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Abstract
Affine phase retrieval is the problem of recovering signals from the magnitude-only
measurements with a priori information. In this paper, we use the �1 minimization to
exploit the sparsity of signals for affine phase retrieval, showing that O(k log(en/k))
Gaussian randommeasurements are sufficient to recover all k-sparse signals by solving
a natural �1 minimization program, where n is the dimension of signals. For the case
where measurements are corrupted by noises, the reconstruction error bounds are
given for both real-valued and complex-valued signals. Our results demonstrate that
the natural �1 minimization program for affine phase retrieval is stable.
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1 Introduction

1.1 Problem Setup

Affine phase retrieval for sparse signals aims to recover a k-sparse signal x0 ∈ F
n ,

F ∈ {R,C}, from the observed data

y j = |〈a j , x0〉 + b j | + w j , j = 1, . . . ,m,

where a j ∈ F
n, j = 1, . . . ,m are given measurement vectors, b := (b1, . . . , bm)T ∈

F
m is the given bias vector, and w := (w1, . . . , wm)T ∈ R

m is the noise vector. The
affine phase retrieval arises in several practical applications, such as holography [2, 20,
26, 27] and Fourier phase retrieval [3–5, 23], where some side information of signals
is a priori known before capturing the magnitude-only measurements.

The aim of this paper is to study the following program to recover x0 from y :=
(y1, . . . , ym)T ∈ R

m :

min
x∈Cn

‖x‖1 s.t. ‖|Ax + b| − y‖2 ≤ ε, (1)

where A := [a1, . . . , am]∗ ∈ F
m×n .

Particularly, we focus on the following questions:

Question 1: Assume that a j , j = 1, . . . ,m, are Gaussian random measurements
with m = O(k log(en/k)). In the absence of noise, i.e., w = 0, ε = 0, is the
solution to (1) x0?
Question 2: In the noisy scenario, is the program (1) stable under small
perturbation?

For the case where x0 ∈ C
n is non-sparse, it was shown that m ≥ 4n − 1 generic

measurements are sufficient to guarantee the uniqueness of solutions in [19], and
several efficient algorithms with linear convergence rate was proposed to recover the
non-sparse signals x0 from y under m = O(n log n) Gaussian random measurements
in [25]. However, for the case where x0 is sparse, to the best of our knowledges, there
is no result about it.

1.2 RelatedWorks

1.2.1 Phase Retrieval

The noisy phase retrieval is the problem of recovering a signal x0 ∈ F
n , F ∈ {R,C}

from the magnitude-only measurements

y′
j = ∣

∣〈a j , x0〉
∣
∣ + w j , j = 1, . . . ,m,

where a j ∈ F
n are given measurement vectors and w j ∈ R are noises. It arises

naturally inmany areas such as X-ray crystallography [21, 22, 28], coherent diffractive
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imaging [30], and optics [14, 15, 32]. In these settings, optical detectors record only the
intensity of a light wave while losing the phase information. Note that

∣
∣〈a j , x0〉

∣
∣2 =

∣
∣〈a j , eiθ x0〉

∣
∣
2
for any θ ∈ R. Therefore the recovery of x0 for the classical phase

retrieval is up to a global phase. In the absence of noise, it has been proved that
m ≥ 2n − 1 generic measurements suffice to guarantee the uniqueness of solutions
for the real case [1], and m ≥ 4n − 4 for the complex case [6, 13, 38], respectively.
Moreover, several efficient algorithms have been proposed to reconstruct x0 from
y′ := [y′

1, . . . , y
′
m]T, such as alternating minimization [29], truncated amplitude flow

[37], smoothed amplitude flow [7], trust-region [33], and the Wirtinger flow (WF)
variants [9, 10, 41].

1.2.2 Sparse Phase Retrieval

For several applications, the underlying signal is naturally sparse or admits a sparse
representation after some linear transformation. This leads to the sparse phase retrieval:

min
x∈Fn ‖x‖0 s.t. ‖|Ax| − y′‖2 ≤ ε, (2)

where A := [a1, . . . , am]∗. In the absence of noise, it has been established thatm = 2k
generic measurements are necessary and sufficient for uniquely recovering of all k-
sparse signals in the real case, andm ≥ 4k −2 are sufficient in the complex case [39].
In the noisy scenario, O(k log(en/k)) measurements suffice for stable sparse phase
retrieval [12]. Due to the hardness of �0-norm in (2), a computationally tractable
approach to recover x0 is by solving the following �1 minimization:

min
x∈Fn ‖x‖1 s.t. ‖|Ax| − y′‖2 ≤ ε. (3)

For the real case, based on the strong restricted isometry property (SRIP) estab-
lished by Voroninski and Xu [34], the authors in [18] proved that, if a1, . . . , am ∼
1/

√
m · N(0, In) are i.i.d. Gaussian random vectors with m ≥ O(k log(en/k)), then

the solution x̂ ∈ R
n to (3) satisfies

min {‖x̂ − x0‖, ‖x̂ + x0‖} � ε + σk(x0)1√
k

,

where σk(x0)1 := min| supp(x)|≤k ‖x − x0‖1. Lately, this result was extended to the
complex case by employing the “phaselift” technique in [36]. Specifically, the authors
in [36] showed that, for any k-sparse signal x0 ∈ C

n , the solution x̂ ∈ C
n to the

program

argmin
x∈Cn

‖x‖1 s.t. ‖A(x) − A(x0)‖2 ≤ ε

satisfies

min
θ∈[0,2π)

‖x̂ − eiθ x0‖2 � ε√
m‖x0‖2 ,
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provided a1, . . . , am ∼ N(0, In) are i.i.d. complex Gaussian random vectors and
m ≥ O(k log(en/k)). Here, A(x) := (

∣
∣a∗

1 x
∣
∣2 , . . . ,

∣
∣a∗

mx
∣
∣2).

1.2.3 Affine Phase Retrieval

The affine phase retrieval aims to recover a signal x0 ∈ F
n , F ∈ {R,C}, from the

measurements

y j = ∣
∣〈a j , x0〉 + b j

∣
∣ , j = 1, . . . ,m,

where a j ∈ F
n, j = 1, . . . ,m are measurement vectors, b := (b1, . . . , bm)T ∈ F

m is
the bias vector. The problem can be regarded as the classic phase retrieval with a priori
information, and is raised in many areas, such as holographic phase retrieval [16, 17,
27] and Fourier phase retrieval [3–5, 23]. In such scenarios, one needs to employ some
additional information about the desired signals to ensure the uniqueness of solutions.
Specifically, in holographic optics, a reference signal r ∈ C

k ,whose structure is a priori
known, is included in the diffraction patterns alongside the signal of interest x0 ∈ C

n

[2, 20, 26]. Set x′
0 = (xT0 , rT)T ∈ C

n+k . Then the magnitude-only measurements we
obtain that

y j = |〈a′
j , x

′
0〉| = |〈a j , x0〉 + 〈a′′

j , r〉| = |〈a j , x0〉 + b j |, j = 1, . . . ,m,

where a′
j = (aTj , a

′′
j
T
)T ∈ C

n+k are given measurement vectors and b j = 〈a′′
j , r〉 ∈ C

are known. Therefore, the holographic phase retrieval can be viewed as the affine phase
retrieval.

