cup T_l$. To prove the theorem, we only need to give an upper bound for $||h||_2$. Observe that

$$
\|\boldsymbol{h}\|_2 \leq \|\boldsymbol{h}_{T_{01}}\|_2 + \|\boldsymbol{h} - \boldsymbol{h}_{T_{01}}\|_2. \tag{19}
$$

We claim that the following holds:

$$
\|\boldsymbol{h} - \boldsymbol{h}_{T_{01}}\|_2 \le \frac{1}{\sqrt{a}} \|\boldsymbol{h}_{T_{01}}\|_2 + \frac{2\sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}} \tag{20}
$$

and

$$
\|\boldsymbol{h}_{T_{01}}\|_2 \leq \frac{2}{\sqrt{\theta_l} - \sqrt{\theta_u}/\sqrt{a}} \cdot \left(\epsilon + \frac{\sqrt{\theta_u} \sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}}\right). \tag{21}
$$

Here, *C*, *c*, θ_l and θ_u are positive constants depending only on α and β . Putting [\(20\)](#page-10-0) and (21) into (19) , we obtain that

$$
\|\boldsymbol{h}\|_2 \leq \frac{2\left(1+1/\sqrt{a}\right)}{\sqrt{\theta_l}-\sqrt{\theta_u}/\sqrt{a}}\epsilon + \left(\frac{2(1+1/\sqrt{a})\sqrt{\theta_u}}{\sqrt{\theta_l}-\sqrt{\theta_u}/\sqrt{a}}+2\right)\frac{\sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}}.
$$

It remains to prove the claim [\(20\)](#page-10-0) and [\(21\)](#page-10-1). Since \hat{x} is the solution to ℓ_1 minimization
param (4) we have program [\(4\)](#page-4-7), we have

$$
\|x'_0\|_1 \ge \|\widehat{x}'\|_1 = \|x'_0 + h\|_1 = \|(x'_0 + h)_{T_0}\|_1 + \|(x'_0 + h)_{T_0}\|_1
$$

\n
$$
\ge \|x'_{0,T_0}\|_1 - \|h_{T_0}\|_1 + \|h_{T_0}\|_1 - \|x'_{0,T_0}\|_1.
$$

Therefore,

$$
\|\boldsymbol{h}_{T_0^c}\|_1 \le \|\boldsymbol{h}_{T_0}\|_1 + 2\|\boldsymbol{x}_{0,T_0^c}\|_1. \tag{22}
$$

From the definition of T_j , we obtain that, for all $j \geq 2$,

$$
\|\mathbf{h}_{T_j}\|_2 \leq \sqrt{a(k+1)} \|\mathbf{h}_{T_j}\|_{\infty} = \frac{a(k+1)}{\sqrt{a(k+1)}} \|\mathbf{h}_{T_j}\|_{\infty} \leq \frac{\|\mathbf{h}_{T_{j-1}}\|_1}{\sqrt{a(k+1)}}.
$$

It then gives

$$
\|\boldsymbol{h}_{T_{01}^c}\|_2 \leq \sum_{j\geq 2} \|\boldsymbol{h}_{T_j}\|_2 \leq \frac{1}{\sqrt{a(k+1)}} \sum_{j\geq 2} \|\boldsymbol{h}_{T_{j-1}}\|_1 = \frac{1}{\sqrt{a(k+1)}} \|\boldsymbol{h}_{T_0^c}\|_1. \tag{23}
$$

Putting [\(22\)](#page-11-0) into [\(23\)](#page-11-1), we obtain the conclusion of claim [\(20\)](#page-10-0), namely,

$$
\|\boldsymbol{h}_{T_{01}^c}\|_2 \leq \frac{1}{\sqrt{a(k+1)}} \|\boldsymbol{h}_{T_0^c}\|_1 \leq \frac{\|\boldsymbol{h}_{T_0}\|_1 + 2\|\boldsymbol{x}_{0,T_0^c}'\|_1}{\sqrt{a(k+1)}}
$$
\n
$$
\leq \frac{1}{\sqrt{a}} \|\boldsymbol{h}_{T_0}\|_2 + \frac{2\sigma_{k+1}(\boldsymbol{x}_{0}^{'})_1}{\sqrt{k}} \leq \frac{1}{\sqrt{a}} \|\boldsymbol{h}_{T_{01}}\|_2 + \frac{2\sigma_{k}(\boldsymbol{x}_{0})_1}{\sqrt{a(k+1)}},
$$
\n(24)

where the third inequality follows the Cauchy-Schwarz inequality and the last inequality comes from the fact $\sigma_{k+1}(\mathbf{x}'_0)_1 \leq \sigma_k(\mathbf{x}_0)_1$ by the definitions of $\hat{\mathbf{x}}'$ and $\sigma_k(\cdot)_1$ $\sigma_k(\cdot)_1$.

We next turn to prove the claim (21) . Observe that

$$
||A_I'h||_2 \ge ||A_I'h_{T_{01}}||_2 - ||A_I'h_{T_{01}}||_2. \tag{25}
$$

For the left hand side of [\(25\)](#page-11-2), by the definition of *I*, we have

$$
||A'_{I}h||_{2} = ||A'_{I}\hat{x}'| - |A'_{I}x'_{0}||_{2}
$$

\n
$$
\leq ||A'\hat{x}'| - |A'x'_{0}||_{2}
$$

\n
$$
\leq ||A'\hat{x}'| - y||_{2} + ||A'x'_{0}| - y||_{2}
$$

\n
$$
\leq 2\epsilon.
$$
\n(26)

For the first term of the right hand side of (25) , since the matrix A' satisfies strong RIP of order $(a + 1)(k + 1)$ with constants θ_l , $\theta_u > 0$, we immediately have

$$
||A'_{I}h_{T_{01}}||_{2} \geq \sqrt{\theta_{I}}||h_{T_{01}}||_{2}.
$$
 (27)

To give an upper bound for the term $||A_I' h_{T_{01}^c}||_2$, note that $||h_{T_{01}^c}||_\infty \le ||h_{T_1}||_1/a(k+1)$. Let $\theta := \max\left(\|\bm{h}_{T_1}\|_1/a(k+1), \|\bm{h}_{T_{01}^c}\|_1/a(k+1)\right)$. Then by the Lemma [2,](#page-19-0) we could decompose the vector $h_{T_{01}^c}$ into the following form:

$$
\mathbf{h}_{T_{01}^c} = \sum_{j=1}^N \lambda_j \mathbf{u}_j, \text{ with } 0 \le \lambda_j \le 1, \sum_{j=1}^N \lambda_j = 1,
$$

where u_j are $a(k + 1)$ -sparse vectors satisfying

$$
\|\mathbf{u}_j\|_1 = \|\mathbf{h}_{T_{01}^c}\|_1, \quad \|\mathbf{u}_j\|_{\infty} \leq \theta.
$$

Therefore, we have

$$
\|\bm{u}_j\|_2 \leq \sqrt{\theta \|\bm{h}_{T_{01}^c}\|_1}.
$$

We notice from (22) that

$$
\|\bm{h}_{T_{01}^c}\|_1 \leq \|\bm{h}_{T_0^c}\|_1 \leq \|\bm{h}_{T_0}\|_1 + 2\sigma_k(\bm{x}_0)_1.
$$

