

Affine Phase Retrieval for Sparse Signals via ℓ_1 Minimization

Received: 21 September 2021 / Revised: 27 February 2023 / Accepted: 30 May 2023 /

Published online: 12 June 2023

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Affine phase retrieval is the problem of recovering signals from the magnitude-only measurements with a priori information. In this paper, we use the ℓ_1 minimization to exploit the sparsity of signals for affine phase retrieval, showing that $O(k \log(en/k))$ Gaussian random measurements are sufficient to recover all k-sparse signals by solving a natural ℓ_1 minimization program, where n is the dimension of signals. For the case where measurements are corrupted by noises, the reconstruction error bounds are given for both real-valued and complex-valued signals. Our results demonstrate that the natural ℓ_1 minimization program for affine phase retrieval is stable.

Keywords Phase retrieval · Sparse signals · ℓ_1 minimization · Compressed sensing

Mathematics Subject Classification 94A12 · 60B20

Communicated by Jaming Philippe.

✓ Meng Huang menghuang@buaa.edu.cnShixiang Sun

sunshixiang@lsec.cc.ac.cn

Zhiqiang Xu xuzq@lsec.cc.ac.cn

- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- ² LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

1 Introduction

1.1 Problem Setup

Affine phase retrieval for sparse signals aims to recover a k-sparse signal $x_0 \in \mathbb{F}^n$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, from the observed data

$$y_i = |\langle a_i, x_0 \rangle + b_i| + w_i, \quad j = 1, \dots, m,$$

where $a_j \in \mathbb{F}^n$, j = 1, ..., m are given measurement vectors, $\mathbf{b} := (b_1, ..., b_m)^{\mathrm{T}} \in \mathbb{F}^m$ is the given bias vector, and $\mathbf{w} := (w_1, ..., w_m)^{\mathrm{T}} \in \mathbb{R}^m$ is the noise vector. The affine phase retrieval arises in several practical applications, such as holography [2, 20, 26, 27] and Fourier phase retrieval [3–5, 23], where some side information of signals is a priori known before capturing the magnitude-only measurements.

The aim of this paper is to study the following program to recover x_0 from $y := (y_1, \dots, y_m)^T \in \mathbb{R}^m$:

$$\min_{\mathbf{x} \in \mathbb{C}^n} \|\mathbf{x}\|_1 \quad \text{s.t. } \||\mathbf{A}\mathbf{x} + \mathbf{b}| - \mathbf{y}\|_2 \le \epsilon, \tag{1}$$

where $A := [a_1, \ldots, a_m]^* \in \mathbb{F}^{m \times n}$.

Particularly, we focus on the following questions:

Question 1: Assume that a_j , j = 1, ..., m, are Gaussian random measurements with $m = O(k \log(en/k))$. In the absence of noise, i.e., w = 0, $\epsilon = 0$, is the solution to (1) x_0 ?

Question 2: In the noisy scenario, is the program (1) stable under small perturbation?

For the case where $x_0 \in \mathbb{C}^n$ is non-sparse, it was shown that $m \geq 4n-1$ generic measurements are sufficient to guarantee the uniqueness of solutions in [19], and several efficient algorithms with linear convergence rate was proposed to recover the non-sparse signals x_0 from y under $m = O(n \log n)$ Gaussian random measurements in [25]. However, for the case where x_0 is sparse, to the best of our knowledges, there is no result about it.

1.2 Related Works

1.2.1 Phase Retrieval

The noisy phase retrieval is the problem of recovering a signal $x_0 \in \mathbb{F}^n$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ from the magnitude-only measurements

$$y'_{j} = |\langle \boldsymbol{a}_{j}, \boldsymbol{x}_{0} \rangle| + w_{j}, \quad j = 1, \dots, m,$$

where $a_j \in \mathbb{F}^n$ are given measurement vectors and $w_j \in \mathbb{R}$ are noises. It arises naturally in many areas such as X-ray crystallography [21, 22, 28], coherent diffractive

imaging [30], and optics [14, 15, 32]. In these settings, optical detectors record only the intensity of a light wave while losing the phase information. Note that $|\langle a_j, x_0 \rangle|^2 = |\langle a_j, e^{i\theta} x_0 \rangle|^2$ for any $\theta \in \mathbb{R}$. Therefore the recovery of x_0 for the classical phase retrieval is up to a global phase. In the absence of noise, it has been proved that $m \geq 2n-1$ generic measurements suffice to guarantee the uniqueness of solutions for the real case [1], and $m \geq 4n-4$ for the complex case [6, 13, 38], respectively. Moreover, several efficient algorithms have been proposed to reconstruct x_0 from $y' := [y'_1, \ldots, y'_m]^T$, such as alternating minimization [29], truncated amplitude flow [37], smoothed amplitude flow [7], trust-region [33], and the Wirtinger flow (WF) variants [9, 10, 41].

1.2.2 Sparse Phase Retrieval

For several applications, the underlying signal is naturally sparse or admits a sparse representation after some linear transformation. This leads to the sparse phase retrieval:

$$\min_{\mathbf{x} \in \mathbb{R}^n} \|\mathbf{x}\|_0 \quad \text{s.t. } \||A\mathbf{x}| - \mathbf{y}'\|_2 \le \epsilon, \tag{2}$$

where $A := [a_1, \ldots, a_m]^*$. In the absence of noise, it has been established that m = 2k generic measurements are necessary and sufficient for uniquely recovering of all k-sparse signals in the real case, and $m \ge 4k - 2$ are sufficient in the complex case [39]. In the noisy scenario, $O(k \log(en/k))$ measurements suffice for stable sparse phase retrieval [12]. Due to the hardness of ℓ_0 -norm in (2), a computationally tractable approach to recover x_0 is by solving the following ℓ_1 minimization:

$$\min_{\mathbf{x} \in \mathbb{F}^n} \|\mathbf{x}\|_1 \quad \text{s.t. } \||A\mathbf{x}| - \mathbf{y}'\|_2 \le \epsilon. \tag{3}$$

For the real case, based on the strong restricted isometry property (SRIP) established by Voroninski and Xu [34], the authors in [18] proved that, if $a_1, \ldots, a_m \sim 1/\sqrt{m} \cdot \mathcal{N}(0, I_n)$ are i.i.d. Gaussian random vectors with $m \geq O(k \log(en/k))$, then the solution $\widehat{x} \in \mathbb{R}^n$ to (3) satisfies

$$\min\left\{\|\widehat{x}-x_0\|,\|\widehat{x}+x_0\|\right\} \lesssim \epsilon + \frac{\sigma_k(x_0)_1}{\sqrt{k}},$$

where $\sigma_k(\mathbf{x}_0)_1 := \min_{|\sup(\mathbf{x})| \le k} \|\mathbf{x} - \mathbf{x}_0\|_1$. Lately, this result was extended to the complex case by employing the "phaselift" technique in [36]. Specifically, the authors in [36] showed that, for any k-sparse signal $\mathbf{x}_0 \in \mathbb{C}^n$, the solution $\widehat{\mathbf{x}} \in \mathbb{C}^n$ to the program

$$\underset{\boldsymbol{x} \in \mathbb{C}^n}{\operatorname{argmin}} \quad \|\boldsymbol{x}\|_1 \quad \text{s.t. } \|\mathcal{A}(\boldsymbol{x}) - \mathcal{A}(\boldsymbol{x}_0)\|_2 \le \epsilon$$

satisfies

$$\min_{\theta \in [0,2\pi)} \|\widehat{\boldsymbol{x}} - e^{i\theta} \boldsymbol{x}_0\|_2 \lesssim \frac{\epsilon}{\sqrt{m} \|\boldsymbol{x}_0\|_2},$$

provided $a_1, \ldots, a_m \sim \mathcal{N}(0, I_n)$ are i.i.d. complex Gaussian random vectors and $m \ge O(k \log(en/k))$. Here, $A(x) := (|a_1^*x|^2, \dots, |a_m^*x|^2)$.

1.2.3 Affine Phase Retrieval

The affine phase retrieval aims to recover a signal $x_0 \in \mathbb{F}^n$, $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$, from the measurements

$$y_j = |\langle \boldsymbol{a}_j, \boldsymbol{x}_0 \rangle + b_j|, \quad j = 1, \dots, m,$$

where $a_j \in \mathbb{F}^n$, j = 1, ..., m are measurement vectors, $b := (b_1, ..., b_m)^T \in \mathbb{F}^m$ is the bias vector. The problem can be regarded as the classic phase retrieval with a priori information, and is raised in many areas, such as holographic phase retrieval [16, 17, 27] and Fourier phase retrieval [3–5, 23]. In such scenarios, one needs to employ some additional information about the desired signals to ensure the uniqueness of solutions. Specifically, in holographic optics, a reference signal $r \in \mathbb{C}^k$, whose structure is a priori known, is included in the diffraction patterns alongside the signal of interest $x_0 \in \mathbb{C}^n$ [2, 20, 26]. Set $x_0' = (x_0^T, r^T)^T \in \mathbb{C}^{n+k}$. Then the magnitude-only measurements we obtain that

$$y_j = |\langle \boldsymbol{a}'_j, \boldsymbol{x}'_0 \rangle| = |\langle \boldsymbol{a}_j, \boldsymbol{x}_0 \rangle + \langle \boldsymbol{a}''_j, \boldsymbol{r} \rangle| = |\langle \boldsymbol{a}_j, \boldsymbol{x}_0 \rangle + b_j|, \quad j = 1, \dots, m,$$

where $\mathbf{a}_j' = (\mathbf{a}_j^{\mathrm{T}}, \mathbf{a}_j''^{\mathrm{T}})^{\mathrm{T}} \in \mathbb{C}^{n+k}$ are given measurement vectors and $b_j = \langle \mathbf{a}_j'', \mathbf{r} \rangle \in \mathbb{C}$ are known. Therefore, the holographic phase retrieval can be viewed as the affine phase retrieval.

Another application of affine phase retrieval arises in Fourier phase retrieval problem. For one-dimensional Fourier phase retrieval problem, it usually does not possess the uniqueness of solutions [35]. Actually, for a given signal with dimension n, beside the trivial ambiguities caused by shift, conjugate reflection and rotation, there still could be 2^{n-2} nontrivial solutions. To enforce the uniqueness of solutions, one approach is to use additionally known values of some entries [4], which can be recast as affine phase retrieval. More related works on the uniqueness of solutions for Fourier phase retrieval can be seen in [11, 31].

1.3 Our Contributions

In this paper, we focus on the recovery of sparse signals from the magnitude of affine measurements. Specifically, we aim to recover a k-sparse signal $x_0 \in \mathbb{F}^n$ ($\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$) from the data

$$\mathbf{y} = |A\mathbf{x}_0 + \mathbf{b}| + \mathbf{w},$$

where $A := [a_1, \dots, a_m]^* \in \mathbb{F}^{m \times n}$ is the measurement matrix, $b \in \mathbb{F}^m$ is the bias vector, and $\boldsymbol{w} \in \mathbb{R}^m$ is the noise vector. Our aim is to present the performance of the following ℓ_1 minimization program:

$$\underset{\boldsymbol{x} \in \mathbb{F}^n}{\operatorname{argmin}} \|\boldsymbol{x}\|_1 \quad \text{s.t. } \||\boldsymbol{A}\boldsymbol{x} + \boldsymbol{b}| - \boldsymbol{y}\|_2 \le \epsilon. \tag{4}$$

We say a triple (A, b, Δ) is instance optimal of order k_0 if it holds

$$\|\Delta(|Ax + b|) - x\|_p \le C \cdot \sigma_{k_0}(x)_q \tag{5}$$

for all $x \in \mathbb{F}^n$. Here, $\Delta : \mathbb{R}^m \to \mathbb{F}^n$ is a decoder for reconstructing $x, \sigma_k(x)_q :=$ $\min_{|\operatorname{supp}(z)| \le k} \|z - x\|_q$ and $C := C_{k_0, p, q}$ is a constant depending on k_0, p and q.

