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Abstract

We consider the boundedness of the multilinear pseudo-differential operators with
symbols in the multilinear Hérmander class Sp 0. The aim of this paper is to discuss
smoothness conditions for symbols to assure the boundedness between local Hardy
spaces.
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1 Introduction

First of all, the letter N which is mentioned in this article is understood to be a positive
integer unless the contrary is explicitly stated.

For a bounded measurable function o = o (x, &1, ..., £y) on (RHN*! the (N-
fold) multilinear pseudo-differential operator 7, is defined by

1 . N
To(f1, -5 fN)(X) = W/ e ET NG (x £, EN) l_[ fi€)dé ... dey

®HY i<
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for x € R" and fi,..., fv € S(R"). The function o is called the symbol of the
operator Ty .

The subject of the present paper is to investigate the boundedness of the multilinear
pseudo-differential operators on several function spaces. In stating this, we use the
following terminology with a slight abuse. Let X, ..., X, and Y be function spaces
on R" equipped with quasi-norms || - ||x; and || - [ly, respectively. If there exists a
constant C such that

N
7o (froeon iy <CTTUf I, fieSNX;, j=1,....,N, (L)
Jj=1

then we say that 7, is bounded from X;| x --- x Xy to Y. The smallest constant C
of (1.1) is denoted by || T || x, x--xxy—¥- If A is a class of symbols, we denote by
Op(A) the class of all operators T, corresponding to o € A. If T, is bounded from
X1 x---x XytoY forall o € A, then we write Op(A) C B(X| x---x Xy — Y).
For the spaces X ; and Y, we consider the Lebesgue space L?, the Hardy space H?,
the local Hardy space 27, and the spaces BM O and bmo. The definitions of these
spaces will be collected in Sect.2.2.

Notice that, if T, is bounded from X| X --- x Xy to Y in the sense given above,
then, in many cases, we can extend the definition of 7, defined for f; € S(R") to
that for general f; € X; and can prove that (1.1) holds for all f; € X; using some
limiting argument.

In this article, we focus on the Hérmander symbol class of Sp o-type. We recall that
the class S{)’TO(R", N), m € R, consists of all smooth functions o on (R")N*! such
that

holds for all multi-indices «g, a1, ...,any € (Ng)* = ({0, 1,2,...})". The linear
case, N = 1, is the widely known Hormander class and the following is a classical
boundedness result:

Theorem A Let O < p < oo and m € R. Then, the boundedness
Op(Syo(R", 1)) C B(h” — h?)

holds if and only if

. n n n n
mfmm{—,—}—max{—,—},
p 2 p 2

where, if p = 0o, h? should be replaced by bmo.

The “if" part of this result for p = 2 was proved by Calder6én and Vaillancourt
in [4], and then it was generalized to the case 1 < p < oo by Fefferman in [9] and
Coifman and Meyer in [5]. Finally, the boundedness for the full range 0 < p < oo
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was obtained by Miyachi in [31] and Piivérinta and Somersalo in [35]. For the “only
if” part, see, for instance, [31, Sect. 5] and [28, Theorem 1.5].

The study of the multilinear case, N > 2, originated with the paper [1] by Bényi
and Torres, where they showed that, for N = 2 and for 1 < p, p1, po < oo with
1/p = 1/p1 + 1/ p2, x-independent symbols in Sg’O(R”, 2) do not always give rise to
bounded operators from L' x LP2 to L?. Then, the condition of m € R for which the
multilinear pseudo-differential operators with symbols in the class S0 o(R", N) can be
bounded among local Hardy spaces was investigated. More premsely, the following
holds:

TheoremB Let N >2,0 < p, p1, ..., py <00, 1/p=1/p1 +---+ 1/pN, and
m € R. Then, the boundedness

Op(S§o(R", N)) C B(hP' x -+ x h?N — hP)

holds if and only if

i f2. ]S [ 2.2],

where, if pj = oo for some j € {1, ..., N}, the corresponding h?J can be replaced
by bmo.

The case N = 2 was proved by Miyachi and Tomita [32] and the case N > 3
by Miyachi, Tomita, and the author [28]. For the preceding results considering the
subcritical case, see the papers by Michalowski, Rule, and Staubach [30] and by
Bényi, Bernicot, Maldonado, Naibo, and Torres [2]. Quite recently, a generalization
of Theorem B for N = 2 considering boundedness on Sobolev spaces was shown by
Shida [37].