Another application of affine phase retrieval arises in Fourier phase retrieval prob-
lem. For one-dimensional Fourier phase retrieval problem, it usually does not possess
the uniqueness of solutions [35]. Actually, for a given signal with dimension n,
beside the trivial ambiguities caused by shift, conjugate reflection and rotation, there
still could be 2n−2 nontrivial solutions. To enforce the uniqueness of solutions, one
approach is to use additionally known values of some entries [4], which can be recast
as affine phase retrieval. More related works on the uniqueness of solutions for Fourier
phase retrieval can be seen in [11, 31].

1.3 Our Contributions

In this paper, we focus on the recovery of sparse signals from the magnitude of affine
measurements. Specifically, we aim to recover a k-sparse signal x0 ∈ F

n (F = R or
F = C) from the data

y = |Ax0 + b| + w,

where A := [a1, . . . , am]∗ ∈ F
m×n is the measurement matrix, b ∈ F

m is the bias
vector, and w ∈ R

m is the noise vector. Our aim is to present the performance of the
following �1 minimization program:
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argmin
x∈Fn

‖x‖1 s.t. ‖|Ax + b| − y‖2 ≤ ε. (4)

We say a triple (A, b,�) is instance optimal of order k0 if it holds

‖�(|Ax + b|) − x‖p ≤ C · σk0(x)q (5)

for all x ∈ F
n . Here, � : Rm → F

n is a decoder for reconstructing x, σk(x)q :=
min| supp(z)|≤k ‖z − x‖q and C := Ck0,p,q is a constant depending on k0, p and q.

Theorem 1 Assume that there exists a matrix A ∈ F
m×n, a vector b ∈ F

m, a decoder
� : Fm → F

n and positive integers k0, p, q such that (5) holds for all x ∈ F
n. Then

b /∈ {Az : z ∈ F
n}.

Proof We assume that b = Az0 where z0 ∈ F
n . We next show that there exits x ∈ F

n

such that (5) does not hold. For the aim of contradiction, we assume that (5) holds.
Since σk0(−x)q = σk0(x)q , we have

‖�(|Ax − b|) + x‖p = ‖�(|A(−x) + b|) − (−x)‖p ≤ Cσk0(x)q . (6)

Assume that x0 ∈ F
n is k0-sparse, i.e. σk0(x0)q = 0. According to (5) and (6), we

obtain that
�(|Ax0 + b|) = x0, �(|Ax0 − b|) = −x0. (7)

Taking x = rx0 + 2z0 in (6), we have

‖�(|A(rx0 + 2z0) − b|) + rx0 + 2z0‖p ≤ Cσk0(rx0 + 2z0)q ≤ Cσk0(2z0)q , (8)

where r > 0. Observe that

�(|A(rx0 + 2z0) − b|) = �(|A(rx0) + b|) = rx0. (9)

Here, we use x0 is k0-sparse. Substituting (8) into (9), we obtain that

‖2rx0 + 2z0‖p ≤ Cσk0(2z0)q (10)

holds for any r > 0. Note limr→∞ ‖2rx0 + 2z0‖p = ∞. Hence, (10) does not hold
provided r is large enough. A contradiction! ��

For the case wherem ≤ n and A is full rank, we have b ∈ {Az : z ∈ F
n}. According

toTheorem1,weknow that it is impossible to build the instance-optimality result under
this setting. This is quite different from the earlier results on standard phase retrieval
[18], where the instance-optimality is

min|c|=1
‖�(|Ax|) − cx‖p ≤ C · σk0(x)q , for all x ∈ F

n . (11)

The instance-optimality result for the standard phase retrieval, as expressed in equation
(11), is established in [18].
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1.3.1 Real Case

Our first result gives an upper bound for the reconstruct error of (4) in the real case,
under the assumption of a1, . . . , am ∈ R

n being real Gaussian random vectors and
m ≥ O(k log(en/k)). It means the �1-minimization program is stable under small
perturbation, even for the approximately k-sparse signals. To begin with, we need the
following definition of strong RIP condition, which was introduced by Voroninski and
Xu [34].

Definition 1 (StrongRIP in [34]) Thematrix A ∈ R
m×n satisfies the StrongRestricted

Isometry Property (SRIP) of order k and constants θl , θu > 0 if the following
inequality

θl‖x‖2 ≤ min
I⊂[m],|I |≥m/2

‖AI x‖2 ≤ max
I⊂[m],|I |≥m/2

‖AI x‖2 ≤ θu‖x‖2

holds for all k-sparse signals x ∈ R
n . Here, AI denotes the sub-matrix of A whose

rows with indices in I are kept, [m] := {1, . . . ,m} and |I | denotes the cardinality
of I .

The following result indicates that the matrix
[

A b
] ∈ R

m×(n+1) satisfies strong
RIP condition with high probability under some mild conditions on A ∈ R

m×n and
b ∈ R

m .

Theorem 2 Let A ∈ R
m×n be a Gaussian random matrix with entries ak, j ∼

N(0, 1/m). Suppose that the vector b ∈ R
m satisfies α ≤ ‖bI ‖2 ≤ β for all I ⊆ [m]

with |I | ≥ m/2, whereα ≤ β are twopositive constants. Set A′ := [

A b
] ∈ R

m×(n+1).
If m ≥ Ct(k + 1) log(en/k) with t(k + 1) ≤ n and 1 < t ∈ Z, then there exist con-
stants θ ′

l , θ ′
u, independent with t , such that the matrix A′ satisfies the strong RIP of

order tk + 1 and constants θ ′
l , θ ′

u with probability at least 1 − 4 exp(−c′m). Here,
C, c′ > 0 are constants depending only on α and β.

The following theorem shows that if we add some restrictions on the signal x, then
the instance-optimality result can be established.

Theorem 3 Assume that A′ := [

A b
] ∈ R

m×(n+1) satisfies the strong RIP of order
(a + 1)(k + 1) with constants θu ≥ θl > 0. If a > θu/θl , then the following holds:
for any vector x0 ∈ R

n, the solution x̂ to (4) with y = |Ax0 + b| + w and ‖w‖2 ≤ ε

obeys

‖x̂ − x0‖2 ≤ K1ε + K2
σk(x0)1√
a(k + 1)

,

provided K1ε + K2
σk (x0)1√
a(k+1)

< 2. Here,

K1 := 2
(

1 + 1/
√
a
)

√
θl − √

θu/
√
a

> 0, K2 := √

θuK1 + 2.
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From Theorem 2, we know that if A ∈ R
m×n is a Gaussian random matrix

with entries ak, j ∼ N(0, 1/m) and the sampling complexity m ≥ C(a + 1)(k +
2) log(en/k), then with high probability the matrix A′ := [

A b
]

satisfies strong RIP
condition of order (a+1)(k+1)with constants θl , θu > 0 under somemild conditions
on b. Here, the constants θl , θu are independent with a. Therefore, taking the constant
a > θu/θl , the conclusion of Theorem 3 holds with high probability.

In the absence of noise, i.e., w = 0, ε = 0, Theorem 3 shows that if a1, . . . , am ∼
1/

√
m ·N(0, In) are real Gaussian random vectors and m ≥ O(k log(en/k)), then all

the k-sparse signals x0 ∈ R
n could be reconstructed exactly by solving the program

(4) under some mild conditions on b. We state it as the following corollary:

Corollary 1 Let A ∈ R
m×n be a Gaussian random matrix with entries a jk ∼

N(0, 1/m), and b ∈ R
m be a vector satisfying α ≤ ‖bI ‖2 ≤ β for all I ⊆ [m] with

|I | ≥ m/2, where α ≤ β are two positive universal constants. If m ≥ Ck log(en/k),
thenwith probability at least 1−4 exp(−cm) it holds: for any k-sparse signal x0 ∈ R

n,
the �1 minimization

argmin
x∈Rn

‖x‖1 s.t. |Ax + b| = y

with y = |Ax0 + b| has a unique solution x0. Here C, c > 0 are constants depending
only on α and β.

