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Abstract
We consider the boundedness of the multilinear pseudo-differential operators with
symbols in the multilinear Hörmander class S0,0. The aim of this paper is to discuss
smoothness conditions for symbols to assure the boundedness between local Hardy
spaces.
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1 Introduction

First of all, the letter N which is mentioned in this article is understood to be a positive
integer unless the contrary is explicitly stated.

For a bounded measurable function σ = σ(x, ξ1, . . . , ξN ) on (Rn)N+1, the (N -
fold) multilinear pseudo-differential operator Tσ is defined by

Tσ ( f1, . . . , fN )(x) = 1

(2π)Nn

∫
(Rn)N

eix ·(ξ1+···+ξN )σ (x, ξ1, . . . , ξN )

N∏
j=1

f̂ j (ξ j ) dξ1 . . . dξN
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for x ∈ R
n and f1, . . . , fN ∈ S(Rn). The function σ is called the symbol of the

operator Tσ .
The subject of the present paper is to investigate the boundedness of the multilinear

pseudo-differential operators on several function spaces. In stating this, we use the
following terminology with a slight abuse. Let X1, . . . , X N , and Y be function spaces
on R

n equipped with quasi-norms ‖ · ‖X j and ‖ · ‖Y , respectively. If there exists a
constant C such that

‖Tσ ( f1, . . . , fN )‖Y ≤ C
N∏

j=1

‖ f j‖X j , f j ∈ S ∩ X j , j = 1, . . . , N , (1.1)

then we say that Tσ is bounded from X1 × · · · × X N to Y . The smallest constant C
of (1.1) is denoted by ‖Tσ ‖X1×···×X N →Y . If A is a class of symbols, we denote by
Op(A) the class of all operators Tσ corresponding to σ ∈ A. If Tσ is bounded from
X1 × · · · × X N to Y for all σ ∈ A, then we write Op(A) ⊂ B(X1 × · · · × X N → Y ).
For the spaces X j and Y , we consider the Lebesgue space L p, the Hardy space H p,
the local Hardy space h p, and the spaces B M O and bmo. The definitions of these
spaces will be collected in Sect. 2.2.

Notice that, if Tσ is bounded from X1 × · · · × X N to Y in the sense given above,
then, in many cases, we can extend the definition of Tσ defined for f j ∈ S(Rn) to
that for general f j ∈ X j and can prove that (1.1) holds for all f j ∈ X j using some
limiting argument.

In this article, we focus on the Hörmander symbol class of S0,0-type. We recall that
the class Sm

0,0(R
n, N ), m ∈ R, consists of all smooth functions σ on (Rn)N+1 such

that

|∂α0
x ∂

α1
ξ1

· · · ∂αN
ξN

σ(x, ξ1, . . . , ξN )| ≤ Cα0,α1,...,αN (1 + |ξ1| + · · · + |ξN |)m

holds for all multi-indices α0, α1, . . . , αN ∈ (N0)
n = ({0, 1, 2, . . . })n . The linear

case, N = 1, is the widely known Hörmander class and the following is a classical
boundedness result:

Theorem A Let 0 < p ≤ ∞ and m ∈ R. Then, the boundedness

Op(Sm
0,0(R

n, 1)) ⊂ B(h p → h p)

holds if and only if

m ≤ min
{ n

p
,

n

2

}
− max

{ n

p
,

n

2

}
,

where, if p = ∞, h p should be replaced by bmo.

The “if" part of this result for p = 2 was proved by Calderón and Vaillancourt
in [4], and then it was generalized to the case 1 < p < ∞ by Fefferman in [9] and
Coifman and Meyer in [5]. Finally, the boundedness for the full range 0 < p ≤ ∞
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was obtained by Miyachi in [31] and Päivärinta and Somersalo in [35]. For the “only
if” part, see, for instance, [31, Sect. 5] and [28, Theorem 1.5].

The study of the multilinear case, N ≥ 2, originated with the paper [1] by Bényi
and Torres, where they showed that, for N = 2 and for 1 ≤ p, p1, p2 < ∞ with
1/p = 1/p1 + 1/p2, x-independent symbols in S0

0,0(R
n, 2) do not always give rise to

bounded operators from L p1 × L p2 to L p. Then, the condition of m ∈ R for which the
multilinear pseudo-differential operators with symbols in the class Sm

0,0(R
n, N ) can be

bounded among local Hardy spaces was investigated. More precisely, the following
holds:

Theorem B Let N ≥ 2, 0 < p, p1, . . . , pN ≤ ∞, 1/p = 1/p1 + · · · + 1/pN , and
m ∈ R. Then, the boundedness

Op(Sm
0,0(R

n, N )) ⊂ B(h p1 × · · · × h pN → h p)

holds if and only if

m ≤ min
{ n

p
,

n

2

}
−

N∑
j=1

max
{ n

p j
,

n

2

}
,

where, if p j = ∞ for some j ∈ {1, . . . , N }, the corresponding h p j can be replaced
by bmo.

The case N = 2 was proved by Miyachi and Tomita [32] and the case N ≥ 3
by Miyachi, Tomita, and the author [28]. For the preceding results considering the
subcritical case, see the papers by Michalowski, Rule, and Staubach [30] and by
Bényi, Bernicot, Maldonado, Naibo, and Torres [2]. Quite recently, a generalization
of Theorem B for N = 2 considering boundedness on Sobolev spaces was shown by
Shida [37].

Remark that, in Theorems A and B, much smoothness is implicitly assumed for
symbols. In the rest of this section, we shall consider smoothness conditions for sym-
bols to assure the boundedness, which is our interest of the present paper.Wefirst recall
the linear case. In Miyachi [31], it was shown that the smoothness condition of sym-
bols assumed in Theorem A can be relaxed to, roughly speaking, the smoothness up
to min{n/p, n/2} for the space variable x and max{n/p, n/2} for the frequency vari-
able ξ1. Moreover, it might be worth mentioning that these values are partially sharp
(see [31, Sect. 5]). Some results on this direction can be also found in, for instance,
Boulkhemair [3], Coifman and Meyer [5], Cordes [7], Hwang [24], Muramatu [34],
and Sugimoto [38] for p = 2, and Sugimoto [39] and Tomita [40] for 0 < p < ∞.
For the multilinear case, in [26, 27], it was shown that, for the case 2/N ≤ p ≤ 2 and
2 ≤ p1, . . . , pN ≤ ∞, the assumptions of the smoothness up to n/2 for each space
and frequency variables are sufficient to have the boundedness in Theorem B. See also
Herbert and Naibo [21, 22] for the preceding results.

The purpose of this paper is to extend the partial result on the multilinear case
stated above to the whole range of the exponents 0 < p, p1, . . . , pN ≤ ∞. We shall
determine the smoothness conditions of symbols for the boundedness in TheoremB as
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weak as possible. Before stating our main theorem, we introduce a Besov type class to
measure the smoothness of symbols. In order to define this class, we use a partition of
unity as follows. We take ψ0, ψ ∈ S(Rn) satisfying that suppψ0 ⊂ {ξ ∈ R

n : |ξ | ≤
2}, suppψ ⊂ {ξ ∈ R

n : 1/2 ≤ |ξ | ≤ 2}, and ψ0 + ∑
k∈N ψ(2−k ·) = 1, and denote

ψk := ψ(2−k ·) for k ∈ N. We call this {ψk}k∈N0 a Littlewood–Paley partition of unity
on R

n . Moreover, we write as ξ = (ξ1, . . . , ξN ) ∈ (Rn)N and 〈ξ 〉 = (1 + |ξ |2)1/2,
ξ ∈ R

d , to shorten the notations.

Definition 1.1 Let N ≥ 2, m ∈ R, and t ∈ (0,∞] and let {ψk}k∈N0 be a
Littlewood–Paley partition of unity on R

n . For k = (k0, k1, . . . , kN ) ∈ (N0)
N+1,

s = (s0, s1, . . . , sN ) ∈ [0,∞)N+1, and σ = σ(x, ξ) ∈ L∞((Rn)N+1), we write
s · k = ∑N

j=0 s j k j and

�kσ(x, ξ) = ψk0(Dx )ψk1(Dξ1) . . . ψkN (DξN )σ (x, ξ).

We denote by Sm
0,0(s, t;Rn, N ) the set of all σ ∈ L∞((Rn)N+1) such that the quasi-

norm

‖σ‖Sm
0,0(s,t;Rn ,N ) =

{ ∑
k∈(N0)N+1

(
2s·k

)t ∥∥‖〈ξ 〉−m�kσ(x, ξ)‖L2
ul,ξ ((Rn)N )

∥∥t
L∞

x (Rn)

}1/t

is finite, with a usual modification when t = ∞.

Here, the space L2
ul is the uniformly local L2 space, which includes L∞ (see

Sect. 2.2). Using the class in Definition 1.1, the main theorem of the present paper
reads as follows.

Theorem 1.2 Let N ≥ 2, 0 < p, p1, . . . , pN ≤ ∞, and 1/p = 1/p1 + · · · + 1/pN .
If

m = min
{ n

p
,

n

2

}
−

N∑
j=1

max
{ n

p j
,

n

2

}

and

s0 = min
{ n

p
,

n

2

}
, s j = max

{ n

p j
,

n

2

}
, j = 1, . . . , N ,

then

Op
(
Sm
0,0

(
s,min{1, p};Rn, N

)) ⊂ B(h p1 × · · · × h pN → h p),

where, if p j = ∞ for some j ∈ {1, . . . , N }, the corresponding h p j can be replaced
by bmo.
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We end this section with noting the organization of this paper. In Sect. 2, we collect
some notations which will be used throughout this paper and give the definitions and
properties of some function spaces. In Sect. 3, we first display the key statements,
Theorem 3.2 and Proposition 3.4, which contain the essential part of Theorem 1.2.
Then, we prove Theorem 3.2 and also consider the boundedness for symbols with
classical derivatives. After preparing several lemmas for the proof of Proposition 3.4
in Sect. 4, we actually give its proof in Sect. 5. In Sect. 6, we consider the sharpness of
the order m and the smoothness s0, s1 . . . , sN stated in Theorem 1.2.

2 Preliminaries

2.1 Notations

We denote by Q the n-dimensional unit cube [−1/2, 1/2)n and we write 	Q =
[−	/2, 	/2)n , 	 > 0. Then, the cubes 	τ + 	Q, τ ∈ Z

n , are mutually disjoint and
constitute a partition of the Euclidean spaceRn . This implies that integral of a function
on Rn is written as

∫
Rn

f (x) dx =
∑
ν∈Zn

∫
	Q

f (x + 	ν) dx (2.1)

for 	 > 0. We denote by BR the closed ball in R
n of radius R > 0 centered at the

origin. We denote by 1� the characteristic function of a set �. For 1 ≤ p ≤ ∞, p′ is
the conjugate number of p defined by 1/p + 1/p′ = 1.

For two nonnegative functions A(x) and B(x) defined on a set X , we write A(x) �
B(x) for x ∈ X tomean that there exists a positive constantC such that A(x) ≤ C B(x)

for all x ∈ X . We often omit to mention the set X when it is obviously recognized.
Also A(x) ≈ B(x) means that A(x) � B(x) and B(x) � A(x).

