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Abstract

Affine phase retrieval is the problem of recovering signals from the magnitude-only
measurements with a priori information. In this paper, we use the £; minimization to
exploit the sparsity of signals for affine phase retrieval, showing that O (k log(en/k))
Gaussian random measurements are sufficient to recover all k-sparse signals by solving
a natural £; minimization program, where n is the dimension of signals. For the case
where measurements are corrupted by noises, the reconstruction error bounds are
given for both real-valued and complex-valued signals. Our results demonstrate that
the natural £; minimization program for affine phase retrieval is stable.
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1 Introduction
1.1 Problem Setup

Affine phase retrieval for sparse signals aims to recover a k-sparse signal xo € F”,
F € {R, C}, from the observed data

yj=|(aj,xo)+bj|+wj, j=1,...,m,

where a; € F", j =1, ..., m are given measurement vectors, b := (b, ..., b)Y €
™ is the given bias vector, and w := (wq, ..., wm)T € R™ is the noise vector. The
affine phase retrieval arises in several practical applications, such as holography [2, 20,
26, 27] and Fourier phase retrieval [3-5, 23], where some side information of signals
is a priori known before capturing the magnitude-only measurements.

The aim of this paper is to study the following program to recover xo from y :=
O1s - ym) T € R™:

min x| st [[[Ax + 5] — yll2 <€, (1
xeCn

where A := [ay, ..., a,]* € F"*",
Particularly, we focus on the following questions:

Question 1: Assume thata;, j =1, ..., m, are Gaussian random measurements
with m = O(klog(en/k)). In the absence of noise, i.e., w = 0, € = 0, is the
solution to (1) xo?

Question 2: In the noisy scenario, is the program (1) stable under small
perturbation?

For the case where xg € C" is non-sparse, it was shown that m > 4n — 1 generic
measurements are sufficient to guarantee the uniqueness of solutions in [19], and
several efficient algorithms with linear convergence rate was proposed to recover the
non-sparse signals xo from y under m = O (n log n) Gaussian random measurements
in [25]. However, for the case where x is sparse, to the best of our knowledges, there
is no result about it.

1.2 Related Works
1.2.1 Phase Retrieval

The noisy phase retrieval is the problem of recovering a signal xo € F*, F € {R, C}
from the magnitude-only measurements

y}:‘(aj,x0)|+wj, j=1,...,m,

where a; € F" are given measurement vectors and w; € R are noises. It arises
naturally in many areas such as X-ray crystallography [21, 22, 28], coherent diffractive
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imaging [30], and optics [14, 15, 32]. In these settings, optical detectors record only the
intensity of a light wave while losing the phase information. Note that |(a.,~, x0) |2 =

‘(a s e'¥x0) |2 for any 0 € R. Therefore the recovery of xg for the classical phase
retrieval is up to a global phase. In the absence of noise, it has been proved that
m > 2n — 1 generic measurements suffice to guarantee the uniqueness of solutions
for the real case [1], and m > 4n — 4 for the complex case [6, 13, 38], respectively.
Moreover, several efficient algorithms have been proposed to reconstruct xo from
¥ :=1[y], ..., y,]T, such as alternating minimization [29], truncated amplitude flow
[37], smoothed amplitude flow [7], trust-region [33], and the Wirtinger flow (WF)
variants [9, 10, 41].

1.2.2 Sparse Phase Retrieval

For several applications, the underlying signal is naturally sparse or admits a sparse
representation after some linear transformation. This leads to the sparse phase retrieval:

min |lx[lo s.t[[|[Ax| =yl <€, )
xecln

where A := [ay, ..., a,,]*. Inthe absence of noise, it has been established that m = 2k
generic measurements are necessary and sufficient for uniquely recovering of all k-
sparse signals in the real case, and m > 4k — 2 are sufficient in the complex case [39].
In the noisy scenario, O (k log(en/k)) measurements suffice for stable sparse phase
retrieval [12]. Due to the hardness of £p-norm in (2), a computationally tractable
approach to recover xg is by solving the following £; minimization:

min x|} st ||[[Ax] = y'[2 <e. (3)
xelFn

For the real case, based on the strong restricted isometry property (SRIP) estab-
lished by Voroninski and Xu [34], the authors in [18] proved that, if ay, ..., a, ~
1/4/m - N(O, I,,) are i.i.d. Gaussian random vectors with m > O (k log(en/k)), then
the solution X € R” to (3) satisfies

N ~ ok (X0)1
min {[|X — xoll, [¥ +xoll} S e+ N
where oy (x0)1 1= minsupp(x) <k [|X — Xoll1. Lately, this result was extended to the

complex case by employing the “phaselift” technique in [36]. Specifically, the authors
in [36] showed that, for any k-sparse signal xo € C", the solution ¥ € C" to the
program

argmin [lx|l; s.t [[A(x) — Alxo)l2 <€
xeCn

satisfies

. ~ i0 €
min ¥ —exoll2 S —=——.
0e[0,27) ~m|xoll2
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provided ay, ..., a, ~ N0, I,) are i.i.d. complex Gaussian random vectors and
m > O(klog(en/k)). Here, A(x) := (|a’1“x|2 s |a;knx|2).