Remark that, in Theorems A and B, much smoothness is implicitly assumed for
symbols. In the rest of this section, we shall consider smoothness conditions for sym-
bols to assure the boundedness, which is our interest of the present paper. We first recall
the linear case. In Miyachi [31], it was shown that the smoothness condition of sym-
bols assumed in Theorem A can be relaxed to, roughly speaking, the smoothness up
to min{n/p, n/2} for the space variable x and max{n/p, n/2} for the frequency vari-
able &1. Moreover, it might be worth mentioning that these values are partially sharp
(see [31, Sect. 5]). Some results on this direction can be also found in, for instance,
Boulkhemair [3], Coifman and Meyer [5], Cordes [7], Hwang [24], Muramatu [34],
and Sugimoto [38] for p = 2, and Sugimoto [39] and Tomita [40] for 0 < p < oo.
For the multilinear case, in [26, 27], it was shown that, for the case 2/N < p < 2 and
2 < pt,..., pN < 00, the assumptions of the smoothness up to n/2 for each space
and frequency variables are sufficient to have the boundedness in Theorem B. See also
Herbert and Naibo [21, 22] for the preceding results.

The purpose of this paper is to extend the partial result on the multilinear case
stated above to the whole range of the exponents 0 < p, p1, ..., py < 0o. We shall
determine the smoothness conditions of symbols for the boundedness in Theorem B as
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weak as possible. Before stating our main theorem, we introduce a Besov type class to
measure the smoothness of symbols. In order to define this class, we use a partition of
unity as follows. We take v, ¥ € S(R") satisfying that supp g C {€ € R" : || <
2}, suppy C {§ e R" 1 1/2 < |&] <2}, and Yo + D ey ¥ (27%.) = 1, and denote
Vi = ¥ (27%) for k € N. We call this {¥}ken, a Littlewood—Paley partition of unity
on R”". Moreover, we write as £ = (£, ...,&y) € (RN and (£) = (1 + |£]%)1/2,
& € R?, to shorten the notations.

Definition1.1 Let N > 2, m € R, and ¢+ € (0,00] and let {Yy}ren, be a
Littlewood—Paley partition of unity on R". For k = (ko, k1, ..., ky) € (No)V +
s = (50,51, ...,58) € [0,000" and ¢ = o(x,&) € LO(RHNH), we write
s k= Z?’:Osjkj and

Ao (x, §) = Yy (Dx) Yk (Dgy) - .. Yy (Dey)o (x, §).

We denote by ngo(s, t;R", N) the setof all o € Lw((R”)NH) such that the quasi-
norm

1/t
_ s-k\! — t
ol 5.0 8y = { > @9 e ’"Ako(x,§>||L51.£((Rn>w>HL?(R,,)}
ke(No)N“
is finite, with a usual modification when r = oo.
Here, the space Lﬁl is the uniformly local L? space, which includes L™ (see

Sect.2.2). Using the class in Definition 1.1, the main theorem of the present paper
reads as follows.

Theorem 1.2 Let N >2,0 < p, p1, ..., py < oo, and 1/p=1/p1+---+1/pp.
If
m=min|—, - — max | —, =
p 2 = pj 2
]_
and

. (n n n on .
sozmln[—,—}, sjzmax{f,z}, j=1,...,N,

p 2 pj
then
Op (Sg'o(s. min{1, p}; R", N)) C B(h"' x --- x hPN — hP),
where, if p; = oo for some j € {1, ..., N}, the corresponding h”J can be replaced
by bmo.
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We end this section with noting the organization of this paper. In Sect. 2, we collect
some notations which will be used throughout this paper and give the definitions and
properties of some function spaces. In Sect. 3, we first display the key statements,
Theorem 3.2 and Proposition 3.4, which contain the essential part of Theorem 1.2.
Then, we prove Theorem 3.2 and also consider the boundedness for symbols with
classical derivatives. After preparing several lemmas for the proof of Proposition 3.4
in Sect. 4, we actually give its proof in Sect. 5. In Sect. 6, we consider the sharpness of
the order m and the smoothness sq, 51 ..., sy stated in Theorem 1.2.