The symbols S(Rd) and S ′(Rd) denote the Schwartz class of rapidly decreasing
smooth functions and the space of tempered distributions on R

d , respectively. The
Fourier transform and the inverse Fourier transform of f ∈ S(Rd) are defined by

F f (ξ) = f̂ (ξ) =
∫
Rd

e−iξ ·x f (x) dx,

F−1 f (x) = f̌ (x) = 1

(2π)d

∫
Rd

eix ·ξ f (ξ) dξ,

respectively. For aSchwartz function f (x, ξ1, . . . , ξN ), x, ξ1, . . . , ξN ∈ R
n ,wedenote

the partial Fourier transform with respect to the x and ξ j variables by F0 and F j ,
j = 1, . . . , N , respectively. We also write the Fourier transform on (Rn)N for the
ξ1, . . . , ξN variables as F1,...,N = F1 . . .FN . For m ∈ S ′(Rn), we defined m(D) f =
F−1[m f̂ ] and use the notation m(D) f (x) = m(Dx ) f (x) when we indicate which
variable is considered. For g ∈ S(Rn)\{0}, we denote the short-time Fourier transform
of f ∈ S ′(Rn) with respect to g by
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Vg f (x, ξ) =
∫
Rn

e−iξ ·t g(t − x) f (t) dt . (2.2)

2.2 Function Spaces

For ameasurable subset E ⊂ R
d , the Lebesgue space L p(E), 0 < p ≤ ∞, is the set of

all thosemeasurable functions f on E such that‖ f ‖L p(E) = (
∫

E

∣∣ f (x)
∣∣p

dx)1/p < ∞
if 0 < p < ∞ or ‖ f ‖L∞(E) = ess supx∈E | f (x)| < ∞ if p = ∞. If E = R

n , we
usually write L p for L p(Rn). The uniformly local L2 space, denoted by L2

ul(R
d),

consists of all those measurable functions f on R
d such that

‖ f ‖L2
ul (R

d ) = sup
ν∈Zd

‖ f (x + ν)‖L2
x([−1/2,1/2)d) < ∞.

(This notion can be found in [25, Definition 2.3].)
For a countable set K , the sequence space 	q(K ), 0 < q ≤ ∞, is the set of all

those complex sequences a = {ak}k∈K such that ‖a‖	q (K ) = (
∑

k∈K |ak |q)1/q < ∞
if 0 < q < ∞ or ‖a‖	∞(K ) = supk∈K |ak | < ∞ if q = ∞. If K = Z

n , we usually
write 	q for 	q(Zn).

Let X , Y , Z be function spaces. We use the notation ‖ f ‖X = ‖ f (x)‖Xx when we
indicate which variable is measured. We denote the mixed norm by

‖ f (x, y, z)‖Xx Yy Zz =
∥∥∥∥∥‖ f (x, y, z)‖Xx

∥∥
Yy

∥∥∥
Zz

.

(Pay special attention to the order of taking norms.) For X , Y , Z , we consider L p or
	p.

Let φ ∈ S(Rn) be such that
∫
Rn φ(x) dx �= 0 and let φt (x) = t−nφ(x/t) for

t > 0. The space H p = H p(Rn), 0 < p ≤ ∞, consists of all f ∈ S ′(Rn) such
that ‖ f ‖H p = ‖ sup0<t<∞ |φt ∗ f |‖L p < ∞. The space h p = h p(Rn), 0 < p ≤ ∞,
consists of all f ∈ S ′(Rn) such that ‖ f ‖h p = ‖ sup0<t<1 |φt ∗ f |‖L p < ∞. It is known
that H p and h p do not depend on the choice of the function φ up to the equivalence
of quasi-norm. Obviously H p ⊂ h p. If 1 < p ≤ ∞, then H p = h p = L p with
equivalent norms. In more details, see, for instance, Goldberg [16].

The space B M O = B M O(Rn) consists of all locally integrable functions f on
R

n such that

‖ f ‖B M O = sup
R

1

|R|
∫

R
| f (x) − fR | dx < ∞,

where fR = |R|−1
∫

R f (x) dx and R ranges over all the cubes in R
n . The space

bmo = bmo(Rn) consists of all locally integrable functions f on R
n such that

‖ f ‖bmo = sup
|R|≤1

1

|R|
∫

R
| f (x) − fR | dx + sup

|R|≥1

1

|R|
∫

R
| f (x)| dx < ∞,
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where R denotes cubes in R
n . Obviously, L∞ ⊂ bmo ⊂ B M O holds. Also, B M O

satisfies that ‖λ f ‖B M O = |λ|‖ f ‖B M O , λ ∈ R, and ‖ f (λ·)‖B M O = ‖ f ‖B M O , λ > 0
(see, e.g., [17, Sect. 3.1.1]).

Let κ ∈ S(Rn) be a function such that the support of κ is compact and

∑
k∈Zn

κ(ξ − k) = 1, ξ ∈ R
n .

For 0 < p, q ≤ ∞ and s ∈ R, the Wiener amalgam space W p,q
s is defined to be the

set of all f ∈ S ′(Rn) such that the quasi-norm

‖ f ‖W p,q
s

= ∥∥‖〈k〉s κ(D − k) f (x)‖	
q
k (Zn)

∥∥
L p

x (Rn)

is finite. If s = 0, we write W p,q = W p,q
0 . The space W p,q

s does not depend on
the choice of the function κ up to the equivalence of quasi-norm. The space W p,q

s
is a quasi-Banach space (Banach space if 1 ≤ p, q ≤ ∞) and S ⊂ W p,q

s ⊂ S ′. If
0 < p, q < ∞, then S is dense in W p,q

s . It is known that W p,2 is equivalent to the
(standard) amalgams W (L2, 	p), where the space W (Lq , 	p) is equipped with the
quasi-norm

‖ f ‖W (Lq ,	p) = ∥∥‖ f (x + ν)‖Lq
x (Q)

∥∥
	

p
ν (Zn)

.

Also, in particular, W ∞,2 is equivalent to L2
ul , since L2

ul = W (L2, 	∞). See
Feichtinger [10, 11] and Triebel [41] for more details.

Some of the relations between W p,q
s and the spaces L p, h p, and bmo will be given

below.

Lemma 2.1 Let s ∈ R and 0 < p, p1, p2, q1, q2 ≤ ∞. Then,

W p1,q1
s ↪→ W p2,q2

s if p1 ≤ p2, q1 ≤ q2; (2.3)

h p ↪→ W p,2
α(p), where α(p) = n/2 − max{n/2, n/p}; (2.4)

bmo ↪→ W ∞,2. (2.5)

Proof The embedding (2.4) is given in [8, Theorem 1.1] for 1 < p ≤ ∞ and in [19,
Theorem1.2] for 0 < p ≤ 1. The explicit proofs of (2.3) and (2.5) can be found in
[28, Lemma2.2]. ��
Remark 2.2 The idea of constructing the amalgam spaceW (Lq , 	p), which, in contrast
to the L p space, treats local and global behavior of functions simultaneously, goes back
to N. Wiener [45, 46], where special cases were considered. In [23], Holland gave
systematic study including some basic properties of the amalgams W (Lq , 	p). (For
more details, see also, e.g., [14] and references therein.) Then, in [10, 11], Feichtinger
introduced a vastly generalized amalgams which enables us to deal with a wide range
of function spaces to be used as local or global components. He denoted them by
W (B, C) and, according to the suggestion of J. Benedetto, named the spaces W (B, C)
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asWiener amalgam spaces in recognition of Wiener’s works. Here, the components B
and C measure local and global behavior of functions respectively. (For the detailed
definition and basic properties, see also [6, 20].) Feichtinger’s framework allows us, of
course, to treat the amalgamsW (Lq , 	p) and to understand that the spaceW (FLq

s , L p)

is equivalent to the space W p,q
s defined above, where FLq

s is the so-called Fourier
Lebesgue space. In fact, although we omit the precise definition of W (B, C), the
quasi-norm of the space W (FLq

s , L p) is expressed by

‖ f ‖W (FLq
s ,L p) = ∥∥‖g(· − x) f ‖FLq

s (Rn)

∥∥
L p

x (Rn)

= ∥∥‖〈ξ 〉sF[g(· − x) f ](ξ)‖Lq
ξ (Rn)

∥∥
L p

x (Rn)

(2.6)

for a window function g ∈ S(Rn) \ {0}. Choosing a window g with compact Fourier
supports suitably, we see that the quasi-norm of (2.6) can be equivalent to

∥∥‖〈ξ 〉s ǧ(D − ξ) f (x)‖Lq
ξ (Rn)

∥∥
L p

x (Rn)
≈ ∥∥‖〈k〉sκ(D − k) f (x)‖	

q
k (Zn)

∥∥
L p

x (Rn)
.

This is more precisely discussed in, e.g., [10, 41]. So, from the historical point of view,
it may be a terminology with a slight abuse that we refer to only the space W p,q

s as the
Winer amalgam space as above, because the above-mentioned spaces W (Lq , 	p) and
L2

ul are also contained inWiener amalgam spaces. Moreover, the space W p,q
s probably

should be denoted by W (FLq
s , L p), but, in this paper, we use the notation W p,q

s just
for the purpose of simplification. For clarification with our choice of this notation, we
refer the reader to [8, 19, 36].

We also remark that the quasi-norm of (2.6) is additionally expressed as a constant
times

∥∥‖〈ξ 〉sF[ǧ(· − ξ) f̂ ](x)‖Lq
ξ (Rn)

∥∥
L p

x (Rn)
,

or, by choosing a window g with compact supports suitably, it is equivalent to

∥∥‖〈ξ 〉s g̃(D − x) f̂ (ξ)‖Lq
ξ (Rn)

∥∥
L p

x (Rn)
≈ ∥∥‖〈ξ 〉sκ(D − k) f̂ (ξ)‖Lq

ξ (Rn)

∥∥
	

p
k (Zn)

,

where g̃ = g(−·). One can regard the expressions above as the quasi-norm of f̂ in a
weighted modulation space. Thus, theWiener amalgam spaces W (FLq

s , L p) = W p,q
s

are sometimes understood to be the Fourier images of modulation spaces. See, e.g.,
[6, 12] for more precise discussion. More detailed properties of modulation spaces
can be also found in, e.g., [13, 15, 18, 29, 41, 44].

3 Main Result

3.1 RefinedVersion of theMain Theorem

In this subsection, we give a slight extension of Theorem1.2. To do this, we shall define
the following symbol class which can be wider than the class stated in Definition 1.1.
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Definition 3.1 Let N ≥ 2. For m = (m1, . . . , m N ) ∈ R
N , s ∈ [0,∞)N+1, and

t ∈ (0,∞], we denote by Sm
0,0(s, t;Rn, N ) the set of all σ ∈ L∞((Rn)N+1) such that

the quasi-norm

‖σ‖Sm
0,0(s,t;Rn ,N ) =

{ ∑
k∈(N0)N+1

(
2s·k

)t
∥∥∥

N∏
j=1

〈ξ j 〉−m j �kσ(x, ξ)

∥∥∥t

L2
ul,ξ ((Rn)N )L∞

x (Rn)

}1/t

is finite, with a usual modification when t = ∞.

The definition above does not depend on the choice of the Littlewood–Paley parti-
tion up to the equivalence of quasi-norms. Also, the same applies to the class given in
Definition 1.1.