Thus, if $\theta = ||\boldsymbol{h}_{T_1}||_1/a(k+1)$, then we have

$$
\|u_j\|_2 \le \sqrt{\frac{\|h_{T_1}\|_1\|h_{T_{01}^c}\|_1}{a(k+1)}} \le \sqrt{\frac{\|h_{T_0^c}\|_1\|h_{T_{01}^c}\|_1}{a(k+1)}}
$$

$$
\le \frac{\|h_{T_0}\|_1 + 2\sigma_k(\mathbf{x}_0)_1}{\sqrt{a(k+1)}} \le \frac{\|h_{T_0}\|_2}{\sqrt{a}} + \frac{2\sigma_k(\mathbf{x}_0)_1}{\sqrt{a(k+1)}}.
$$

If $\theta = ||h_{T_{01}^c}||_1/a(k+1)$, then

$$
\|\boldsymbol{u}_j\|_2 \leq \frac{\|\boldsymbol{h}_{T_{01}^c}\|_1}{\sqrt{a(k+1)}} \leq \frac{\|\boldsymbol{h}_{T_0}\|_2}{\sqrt{a}} + \frac{2\sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}}.
$$

Therefore, for the second term of the right hand side of (25) , it follows from the definition of strong RIP that

$$
\|A_I' \mathbf{h}_{T_{01}^c}\|_2 = \|\sum_{j=1}^N \lambda_j A_I' \mathbf{u}_j\|_2 \le \sqrt{\theta_u} \sum_{j=1}^N \lambda_j \|\mathbf{u}_j\|_2 \le \sqrt{\theta_u} \left(\frac{\|\mathbf{h}_{T_0}\|_2}{\sqrt{a}} + \frac{2\sigma_k(\mathbf{x}_0)_1}{\sqrt{a(k+1)}}\right).
$$
\n(28)

Putting (26) , (27) and (28) into (25) , we immediately obtain

$$
2\epsilon \geq \sqrt{\theta_l} \|\boldsymbol{h}_{T_{01}}\|_2 - \sqrt{\theta_u} \left(\frac{\|\boldsymbol{h}_{T_{01}}\|_2}{\sqrt{a}} + \frac{2\sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}} \right),
$$

which gives

$$
\|\mathbf{h}_{T_{01}}\|_2 \leq \frac{2}{\sqrt{\theta_l} - \sqrt{\theta_u}/\sqrt{a}} \cdot \left(\epsilon + \frac{\sqrt{\theta_u} \sigma_k(x_{0})_1}{\sqrt{a(k+1)}}\right).
$$

Case 2: $|I| < m/2$. For this case, denote $h^+ = \hat{x}^{\prime} + x_0^{\prime}$. Replacing *h* and the subset *n* Case 1 by h^+ and *I^c* respectively and applying the same argument, we could *I* in Case 1 by h^+ and I^c respectively, and applying the same argument, we could obtain

$$
\|\boldsymbol{h}_+\| \leq \frac{2\left(1+1/\sqrt{a}\right)}{\sqrt{\theta_l} - \sqrt{\theta_u}/\sqrt{a}} \epsilon + \left(\frac{2(1+1/\sqrt{a})\sqrt{\theta_u}}{\sqrt{\theta_l} - \sqrt{\theta_u}/\sqrt{a}} + 2\right) \frac{\sigma_k(\mathbf{x}_0)_1}{\sqrt{a(k+1)}}.
$$
 (29)

However, recall that $\hat{\mathbf{x}}' = (\hat{\mathbf{x}}^T, 1)^T$ and $\mathbf{x}'_0 = (\mathbf{x}_0^T, 1)^T$. It means $\|\mathbf{h}_+\|_2 \ge 2$, which contradicts to [\(29\)](#page-13-0) by the assumption of ϵ and $\sigma_k(x_0)_1$, i.e., $K_1\epsilon + K_2 \frac{\sigma_k(x_0)_1}{\sqrt{a(k+1)}} < 2$. Therefore, Case 2 does not hold.

Combining the above two cases, we complete our proof.

3 Proof of Theorems [4](#page-6-2) and [5](#page-7-0)

3.1 Proof of Theorem [4](#page-6-2)

Proof Without loss of generality, we assume that $||H'||_F = 1$. Observe that

$$
\frac{1}{m}||\mathcal{A}'(\boldsymbol{H}')||_1 = \frac{1}{m}\sum_{j=1}^m \left| \boldsymbol{a}_j^* \boldsymbol{H} \boldsymbol{a}_j + 2(b_j(\boldsymbol{a}_j^* \boldsymbol{h}))_{\mathfrak{R}} \right| := \frac{1}{m}\sum_{j=1}^m \xi_j.
$$

For any fixed $H \in \mathbb{H}^{n \times n}$ and $h \in \mathbb{C}^n$, the terms ξ_i , $j = 1, \ldots, m$ are independent sub-exponential random variables with the maximal sub-exponential norm

$$
K := \max_{1 \le j \le m} C_1(\|H\|_F + \|b_j\|_{\psi_2} \|h\|) \le C_2
$$

for some universal constants C_1 , $C_2 > 0$. Here, we use the fact max $(\Vert \mathbf{H} \Vert_F, \Vert \mathbf{h} \Vert) \leq$ $||H'||_F = 1$. For any $0 < \epsilon \le 1$, the Bernstein's inequality gives

$$
\mathbb{P}\bigg(\Big|\frac{1}{m}\sum_{j=1}^m(\xi_j-\mathbb{E}\xi_j)\Big|\geq\epsilon\bigg)\leq 2\exp\left(-c\epsilon^2m\right),
$$

where $c > 0$ is a universal constant. According to Lemma [6,](#page-21-0) we obtain that

$$
\frac{1}{3}\mathbb{E}\sqrt{\|H\|_F^2+|b_j|^2\|h\|^2}\leq \mathbb{E}\xi_j\leq 2\mathbb{E}\sqrt{3\|H\|_F^2+|b_j|^2\|h\|^2}.
$$

$$
\frac{1}{m}\sum_{j=1}^m \mathbb{E}\xi_j \leq \frac{2}{m}\sum_{j=1}^m \mathbb{E}\left(\sqrt{3}||\mathbf{H}||_F + |b_j||\mathbf{h}||\right) \leq 2\sqrt{3}||\mathbf{H}||_F + 2c_2||\mathbf{h}|| \leq 2\theta^+,
$$

where $\theta^+ := \max(\sqrt{6}, c_2)$. Here, we use the fact $||\mathbf{H}'||_F^2 = ||\mathbf{H}||_F^2 + 2||\mathbf{h}||^2 = 1$, $\mathbb{E} \|\boldsymbol{b}\|_1 \leq \sqrt{m}\mathbb{E} \|\boldsymbol{b}\| \leq c_2 m$, and $\frac{a+b}{\sqrt{2}} \leq \sqrt{a^2 + b^2} \leq a+b$ for any positive number $a, b \in \mathbb{R}$. Similarly, we could obtain