Theorem 1 Assume that there exists a matrix $A \in \mathbb{F}^{m \times n}$, a vector $b \in \mathbb{F}^m$, a decoder $\Delta: \mathbb{F}^m \to \mathbb{F}^n$ and positive integers k_0, p, q such that (5) holds for all $\mathbf{x} \in \mathbb{F}^n$. Then $\boldsymbol{b} \notin \{A\boldsymbol{z} : \boldsymbol{z} \in \mathbb{F}^n\}.$

Proof We assume that $b = Az_0$ where $z_0 \in \mathbb{F}^n$. We next show that there exits $x \in \mathbb{F}^n$ such that (5) does not hold. For the aim of contradiction, we assume that (5) holds. Since $\sigma_{k_0}(-\mathbf{x})_q = \sigma_{k_0}(\mathbf{x})_q$, we have

$$\|\Delta(|Ax - b|) + x\|_p = \|\Delta(|A(-x) + b|) - (-x)\|_p \le C\sigma_{k_0}(x)_q.$$
 (6)

Assume that $\mathbf{x}_0 \in \mathbb{F}^n$ is k_0 -sparse, i.e. $\sigma_{k_0}(\mathbf{x}_0)_q = 0$. According to (5) and (6), we obtain that

$$\Delta(|Ax_0 + b|) = x_0, \quad \Delta(|Ax_0 - b|) = -x_0.$$
 (7)

Taking $\mathbf{x} = r\mathbf{x}_0 + 2\mathbf{z}_0$ in (6), we have

$$\|\Delta(|A(rx_0+2z_0)-b|)+rx_0+2z_0\|_p \le C\sigma_{k_0}(rx_0+2z_0)_q \le C\sigma_{k_0}(2z_0)_q,$$
 (8)

where r > 0. Observe that

$$\Delta(|A(rx_0 + 2z_0) - b|) = \Delta(|A(rx_0) + b|) = rx_0. \tag{9}$$

Here, we use x_0 is k_0 -sparse. Substituting (8) into (9), we obtain that

$$||2r\mathbf{x}_0 + 2\mathbf{z}_0||_p \le C\sigma_{k_0}(2\mathbf{z}_0)_q \tag{10}$$

holds for any r > 0. Note $\lim_{r \to \infty} ||2rx_0 + 2z_0||_p = \infty$. Hence, (10) does not hold provided r is large enough. A contradiction!

For the case where $m \leq n$ and A is full rank, we have $b \in \{Az : z \in \mathbb{F}^n\}$. According to Theorem 1, we know that it is impossible to build the instance-optimality result under this setting. This is quite different from the earlier results on standard phase retrieval [18], where the instance-optimality is

$$\min_{|c|=1} \|\Delta(|Ax|) - cx\|_p \le C \cdot \sigma_{k_0}(x)_q, \text{ for all } x \in \mathbb{F}^n.$$
 (11)

The instance-optimality result for the standard phase retrieval, as expressed in equation (11), is established in [18].

1.3.1 Real Case

Our first result gives an upper bound for the reconstruct error of (4) in the real case, under the assumption of $a_1, \ldots, a_m \in \mathbb{R}^n$ being real Gaussian random vectors and $m \ge O(k \log(en/k))$. It means the ℓ_1 -minimization program is stable under small perturbation, even for the approximately k-sparse signals. To begin with, we need the following definition of strong RIP condition, which was introduced by Voroninski and Xu [34].

Definition 1 (Strong RIP in [34]) The matrix $A \in \mathbb{R}^{m \times n}$ satisfies the Strong Restricted Isometry Property (SRIP) of order k and constants θ_l , $\theta_u > 0$ if the following inequality

$$\theta_{l} \|x\|^{2} \leq \min_{I \subset [m], |I| \geq m/2} \|A_{I}x\|^{2} \leq \max_{I \subset [m], |I| \geq m/2} \|A_{I}x\|^{2} \leq \theta_{u} \|x\|^{2}$$

holds for all k-sparse signals $x \in \mathbb{R}^n$. Here, A_I denotes the sub-matrix of A whose rows with indices in I are kept, $[m] := \{1, \dots, m\}$ and |I| denotes the cardinality of I.

The following result indicates that the matrix $[A \ b] \in \mathbb{R}^{m \times (n+1)}$ satisfies strong RIP condition with high probability under some mild conditions on $A \in \mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^m$.

Theorem 2 Let $A \in \mathbb{R}^{m \times n}$ be a Gaussian random matrix with entries $a_{k,j} \sim$ $\mathcal{N}(0, 1/m)$. Suppose that the vector $\mathbf{b} \in \mathbb{R}^m$ satisfies $\alpha \leq \|\mathbf{b}_I\|_2 \leq \beta$ for all $I \subseteq [m]$ with $|I| \ge m/2$, where $\alpha \le \beta$ are two positive constants. Set $A' := [A \ b] \in \mathbb{R}^{m \times (n+1)}$. If $m \ge Ct(k+1)\log(en/k)$ with $t(k+1) \le n$ and $1 < t \in \mathbb{Z}$, then there exist constants θ'_l , θ'_u , independent with t, such that the matrix A' satisfies the strong RIP of order tk + 1 and constants θ'_l , θ'_u with probability at least $1 - 4\exp(-c'm)$. Here, C, c' > 0 are constants depending only on α and β .

The following theorem shows that if we add some restrictions on the signal x, then the instance-optimality result can be established.

Theorem 3 Assume that $A' := [A \ b] \in \mathbb{R}^{m \times (n+1)}$ satisfies the strong RIP of order (a+1)(k+1) with constants $\theta_u \geq \bar{\theta}_l > 0$. If $a > \theta_u/\theta_l$, then the following holds: for any vector $\mathbf{x}_0 \in \mathbb{R}^n$, the solution $\widehat{\mathbf{x}}$ to (4) with $\mathbf{y} = |A\mathbf{x}_0 + \mathbf{b}| + \mathbf{w}$ and $\|\mathbf{w}\|_2 \le \epsilon$ obeys

$$\|\widehat{\mathbf{x}} - \mathbf{x}_0\|_2 \le K_1 \epsilon + K_2 \frac{\sigma_k(\mathbf{x}_0)_1}{\sqrt{a(k+1)}},$$

provided $K_1\epsilon + K_2 \frac{\sigma_k(x_0)_1}{\sqrt{g(k+1)}} < 2$. Here,

$$K_1 := \frac{2(1+1/\sqrt{a})}{\sqrt{\theta_l} - \sqrt{\theta_u}/\sqrt{a}} > 0, \quad K_2 := \sqrt{\theta_u}K_1 + 2.$$

From Theorem 2, we know that if $A \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix with entries $a_{k,j} \sim \mathcal{N}(0,1/m)$ and the sampling complexity $m \geq C(a+1)(k+2)\log(en/k)$, then with high probability the matrix $A' := [A \ b]$ satisfies strong RIP condition of order (a+1)(k+1) with constants θ_l , $\theta_u > 0$ under some mild conditions on b. Here, the constants θ_l , θ_u are independent with a. Therefore, taking the constant $a > \theta_u/\theta_l$, the conclusion of Theorem 3 holds with high probability.

In the absence of noise, i.e., $\mathbf{w} = 0$, $\epsilon = 0$, Theorem 3 shows that if $\mathbf{a}_1, \ldots, \mathbf{a}_m \sim 1/\sqrt{m} \cdot \mathcal{N}(0, I_n)$ are real Gaussian random vectors and $m \geq O(k \log(en/k))$, then all the k-sparse signals $\mathbf{x}_0 \in \mathbb{R}^n$ could be reconstructed exactly by solving the program (4) under some mild conditions on \mathbf{b} . We state it as the following corollary:

Corollary 1 Let $A \in \mathbb{R}^{m \times n}$ be a Gaussian random matrix with entries $a_{jk} \sim \mathcal{N}(0, 1/m)$, and $\mathbf{b} \in \mathbb{R}^m$ be a vector satisfying $\alpha \leq \|\mathbf{b}_I\|_2 \leq \beta$ for all $I \subseteq [m]$ with $|I| \geq m/2$, where $\alpha \leq \beta$ are two positive universal constants. If $m \geq Ck \log(en/k)$, then with probability at least $1-4 \exp(-cm)$ it holds: for any k-sparse signal $\mathbf{x}_0 \in \mathbb{R}^n$, the ℓ_1 minimization

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \|x\|_1 \quad \text{s.t.} \quad |Ax + b| = y$$

with $\mathbf{y} = |A\mathbf{x}_0 + \mathbf{b}|$ has a unique solution \mathbf{x}_0 . Here C, c > 0 are constants depending only on α and β .

1.3.2 Complex Case

We next turn to consider the estimation performance of (4) for the complex-valued signals. Let $\mathbb{H}^{n\times n}$ be the set of Hermitian matrix in $\mathbb{C}^{n\times n}$ and $\|\boldsymbol{H}\|_{0,2}$ denotes the number of non-zero rows in \boldsymbol{H} . Given $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_m\in\mathbb{C}^n$ and $b_1,\ldots,b_m\in\mathbb{C}$, we define a linear map $\mathcal{A}':\boldsymbol{H}'\in\mathbb{H}^{(n+1)\times(n+1)}\to\mathbb{R}^m$ as follows:

$$A'(\mathbf{H}') = (a_1'^* \mathbf{H}' a_1', \dots, a_m'^* \mathbf{H}' a_m'), \tag{12}$$

where
$$\mathbf{a}'_j := \begin{pmatrix} \mathbf{a}_j \\ b_j \end{pmatrix} \in \mathbb{C}^{n+1}$$
.

Definition 2 We say the linear map \mathcal{A}' defined in (12) satisfies the restricted isometry property of order (r, k) with constants c, C > 0 if the following holds

$$c\|\mathbf{H}'\|_F \le \frac{1}{m}\|\mathcal{A}'(\mathbf{H}')\|_1 \le C\|\mathbf{H}'\|_F$$
 (13)

$$\text{for all } \boldsymbol{H}' := \begin{bmatrix} \boldsymbol{H} & \boldsymbol{h} \\ \boldsymbol{h}^* & 0 \end{bmatrix} \in \mathbb{H}^{(n+1)\times (n+1)} \text{ with } \text{rank}(\boldsymbol{H}) \leq r, \|\boldsymbol{H}\|_{0,2} \leq k \text{ and } \|\boldsymbol{h}\|_{0} \leq k.$$

The following theorem shows that the linear map \mathcal{A}' satisfies the restricted isometry property over low-rank and sparse matrices, provided $a_1, \ldots, a_m \in \mathbb{C}^n$ are i.i.d. complex Gaussian random vectors and $\mathbf{b} := (b_1, \ldots, b_m)^T \in \mathbb{C}^m$ satisfies some mild conditions.

Theorem 4 Suppose $a_1, \ldots, a_m \sim 1/\sqrt{2} \cdot \mathcal{N}(0, I_n) + i/\sqrt{2} \cdot \mathcal{N}(0, I_n)$ are i.i.d. complex Gaussian random vectors and $\mathbf{b} \in \mathbb{C}^m$ is a independent sub-gaussian random vector (it also may be deterministic) with sub-gaussian norm $\|\boldsymbol{b}\|_{\psi_2} \leq C$ and $\mathbb{E}\|\boldsymbol{b}\|_1 \geq c_1 m$, $\mathbb{E}\|\boldsymbol{b}\|_2 \leq c_2\sqrt{m}$, where C>0, $c_2\geq c_1>0$ are universal constants. If $m\geq 0$ $C'k\log(en/k)$, then with probability at least $1-5\exp(-c'm)$, the linear map A'defined in (12) obeys

$$\frac{\theta^{-}}{12} \| \boldsymbol{H}' \|_{F} \le \frac{1}{m} \| \mathcal{A}'(\boldsymbol{H}') \|_{1} \le 3\theta^{+} \| \boldsymbol{H}' \|_{F}$$

for all $\mathbf{H}' := \begin{bmatrix} \mathbf{H} & \mathbf{h} \\ \mathbf{h}^* & 0 \end{bmatrix} \in \mathbb{H}^{(n+1)\times (n+1)}$ with $\mathrm{rank}(\mathbf{H}) \leq 2$, $\|\mathbf{H}\|_{0,2} \leq k$ and $\|\mathbf{h}\|_{0} \leq k$. Here, $\theta^- := \min(\overline{1}, c_1/\sqrt{2}), \ \theta^+ := \max(\sqrt{6}, c_2), \ and \ C', \ c' > 0 \ are \ constants$ depending only on c_1 , c_2 .