Notice that ifm1, . . . , m N ≤ 0 and ifm1+· · ·+m N = m, then Sm
0,0(s, t;Rn, N ) ⊂

Sm
0,0(s, t;Rn, N ). Then, we see that the theorem below induce the statement of The-

orem 1.2.

Theorem 3.2 Let N ≥ 2, 0 < p, p1, . . . , pN ≤ ∞, and 1/p ≤ 1/p1 + · · · + 1/pN .

(1) Let m1, . . . , m N ∈ R satisfy

− max
{ n

p j
,

n

2

}
< m j <

n

2
− max

{ n

p j
,

n

2

}
, j = 1, . . . , N , (3.1)

and

m1 + · · · + m N = min
{ n

p
,

n

2

}
−

N∑
j=1

max
{ n

p j
,

n

2

}
. (3.2)

(a) If 0 < p < 2, s0 = n/2, and s j = max{n/p j , n/2}, j = 1, . . . , N, then

Op
(
Sm
0,0

(
s,min{1, p};Rn, N

)) ⊂ B(h p1 × · · · × h pN → h p).

(b) If 2 ≤ p < ∞, s0 = n/p, and s j = n/2, j = 1, . . . , N, then

Op
(
Sm
0,0

(
s, 1;Rn, N

)) ⊂ B(h p1 × · · · × h pN → L p).

(2) Let m = −∑N
j=1 max{n/p j , n/2}. If s0 = 0 and s j = n/2, j = 1, . . . , N, then

Op
(
Sm
0,0

(
s, 1;Rn, N

)) ⊂ B(h p1 × · · · × h pN → L∞).

In the above assertions, if some of the p j ’s, j ∈ {1, . . . , N }, are equal to ∞, then the
conclusions hold with the corresponding h p j replaced by bmo.

Remark 3.3 The boundedness stated in Theorem 3.2 holds still true even if the norm

‖ f (x, ξ)‖L2
ul,ξ ((Rn)N )L∞

x (Rn)
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of the classes Sm
0,0(s, t;Rn, N ) and Sm

0,0(s, t;Rn, N ) is replaced by the better one

sup
ν0,ν1,...,νN ∈Zn

‖ f (x + ν0, ξ1 + ν1, . . . , ξN + νN )‖
L2

(ξ1,...,ξN )
(QN )Lmax{p,2}

x (Q)
.

This can be seen by a careful following of the proof given in Sect. 5, but since its proof
becomes much more complicated, we leave it to the interested readers.

3.2 Key Proposition

Proposition 3.4 below plays a crucial role in our argument and contains the essential
part of Theorem 3.2. The proof will be given in the succeeding sections.

Proposition 3.4 Let N ≥ 2, 0 < p, p1, . . . , pN ≤ ∞, and 1/p ≤ 1/p1 + · · · +
1/pN . Suppose σ ∈ L∞((Rn)N+1) satisfies suppFσ ⊂ BR0 × BR1 × · · · × BRN for
R0, R1, . . . , RN ∈ [1,∞).

(1) Let m1, . . . , m N ∈ R satisfy (3.1) and (3.2).

(a) If 0 < p < 2, then

‖Tσ ‖h p1×···×h pN →h p

� Rn/2
0

N∏
j=1

R
max{n/p j ,n/2}
j

∥∥∥
N∏

j=1

〈ξ j 〉−m j σ(x, ξ)

∥∥∥
L2

ul,ξ ((Rn)N )L∞
x (Rn)

.

(b) If 2 ≤ p < ∞, then

‖Tσ ‖h p1×···×h pN →L p � Rn/p
0

N∏
j=1

Rn/2
j

∥∥∥
N∏

j=1

〈ξ j 〉−m j σ(x, ξ)

∥∥∥
L2

ul,ξ ((Rn)N )L∞
x (Rn)

.

(2) Let m = −∑N
j=1 max{n/p j , n/2}. Then,

‖Tσ ‖h p1×···×h pN →L∞ �
N∏

j=1

Rn/2
j ‖〈ξ 〉−mσ(x, ξ )‖L2

ul,ξ ((Rn)N )L∞
x (Rn).

In the above assertions, if some of the p j ’s, j ∈ {1, . . . , N }, are equal to ∞, then the
conclusions hold with the corresponding h p j replaced by bmo.

3.3 Proof of Theorem 3.2

Boulkhemair [3] first pointed out that, in order to investigate the smoothness condition
to assure the L2-boundedness of the linear pseudo-differential operators, it suffices
to consider the boundedness for symbols whose Fourier supports are compact. Our
strategy relies heavily on his idea. We shall proceed to the proof of Theorem 3.2. We
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decompose the symbol σ into the sum of�kσ over k ∈ (N0)
N+1. Since the support of

F(�kσ) is included in BR0 × BR1 ×· · ·× BRN with R j = 2k j +1, j = 0, 1, . . . , N , we
see that Theorem 3.2 follows by applying Proposition 3.4 to the decomposed operators
T�kσ .

3.4 Symbols with Classical Derivatives

The following proposition shows that symbols that have classical derivatives up to
certain order satisfy the conditions of Theorem 3.2.

Proposition 3.5 Let N ≥ 2, m, m1, . . . , m N ∈ R, s0, s1, . . . , sN ∈ [0,∞), and t ∈
(0,∞]. If a bounded measurable function σ on (Rn)N+1 satisfies

|∂α0
x ∂

α1
ξ1

· · · ∂αN
ξN

σ(x, ξ1, . . . , ξN )| ≤ (1 + |ξ1| + · · · + |ξN |)m

or

|∂α0
x ∂

α1
ξ1

· · · ∂αN
ξN

σ(x, ξ1, . . . , ξN )| ≤
N∏

j=1

(1 + |ξ j |)m j

for α j ∈ (N0)
n with |α j | ≤ [s j ] + 1, where [s j ] is the integer part of s j , then

σ ∈ Sm
0,0(s, t;Rn, N ) or σ ∈ Sm

0,0(s, t;Rn, N ), respectively.
To be precise, the above assumptions should be understood that the derivatives of

σ taken in the sense of distribution are locally integrable functions on (Rn)N+1 and
they satisfies the inequality stated above almost everywhere.

Since statements quite similar to Proposition 3.5 are already proved in [26, Propo-
sition 4.7] and [27, Proposition 5.4], we omit the proof here.

4 Lemmas for the Proof of Proposition 3.4

In this section, we collect some lemmas to prove Proposition 3.4. The following will
be used to decompose symbols, which was essentially proved in [38, Lemma 2.2.1].
The explicit proof can be found in [27, Lemma 4.4].

Lemma 4.1 There exist functions κ ∈ S(Rn) and χ ∈ S(Rn) such that supp κ ⊂
[−1, 1]n, supp χ̂ ⊂ B(0, 1), |χ | ≥ c > 0 on [−1, 1]n and

∑
ν∈Zn

κ(ξ − ν)χ(ξ − ν) = 1, ξ ∈ R
n .

The two lemmas below play important roles to obtain the boundedness for the
multilinear Hörmander class with the critical order (Theorem B) in [28]. We will
again use them in the present paper. See [28, Lemmas 2.4 and 2.5] for these proofs.
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Lemma 4.2 Let N ≥ 2, 1 < r < ∞, and let a1, . . . , aN ∈ R satisfy −n/2 < a j < 0
and

∑N
j=1 a j = n/r − Nn/2. Then the following holds for all nonnegative functions

A1, . . . , AN on Z
n:

∑
ν1, ..., νN ∈Zn

A0(ν1 + · · · + νN )

N∏
j=1

(1 + |ν j |)a j A j (ν j ) � ‖A0‖	r (Zn)

N∏
j=1

‖A j‖	2(Zn).

Lemma 4.3 Let N ≥ 2. Then the following holds for all nonnegative functions
A1, . . . , AN on Z

n:

∑
ν1, ..., νN ∈Zn

(1 + |ν1| + · · · + |νN |)−Nn/2
N∏

j=1

A j (ν j ) �
N∏

j=1

‖A j‖	2(Zn).

For 0 < r < ∞, we denote by Sr the operator

Sr ( f )(x) =
( ∫

Rn

| f (x − z)|r
〈z〉n+1 dz

)1/r
(4.1)

for f ∈ S(Rn). Obviously, Sr is bounded on L p for p ≥ r . The lemma below was
proved in [27, Lemma 4.1] for the case r = 2. We extend it to the general case
0 < r < ∞.

Lemma 4.4 Let 0 < r < ∞ and κ ∈ S(Rn) satisfy supp κ ⊂ [−1, 1]n. Then

|κ(D − ν) f (x)| � Sr (κ(D − ν) f )(y) (4.2)

holds for any f ∈ S(Rn), ν ∈ Z
n, and x, y ∈ R

n satisfying |x − y| � 1.

Proof Taking ϕ ∈ S(Rn) satisfying ϕ = 1 on [−1, 1]n and suppϕ ⊂ [−2, 2]n , we
have

κ(D − ν) f (x) = ϕ(D − ν)κ(D − ν) f (x).

If 0 < r ≤ 1, the Nikol’skij inequality (see, e.g., [42, Sect. 1.3.2, Remark 1]) gives

|κ(D − ν) f (x)| ≤
∥∥∥(F−1ϕ)(z)κ(D − ν) f (x − z)

∥∥∥
L1

z (R
n)

�
∥∥∥(F−1ϕ)(z)κ(D − ν) f (x − z)

∥∥∥
Lr

z (R
n)

.

Here, we remark that the implicit constant above is independent of x and ν. Since
ϕ ∈ S(Rn) and Sr ( f )(x) ≈ Sr ( f )(y) for |x − y| � 1, we have

∥∥∥(F−1ϕ)(z)κ(D − ν) f (x − z)
∥∥∥

Lr
z (R

n)
� Sr (κ(D − ν) f )(x)
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≈ Sr (κ(D − ν) f )(y).

Hence, we obtain (4.2) for 0 < r ≤ 1. If 1 < r < ∞, the Hölder’s inequality gives

|κ(D − ν) f (x)| ≤
∫
Rn

∣∣(F−1ϕ)(z)
∣∣1/r ′+1/r ∣∣κ(D − ν) f (x − z)

∣∣ dz

�
( ∫

Rn

∣∣(F−1ϕ)(z)
∣∣∣∣κ(D − ν) f (x − z)

∣∣r dz
)1/r

� Sr (κ(D − ν) f )(x).

Hence, using again that Sr ( f )(x) ≈ Sr ( f )(y) for |x − y| � 1, we have (4.2) for
1 < r < ∞. ��

The lemmabelowmaybewell-known (see [27, Sect. 2.3]).Also, the readers familiar
with Wiener amalgam spaces may realize that the following inequality is immediately
deduced from the embedding W p,2 ↪→ h p, 0 < p ≤ 2, proved in [19, Theorem 1.2].

Lemma 4.5 Let 0 < p ≤ 2. If g ∈ S(Rn) satisfies that |g| ≥ c > 0 on [−1, 1]n with
some positive constant c, then

‖ f ‖h p(Rn) � ‖Vg f (x, ξ)‖L2
ξ (Rn)L p

x (Rn).