$$
\frac{1}{m}\sum_{j=1}^{m}\mathbb{E}\xi_{j}\geq\frac{1}{3\sqrt{2}}\cdot\frac{1}{m}\sum_{j=1}^{m}\mathbb{E}\left(\|\boldsymbol{H}\|_{F}+|b_{j}|\|\boldsymbol{h}\|\right)\geq\frac{1}{3\sqrt{2}}\left(\|\boldsymbol{H}\|_{F}+c_{1}\|\boldsymbol{h}\|\right)\geq\frac{\theta^{-}}{6},
$$

where $\theta^- := \min(1, c_1/\sqrt{2})$. Collecting the above estimators, we obtain that, with probability at least $1 - 2 \exp(-c \epsilon^2 m)$, the following inequality

$$
\frac{\theta^{-}}{6} - \epsilon \le \frac{1}{m} \|\mathcal{A}'(\mathbf{H}')\|_{1} \le 2\theta^{+} + \epsilon
$$
\n(30)

holds for a fixed $H' \in \mathbb{H}^{(n+1)\times(n+1)}$. We next show that [\(30\)](#page-14-0) holds for all $H' \in \mathcal{X}$, where

$$
\mathcal{X}:=\left\{H':=\begin{bmatrix}H&h\\h^*&0\end{bmatrix}\in\mathbb{H}^{(n+1)\times(n+1)}:\|H'\|_F=1,\ \mathrm{rank}(H)\leq 2,\ \|H\|_{0,2}\leq k,\ \|h\|_0\leq k\right\}.
$$

To this end, we adopt a basic version of a δ-net argument. Assume that \mathcal{N}_δ is a δ-net of *X*, i.e., for any $H' = \begin{bmatrix} H & h \\ h^* & 0 \end{bmatrix}$ *h*∗ 0 $\mathbf{H}_0 \in \mathcal{X}$ there exists a $\mathbf{H}_0' := \begin{bmatrix} \mathbf{H}_0 & \mathbf{h}_0 \\ \mathbf{h}_0^* & 0 \end{bmatrix}$ *h*^{*} 0 0 $\Big] \in \mathcal{N}_{\delta}$ such that $\|H - H_0\|_F \leq \delta$ and $\|\vec{h} - \vec{h}_0\| \leq \delta$. Using the same idea of Lemma 2.1 in [\[36\]](#page-24-18), we obtain that the covering number of χ is

$$
|\mathcal{N}_{\delta}| \leq \left(\frac{9\sqrt{2}en}{\delta k}\right)^{4k+2} \cdot {n \choose k} \left(1+\frac{2}{\delta}\right)^{2k} \leq \exp\left(C_3k \log(en/\delta k)\right),
$$

where $C_3 > 0$ is a universal constant. Note that $h - h_0$ has at most 2*k* nonzero entries. We obtain that if $m \ge k \log(en/k)$, then with probability at least $1 - 3 \exp(-cm)$, it holds

$$
\left| \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}')\|_1 - \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}'_0)\|_1 \right| \leq \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}' - \boldsymbol{H}'_0)\|_1
$$

$$
\leq \frac{1}{m} \|\mathcal{A}(\boldsymbol{H} - \boldsymbol{H}_0)\|_1 + \frac{2}{m} \sum_{j=1}^m |b_j| |\boldsymbol{a}_j^*(\boldsymbol{h} - \boldsymbol{h}_0)|
$$

$$
\leq \frac{1}{m} \|\mathcal{A}(\boldsymbol{H} - \boldsymbol{H}_0)\|_1
$$

$$
+2\sqrt{\frac{1}{m}\sum_{j=1}^{m}|b_j|^2}\sqrt{\frac{1}{m}\sum_{j=1}^{m}|a_j^*(h-h_0)|^2}
$$

\n
$$
\leq 2.45||\boldsymbol{H}-\boldsymbol{H}_0||_F+3(c_2+1)||\boldsymbol{h}-\boldsymbol{h}_0||
$$

\n
$$
\leq 3(c_2+2)\delta,
$$

where the linear map $A(\cdot)$ is defined as $A(H) := (a_1^* H a_1, \dots, a_m^* H a_m)$, and the fourth inequality follows from the combination of Lemma [3,](#page-19-1) the fact $\frac{1}{2}m\sum_{j=1}^{m} a_j a_j^* \le$ $3/2$ with probability at least $1 - \exp(-cm)$, and

$$
\frac{1}{m}\sum_{j=1}^{m}|b_j|^2 \le \frac{\mathbb{E}\|\bm{b}\|^2}{m} + 1 \le c_2 + 1
$$

with probability at least $1-2 \exp(-cm)$. Choosing $\epsilon := \frac{1}{48}$, $\delta := \frac{\theta^{-}}{48(c_2+2)}$, and taking the union bound, we obtain that the following inequality

$$
\frac{\theta^{-}}{12} \le \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}')\|_1 \le 3\theta^{+} \text{ for all } \boldsymbol{H}' \in \mathcal{X}
$$

holds with probability at least

$$
1-3\exp(-cm)-2\exp(C_3k\log(en/\delta k))\cdot \exp(-c\epsilon^2 m)\geq 1-5\exp(-c'm),
$$

provided $m \ge C' k \log(en/k)$, where C' , $c' > 0$ are constants depending only on c_1 and c_2 .

3.2 Proof of Theorem [5](#page-7-0)

Proof The proof of this theorem is adapted from that of Theorem 1.3 in [\[36\]](#page-24-18). Note that the ℓ_1 -minimization problem we consider is

$$
\underset{\mathbf{x}\in\mathbb{C}^n}{\text{argmin}} \quad \|\mathbf{x}\|_1 \quad \text{s.t.} \quad \|\mathcal{A}'(\mathbf{x}') - \mathbf{y}'\| \le \epsilon \quad \text{with} \quad \mathbf{x}' = \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}.
$$
 (31)

Here, with some abuse of notation, we set

$$
\mathcal{A}'(\mathbf{x}') := \mathcal{A}'(\mathbf{x}'\mathbf{x}') = \left(\left| \mathbf{a}'_1^* \mathbf{x}' \right|^2, \ldots, \left| \mathbf{a}'_m \mathbf{x}' \right|^2 \right) \quad \text{with} \quad \mathbf{a}'_j := \begin{pmatrix} \mathbf{a}_j \\ b_j \end{pmatrix}, \quad j = 1, \ldots, m.
$$