2 Preliminaries
2.1 Notations

We denote by Q the n-dimensional unit cube [—1/2, 1/2)" and we write £Q =
[—¢/2,¢/2)", £ > 0. Then, the cubes €7 + £Q, T € Z", are mutually disjoint and
constitute a partition of the Euclidean space R”. This implies that integral of a function
on R" is written as

/Rn fx)dx = Z

/ S+ ev)ydx 2.
veZn tQ

for £ > 0. We denote by B the closed ball in R” of radius R > 0 centered at the
origin. We denote by 1g the characteristic function of a set . For 1 < p < oo, p’is
the conjugate number of p defined by 1/p +1/p’ = 1.

For two nonnegative functions A(x) and B(x) defined on a set X, we write A(x) <
B(x) forx € X tomean that there exists a positive constant C such that A(x) < CB(x)
for all x € X. We often omit to mention the set X when it is obviously recognized.
Also A(x) ~ B(x) means that A(x) < B(x) and B(x) < A(x).

The symbols S(R?) and S’ (R?) denote the Schwartz class of rapidly decreasing
smooth functions and the space of tempered distributions on RY, respectively. The
Fourier transform and the inverse Fourier transform of f € S(R?) are defined by

ff(5)=f(§)=/ e~ f(x) dx,

R4

Flfw=fw) = f e £(8) de,
Rd

2m)?

respectively. Fora Schwartz function f (x, &1, ..., &n),x, &1, ..., Eny € R", wedenote
the partial Fourier transform with respect to the x and &; variables by Fy and F;,
j = 1,..., N, respectively. We also write the Fourier transform on (R")" for the
&1, ..., &y variablesas Fy_y = Fj ... Fy.Form € §'(R"), we defined m(D) f =
Fl [mf] and use the notation m(D) f (x) = m(Dy) f(x) when we indicate which
variable is considered. For g € S(R")\ {0}, we denote the short-time Fourier transform
of f € §'(R") with respect to g by
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Vef(x,8) = /Rn e gt —x) f(0)dr. 2.2)

2.2 Function Spaces

For a measurable subset E C RY, the Lebesgue space L?(E),0 < p < o0, is the set of
all those measurable functions f on E suchthat || |l .rg) = (fE }f(x)}p d)V/P < 0o
if0 < p <ooor|fllrer) = esssup,cg | f(x)] < o0if p =00 If E =R", we
usually write L? for L?(R"). The uniformly local L? space, denoted by Lil(Rd ),
consists of all those measurable functions f on R? such that

112 ey = Sup ILf O + )2 (—1/2,1/2)0) < 00
! veZd

(This notion can be found in [25, Definition 2.3].)

For a countable set K, the sequence space ¢9(K), 0 < g < 00, is the set of all
those complex sequences a = {ag}rex such that [lallesk) = Q_rex lax| DY < 0o
if 0 < g < ooorllallgeky = supgeg lax] < oo if g = co. If K = 7", we usually
write £4 for ¢4(7™).

Let X, Y, Z be function spaces. We use the notation || f || x = || f(x)|x, when we
indicate which variable is measured. We denote the mixed norm by

17y Dz, = [ 117Gy 9l |, -

(Pay special attention to the order of taking norms.) For X, Y, Z, we consider L? or
128

Let ¢ € S(R™) be such that f]R” ¢(x)dx # 0 and let ¢;(x) = t7"¢p(x/t) for
t > 0. The space H? = HP(R"), 0 < p < oo, consists of all f € S’(R") such
that || fllzr = |l SUPg<; <00 |@r * flllLr < 00. The space h? = h?(R"),0 < p < oo,
consistsofall f € S'(R") suchthat || f |l = || supg,; <1 % f1llLr < 00.Itisknown
that H? and h? do not depend on the choice of the function ¢ up to the equivalence
of quasi-norm. Obviously H? C h?. If 1 < p < oo, then H? = h? = LP with
equivalent norms. In more details, see, for instance, Goldberg [16].

The space BM O = BM O(R") consists of all locally integrable functions f on
R™ such that

1

Il fllamo =SUP—/ [ f(x) — frldx < o0,
R IRl Jr

where fr = |R|™! fR f(x)dx and R ranges over all the cubes in R". The space
bmo = bmo(R") consists of all locally integrable functions f on R" such that

£ lbmo = sup |_Ile|/R|f(x) — frldx + sup %/le(X)ldx < o0,

[RI<1 [R|>1
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where R denotes cubes in R”. Obviously, L* C bmo C BM O holds. Also, BM O

satisfies that A fllsmo = Ml fllBmo. 2 € R,and | f(A)llsmo = | fllsmo, 2 >0
(see, e.g., [17, Sect. 3.1.1]).
Let k € S(R™) be a function such that the support of « is compact and