1.3.2 Complex Case

We next turn to consider the estimation performance of (4) for the complex-valued
signals. Let Hn×n be the set of Hermitian matrix in C

n×n and ‖H‖0,2 denotes the
number of non-zero rows in H . Given a1, . . . , am ∈ C

n and b1, . . . , bm ∈ C, we
define a linear map A′ : H ′ ∈ H

(n+1)×(n+1) → R
m as follows:

A′(H ′) = (a′∗
1 H ′a′

1, . . . , a
′∗
m H ′a′

m), (12)

where a′
j :=

( a j

b j

)

∈ C
n+1.

Definition 2 We say the linear mapA′ defined in (12) satisfies the restricted isometry
property of order (r , k) with constants c, C > 0 if the following holds

c‖H ′‖F ≤ 1

m
‖A′(H ′)‖1 ≤ C‖H ′‖F (13)

for all H ′ :=
[

H h
h∗ 0

]

∈ H
(n+1)×(n+1) with rank(H) ≤ r , ‖H‖0,2 ≤ k and ‖h‖0 ≤ k.

The following theorem shows that the linear mapA′ satisfies the restricted isometry
property over low-rank and sparse matrices, provided a1, . . . , am ∈ C

n are i.i.d.
complex Gaussian random vectors and b := (b1, . . . , bm)T ∈ C

m satisfies some mild
conditions.
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Theorem 4 Suppose a1, . . . , am ∼ 1/
√
2·N(0, In)+i/

√
2·N(0, In) are i.i.d. complex

Gaussian random vectors and b ∈ C
m is a independent sub-gaussian random vector

(it also may be deterministic) with sub-gaussian norm ‖b‖ψ2 ≤ C and E‖b‖1 ≥ c1m,
E‖b‖2 ≤ c2

√
m, where C > 0, c2 ≥ c1 > 0 are universal constants. If m ≥

C ′k log(en/k), then with probability at least 1 − 5 exp(−c′m), the linear map A′
defined in (12) obeys

θ−

12
‖H ′‖F ≤ 1

m
‖A′(H ′)‖1 ≤ 3θ+‖H ′‖F

for all H ′ :=
[

H h
h∗ 0

]

∈ H
(n+1)×(n+1) with rank(H) ≤ 2, ‖H‖0,2 ≤ k and ‖h‖0 ≤ k.

Here, θ− := min(1, c1/
√
2), θ+ := max(

√
6, c2), and C ′, c′ > 0 are constants

depending only on c1, c2.

With abuse of notation, we denote A′(x′) := A′(x′x′∗) for any vector x′ ∈ C
n+1.

Then we have

Theorem 5 Assume that the linear mapA′(·) satisfies the RIP condition (13) of order
(2, 2ak) with constants c, C > 0. For any k-sparse signal x0 ∈ C

n, if

c − C

(
4√
a

+ 1

a

)

> 0,

then the solution x̂ ∈ C
n to

argmin
x∈Cn

‖x‖1 s.t. ‖A′(x′) − ỹ‖ ≤ ε and x′ = (xT, 1)T

with ỹ = A′(x′
0) + w, ‖w‖ ≤ ε and x′

0 = (xT0 , 1)T obeys

min
θ∈R

(

‖x̂ − eiθ x0‖2 +
∣
∣
∣1 − eiθ

∣
∣
∣

)

≤ C0ε

(‖x0‖ + 1)
√
m

,

where

C0 := 2
√
2 ·

1
a + 4√

a
+ 1

c − C
(

4√
a

+ 1
a

) .

Based on Theorem 4, if a1, . . . , am ∈ C
n are i.i.d. complex Gaussian random

vectors and m ≥ C ′ak log(en/ak), then with high probability the linear map A′
defined in (12) satisfies RIP condition of order (2, 2ak)with constants c = θ−/12 and
C = 3θ+ under somemild conditions on b. For the noiseless casewherew = 0, ε = 0,
taking the constant a > (8C/c)2 and combining with Theorem 5, we can obtain the
following result.
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Corollary 2 Suppose a1, . . . , am ∼ 1/
√
2·N(0, In)+i/

√
2·N(0, In) are i.i.d. complex

Gaussian random vectors and b ∈ C
m is a independent sub-gaussian random vector

(it also may be deterministic) with sub-gaussian norm ‖b‖ψ2 ≤ C and E‖b‖1 ≥ c1m,
E‖b‖2 ≤ c2

√
m, where C > 0, c2 ≥ c1 > 0 are universal constants. If m ≥

C ′′k log(en/k), then with probability at least 1 − 5 exp(−c′′m), then the solution to

argmin
x∈Cn

‖x‖1 s.t. |Ax + b| = |Ax0 + b|

is x0 exactly. Here, C ′′, c′′ > 0 are constants depending only on c1, c2.

Remark 1 Wegive anupper bound forminθ∈R
(‖x̂ − eiθ x0‖2 + ∣

∣1 − eiθ
∣
∣
)

inTheorem
5. However, since the affine phase retrieval can recover a signal exactly (not just up to
a global phase), one may wonder: is there a stable recovery bound for ‖x̂ − x0‖2? We
believe that the answer is no, especially for the case where the noise vector ‖w‖2 �√
m. We defer the proof of it for the future work.

1.4 Notations

Throughout the paper, we denote x ∼ N(0, In) if x ∈ R
n is a standard Gaussian

random vector. A vector x is k-sparse if there are at most k nonzero entries of x.
For simplicity, we denote [m] := {1, . . . ,m}. For any subset I ⊆ [m], let AI =
[

a j : j ∈ I
]∗ be the submatrix whose rows are generated by A = [

a1, . . . , am
]∗.

Denote σk(x0)p := min|supp(x)|≤k ‖x − x0‖p as the best k-term approximation error
of x0 with respect to �p norm. For a complex number b, we use b� and b� to denote
the real and imaginary part of b, respectively. For any A, B ∈ R, we use A � B to
denote A ≤ C0B whereC0 ∈ R+ is an absolute constant. The notion� can be defined
similarly. Throughout this paper, c, C and the subscript (superscript) forms of them
denote constants whose values vary with the context.

2 Proof of Theorem 2 and Theorem 3

In this section, we consider the estimation performance of the �1-minimization pro-
gram (4) for the real-valued signals. Before proceeding, we need the following lemma
which shows that if A ∈ R

m×n is a real Gaussian random matrix with entries
ak, j ∼ N(0, 1/m), then A satisfies the strong RIP with high probability.