Let $\hat{\mathbf{x}} \in \mathbb{C}^n$ be a solution to [\(31\)](#page-15-0). Without loss of generality, we assume $\langle \hat{\mathbf{x}}^i, \mathbf{x}_0^i \rangle \ge 0$ (Otherwise, we can choose $e^{i\theta}x'_0$ for an appropriate θ), where $\hat{x}' = \begin{pmatrix} \hat{x} \\ 1 \end{pmatrix}$) and $x'_0 =$

$$
\hat{X}' \coloneqq \widehat{x}' \widehat{x}'^* = \begin{pmatrix} \widehat{x} \widehat{x}^* & \widehat{x} \\ \widehat{x}^* & 1 \end{pmatrix}
$$

and

$$
\boldsymbol{H}' := \widehat{\boldsymbol{x}}' \widehat{\boldsymbol{x}}'^* - \boldsymbol{x}_0' {\boldsymbol{x}_0'}^* = \begin{pmatrix} \widehat{\boldsymbol{x}} \widehat{\boldsymbol{x}}^* - \boldsymbol{x}_0 \boldsymbol{x}_0^* \ \widehat{\boldsymbol{x}} - \boldsymbol{x}_0 \\ \widehat{\boldsymbol{x}}^* - \boldsymbol{x}_0^* \end{pmatrix} := \begin{pmatrix} \boldsymbol{H} & \boldsymbol{h} \\ \boldsymbol{h}^* & 0 \end{pmatrix}.
$$

Therefore, it suffices to give an upper bound for $||\boldsymbol{H}'||_F$. Denote $T_0 := \text{supp}(\boldsymbol{x}_0)$ and $T'_0 := T_0 \cup \{n+1\}$. Let T_1 be the index set corresponding to the indices of the *ak*largest elements of $\hat{\mathbf{x}}_{T_0^c}$ in magnitude, and T_2 contain the indices of the next *ak* largest elements, and so on. Set $T_{01} := T_0 \cup T_1$, $T'_{01} := T'_0 \cup T_1$, $h := h_{T_{01}}$, $H = H_{T_{01}, T_{01}}$, and $\boldsymbol{H}^\prime := \boldsymbol{H}^\prime_{T^\prime_{01}, T^\prime_{01}}$. Noting that

$$
\|\boldsymbol{H}'\|_{F} \leq \|\bar{\boldsymbol{H}}'\|_{F} + \|\boldsymbol{H}' - \bar{\boldsymbol{H}}'\|_{F},\tag{32}
$$

we next consider the terms $||H'||_F$ and $||H' - H'||_F$. We claim that

$$
\|\mathbf{H}' - \bar{\mathbf{H}}'\|_{F} \le \left(\frac{1}{a} + \frac{4}{\sqrt{a}}\right) \|\bar{\mathbf{H}}'\|_{F}
$$
 (33)

and

$$
\|\bar{H}'\|_{F} \le \frac{1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\epsilon}{\sqrt{m}}.\tag{34}
$$

Combining (32) , (33) and (34) , we obtain that

$$
\|\boldsymbol{H}'\|_F \leq \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\epsilon}{\sqrt{m}}.
$$

According to Lemma [4,](#page-20-1) we immediately have

$$
\min_{\theta \in \mathbb{R}} \|\widehat{\mathbf{x}}' - e^{i\theta} \mathbf{x}'_0\|_2 \leq \frac{\sqrt{2} \|\boldsymbol{H}'\|}{\|\mathbf{x}_0\| + 1} \leq \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\sqrt{2}\epsilon}{(\|\mathbf{x}_0\| + 1)\sqrt{m}}.
$$

By the definition of \hat{x} ['] and x_0 ['], we arrive at the conclusion.
It remains to prove the claims (33) and (34). Note that

It remains to prove the claims (33) and (34) . Note that

$$
\|\boldsymbol{H}' - \bar{\boldsymbol{H}}'\|_{F} \leq \sum_{i \geq 2, j \geq 2} \|\boldsymbol{H}_{T_i, T_j}\|_{F} + 2 \sum_{j \geq 2} \|\boldsymbol{H}'_{T_0', T_j}\|_{F} + 2 \sum_{j \geq 2} \|\boldsymbol{H}'_{T_1, T_j}\|_{F}.
$$
 (35)

We first give an upper bound for the term $\sum_{i \geq 2, j \geq 2} ||H'_{T_i, T_j}||_F$. Noting that x_0 is a *k*-sparse vector and $\hat{x} \in \mathbb{C}^n$ is the solution to [\(31\)](#page-15-0), we obtain that

$$
\|\boldsymbol{x}_0\|_1 \geq \|\widehat{\boldsymbol{x}}\|_1 = \|\widehat{\boldsymbol{x}}_{T_0}\|_1 + \|\widehat{\boldsymbol{x}}_{T_0^c}\|_1,
$$

which implies $\|\widehat{\mathbf{x}}_{T_0^c}\|_1 \leq \|\widehat{\mathbf{x}}_{T_0} - \mathbf{x}_0\|_1$. Moreover, by the definition of T_j , we know that for all *j* ≥ 2 , it holds $\|\widehat{\mathbf{x}}_{T_j}\|_2 \leq \frac{\|\widehat{\mathbf{x}}_{T_{j-1}}\|_1}{\sqrt{ak}}$. It then implies

$$
\sum_{j\geq 2} \|\widehat{\mathbf{x}}_{T_j}\|_2 \leq \frac{1}{\sqrt{ak}} \sum_{j\geq 2} \|\widehat{\mathbf{x}}_{T_{j-1}}\|_1 \leq \frac{1}{\sqrt{ak}} \|\widehat{\mathbf{x}}_{T_0^c}\|_1 \leq \frac{1}{\sqrt{a}} \|\widehat{\mathbf{x}}_{T_0} - \mathbf{x}_0\|_2. \tag{36}
$$

Therefore, the first term of (35) can be estimated as

$$
\sum_{i \ge 2, j \ge 2} \|\mathbf{H}_{T_i, T_j}\|_F = \sum_{i \ge 2, j \ge 2} \|\widehat{\mathbf{x}}_{T_i}\|_2 \|\widehat{\mathbf{x}}_{T_j}\|_2 = \left(\sum_{j \ge 2} \|\widehat{\mathbf{x}}_{T_j}\|_2\right)^2 \le \frac{1}{ak} \|\widehat{\mathbf{x}}_{T_0^c}\|_1^2
$$
\n
$$
= \frac{1}{ak} \|\mathbf{H}_{T_0^c, T_0^c}\|_1 \le \frac{1}{ak} \|\mathbf{H}_{T_0, T_0}\|_1 \le \frac{1}{a} \|\bar{\mathbf{H}}'\|_F,
$$
\n(37)

where the second inequality follows from

$$
\|\boldsymbol{H}-\boldsymbol{H}_{T_0,T_0}\|_1=\|\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}^*-(\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}^*)_{T_0,T_0}\|_1\leq\|\boldsymbol{x}_0\boldsymbol{x}_0^*\|_1-\|(\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}^*)_{T_0,T_0}\|_1\leq\|\boldsymbol{H}_{T_0,T_0}\|_1.
$$

Here, the first inequality comes from $\|\hat{\mathbf{x}}\|_1 \leq \|x_0\|_1$.