Zx(g—k)zl, £ e R".

keZ

For 0 < p,q < oo and s € R, the Wiener amalgam space WP is defined to be the
setof all f € S&'(R") such that the quasi-norm

1 lhwra = 106 D = ) £ gt o | o e
is finite. If s = 0, we write W74 = W;"?. The space W does not depend on
the choice of the function « up to the equivalence of quasi-norm. The space W/
is a quasi-Banach space (Banach space if 1 < p,g < co)and S C pr,q cS.If
0 < p,q < oo, then S is dense in W/ It is known that W72 is equivalent to the
(standard) amalgams W (L?, £7), where the space W (L4, £P) is equipped with the
quasi-norm

”f”W(Lq,U’) = ” ”f(x + U)“L;’(Q) ISv/a%
Also, in particular, W2 is equivalent to Lgl, since Lil = W(L?, £). See
Feichtinger [10, 11] and Triebel [41] for more details.

Some of the relations between Wsp "4 and the spaces L?, h?, and bmo will be given
below.

Lemma 2.1 Lets € Rand 0 < p, p1, p2, q1, g2 < 00. Then,

WP WP f pr< pa, g1 < g2 (2.3)
hP W(f(’;), where a(p) =n/2 —max{n/2,n/p}; 2.4)
bmo — W2, (2.5)

Proof The embedding (2.4) is given in [8, Theorem 1.1] for 1 < p < oo and in [19,
Theorem1.2] for 0 < p < 1. The explicit proofs of (2.3) and (2.5) can be found in
[28, Lemma?2.2]. O

Remark 2.2 The idea of constructing the amalgam space W (L4, £7), which, in contrast
to the L? space, treats local and global behavior of functions simultaneously, goes back
to N. Wiener [45, 46], where special cases were considered. In [23], Holland gave
systematic study including some basic properties of the amalgams W (L4, £7). (For
more details, see also, e.g., [14] and references therein.) Then, in [10, 11], Feichtinger
introduced a vastly generalized amalgams which enables us to deal with a wide range
of function spaces to be used as local or global components. He denoted them by
W (B, C) and, according to the suggestion of J. Benedetto, named the spaces W (B, C)
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as Wiener amalgam spaces in recognition of Wiener’s works. Here, the components B
and C measure local and global behavior of functions respectively. (For the detailed
definition and basic properties, see also [6, 20].) Feichtinger’s framework allows us, of
course, to treat the amalgams W (L4, £7) and to understand that the space W (FL{, L?)
is equivalent to the space W/ defined above, where FL{ is the so-called Fourier
Lebesgue space. In fact, although we omit the precise definition of W (B, C), the
quasi-norm of the space W (FL{, L) is expressed by

1 lweres ooy = I8¢ =) Fllzrs @l Lo @y

s (2.6)
= |14&Y Flg =0 £ 1N 1 | Lo o

for a window function g € S(R") \ {0}. Choosing a window g with compact Fourier
supports suitably, we see that the quasi-norm of (2.6) can be equivalent to

I gD — %')f(x)lng(Rn)!

Lo = 11D =1 £ ety | gy
This is more precisely discussed in, e.g., [10, 41]. So, from the historical point of view,
it may be a terminology with a slight abuse that we refer to only the space W/ as the
Winer amalgam space as above, because the above-mentioned spaces W (L4, £7) and
Lﬁ ; are also contained in Wiener amalgam spaces. Moreover, the space W} probably
should be denoted by W (FL?, LP), but, in this paper, we use the notation W7 just
for the purpose of simplification. For clarification with our choice of this notation, we
refer the reader to [8, 19, 36].

We also remark that the quasi-norm of (2.6) is additionally expressed as a constant
times

[146Y FIEC = O FI® 98|y
or, by choosing a window g with compact supports suitably, it is equivalent to

112D =0 F Ol 380 |y ~ 116K D = TN 1 1y

where ¢ = g(—-). One can regard the expressions above as the quasi-norm of fin a
weighted modulation space. Thus, the Wiener amalgam spaces W (FLY, LP) = W/
are sometimes understood to be the Fourier images of modulation spaces. See, e.g.,
[6, 12] for more precise discussion. More detailed properties of modulation spaces
can be also found in, e.g., [13, 15, 18, 29, 41, 44].