Lemma 1 (Theorem 2.1 in [34]) Suppose that t > 1 and that A ∈ R
m×n is a Gaussian

random matrix with entries ak, j ∼ N(0, 1/m). Let m = O(tk log(en/k)) where
k ∈ [1, d] ∩Z and t ≥ 1 is a constant. Then there exist constants θl , θu with 0 < θl <

θu < 2, independent with t , such that A satisfies SRIP of order t · k and constants
θl , θu with probability at least 1 − exp(−cm), where c > 0 is a universal constant.
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2.1 Proof of Theorem 2

Proof From the definition, it suffices to show there exist constants θ ′
l , θ

′
u > 0 such that

the following inequality

θ ′
l ‖x′‖2 ≤ min

I⊂[m],|I |≥m/2
‖A′

I x
′‖2 ≤ max

I⊂[m],|I |≥m/2
‖A′

I x
′‖2 ≤ θ ′

u‖x′‖2 (14)

holds for all (tk + 1)-sparse signals x′ ∈ R
n+1. To this end, we denote x′ = (xT, z)T,

where x ∈ R
n and z ∈ R. We first consider the case where z = 0. From Lemma 1, we

know that if m � t(k + 1) log(en/(k + 1)) and t > 1, then there exist two positive
constants θl , θu ∈ (0, 2) such that

θl‖x‖22 ≤ min
I⊆[m],|I |≥m/2

‖AI x‖22 ≤ max
I⊆[m],|I |≥m/2

‖AI x‖22 ≤ θu‖x‖22 (15)

holds for all (tk + 1)-sparse vector x ∈ R
n with probability at least 1 − exp(−cm).

Here, c > 0 is a universal constant. Note that A′x′ = Ax. We immediately obtain
(14) for the case where z = 0.

Next, we turn to the case where z �= 0. A simple calculation shows that

‖A′
I x

′‖22 = ‖AI x + zbI‖22 = ‖AI x‖22 + 2z〈AI x, bI 〉 + z2‖bI ‖22 (16)

for any I ⊆ [m]. Denote A = [

a1, . . . , am
]T. Note that

√
ma j ∼ N(0, In). Taking

ζ = min(θl ,α2)
200β in Lemma 5, we obtain that there exists a constant C > 0 depending

only on θl , α, β such that when m ≥ Ct(k + 1) log(en/k), with probability at least
1 − 3 exp(−c1m), it holds

|〈AI x, bI 〉| = |〈Ax, bI 〉| ≤ min{θl , α2}
200β

‖x‖2‖b‖2 (17)

for all (tk + 1)-sparse vectors x and all I ⊆ [m]. Here, we view bI = bII ∈ R
m

(II ( j) = 1 if j ∈ I and 0 if j /∈ I ), and c1 > 0 is a constant depending only on
θl , α, β. Note that the vector b satisfies

α ≤ ‖bI ‖2 ≤ β (18)

for all I ⊆ [m] with |I | ≥ m/2. Putting (15), (17) and (18) into (16), we obtain
that when m ≥ Ct(k + 1) log(en/k), with probability at least 1 − 4 exp(−cm), the
following two inequalities

‖A′
I x

′‖22 ≥ θl‖x‖22 − 2 |z| min{θl , α2}
200β

‖x‖2β + α2z2 ≥ 0.99min{θl , α2}‖x′‖22,
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and

‖A′
I x

′‖22 ≤ θu‖x‖22 + 2 |z| min{θl , α2}
200β

‖x‖2β + β2z2 ≤ 1.01max{θu, β2}‖x′‖22

hold for all (tk + 1)-sparse vector x′ ∈ R
n+1 and for all I ⊆ [m] with |I | ≥ m/2.

Here, c > 0 is a constant depending only on θl , α, β. In other words, we have

θ ′
l ‖x′‖22 ≤ min

I⊆[m],|I |≥m/2
‖A′

I x
′‖22 ≤ max

I⊆[m],|I |≥m/2
‖A′

I x
′‖22 ≤ θ ′

u‖x′‖22

for all (tk + 1)-sparse vector x′ with probability at least 1 − 4 exp(−cm). Here,
θ ′
l = 0.99min{θl , α2} and θ ′

u = 1.01max{θu, β2}. Combining the above two cases
and noting that θl , θu > 0 are universal constants, we complete the proof. ��

2.2 Proof of Theorem 3

Proof Denote A′ = [

A b
]

, x̂′ = (x̂T, 1)T and x′
0 = (xT0 , 1)T. Set

I := { j : (〈a j , x̂〉 + b j )(〈a j , x0〉 + b j ) ≥ 0}.

We next divide the proof into the following two cases.
Case 1: |I | ≥ m/2. Set h = x̂′ − x′

0. For any a > 1, we decompose h into the sum
of hT0 , hT1 , . . . , where T0 is an index set which consists the indices of the k+1 largest
coordinates of x′

0 inmagnitude, T1 is the index set corresponding to the a(k+1) largest
coordinates of hT c

0
in magnitude, T2 is the index set corresponding to the a(k + 1)

largest coordinates of h(T0∪T1)c in magnitude, and so on. For simplicity, we denote
Tjl := Tj ∪ Tl . To prove the theorem, we only need to give an upper bound for ‖h‖2.
Observe that

‖h‖2 ≤ ‖hT01‖2 + ‖h − hT01‖2. (19)

We claim that the following holds:

‖h − hT01‖2 ≤ 1√
a

‖hT01‖2 + 2σk(x0)1√
a(k + 1)

(20)

and

‖hT01‖2 ≤ 2√
θl − √

θu/
√
a

·
(

ε +
√

θuσk(x0)1√
a(k + 1)

)

. (21)

Here, C, c, θl and θu are positive constants depending only on α and β. Putting (20)
and (21) into (19), we obtain that

‖h‖2 ≤ 2
(

1 + 1/
√
a
)

√
θl − √

θu/
√
a

ε +
(
2(1 + 1/

√
a)

√
θu√

θl − √
θu/

√
a

+ 2

)
σk(x0)1√
a(k + 1)

.
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It remains to prove the claim (20) and (21). Since x̂ is the solution to �1 minimization
program (4), we have

‖x′
0‖1 ≥ ‖x̂′‖1 = ‖x′

0 + h‖1 = ‖(x′
0 + h)T0‖1 + ‖(x′

0 + h)T c
0
‖1

≥ ‖x′
0,T0‖1 − ‖hT0‖1 + ‖hT c

0
‖1 − ‖x′

0,T c
0
‖1.

Therefore,
‖hT c

0
‖1 ≤ ‖hT0‖1 + 2‖x′

0,T c
0
‖1. (22)

From the definition of Tj , we obtain that, for all j ≥ 2,

‖hTj ‖2 ≤ √

a(k + 1)‖hTj ‖∞ = a(k + 1)√
a(k + 1)

‖hTj ‖∞ ≤ ‖hTj−1‖1√
a(k + 1)

.

It then gives

‖hT c
01

‖2 ≤
∑

j≥2

‖hTj ‖2 ≤ 1√
a(k + 1)

∑

j≥2

‖hTj−1‖1 = 1√
a(k + 1)

‖hT c
0
‖1. (23)

Putting (22) into (23), we obtain the conclusion of claim (20), namely,

‖hT c
01

‖2 ≤ 1√
a(k + 1)

‖hT c
0
‖1 ≤

‖hT0‖1 + 2‖x′
0,T c

0
‖1√

a(k + 1)

≤ 1√
a

‖hT0‖2 + 2σk+1(x′
0)1√

k
≤ 1√

a
‖hT01‖2 + 2σk(x0)1√

a(k + 1)
,

(24)

where the third inequality follows the Cauchy-Schwarz inequality and the last
inequality comes from the fact σk+1(x′

0)1 ≤ σk(x0)1 by the definitions of x̂′ and
σk(·)1.