Proof Since W (L2, 	p) ↪→ h p for 0 < p ≤ 2 (see [27, Sect. 2.3]), it suffices to prove

‖ f ‖W (L2,	p) � ‖Vg f (x, ξ)‖L2
ξ (Rn)L p

x (Rn). (4.3)

Since |g(x − y)| ≥ c for x, y ∈ Q, it holds that

‖ f ‖W (L2,	p) = ‖ f (x + ν)‖L2
x (Q)	

p
ν (Zn) � ‖g(x − y) f (x + ν)‖L2

x (Q)	
p
ν (Zn)

for any y ∈ Q, which implies from the embedding L2(Rn) ↪→ L2(Q) that

‖ f ‖W (L2,	p) � ‖g(x − y) f (x + ν)‖L2
x (Q)	

p
ν (Zn)L p

y (Q)

≤ ‖g(x − y) f (x + ν)‖L2
x (Rn)	

p
ν (Zn)L p

y (Q).

By recalling the definition of Vg stated in (2.2), the last quantity is identical with

‖g(x − y) f (x)‖L2
x (Rn)L p

y (Rn) = ‖Vg f (y, ξ)‖L2
ξ (Rn)L p

y (Rn).

This completes the proof of (4.3). Here, note that the opposite inequality of (4.3)
holds. However, since the equivalence is unnecessary here, we omit the detail. ��

The following lemma was already given in [33, Lemma 3.2] for the case p = 2
and R = 1. We extend it to a bit more general form. Moreover, we remark that the
inequality below implies the embedding L p ↪→ W p,p′

, 1 ≤ p ≤ 2, proved in [8,
Theorem 1.1].
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Lemma 4.6 Let 2 ≤ p ≤ ∞, R ≥ 1, and ϕ ∈ S(Rn). Then

∥∥∥ϕ
( D − ν

R

)
f (x)

∥∥∥
	

p
ν (Zn)L p′

x (Rn)
� Rn/p‖ f ‖L p′

(Rn)
.

Proof With the notation � = F−1ϕ, the expression (2.1) with 	 = 2π yields that

ϕ
( D − ν

R

)
f (x) = Rn

∫
Rn

eiy·ν �(Ry) f (x − y) dy

= Rn
∫
2π Q

eiy·ν
{ ∑

ν′∈Zn

�
(
R(y + 2πν′)

)
f (x − y − 2πν′)

}
dy.

We realize that the function
∑

ν′∈Zn �(R(y+2πν′)) f (x−y−2πν′) is 2πZn-periodic
with respect to the y-variable. Hence, we have by Hausdorff–Young’s inequality

∥∥∥ϕ
( D − ν

R

)
f (x)

∥∥∥p′

	
p
ν

� Rnp′
∫
2π Q

∣∣∣∣
∑

ν′∈Zn

�
(
R(y + 2πν′)

)
f (x − y − 2πν′)

∣∣∣∣
p′

dy.

Since
∑

ν′∈Zn |�(R(y +2πν′))| � 1 for any y ∈ R
n and R ≥ 1, by applying Hölder’s

inequality to the sum over ν′, the integral of the right hand side is bounded by

∫
2π Q

∑
ν′∈Zn

∣∣� (
R(y + 2πν′)

)∣∣ ∣∣ f (x − y − 2πν′)
∣∣p′

dy = ∥∥|�(Ry)|| f (x − y)|p′∥∥
L1

y
,

where we again used (2.1) in the identity above. Therefore, we obtain

∥∥∥ϕ
( D − ν

R

)
f (x)

∥∥∥p′

	
p
ν

� Rnp′∥∥|�(Ry)|| f (x − y)|p′∥∥
L1

y
.

Integrating over x , we have

∥∥∥ϕ
( D − ν

R

)
f (x)

∥∥∥p′

	
p
ν L p′

x
� Rnp′∥∥|�(Ry)|| f (x − y)|p′∥∥

L1
y L1

x

≈ Rn(p′−1)‖ f ‖p′
L p′ ,

which completes the proof. ��

5 Proof of Proposition 3.4

In this section, we will use the following notation: ξ = (ξ1, . . . , ξN ) ∈ (Rn)N , ν =
(ν1, . . . , νN ) ∈ (Zn)N , and dξ = dξ1 . . . dξN . Also, we remark that, for any p, p j ∈
(0,∞] satisfying 1/p ≤ 1/p1 + · · · + 1/pN , we can choose p̃ j ∈ (0,∞], j =
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1, . . . , N , such that

1

p
= 1

p̃1
+ · · · + 1

p̃N
and p j ≤ p̃ j . (5.1)

In fact, for instance, if p = ∞, then we can take p̃ j = ∞, and if p < ∞, then we can
take

1

p̃ j
= 1

p

1

p j

( 1

p1
+ · · · + 1

pN

)−1
.

Now, we shall give a proof of Proposition 3.4. First, we decompose Tσ as follows.
By Lemma 4.1, the symbol σ can be written as

σ(x, ξ) =
∑

ν∈(Zn)N

σ(x, ξ)

N∏
j=1

κ(ξ j − ν j )χ(ξ j − ν j ) =
∑

ν∈(Zn)N

σν(x, ξ)

N∏
j=1

κ(ξ j − ν j )

with

σν(x, ξ) = σ(x, ξ)

N∏
j=1

χ(ξ j − ν j ).

Then, by denoting the operators κ(D − ν j ) by �ν j , j = 1, . . . , N , we can write as

Tσ ( f1, . . . , fN )(x) =
∑

ν∈(Zn)N

Tσν (κ(D − ν1) f1, . . . , κ(D − νN ) fN )(x)

=
∑

ν∈(Zn)N

Tσν (�ν1 f1, . . . ,�νN fN )(x).
(5.2)

Here we remark that, for 0 < p, q ≤ ∞ and s ∈ R, it holds that ‖〈ν〉s�ν f ‖	q L p �
‖ f ‖W p,q

s
, since supp κ is compact. Now, this Tσν (�ν1 f1, . . . ,�νN fN ) satisfies the

following inequality.

Lemma 5.1 Let N ≥ 2. For j = 1, . . . , N, let m, m j ∈ (−∞, 0], r j ∈ (0,∞), and
R0, R j ∈ [1,∞). Suppose σ is a bounded continuous function on (Rn)N+1 satisfying
suppFσ ⊂ BR0 × BR1 × · · · × BRN and write W (ξ) = 〈ξ 〉m or

∏N
j=1〈ξ j 〉m j . Then,

∣∣Tσν (�ν1 f1, . . . ,�νN fN )(x)
∣∣

� W (ν)‖W (ξ)−1σ(x, ξ)‖L2
ul,ξ ((Rn)N )L∞

x (Rn)

N∏
j=1

∥∥Sr j (�ν j f j )(y + τ j )
∥∥

	2τ j
(�R j )

holds for any x, y ∈ R
n satisfying |x − y| � 1, where �R j = Z

n ∩[−2R j −1, 2R j +
1]n.
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Proof Since the support of (F1,...,N σν)(x, ·) is included in B2R1 ×· · ·× B2RN for any
x ∈ R

n ,

T := Tσν (�ν1 f1, . . . ,�νN fN )(x)

= 1

(2π)Nn

∫
(Rn)N

(F1,...,N σν

)
(x, z)

N∏
j=1

�ν j f j (x + z j ) d z

= 1

(2π)Nn

∫
(Rn)N

(F1,...,N σν

)
(x, z)

N∏
j=1

1B2R j
(z j ) �ν j f j (x + z j ) d z.

Since the ball B2R j is covered by a disjoint union of the unit cubes τ + Q, τ ∈ �R j ,
the characteristic function 1B2R j

is bounded by the sum of 1Q(· − τ) over τ ∈ �R j .
This yields

|T | ≤
∫

(Rn)N

∣∣(F1,...,N σν)(x, z)
∣∣ N∏

j=1

1B2R j
(z j )

∣∣�ν j f j (x + z j )
∣∣ d z

≤
∑

τ1∈�R1

· · ·
∑

τN ∈�RN

∫
(Rn)N

∣∣(F1,...,N σν)(x, z)
∣∣ N∏

j=1

1Q(z j − τ j )
∣∣�ν j f j (x + z j )

∣∣ d z.

(5.3)

Note that |(x+z j )−(y+τ j )| � 1 if |x−y| � 1and z j−τ j ∈ Q = [−1/2, 1/2)n . Then,
by Lemma 4.4 and the Cauchy–Schwarz inequality, the integral above is estimated by

( N∏
j=1

Sr j (�ν j f j )(y + τ j )

) ∫
(Rn)N

∣∣(F1,...,N σν)(x, z)
∣∣ N∏

j=1

1Q(z j − τ j ) d z

=
( N∏

j=1

Sr j (�ν j f j )(y + τ j )

)∫
QN

∣∣(F1,...,N σν)(x, z + τ )
∣∣ d z

≤
( N∏

j=1

Sr j (�ν j f j )(y + τ j )

)∥∥(F1,...,N σν)(x, z + τ )
∥∥

L2
z(QN )

,

(5.4)

where we wrote τ = (τ1, . . . , τN ). Combining with (5.3) and (5.4) and then using the
Cauchy–Schwarz inequalities to the sums with respect to the τ j ’s, j = 1, . . . , N , we
have
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|T | �
∑

τ1∈�R1

· · ·
∑

τN ∈�RN

( N∏
j=1

Sr j (�ν j f j )(y + τ j )

)∥∥(F1,...,N σν)(x, z + τ )
∥∥

L2
z (QN )

≤
( N∏

j=1

∥∥Sr j (�ν j f j )(y + τ j )
∥∥

	2τ j
(�R j )

)∥∥(F1,...,N σν)(x, z + τ )
∥∥

L2
z(QN )	2τ ((Zn)N )

.

(5.5)

Here, we apply (2.1) to the L2
z	

2
τ -norm and then use Plancherel’s theorem to have

∥∥(F1,...,N σν)(x, z + τ )
∥∥2

L2
z (QN )	2τ ((Zn)N )

=
∑

τ∈(Zn)N

∫
QN

∣∣(F1,...,N σν)(x, z + τ )
∣∣2d z

= ∥∥(F1,...,N σν)(x, z)
∥∥2

L2
z((R

n)N )
= ‖σν(x, ξ)‖2

L2
ξ
((Rn)N )

.

(5.6)

Substituting the identity (5.6) into (5.5), we have

|T | � ‖σν(x, ξ)‖L2
ξ
((Rn)N )

N∏
j=1

∥∥Sr j (�ν j f j )(y + τ j )
∥∥

	2τ j
(�R j )

. (5.7)

In what follows, we shall prove that

sup
x∈Rn

‖σν(x, ξ)‖L2
ξ
((Rn)N ) � W (ν)‖W (ξ)−1σ(x, ξ)‖L2

ul,ξ ((Rn)N )L∞
x (Rn) (5.8)

for ν ∈ (Zn)N . By using (2.1) as in (5.6), we have

‖σν(·, ξ)‖L2
ξ

= W (ν)

∥∥∥W (ν)−1σ(·, ξ + μ)

×
N∏

j=1

χ(ξ j + μ j − ν j )

∥∥∥
L2

ξ
(QN )	2μ((Zn)N )

� W (ν)

∥∥∥W (ξ + μ)−1W (ξ + μ − ν)−1

× σ(·, ξ + μ)

N∏
j=1

χ(ξ j + μ j − ν j )

∥∥∥
L2

ξ
(QN )	2μ((Zn)N )

.