3 Main Result
3.1 Refined Version of the Main Theorem

In this subsection, we give a slight extension of Theorem 1.2. To do this, we shall define
the following symbol class which can be wider than the class stated in Definition 1.1.
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Definition3.1 Let N > 2. For m = (m1,...,my) € RV, s € [0,00)¥*!, and
t € (0, oo], we denote by ngo(s, t;R", N)thesetofallo € L°°((R”)N+1) such that
the quasi-norm

”U”S(')'_lo(S,tQR”,N) = Z (2s-k)t

ke(NO)N“

p 1/t
Ly, ¢ (RHN)LE(R™) }

N
[Tt ™ Aso(x. )|
j=1

is finite, with a usual modification when ¢t = oo.

The definition above does not depend on the choice of the Littlewood—Paley parti-
tion up to the equivalence of quasi-norms. Also, the same applies to the class given in
Definition 1.1.

Notice thatifmy,...,my <Oandifm|+---+my = m,then S(’)'fo(s, t;R", N) C
S(')’fo (s,1; R", N). Then, we see that the theorem below induce the statement of The-
orem 1.2.

Theorem3.2 Let N >2,0< p, p1,...,pNn <oo,and 1/p < 1/p1 +---+ 1/pn.

(1) Letmy,...,my € R satisfy
n on n n o n .
_max{p—j,§}<mj<3—max{?j,§}, j=1,...,N, 3.1
and
. [(n n al non
ml+...+mN:mln{;,z}—;max{p—j,z}. (3.2)

(@) If0<p <2 s0=n/2, ands;j =max{n/p;j,n/2}, j=1,..., N, then
Op (S0 (s, min{1, p}; R", N)) C B(h"' x - x hPN — hP).
(b) If2<p<oo,so=n/p,andsj=n/2, j=1,..., N, then
Op (S0 (s. 1: R", N)) C B(h"' x -+ x hPN — LP).
(2) Letm = —Z;VII max{n/pj,n/2}. Ifso =0ands; =n/2, j=1,..., N, then
Op (S5o(s. 1: R", N)) C B(h"' x -+ x hPN — L),

In the above assertions, if some of the p;’s, j € {1, ..., N}, are equal to oo, then the
conclusions hold with the corresponding hPi replaced by bmo.

Remark 3.3 The boundedness stated in Theorem 3.2 holds still true even if the norm
I f(x, E)”Lgl,s((Rn)N)L;o(R")
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of the classes S(’)"’O(s, t; R*, N) and S(’)’fo(s, t; R", N) is replaced by the better one

sup I f(x+vo, &1 4+vi, ..., v +Fon)l 2 Ny max(p.2) o
VO,V ..., VN EZN Ly e (@) Lx Q)

This can be seen by a careful following of the proof given in Sect. 5, but since its proof
becomes much more complicated, we leave it to the interested readers.

3.2 Key Proposition

Proposition 3.4 below plays a crucial role in our argument and contains the essential
part of Theorem 3.2. The proof will be given in the succeeding sections.

Proposition3.4 Let N > 2,0 < p,p1,...,pNy < oo, and 1/p < 1/p1 +---+
1/pn. Suppose o € L® (RN satisfies supp Fo C BRr, X B, X --- x Bg, for
Ro, Ry, ..., Ry €[1, 00).

(1) Letmy,...,my € Rsatisfy (3.1) and (3.2).
(@) If0 < p < 2, then

175 lnrt x...xhPN 2

N N
< RYPTLRI P2 T o x|
j=1 j=1

L2 (RN LE R

(b) If2 < p < o0, then

N N
, < ph/p n/2 T
I To [|nP1 sc.xnon L0 S Ry 1_[1Rj 1_[1(§/> Jo(x.§) Lzls((Rn)N)L)QC(Rn)'
j= j= '

() Letm = — Y max{n/p;.n/2). Then,

N
2 —
1 To llhrt s xhon 10 S l_[ R?/ (&) mo(x’s)“Lﬁ;,g((R")N)L?(R")'
Jj=1

In the above assertions, if some of the p;’s, j € {1, ..., N}, are equal to 0o, then the
conclusions hold with the corresponding hPi replaced by bmo.