With abuse of notation, we denote $\mathcal{A}'(x') := \mathcal{A}'(x'x'^*)$ for any vector $x' \in \mathbb{C}^{n+1}$. Then we have

Theorem 5 Assume that the linear map $\mathcal{A}'(\cdot)$ satisfies the RIP condition (13) of order (2, 2ak) with constants c, C > 0. For any k-sparse signal $\mathbf{x}_0 \in \mathbb{C}^n$, if

$$c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right) > 0,$$

then the solution $\widehat{\mathbf{x}} \in \mathbb{C}^n$ to

$$\underset{\boldsymbol{x} \in \mathbb{C}^n}{\operatorname{argmin}} \quad \|\boldsymbol{x}\|_1 \quad \text{s.t.} \quad \|\mathcal{A}'(\boldsymbol{x}') - \tilde{\boldsymbol{y}}\| \le \epsilon \quad and \quad \boldsymbol{x}' = (\boldsymbol{x}^{\mathrm{T}}, 1)^{\mathrm{T}}$$

with $\tilde{\mathbf{y}} = \mathcal{A}'(\mathbf{x}_0') + \mathbf{w}$, $\|\mathbf{w}\| \le \epsilon$ and $\mathbf{x}_0' = (\mathbf{x}_0^{\mathrm{T}}, 1)^{\mathrm{T}}$ obeys

$$\min_{\theta \in \mathbb{R}} \left(\|\widehat{\mathbf{x}} - e^{i\theta} \mathbf{x}_0\|_2 + \left| 1 - e^{i\theta} \right| \right) \le \frac{C_0 \epsilon}{(\|\mathbf{x}_0\| + 1)\sqrt{m}},$$

where

$$C_0 := 2\sqrt{2} \cdot \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)}.$$

Based on Theorem 4, if $a_1, \ldots, a_m \in \mathbb{C}^n$ are i.i.d. complex Gaussian random vectors and $m \geq C'ak \log(en/ak)$, then with high probability the linear map \mathcal{A}' defined in (12) satisfies RIP condition of order (2, 2ak) with constants $c = \theta^-/12$ and $C = 3\theta^+$ under some mild conditions on **b**. For the noiseless case where $\mathbf{w} = 0$, $\epsilon = 0$, taking the constant $a > (8C/c)^2$ and combining with Theorem 5, we can obtain the following result.

Corollary 2 Suppose $a_1, \ldots, a_m \sim 1/\sqrt{2} \cdot \mathcal{N}(0, I_n) + i/\sqrt{2} \cdot \mathcal{N}(0, I_n)$ are i.i.d. complex Gaussian random vectors and $\mathbf{b} \in \mathbb{C}^m$ is a independent sub-gaussian random vector (it also may be deterministic) with sub-gaussian norm $\|\mathbf{b}\|_{\psi_2} \leq C$ and $\mathbb{E}\|\mathbf{b}\|_1 \geq c_1 m$, $\mathbb{E}\|\mathbf{b}\|_2 \leq c_2 \sqrt{m}$, where C > 0, $c_2 \geq c_1 > 0$ are universal constants. If $m \geq C'' k \log(en/k)$, then with probability at least $1 - 5 \exp(-c'' m)$, then the solution to

$$\underset{\boldsymbol{x} \in \mathbb{C}^n}{\operatorname{argmin}} \|\boldsymbol{x}\|_1 \quad s.t. \quad |A\boldsymbol{x} + \boldsymbol{b}| = |A\boldsymbol{x}_0 + \boldsymbol{b}|$$

is x_0 exactly. Here, C'', c'' > 0 are constants depending only on c_1 , c_2 .

Remark 1 We give an upper bound for $\min_{\theta \in \mathbb{R}} \left(\|\widehat{x} - e^{i\theta} x_0\|_2 + |1 - e^{i\theta}| \right)$ in Theorem 5. However, since the affine phase retrieval can recover a signal exactly (not just up to a global phase), one may wonder: is there a stable recovery bound for $\|\widehat{x} - x_0\|_2$? We believe that the answer is no, especially for the case where the noise vector $\|\boldsymbol{w}\|_2 \gtrsim \sqrt{m}$. We defer the proof of it for the future work.

1.4 Notations

Throughout the paper, we denote $x \sim \mathcal{N}(0, I_n)$ if $x \in \mathbb{R}^n$ is a standard Gaussian random vector. A vector x is k-sparse if there are at most k nonzero entries of x. For simplicity, we denote $[m] := \{1, \ldots, m\}$. For any subset $I \subseteq [m]$, let $A_I = [a_j : j \in I]^*$ be the submatrix whose rows are generated by $A = [a_1, \ldots, a_m]^*$. Denote $\sigma_k(x_0)_p := \min_{|\sup p(x)| \le k} \|x - x_0\|_p$ as the best k-term approximation error of x_0 with respect to ℓ_p norm. For a complex number b, we use b_{\Re} and b_{\Im} to denote the real and imaginary part of b, respectively. For any $A, B \in \mathbb{R}$, we use $A \lesssim B$ to denote $A \leq C_0 B$ where $C_0 \in \mathbb{R}_+$ is an absolute constant. The notion g > 0 can be defined similarly. Throughout this paper, c, c and the subscript (superscript) forms of them denote constants whose values vary with the context.

2 Proof of Theorem 2 and Theorem 3

In this section, we consider the estimation performance of the ℓ_1 -minimization program (4) for the real-valued signals. Before proceeding, we need the following lemma which shows that if $A \in \mathbb{R}^{m \times n}$ is a real Gaussian random matrix with entries $a_{k,j} \sim \mathcal{N}(0, 1/m)$, then A satisfies the strong RIP with high probability.

Lemma 1 (Theorem 2.1 in [34]) Suppose that t > 1 and that $A \in \mathbb{R}^{m \times n}$ is a Gaussian random matrix with entries $a_{k,j} \sim \mathcal{N}(0, 1/m)$. Let $m = O(tk \log(en/k))$ where $k \in [1, d] \cap \mathbb{Z}$ and $t \geq 1$ is a constant. Then there exist constants θ_l , θ_u with $0 < \theta_l < \theta_u < 2$, independent with t, such that A satisfies SRIP of order $t \cdot k$ and constants θ_l , θ_u with probability at least $1 - \exp(-cm)$, where c > 0 is a universal constant.

2.1 Proof of Theorem 2

Proof From the definition, it suffices to show there exist constants θ'_l , $\theta'_u > 0$ such that the following inequality

$$\theta_{l}' \| \boldsymbol{x}' \|^{2} \leq \min_{I \subset [m], |I| \geq m/2} \| \boldsymbol{A}_{I}' \boldsymbol{x}' \|^{2} \leq \max_{I \subset [m], |I| \geq m/2} \| \boldsymbol{A}_{I}' \boldsymbol{x}' \|^{2} \leq \theta_{u}' \| \boldsymbol{x}' \|^{2}$$
(14)

holds for all (tk+1)-sparse signals $x' \in \mathbb{R}^{n+1}$. To this end, we denote $x' = (x^T, z)^T$, where $x \in \mathbb{R}^n$ and $z \in \mathbb{R}$. We first consider the case where z = 0. From Lemma 1, we know that if $m \gtrsim t(k+1)\log(en/(k+1))$ and t > 1, then there exist two positive constants θ_l , $\theta_u \in (0,2)$ such that

$$\theta_l \|\mathbf{x}\|_2^2 \le \min_{I \subseteq [m], |I| > m/2} \|\mathbf{A}_I \mathbf{x}\|_2^2 \le \max_{I \subseteq [m], |I| > m/2} \|\mathbf{A}_I \mathbf{x}\|_2^2 \le \theta_u \|\mathbf{x}\|_2^2$$
 (15)

holds for all (tk+1)-sparse vector $\mathbf{x} \in \mathbb{R}^n$ with probability at least $1 - \exp(-cm)$. Here, c > 0 is a universal constant. Note that $\mathbf{A}'\mathbf{x}' = \mathbf{A}\mathbf{x}$. We immediately obtain (14) for the case where z = 0.

Next, we turn to the case where $z \neq 0$. A simple calculation shows that

$$\|\mathbf{A}_{I}'\mathbf{x}'\|_{2}^{2} = \|\mathbf{A}_{I}\mathbf{x} + z\mathbf{b}_{I}\|_{2}^{2} = \|\mathbf{A}_{I}\mathbf{x}\|_{2}^{2} + 2z\langle\mathbf{A}_{I}\mathbf{x}, \mathbf{b}_{I}\rangle + z^{2}\|\mathbf{b}_{I}\|_{2}^{2}$$
(16)

for any $I \subseteq [m]$. Denote $\mathbf{A} = \begin{bmatrix} \mathbf{a}_1, \dots, \mathbf{a}_m \end{bmatrix}^T$. Note that $\sqrt{m}\mathbf{a}_j \sim \mathcal{N}(0, I_n)$. Taking $\zeta = \frac{\min(\theta_l, \alpha^2)}{200\beta}$ in Lemma 5, we obtain that there exists a constant C > 0 depending only on θ_l , α , β such that when $m \ge Ct(k+1)\log(en/k)$, with probability at least $1 - 3\exp(-c_1m)$, it holds

$$|\langle A_I x, \boldsymbol{b}_I \rangle| = |\langle A x, \boldsymbol{b}_I \rangle| \le \frac{\min\{\theta_l, \alpha^2\}}{200\beta} \|\boldsymbol{x}\|_2 \|\boldsymbol{b}\|_2$$
 (17)

for all (tk+1)-sparse vectors \mathbf{x} and all $I \subseteq [m]$. Here, we view $\mathbf{b}_I = \mathbf{b}\mathbb{I}_I \in \mathbb{R}^m$ $(\mathbb{I}_I(j) = 1 \text{ if } j \in I \text{ and } 0 \text{ if } j \notin I)$, and $c_1 > 0 \text{ is a constant depending only on } \theta_l$, α , β . Note that the vector \mathbf{b} satisfies

$$\alpha < \|\boldsymbol{b}_I\|_2 < \beta \tag{18}$$

for all $I \subseteq [m]$ with $|I| \ge m/2$. Putting (15), (17) and (18) into (16), we obtain that when $m \ge Ct(k+1)\log(en/k)$, with probability at least $1-4\exp(-cm)$, the following two inequalities

$$\|\boldsymbol{A}_{l}'\boldsymbol{x}'\|_{2}^{2} \geq \theta_{l}\|\boldsymbol{x}\|_{2}^{2} - 2|z| \frac{\min\{\theta_{l}, \alpha^{2}\}}{200\beta} \|\boldsymbol{x}\|_{2}\beta + \alpha^{2}z^{2} \geq 0.99 \min\{\theta_{l}, \alpha^{2}\} \|\boldsymbol{x}'\|_{2}^{2},$$

and

$$\|A_I'x'\|_2^2 \le \theta_u \|x\|_2^2 + 2|z| \frac{\min\{\theta_l, \alpha^2\}}{200\beta} \|x\|_2 \beta + \beta^2 z^2 \le 1.01 \max\{\theta_u, \beta^2\} \|x'\|_2^2$$

hold for all (tk+1)-sparse vector $\mathbf{x}' \in \mathbb{R}^{n+1}$ and for all $I \subseteq [m]$ with $|I| \ge m/2$. Here, c > 0 is a constant depending only on θ_l , α , β . In other words, we have

$$\theta_{l}'\|\boldsymbol{x}'\|_{2}^{2} \leq \min_{I \subseteq [m], |I| > m/2} \|\boldsymbol{A}_{I}'\boldsymbol{x}'\|_{2}^{2} \leq \max_{I \subseteq [m], |I| > m/2} \|\boldsymbol{A}_{I}'\boldsymbol{x}'\|_{2}^{2} \leq \theta_{u}'\|\boldsymbol{x}'\|_{2}^{2}$$

for all (tk+1)-sparse vector \mathbf{x}' with probability at least $1-4\exp(-cm)$. Here, $\theta_l'=0.99\min\{\theta_l,\alpha^2\}$ and $\theta_u'=1.01\max\{\theta_u,\beta^2\}$. Combining the above two cases and noting that $\theta_l,\theta_u>0$ are universal constants, we complete the proof.