For the second term and the third term of (35) , we obtain that

$$
\sum_{j\geq 2} \|\mathbf{H}'_{T_0', T_j}\|_F + \sum_{j\geq 2} \|\mathbf{H}'_{T_1, T_j}\|_F = \|\widehat{\mathbf{x}}'_{T_0}\| \sum_{j\geq 2} \|\widehat{\mathbf{x}}'_{T_j}\| + \|\widehat{\mathbf{x}}'_{T_1}\| \sum_{j\geq 2} \|\widehat{\mathbf{x}}'_{T_j}\|
$$
\n
$$
\leq \frac{1}{\sqrt{a}} \|\widehat{\mathbf{x}}'_{T_0'} - \mathbf{x}'_0\|_2 \left(\|\widehat{\mathbf{x}}'_{T_0'}\|_2 + \|\widehat{\mathbf{x}}'_{T_1}\|_2 \right)
$$
\n
$$
\leq \frac{\sqrt{2}}{\sqrt{a}} \|\widehat{\mathbf{x}}'_{T_0'} - \mathbf{x}'_0\|_2 \|\widehat{\mathbf{x}}'_{T_0'}\|_2
$$
\n
$$
\leq \frac{2}{\sqrt{a}} \|\bar{\mathbf{H}}'\|_F,
$$
\n(38)

where the first inequality follows from [\(36\)](#page-17-0) due to $\hat{x}'_{T_j} = \hat{x}_{T_j}$ for all $j \ge 1$, and the lest inequality some from Lamma 4. Putting (27) and (28) into (25) we obtain that last inequality comes from Lemma [4.](#page-20-1) Putting (37) and (38) into (35) , we obtain that

$$
\|\boldsymbol{H}'-\bar{\boldsymbol{H}}'\|_F \leq \left(\frac{1}{a}+\frac{4}{\sqrt{a}}\right)\|\bar{\boldsymbol{H}}'\|_F.
$$

This proves the claim (33) .

Finally, we turn to prove the claim [\(34\)](#page-16-2). Note that $\|\mathcal{A}'(\hat{\mathbf{x}}') - \tilde{\mathbf{y}}\| \le \epsilon$ and $\tilde{\mathbf{y}} :=$
 $(\mathbf{x}') + \epsilon$ which implies $A'(x'_0) + \epsilon$, which implies

$$
\|\mathcal{A}'(\boldsymbol{H}')\|_2 \le \|\mathcal{A}'(\widehat{\boldsymbol{x}}') - \widetilde{\boldsymbol{y}}\|_2 + \|\mathcal{A}'(\boldsymbol{x}_0') - \widetilde{\boldsymbol{y}}\|_2 \le 2\epsilon.
$$

Thus, we have

$$
\frac{2\epsilon}{\sqrt{m}} \ge \frac{1}{\sqrt{m}} \|\mathcal{A}'(\boldsymbol{H}')\|_2 \ge \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}')\|_1 \ge \frac{1}{m} \|\mathcal{A}'(\bar{\boldsymbol{H}}')\|_1 - \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}' - \bar{\boldsymbol{H}}')\|_1. \tag{39}
$$

Recall that $\bar{H}' := \begin{pmatrix} H & h \\ \bar{h}^* & 0 \end{pmatrix}$ with rank(\vec{H}) \leq 2, $\|\vec{H}\|_{0,2} \leq (a + 1)k$, and $\|\vec{h}\|_{0} \leq$ $(a + 1)k$. It then follows from the RIP of A' that

$$
\|\mathcal{A}'(\bar{\boldsymbol{H}}')\|_1 \ge c \|\bar{\boldsymbol{H}}'\|_F. \tag{40}
$$

To prove [\(34\)](#page-16-2), it suffices to give an upper bound for the term $\frac{1}{m} ||\mathcal{A}'(\mathbf{H}' - \bar{\mathbf{H}}')||_1$. Observe that

$$
\mathbf{H}' - \bar{\mathbf{H}}' = (\mathbf{H}'_{T'_0, T'^c_{01}} + \mathbf{H}'_{T'^c_{01}, T'_0}) + (\mathbf{H}'_{T_1, T'^c_{01}} + \mathbf{H}'_{T'^c_{01}, T_1}) + \mathbf{H}'_{T'^c_{01}, T'^c_{01}}.
$$
(41)

Since

1

$$
\boldsymbol{H}'_{T'_0,T''_{01}} + \boldsymbol{H}'_{T''_{01},T'_0} = \sum_{j\geq 2} (\boldsymbol{H}'_{T'_0,T_j} + \boldsymbol{H}'_{T_j,T'_0}) = \sum_{j\geq 2} \begin{pmatrix} \widehat{\boldsymbol{x}}_{T_0}\widehat{\boldsymbol{x}}_{T_j}^* + \widehat{\boldsymbol{x}}_{T_j}\widehat{\boldsymbol{x}}_{T_0}^* & \widehat{\boldsymbol{x}}_{T_j} \\ \widehat{\boldsymbol{x}}_{T_j}^* & 0 \end{pmatrix},
$$

then the RIP of A' implies

$$
\frac{1}{m} \|\mathcal{A}'(\mathbf{H}'_{T'_0, T'^c_{01}} + \mathbf{H}'_{T'^c_{01}, T'_0})\|_1 \le C \sum_{j \ge 2} \left(\|\widehat{\mathbf{x}}_{T_0}\widehat{\mathbf{x}}_{T_j}^* + \widehat{\mathbf{x}}_{T_j}\widehat{\mathbf{x}}_{T_0}^*\|_F + 2\|\widehat{\mathbf{x}}_{T_j}\|_2 \right)
$$
\n
$$
\le 2\sqrt{2}C \|\widehat{\mathbf{x}}'_{T'_0}\|_2 \sum_{j \ge 2} \|\widehat{\mathbf{x}}_{T_j}\|_2
$$
\n
$$
\le \frac{2\sqrt{2}}{\sqrt{a}} C \|\widehat{\mathbf{x}}'_{T'_0}\|_2 \|\widehat{\mathbf{x}}'_{T'_{01}} - \mathbf{x}'_0\|_2.
$$
\n(42)

Similarly, we could obtain

$$
\frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}'_{T_1,T''_{01}} + \boldsymbol{H}'_{T''_{01},T_1})\|_1 \le \frac{2\sqrt{2}}{\sqrt{a}} C \|\widehat{\boldsymbol{x}}'_{T_1}\|_2 \|\widehat{\boldsymbol{x}}'_{T'_{01}} - \boldsymbol{x}'_0\|_2.
$$
 (43)

Finally, observe that $\frac{1}{m} ||A'(H'_{T_{01}'} ,T_{01}^c) ||_1 = \frac{1}{m} ||A(H_{T_{01}^c},T_{01}^c) ||_1$. Using the same technique as $[36, Eq. (3.16)]$ $[36, Eq. (3.16)]$, we could obtain

$$
\frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}'_{T_{01}^{'c}, T_{01}^{'c}})\|_1 \leq \frac{C}{a} \|\bar{\boldsymbol{H}}'\|_F. \tag{44}
$$

Putting (42) , (43) and (44) into (41) , we have

$$
\frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}' - \bar{\boldsymbol{H}}')\|_1 \le \frac{4}{\sqrt{a}} C \|\widehat{\boldsymbol{x}}'_{T'_{01}}\|_2 \|\widehat{\boldsymbol{x}}'_{T'_{01}} - \boldsymbol{x}'_0\|_2 + \frac{C}{a} \|\bar{\boldsymbol{H}}'\|_F \le C \left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right) \|\bar{\boldsymbol{H}}'\|_F.
$$
\n(45)

Combining (39) , (40) and (45) , we immediately obtain

$$
\left(c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)\right) \|\tilde{H}'\|_F \le \frac{2\epsilon}{\sqrt{m}},
$$

which implies

$$
\|\bar{H}'\|_F \leq \frac{1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\epsilon}{\sqrt{m}}.
$$

This completes the proof of claim (34) .