3.3 Proof of Theorem 3.2

Boulkhemair [3] first pointed out that, in order to investigate the smoothness condition
to assure the L2-boundedness of the linear pseudo-differential operators, it suffices
to consider the boundedness for symbols whose Fourier supports are compact. Our
strategy relies heavily on his idea. We shall proceed to the proof of Theorem 3.2. We
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decompose the symbol o into the sum of Ago over k € (No)VT!. Since the support of
F(Axo)isincludedin Bg, x Bg, x - -+ x Bg, with R; =25+ j =0,1,..., N, we
see that Theorem 3.2 follows by applying Proposition 3.4 to the decomposed operators
Tro-

3.4 Symbols with Classical Derivatives

The following proposition shows that symbols that have classical derivatives up to
certain order satisfy the conditions of Theorem 3.2.

Proposition3.5 Let N > 2, m,my,...,my € R, sg,51,...,58 € [0,00), and t €
(0, oo). If a bounded measurable function o on (R")NT! satisfies

990081 - 0N o (x, E1. . EN] < (L (1] + -+ [Ew D™

or

N
020081 - 0gN o (x, £1, . En)| < [ ]+ 18D)™
Jj=1

o€ S(’fo(s, t;R*, N)oro € S(’)"’O(s, t; R", N), respectively.

To be precise, the above assumptions should be understood that the derivatives of
o taken in the sense of distribution are locally integrable functions on (R")N*1 and
they satisfies the inequality stated above almost everywhere.

for aj € (No)" with |aj| < [s;] + 1, where [s;] is the integer part of s, then

Since statements quite similar to Proposition 3.5 are already proved in [26, Propo-
sition 4.7] and [27, Proposition 5.4], we omit the proof here.

4 Lemmas for the Proof of Proposition 3.4

In this section, we collect some lemmas to prove Proposition 3.4. The following will
be used to decompose symbols, which was essentially proved in [38, Lemma 2.2.1].
The explicit proof can be found in [27, Lemma 4.4].

Lemma 4.1 There exist functions k € S(R") and x € S(R") such that suppx C
[—1,171", suppx C B(0, 1), |x| = ¢ > 0on[-1,1]" and

YokE-vxE—v) =1, §eR"

veZl
The two lemmas below play important roles to obtain the boundedness for the

multilinear Hormander class with the critical order (Theorem B) in [28]. We will
again use them in the present paper. See [28, Lemmas 2.4 and 2.5] for these proofs.

Birkhauser



40 Page 120f37 Journal of Fourier Analysis and Applications (2023) 29:40

Lemmad4.2 Let N > 2,1 <r < oo, andletay,...,ay € Rsatisfy —n/2 <aj <0
and Z?[ZI aj =n/r — Nn/2. Then the following holds for all nonnegative functions
l,...,AyonZ":
N N
Yo At A ow) [TA+ 04400 Sl Aoller@n [ T 14,1em-
V1, ..., UNEZ" j=1 j=1

Lemma4.3 Let N > 2. Then the following holds for all nonnegative functions
Al,...,AN on7":

N N
Yol ™M T 400 ST 1A 2@
Vi, euny VNEZ” j=1 j=1

For 0 < r < oo, we denote by S, the operator

— r 1/r
5. = ( / ,1 OO0 4c) @.1)

(Z>n+l

for f € S(R™). Obviously, S, is bounded on L? for p > r. The lemma below was
proved in [27, Lemma 4.1] for the case r = 2. We extend it to the general case
0<r < oo.

Lemma4.4 Let0 < r < o0 and k € S(R") satisfy suppx C [—1, 1]". Then
k(D =) f)] S Sy k(D —v) ) (4.2)
holds for any f € S(R™"), v € Z", and x, y € R" satisfying |x — y| < 1.

Proof Taking ¢ € S(R") satisfying ¢ = 1 on [—1, 1]" and suppe C [-2,2]", we
have

KD —=v)f(x) =D —=v)k(D —v)f(x).

If 0 < r < 1, the Nikol’skij inequality (see, e.g., [42, Sect. 1.3.2, Remark 1]) gives

k(D =) f @) < | F o@D =) f = 2]

Ll (Rn

S |E 0@k - -2

L' (R) :

Here, we remark that the implicit constant above is independent of x and v. Since
¢ € SR and S, (f)(x) ~ S,(f)(y) for [x — y| < 1, we have

| @@ = e -2

oy S S D =N
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~ S k(D =) ().
Hence, we obtain (4.2) for 0 < r < 1. If 1 < r < oo, the Holder’s inequality gives

1/r'+1/r

|MD—wf&nsAwaWX@| (D =v) f(x = 2)|dz

r 1/r
s([1Fo@lko-vre-al &)
Rﬂ
S S k(D =) ().