2.2 Proof of Theorem 3

Proof Denote
$$A' = [A \ b], \widehat{x}' = (\widehat{x}^T, 1)^T$$
 and $x'_0 = (x_0^T, 1)^T$. Set

$$I := \{ j : (\langle \boldsymbol{a}_i, \widehat{\boldsymbol{x}} \rangle + b_i)(\langle \boldsymbol{a}_i, \boldsymbol{x}_0 \rangle + b_i) \ge 0 \}.$$

We next divide the proof into the following two cases.

Case 1: $|I| \ge m/2$. Set $h = \widehat{x}' - x_0'$. For any a > 1, we decompose h into the sum of h_{T_0}, h_{T_1}, \ldots , where T_0 is an index set which consists the indices of the k+1 largest coordinates of x_0' in magnitude, T_1 is the index set corresponding to the a(k+1) largest coordinates of $h_{T_0^c}$ in magnitude, T_2 is the index set corresponding to the a(k+1) largest coordinates of $h_{(T_0 \cup T_1)^c}$ in magnitude, and so on. For simplicity, we denote $T_{jl} := T_j \cup T_l$. To prove the theorem, we only need to give an upper bound for $\|h\|_2$. Observe that

$$\|\boldsymbol{h}\|_{2} \leq \|\boldsymbol{h}_{T_{01}}\|_{2} + \|\boldsymbol{h} - \boldsymbol{h}_{T_{01}}\|_{2}.$$
 (19)

We claim that the following holds:

$$\|\boldsymbol{h} - \boldsymbol{h}_{T_{01}}\|_{2} \le \frac{1}{\sqrt{a}} \|\boldsymbol{h}_{T_{01}}\|_{2} + \frac{2\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}$$
 (20)

and

$$\|\boldsymbol{h}_{T_{01}}\|_{2} \leq \frac{2}{\sqrt{\theta_{l}} - \sqrt{\theta_{u}}/\sqrt{a}} \cdot \left(\epsilon + \frac{\sqrt{\theta_{u}}\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}\right). \tag{21}$$

Here, C, c, θ_l and θ_u are positive constants depending only on α and β . Putting (20) and (21) into (19), we obtain that

$$\|\boldsymbol{h}\|_{2} \leq \frac{2\left(1+1/\sqrt{a}\right)}{\sqrt{\theta_{l}}-\sqrt{\theta_{u}}/\sqrt{a}}\epsilon + \left(\frac{2(1+1/\sqrt{a})\sqrt{\theta_{u}}}{\sqrt{\theta_{l}}-\sqrt{\theta_{u}}/\sqrt{a}}+2\right)\frac{\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}.$$

It remains to prove the claim (20) and (21). Since \hat{x} is the solution to ℓ_1 minimization program (4), we have

$$\begin{aligned} \|\boldsymbol{x}_0'\|_1 &\geq \|\widehat{\boldsymbol{x}}'\|_1 = \|\boldsymbol{x}_0' + \boldsymbol{h}\|_1 = \|(\boldsymbol{x}_0' + \boldsymbol{h})_{T_0}\|_1 + \|(\boldsymbol{x}_0' + \boldsymbol{h})_{T_0^c}\|_1 \\ &\geq \|\boldsymbol{x}_{0,T_0}'\|_1 - \|\boldsymbol{h}_{T_0}\|_1 + \|\boldsymbol{h}_{T_0^c}\|_1 - \|\boldsymbol{x}_{0,T_0^c}'\|_1. \end{aligned}$$

Therefore,

$$\|\boldsymbol{h}_{T_0^c}\|_1 \le \|\boldsymbol{h}_{T_0}\|_1 + 2\|\boldsymbol{x}_{0,T_0^c}'\|_1.$$
 (22)

From the definition of T_i , we obtain that, for all $j \geq 2$,

$$\|\boldsymbol{h}_{T_j}\|_2 \leq \sqrt{a(k+1)}\|\boldsymbol{h}_{T_j}\|_{\infty} = \frac{a(k+1)}{\sqrt{a(k+1)}}\|\boldsymbol{h}_{T_j}\|_{\infty} \leq \frac{\|\boldsymbol{h}_{T_{j-1}}\|_1}{\sqrt{a(k+1)}}.$$

It then gives

$$\|\boldsymbol{h}_{T_{01}^c}\|_2 \le \sum_{j \ge 2} \|\boldsymbol{h}_{T_j}\|_2 \le \frac{1}{\sqrt{a(k+1)}} \sum_{j \ge 2} \|\boldsymbol{h}_{T_{j-1}}\|_1 = \frac{1}{\sqrt{a(k+1)}} \|\boldsymbol{h}_{T_0^c}\|_1.$$
 (23)

Putting (22) into (23), we obtain the conclusion of claim (20), namely,

$$\|\boldsymbol{h}_{T_{01}^{c}}\|_{2} \leq \frac{1}{\sqrt{a(k+1)}} \|\boldsymbol{h}_{T_{0}^{c}}\|_{1} \leq \frac{\|\boldsymbol{h}_{T_{0}}\|_{1} + 2\|\boldsymbol{x}_{0,T_{0}^{c}}'\|_{1}}{\sqrt{a(k+1)}}$$

$$\leq \frac{1}{\sqrt{a}} \|\boldsymbol{h}_{T_{0}}\|_{2} + \frac{2\sigma_{k+1}(\boldsymbol{x}_{0}')_{1}}{\sqrt{k}} \leq \frac{1}{\sqrt{a}} \|\boldsymbol{h}_{T_{01}}\|_{2} + \frac{2\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}},$$
(24)

where the third inequality follows the Cauchy-Schwarz inequality and the last inequality comes from the fact $\sigma_{k+1}(x_0')_1 \leq \sigma_k(x_0)_1$ by the definitions of \widehat{x}' and $\sigma_k(\cdot)_1$.

We next turn to prove the claim (21). Observe that

$$\|\mathbf{A}_{I}^{\prime}\mathbf{h}\|_{2} \geq \|\mathbf{A}_{I}^{\prime}\mathbf{h}_{T_{01}}\|_{2} - \|\mathbf{A}_{I}^{\prime}\mathbf{h}_{T_{01}^{c}}\|_{2}. \tag{25}$$

For the left hand side of (25), by the definition of I, we have

$$||A'_{I}h||_{2} = ||A'_{I}\widehat{x}'| - |A'_{I}x'_{0}||_{2}$$

$$\leq ||A'\widehat{x}'| - |A'x'_{0}||_{2}$$

$$\leq ||A'\widehat{x}'| - y||_{2} + ||A'x'_{0}| - y||_{2}$$

$$< 2\epsilon.$$
(26)

For the first term of the right hand side of (25), since the matrix A' satisfies strong RIP of order (a + 1)(k + 1) with constants θ_l , $\theta_u > 0$, we immediately have

$$\|\boldsymbol{A}_{I}'\boldsymbol{h}_{T_{01}}\|_{2} \geq \sqrt{\theta_{l}}\|\boldsymbol{h}_{T_{01}}\|_{2}. \tag{27}$$

To give an upper bound for the term $\|\mathbf{A}_I'\mathbf{h}_{T_{01}^c}\|_2$, note that $\|\mathbf{h}_{T_{01}^c}\|_{\infty} \leq \|\mathbf{h}_{T_1}\|_1/a(k+1)$. Let $\theta := \max\left(\|\mathbf{h}_{T_1}\|_1/a(k+1), \|\mathbf{h}_{T_{01}^c}\|_1/a(k+1)\right)$. Then by the Lemma 2, we could decompose the vector $\mathbf{h}_{T_{01}^c}$ into the following form:

$$\boldsymbol{h}_{T_{01}^c} = \sum_{j=1}^N \lambda_j \boldsymbol{u}_j, \text{ with } 0 \le \lambda_j \le 1, \sum_{j=1}^N \lambda_j = 1,$$

where u_i are a(k + 1)-sparse vectors satisfying

$$\|\boldsymbol{u}_j\|_1 = \|\boldsymbol{h}_{T_{01}^c}\|_1, \quad \|\boldsymbol{u}_j\|_{\infty} \leq \theta.$$

Therefore, we have

$$\|\boldsymbol{u}_{j}\|_{2} \leq \sqrt{\theta \|\boldsymbol{h}_{T_{01}^{c}}\|_{1}}.$$

We notice from (22) that

$$\|\boldsymbol{h}_{T_0^c}\|_1 \le \|\boldsymbol{h}_{T_0^c}\|_1 \le \|\boldsymbol{h}_{T_0}\|_1 + 2\sigma_k(\boldsymbol{x}_0)_1.$$

Thus, if $\theta = \|\boldsymbol{h}_{T_1}\|_1/a(k+1)$, then we have

$$\|\boldsymbol{u}_{j}\|_{2} \leq \sqrt{\frac{\|\boldsymbol{h}_{T_{1}}\|_{1}\|\boldsymbol{h}_{T_{01}^{c}}\|_{1}}{a(k+1)}} \leq \sqrt{\frac{\|\boldsymbol{h}_{T_{0}^{c}}\|_{1}\|\boldsymbol{h}_{T_{01}^{c}}\|_{1}}{a(k+1)}}$$
$$\leq \frac{\|\boldsymbol{h}_{T_{0}}\|_{1} + 2\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}} \leq \frac{\|\boldsymbol{h}_{T_{0}}\|_{2}}{\sqrt{a}} + \frac{2\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}.$$

If $\theta = \| \boldsymbol{h}_{T_{01}^c} \|_1 / a(k+1)$, then

$$\|\boldsymbol{u}_{j}\|_{2} \leq \frac{\|\boldsymbol{h}_{T_{01}^{c}}\|_{1}}{\sqrt{a(k+1)}} \leq \frac{\|\boldsymbol{h}_{T_{0}}\|_{2}}{\sqrt{a}} + \frac{2\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}.$$

Therefore, for the second term of the right hand side of (25), it follows from the definition of strong RIP that

$$\|\boldsymbol{A}_{I}^{\prime}\boldsymbol{h}_{T_{01}^{c}}\|_{2} = \|\sum_{j=1}^{N} \lambda_{j} \boldsymbol{A}_{I}^{\prime}\boldsymbol{u}_{j}\|_{2} \leq \sqrt{\theta_{u}} \sum_{j=1}^{N} \lambda_{j} \|\boldsymbol{u}_{j}\|_{2} \leq \sqrt{\theta_{u}} \left(\frac{\|\boldsymbol{h}_{T_{0}}\|_{2}}{\sqrt{a}} + \frac{2\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}\right). \tag{28}$$

Putting (26), (27) and (28) into (25), we immediately obtain

$$2\epsilon \geq \sqrt{\theta_l} \|\boldsymbol{h}_{T_{01}}\|_2 - \sqrt{\theta_u} \left(\frac{\|\boldsymbol{h}_{T_{01}}\|_2}{\sqrt{a}} + \frac{2\sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}} \right),$$

which gives

$$\|\boldsymbol{h}_{T_{01}}\|_{2} \leq \frac{2}{\sqrt{\theta_{l}} - \sqrt{\theta_{u}}/\sqrt{a}} \cdot \left(\epsilon + \frac{\sqrt{\theta_{u}}\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}\right).$$

Case 2: |I| < m/2. For this case, denote $h^+ = \widehat{x}' + x_0'$. Replacing h and the subset I in Case 1 by h^+ and I^c respectively, and applying the same argument, we could obtain

$$\|\boldsymbol{h}_{+}\| \leq \frac{2\left(1 + 1/\sqrt{a}\right)}{\sqrt{\theta_{l}} - \sqrt{\theta_{u}}/\sqrt{a}} \epsilon + \left(\frac{2(1 + 1/\sqrt{a})\sqrt{\theta_{u}}}{\sqrt{\theta_{l}} - \sqrt{\theta_{u}}/\sqrt{a}} + 2\right) \frac{\sigma_{k}(\boldsymbol{x}_{0})_{1}}{\sqrt{a(k+1)}}.$$
 (29)

However, recall that $\widehat{x}' = (\widehat{x}^T, 1)^T$ and $x_0' = (x_0^T, 1)^T$. It means $\|\boldsymbol{h}_+\|_2 \ge 2$, which contradicts to (29) by the assumption of ϵ and $\sigma_k(\boldsymbol{x}_0)_1$, i.e., $K_1\epsilon + K_2\frac{\sigma_k(\boldsymbol{x}_0)_1}{\sqrt{a(k+1)}} < 2$. Therefore, Case 2 does not hold.