1.2.3 Affine Phase Retrieval

The affine phase retrieval aims to recover a signal xg € F*, F € {R, C}, from the
measurements

, j=1,...,m,

yj = [(aj. x0) + b;

where a; € F", j =1, ..., m are measurement vectors, b := (by, o b)T e P s
the bias vector. The problem can be regarded as the classic phase retrieval with a priori
information, and is raised in many areas, such as holographic phase retrieval [16, 17,
27] and Fourier phase retrieval [3—-5, 23]. In such scenarios, one needs to employ some
additional information about the desired signals to ensure the uniqueness of solutions.
Specifically, in holographic optics, areference signal r € C*, whose structure is a priori
known, is included in the diffraction patterns alongside the signal of interest xo € C”
[2, 20, 26]. Set x(/) = (xg , rT)T € C"**, Then the magnitude-only measurements we
obtain that

yj = l{a}, xo)| = I{a;, xo0) + (@], r)| = aj, x0) +bjl, j=1,....m,

where a} = (a¥, a’.’T)T € C™"*K are given measurement vectors and b ;= (a;’, ryeC
are known. Therefore, the holographic phase retrieval can be viewed as the affine phase
retrieval.

Another application of affine phase retrieval arises in Fourier phase retrieval prob-
lem. For one-dimensional Fourier phase retrieval problem, it usually does not possess
the uniqueness of solutions [35]. Actually, for a given signal with dimension n,
beside the trivial ambiguities caused by shift, conjugate reflection and rotation, there
still could be 2"~2 nontrivial solutions. To enforce the uniqueness of solutions, one
approach is to use additionally known values of some entries [4], which can be recast
as affine phase retrieval. More related works on the uniqueness of solutions for Fourier
phase retrieval can be seen in [11, 31].

1.3 Our Contributions
In this paper, we focus on the recovery of sparse signals from the magnitude of affine
measurements. Specifically, we aim to recover a k-sparse signal xg € F" (F = R or
F = C) from the data

y =[Axo+ bl + w,
where A = [ay, ..., a,;]" € F™*" is the measurement matrix, b € " is the bias
vector, and w € R™ is the noise vector. Our aim is to present the performance of the

following £1 minimization program:
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argmin|x||; s.t. [[|[Ax +b| — y[2 <e. “

xelm

We say a triple (A, b, A) is instance optimal of order ky if it holds
[A(Ax + b)) — x|, < C - ogy(x), ©)

for all x € . Here, A : R™ — T is a decoder for reconstructing x, oy (x), =
min| supp(z)|<k 12 — X|lg and C := Cy,, p.4 18 a constant depending on ko, p and g.

Theorem 1 Assume that there exists a matrix A € F™*", a vector b € F™, a decoder
A F™ — F" and positive integers ko, p, q such that (5) holds for all x € F". Then
b¢{Az:zeF"}.

Proof We assume that b = Azg where zg € F". We next show that there exits x € "
such that (5) does not hold. For the aim of contradiction, we assume that (5) holds.
Since oy, (—x), = 0k, (X),, We have

[A(Ax —b]) +x], = IA(A(=x) + b)) — (=x) ||, = Cop,(x),. (6)

Assume that xo € F" is ko-sparse, i.e. ok, (xg); = 0. According to (5) and (6), we
obtain that
A(JAxo +bl) = xo, A(JAxo—b|) = —xo. (7

Taking x = rxg + 2z¢ in (6), we have
IA(IA(rxo + 2z0) — bl) + rxo + 220llp < Cog,(rxo + 220), < Cory(220)g. (3)
where r > 0. Observe that
A(|A(rxo + 2z0) — bl) = A(lA(rxo) + b]) = rxo. ©))
Here, we use xg is ko-sparse. Substituting (8) into (9), we obtain that

I2rxo + 2z0ll, < Coy(2z0)q (10)
holds for any r > 0. Note lim,_, « [|2rxo + 2z0ll, = oo. Hence, (10) does not hold
provided r is large enough. A contradiction! O

For the case where m < n and A is full rank, we have b € {Az : z € F"}. According
to Theorem 1, we know thatitis impossible to build the instance-optimality result under
this setting. This is quite different from the earlier results on standard phase retrieval
[18], where the instance-optimality is

min |A(JAx]) —cx|, <C- oko(x)q, for all x € F". (11D

le|=1

The instance-optimality result for the standard phase retrieval, as expressed in equation
(11), is established in [18].
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1.3.1 Real Case

Our first result gives an upper bound for the reconstruct error of (4) in the real case,
under the assumption of ay, ..., a, € R" being real Gaussian random vectors and
m > O(klog(en/k)). It means the £;-minimization program is stable under small
perturbation, even for the approximately k-sparse signals. To begin with, we need the
following definition of strong RIP condition, which was introduced by Voroninski and
Xu [34].

Definition 1 (Strong RIPin [34]) The matrix A € R™*" satisfies the Strong Restricted
Isometry Property (SRIP) of order k and constants 6;, 6, > 0 if the following
inequality

2 : 2 2 2
Ollx|” < min lA;x]~ < max  [|A;x||© < 6,lx]|
1cml, | 1|=m/2 1ciml||=m/2

holds for all k-sparse signals x € R”. Here, A; denotes the sub-matrix of A whose
rows with indices in I are kept, [m] := {1, ..., m} and |I| denotes the cardinality
of I.

The following result indicates that the matrix [A b] e R™* @+ gatisfies strong
RIP condition with high probability under some mild conditions on A € R™*”" and
beR"™

Theorem2 Let A € R™ " be a Gaussian random matrix with entries ay;j ~
N0, 1/m). Suppose that the vector b € R™ satisfies o < ||by|l2 < B forall I C [m]
with || > m/2, wherea < B aretwo positive constants. Set A’ := [A b] € Rmxntl)
Ifm > Ct(k + 1) log(en/k) witht(k + 1) <nand 1 < t € Z, then there exist con-
stants 6], 0, independent with t, such that the matrix A’ satisfies the strong RIP of
order tk + 1 and constants 0/, 6,, with probability at least 1 — 4exp(—c'm). Here,
C, ¢’ > 0 are constants depending only on a and .