Acknowledgements Meng Huang was supported by NSFC grant (12201022) and the Fundamental Research Funds for the Central Universities (Grant No. YWF-22-T-204). Zhiqiang Xu was supported by the National Science Fund for Distinguished Young Scholars (12025108) and NSFC (12021001,12288201).

A Supporting Lemmas

The following lemma gives a way for how to decompose a vector $v \in \mathbb{R}^n$ into the convex combination of several *k*-sparse vectors.

Lemma 2 *([\[8,](#page-23-17) [40](#page-24-21)])* Suppose that $v \in \mathbb{R}^n$ satisfying $||v||_{\infty} \le \theta$ and $||v||_1 \le k\theta$, where $\theta > 0$ and $k \in \mathbb{Z}_+$. Then we have

$$
\mathbf{v} = \sum_{j=1}^{N} \lambda_j \mathbf{u}_j \quad \text{with} \quad 0 \le \lambda_j \le 1, \quad \sum_{j=1}^{N} \lambda_j = 1,
$$

where $u_i \in \mathbb{R}^n$ *is k-sparse vectors and* $||u_i||_1 \le ||v||_1$, $||u_i||_\infty \le \theta$.

Lemma 3 *(* $[36]$ *)* Let the linear map $A(\cdot)$ be defined as

$$
\mathcal{A}(H):=(a_1^*Ha_1,\ldots,a_m^*Ha_m),
$$

where $a_j \sim 1/\sqrt{2} \cdot \mathcal{N}(0, I_n) + i/\sqrt{2} \cdot \mathcal{N}(0, I_n), j = 1, \ldots, m$ are *i.i.d.* complex *Gaussian random vectors. If m* $\geq k \log(en/k)$, then with probability at least 1 − 2 exp(−*c*0*m*)*, A satisfies*

$$
0.12||\boldsymbol{H}||_F \leq \frac{1}{m}||\mathcal{A}(\boldsymbol{H})||_1 \leq 2.45||\boldsymbol{H}||_F
$$

for all $H \in \mathbb{H}^{n \times n}$ *with* $\text{rank}(\mathbf{H}) \leq 2$ *and* $\|\mathbf{H}\|_{0,2} \leq k$ *. Here,* $\|\mathbf{H}\|_{0,2}$ *denotes the number of non-zero rows in H.*

Lemma 4 *(* $[24, 36]$ $[24, 36]$ $[24, 36]$ *)* For any vectors **u**, $v \in \mathbb{C}^n$ obeying $\langle u, v \rangle \ge 0$ *, we have*

$$
\|u u^* - v v^*\|_F \ge \frac{1}{\sqrt{2}} \|u\|_2 \|u - v\|_2.
$$

Lemma 5 *Suppose that* $a_j \sim \mathcal{N}(0, I_n), j = 1, \ldots, m$ are *i.i.d.* Gaussian ran*dom vectors and* $\mathbf{b} \in \mathbb{R}^m$ *is a nonzero vector. For any fixed* $\zeta \in (0, 1)$ *, if* $m \geq$ $C\zeta^{-2}k(\log(en/k) + \log(1/\zeta))$ *, then with probability at least* $1 - 3\exp(-c_0\zeta^2 m)$ *it holds that*

$$
\sum_{j=1}^m b_j(\boldsymbol{a}_j^{\mathrm{T}} \boldsymbol{x}) \leq \zeta \sqrt{m} \|\boldsymbol{x}\|_2 \|\boldsymbol{b}\|_2
$$

for all k-sparse vectors $\mathbf{x} \in \mathbb{R}^n$. *Here, c*₀ > 0 *is a universal constant.*

Proof Without loss of generality we assume $||x||_2 = 1$. For any fixed x_0 , the terms $a_j^T x_0$ are independent, mean zero, sub-gaussian random variables with the maximal sub-gaussian norm being a positive universal constant. The Hoeffding's inequality implies

$$
\mathbb{P}\left(\left|b_j(a_j^{\mathrm{T}}x_0)\right|\geq t\right)\leq 2\exp\left(-\frac{c_1^2t^2}{\|b\|_2^2}\right).
$$

Here, $c_1 > 0$ is a universal constant. Taking $t = \zeta \sqrt{m} ||b||_2 / 2$, we obtain that

$$
\left|\sum_{j=1}^{m}(\boldsymbol{a}_{j}^{\mathrm{T}}\boldsymbol{x}_{0})\right| \leq \frac{\zeta}{2} \cdot \sqrt{m} \|\boldsymbol{b}\|_{2}
$$
\n(46)

holds with probability at least $1 - 2 \exp(-c_1 \zeta^2 m/4)$.

Next, we give a uniform bound to [\(46\)](#page-20-2) for all *k*-sparse vectors *x*. Denote

$$
\mathcal{S}_{n,k} = \{ \mathbf{x} \in \mathbb{R}^n : ||\mathbf{x}||_2 = 1, ||\mathbf{x}||_0 \le k \}.
$$

We assume that *N* is a δ -net of $S_{n,k}$ such that for any $x \in S_{n,k}$, there exists a vector $x_0 \in \mathcal{N}$ such that $\|\mathbf{x} - \mathbf{x}_0\|_2 \le \delta$. The covering number $|\mathcal{N}| \le \binom{n}{k}$ $\left(1 + \frac{2}{\delta}\right)^k$. Note that $\|\mathbf{x}-\mathbf{x}_0\|$ ≤ 2*k*. Therefore, when $m \ge 2k$, with probability at least 1−exp(−*c*₂*m*), it holds, Thus we have

$$
\left| \left| \sum_{j=1}^{m} b_j(a_j^{\mathrm{T}} x) \right| - \left| \sum_{j=1}^{m} b_j(a_j^{\mathrm{T}} x_0) \right| \right| \leq \left| \sum_{j=1}^{m} b_j a_j^{\mathrm{T}} (x - x_0) \right|
$$

$$
\leq \|b\|_2 \sqrt{\sum_{j=1}^{m} |a_j^{\mathrm{T}} (x - x_0)|^2}
$$

$$
\leq \|b\|_2 \sqrt{\left\| \sum_{j=1}^{m} a_j a_j^{\mathrm{T}} \right\|_2} \cdot \|x - x_0\|_2
$$

$$
\leq 2\|\boldsymbol{b}\|_2\sqrt{m}\cdot\delta,
$$

where the second inequality follows from the Cauchy-Schwarz inequality and the last inequality comes from the fact $\|\sum_{j=1}^{m} a_j a_j^{\text{T}}\|_2 \leq 4m$ with probability at least $1 - \exp(-c_2 m)$, where $c_2 > 0$ is a universal constant. Choosing $\delta = \zeta/4$ and taking the union bound over *N*, we obtain that

$$
\left|\sum_{j=1}^m b_j(a_j^{\mathrm{T}} x_0)\right| \leq \zeta \cdot \sqrt{m} \|b\|_2
$$

holds with probability at least

$$
1 - 2\exp(-c_1\xi^2 m/4) \cdot {n \choose k} \cdot (1 + \frac{2}{\delta})^k - \exp(-c_2 m) \ge 1 - 3\exp(-c\xi^2 m)
$$

provided $m \geq C\zeta^{-2}k(\log(en/k) + \log(1/\zeta))$. Here, *C* and *c* are positive universal constants. This completes the proof. constants. This completes the proof.