Combining the above two cases, we complete our proof.

3 Proof of Theorems 4 and 5

3.1 Proof of Theorem 4

Proof Without loss of generality, we assume that $\|H'\|_F = 1$. Observe that

$$\frac{1}{m} \| \mathcal{A}'(\mathbf{H}') \|_1 = \frac{1}{m} \sum_{j=1}^m \left| \mathbf{a}_j^* \mathbf{H} \mathbf{a}_j + 2(b_j(\mathbf{a}_j^* \mathbf{h}))_{\Re} \right| := \frac{1}{m} \sum_{j=1}^m \xi_j.$$

For any fixed $\mathbf{H} \in \mathbb{H}^{n \times n}$ and $\mathbf{h} \in \mathbb{C}^n$, the terms ξ_j , j = 1, ..., m are independent sub-exponential random variables with the maximal sub-exponential norm

$$K := \max_{1 \le j \le m} C_1(\|\boldsymbol{H}\|_F + \|b_j\|_{\psi_2}\|\boldsymbol{h}\|) \le C_2$$

for some universal constants C_1 , $C_2 > 0$. Here, we use the fact max $(\|\boldsymbol{H}\|_F, \|\boldsymbol{h}\|) \le \|\boldsymbol{H}'\|_F = 1$. For any $0 < \epsilon \le 1$, the Bernstein's inequality gives

$$\mathbb{P}\left(\left|\frac{1}{m}\sum_{j=1}^{m}\left(\xi_{j}-\mathbb{E}\xi_{j}\right)\right|\geq\epsilon\right)\leq2\exp\left(-c\epsilon^{2}m\right),$$

where c > 0 is a universal constant. According to Lemma 6, we obtain that

$$\frac{1}{3}\mathbb{E}\sqrt{\|\boldsymbol{H}\|_F^2+|b_j|^2\|\boldsymbol{h}\|^2}\leq \mathbb{E}\xi_j\leq 2\mathbb{E}\sqrt{3\|\boldsymbol{H}\|_F^2+|b_j|^2\|\boldsymbol{h}\|^2}.$$

This gives

$$\frac{1}{m}\sum_{j=1}^{m}\mathbb{E}\xi_{j} \leq \frac{2}{m}\sum_{j=1}^{m}\mathbb{E}\left(\sqrt{3}\|\boldsymbol{H}\|_{F} + |b_{j}|\|\boldsymbol{h}\|\right) \leq 2\sqrt{3}\|\boldsymbol{H}\|_{F} + 2c_{2}\|\boldsymbol{h}\| \leq 2\theta^{+},$$

where $\theta^+ := \max(\sqrt{6}, c_2)$. Here, we use the fact $\|\boldsymbol{H}'\|_F^2 = \|\boldsymbol{H}\|_F^2 + 2\|\boldsymbol{h}\|^2 = 1$, $\mathbb{E}\|\boldsymbol{b}\|_1 \le \sqrt{m}\mathbb{E}\|\boldsymbol{b}\| \le c_2m$, and $\frac{a+b}{\sqrt{2}} \le \sqrt{a^2+b^2} \le a+b$ for any positive number $a, b \in \mathbb{R}$. Similarly, we could obtain

$$\frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\xi_{j} \geq \frac{1}{3\sqrt{2}} \cdot \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}\left(\|\boldsymbol{H}\|_{F} + |b_{j}|\|\boldsymbol{h}\|\right) \geq \frac{1}{3\sqrt{2}} \left(\|\boldsymbol{H}\|_{F} + c_{1}\|\boldsymbol{h}\|\right) \geq \frac{\theta^{-}}{6},$$

where $\theta^- := \min(1, c_1/\sqrt{2})$. Collecting the above estimators, we obtain that, with probability at least $1 - 2 \exp(-c\epsilon^2 m)$, the following inequality

$$\frac{\theta^{-}}{6} - \epsilon \le \frac{1}{m} \|\mathcal{A}'(\mathbf{H}')\|_{1} \le 2\theta^{+} + \epsilon \tag{30}$$

holds for a fixed $\mathbf{H}' \in \mathbb{H}^{(n+1)\times (n+1)}$. We next show that (30) holds for all $\mathbf{H}' \in \mathcal{X}$, where

$$\mathcal{X} := \left\{ \boldsymbol{H}' := \begin{bmatrix} \boldsymbol{H} & \boldsymbol{h} \\ \boldsymbol{h}^* & 0 \end{bmatrix} \in \mathbb{H}^{(n+1)\times(n+1)} : \|\boldsymbol{H}'\|_F = 1, \ \operatorname{rank}(\boldsymbol{H}) \leq 2, \ \|\boldsymbol{H}\|_{0,2} \leq k, \ \|\boldsymbol{h}\|_0 \leq k \right\}.$$

To this end, we adopt a basic version of a δ -net argument. Assume that \mathcal{N}_{δ} is a δ -net of \mathcal{X} , i.e., for any $\mathbf{H}' = \begin{bmatrix} \mathbf{H} & \mathbf{h} \\ \mathbf{h}^* & 0 \end{bmatrix} \in \mathcal{X}$ there exists a $\mathbf{H}'_0 := \begin{bmatrix} \mathbf{H}_0 & \mathbf{h}_0 \\ \mathbf{h}^*_0 & 0 \end{bmatrix} \in \mathcal{N}_{\delta}$ such that $\|\mathbf{H} - \mathbf{H}_0\|_F \le \delta$ and $\|\mathbf{h} - \mathbf{h}_0\| \le \delta$. Using the same idea of Lemma 2.1 in [36], we obtain that the covering number of \mathcal{X} is

$$|\mathcal{N}_{\delta}| \leq \left(\frac{9\sqrt{2}en}{\delta k}\right)^{4k+2} \cdot {n \choose k} \left(1 + \frac{2}{\delta}\right)^{2k} \leq \exp\left(C_3 k \log(en/\delta k)\right),$$

where $C_3 > 0$ is a universal constant. Note that $h - h_0$ has at most 2k nonzero entries. We obtain that if $m \gtrsim k \log(en/k)$, then with probability at least $1 - 3 \exp(-cm)$, it holds

$$\left| \frac{1}{m} \| \mathcal{A}'(\mathbf{H}') \|_{1} - \frac{1}{m} \| \mathcal{A}'(\mathbf{H}'_{0}) \|_{1} \right| \leq \frac{1}{m} \| \mathcal{A}'(\mathbf{H}' - \mathbf{H}'_{0}) \|_{1}$$

$$\leq \frac{1}{m} \| \mathcal{A}(\mathbf{H} - \mathbf{H}_{0}) \|_{1} + \frac{2}{m} \sum_{j=1}^{m} |b_{j}| |\mathbf{a}_{j}^{*}(\mathbf{h} - \mathbf{h}_{0})|$$

$$\leq \frac{1}{m} \| \mathcal{A}(\mathbf{H} - \mathbf{H}_{0}) \|_{1}$$

$$+2\sqrt{\frac{1}{m}\sum_{j=1}^{m}|b_{j}|^{2}}\sqrt{\frac{1}{m}\sum_{j=1}^{m}|\boldsymbol{a}_{j}^{*}(\boldsymbol{h}-\boldsymbol{h}_{0})|^{2}}$$

$$\leq 2.45\|\boldsymbol{H}-\boldsymbol{H}_{0}\|_{F}+3(c_{2}+1)\|\boldsymbol{h}-\boldsymbol{h}_{0}\|$$

$$\leq 3(c_{2}+2)\delta,$$

where the linear map $\mathcal{A}(\cdot)$ is defined as $\mathcal{A}(H) := (a_1^* H a_1, \dots, a_m^* H a_m)$, and the fourth inequality follows from the combination of Lemma 3, the fact $\frac{1}{m} \sum_{i=1}^{m} a_i a_i^* \le$ 3/2 with probability at least $1 - \exp(-cm)$, and

$$\frac{1}{m} \sum_{j=1}^{m} |b_j|^2 \le \frac{\mathbb{E} \|\boldsymbol{b}\|^2}{m} + 1 \le c_2 + 1$$

with probability at least $1-2\exp(-cm)$. Choosing $\epsilon:=\frac{1}{48}, \delta:=\frac{\theta^-}{48(c_2+2)}$, and taking the union bound, we obtain that the following inequality

$$\frac{\theta^-}{12} \le \frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}')\|_1 \le 3\theta^+ \text{ for all } \boldsymbol{H}' \in \mathcal{X}$$

holds with probability at least

$$1 - 3\exp(-cm) - 2\exp(C_3k\log(en/\delta k)) \cdot \exp(-c\epsilon^2 m) \ge 1 - 5\exp(-c'm),$$

provided $m \ge C' k \log(en/k)$, where C', c' > 0 are constants depending only on c_1 and c_2 .

3.2 Proof of Theorem 5

Proof The proof of this theorem is adapted from that of Theorem 1.3 in [36]. Note that the ℓ_1 -minimization problem we consider is

$$\underset{\boldsymbol{x} \in \mathbb{C}^n}{\operatorname{argmin}} \quad \|\boldsymbol{x}\|_1 \quad \text{s.t.} \quad \|\mathcal{A}'(\boldsymbol{x}') - \boldsymbol{y}'\| \le \epsilon \quad \text{with} \quad \boldsymbol{x}' = \begin{pmatrix} \boldsymbol{x} \\ 1 \end{pmatrix}. \tag{31}$$

Here, with some abuse of notation, we set

$$\mathcal{A}'(\mathbf{x}') := \mathcal{A}'(\mathbf{x}'\mathbf{x}') = \left(\left|\mathbf{a}_1'^*\mathbf{x}'\right|^2, \dots, \left|\mathbf{a}_m'^*\mathbf{x}'\right|^2\right) \quad \text{with} \quad \mathbf{a}_j' := \begin{pmatrix} \mathbf{a}_j \\ b_j \end{pmatrix}, \quad j = 1, \dots, m.$$

Let $\widehat{x} \in \mathbb{C}^n$ be a solution to (31). Without loss of generality, we assume $\langle \widehat{x}', x_0' \rangle \geq 0$ (Otherwise, we can choose $e^{i\theta}x_0'$ for an appropriate θ), where $\hat{x}' = \begin{pmatrix} \hat{x} \\ 1 \end{pmatrix}$ and $x_0' = \begin{pmatrix} \hat{x} \\ 1 \end{pmatrix}$ $\begin{pmatrix} x_0 \\ 1 \end{pmatrix}$. Set

$$\hat{X}' := \widehat{x}'\widehat{x}'^* = \begin{pmatrix} \widehat{x}\widehat{x}^* \ \widehat{x} \end{pmatrix}$$

and

$$\boldsymbol{H}' := \widehat{\boldsymbol{x}}' \widehat{\boldsymbol{x}}'^* - \boldsymbol{x}_0' \boldsymbol{x}_0'^* = \begin{pmatrix} \widehat{\boldsymbol{x}} \widehat{\boldsymbol{x}}^* - \boldsymbol{x}_0 \boldsymbol{x}_0^* \ \widehat{\boldsymbol{x}} - \boldsymbol{x}_0 \\ \widehat{\boldsymbol{x}}^* - \boldsymbol{x}_0^* \ 0 \end{pmatrix} := \begin{pmatrix} \boldsymbol{H} \ \boldsymbol{h} \\ \boldsymbol{h}^* \ 0 \end{pmatrix}.$$