The following theorem shows that if we add some restrictions on the signal x, then
the instance-optimality result can be established.

Theorem 3 Assume that A’ := [A b] € R™*"*+D satisfies the strong RIP of order
(a + D)(k + 1) with constants 6, > 6; > 0. If a > 0,,/6;, then the following holds:
for any vector xo € R", the solution X to (4) with y = |Axo + b| + w and ||w|; < €
obeys

ok (X0)1

Jak+ 1)

¥ —xoll2 < Ki€ + K>

provided K€ + Kz% < 2. Here,

N 2(1+1//a)

=———" >0, Ky:=y6,K| +2.
NN Vo
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From Theorem 2, we know that if A € R™*" js a Gaussian random matrix
with entries ag,; ~ N(O, 1/m) and the sampling complexity m > C(a + 1)(k +
2)log(en/k), then with high probability the matrix A’ := [A b] satisfies strong RIP
condition of order (a+ 1) (k+ 1) with constants §;, 8,, > 0 under some mild conditions
on b. Here, the constants 6;, 6, are independent with a. Therefore, taking the constant
a > 6,/6;, the conclusion of Theorem 3 holds with high probability.

In the absence of noise, i.e., w = 0, € = 0, Theorem 3 shows thatifay, ..., a, ~
1/4/m - N(O, 1) are real Gaussian random vectors and m > O (k log(en/k)), then all
the k-sparse signals xg € R" could be reconstructed exactly by solving the program
(4) under some mild conditions on b. We state it as the following corollary:

Corollary1 Let A € R™ " be a Gaussian random matrix with entries aji ~
N, 1/m), and b € R™ be a vector satisfying a < ||b;|2 < B forall I C [m] with
|I| > m/2, where o < B are two positive universal constants. If m > Cklog(en/k),
then with probability at least 1 —4 exp(—cm) it holds: for any k-sparse signal xy € R",
the £1 minimization
argmin || x||; s.t. |[Ax+bl =y
xeR”

with 'y = |Axq + b| has a unique solution xqy. Here C, ¢ > 0 are constants depending
only on a and B.

1.3.2 Complex Case

We next turn to consider the estimation performance of (4) for the complex-valued
signals. Let H"*" be the set of Hermitian matrix in C"*" and | H||o,2 denotes the
number of non-zero rows in H. Given ay,...,a, € C" and by,...,b,, € C, we
define a linear map A’ : H' € H+D>x0+D _ R a5 follows:

A(H") = (a*H'd},....a"*Hd,), (12)

o (G +1
Whereaj._<bj)e(C" .

Definition 2 We say the linear map A’ defined in (12) satisfies the restricted isometry
property of order (r, k) with constants ¢, C > 0 if the following holds

1
c|H'|lF = ZIIA’(H’)IM <CIH'|lF (13)

Hh

[y
forall H' := |:h* 0

} € H+DX0+D with rank (H) < r, |[H|o,2 < k and ||k < k.

The following theorem shows that the linear map A’ satisfies the restricted isometry
property over low-rank and sparse matrices, provided ai,...,a, € C" are i.i.d.
complex Gaussian random vectors and b := (b1, ..., b,)T € C™ satisfies some mild
conditions.
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Theorem 4 Supposeay, ..., ay, ~ 1/5/2-NO, I,)+i /~/2-N(0, I,,) arei.i.d. complex
Gaussian random vectors and b € C" is a independent sub-gaussian random vector
(it also may be deterministic) with sub-gaussian norm ||b|ly, < C and E||b|l; > cim,
E|bll2 < ca/m, where C > 0, ¢ > c¢; > 0 are universal constants. If m >
C'klog(en/k), then with probability at least 1 — 5exp(—c'm), the linear map A
defined in (12) obeys

0~ 1
— | H' | < —IIAH)1 <3607 |H || F
12 m

forall H' = [}’:’ g} € HOH DX yith rank (H) < 2, || H 0.2 < k and |hllg < k.
Here, 6~ := min(1, c1/+/2), 6T := max(+v/6, ¢2), and C', ¢’ > 0 are constants

depending only on c1, c.

With abuse of notation, we denote A’(x) := A’ (x'x"*) for any vector x’ € C"*1,
Then we have

Theorem 5 Assume that the linear map A’ (-) satisfies the RIP condition (13) of order
(2, 2ak) with constants ¢, C > 0. For any k-sparse signal xo € C", if

C 4 + ! 0

c— — 4+ -] >0,
Ja a

then the solution x € C" to

argmin ||x|; st [A)—F| <€ and x' =T, DT

xeCn

with y = A'(x)) + w, |w]| < € and x{, = (x}, DT obeys

min (||5E— exolla + ‘1 — ¢t ) < _ Coe
9eR ~ (Ixoll + 1) /m
where
1 4
+ =+1
Coi=2v2- 1 C 1
c—c(FH+i)
Based on Theorem 4, if ay,...,a, € C" are i.i.d. complex Gaussian random

vectors and m > C’aklog(en/ak), then with high probability the linear map A’
defined in (12) satisfies RIP condition of order (2, 2ak) with constants c = 6~ /12 and
C = 3071 under some mild conditions on b. For the noiseless case where w = 0, € = 0,
taking the constant ¢ > (8C/c)? and combining with Theorem 5, we can obtain the
following result.
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Corollary 2 Supposeay, ..., an ~ 1//2-NO, 1,)+i /~/2-N(O, 1,) arei.i.d. complex
Gaussian random vectors and b € C" is a independent sub-gaussian random vector
(it also may be deterministic) with sub-gaussian norm ||b|ly, < C and E||b|l; > cim,
E|bll2 < ca/m, where C > 0, ¢ > c¢; > 0 are universal constants. If m >
C"klog(en/k), then with probability at least 1 — 5 exp(—c”m), then the solution to

argmin ||x||; s.z. |Ax + b| =|Axo+ b|

xeCr
is xo exactly. Here, C", ¢"" > 0 are constants depending only on cy, c;.