Lemma 6 *Suppose that* $a \in \mathbb{C}^n$ *is a complex Gaussian random vector and* $b \in \mathbb{C}$ *is a complex number. For any Hermitian matrix* $H \in \mathbb{C}^{n \times n}$ *with* rank(H) < 2 *and any vector* $h \in \mathbb{C}^n$ *, we have*

$$
\frac{1}{3}\sqrt{\|H\|_F^2+b^2\|h\|^2}\leq \mathbb{E}\left|a^*Ha+2(b(a^*h))_{\Re}\right|\leq 2\sqrt{3\|H\|_F^2+b^2\|h\|^2}.
$$

Proof Since $H \in \mathbb{C}^{n \times n}$ is a Hermitian matrix with rank $(H) \leq 2$, we can decompose *H* into

$$
H=\lambda_1u_1u_1^*+\lambda_2u_2u_2^*,
$$

where $\lambda_1, \lambda_2 \in \mathbb{R}$ are eigenvalues of *H* and $u_1, u_2 \in \mathbb{C}^n$ are the corresponding eigenvectors with $||u_1||_2 = ||u_2||_2 = 1$, $\langle u_1, u_2 \rangle = 0$. For the vector $h \in \mathbb{C}^n$, we can write it in the form of

$$
h=\sigma_1u_1+\sigma_2u_2+\sigma_3u_3,
$$

where $\sigma_1, \sigma_2, \sigma_3 \in \mathbb{C}$, and $u_3 \in \mathbb{C}^n$ satisfying $\langle u_3, u_1 \rangle = 0$, $\langle u_3, u_2 \rangle = 0$ and $||u_3|| = 1$. For simplicity, without loss of generality, we assume that *b* is a real number. Therefore, we have

$$
a^*Ha+2(b(a^*h))_{\Re}=\lambda_1|a^*u_1|^2+\lambda_2|a^*u_2|^2+2b(\sigma_1a^*u_1+\sigma_2a^*u_2+\sigma_3a^*u_3)_{\Re}.
$$

Note that $a \in \mathbb{C}^n$ is a complex Gaussian random vector and u_1, u_2, u_3 are orthogonal vectors. Thus, we have

$$
\mathbb{E}\left|\boldsymbol{a}^*H\boldsymbol{a}+2(b(\boldsymbol{a}^*\boldsymbol{h}))_{\mathfrak{R}}\right|=\mathbb{E}|\xi|,
$$

with ξ being a random variable given by

$$
\xi = \lambda_1 z_1^2 + \lambda_1 z_2^2 + \lambda_2 z_3^2 + \lambda_2 z_4^2 + 2b \left(\sigma_{1, \Re} z_1 - \sigma_{1, \Im} z_2 + \sigma_{2, \Re} z_3 - \sigma_{2, \Im} z_4 + \sigma_{3, \Re} z_5 - \sigma_{3, \Im} z_6 \right).
$$

Here, *z*₁, *z*₂, *z*₃, *z*₄, *z*₅, *z*₆ ∼ *N*(0, 1/2) are independent. By Cauchy-Schwarz inequality, we have

$$
\mathbb{E}|\xi| \le \sqrt{\mathbb{E}\xi^2} \text{ and } \mathbb{E}\xi^2 = \mathbb{E}(\xi^{\frac{2}{3}}\xi^{\frac{4}{3}}) \le (\mathbb{E}\xi)^{\frac{2}{3}}(\mathbb{E}\xi_j^4)^{\frac{1}{3}}.
$$

It immediately gives

$$
\sqrt{\frac{(\mathbb{E}\xi^2)^3}{\mathbb{E}\xi^4}} \le \mathbb{E}|\xi| \le \sqrt{\mathbb{E}\xi^2}
$$
\n(47)

Let $z_1 = \rho_1 \cos \theta$, $z_2 = \rho_1 \sin \theta$, $z_3 = \rho_2 \cos \phi$ and $z_4 = \rho_2 \sin \phi$, $z_5 = \rho_3 \cos \gamma$ and $z_6 = \rho_3 \sin \gamma$. Through some tedious calculations, we have

$$
\mathbb{E}\xi^{2} = \left(\frac{1}{2\pi}\right)^{3} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \int_{0}^{\infty} \int_{0}^{\infty} \rho_{1}\rho_{2}\rho_{3} \left(\lambda_{1}\rho_{1}^{2} + \lambda_{2}\rho_{2}^{2} + 2b(\sigma_{1,\Re}\rho_{1}\cos\theta - \sigma_{1,\Im}\rho_{1}\sin\theta + \sigma_{2,\Re}\rho_{2}\cos\phi - \sigma_{2,\Re}\rho_{2}\sin\phi + \sigma_{3,\Re}\rho_{3}\cos\gamma - \sigma_{3,\Im}\rho_{3}\sin\gamma)\right)^{2}
$$

\n
$$
\times e^{-\frac{\rho_{1}^{2} + \rho_{2}^{2} + \rho_{3}^{2}}{2}} d\rho_{1} d\rho_{2} d\rho_{3} d\theta d\phi d\gamma
$$

\n
$$
= 8(\lambda_{1}^{2} + \lambda_{1}\lambda_{2} + \lambda_{2}^{2}) + 4b^{2}(\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2})
$$

\n
$$
\leq 12\|H\|_{F}^{2} + 4b^{2}\|h\|^{2},
$$

where the last inequality follows from the fact that $\lambda_1^2 + \lambda_2^2 = ||H||_F^2$ and $\sigma_1^2 + \sigma_2^2 + \sigma_3^2 =$ $\|\boldsymbol{h}\|^2$. Similarly, we could obtain

$$
\mathbb{E}\xi_j^2 \ge 4\|H\|_F^2 + 4b^2\|h\|^2\tag{48}
$$

and

$$
\mathbb{E}\xi^4 = 48(8(\lambda_1^4 + \lambda_1^3 \lambda_2 + \lambda_1^2 \lambda_2^2 + \lambda_1 \lambda_2^3 + \lambda_2^4) + b^4(\sigma_1^2 + \sigma_2^2 + \sigma_3^2)^2 \n+ 4b^2(\lambda_1 + \lambda_2)^2(\sigma_1^2 + \sigma_2^2 + \sigma_3^2) + 8b^2(\lambda_1^2 \sigma_1^2 + \lambda_2^2 \sigma_2^2)) \n\le 48(12||\mathbf{H}||_F^4 + b^4||\mathbf{h}||_2^4 + 16b^2||\mathbf{H}||_F^2||\mathbf{h}||_2^2) \n\le 576 \left(||\mathbf{H}||_F^2 + b^2||\mathbf{h}||^2\right)^2,
$$
\n(49)

where the first inequality follows from the fact that

$$
\lambda_1^4 + \lambda_1^3 \lambda_2 + \lambda_1^2 \lambda_2^2 + \lambda_1 \lambda_2^3 + \lambda_2^4 \le \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_2^4 + \frac{1}{2} \left(\lambda_1^2 + \lambda_2^2 \right)^2 \le \frac{2}{3} ||\mathbf{H}||_F^4
$$