We next turn to prove the claim (21). Observe that

‖A′
I h‖2 ≥ ‖A′

I hT01‖2 − ‖A′
I hT c

01
‖2. (25)

For the left hand side of (25), by the definition of I , we have

‖A′
I h‖2 = ‖∣∣A′

I x̂
′| − |A′

I x
′
0

∣
∣‖2

≤ ‖∣∣A′ x̂′∣∣ − ∣
∣A′x′

0

∣
∣‖2

≤ ‖∣∣A′ x̂′∣∣ − y‖2 + ‖∣∣A′x′
0

∣
∣ − y‖2

≤ 2ε.

(26)

For the first term of the right hand side of (25), since the matrix A′ satisfies strong RIP
of order (a + 1)(k + 1) with constants θl , θu > 0, we immediately have

‖A′
I hT01‖2 ≥ √

θl‖hT01‖2. (27)
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To give an upper bound for the term ‖A′
I hT c

01
‖2, note that ‖hT c

01
‖∞ ≤ ‖hT1‖1/a(k+1).

Let θ := max
(

‖hT1‖1/a(k + 1), ‖hT c
01

‖1/a(k + 1)
)

. Then by theLemma2,we could

decompose the vector hT c
01
into the following form:

hT c
01

=
N

∑

j=1

λ ju j , with 0 ≤ λ j ≤ 1,
N

∑

j=1

λ j = 1,

where u j are a(k + 1)-sparse vectors satisfying

‖u j‖1 = ‖hT c
01

‖1, ‖u j‖∞ ≤ θ.

Therefore, we have

‖u j‖2 ≤
√

θ‖hT c
01

‖1.

We notice from (22) that

‖hT c
01

‖1 ≤ ‖hT c
0
‖1 ≤ ‖hT0‖1 + 2σk(x0)1.

Thus, if θ = ‖hT1‖1/a(k + 1), then we have

‖u j‖2 ≤
√

‖hT1‖1‖hT c
01

‖1
a(k + 1)

≤
√

‖hT c
0
‖1‖hT c

01
‖1

a(k + 1)

≤ ‖hT0‖1 + 2σk(x0)1√
a(k + 1)

≤ ‖hT0‖2√
a

+ 2σk(x0)1√
a(k + 1)

.

If θ = ‖hT c
01

‖1/a(k + 1), then

‖u j‖2 ≤ ‖hT c
01

‖1√
a(k + 1)

≤ ‖hT0‖2√
a

+ 2σk(x0)1√
a(k + 1)

.

Therefore, for the second term of the right hand side of (25), it follows from the
definition of strong RIP that

‖A′
I hT c

01
‖2=‖

N
∑

j=1

λ j A′
I u j‖2≤√

θu

N
∑

j=1

λ j‖u j‖2 ≤ √

θu

(‖hT0‖2√
a

+ 2σk(x0)1√
a(k + 1)

)

.

(28)
Putting (26), (27) and (28) into (25), we immediately obtain

2ε ≥ √

θl‖hT01‖2 − √

θu

(‖hT01‖2√
a

+ 2σk(x0)1√
a(k + 1)

)

,
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which gives

‖hT01‖2 ≤ 2√
θl − √

θu/
√
a

·
(

ε +
√

θuσk(x0)1√
a(k + 1)

)

.

Case 2: |I | < m/2. For this case, denote h+ = x̂′ + x′
0. Replacing h and the subset

I in Case 1 by h+ and I c respectively, and applying the same argument, we could
obtain

‖h+‖ ≤ 2
(

1 + 1/
√
a
)

√
θl − √

θu/
√
a

ε +
(
2(1 + 1/

√
a)

√
θu√

θl − √
θu/

√
a

+ 2

)
σk(x0)1√
a(k + 1)

. (29)

However, recall that x̂′ = (x̂T, 1)T and x′
0 = (xT0 , 1)T. It means ‖h+‖2 ≥ 2, which

contradicts to (29) by the assumption of ε and σk(x0)1, i.e., K1ε + K2
σk (x0)1√
a(k+1)

< 2.
Therefore, Case 2 does not hold.

Combining the above two cases, we complete our proof. ��

3 Proof of Theorems 4 and 5

3.1 Proof of Theorem 4

Proof Without loss of generality, we assume that ‖H ′‖F = 1. Observe that

1

m
‖A′(H ′)‖1 = 1

m

m
∑

j=1

∣
∣
∣a∗

j Ha j + 2(b j (a∗
j h))�

∣
∣
∣ := 1

m

m
∑

j=1

ξ j .

For any fixed H ∈ H
n×n and h ∈ C

n , the terms ξ j , j = 1, . . . ,m are independent
sub-exponential random variables with the maximal sub-exponential norm

K := max
1≤ j≤m

C1(‖H‖F + ‖b j‖ψ2‖h‖) ≤ C2

for some universal constants C1, C2 > 0. Here, we use the fact max (‖H‖F , ‖h‖) ≤
‖H ′‖F = 1. For any 0 < ε ≤ 1, the Bernstein’s inequality gives

P

(∣
∣
∣
1

m

m
∑

j=1

(

ξ j − Eξ j
)
∣
∣
∣ ≥ ε

)

≤ 2 exp
(

−cε2m
)

,

where c > 0 is a universal constant. According to Lemma 6, we obtain that

1

3
E

√

‖H‖2F + |b j |2‖h‖2 ≤ Eξ j ≤ 2E
√

3‖H‖2F + |b j |2‖h‖2.
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This gives

1

m

m
∑

j=1

Eξ j ≤ 2

m

m
∑

j=1

E

(√
3‖H‖F + |b j |‖h‖

)

≤ 2
√
3‖H‖F + 2c2‖h‖ ≤ 2θ+,

where θ+ := max(
√
6, c2). Here, we use the fact ‖H ′‖2F = ‖H‖2F + 2‖h‖2 = 1,

E‖b‖1 ≤ √
mE‖b‖ ≤ c2m, and a+b√

2
≤ √

a2 + b2 ≤ a + b for any positive number

a, b ∈ R. Similarly, we could obtain

1

m

m
∑

j=1

Eξ j ≥ 1

3
√
2

· 1

m

m
∑

j=1

E
(‖H‖F + |b j |‖h‖) ≥ 1

3
√
2

(‖H‖F + c1‖h‖) ≥ θ−

6
,

where θ− := min(1, c1/
√
2). Collecting the above estimators, we obtain that, with

probability at least 1 − 2 exp(−cε2m), the following inequality

θ−

6
− ε ≤ 1

m
‖A′(H ′)‖1 ≤ 2θ+ + ε (30)

holds for a fixed H ′ ∈ H
(n+1)×(n+1). We next show that (30) holds for all H ′ ∈ X,

where

X :=
{

H ′ :=
[

H h
h∗ 0

]

∈ H
(n+1)×(n+1) : ‖H ′‖F =1, rank(H)≤2, ‖H‖0,2≤ k, ‖h‖0≤k

}

.