Remark 1 We give an upper bound for mingecgr (||5E — %2 + | 1 — et |) in Theorem
5. However, since the affine phase retrieval can recover a signal exactly (not just up to
a global phase), one may wonder: is there a stable recovery bound for ||X — xo||2? We
believe that the answer is no, especially for the case where the noise vector |[wl, =
/m. We defer the proof of it for the future work.

1.4 Notations

Throughout the paper, we denote x ~ N(0, I,) if x € R" is a standard Gaussian
random vector. A vector x is k-sparse if there are at most k nonzero entries of x.
For simplicity, we denote [m] := {1,...,m}. For any subset I C [m], let A; =
[aj 1 j € I]* be the submatrix whose rows are generated by A = [al, R am]*.
Denote oy (x0)p := minjsupp(x)|<k I* — Xollp as the best k-term approximation error
of xo with respect to £, norm. For a complex number b, we use by and by to denote
the real and imaginary part of b, respectively. For any A, B € R, weuse A < B to
denote A < CoB where Cy € R, is an absolute constant. The notion 2 can be defined
similarly. Throughout this paper, ¢, C and the subscript (superscript) forms of them
denote constants whose values vary with the context.

2 Proof of Theorem 2 and Theorem 3

In this section, we consider the estimation performance of the £|-minimization pro-
gram (4) for the real-valued signals. Before proceeding, we need the following lemma
which shows that if A € R™*" is a real Gaussian random matrix with entries
ai,j ~ N(0, 1/m), then A satisfies the strong RIP with high probability.

Lemma 1 (Theorem 2.1 in[34]) Suppose thatt > 1 andthat A € R™*" is a Gaussian
random matrix with entries ay j ~ NO, 1/m). Let m = O(tklog(en/k)) where
ke[l,dlNZandt > 1is a constant. Then there exist constants 0y, 6, with0 < 6; <
0, < 2, independent with t, such that A satisfies SRIP of order t - k and constants
60;, 6, with probability at least 1 — exp(—cm), where ¢ > 0 is a universal constant.
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2.1 Proof of Theorem 2

Proof From the definition, it suffices to show there exist constants 91’ , 9,; > 0 such that
the following inequality

o/|lx'|1> < min
IC[m],|1|=zm/2

A//2< A//2<9//2 14
| A"l Ic[mr]r,l\a})fzm/zn X1 =6, lx (14)
holds for all (tk + 1)-sparse signals x” € R"*+!. To this end, we denote x’ = (xT, )T,
where x € R" and z € R. We first consider the case where z = 0. From Lemma 1, we
know that if m 2 t(k + 1)log(en/(k + 1)) and t > 1, then there exist two positive
constants 6, 8, € (0, 2) such that

2 . 2 2 2
Orllxllz < min lArxlls < max  [A;x|; <6,lxllz  (15)
I1C[m],|I|=m/2 IC[m],|I|=m /2

holds for all (tk + 1)-sparse vector x € R” with probability at least 1 — exp(—cm).
Here, ¢ > 0 is a universal constant. Note that A’x’ = Ax. We immediately obtain
(14) for the case where z = 0.

Next, we turn to the case where z # 0. A simple calculation shows that

IA}x"|3 = |Arx + 2bs |13 = I|A;x|13 + 22(Ax, b)) + 22 |1bs[3 (16

for any I € [m]. Denote A = [ay, ..., am]T. Note that /ma; ~ N(0, I,,). Taking

: 2
¢ = % in Lemma 5, we obtain that there exists a constant C > 0 depending

only on 6;, ¢, B such that when m > Ct(k + 1) log(en/k), with probability at least
1 — 3exp(—cym), it holds

min{6;, o2}
A =|(A _— 1
I{Arx,br)| = [(Ax, br)| < 2008 lx 2115112 (17)

for all (tk + 1)-sparse vectors x and all I C [m]. Here, we view by = bl; € R™
{I;(j) =1if j e Tand 0 1if j ¢ I), and c; > 0 is a constant depending only on
0;, a, B. Note that the vector b satisfies

a =< |bill2 <8 (18)

for all I € [m] with |I| > m/2. Putting (15), (17) and (18) into (16), we obtain
that when m > Ct(k + 1) log(en/k), with probability at least 1 — 4 exp(—cm), the
following two inequalities

min{6;, «?}

AL X2 > 60x? =2z
1A7x" N5 = Orllxll5 — 2z 2008

Ix 128 + &?2> > 0.99 min{6;, &} ||x"|I3,
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and

min{6;, o2}

2005 ¥IeA + 72 < L0 max(6,. 7)1

2 2
IA7x[13 < Oullxll3 +2z]

hold for all (tk + 1)-sparse vector x’ € R"*! and for all I C [m] with |I| > m/2.
Here, ¢ > 0 is a constant depending only on 6;, «, B. In other words, we have

I~/ 112 . /L2 T Il 112
Orllx’llz < min IA;x" ]Iz < A;x"115 < 6,lx"115

max
ICm].[1|1=m/2 ISm].[1|1=m/2

for all (tk + 1)-sparse vector x’ with probability at least 1 — 4 exp(—cm). Here,
6/ = 0.99 min{6;, «?} and 6/, = 1.01 max{6,, B%}. Combining the above two cases
and noting that 6;, 6,, > 0 are universal constants, we complete the proof. O

2.2 Proof of Theorem 3

Proof Denote A’ = [A b], ¥ =&T, DT and x) = (xg, DT. Set
I:={j:({a;,x)+bj){a;,xo)+bj) > 0}.