Q Eirkhäuser

and

$$
\lambda_1^2 \sigma_1^2 + \lambda_2^2 \sigma_2^2 \le \left(\lambda_1^2 + \lambda_2^2\right) \left(\sigma_1^2 + \sigma_2^2 + \sigma_3^2\right) \le \|H\|_F^2 \|h\|^2.
$$

Putting (48) and (49) into (47) , we obtain

$$
\mathbb{E}|\xi| \geq \frac{1}{3} \sqrt{\|H\|_F^2 + b^2 \|h\|^2}.
$$

Therefore, we have

$$
\frac{1}{3}\sqrt{\|H\|_F^2+b^2\|h\|^2}\leq \mathbb{E}|\xi|\leq 2\sqrt{3\|H\|_F^2+b^2\|h\|^2}.
$$

This completes the proof.

References

- 1. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. **20**(3), 345–356 (2006)
- 2. Barmherzig, D.A., Sun, J., Li, P.N., Lane, T.J., Candès, E.J.: Holographic phase retrieval and reference design. Inverse Probl. **35**(9), 094001 (2019)
- 3. Beinert, R., Plonka, G.: Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. **21**(6), 1169–1198 (2015)
- 4. Beinert, R., Plonka, G.: Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain. Appl. Comput. Harmon. Anal. **45**(3), 505–525 (2018)
- 5. Bendory, T., Beinert, R.,Eldar, Y. C.: Fourier phase retrieval: Uniqueness and algorithms. Compressed Sensing and its Applications, pp. 55–91 (2017)
- 6. Bandeira, A., Cahill, J., Mixon, D., Nelson, A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. **37**(1), 106–125 (2014)
- 7. Cai, J., Huang, M., Li, D., Wang, Y.: Solving phase retrieval with random initial guess is nearly as good as by spectral initialization. Appl. Comput. Harmon. Anal. **58**, 60–84 (2022)
- 8. Cai, T.T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory **60**(1), 122–132 (2013)
- 9. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory **61**(4), 1985–2007 (2015)
- 10. Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. Commun. Pure Appl. Math. **70**(5), 822–883 (2017)
- 11. Edidin, D.: The geometry of ambiguity in one-dimensional phase retrieval. SIAM J. Appl. Algebr. Geom. **3**(4), 644–660 (2019)
- 12. Eldar, Y.C., Mendelson, S.: Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon. Anal. **36**(3), 473–494 (2014)
- 13. Conca, A., Edidin, D., Hering, M., Vinzant, C.: An algebraic characterization of injectivity in phase retrieval. Appl. Comput. Harmon. Anal. **38**(2), 346–356 (2015)
- 14. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. **3**(1), 27–29 (1978)
- 15. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. **21**(15), 2758–2769 (1982)
- 16. Gabor, D.: A new microscopic principle. Nature **161**(4098), 777–778 (1948)
- 17. Gabor, D.: Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. Ser. A **197**(1051), 454–487 (1949)
- 18. Gao, B., Wang, Y., Xu, Z.: Stable signal recovery from phaseless measurements. J. Fourier Anal. Appl. **22**(4), 787–808 (2016)

- 19. Gao, B., Sun, Q., Wang, Y., Xu, Z.: Phase retrieval from the magnitudes of affine linear measurements. Adv. Appl. Math. **93**, 121–141 (2018)
- 20. Guizar-Sicairos, M., Fienup, J.R.: Holography with extended reference by autocorrelation linear differential operation. Opt. Express **15**(26), 17592–17612 (2007)
- 21. Harrison, R.W.: Phase problem in crystallography. J. Opt. Soc. Am. A **10**(5) (1993)
- 22. Hauptman, H.A.: The phase problem of X-ray crystallography. Rep. Prog. Phys. **54**(11), 1427–1454 (1991)
- 23. Huang, K., Eldar, Y.C., Sidiropoulos, N.D.: Phase retrieval from 1D Fourier measurements: convexity, uniqueness, and algorithms. IEEE Trans. Signal Process. **64**(23), 6105–6117 (2016)
- 24. Huang, M., Xu, Z.: Performance bound of the intensity-based model for noisy phase retrieval. [arXiv:2004.08764](http://arxiv.org/abs/2004.08764) (2020)
- 25. Huang, M., Xu, Z.: Strong convexity of affine phase retrieval. [arXiv:2204.09412](http://arxiv.org/abs/2204.09412) (2022)
- 26. Latychevskaia, T.: Iterative phase retrieval for digital holography: tutorial. JOSA A **36**(12), 31–40 (2019)
- 27. Liebling, M., Blu, T., Cuche, E., Marquet, P., Depeursinge, C., Unser, M.: Local amplitude and phase retrieval method for digital holography applied to microscopy. In: European Conference on Biomedical Optics, Vol. 5143, pp. 210–214 (2003)
- 28. Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc Am. A **7**(3), 394–411 (1990)
- 29. Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. IEEE Trans. Signal Process. **63**(18), 4814–4826 (2015)
- 30. Rodriguez, J.A., Xu, R., Chen, C., Zou, Y., Miao, J.: Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Crystallogr. **46**(2), 312–318 (2013)
- 31. Sanz, J.L.C.: Mathematical considerations for the problem of Fourier transform phase retrieval from magnitude. SIAM J. Appl. Math. **45**(4), 651–664 (1985)
- 32. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. **32**(3), 87–109 (2015)
- 33. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. Found. Comput. Math. **18**(5), 1131–1198 (2018)
- 34. Voroninski, V., Xu, Z.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. **40**(2), 386–395 (2016)
- 35. Walther, A.: The question of phase retrieval in optics. J. Mod. Opt. **10**(1), 41–49 (1963)
- 36. Xia, Y., Xu, Z.: The recovery of complex sparse signals from few phaseless measurements. Appl. Comput. Harmon. Anal. **50**, 1–15 (2021)
- 37. Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow. IEEE Trans. Inf. Theory **64**(2), 773–794 (2018)
- 38. Wang, Y., Xu, Z.: Generalized phase retrieval?: measurement number, matrix recovery and beyond. Appl. Comput. Harmon. Anal. **47**(2), 423–446 (2019)
- 39. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. **37**(3), 531–544 (2014)
- 40. Xu, G., Xu, Z.: On the ℓ_1 -norm invariant convex *k*-sparse decomposition of signals. J. Oper. Res. Soc. China **1**(4), 537–541 (2013)
- 41. Zhang, H., Zhou, Y., Liang, Y., Chi, Y.: A nonconvex approach for phase retrieval: reshaped Wirtinger flow and incremental algorithms. J. Mach. Learn. Res. **18**(1), 5164–5198 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.