To this end, we adopt a basic version of a δ-net argument. Assume that Nδ is a δ-net

of X, i.e., for any H ′ =
[

H h
h∗ 0

]

∈ X there exists a H ′
0 :=

[

H0 h0
h∗
0 0

]

∈ Nδ such that

‖H − H0‖F ≤ δ and ‖h − h0‖ ≤ δ. Using the same idea of Lemma 2.1 in [36], we
obtain that the covering number of X is

|Nδ| ≤
(

9
√
2en

δk

)4k+2

·
(

n
k

) (

1 + 2

δ

)2k

≤ exp (C3k log(en/δk)) ,

where C3 > 0 is a universal constant. Note that h−h0 has at most 2k nonzero entries.
We obtain that if m � k log(en/k), then with probability at least 1 − 3 exp(−cm), it
holds

∣
∣
∣
∣

1

m
‖A′(H ′)‖1 − 1

m
‖A′(H ′

0)‖1
∣
∣
∣
∣
≤ 1

m
‖A′(H ′ − H ′

0)‖1

≤ 1

m
‖A(H − H0)‖1 + 2

m

m
∑

j=1

|b j ||a∗
j (h − h0)|

≤ 1

m
‖A(H − H0)‖1
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+ 2

√
√
√
√

1

m

m
∑

j=1

|b j |2
√
√
√
√

1

m

m
∑

j=1

|a∗
j (h − h0)|2

≤ 2.45‖H − H0‖F + 3(c2 + 1)‖h − h0‖
≤ 3 (c2 + 2) δ,

where the linear map A(·) is defined as A(H) := (a∗
1Ha1, . . . , a∗

mHam), and the
fourth inequality follows from the combination of Lemma3, the fact 1m

∑m
j=1 a j a∗

j ≤
3/2 with probability at least 1 − exp(−cm), and

1

m

m
∑

j=1

|b j |2 ≤ E‖b‖2
m

+ 1 ≤ c2 + 1

with probability at least 1−2 exp(−cm). Choosing ε := 1
48 , δ := θ−

48(c2+2) , and taking
the union bound, we obtain that the following inequality

θ−

12
≤ 1

m
‖A′(H ′)‖1 ≤ 3θ+ for all H ′ ∈ X

holds with probability at least

1 − 3 exp(−cm) − 2 exp (C3k log(en/δk)) · exp(−cε2m) ≥ 1 − 5 exp(−c′m),

provided m ≥ C ′k log(en/k), where C ′, c′ > 0 are constants depending only on c1
and c2. ��

3.2 Proof of Theorem 5

Proof The proof of this theorem is adapted from that of Theorem 1.3 in [36]. Note
that the �1-minimization problem we consider is

argmin
x∈Cn

‖x‖1 s.t. ‖A′(x′) − y′‖ ≤ ε with x′ =
(

x
1

)

. (31)

Here, with some abuse of notation, we set

A′(x′) := A′(x′x′) =
(∣
∣a′∗

1 x′∣∣2 , . . . ,
∣
∣a′∗

m x′∣∣2
)

with a′
j :=

(

a j

b j

)

, j = 1, . . . ,m.

Let x̂ ∈ C
n be a solution to (31). Without loss of generality, we assume 〈x̂′, x′

0〉 ≥ 0

(Otherwise, we can choose eiθ x′
0 for an appropriate θ ), where x̂′ =

(

x̂
1

)

and x′
0 =

(

x0
1

)

. Set
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X̂ ′ := x̂′ x̂′∗ =
(

x̂ x̂∗ x̂
x̂∗ 1

)

and

H ′ := x̂′ x̂′∗ − x′
0x

′
0
∗ =

(

x̂ x̂∗ − x0x∗
0 x̂ − x0

x̂∗ − x∗
0 0

)

:=
(

H h
h∗ 0

)

.

Therefore, it suffices to give an upper bound for ‖H ′‖F . Denote T0 := supp(x0) and
T ′
0 := T0 ∪ {n + 1}. Let T1 be the index set corresponding to the indices of the ak-

largest elements of x̂T c
0
in magnitude, and T2 contain the indices of the next ak largest

elements, and so on. Set T01 := T0 ∪ T1, T ′
01 := T ′

0 ∪ T1, h̄ := hT01 , H̄ = HT01,T01 ,
and H̄ ′ := H ′

T ′
01,T

′
01
. Noting that

‖H ′‖F ≤ ‖H̄ ′‖F + ‖H ′ − H̄ ′‖F , (32)

we next consider the terms ‖H̄ ′‖F and ‖H ′ − H̄ ′‖F . We claim that

‖H ′ − H̄ ′‖F ≤
(
1

a
+ 4√

a

)

‖H̄ ′‖F (33)

and

‖H̄ ′‖F ≤ 1

c − C
(

4√
a

+ 1
a

) · 2ε√
m

. (34)

Combining (32), (33) and (34), we obtain that

‖H ′‖F ≤
1
a + 4√

a
+ 1

c − C
(

4√
a

+ 1
a

) · 2ε√
m

.

According to Lemma 4, we immediately have

min
θ∈R ‖x̂′ − eiθ x′

0‖2 ≤
√
2‖H ′‖

‖x0‖ + 1
≤

1
a + 4√

a
+ 1

c − C
(

4√
a

+ 1
a

) · 2
√
2ε

(‖x0‖ + 1)
√
m

.

By the definition of x̂′ and x′
0, we arrive at the conclusion.

It remains to prove the claims (33) and (34). Note that

‖H ′ − H̄ ′‖F ≤
∑

i≥2, j≥2

‖HTi ,Tj ‖F + 2
∑

j≥2

‖H ′
T ′
0,Tj

‖F + 2
∑

j≥2

‖H ′
T1,Tj

‖F . (35)

We first give an upper bound for the term
∑

i≥2, j≥2 ‖H ′
Ti ,Tj

‖F . Noting that x0 is a
k-sparse vector and x̂ ∈ C

n is the solution to (31), we obtain that

‖x0‖1 ≥ ‖x̂‖1 = ‖x̂T0‖1 + ‖x̂T c
0
‖1,



36 Page 18 of 25 Journal of Fourier Analysis and Applications (2023) 29 :36

which implies ‖x̂T c
0
‖1 ≤ ‖x̂T0 − x0‖1. Moreover, by the definition of Tj , we know

that for all j ≥ 2, it holds ‖x̂Tj ‖2 ≤ ‖x̂T j−1‖1√
ak

. It then implies

∑

j≥2

‖x̂Tj ‖2 ≤ 1√
ak

∑

j≥2

‖x̂Tj−1‖1 ≤ 1√
ak

‖x̂T c
0
‖1 ≤ 1√

a
‖x̂T0 − x0‖2. (36)

Therefore, the first term of (35) can be estimated as

∑

i≥2, j≥2

‖HTi ,Tj ‖F =
∑

i≥2, j≥2

‖x̂Ti ‖2‖x̂Tj ‖2 =
⎛

⎝
∑

j≥2

‖x̂Tj ‖2
⎞

⎠

2

≤ 1

ak
‖x̂T c

0
‖21

= 1

ak
‖HT c

0 ,T c
0
‖1 ≤ 1

ak
‖HT0,T0‖1 ≤ 1

a
‖H̄ ′‖F ,

(37)

where the second inequality follows from

‖H − HT0,T0‖1 = ‖x̂ x̂∗ − (x̂ x̂∗)T0,T0‖1 ≤ ‖x0x0∗‖1 − ‖(x̂ x̂∗)T0,T0‖1 ≤ ‖HT0,T0‖1.