We next divide the proof into the following two cases.

Casel: /| > m/2.Seth = X" — x;. Forany a > 1, we decompose  into the sum
ofhyy, hr,, ..., where Ty is an index set which consists the indices of the k 4- 1 largest
coordinates of x(, in magnitude, 77 is the index set corresponding to the a (k4 1) largest
coordinates of hTOc in magnitude, 75 is the index set corresponding to the a(k + 1)
largest coordinates of k(zur,)c in magnitude, and so on. For simplicity, we denote
Tj; ;= T; UT;. To prove the theorem, we only need to give an upper bound for ||k]|>.
Observe that

Iell2 < gy, ll2 + b = By, 2. (19)

We claim that the following holds:

RS 20k (x0)1

lh—hryll2 < \/EHhTOl l2 + m (20)
and
2 v Buok (x0)1
h . . 21
I TO]HzS«/G_I—\/E/\/E <6+ a(k+1)> 21

Here, C, ¢, 6; and 6, are positive constants depending only on « and S. Putting (20)
and (21) into (19), we obtain that

Wl < 2(1+1/a) <2(1+1/\/5)\/E 2) 0% (X0)1

Vo —oua  \ Vi —va ) Jakr D
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It remains to prove the claim (20) and (21). Since X is the solution to £; minimization
program (4), we have

lglle = 1%l = llxg + Rlly = [ Geg + By Il + 11 (g + B)7e Il

> llxo, It = Izl + Nzl — llxg 7e i
> 40 0 ER0)

Therefore,
lhrelt < lhr I + 2||x6,T0c||1' (22)

From the definition of T, we obtain that, for all j > 2,

a(k +1) I,y
ez, 2 < Valk+ Dl loo =~ oo < —mms

ak +1) Jak+ 1)
It then gives
Izl = Wl = s Zu 7l = (k+1)|| el @3)

jz2

Putting (22) into (23), we obtain the conclusion of claim (20), namely,

1 lhzy It + 2l 7¢ Il
g 2 = ———=slIh7glh =
VAt D VaEED o,
20%41(x()1 201 (x0)1
h + - = h + —1
\/—II 2 /3 fll To 12 RS

where the third inequality follows the Cauchy-Schwarz inequality and the last
inequality comes from the fact oy (x(’))l < ox(x0); by the definitions of X" and

ok ()1
We next turn to prove the claim (21). Observe that

IARI2 = 1A Rty ll2 — | ATRT 2. (25)
For the left hand side of (25), by the definition of 7, we have

ARz = [[|A7Z'| — |ATx0] 12
< I|AT| — [A'xg]l2
< I|AZ| = yl2 + I|A"x5| = yll2
< 2e.

(26)

For the first term of the right hand side of (25), since the matrix A’ satisfies strong RIP
of order (a + 1)(k + 1) with constants 6;, 6, > 0, we immediately have

1A Rz, ll2 > Vol |12 27)
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To give an upper bound for the term ||A’th |2, note that ||th loo < k7 ll1/a(k+1).

Let6 := max (||hT1 i /atk + 1), g ll1 /atk + 1)).ThenbytheLemma2, we could
decompose the vector hTOc1 into the following form:

N
hT()\l = ijuj, with 0 < Aj =< 1, Z)\j =
Jj=1 '
where u ; are a(k + 1)-sparse vectors satisfying

lujlls = lhgg 1. lluslloo < 6.

Therefore, we have

lujll2 = \/Olih7g 1

We notice from (22) that
Ilhze I < gl < 1yl + 20k (x0)1.

Thus, if 6 = ||k, |l1/a(k + 1), then we have

iy < | Mg [ g |
jll2 = ak+1) — a1 1)

||hTo||1+2CTk(x0)1<||hTo||2+ 201 (x0)1
Jak+1) T Ja Vak+1)

Ifo = ||hToc1 l1/a(k + 1), then

g NI lhryll2 | 20k (x0)1

leile = 7= =" va T kD

Therefore, for the second term of the right hand side of (25), it follows from the
definition of strong RIP that

N
k7, ||2 20k(x0)1)
A hre ||h= LiAjujl, < Ajllu = -
1A} s > ”; Al < fZ lujla < f( e

(28)
Putting (26), (27) and (28) into (25), we immediately obtain

. ”hTm ||2 204 (x0)1 >
2¢ = Al I ﬁ( - 1
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which gives

Iy ll2 <

2 _ (6 N «/9_u0k(x0)1>
NITENCNL Vak+1D )’

Case 2: |I| < m/2. For this case, denote At = X’ +x(,. Replacing h and the subset
I in Case 1 by h™ and I¢ respectively, and applying the same argument, we could
obtain

lhyll <

2(1+1/V/a) +<2(1+1/\/5)m +2> ok (¥0)1 29

NN AN RN NN Jakt D’

However, recall that ¥ = (T, )T and x) = (xg, DT. It means ||h|> > 2, which
contradicts to (29) by the assumption of € and oy (x¢)1, i.e., K1€ + K> oo 9

Ja(k+1)
Therefore, Case 2 does not hold.
Combining the above two cases, we complete our proof. O

3 Proof of Theorems 4 and 5
3.1 Proof of Theorem 4

Proof Without loss of generality, we assume that | H'| p = 1. Observe that

I R~
—[AH =~

j=1

a;‘Haj +2(b; (a;fh))m

1 m

For any fixed H € H"*" and h € C", the terms &;, j = 1, ..., m are independent
sub-exponential random variables with the maximal sub-exponential norm