Here the inequality above holds true since m, m j ∈ (−∞, 0] are assumed. Since
χ ∈ S(Rn), for some sufficiently large number L > 0, the L2	2-norm above is
bounded by
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∥∥∥
{

W (ξ + μ)−1σ(·, ξ + μ)
}

W (μ − ν)−1
N∏

j=1

〈μ j − ν j 〉−L
∥∥∥

L2
ξ
(QN )	2μ

�
∥∥∥W (ξ)−1σ(·, ξ)

∥∥∥
L2

ul,ξ

,

which gives (5.8). Therefore, by (5.7) and (5.8), we complete the proof. ��
Now, we shall proceed to the estimates of the operators considered in Proposition

3.4. In order to simplify the notations appearing in Lemma 5.1, let us denote

|σ |m = ‖〈ξ〉−mσ(x, ξ)‖L2
ul,ξ ((Rn)N )L∞

x (Rn), (5.9)

|σ |m =
∥∥∥

N∏
j=1

〈ξ j 〉−m j σ(x, ξ)

∥∥∥
L2

ul,ξ ((R
n)N )L∞

x (Rn)
, (5.10)

and further for 0 < p j ≤ ∞ and 0 < r j < ∞

F
p j ,r j
ν j (x) = Sr j

(〈ν j 〉α(p j )�ν j f j
)
(x), α(p j ) = n/2 − max{n/2, n/p j }. (5.11)

5.1 Proof of Proposition 3.4 (1)-(a)

Take a real valued function g ∈ S(Rn) satisfying |g| ≥ c > 0 on [−1, 1]n and
supp ĝ ⊂ B1. We have by Lemma 4.5 and duality

‖Tσ ( f1, . . . , fN )‖h p � ‖Vg[Tσ ( f1, . . . , fN )](x, ζ )‖L2
ζ (Rn)L p

x (Rn)

=
∥∥∥∥ sup

h∈L2(Rn)

∣∣∣
∫
Rn

Vg[Tσ ( f1, . . . , fN )](x, ζ ) h(ζ ) dζ

∣∣∣
∥∥∥∥

L p
x (Rn)

.
(5.12)

Hence, in what follows, we consider

I :=
∫
Rn

Vg[Tσ ( f1, . . . , fN )](x, ζ ) h(ζ ) dζ (5.13)

for x ∈ R
n and h ∈ L2(Rn), which is decomposed by (5.2) as

I =
∑

ν∈(Zn)N

∫
Rn

Vg[Tσν (�ν1 f1, . . . ,�νN fN )](x, ζ ) h(ζ ) dζ.

Here, we shall observe that

supp Vg[Tσν (�ν1 f1, . . . ,�νN fN )](x, ·) ⊂ {
ζ ∈ R

n : |ζ − (ν1 + · · · + νN )| � R0
}
.

(5.14)
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In fact, since suppF0σν(·, ξ) ⊂ BR0 and supp κ(· − ν j ) ⊂ ν j + [−1, 1]n , the identity

F[Tσν (�ν1 f1, . . . ,�νN fN )](ζ )

= 1

(2π)Nn

∫
(Rn)N

(F0σν

)(
ζ − (ξ1 + · · · + ξN ), ξ

) N∏
j=1

κ(ξ j − ν j ) f̂ j (ξ j ) dξ

implies that

suppF[Tσν (�ν1 f1, . . . ,�νN fN )] ⊂ {
ζ ∈ R

n : |ζ − (ν1 + · · · + νN )| � R0
}
.

(5.15)

Hence, regarding the short-time Fourier transform given in (2.2) as

Vg[Tσν (�ν1 f1, . . . ,�νN fN )](x, ζ ) = F[g(· − x)Tσν (�ν1 f1, . . . ,�νN fN )](ζ ),

we see that (5.14) holds. Now, we take a function ϕ ∈ S(Rn) satisfying ϕ = 1 on
{ζ ∈ R

n : |ζ | � 1}. Then, the expression I considered in (5.13) can be written as

I =
∑

ν∈(Zn)N

∫
Rn

Vg[Tσν (�ν1 f1, . . . ,�νN fN )](x, ζ )

× ϕ
(ζ − (ν1 + · · · + νN )

R0

)
h(ζ ) dζ

=
∑

ν∈(Zn)N

∫
Rn

g(t) Tσν (�ν1 f1, . . . ,�νN fN )(x + t)

× F
[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + t) dt .

By (2.1), we can further rewrite the above as

I =
∑
μ∈Zn

∑
ν∈(Zn)N

∫
Q

g(μ + t) Tσν (�ν1 f1, . . . ,�νN fN )(x + μ + t)

× F
[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + μ + t) dt .

(5.16)

Now, we shall actually estimate the expression in (5.16). Using the fact that, for
sufficiently large L > 0, |g(μ + t)| � 〈μ〉−L holds for t ∈ Q, we have

|I | ≤
∑
μ∈Zn

∑
ν∈(Zn)N

∫
Q

|g(μ + t)| ∣∣Tσν (�ν1 f1, . . . ,�νN fN )(x + μ + t)
∣∣

×
∣∣∣F

[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + μ + t)

∣∣∣ dt
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�
∑
μ∈Zn

〈μ〉−L
∑

ν∈(Zn)N

∫
Q

∣∣Tσν (�ν1 f1, . . . ,�νN fN )(x + μ + t)
∣∣

×
∣∣∣F

[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + μ + t)

∣∣∣ dt .

Since |(x + μ + t) − (x + μ)| � 1 for t ∈ Q, Lemma 5.1 with W (ξ) = ∏N
j=1〈ξ j 〉m j

yields that

∣∣Tσν (�ν1 f1, . . . ,�νN fN )(x + μ + t)
∣∣

� |σ |m
N∏

j=1

〈ν j 〉m j
∥∥Sr j (�ν j f j )(x + μ + τ j )

∥∥
	2τ j

(�R j )

holds for any t ∈ Q, where we used the notation (5.10), and thus,

|I | � |σ |m
∑
μ∈Zn

〈μ〉−L
∑

ν∈(Zn)N

N∏
j=1

〈ν j 〉m j
∥∥Sr j (�ν j f j )(x + μ + τ j )

∥∥
	2τ j

(�R j )

×
∫

Q

∣∣∣F
[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + μ + t)

∣∣∣ dt .

(5.17)

Here, we observe from the notation (5.11) that

Sr j (�ν j f j ) = 〈ν j 〉−α(p j )Sr j

(〈ν j 〉α(p j )�ν j f j
) = 〈ν j 〉−α(p j )F

p j ,r j
ν j . (5.18)

Moreover, recalling Q = [−1/2, 1/2)n , we have by the Cauchy–Schwarz inequality
and the Plancherel theorem

∫
Q

∣∣∣F
[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + μ + t)

∣∣∣ dt

≤
∥∥∥F

[
ϕ
( · − (ν1 + · · · + νN )

R0

)
h
]
(x + μ + t)

∥∥∥
L2

t (R
n)

=
∥∥∥ϕ

( · − (ν1 + · · · + νN )

R0

)
h
∥∥∥

L2(Rn)
.

(5.19)

Gathering together (5.17), (5.18), and (5.19), we obtain

|I | � |σ |m
∑
μ∈Zn

〈μ〉−L

×
∑

ν∈(Zn)N

N∏
j=1

〈ν j 〉m j −α(p j )
∥∥F

p j ,r j
ν j (x + μ + τ j )

∥∥
	2τ j

(�R j )

∥∥∥ϕ
( · − (ν1 + · · · + νN )

R0

)
h
∥∥∥

L2(Rn)
.
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Since the assumptions (3.1) and (3.2) imply respectively that−n/2 < m j −α(p j ) < 0
and

∑N
j=1(m j − α(p j )) = n/2 − Nn/2, we have by Lemma 4.2 with r = 2

|I | � |σ |m
∑
μ∈Zn

〈μ〉−L
∥∥∥ϕ

( · − ν

R0

)
h
∥∥∥

L2	2ν

N∏
j=1

∥∥F
p j ,r j
ν j (x + μ + τ j )

∥∥
	2τ j

(�R j )	
2
ν j

,

and further have by using that ‖ϕ((x − ν)/R0)‖	2ν
� Rn/2

0 for any x ∈ R
n

|I | � Rn/2
0 ‖h‖L2 |σ |m

∑
μ∈Zn

〈μ〉−L
N∏

j=1

∥∥F
p j ,r j
ν j (x + μ + τ j )

∥∥
	2τ j

(�R j )	
2
ν j

. (5.20)

Collecting (5.12), (5.13), and (5.20), we obtain

‖Tσ ( f1, . . . , fN )‖h p � Rn/2
0 |σ |m

∥∥∥ ∑
μ∈Zn

〈μ〉−L
N∏

j=1

∥∥F
p j ,r j
ν j (x + μ + τ j )

∥∥
	2τ j

(�R j )	
2
ν j

∥∥∥
L p

x
.

Apply the embedding 	min{1,p} ↪→ 	1 to the sum overμ and choose L > n/min{1, p}.
Then, by Minkowski’s inequality, the L p

x quasi-norm above is bounded by

∥∥∥∥〈μ〉−L
∥∥∥

N∏
j=1

∥∥F
p j ,r j
ν j (x + μ + τ j )

∥∥
	2τ j

(�R j )	
2
ν j

∥∥∥
L p

x

∥∥∥∥
	
min{1,p}
μ

≈
∥∥∥

N∏
j=1

∥∥F
p j ,r j
ν j (x + τ j )

∥∥
	2τ j

(�R j )	
2
ν j

∥∥∥
L p

x
.

We take p̃ j ∈ (0,∞], j = 1, . . . , N , satisfying (5.1) and use Hölder’s inequality to
have

‖Tσ ( f1, . . . , fN )‖h p � Rn/2
0 |σ |m

N∏
j=1

∥∥F
p j ,r j
ν j (x + τ j )

∥∥
	2τ j

(�R j )	
2
ν j

L
p̃ j
x

. (5.21)

Using that 	
min{2,p j }
τ j ↪→ 	2τ j

, sincemin{2, p j } ≤ p̃ j , we have byMinkowski’s inequal-
ity

‖F
p j ,r j
ν j (x + τ j )‖

	2τ j
(�R j )	

2
ν j

L
p̃ j
x

≤ ‖F
p j ,r j
ν j (x + τ j )‖

	
min{2,p j }
τ j (�R j )	

2
ν j

L
p̃ j
x

≤ ‖F
p j ,r j
ν j (x)‖

	2ν j
L

p̃ j
x 	

min{2,p j }
τ j (�R j )

≈ R
max{n/2,n/p j }
j ‖F

p j ,r j
ν j ‖

	2ν j
L p̃ j .

(5.22)

Here, recall the definition of the operator Sr from (4.1) and the fact which r j ∈ (0,∞)

can be chosen arbitrarily. Then, by taking r j < min{1, p̃ j }, Minkowski’s inequality
for integrals implies
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‖F
p j ,r j
ν j ‖

	2ν j
L p̃ j = ‖Sr j (〈ν j 〉α(p j )�ν j f j )‖	2ν j

L p̃ j

=
∥∥∥∥

∫
Rn

〈y〉−(n+1)
∣∣〈ν j 〉α(p j )�ν j f j (x − y)

∣∣r j dy

∥∥∥∥
1/r j

	
2/r j
ν j L

p̃ j /r j
x

≤
(∫

Rn
〈y〉−(n+1)

∥∥〈ν j 〉α(p j )�ν j f j (x)
∥∥r j

	2ν j
L

p̃ j
x

dy

)1/r j

≈ ‖〈ν j 〉α(p j )�ν j f j‖	2ν j
L p̃ j � ‖ f j‖

W
p̃ j ,2

α(p j )

.