Here, the first inequality comes from ‖x̂‖1 ≤ ‖x0‖1.
For the second term and the third term of (35), we obtain that

∑

j≥2

‖H ′
T ′
0,Tj

‖F +
∑

j≥2

‖H ′
T1,Tj

‖F = ‖x̂′
T ′
0
‖
∑

j≥2

‖x̂′
Tj

‖ + ‖x̂′
T1‖

∑

j≥2

‖x̂′
Tj

‖

≤ 1√
a

‖x̂′
T ′
0
− x′

0‖2
(

‖x̂′
T ′
0
‖2 + ‖x̂′

T1‖2
)

≤
√
2√
a

‖x̂′
T ′
01

− x′
0‖2‖x̂′

T ′
01

‖2

≤ 2√
a

‖H̄ ′‖F ,

(38)

where the first inequality follows from (36) due to x̂′
Tj

= x̂Tj for all j ≥ 1, and the
last inequality comes from Lemma 4. Putting (37) and (38) into (35), we obtain that

‖H ′ − H̄ ′‖F ≤
(
1

a
+ 4√

a

)

‖H̄ ′‖F .

This proves the claim (33).
Finally, we turn to prove the claim (34). Note that ‖A′(x̂′) − ỹ‖ ≤ ε and ỹ :=

A′(x′
0) + ε, which implies

‖A′(H ′)‖2 ≤ ‖A′(x̂′) − ỹ‖2 + ‖A′(x′
0) − ỹ‖2 ≤ 2ε.
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Thus, we have

2ε√
m

≥ 1√
m

‖A′(H ′)‖2 ≥ 1

m
‖A′(H ′)‖1 ≥ 1

m
‖A′(H̄ ′)‖1 − 1

m
‖A′(H ′ − H̄ ′)‖1.

(39)

Recall that H̄ ′ :=
(

H̄ h̄
h̄∗ 0

)

with rank(H̄) ≤ 2, ‖H̄‖0,2 ≤ (a + 1)k, and ‖h̄‖0 ≤
(a + 1)k. It then follows from the RIP of A′ that

‖A′(H̄ ′)‖1 ≥ c‖H̄ ′‖F . (40)

To prove (34), it suffices to give an upper bound for the term 1
m ‖A′(H ′ − H̄ ′)‖1.

Observe that

H ′ − H̄ ′ = (H ′
T ′
0,T

′c
01

+ H ′
T ′c
01,T

′
0
) + (H ′

T1,T ′c
01

+ H ′
T ′c
01,T1

) + H ′
T ′c
01,T

′c
01

. (41)

Since

H ′
T ′
0,T

′c
01

+ H ′
T ′c
01,T

′
0

=
∑

j≥2

(H ′
T ′
0,Tj

+ H ′
Tj ,T ′

0
) =

∑

j≥2

(

x̂T0 x̂
∗
Tj

+ x̂Tj x̂
∗
T0

x̂Tj

x̂∗
Tj

0

)

,

then the RIP of A′ implies

1

m
‖A′(H ′

T ′
0,T

′c
01

+ H ′
T ′c
01,T

′
0
)‖1 ≤ C

∑

j≥2

(

‖x̂T0 x̂∗
Tj

+ x̂Tj x̂
∗
T0‖F + 2‖x̂Tj ‖2

)

≤ 2
√
2C‖x̂′

T ′
0
‖2

∑

j≥2

‖x̂Tj ‖2

≤ 2
√
2√
a
C‖x̂′

T ′
0
‖2‖x̂′

T ′
01

− x′
0‖2.

(42)

Similarly, we could obtain

1

m
‖A′(H ′

T1,T ′c
01

+ H ′
T ′c
01,T1

)‖1 ≤ 2
√
2√
a
C‖x̂′

T1‖2‖x̂′
T ′
01

− x′
0‖2. (43)

Finally, observe that 1
m ‖A′(H ′

T ′c
01,T

′c
01

)‖1 = 1
m ‖A(HT c

01,T
c
01

)‖1. Using the same

technique as [36, Eq. (3.16)], we could obtain

1

m
‖A′(H ′

T ′c
01,T

′c
01

)‖1 ≤ C

a
‖H̄ ′‖F . (44)
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Putting (42), (43) and (44) into (41), we have

1

m
‖A′(H ′ − H̄ ′)‖1 ≤ 4√

a
C‖x̂′

T ′
01

‖2‖x̂′
T ′
01

− x′
0‖2 + C

a
‖H̄ ′‖F ≤ C

(
4√
a

+ 1

a

)

‖H̄ ′‖F .

(45)
Combining (39), (40) and (45), we immediately obtain

(

c − C

(
4√
a

+ 1

a

))

‖H̄ ′‖F ≤ 2ε√
m

,

which implies

‖H̄ ′‖F ≤ 1

c − C
(

4√
a

+ 1
a

) · 2ε√
m

.

This completes the proof of claim (34). ��
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A Supporting Lemmas

The following lemma gives a way for how to decompose a vector v ∈ R
n into the

convex combination of several k-sparse vectors.

Lemma 2 ( [8, 40]) Suppose that v ∈ R
n satisfying ‖v‖∞ ≤ θ and ‖v‖1 ≤ kθ , where

θ > 0 and k ∈ Z+. Then we have

v =
N

∑

j=1

λ ju j with 0 ≤ λ j ≤ 1,
N

∑

j=1

λ j = 1,

where u j ∈ R
n is k-sparse vectors and ‖u j‖1 ≤ ‖v‖1, ‖u j‖∞ ≤ θ .

Lemma 3 ( [36]) Let the linear map A(·) be defined as

A(H) := (a∗
1Ha1, . . . , a∗

mHam),

where a j ∼ 1/
√
2 · N(0, In) + i/

√
2 · N(0, In), j = 1, . . . ,m are i.i.d. complex

Gaussian random vectors. If m � k log(en/k), then with probability at least 1 −
2 exp(−c0m), A satisfies

0.12‖H‖F ≤ 1

m
‖A(H)‖1 ≤ 2.45‖H‖F

for all H ∈ H
n×n with rank(H) ≤ 2 and ‖H‖0,2 ≤ k. Here, ‖H‖0,2 denotes the

number of non-zero rows in H .



Journal of Fourier Analysis and Applications (2023) 29 :36 Page 21 of 25 36

Lemma 4 ( [24, 36]) For any vectors u, v ∈ C
n obeying 〈u, v〉 ≥ 0, we have

‖uu∗ − vv∗‖F ≥ 1√
2
‖u‖2‖u − v‖2.

Lemma 5 Suppose that a j ∼ N(0, In), j = 1, . . . ,m are i.i.d. Gaussian ran-
dom vectors and b ∈ R

m is a nonzero vector. For any fixed ζ ∈ (0, 1), if m ≥
Cζ−2k(log(en/k) + log(1/ζ )), then with probability at least 1 − 3 exp(−c0ζ 2m) it
holds that

m
∑

j=1

b j (aTj x) ≤ ζ
√
m‖x‖2‖b‖2

for all k-sparse vectors x ∈ R
n. Here, c0 > 0 is a universal constant.

Proof Without loss of generality we assume ‖x‖2 = 1. For any fixed x0, the terms
aTj x0 are independent, mean zero, sub-gaussian random variables with the maximal
sub-gaussian norm being a positive universal constant. The Hoeffding’s inequality
implies

P

(∣
∣
∣b j (aTj x0)

∣
∣
∣ ≥ t

)

≤ 2 exp
(− c21t

2

‖b‖22
)

.