K := max Ci(|H|lF + [1bjlly,llk]) = C2
I<j=m
for some universal constants C;, C, > 0. Here, we use the fact max (| H ||, ||k]) <
|H'||r = 1. For any 0 < ¢ < I, the Bernstein’s inequality gives
1 m
]P"— '—E-‘>e <2e (—62 )
(1526 5] ) =2 (ccm

Jj=1

where ¢ > 0 is a universal constant. According to Lemma 6, we obtain that

1
SEVIHI + b, PRI < Bg; < 2B\31H I + b, 2]
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This gives

1 m 2 m
— By = = Y E(V3IHIE + b;1IR1) < 2V3IHIF + 2]k <267,
m m

J=1 Jj=1

where 67 := max(+/6, ¢»). Here, we use the fact ||H’||% = ||H||fv +2|h)* =1
E|b|; < /mE|b| < cam, and ‘% < +/a? + b% < a + b for any positive number
a, b € R. Similarly, we could obtain

l & 0
— j E 1HIF+ 1bjllk| —(||H||F+61|Ihll)>—,
where 6~ := min(l, ¢/ «/5). Collecting the above estimators, we obtain that, with

probability at least 1 — 2 exp(—ce’m), the following inequality

0 1
— —e<—|AH) =207 +¢ (30)
6 m

holds for a fixed H' € H"+D>*+D We next show that (30) holds for all H' € X,
where

x::[a’::[,’; g]eH("H)X("H) |H || =1, rank(H) <2, |[H|l02 < k, ||h||0<k]-

To this end, we adopt a basic version of a §-net argument. Assume that A is a §-net
of X, i.e., forany H = ’Ili* gi| € X there exists a H’ = I;S }60 € N such that

|H — Hp||F < § and ||k — hg|| < 8. Using the same idea of Lemma 2.11n [36], we
obtain that the covering number of Xis

4k+2 "
NG| < <9ﬁen) _ (Z) (1 4 %) < exp (Csk log(en/8k))

Sk

where C3 > 0 is a universal constant. Note that 2 — kg has at most 2k nonzero entries.
We obtain that if m 2 klog(en/k), then with probability at least 1 — 3 exp(—cm), it
holds

A

1 173 1 1oy’ 1 rexy! /
'_”A(H)”l_—”A(Ho)HI —|A(H" — Hy) |l
m m m

IA

1 2 &
—IAGH — Ho)lly + = > bjlla}(h = ho)|

j=1

IA

1
— | AC(H — Ho)
m
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l & l &
2= 2 | — *(h — ho)|?
+2 [ Dbl | ) et = o)l
j=1 j=1
<245|H — Hyllr +3(c2 + DIk — ho|
<3(c2+2)8,

where the linear map A(-) is defined as A(H) := (ajHay, ..., a;Hay), and the
fourth inequality follows from the combination of Lemma 3, the fact Lim Z?:l aj; af <
3/2 with probability at least 1 — exp(—cm), and

Ebz

with probability at least 1 —2 exp(—cm). Choosing € := %, 8=
the union bound, we obtain that the following inequality

60— .
BT and taking

6~ 1
— < —|AH)H||; <30T forall H e X
12 = m

holds with probability at least
1 — 3exp(—cm) — 2exp (Czk log(en/5k)) - exp(—cezm) > 1—Sexp(—c'm),

provided m > C’klog(en/k), where C’, ¢’ > 0 are constants depending only on ¢
and c5. O

3.2 Proof of Theorem 5

Proof The proof of this theorem is adapted from that of Theorem 1.3 in [36]. Note
that the £1-minimization problem we consider is

argmin |lx|; s.t. [[A &) -y <e with x' = (x) 31
xeCn 1

Here, with some abuse of notation, we set

a;;fx’|2) with a}::(Z{), j=1...,m.
j

Let ¥ € C" be a solution to (31). Without loss of generality, we assume (¥, x;)) > 0

2

e ey

A’(x’) — A’(x’x’) — (’a/* /
(Otherwise, we can choose ¢ x/, ¢, for an appropriate 0), where X' = (T) and x(, =

X0
<1>. Set
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and
e E =~
W sy = (L) ().

Therefore, it suffices to give an upper bound for || H'|| p. Denote Ty := supp(xo) and

Ty := To U {n + 1}. Let T} be the index set corresponding to the indices of the ak-

largest elements of frg in magnitude, and 7, contain the indices of the next ak largest

elements, and so on. Set Ty := To U T1, Ty, =Ty U T, h = hr,, H = Hy,, 13,

and H' := H/, _, . Noting that

TOI’TOI
IH |F < | H'llp + |H — H'| £, (32)

we next consider the terms | H'||r and |H' — H'|| r. We claim that

H =B < (242 ) 180, (33)
“\a a

and
- 1 2¢
IH|lp < ——F——— —. 34

c(2 1 Jm
¢ (\/E E)
Combining (32), (33) and (34), we obtain that

1 4
~+ 5= +1 2
IH | < —2 Y2 il
e=C(Fra) Y

According to Lemma 4, we immediately have

1 4
A SWH' .+ =+1 22
min [ — e x) > < V2IH'| ot . V2e .
feR lxoll + 1 C_C(%Jr%) (lxoll + 1) v/m
a

By the definition of X" and x{,, we arrive at the conclusion.
It remains to prove the claims (33) and (34). Note that