Therefore, it suffices to give an upper bound for $\|\boldsymbol{H}'\|_F$. Denote $T_0 := \operatorname{supp}(\boldsymbol{x}_0)$ and $T_0' := T_0 \cup \{n+1\}$. Let T_1 be the index set corresponding to the indices of the ak-largest elements of $\widehat{\boldsymbol{x}}_{T_0^c}$ in magnitude, and T_2 contain the indices of the next ak largest elements, and so on. Set $T_{01} := T_0 \cup T_1$, $T_{01}' := T_0' \cup T_1$, $\bar{\boldsymbol{h}} := \boldsymbol{h}_{T_{01}}$, $\bar{\boldsymbol{H}} = \boldsymbol{H}_{T_{01},T_{01}}$, and $\bar{\boldsymbol{H}}' := \boldsymbol{H}'_{T_{01},T_{01}'}$. Noting that

$$\|\mathbf{H}'\|_{F} \le \|\bar{\mathbf{H}}'\|_{F} + \|\mathbf{H}' - \bar{\mathbf{H}}'\|_{F},$$
 (32)

we next consider the terms $\|\bar{H}'\|_F$ and $\|H' - \bar{H}'\|_F$. We claim that

$$\|\mathbf{H}' - \bar{\mathbf{H}}'\|_F \le \left(\frac{1}{a} + \frac{4}{\sqrt{a}}\right) \|\bar{\mathbf{H}}'\|_F$$
 (33)

and

$$\|\bar{\boldsymbol{H}}'\|_F \le \frac{1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\epsilon}{\sqrt{m}}.$$
 (34)

Combining (32), (33) and (34), we obtain that

$$\|\boldsymbol{H}'\|_{F} \leq \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\epsilon}{\sqrt{m}}.$$

According to Lemma 4, we immediately have

$$\min_{\theta \in \mathbb{R}} \|\widehat{\mathbf{x}}' - e^{\mathrm{i}\theta} \mathbf{x}_0'\|_2 \le \frac{\sqrt{2} \|\mathbf{H}'\|}{\|\mathbf{x}_0\| + 1} \le \frac{\frac{1}{a} + \frac{4}{\sqrt{a}} + 1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\sqrt{2}\epsilon}{(\|\mathbf{x}_0\| + 1)\sqrt{m}}.$$

By the definition of \hat{x}' and x_0' , we arrive at the conclusion. It remains to prove the claims (33) and (34). Note that

$$\|\boldsymbol{H}' - \bar{\boldsymbol{H}}'\|_{F} \le \sum_{i \ge 2, j \ge 2} \|\boldsymbol{H}_{T_{i}, T_{j}}\|_{F} + 2\sum_{j \ge 2} \|\boldsymbol{H}'_{T'_{0}, T_{j}}\|_{F} + 2\sum_{j \ge 2} \|\boldsymbol{H}'_{T_{1}, T_{j}}\|_{F}.$$
 (35)

We first give an upper bound for the term $\sum_{i\geq 2, j\geq 2} \| \boldsymbol{H}'_{T_i,T_j} \|_F$. Noting that \boldsymbol{x}_0 is a k-sparse vector and $\widehat{\boldsymbol{x}} \in \mathbb{C}^n$ is the solution to (31), we obtain that

$$\|\mathbf{x}_0\|_1 \geq \|\widehat{\mathbf{x}}\|_1 = \|\widehat{\mathbf{x}}_{T_0}\|_1 + \|\widehat{\mathbf{x}}_{T_0^c}\|_1,$$

which implies $\|\widehat{x}_{T_0^c}\|_1 \leq \|\widehat{x}_{T_0} - x_0\|_1$. Moreover, by the definition of T_j , we know that for all $j \ge 2$, it holds $\|\widehat{\boldsymbol{x}}_{T_j}\|_2 \le \frac{\|\widehat{\boldsymbol{x}}_{T_{j-1}}\|_1}{\sqrt{ak}}$. It then implies

$$\sum_{j\geq 2} \|\widehat{\mathbf{x}}_{T_j}\|_2 \leq \frac{1}{\sqrt{ak}} \sum_{j\geq 2} \|\widehat{\mathbf{x}}_{T_{j-1}}\|_1 \leq \frac{1}{\sqrt{ak}} \|\widehat{\mathbf{x}}_{T_0^c}\|_1 \leq \frac{1}{\sqrt{a}} \|\widehat{\mathbf{x}}_{T_0} - \mathbf{x}_0\|_2.$$
 (36)

Therefore, the first term of (35) can be estimated as

$$\sum_{i\geq 2, j\geq 2} \|\boldsymbol{H}_{T_{i}, T_{j}}\|_{F} = \sum_{i\geq 2, j\geq 2} \|\widehat{\boldsymbol{x}}_{T_{i}}\|_{2} \|\widehat{\boldsymbol{x}}_{T_{j}}\|_{2} = \left(\sum_{j\geq 2} \|\widehat{\boldsymbol{x}}_{T_{j}}\|_{2}\right)^{2} \leq \frac{1}{ak} \|\widehat{\boldsymbol{x}}_{T_{0}^{c}}\|_{1}^{2}$$

$$= \frac{1}{ak} \|\boldsymbol{H}_{T_{0}^{c}, T_{0}^{c}}\|_{1} \leq \frac{1}{ak} \|\boldsymbol{H}_{T_{0}, T_{0}}\|_{1} \leq \frac{1}{a} \|\bar{\boldsymbol{H}}'\|_{F},$$
(37)

where the second inequality follows from

$$\|\boldsymbol{H} - \boldsymbol{H}_{T_0, T_0}\|_1 = \|\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}^* - (\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}^*)_{T_0, T_0}\|_1 \le \|\boldsymbol{x}_0\boldsymbol{x}_0^*\|_1 - \|(\widehat{\boldsymbol{x}}\widehat{\boldsymbol{x}}^*)_{T_0, T_0}\|_1 \le \|\boldsymbol{H}_{T_0, T_0}\|_1.$$

Here, the first inequality comes from $\|\widehat{x}\|_1 \leq \|x_0\|_1$.

For the second term and the third term of (35), we obtain that

$$\sum_{j\geq 2} \|\boldsymbol{H}'_{T_{0}',T_{j}}\|_{F} + \sum_{j\geq 2} \|\boldsymbol{H}'_{T_{1},T_{j}}\|_{F} = \|\widehat{\boldsymbol{x}}'_{T_{0}'}\| \sum_{j\geq 2} \|\widehat{\boldsymbol{x}}'_{T_{j}}\| + \|\widehat{\boldsymbol{x}}'_{T_{1}}\| \sum_{j\geq 2} \|\widehat{\boldsymbol{x}}'_{T_{j}}\| \\
\leq \frac{1}{\sqrt{a}} \|\widehat{\boldsymbol{x}}'_{T_{0}'} - \boldsymbol{x}'_{0}\|_{2} \left(\|\widehat{\boldsymbol{x}}'_{T_{0}'}\|_{2} + \|\widehat{\boldsymbol{x}}'_{T_{1}}\|_{2} \right) \\
\leq \frac{\sqrt{2}}{\sqrt{a}} \|\widehat{\boldsymbol{x}}'_{T_{01}} - \boldsymbol{x}'_{0}\|_{2} \|\widehat{\boldsymbol{x}}'_{T_{01}'}\|_{2} \\
\leq \frac{2}{\sqrt{a}} \|\bar{\boldsymbol{H}}'\|_{F}, \tag{38}$$

where the first inequality follows from (36) due to $\widehat{x}'_{T_j} = \widehat{x}_{T_j}$ for all $j \geq 1$, and the last inequality comes from Lemma 4. Putting (37) and (38) into (35), we obtain that

$$\|\boldsymbol{H}' - \bar{\boldsymbol{H}}'\|_F \le \left(\frac{1}{a} + \frac{4}{\sqrt{a}}\right) \|\bar{\boldsymbol{H}}'\|_F.$$

This proves the claim (33).

Finally, we turn to prove the claim (34). Note that $\|\mathcal{A}'(\widehat{x}') - \widetilde{y}\| \le \epsilon$ and $\widetilde{y} :=$ $\mathcal{A}'(\mathbf{x}_0') + \epsilon$, which implies

$$\|\mathcal{A}'(\mathbf{H}')\|_{2} \leq \|\mathcal{A}'(\widehat{\mathbf{x}}') - \widetilde{\mathbf{y}}\|_{2} + \|\mathcal{A}'(\mathbf{x}'_{0}) - \widetilde{\mathbf{y}}\|_{2} \leq 2\epsilon.$$

Thus, we have

$$\frac{2\epsilon}{\sqrt{m}} \ge \frac{1}{\sqrt{m}} \|\mathcal{A}'(\mathbf{H}')\|_{2} \ge \frac{1}{m} \|\mathcal{A}'(\mathbf{H}')\|_{1} \ge \frac{1}{m} \|\mathcal{A}'(\bar{\mathbf{H}}')\|_{1} - \frac{1}{m} \|\mathcal{A}'(\mathbf{H}' - \bar{\mathbf{H}}')\|_{1}.$$
(39)

Recall that $\bar{\boldsymbol{H}}' := \begin{pmatrix} \bar{\boldsymbol{H}} & \bar{\boldsymbol{h}} \\ \bar{\boldsymbol{h}}^* & 0 \end{pmatrix}$ with $\operatorname{rank}(\bar{\boldsymbol{H}}) \leq 2$, $\|\bar{\boldsymbol{H}}\|_{0,2} \leq (a+1)k$, and $\|\bar{\boldsymbol{h}}\|_0 \leq (a+1)k$. It then follows from the RIP of \mathcal{A}' that

$$\|\mathcal{A}'(\bar{\boldsymbol{H}}')\|_1 \ge c\|\bar{\boldsymbol{H}}'\|_F. \tag{40}$$

To prove (34), it suffices to give an upper bound for the term $\frac{1}{m} \| \mathcal{A}'(\mathbf{H}' - \bar{\mathbf{H}}') \|_1$. Observe that

$$\boldsymbol{H}' - \bar{\boldsymbol{H}}' = (\boldsymbol{H}'_{T_0, T_{01}'^c} + \boldsymbol{H}'_{T_{01}', T_0'}) + (\boldsymbol{H}'_{T_1, T_{01}'^c} + \boldsymbol{H}'_{T_{01}', T_1}) + \boldsymbol{H}'_{T_{01}', T_{01}'^c}. \tag{41}$$

Since

$$H'_{T'_0,T'^c_{01}} + H'_{T'^c_{01},T'_0} = \sum_{j\geq 2} (H'_{T'_0,T_j} + H'_{T_j,T'_0}) = \sum_{j\geq 2} \begin{pmatrix} \widehat{x}_{T_0} \widehat{x}^*_{T_j} + \widehat{x}_{T_j} \widehat{x}^*_{T_0} & \widehat{x}_{T_j} \\ \widehat{x}^*_{T_j} & 0 \end{pmatrix},$$

then the RIP of A' implies

$$\frac{1}{m} \| \mathcal{A}' (\boldsymbol{H}'_{T_0', T_{01}'^c} + \boldsymbol{H}'_{T_{01}', T_0'}) \|_{1} \leq C \sum_{j \geq 2} \left(\| \widehat{\boldsymbol{x}}_{T_0} \widehat{\boldsymbol{x}}_{T_j}^* + \widehat{\boldsymbol{x}}_{T_j} \widehat{\boldsymbol{x}}_{T_0}^* \|_F + 2 \| \widehat{\boldsymbol{x}}_{T_j} \|_2 \right) \\
\leq 2\sqrt{2} C \| \widehat{\boldsymbol{x}}'_{T_0'} \|_{2} \sum_{j \geq 2} \| \widehat{\boldsymbol{x}}_{T_j} \|_{2} \\
\leq \frac{2\sqrt{2}}{\sqrt{a}} C \| \widehat{\boldsymbol{x}}'_{T_0'} \|_{2} \| \widehat{\boldsymbol{x}}'_{T_{01}} - \boldsymbol{x}'_{0} \|_{2}. \tag{42}$$

Similarly, we could obtain

$$\frac{1}{m} \| \mathcal{A}'(\boldsymbol{H}'_{T_1, T_{01}'^c} + \boldsymbol{H}'_{T_{01}', T_1}) \|_1 \le \frac{2\sqrt{2}}{\sqrt{a}} C \| \widehat{\boldsymbol{x}}'_{T_1} \|_2 \| \widehat{\boldsymbol{x}}'_{T_{01}'} - \boldsymbol{x}'_0 \|_2. \tag{43}$$

Finally, observe that $\frac{1}{m} \| \mathcal{A}'(\boldsymbol{H}'_{T_{01}',T_{01}'^c}) \|_1 = \frac{1}{m} \| \mathcal{A}(\boldsymbol{H}_{T_{01}',T_{01}^c}) \|_1$. Using the same technique as [36, Eq. (3.16)], we could obtain

$$\frac{1}{m} \| \mathcal{A}'(\boldsymbol{H}'_{T_{01}^{\prime c}, T_{01}^{\prime c}}) \|_1 \le \frac{C}{a} \| \bar{\boldsymbol{H}}' \|_F. \tag{44}$$

Putting (42), (43) and (44) into (41), we have

$$\frac{1}{m} \|\mathcal{A}'(\boldsymbol{H}' - \bar{\boldsymbol{H}}')\|_{1} \le \frac{4}{\sqrt{a}} C \|\widehat{\boldsymbol{x}}'_{T'_{01}}\|_{2} \|\widehat{\boldsymbol{x}}'_{T'_{01}} - \boldsymbol{x}'_{0}\|_{2} + \frac{C}{a} \|\bar{\boldsymbol{H}}'\|_{F} \le C \left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right) \|\bar{\boldsymbol{H}}'\|_{F}. \tag{45}$$

Combining (39), (40) and (45), we immediately obtain

$$\left(c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)\right) \|\bar{\boldsymbol{H}}'\|_F \le \frac{2\epsilon}{\sqrt{m}},$$

which implies

$$\|\bar{\boldsymbol{H}}'\|_F \le \frac{1}{c - C\left(\frac{4}{\sqrt{a}} + \frac{1}{a}\right)} \cdot \frac{2\epsilon}{\sqrt{m}}.$$

This completes the proof of claim (34).