(5.23)

Use (2.3) with p j ≤ p̃ j , and then use (2.4) if p j < ∞ and (2.5) if p j = ∞. Then we
have

‖ f j‖
W

p̃ j ,2

α(p j )

� ‖ f j‖
W

p j ,2

α(p j )

� ‖ f j‖h p j , (5.24)

where h p j can be replaced by bmo when p j = ∞. Hence, gathering (5.22), (5.23),
and (5.24), we obtain

‖F
p j ,r j
ν j (x + τ j )‖

	2τ j
(�R j )	

2
ν j

L
p̃ j
x

� R
max{n/2,n/p j }
j ‖ f j‖h p j . (5.25)

Lastly, substituting (5.25) into (5.21), we obtain

‖Tσ ( f1, . . . , fN )‖h p � |σ |mRn/2
0

N∏
j=1

R
max{n/2,n/p j }
j ‖ f j‖h p j ,

which completes the proof of Proposition 3.4 (1)-(a).

5.2 Proof of Proposition 3.4 (1)-(b)

We take a function ϕ ∈ S(Rn) satisfying ϕ = 1 on {ζ ∈ R
n : |ζ | � 1}. By (5.2) and

(5.15), we have

‖Tσ ( f1, . . . , fN )‖L p

= sup
h∈L p′

∣∣∣∣
∑

ν∈(Zn)N

∫
Rn

Tσν (�ν1 f1, . . . ,�νN fN )(x) h(x) dx

∣∣∣∣

= sup
h∈L p′

∣∣∣∣
∑

ν∈(Zn)N

∫
Rn

Tσν (�ν1 f1, . . . ,�νN fN )(x) ϕ
( D + ν1 + · · · + νN

R0

)
h(x) dx

∣∣∣∣.
(5.26)
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In what follows, we consider

II :=
∑

ν∈(Zn)N

∫
Rn

Tσν (�ν1 f1, . . . ,�νN fN )(x) ϕ
( D + ν1 + · · · + νN

R0

)
h(x) dx .

(5.27)

Here, observe that Lemma 5.1 holds for y = x . Then, by Lemma 5.1 with W (ξ) =∏N
j=1〈ξ j 〉m j and the notations (5.10) and (5.11), we have

|II | � |σ |m
∑

ν∈(Zn)N

∫
Rn

N∏
j=1

〈ν j 〉m j ‖Sr j (�ν j f j )(x + τ j )‖	2τ j
(�R j )

×
∣∣∣ϕ

( D + ν1 + · · · + νN

R0

)
h(x)

∣∣∣dx

= |σ |m
∫
Rn

∑
ν∈(Zn)N

N∏
j=1

〈ν j 〉m j −α(p j )‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )

×
∣∣∣ϕ

( D + ν1 + · · · + νN

R0

)
h(x)

∣∣∣dx .

Note here that (3.1) and (3.2) imply respectively that −n/2 < m j − α(p j ) < 0 and∑N
j=1(m j −α(p j )) = n/p− Nn/2. Then, using Lemma 4.2 with r = p and Hölder’s

inequality with p̃ j ∈ (0,∞] satisfying (5.1), the integral above is estimated by

∫
Rn

∥∥∥ϕ
( D + ν

R0

)
h(x)

∥∥∥
	

p
ν

N∏
j=1

‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )	
2
ν j

dx

≤
∥∥∥ϕ

( D + ν

R0

)
h
∥∥∥

	
p
ν L p′

N∏
j=1

‖F
p j ,r j
ν j (x + τ j )‖

	2τ j
(�R j )	

2
ν j

L
p̃ j
x

,

which implies, from Lemma 4.6, that

|II | � Rn/p
0 ‖h‖L p′ |σ |m

N∏
j=1

‖F
p j ,r j
ν j (x + τ j )‖

	2τ j
(�R j )	

2
ν j

L
p̃ j
x

.

Since 2 ≤ p̃ j ≤ ∞ for the case 2 ≤ p < ∞ of this subsection,Minkowski’s inequality
gives

‖F
p j ,r j
ν j (x + τ j )‖

	2τ j
(�R j )	

2
ν j

L
p̃ j
x

≤ ‖F
p j ,r j
ν j (x)‖

	2ν j
L

p̃ j
x 	2τ j

(�R j )
≈ Rn/2

j ‖F
p j ,r j
ν j ‖

	2ν j
L p̃ j .
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Moreover, we have by (5.23) and (5.24)

‖F
p j ,r j
ν j (x + τ j )‖

	2τ j
(�R j )	

2
ν j

L
p̃ j
x

� Rn/2
j ‖ f j‖

W
p̃ j ,2

α(p j )

� Rn/2
j ‖ f j‖h p j ,

where h p j can be replaced by bmo when p j = ∞. Gathering the above inequalities,
we obtain

|II | � |σ |mRn/p
0

N∏
j=1

Rn/2
j ‖ f j‖h p j ‖h‖L p′ ,

where h p j can be replaced by bmo when p j = ∞. Combining the above inequality
with (5.26) and (5.27), we complete the proof of Proposition 3.4 (1)-(b).

5.3 Proof of Proposition 3.4 (2)

By using (5.2) and Lemma 5.1 with W (ξ) = 〈ξ〉m ,

|Tσ ( f1, . . . , fN )(x)| ≤
∑

ν∈(Zn)N

∣∣Tσν (�ν1 f1, . . . ,�νN fN )(x)
∣∣

� |σ |m
∑

ν∈(Zn)N

(
1 + |ν1| + · · · + |νN |)m

N∏
j=1

∥∥Sr j (�ν j f j )(x + τ j )
∥∥

	2τ j
(�R j )

,

where |σ |m is as in (5.9). Since m = −Nn/2 + ∑N
j=1 α(p j ), where α(p j ) ≤ 0 (see

(5.11)), the sum over ν is bounded by

∑
ν∈(Zn)N

(
1 + |ν1| + · · · + |νN |)−Nn/2

N∏
j=1

〈ν j 〉α(p j )
∥∥Sr j (�ν j f j )(x + τ j )

∥∥
	2τ j

(�R j )

=
∑

ν∈(Zn)N

(
1 + |ν1| + · · · + |νN |)−Nn/2

N∏
j=1

‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )

(for the notation F
p j ,r j
ν j , see (5.11)). By Lemma 4.3, the sum above is further estimated

by

N∏
j=1

‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )	
2
ν j

,
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which yields that

|Tσ ( f1, . . . , fN )(x)| � |σ |m
N∏

j=1

‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )	
2
ν j

. (5.28)

As in (5.25), we shall show that

sup
x∈Rn

‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )	
2
ν j

� Rn/2
j ‖ f j‖h p j , (5.29)

where h p j can be replaced by bmo when p j = ∞. Since (5.23) holds for p̃ j = ∞,
we have

‖F
p j ,r j
ν j (x + τ j )‖	2τ j

(�R j )	
2
ν j

L∞
x

� Rn/2
j ‖F

p j ,r j
ν j ‖	2ν j

L∞ � Rn/2
j ‖ f j‖W∞,2

α(p j )
.

Here, since p j ≤ ∞, j = 1, . . . , N , the embeddings (2.3)–(2.5) of Lemma 2.1 yield
that

‖ f j‖W∞,2
α(p j )

� ‖ f j‖
W

p j ,2

α(p j )

� ‖ f j‖h p j ,

where h p j can be replaced by bmo when p j = ∞. This concludes (5.29). Therefore,
substituting (5.29) into (5.28), we obtain

‖Tσ ( f1, . . . , fN )‖L∞ � |σ |m
N∏

j=1

Rn/2
j

∥∥ f j
∥∥

h p j

with h p j replaced by bmo when p j = ∞, which completes the proof of Proposition
3.4 (2).

6 Sharpness

In this section, we consider the sharpness of the conditions of the order m ∈ R and
the smoothness s = (s0, s1, . . . , sN ) ∈ [0,∞)N+1 stated in Theorem 1.2.

6.1 Sharpness ofm of Theorem 1.2

In this subsection, we show the following.

Proposition 6.1 Let N ≥ 2, p, p1, . . . , pN ∈ (0,∞], 1/p ≤ 1/p1 + · · · + 1/pN ,
m ∈ R, s0, s1, . . . , sN ∈ [0,∞), and t ∈ (0,∞]. If

Op(Sm
0,0(s, t;Rn, N )) ⊂ B(H p1 × · · · × H pN → L p),
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with L p replaced by B M O when p = ∞, then

m ≤ min
{ n

p
,

n

2

}
−

N∑
j=1

max
{ n

p j
,

n

2

}
. (6.1)

This is immediately obtained by the inclusion Sm
0,0(R

n, N ) ⊂ Sm
0,0(s, t;Rn, N )

stated in Proposition 3.5 and the following theorem proved in [28, Theorem 1.5].

Theorem 6.2 Let N ≥ 2, 0 < p, p1, . . . , pN ≤ ∞, 1/p ≤ 1/p1 + · · · + 1/pN , and
m ∈ R. If

Op(Sm
0,0(R

n, N )) ⊂ B(H p1 × · · · × H pN → L p),

with L p replaced by B M O when p = ∞, then (6.1) holds.

6.2 Sharpness of s0 of Theorem 1.2

In this subsection, we show the following.

Proposition 6.3 Let N ≥ 2, p, p1, . . . , pN ∈ (0,∞], s0, s1, . . . , sN ∈ [0,∞), t ∈
(0,∞], and

m = min
{ n

p
,

n

2

}
−

N∑
j=1

max
{ n

p j
,

n

2

}
. (6.2)

Suppose that the estimate

‖Tσ ‖H p1×···×H pN →L p �
∥∥2k·s‖〈ξ 〉−m�kσ(x, ξ)‖L∞

x,ξ
((Rn)N+1)

∥∥
	t
k((N0)N+1) (6.3)

holds for all smooth functions σ with the right hand side finite, where L p is replaced
by B M O for p = ∞. Then s0 ≥ min{n/p, n/2}.

To show this, we will use the following lemma which was given by Wainger [43,
Theorem 10] and by Miyachi and Tomita [32, Lemma 6.1].

Lemma 6.4 Let 0 < a < 1, 0 < b < n, and ϕ ∈ S(Rn). For ε > 0, set

fa,b,ε(x) =
∑

k∈Zn\{0}
e−ε|k||k|−bei |k|a eik·xϕ(x).

If 1 ≤ p ≤ ∞ and b > n − an/2 − n/p + an/p, then supε>0 ‖ fa,b,ε‖L p(Rn) < ∞.

Now, let us begin with the proof of Proposition 6.3. See also [27, Proposition 7.3].
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Proof In this proof, for p j ∈ (0,∞], we define the sets J and J c by

J = {
j ∈ {1, . . . , N } : 2 ≤ p j ≤ ∞}

, J c = {
j ∈ {1, . . . , N } : 0 < p j < 2

}
.

It is sufficient to show that the condition s0 ≥ min{n/p, n/2} is deduced under
the assumption (6.3) with t = ∞. In fact, once this is proved, then replacing s j by
s j + ε, ε > 0, j = 0, 1, . . . , N , we see that (6.3) with t ∈ (0,∞) implies s0 + ε ≥
min{n/p, n/2}. Thus since ε > 0 is arbitrary, we must have s0 ≥ min{n/p, n/2}.