/ ry/ / /
\H' —H'lr < ) IHrplr+2) I Hy o llr +2) IHy, gllF. (35)
i>2,j>2 j=2 j=2

We first give an upper bound for the term ) ;., =2 | H}, . |lF. Noting that x is a
Z4 )= ity
k-sparse vector and X € C" is the solution to (31), we obtain that

lxolly = I¥l1 = II¥7 I + X7 11,
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which implies ||,’€T0c 1 < X7, — xoll1. Moreover, by the definition of T;, we know

that for all j > 2, it holds ||X7; |2 < % It then implies

1
D o Ixr < Z 17, 11 < —=I%reli < —=I%r — xoll2-  (36)
j=2 J>2 ak \/_
Therefore, the first term of (35) can be estimated as

2

1
_ ~ ~ _ ~ L2
Y Mgl = 30 180 = ( Y10 | < —IF5

i>2,j>2 i>2,j>2 j>2 37

1 1 -,
= —MHegglh < — I Hnnlh < 18 I,

where the second inequality follows from
IH — Hry, 1pll1 = 1¥%* — X" 7,111 < lIxox0™ 11 — 1GX ) 7,711 < 1 Hry, 71l

Here, the first inequality comes from || X||| < [|xoll1-
For the second term and the third term of (35), we obtain that

/ / T e~ =~ = =
Do NHG e+ Y H, 7 lle = 1850 1% |+ 17,1 )17, |

j=2 j=2 j=2 =
< fnx = xglla (17,12 + %7, 112)
% (38)
fnx — xpll2 %7, Iz
< 2.
Ja

where the first inequality follows from (36) due to ?Tj = frj for all j > 1, and the
last inequality comes from Lemma 4. Putting (37) and (38) into (35), we obtain that

- 1 4
IH — H'llF < St = IHlIF.
\/_

This proves the claim (33).
Finally, we turn to prove the claim (34). Note that || A'(X) — y|| < e and y :=
A'(x()) + €, which implies
IAH) 2 < |AE) = Fll2 + |4 (xp) = Fll2 < 2e.
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Thus, we have

2 1 1 1 - 1 _
\/—% > ﬁllA’(H')llz > ;”A/(H/)”l > ZIIA’(H’)H] - ZIIA’(H' - H)|h.
, (39)

Recall that H' := (:: g) with rank(H) < 2, |H|o2 < (a + D)k, and ||k|jg <
(a + 1)k. It then follows from the RIP of A’ that

IA (H|1 = c|H || F. (40)

To prove (34), it suffices to give an upper bound for the term %HA/ (H' — H)|.
Observe that

/ ry/ _ / / / / /
H = H = (Hy gge + Hyge ) + Hy e+ Hoe )+ Hoge e G

Since

oy PPN
X1yXp +X1,X7 XT;
i / _ ’ ’ _ 0T; i*To J
Hyy e+ Hie oy = D (Hp o+ Hp ) =) < %2 0/
Jj=2 j=>2

then the RIP of A" implies

1 ’oy! / A~ ~ o~ ~
o WA o B ol < C 3 (190,87, +%1,%5, I + 217,112 )

jz2
. -
< W2CIR, I ) I%7, 112 (42)
Jj=2
2V2

< 2ZC1% 1 l®y, — %l
< S CIE % — Xl

Ja

Similarly, we could obtain

1 / / / 2V2 = = /
WA, e Hi Ol < Z=CIRG lalFy, =il @)
Finally, observe that %HA/(H’T(;C’T&)HI = %”A(HT(;PTJ])HI- Using the same

technique as [36, Eq. (3.16)], we could obtain

1 C -
—lA' (Hpe p)lli < =1 H || - (44)
m 01°701 a
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Putting (42), (43) and (44) into (41), we have

Vo 4 . , c -, 4 1 -,
- - < — ’ ;o - < - - .
- IAH — H') |1 =Clixgy lallxgy = xoll2+ —lIH llF = € Ja +o I H F

= Va

Combining (39), (40) and (45), we immediately obtain @
<c e (i " 1)) 1A < =
Va a Vm
which implies
TP ——
—e(Eey
This completes the proof of claim (34). O
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A Supporting Lemmas

The following lemma gives a way for how to decompose a vector v € R” into the
convex combination of several k-sparse vectors.

Lemma 2 ( /8, 40]) Suppose that v € R" satisfying ||v]oo < 6 and ||v||1 < kO, where
0 > 0and k € Z. Then we have

N N
v=> Aju; with 0<i; <1, Y aj=1,
j=1 j=1
where u; € R" is k-sparse vectors and ||uj|1 < ||v]1, [[ujlloo < 0.

Lemma3 ( [36]) Let the linear map A(-) be defined as
A(H) := (afHay,...,a,Hay),
where a; ~ l/ﬁ - N, I,,) + l/«/i N, I),j = 1,...,m are i.i.d. complex

Gaussian random vectors. If m 2 klog(en/k), then with probability at least 1 —
2 exp(—com), A satisfies

1
0.12|H||F = ;IIA(H)Ill <2.45|H|lF

for all H € H"™" with rank(H) < 2 and ||Hllo,2 < k. Here, | H |02 denotes the
number of non-zero rows in H.
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Lemma 4 ( [24, 36]) For any vectors u, v € C" obeying (u, v) > 0, we have

luw* —vo*|lp = fllullzllu—vllz

Lemma5 Suppose that a; ~ N(O,1,),j = 1,...,m are iid. Gaussian ran-
dom vectors and b € R™ is a nonzero vector. For any fixed ¢ € (0,1), if m >
Ct%k(log(en/k) 4+ log(1/¢)), then with probability at least 1 — 3 exp(—co¢>m) it
holds that

m
T
> bj(a]x) < ¢/mlxl21lb]
Jj=1
for all k-sparse vectors x € R". Here, co > 0 is a universal constant.