Acknowledgements Meng Huang was supported by NSFC grant (12201022) and the Fundamental Research Funds for the Central Universities (Grant No. YWF-22-T-204), Zhiqiang Xu was supported by the National Science Fund for Distinguished Young Scholars (12025108) and NSFC (12021001,12288201).

A Supporting Lemmas

The following lemma gives a way for how to decompose a vector $v \in \mathbb{R}^n$ into the convex combination of several k-sparse vectors.

Lemma 2 ([8, 40]) Suppose that $\mathbf{v} \in \mathbb{R}^n$ satisfying $\|\mathbf{v}\|_{\infty} \leq \theta$ and $\|\mathbf{v}\|_{1} \leq k\theta$, where $\theta > 0$ and $k \in \mathbb{Z}_+$. Then we have

$$v = \sum_{j=1}^{N} \lambda_j u_j$$
 with $0 \le \lambda_j \le 1$, $\sum_{j=1}^{N} \lambda_j = 1$,

where $\mathbf{u}_j \in \mathbb{R}^n$ is k-sparse vectors and $\|\mathbf{u}_j\|_1 \leq \|\mathbf{v}\|_1$, $\|\mathbf{u}_j\|_{\infty} \leq \theta$.

Lemma 3 ([36]) Let the linear map $A(\cdot)$ be defined as

$$\mathcal{A}(\boldsymbol{H}) := (\boldsymbol{a}_1^* \boldsymbol{H} \boldsymbol{a}_1, \dots, \boldsymbol{a}_m^* \boldsymbol{H} \boldsymbol{a}_m),$$

where $\mathbf{a}_i \sim 1/\sqrt{2} \cdot \mathcal{N}(0, I_n) + i/\sqrt{2} \cdot \mathcal{N}(0, I_n), j = 1, \dots, m$ are i.i.d. complex Gaussian random vectors. If $m \gtrsim k \log(en/k)$, then with probability at least $1 - k \log(en/k)$ $2\exp(-c_0m)$, A satisfies

$$0.12 \|\boldsymbol{H}\|_{F} \leq \frac{1}{m} \|\mathcal{A}(\boldsymbol{H})\|_{1} \leq 2.45 \|\boldsymbol{H}\|_{F}$$

for all $H \in \mathbb{H}^{n \times n}$ with rank $(H) \leq 2$ and $\|H\|_{0,2} \leq k$. Here, $\|H\|_{0,2}$ denotes the number of non-zero rows in H.

Lemma 4 ([24, 36]) For any vectors $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$ obeying $\langle \mathbf{u}, \mathbf{v} \rangle \geq 0$, we have

$$\|uu^* - vv^*\|_F \ge \frac{1}{\sqrt{2}} \|u\|_2 \|u - v\|_2.$$

Lemma 5 Suppose that $\mathbf{a}_j \sim \mathcal{N}(0, I_n)$, j = 1, ..., m are i.i.d. Gaussian random vectors and $\mathbf{b} \in \mathbb{R}^m$ is a nonzero vector. For any fixed $\zeta \in (0, 1)$, if $m \geq C\zeta^{-2}k(\log(en/k) + \log(1/\zeta))$, then with probability at least $1 - 3\exp(-c_0\zeta^2m)$ it holds that

$$\sum_{j=1}^{m} b_j(\boldsymbol{a}_j^{\mathrm{T}} \boldsymbol{x}) \leq \zeta \sqrt{m} \|\boldsymbol{x}\|_2 \|\boldsymbol{b}\|_2$$

for all k-sparse vectors $\mathbf{x} \in \mathbb{R}^n$. Here, $c_0 > 0$ is a universal constant.

Proof Without loss of generality we assume $\|x\|_2 = 1$. For any fixed x_0 , the terms $a_j^T x_0$ are independent, mean zero, sub-gaussian random variables with the maximal sub-gaussian norm being a positive universal constant. The Hoeffding's inequality implies

$$\mathbb{P}\left(\left|b_j(\boldsymbol{a}_j^{\mathsf{T}}\boldsymbol{x}_0)\right| \geq t\right) \leq 2\exp\left(-\frac{c_1^2t^2}{\|\boldsymbol{b}\|_2^2}\right).$$

Here, $c_1 > 0$ is a universal constant. Taking $t = \zeta \sqrt{m} \|\boldsymbol{b}\|_2 / 2$, we obtain that

$$\left| \sum_{i=1}^{m} (\boldsymbol{a}_{j}^{\mathrm{T}} \boldsymbol{x}_{0}) \right| \leq \frac{\zeta}{2} \cdot \sqrt{m} \|\boldsymbol{b}\|_{2}$$
 (46)

holds with probability at least $1 - 2 \exp(-c_1 \zeta^2 m/4)$.

Next, we give a uniform bound to (46) for all k-sparse vectors x. Denote

$$S_{n,k} = \{x \in \mathbb{R}^n : ||x||_2 = 1, ||x||_0 < k\}.$$

We assume that \mathcal{N} is a δ -net of $\mathcal{S}_{n,k}$ such that for any $\mathbf{x} \in \mathcal{S}_{n,k}$, there exists a vector $\mathbf{x}_0 \in \mathcal{N}$ such that $\|\mathbf{x} - \mathbf{x}_0\|_2 \leq \delta$. The covering number $|\mathcal{N}| \leq \binom{n}{k} (1 + \frac{2}{\delta})^k$. Note that $\|\mathbf{x} - \mathbf{x}_0\| \leq 2k$. Therefore, when $m \gtrsim 2k$, with probability at least $1 - \exp(-c_2m)$, it holds, Thus we have

$$\left| \left| \sum_{j=1}^{m} b_{j}(\boldsymbol{a}_{j}^{\mathrm{T}} \boldsymbol{x}) \right| - \left| \sum_{j=1}^{m} b_{j}(\boldsymbol{a}_{j}^{\mathrm{T}} \boldsymbol{x}_{0}) \right| \right| \leq \left| \sum_{j=1}^{m} b_{j} \boldsymbol{a}_{j}^{\mathrm{T}} (\boldsymbol{x} - \boldsymbol{x}_{0}) \right|$$

$$\leq \|\boldsymbol{b}\|_{2} \sqrt{\sum_{j=1}^{m} |\boldsymbol{a}_{j}^{\mathrm{T}} (\boldsymbol{x} - \boldsymbol{x}_{0})|^{2}}$$

$$\leq \|\boldsymbol{b}\|_{2} \sqrt{\left\| \sum_{j=1}^{m} \boldsymbol{a}_{j} \boldsymbol{a}_{j}^{\mathrm{T}} \right\|_{2} \cdot \|\boldsymbol{x} - \boldsymbol{x}_{0}\|_{2}}$$

$$\leq 2\|\boldsymbol{b}\|_2\sqrt{m}\cdot\delta,$$

where the second inequality follows from the Cauchy-Schwarz inequality and the last inequality comes from the fact $\|\sum_{j=1}^{m} a_j a_j^{\mathrm{T}}\|_2 \le 4m$ with probability at least $1 - \exp(-c_2 m)$, where $c_2 > 0$ is a universal constant. Choosing $\delta = \zeta/4$ and taking the union bound over \mathcal{N} , we obtain that

$$\left| \sum_{j=1}^{m} b_j(\boldsymbol{a}_j^{\mathsf{T}} \boldsymbol{x}_0) \right| \leq \zeta \cdot \sqrt{m} \|\boldsymbol{b}\|_2$$

holds with probability at least

$$1 - 2\exp(-c_1\zeta^2 m/4) \cdot \binom{n}{k} \cdot (1 + \frac{2}{\delta})^k - \exp(-c_2 m) \ge 1 - 3\exp(-c\zeta^2 m)$$

provided $m \ge C\zeta^{-2}k(\log(en/k) + \log(1/\zeta))$. Here, C and c are positive universal constants. This completes the proof.

Lemma 6 Suppose that $\mathbf{a} \in \mathbb{C}^n$ is a complex Gaussian random vector and $b \in \mathbb{C}$ is a complex number. For any Hermitian matrix $\mathbf{H} \in \mathbb{C}^{n \times n}$ with rank $(\mathbf{H}) < 2$ and any vector $\mathbf{h} \in \mathbb{C}^n$, we have

$$\frac{1}{3}\sqrt{\|\boldsymbol{H}\|_F^2 + b^2\|\boldsymbol{h}\|^2} \leq \mathbb{E}\left|\boldsymbol{a}^*\boldsymbol{H}\boldsymbol{a} + 2(b(\boldsymbol{a}^*\boldsymbol{h}))_{\Re}\right| \leq 2\sqrt{3\|\boldsymbol{H}\|_F^2 + b^2\|\boldsymbol{h}\|^2}.$$

Proof Since $H \in \mathbb{C}^{n \times n}$ is a Hermitian matrix with rank $(H) \leq 2$, we can decompose **H** into

$$\boldsymbol{H} = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^* + \lambda_2 \boldsymbol{u}_2 \boldsymbol{u}_2^*,$$

where $\lambda_1, \lambda_2 \in \mathbb{R}$ are eigenvalues of **H** and $u_1, u_2 \in \mathbb{C}^n$ are the corresponding eigenvectors with $\|u_1\|_2 = \|u_2\|_2 = 1$, $\langle u_1, u_2 \rangle = 0$. For the vector $h \in \mathbb{C}^n$, we can write it in the form of

$$\boldsymbol{h} = \sigma_1 \boldsymbol{u}_1 + \sigma_2 \boldsymbol{u}_2 + \sigma_3 \boldsymbol{u}_3,$$

where $\sigma_1, \sigma_2, \sigma_3 \in \mathbb{C}$, and $\mathbf{u}_3 \in \mathbb{C}^n$ satisfying $\langle \mathbf{u}_3, \mathbf{u}_1 \rangle = 0, \langle \mathbf{u}_3, \mathbf{u}_2 \rangle = 0$ and $\|u_3\| = 1$. For simplicity, without loss of generality, we assume that b is a real number. Therefore, we have

$$a^*Ha + 2(b(a^*h))_{\Re} = \lambda_1 |a^*u_1|^2 + \lambda_2 |a^*u_2|^2 + 2b (\sigma_1 a^*u_1 + \sigma_2 a^*u_2 + \sigma_3 a^*u_3)_{\Re}.$$

Note that $\mathbf{a} \in \mathbb{C}^n$ is a complex Gaussian random vector and \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 are orthogonal vectors. Thus, we have

$$\mathbb{E}\left|\boldsymbol{a}^*H\boldsymbol{a} + 2(b(\boldsymbol{a}^*\boldsymbol{h}))_{\Re}\right| = \mathbb{E}|\xi|,$$

with ξ being a random variable given by

$$\xi = \lambda_1 z_1^2 + \lambda_1 z_2^2 + \lambda_2 z_3^2 + \lambda_2 z_4^2 + 2b \left(\sigma_{1, \Re} z_1 - \sigma_{1, \Im} z_2 + \sigma_{2, \Re} z_3 - \sigma_{2, \Im} z_4 + \sigma_{3, \Re} z_5 - \sigma_{3, \Im} z_6 \right).$$