Suppose (6.3) holds with t = ∞. For 0 < δ1, δ2 < 1, we take real-valued radial
functions ϕ,ψ ∈ S(Rn) such that

suppϕ ⊂ {ξ ∈ R
n : |ξ | ≤ δ1},

∫
ϕ �= 0,

∫
ϕ2 �= 0,

suppψ ⊂ {ξ ∈ R
n : 2−1/2−δ2 ≤ |ξ | ≤ 21/2+δ2},

ψ = 1 on {ξ ∈ R
n : 2−1/2+δ2 ≤ |ξ | ≤ 21/2−δ2}. (6.4)

(We note that F−1ψ has integral zero.) For δ3 > 0 and A ∈ N, we set

DA = {	 ∈ Z
n : 2A−δ3 ≤ |	| ≤ 2A+δ3}.

Here, notice that there exist δ1, δ2, δ3 > 0 such that for any A ∈ N

ψ(2−A·) = 1 on suppϕ(· − 	) with 	 ∈ DA (6.5)

(for instance, take δ1 = 2−10, δ2 = 2−2, and δ3 = 2−3). For A ∈ N and ε > 0 we set

σA(x, ξ) = ϕ(x)e−i x ·(ξ1+···+ξN )
∑

	1,...,	N ∈DA

〈�〉m−s0
( ∏

j∈J

e−i |	 j |a j
)( N∏

j=1

ϕ(ξ j − 	 j )
)
,

fa j ,b j ,ε(x) =
∑

	 j ∈Zn\{0}
e−ε|	 j ||	 j |−b j ei |	 j |a j

ei	 j ·xF−1ϕ(x), j ∈ J ,

f j,A(x) = 2An/p j (F−1ψ)(2Ax), j ∈ J c,

where � = (	1, . . . , 	N ) ∈ (Zn)N , 0 < a j < 1, and b j = n − a j n/2 − n/p j +
a j n/p j + ε j with ε j > 0. Here, we choose sufficiently small ε j > 0 satisfying
0 < b j < n.

Firstly, we show that

‖2k·s〈ξ〉−m�kσA(x, ξ)‖L∞
x,ξ

	∞
k

� 1, (6.6)

‖ fa j ,b j ,ε‖H p j � 1, j ∈ J , (6.7)

‖ f j,A‖H p j � 1, j ∈ J c, (6.8)

with the implicit constants independent of A ∈ N and ε > 0. Since H p = L p for
2 ≤ p ≤ ∞, (6.7) follows from Lemma 6.4. Since ‖ f j,A‖H p j = ‖F−1ψ‖H p j ,
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(6.8) holds. In what follows, we shall consider (6.6). Let L j be a nonnegative integer
satisfying L j ≥ s j , j = 0, 1, . . . , N . Observing that the supports of ϕ(· − 	 j ),
	 j ∈ DA, are mutually disjoint, we see that

|∂α0
x ∂

α1
ξ1

. . . ∂
αN
ξN

σA(x, ξ)| ≤ Cα0,α1,...,αN 〈ξ 〉m−s0+|α0|. (6.9)

Then, we obtain

|�kσA(x, ξ)| �
{

〈ξ 〉m−s02−k1L1−···−kN L N ,

〈ξ 〉m−s0+L02−k0L0−k1L1−···−kN L N
(6.10)

for any k ∈ (N0)
N+1 (see Remark 6.5 below or [26, Sect. 5.3]). By taking 0 ≤ θ0 ≤ 1

satisfying s0 = L0θ0, we have

|�kσA(x, ξ)| = |�kσA(x, ξ)|1−θ0 |�kσA(x, ξ)|θ0

�
(
〈ξ〉m−s02−k1L1−···−kN L N

)1−θ0
(
〈ξ 〉m−s0+L02−k0L0−k1L1−···−kN L N

)θ0

= 〈ξ〉m2−k0s0−k1L1−···−kN L N

(6.11)

for any k ∈ (N0)
N+1. Thus, we obtain (6.6) with the implicit constant independent of

A ∈ N.
Choosing δ1, δ2, δ3 > 0 such that (6.5), we have by the conditions in (6.4)

TσA ( f..., · · · , f...)(x) = (2π)−Nnϕ(x)
∑

	1,...,	N ∈DA

〈�〉m−s0

×
∏
j∈J

e−ε|	 j ||	 j |−b j

∫
Rn

ϕ(ξ j − 	 j )
2 dξ j

×
∏
j∈J c

2An(1/p j −1)
∫
Rn

ψ(2−Aξ j )ϕ(ξ j − 	 j ) dξ j

= Cϕ(x)
∑

	1,...,	N ∈DA

〈�〉m−s0
∏
j∈J

e−ε|	 j ||	 j |−b j
∏
j∈J c

2An(1/p j −1).

Hence, collecting (6.6), (6.7), (6.8), and the assumption (6.3) with t = ∞, we see that

∑
	1,...,	N ∈DA

〈�〉m−s0
∏
j∈J

e−ε|	 j ||	 j |−b j
∏
j∈J c

2An(1/p j −1) � 1

with the implicit constant independent of ε > 0, where we used that ‖λ f ‖B M O =
|λ|‖ f ‖B M O , λ ∈ R, when p = ∞. Then, a limiting argument gives that

∑
	1,...,	N ∈DA

〈�〉m−s0
∏
j∈J

|	 j |−b j
∏
j∈J c

2An(1/p j −1) � 1,
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and thus,

2ANn2A(m−s0)
∏
j∈J

2−Ab j
∏
j∈J c

2An(1/p j −1) � 1.

Since this holds for arbitrarily large A ∈ N, we have

Nn + (m − s0) −
∑
j∈J

b j +
∑
j∈J c

( n

p j
− n

)
≤ 0.

Since b j → n/2 by taking the limits as a j → 1 and ε j → 0, we have

s0 ≥ m +
∑
j∈J

n

2
+

∑
j∈J c

n

p j
,

which implies from (6.2) that s0 ≥ min{n/p, n/2}. This completes the proof. ��
Remark 6.5 In this remark, we shall show (6.10) in detail. Also, for the sake of sim-
plicity, we write σ = σA (removed the subscript A). We first consider the latter
inequality in (6.10) for k ∈ N

N+1. Recalling that ψk = ψ(2−k ·) for k ∈ N with
suppψ ⊂ {ξ ∈ R

n : 1/2 ≤ |ξ | ≤ 2}, we see that F−1ψ satisfies the moment con-
dition

∫
xαF−1ψ(x) dx = i |α|∂αψ(0) = 0. Then, using the Taylor expansion with

respect to the ξN variable of the symbol, we have

�kσ(x, ξ) = ψk0 (Dx )ψk1 (Dξ1 ) . . . ψkN (DξN )σ (x, ξ)

=
∫

(Rn)N+1

N∏
i=0

2nki (F−1ψ)(2ki ηi )

×
{
σ(x − η0, ξ − η) −

∑
|αN |<L N

(−ηN )αN

αN !
(
∂

αN
ξN

σ
)
(x − η0, ξ̄ − η̄, ξN )

}
dη

=
∫

(Rn)N+1

N∏
i=0

2nki (F−1ψ)(2ki ηi )

×
∑

|αN |=L N

(−ηN )αN

αN !
∫ 1

0
L N (1 − tN )L N −1(∂αN

ξN
σ
)
(x − η0, ξ̄ − η̄, ξN − tN ηN ) dtN dη,

where we wrote dη = dη0dη1 . . . dηN and ξ̄ = (ξ1, . . . , ξN−1) ∈ (Rn)N−1. Repeat-
ing the same argument to the remaining variables, we obtain

�kσ(x, ξ) =
∑

|α0|=L0

1

α0! · · ·
∑

|αN |=L N

1

αN !

×
∫

(Rn)N+1

N∏
i=0

2nki (F−1ψ)(2ki ηi ) (−ηi )
αi
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×
∫

[0,1]N+1

( N∏
i=0

Li (1 − ti )
Li −1

)(
∂α0

x ∂
α1
ξ1

. . . ∂
αN
ξN

σ
)
(x − t0η0, ξ − tη) dtdη,

(6.12)

where we wrote dt = dt0dt1 . . . dtN and ξ − tη = (ξ1 − t1η1, . . . , ξN − tN ηN ). Then,
using the fact (6.9) with the inequality

〈ξ − tη〉m−s0+L0 � 〈ξ 〉m−s0+L0〈η〉|m−s0+L0|, t ∈ [0, 1]N ,

we have

|�kσ(x, ξ)| � 〈ξ 〉m−s0+L0

∫
(Rn)N+1

N∏
i=0

2nki
∣∣(F−1ψ)(2ki ηi )

∣∣ |ηi |Li 〈η〉|m−s0+L0| dη

� 〈ξ 〉m−s0+L02−k0L0−k1L1−···−kN L N

for all k ∈ N
N+1. If one of ki is zero, then by avoiding usage of the moment condition

and the Taylor expansion for the corresponding variables, we also obtain the same
conclusion as above. Hence, we see that the latter part in (6.10) holds for all k ∈
(N0)

N+1.
We next consider the former part in (6.10). Using (6.9) with α0 = 0 and the

expression

�kσ(x, ξ) =
∑

|α1|=L1

1

α1! · · ·
∑

|αN |=L N

1

αN !

×
∫

(Rn)N+1
2nk0 (F−1ψ)(2k0η0)

N∏
i=1

2nki (F−1ψ)(2ki ηi ) (−ηi )
αi

×
∫

[0,1]N

( N∏
i=1

Li (1 − ti )
Li −1

)(
∂

α1
ξ1

. . . ∂
αN
ξN

σ
)
(x − η0, ξ − tη) dt1 . . . dtN dη,

instead of (6.12), we have

|�kσ(x, ξ)| � 〈ξ〉m−s02−k1L1−···−kN L N

for k ∈ N
N+1. Now, it is also easy to see that the above estimates actually hold for all

k ∈ (N0)
N+1, which concludes the former inequality in (6.10).

6.3 Sharpness of s1, . . . , sN of Theorem 1.2

We show that the conditions on s1, . . . , sN stated in Theorems 1.2 are sharp. See also
[26, Proposition 5.2] and [27, Proposition 7.4].
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Lemma 6.6 Let N ≥ 2, p, p1, . . . , pN ∈ (0,∞], 1/p = 1/p1 + · · · + 1/pN ,
s0, s1, . . . , sN ∈ [0,∞), t ∈ (0,∞], and m ∈ R. Suppose that the estimate

‖Tσ ‖H p1×···×H pN →L p �
∥∥2k·s‖〈ξ 〉−m�kσ(x, ξ)‖L∞

x,ξ
((Rn)N+1)

∥∥
	t
k((N0)N+1)

(6.13)

holds for all smooth functions σ with the right hand side finite, where L p is replaced
by B M O for p = ∞. Then s j ≥ n/p j , j = 1, . . . , N.