Proof Without loss of generality we assume ||x || = 1. For any fixed xo, the terms
ajT.xo are independent, mean zero, sub-gaussian random variables with the maximal
sub-gaussian norm being a positive universal constant. The Hoeffding’s inequality
implies

2t2

||b||2)

Here, ¢; > 0 is a universal constant. Taking t = ¢/m| b||2/2, we obtain that

P (|p;(@x0)| = ) = 2exp(-

@] < 5 vmlblo (46)
j=1

holds with probability at least 1 — 2 exp(—c1¢2m/4).
Next, we give a uniform bound to (46) for all k-sparse vectors x. Denote

Snk={x eR":lx[2 =1 llx[lo < k}.

We assume that A is a §-net of S, x such that for any x € S, 4, there exists a vector
xo € N such that || x — xg||2 < 8. The covering number |N] < (Z) (1+ %)k_ Note

that ||x —xg|| < 2k. Therefore, when m 2> 2k, with probability at least 1 —exp(—cpm),
it holds, Thus we have

‘Zb (a; x)‘ ’Zb (a; xo)‘ ‘Zb a; (x—xo)’

m
<lbll2 | Y la] (x —xo)I?

j=1

m
: T . e
> ajal| - lx = xollz
-

< lIbll2

~

\
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< 2|Iblla/m - 8,

where the second inequality follows from the Cauchy-Schwarz inequality and the

last inequality comes from the fact ||Z;'-’: 1a ja]THz < 4m with probability at least

1 — exp(—com), where co > 0 is a universal constant. Choosing § = ¢ /4 and taking
the union bound over N, we obtain that

m
> ki@l = ¢ vmilbl
j=1
holds with probability at least
2 n 2 k 2
1 —2exp(—c1¢“m/4) - R 1+ 5) —exp(—cym) > 1 — 3exp(—c¢ m)

provided m > C¢~%k(log(en/k) + log(1/¢)). Here, C and ¢ are positive universal
constants. This completes the proof. O

Lemma 6 Suppose that a € C" is a complex Gaussian random vector and b € C is
a complex number. For any Hermitian matrix H € C"*" with rank(H) < 2 and any
vector h € C", we have

1
SVIHIE + b2k < Ela*Ha + 2(b@ h)n| < 2\/3||H||% + 02|k

Proof Since H € C"*" is a Hermitian matrix with rank(H) < 2, we can decompose
H into

H = Xluluik + )»zuzu;,

where A, X> € R are eigenvalues of H and u;,u; € C" are the corresponding
eigenvectors with ||u1||2 = |luzll2 = 1, (u1, uz) = 0. For the vector h € C", we can
write it in the form of

h = ou1 + orus + o3u3,
where o1,02,03 € C, and u3 € C" satisfying (u3,u;) = 0, (u3,uz) = 0 and

llusz] = 1. For simplicity, without loss of generality, we assume that b is a real
number. Therefore, we have

a*Ha +2(b(@*h))y = A |a*u, |2 + A |a*u2|2 +2b (o1a*u; + o2a*us + U3a*u3)m .

Note that @ € C" is a complex Gaussian random vector and u{, u», u3 are orthogonal
vectors. Thus, we have

E |a*Ha + 2(b(a*h))y| = E|£],
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with £ being a random variable given by

2 2 2 2
E=A1zi+Mz3+r225+A225+2b (01,921 — 01,322H02,923 — 02,524 + 03,9125 —03,326) -

Here, z1, 22, 23, 24, 25, 26 ~ N(0, 1/2) are independent. By Cauchy-Schwarz inequal-
ity, we have

Elé| < vVEE? and E&? = E(63£3) < (B5)3 (BEDS.

It immediately gives

E£2)3
(Ei_f < Ele| < VEE2 7)

Letz; = p1cosB, zo = p1sinf, z3 = pacos ¢ and z4 = pp sin¢, 75 = p3 cos y and
z6 = p3 sin y. Through some tedious calculations, we have

5 1 \3 (27 27 027 20O 0O OO ) )
Eg” = (7)/ / / /// ,01,02,03<)~1,01 +A205+2b(01,% 01 cos O
2/ Jo Jo Jo Jo Jo Jo

2
— 01,301 SN0 + 072 9102 COS ) — 07 91 P2 SIN P+03 %03 COS Y — 03,303 Sin J’))

2,242
[Py +r3

xe ~ 2 dpidprdp3dfdedy
_ 2 2 2, 2 2 2
= 8(}\.1 +)\.1}\,2 +)\.2) +4b (0'1 +(72 +O'3)
< 12| H|)% + 4b% k|,

where the last inequality follows from the fact that )»% +A22 = ||H II% and 012 +022 +032 =
|k]|%. Similarly, we could obtain

EEF > 4| H |7 + 4b% | k| (48)
and

E&* = 48(8(AT + Aha + ATA3 + 143 + A3) + b*(0f + 05 + o)?
+ 467 (M1 + 1) (0f + 07 + o) + 8b* (Ao + A303))

< 48(12(|H ||} + b*|hI|3 + 1667 | H||%|IRI3)
2

(49)
< 576 (11} + 0% 1))

where the first inequality follows from the fact that
4143 2,2 3 04 _ad g 3252 54, L2 )22 4
Madr Al and 44 s a4 abd #2340 (4 43) = SIEIE
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and

3202 +330% < (A% +A§) (012 +o? +o32) < | H ||k

Putting (48) and (49) into (47), we obtain

1
Elg] > —/IHI||3 + b2||hk|2.

Therefore, we have

1
SVIHIE +b2Ik|> < ElE| < 2\/3||H||% + 02|k

This completes the proof. O
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