Here, c1 > 0 is a universal constant. Taking t = ζ
√
m‖b‖2/2, we obtain that

∣
∣
∣

m
∑

j=1

(aTj x0)
∣
∣
∣ ≤ ζ

2
· √

m‖b‖2 (46)

holds with probability at least 1 − 2 exp(−c1ζ 2m/4).
Next, we give a uniform bound to (46) for all k-sparse vectors x. Denote

Sn,k = {x ∈ R
n : ‖x‖2 = 1, ‖x‖0 ≤ k}.

We assume that N is a δ-net of Sn,k such that for any x ∈ Sn,k , there exists a vector

x0 ∈ N such that ‖x − x0‖2 ≤ δ. The covering number |N| ≤
(

n
k

)

(1 + 2
δ
)k . Note

that ‖x−x0‖ ≤ 2k. Therefore, whenm � 2k, with probability at least 1−exp(−c2m),
it holds, Thus we have

∣
∣
∣
∣
∣
∣

∣
∣
∣

m
∑

j=1

b j (aTj x)

∣
∣
∣ −

∣
∣
∣

m
∑

j=1

b j (aTj x0)
∣
∣
∣

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣

m
∑

j=1

b j aTj (x − x0)
∣
∣
∣

≤ ‖b‖2
√
√
√
√

m
∑

j=1

|aTj (x − x0)|2

≤ ‖b‖2
√
√
√
√

∥
∥
∥

m
∑

j=1

a j aTj

∥
∥
∥
2
· ‖x − x0‖2
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≤ 2‖b‖2√m · δ,

where the second inequality follows from the Cauchy-Schwarz inequality and the
last inequality comes from the fact ‖∑m

j=1 a j aTj ‖2 ≤ 4m with probability at least
1 − exp(−c2m), where c2 > 0 is a universal constant. Choosing δ = ζ/4 and taking
the union bound over N, we obtain that

∣
∣
∣

m
∑

j=1

b j (aTj x0)
∣
∣
∣ ≤ ζ · √

m‖b‖2

holds with probability at least

1 − 2 exp(−c1ζ
2m/4) ·

(

n
k

)

· (1 + 2

δ
)k − exp(−c2m) ≥ 1 − 3 exp(−cζ 2m)

provided m ≥ Cζ−2k(log(en/k) + log(1/ζ )). Here, C and c are positive universal
constants. This completes the proof. ��
Lemma 6 Suppose that a ∈ C

n is a complex Gaussian random vector and b ∈ C is
a complex number. For any Hermitian matrix H ∈ C

n×n with rank(H) ≤ 2 and any
vector h ∈ C

n, we have

1

3

√

‖H‖2F + b2‖h‖2 ≤ E
∣
∣a∗Ha + 2(b(a∗h))�

∣
∣ ≤ 2

√

3‖H‖2F + b2‖h‖2.

Proof Since H ∈ C
n×n is a Hermitian matrix with rank(H) ≤ 2, we can decompose

H into
H = λ1u1u∗

1 + λ2u2u∗
2,

where λ1, λ2 ∈ R are eigenvalues of H and u1, u2 ∈ C
n are the corresponding

eigenvectors with ‖u1‖2 = ‖u2‖2 = 1, 〈u1, u2〉 = 0. For the vector h ∈ C
n , we can

write it in the form of

h = σ1u1 + σ2u2 + σ3u3,

where σ1, σ2, σ3 ∈ C, and u3 ∈ C
n satisfying 〈u3, u1〉 = 0, 〈u3, u2〉 = 0 and

‖u3‖ = 1. For simplicity, without loss of generality, we assume that b is a real
number. Therefore, we have

a∗Ha + 2(b(a∗h))� = λ1
∣
∣a∗u1

∣
∣
2 + λ2

∣
∣a∗u2

∣
∣
2 + 2b

(

σ1a∗u1 + σ2a∗u2 + σ3a∗u3
)

� .

Note that a ∈ C
n is a complex Gaussian random vector and u1, u2, u3 are orthogonal

vectors. Thus, we have

E
∣
∣a∗Ha + 2(b(a∗h))�

∣
∣ = E|ξ |,
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with ξ being a random variable given by

ξ =λ1z
2
1+λ1z

2
2+λ2z

2
3+λ2z

2
4+2b

(

σ1,�z1 − σ1,�z2+σ2,�z3 − σ2,�z4 + σ3,�z5−σ3,�z6
)

.

Here, z1, z2, z3, z4, z5, z6 ∼ N(0, 1/2) are independent. ByCauchy-Schwarz inequal-
ity, we have

E|ξ | ≤
√

Eξ2 and Eξ2 = E(ξ
2
3 ξ

4
3 ) ≤ (Eξ)

2
3 (Eξ4j )

1
3 .

It immediately gives
√

(Eξ2)3

Eξ4
≤ E|ξ | ≤

√

Eξ2 (47)

Let z1 = ρ1 cos θ , z2 = ρ1 sin θ , z3 = ρ2 cosφ and z4 = ρ2 sin φ, z5 = ρ3 cos γ and
z6 = ρ3 sin γ . Through some tedious calculations, we have

Eξ2 =
( 1

2π

)3
∫ 2π

0

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0

∫ ∞

0
ρ1ρ2ρ3

(

λ1ρ
2
1+λ2ρ

2
2+2b(σ1,�ρ1 cos θ

− σ1,�ρ1 sin θ + σ2,�ρ2 cosφ−σ2,�ρ2 sin φ+σ3,�ρ3 cos γ −σ3,�ρ3 sin γ )
)2

× e− ρ21+ρ22+ρ23
2 dρ1dρ2dρ3dθdφdγ

= 8(λ21 + λ1λ2 + λ22) + 4b2(σ 2
1 + σ 2

2 + σ 2
3 )

≤ 12‖H‖2F + 4b2‖h‖2,

where the last inequality follows from the fact thatλ21+λ22 = ‖H‖2F andσ 2
1 +σ 2

2 +σ 2
3 =

‖h‖2. Similarly, we could obtain

Eξ2j ≥ 4‖H‖2F + 4b2‖h‖2 (48)

and

Eξ4 = 48(8(λ41 + λ31λ2 + λ21λ
2
2 + λ1λ

3
2 + λ42) + b4(σ 2

1 + σ 2
2 + σ 2

3 )2

+ 4b2(λ1 + λ2)
2(σ 2

1 + σ 2
2 + σ 2

3 ) + 8b2(λ21σ
2
1 + λ22σ

2
2 ))

≤ 48(12‖H‖4F + b4‖h‖42 + 16b2‖H‖2F‖h‖22)
≤ 576

(

‖H‖2F + b2‖h‖2
)2

,

(49)

where the first inequality follows from the fact that

λ41 + λ31λ2 + λ21λ
2
2 + λ1λ

3
2 + λ42 ≤ λ41 + λ21λ

2
2 + λ42 + 1

2

(

λ21 + λ22

)2 ≤ 2

3
‖H‖4F
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and

λ21σ
2
1 + λ22σ

2
2 ≤

(

λ21 + λ22

) (

σ 2
1 + σ 2

2 + σ 2
3

)

≤ ‖H‖2F‖h‖2.

Putting (48) and (49) into (47), we obtain

E|ξ | ≥ 1

3

√

‖H‖2F + b2‖h‖2.

Therefore, we have

1

3

√

‖H‖2F + b2‖h‖2 ≤ E|ξ | ≤ 2
√

3‖H‖2F + b2‖h‖2.

This completes the proof. ��
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