Proof We only prove s1 ≥ n/p1 and the rest parts for s2, . . . , sN follow by symmetry.
As stated in the proof of Proposition 6.3, we may assume the assumption (6.13)

with t = ∞. Take real-valued radial functions ϕ,ψ ∈ S(Rn) satisfying
∫

ϕ2 �= 0 and

suppϕ ⊂ {ξ ∈ R
n : |ξ | ≤ 2}, ϕ = 1 on {ξ ∈ R

n : |ξ | ≤ 1},
suppψ ⊂ {x ∈ R

n : 1/2 ≤ |x | ≤ 2}. (6.14)

We set for A ∈ N

σA(x, ξ) = 2−As1ψ(2−Ax)e−i x ·ξ1ϕ(ξ1) . . . ϕ(ξN ),

f1(x) = (F−1ϕ)(x),

f j,A(x) = 2−An/p j (F−1ψ)(2−Ax), j = 2, . . . , N .

Firstly we shall prove

‖2k·s〈ξ 〉−m�kσA(x, ξ)‖L∞
x,ξ

	∞
k

� 1, (6.15)

‖ f1‖H p1 ≈ ‖ f j,A‖H p j ≈ 1, j = 2, . . . , N , (6.16)

for A ∈ N. By a scaling property of Hardy spaces (6.16) obviously follows. Let L j

be a nonnegative integer satisfying L j ≥ s j for j = 0, 1, . . . , N . Observing that

|∂α0
x ∂

α1
ξ1

. . . ∂
αN
ξN

σA(x, ξ)| ≤ Cα0,α1,...,αN 〈x〉−s1+|α1|〈ξ 〉m, (6.17)

we see that

|�kσA(x, ξ)| �
{

〈x〉−s1〈ξ〉m 2−k0L0−k2L2−···−kN L N ,

〈x〉−s1+L1〈ξ〉m 2−k0L0−k1L1−k2L2−···−kN L N ,
(6.18)

for any k ∈ (N0)
N+1. (See also Remark 6.7 below.) As was done in (6.11), by taking

0 ≤ θ1 ≤ 1 such that s1 = L1θ1,

|�kσA(x, ξ)| � 〈ξ 〉m2−k0L0−k1s1−k2L2−···−kN L N ,

and thus, (6.15) follows with the implicit constant independent of A ∈ N.
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From the condition of ϕ, since ψ(2A·)ϕ = ψ(2A·) for A ∈ N, we have

TσA ( f1, f2,A, . . . , fN ,A)(x) = C 2−As1ψ(2−Ax) 2−An(1/p2+···+1/pN ){(F−1ψ)(2−Ax)}N−1

for A ∈ N, which implies, with the assumption 1/p = 1/p1 + · · · + 1/pN , that

‖TσA( f1, f2,A, . . . , fN ,A)‖L p ≈ 2−As12−An(1/p2+···+1/pN )2An/p = 2−A(s1−n/p1),

(6.19)

where we should use that B M O is scaling invariant when p = ∞.
Thus, collecting (6.15), (6.16), (6.19), and (6.13) with t = ∞, we see that

2−A(s1−n/p1) � 1. Since this holds for all A ∈ N, we obtain s1 ≥ n/p1, which
completes the proof. ��
Remark 6.7 Wefirst consider the former part of (6.18). In this remark, we simply write
σ = σA. As in Remark 6.5, we observe the expression

�kσ(x, ξ) =
∑

|α0|=L0

1

α0!
∑

|α2|=L2

1

α2! · · ·
∑

|αN |=L N

1

αN !

×
∫

(Rn)N+1
2nk1 (F−1ψ)(2k1η1)

∏
i �=1

2nki (F−1ψ)(2ki ηi ) (−ηi )
αi

×
∫

[0,1]N

( ∏
i �=1

Li (1 − ti )
Li −1

)

× (
∂α0

x ∂
α2
ξ2

. . . ∂
αN
ξN

σ
)
(x − t0η0, ξ1 − η1, ξ

′ − t ′η′) dt0dt ′dη,

where we wrote ξ ′ − t ′η′ = (ξ2 − t2η2, . . . , ξN − tN ηN ) and dt ′ = dt2 . . . dtN . Then,
using (6.17) with α1 = 0 and the inequality

〈x − t0η0〉−s1〈(ξ1 − η1, ξ
′ − t ′η′)〉m � 〈x〉−s1〈ξ 〉m〈η0〉|s1|〈η〉|m|,

we have

|�kσ(x, ξ)| � 〈x〉−s1〈ξ 〉m2−k0L0−k2L2−···−kN L N

for k ∈ N
N+1. We can see again that the above estimates actually hold for all k ∈

(N0)
N+1, which concludes the former inequality in (6.18).

The latter inequality in (6.18) can be obtained from (6.12) with (6.17) by the same
way.

Lemma 6.8 Let N ≥ 2, p, p1, . . . , pN ∈ (0,∞], 1/p = 1/p1 + · · · + 1/pN ,
s0, s1, . . . , sN ∈ [0,∞), t ∈ (0,∞], and m ∈ R. Suppose that the estimate

‖Tσ ‖H p1×···×H pN →L p � ‖σ‖Sm
0,0(s,t;Rn ,N ) (6.20)
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holds for all smooth functions σ with the right hand side finite, where L p is replaced
by B M O for p = ∞. Then s j ≥ n/2, j = 1, . . . , N.

Proof We only prove s1 ≥ n/2 and the rest parts for s2, . . . , sN follow by symmetry.
We may assume the assumption (6.20) with t = ∞. We take real-valued radial

functions ϕ,ψ ∈ S(Rn) satisfying (6.14) and set for A ∈ N

σA(x, ξ) = σA(ξ) = F−1[ψ(2−A·)](ξ1)ϕ(ξ2) . . . ϕ(ξN ),

f j,A(x) = (F−1ψ)(2−Ax), j = 1, . . . , N .

For these functions, the following hold:

‖σA‖Sm
0,0(s,∞;Rn ,N ) � 2A(s1+n/2), (6.21)

‖ f j,A‖H p j ≈ 2An/p j , j = 1, . . . , N , (6.22)

for A ∈ N. As in the previous proof, (6.22) is obvious. We shall consider (6.21). Using
the fact that ψk0(Dx )[1] is equal to 1 if k0 = 0 and to 0 if k0 ≥ 1, we have

�kσA(x, ξ) = F−1[ψk1ψ(2−A·)](ξ1)
N∏

j=2

ψk j (D)ϕ(ξ j ).

Moreover, F−1[ψk1ψ(2−A·)] vanishes unless |k1 − A| ≤ 1. Hence,

‖σA‖Sm
0,0(s,∞;Rn ,N ) = sup

k=(k0,k1,...,kN )

2s·k
∥∥〈ξ 〉−m�kσA(x, ξ)

∥∥
L2

ul,ξ L∞
x

= sup
k1,...,kN|k1−A|≤1

2s1k1+···+sN kN

∥∥∥∥〈ξ 〉−mF−1[ψk1ψ(2−A·)](ξ1)
N∏

j=2

ψk j (D)ϕ(ξ j )

∥∥∥∥
L2

ul,ξ

.

(6.23)

Here, if |k1 − A| ≤ 1, we have for sufficiently large L1 ≥ 0

|F−1[ψk1ψ(2−A·)](ξ1)| � 2An〈2Aξ1〉−L1 . (6.24)

In fact, observing that

F−1[ψk1ψ(2−A·)](ξ1) = 2AnF−1[ψ(2A−k1 ·) ψ](2Aξ1)

= 2An
∫
Rn

F−1[ψ(2A−k1 ·)](η) (F−1ψ)(2Aξ1 − η) dη,

since F−1ψ ∈ S(Rn), we have for large L1 ≥ 0

|F−1[ψk1ψ(2−A·)](ξ1)| � 2An〈2Aξ1〉−L1

∫
Rn

∣∣F−1[ψ(2A−k1 ·)](η)
∣∣ 〈η〉L1 dη
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≈ 2An〈2Aξ1〉−L1 .

Moreover, we have for sufficient large M j ∈ N0 and L j ≥ 0

|ψk j (D)ϕ(ξ j )| � 2−k j M j 〈ξ j 〉−L j , j = 2, . . . , N . (6.25)

In fact, from the argument used in Remark 6.5, the Taylor expansion yields that for
M j ∈ N0

ψk j (D)ϕ(ξ j ) =
∑

|α|=M j

1

α!
∫
Rn

2nk j (F−1ψ)(2k j η) (−η)α

×
∫ 1

0
M j (1 − t)M j −1(∂αϕ)(ξ j − tη) dtdη

for any k j ∈ N. Since ϕ ∈ S(Rn), we have for large L j ≥ 0

|ψk j (D)ϕ(ξ j )| � 〈ξ j 〉−L j

∫
Rn

2nk j
∣∣(F−1ψ)(2k j η)

∣∣ |η|M j 〈η〉L j dη

� 2−k j M j 〈ξ j 〉−L j .

Since the case k j = 0 is clear, we see that (6.25) holds for any k j ∈ N0. Collecting
(6.23), (6.24), and (6.25), we have

‖σA‖Sm
0,0(s,∞;Rn ,N )

� sup
k1,...,kN|k1−A|≤1

2s1k1+···+sN kN

∥∥∥∥〈ξ 〉−m2An〈2Aξ1〉−L1
( N∏

j=2

2−k j M j 〈ξ j 〉−L j
)∥∥∥∥

L2
ul,ξ

.

Hence, by the embedding L2 ↪→ L2
ul and the inequality 〈ξ〉m �

∏N
j=1〈ξ j 〉|m|, we see

that

‖σA‖Sm
0,0(s,∞;Rn ,N )

� sup
k1,...,kN|k1−A|≤1

2s1k1+···+sN kN

∥∥∥∥〈ξ1〉|m|2An〈2Aξ1〉−L1
( N∏

j=2

2−k j M j 〈ξ j 〉|m|−L j
)∥∥∥∥

L2
ξ

≤ sup
k1,...,kN|k1−A|≤1

2s1k12An‖〈2Aξ1〉|m|−L1‖L2
ξ1

( N∏
j=2

2(s j −M j )k j ‖〈ξ j 〉|m|−L j ‖L2
ξ j

)

� 2A(s1+n/2),
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which gives (6.21). Moreover, since the conditions of ϕ,ψ implyψ(2A·)ϕ = ψ(2A·),
A ∈ N,

TσA( f1,A, . . . , fN ,A)(x) = 2An(ψ ∗ ψ̂)(2−Ax){ψ̂(2−Ax)}N−1,

which implies that

‖TσA ( f1,A, . . . , fN ,A)‖L p ≈ 2An 2An/p, (6.26)

where we should use that B M O is scaling invariant when p = ∞.
Thus, collecting (6.21), (6.22), (6.26), and (6.20)with t = ∞ and using the assump-

tion 1/p = 1/p1 + · · · + 1/pN , we obtain s1 ≥ n/2. This completes the proof. ��
The following immediately follows from Lemmas 6.6 and 6.8.

Corollary 6.9 Let N ≥ 2, p, p1, . . . , pN ∈ (0,∞], 1/p = 1/p1 + · · · + 1/pN ,
s0, s1, . . . , sN ∈ [0,∞), t ∈ (0,∞], and m ∈ R. Suppose that the estimate

‖Tσ ‖H p1×···×H pN →L p � ‖σ‖Sm
0,0(s,t;Rn ,N )

holds for all smooth functions σ with the right hand side finite, where L p is replaced
by B M O for p = ∞. Then s j ≥ max{n/p j , n/2}, j = 1, . . . , N.
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