Hence, using again that S, (f)(x) ~ S,(f)(y) for |x — y| < 1, we have (4.2) for
1 <r <oo. O

The lemma below may be well-known (see [27, Sect. 2.3]). Also, the readers familiar
with Wiener amalgam spaces may realize that the following inequality is immediately
deduced from the embedding W? 2es hP 0 < p < 2, proved in [19, Theorem 1.2].

Lemma4.5 Let0 < p < 2. If g € S(R") satisfies that |g| > ¢ > 0 on [—1, 1]" with
some positive constant c, then

1 e ey S WV f (e )2y oy
Proof Since W (L2, ¢P) < hP for0 < p < 2(see[27, Sect. 2.3]), it suffices to prove
1 lwzz,ery S 1Ve f G zgn gy 4.3)
Since |g(x — y)| > c for x, y € Q, it holds that
1wz, = 1F G+ 02 0penn S I8G = 9 F G+ 020y @
for any y € Q, which implies from the embedding L?(R") < L?(Q) that

||f||W(L2,€P) Slgx =y fx+ W”LE(Q)Z"Z(Z”)L?(Q)
<llg&x=yfx+ V)”L)Z((Rn)ef(zn)[‘f(g)-

By recalling the definition of V, stated in (2.2), the last quantity is identical with
llg(x — )’)f(x)”L)Z((Rn)Lf(Rn) = ||ng()’s g)”Lg(R")Lf(R")'
This completes the proof of (4.3). Here, note that the opposite inequality of (4.3)

holds. However, since the equivalence is unnecessary here, we omit the detail. O

The following lemma was already given in [33, Lemma 3.2] for the case p = 2
and R = 1. We extend it to a bit more general form. Moreover, we remark that the
inequality below implies the embedding L? — WP’P/, 1 < p < 2, proved in [8,
Theorem 1.1].
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Lemma4.6 Let2 < p <00, R>1,and ¢ € SR"™). Then

Jo(=%) 70

Proof With the notation ® = F~ !¢, the expression (2.1) with £ = 27 yields that

R/ P
@ Ll) (Ry,) ”f”LP Rn)-

D— -
(=)0 =R fR T D(RY) f(x — y) dy

= Rn f @iy.v{
2w Q

We realize that the function ), .n ®(R(y+2mV")) f (x —y—2mv’) is 2w Z" -periodic
with respect to the y-variable. Hence, we have by Hausdorff—Young’s inequality

(Pl s w [

Since Y~ iczn [P(R(y+27v")| < 1forany y € R" and R > 1, by applying Holder’s
inequality to the sum over v/, the integral of the right hand side is bounded by

Z O(R(y +27v)) flx —y — 2;11/)} dy

V' ez

’

dy.

> @ (R(y +210)) fx —y — 27V

V' ez

/2 . > @ (R +27))| | f(x =y 22| dy = IO R)IIf (x —y)l”/IlLl_,

v ezt

where we again used (2.1) in the identity above. Therefore, we obtain

lo(=%)

Integrating over x, we have

(%

<RI RRYIF =1 -

i@, S R NORIS = D1

et
~ 1 P
~ RV

which completes the proof. O

5 Proof of Proposition 3.4

In this section, we will use the following notation: & = (£1,...,&x) € (RM)N, v
W1, ...,vy) € (ZMN, and d& = dE ...dEy. Also, we remark that, for any p, Dj
(0, oo] satisfying 1/p < 1/py + --- + 1/py, we can choose p; € (0,00], j

hm ol
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1,..., N, such that

1 1 1 ~
p D PN

In fact, for instance, if p = oo, then we can take 17] = 00, and if p < oo, then we can
take

1 1 1 1 1 \-1
LI NI
Pj P Pj D1 PN

Now, we shall give a proof of Proposition 3.4. First, we decompose T, as follows.
By Lemma 4.1, the symbol o can be written as

N N
o, &)= Y o O[[cE—vixE —vp= ) o &]]rE —v)
ve(ZMN j=1 ve(@mN j=1
with
N
oy(x. &) =o(x. &) [[ x & —vp).
Jj=1
Then, by denoting the operators k(D — v;) by va, j=1,..., N, we can write as

To(fi, o ) = Y To, (D =) fi, ..., (D = vy) fy) (x)

ve(ZmN

= Y To, @y fise Doy SR

VG(Z")N

5.2)

Here we remark that, for 0 < p,g < oo and s € R, it holds that |[(v)*0y, fllearr <
Il fllyp-a, since suppk is compact. Now, this Ty, (L, fi, ..., Ly fiv) satisfies the
following inequality.