Here, z_1 , z_2 , z_3 , z_4 , z_5 , $z_6 \sim \mathcal{N}(0, 1/2)$ are independent. By Cauchy-Schwarz inequality, we have

$$\mathbb{E}|\xi| \leq \sqrt{\mathbb{E}\xi^2} \quad \text{and} \quad \mathbb{E}\xi^2 = \mathbb{E}(\xi^{\frac{2}{3}}\xi^{\frac{4}{3}}) \leq (\mathbb{E}\xi)^{\frac{2}{3}}(\mathbb{E}\xi_i^4)^{\frac{1}{3}}.$$

It immediately gives

$$\sqrt{\frac{(\mathbb{E}\xi^2)^3}{\mathbb{E}\xi^4}} \le \mathbb{E}|\xi| \le \sqrt{\mathbb{E}\xi^2}$$
(47)

Let $z_1 = \rho_1 \cos \theta$, $z_2 = \rho_1 \sin \theta$, $z_3 = \rho_2 \cos \phi$ and $z_4 = \rho_2 \sin \phi$, $z_5 = \rho_3 \cos \gamma$ and $z_6 = \rho_3 \sin \gamma$. Through some tedious calculations, we have

$$\begin{split} \mathbb{E} \xi^2 &= \Big(\frac{1}{2\pi}\Big)^3 \! \int_0^{2\pi} \! \int_0^{2\pi} \! \int_0^{2\pi} \! \int_0^{\infty} \! \int_0^{\infty} \! \int_0^{\infty} \! \rho_1 \rho_2 \rho_3 \Big(\lambda_1 \rho_1^2 \! + \! \lambda_2 \rho_2^2 \! + \! 2b(\sigma_{1,\Re} \rho_1 \cos \theta \\ &- \sigma_{1,\Im} \rho_1 \sin \theta + \sigma_{2,\Re} \rho_2 \cos \phi \! - \! \sigma_{2,\Re} \rho_2 \sin \phi \! + \! \sigma_{3,\Re} \rho_3 \cos \gamma \! - \! \sigma_{3,\Im} \rho_3 \sin \gamma \Big) \Big)^2 \\ &\times e^{-\frac{\rho_1^2 + \rho_2^2 + \rho_3^2}{2}} \mathrm{d} \rho_1 \mathrm{d} \rho_2 \mathrm{d} \rho_3 \mathrm{d} \theta \mathrm{d} \phi \mathrm{d} \gamma \\ &= 8(\lambda_1^2 + \lambda_1 \lambda_2 + \lambda_2^2) + 4b^2(\sigma_1^2 + \sigma_2^2 + \sigma_3^2) \\ &\leq 12 \|\boldsymbol{H}\|_F^2 + 4b^2 \|\boldsymbol{h}\|^2, \end{split}$$

where the last inequality follows from the fact that $\lambda_1^2 + \lambda_2^2 = \|\boldsymbol{H}\|_F^2$ and $\sigma_1^2 + \sigma_2^2 + \sigma_3^2 = \|\boldsymbol{h}\|^2$. Similarly, we could obtain

$$\mathbb{E}\xi_{i}^{2} \ge 4\|\boldsymbol{H}\|_{F}^{2} + 4b^{2}\|\boldsymbol{h}\|^{2} \tag{48}$$

and

$$\mathbb{E}\xi^{4} = 48(8(\lambda_{1}^{4} + \lambda_{1}^{3}\lambda_{2} + \lambda_{1}^{2}\lambda_{2}^{2} + \lambda_{1}\lambda_{2}^{3} + \lambda_{2}^{4}) + b^{4}(\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2})^{2} + 4b^{2}(\lambda_{1} + \lambda_{2})^{2}(\sigma_{1}^{2} + \sigma_{2}^{2} + \sigma_{3}^{2}) + 8b^{2}(\lambda_{1}^{2}\sigma_{1}^{2} + \lambda_{2}^{2}\sigma_{2}^{2})) \leq 48(12\|\boldsymbol{H}\|_{F}^{4} + b^{4}\|\boldsymbol{h}\|_{2}^{4} + 16b^{2}\|\boldsymbol{H}\|_{F}^{2}\|\boldsymbol{h}\|_{2}^{2}) \leq 576\left(\|\boldsymbol{H}\|_{F}^{2} + b^{2}\|\boldsymbol{h}\|^{2}\right)^{2},$$

$$(49)$$

where the first inequality follows from the fact that

$$\lambda_1^4 + \lambda_1^3 \lambda_2 + \lambda_1^2 \lambda_2^2 + \lambda_1 \lambda_2^3 + \lambda_2^4 \le \lambda_1^4 + \lambda_1^2 \lambda_2^2 + \lambda_2^4 + \frac{1}{2} \left(\lambda_1^2 + \lambda_2^2 \right)^2 \le \frac{2}{3} \|\boldsymbol{H}\|_F^4$$

and

$$\lambda_1^2\sigma_1^2+\lambda_2^2\sigma_2^2\leq \left(\lambda_1^2+\lambda_2^2\right)\left(\sigma_1^2+\sigma_2^2+\sigma_3^2\right)\leq \|\boldsymbol{H}\|_F^2\|\boldsymbol{h}\|^2.$$

Putting (48) and (49) into (47), we obtain

$$\mathbb{E}|\xi| \geq \frac{1}{3}\sqrt{\|\boldsymbol{H}\|_F^2 + b^2\|\boldsymbol{h}\|^2}.$$

Therefore, we have

$$\frac{1}{3}\sqrt{\|\boldsymbol{H}\|_F^2 + b^2\|\boldsymbol{h}\|^2} \leq \mathbb{E}|\xi| \leq 2\sqrt{3\|\boldsymbol{H}\|_F^2 + b^2\|\boldsymbol{h}\|^2}.$$

This completes the proof.

References

- 1. Balan, R., Casazza, P., Edidin, D.: On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 20(3), 345-356 (2006)
- 2. Barmherzig, D.A., Sun, J., Li, P.N., Lane, T.J., Candès, E.J.: Holographic phase retrieval and reference design. Inverse Probl. 35(9), 094001 (2019)
- 3. Beinert, R., Plonka, G.: Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. 21(6), 1169–1198 (2015)
- 4. Beinert, R., Plonka, G.: Enforcing uniqueness in one-dimensional phase retrieval by additional signal information in time domain. Appl. Comput. Harmon. Anal. 45(3), 505-525 (2018)
- 5. Bendory, T., Beinert, R., Eldar, Y. C.: Fourier phase retrieval: Uniqueness and algorithms. Compressed Sensing and its Applications, pp. 55–91 (2017)
- 6. Bandeira, A., Cahill, J., Mixon, D., Nelson, A.: Saving phase: injectivity and stability for phase retrieval. Appl. Comput. Harmon. Anal. 37(1), 106–125 (2014)
- 7. Cai, J., Huang, M., Li, D., Wang, Y.: Solving phase retrieval with random initial guess is nearly as good as by spectral initialization. Appl. Comput. Harmon. Anal. 58, 60–84 (2022)
- 8. Cai, T.T., Zhang, A.: Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Trans. Inf. Theory **60**(1), 122–132 (2013)
- 9. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via Wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory **61**(4), 1985–2007 (2015)
- 10. Chen, Y., Candès, E.J.: Solving random quadratic systems of equations is nearly as easy as solving linear systems. Commun. Pure Appl. Math. **70**(5), 822–883 (2017)
- 11. Edidin, D.: The geometry of ambiguity in one-dimensional phase retrieval. SIAM J. Appl. Algebr. Geom. **3**(4), 644–660 (2019)
- 12. Eldar, Y.C., Mendelson, S.: Phase retrieval: stability and recovery guarantees. Appl. Comput. Harmon. Anal. 36(3), 473-494 (2014)
- 13. Conca, A., Edidin, D., Hering, M., Vinzant, C.: An algebraic characterization of injectivity in phase retrieval. Appl. Comput. Harmon. Anal. 38(2), 346–356 (2015)
- 14. Fienup, J.R.: Reconstruction of an object from the modulus of its Fourier transform. Opt. Lett. 3(1),
- 15. Fienup, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)
- 16. Gabor, D.: A new microscopic principle. Nature **161**(4098), 777–778 (1948)
- 17. Gabor, D.: Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. Ser. A 197(1051), 454–487
- 18. Gao, B., Wang, Y., Xu, Z.: Stable signal recovery from phaseless measurements. J. Fourier Anal. Appl. **22**(4), 787–808 (2016)

- Gao, B., Sun, Q., Wang, Y., Xu, Z.: Phase retrieval from the magnitudes of affine linear measurements. Adv. Appl. Math. 93, 121–141 (2018)
- Guizar-Sicairos, M., Fienup, J.R.: Holography with extended reference by autocorrelation linear differential operation. Opt. Express 15(26), 17592–17612 (2007)
- 21. Harrison, R.W.: Phase problem in crystallography. J. Opt. Soc. Am. A 10(5) (1993)
- Hauptman, H.A.: The phase problem of X-ray crystallography. Rep. Prog. Phys. 54(11), 1427–1454 (1991)
- 23. Huang, K., Eldar, Y.C., Sidiropoulos, N.D.: Phase retrieval from 1D Fourier measurements: convexity, uniqueness, and algorithms. IEEE Trans. Signal Process. 64(23), 6105–6117 (2016)
- Huang, M., Xu, Z.: Performance bound of the intensity-based model for noisy phase retrieval. arXiv:2004.08764 (2020)
- 25. Huang, M., Xu, Z.: Strong convexity of affine phase retrieval. arXiv:2204.09412 (2022)
- Latychevskaia, T.: Iterative phase retrieval for digital holography: tutorial. JOSA A 36(12), 31–40 (2019)
- 27. Liebling, M., Blu, T., Cuche, E., Marquet, P., Depeursinge, C., Unser, M.: Local amplitude and phase retrieval method for digital holography applied to microscopy. In: European Conference on Biomedical Optics, Vol. 5143, pp. 210–214 (2003)
- 28. Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc Am. A 7(3), 394–411 (1990)
- Netrapalli, P., Jain, P., Sanghavi, S.: Phase retrieval using alternating minimization. IEEE Trans. Signal Process. 63(18), 4814–4826 (2015)
- 30. Rodriguez, J.A., Xu, R., Chen, C., Zou, Y., Miao, J.: Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities. J. Appl. Crystallogr. **46**(2), 312–318 (2013)
- Sanz, J.L.C.: Mathematical considerations for the problem of Fourier transform phase retrieval from magnitude. SIAM J. Appl. Math. 45(4), 651–664 (1985)
- Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109 (2015)
- 33. Sun, J., Qu, Q., Wright, J.: A geometric analysis of phase retrieval. Found. Comput. Math. 18(5), 1131–1198 (2018)
- Voroninski, V., Xu, Z.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 386–395 (2016)
- 35. Walther, A.: The question of phase retrieval in optics. J. Mod. Opt. 10(1), 41–49 (1963)
- Xia, Y., Xu, Z.: The recovery of complex sparse signals from few phaseless measurements. Appl. Comput. Harmon. Anal. 50, 1–15 (2021)
- 37. Wang, G., Giannakis, G.B., Eldar, Y.C.: Solving systems of random quadratic equations via truncated amplitude flow. IEEE Trans. Inf. Theory 64(2), 773–794 (2018)
- 38. Wang, Y., Xu, Z.: Generalized phase retrieval?: measurement number, matrix recovery and beyond. Appl. Comput. Harmon. Anal. 47(2), 423–446 (2019)
- 39. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37(3), 531–544 (2014)
- 40. Xu, G., Xu, Z.: On the ℓ_1 -norm invariant convex k-sparse decomposition of signals. J. Oper. Res. Soc. China 1(4), 537–541 (2013)
- 41. Zhang, H., Zhou, Y., Liang, Y., Chi, Y.: A nonconvex approach for phase retrieval: reshaped Wirtinger flow and incremental algorithms. J. Mach. Learn. Res. 18(1), 5164–5198 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