Lemma5.1 Let N > 2. For j=1,...,N, letm,mj € (—00,0], r; € (0, 00), and
Ro, R;j € [1, 00). Suppose o is a bounded continuous function on RN satisfying
supp Fo C Bry X Br, x -+ X Bg, and write W (&) = (§)" or ]—]?’:1(5]-)’”-/. Then,

|TU'V(DV1f17"'7|:’UNfN)(x)|

N
SWOIWE o082, q@nyreen [T18, @y o +)le
5 ]:1 T./ J

holds for any x, y € R" satisfying |x —y| < 1, where Ag; = Z"N[-2R; —1,2R; +
1"
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Proof Since the support of (Fj
x € R",

NOv)(x, -) isincluded in Bag, X - - X Bag, forany

.....

T = Tgv(Dvlfl, ...,DvaN)(x)

N
1
/(Rn)N (.7:1’,,,,1\/0“)()6, 2) 1_[ Uy, fi(x +zj)dz

= N
(2m)Nn il

N

1

~@ni /aw (i) 0. 2) [T Lo, @) O £ 5 + 7)) dz.
=1

Since the ball B, R, is covered by a disjoint union of the unit cubes 7 + Q, 7 € A R
the characteristic function 1, R; is bounded by the sum of 19(- — 7) over 7 € Ag;.
This yields

N
IT| < /(w (Fi.von) @ )| [ [ Loae, @) [B, £ 0+ 2))] dz
j=1

(5.3)
N
=y ey f(,,)NWl ,,,,, von &, )| [ [ Loy — ) Oy, fix + 2))| dz.

T]EARI TNEARN Jj=1

Notethat|(x+z;)—(y+7;)| S lif[x—y| S landz;—7; € Q =[—1/2,1/2)". Then,
by Lemma 4.4 and the Cauchy—Schwarz inequality, the integral above is estimated by

N N
(]‘[ Sy (@, FHG + q)) /(R ” [(Fr..von . )| [[1oG) — 1)) dz
j=1

j=1
Srj(Dijj)(y+fj)) /QN |(F1,...Now) (x, 2+ T)| dz (5.4)

z(f[l

where we wrote T = (11, ..., Ty ). Combining with (5.3) and (5.4) and then using the
Cauchy—Schwarz inequalities to the sums with respect to the 7;’s, j =1,..., N, we
have
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N
TS Y - ) (Hsrj(mv,.f,-xyﬂ,)u(ﬂ Vo) (.2 D) 2 o)

‘EIEAR TNEARN j=1

< <1_[ ”Sr/ (Dv]f])(y + Tj)”ez (AR )” («7:1 ..... NO'v)(.x Z+ T)”LZ(QN)[Z((Z);)N)
j=1

(5.5)

Here, we apply (2.1) to the L%K%-norm and then use Plancherel’s theorem to have

(5.6)
te(ZMN oY
= | Freav o) & D) 2 gy = llow (i, £>||L2((R,Z)N)

Substituting the identity (5.6) into (5.5), we have

N

IT1 5 llow (e, &)l 2 nyy [T1s, @06+ r,)H,zz an, (5.7)
j=1
In what follows, we shall prove that
Suﬁ? llow(x, E)”LZ((Rn)N) SWOIIWE)™ U(x E)”LZ ((Rn)N)Loo(Rn) (5.8)
xeR”?

for v € (Z")N. By using (2.1) as in (5.6), we have
0w )z = W) W) o (g + )

N
X HX(";"j +uj— Vj)‘
j=1

LE@M)G,(ZmN)

SWOWE -+ WE+n -

N
x o (& + ) [ ] x + s = v))|
j=1

LZ QN)(Z (Zn)N)

Here the inequality above holds true since m, m; € (—oo, 0] are assumed. Since
x € S(R™), for some sufficiently large number L > 0, the L2¢2-norm above is
bounded by
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N
-1 -1 . aA—L
\HW@+u>oms+uﬂwm—v>11w, D7 oma
j:
< =l
NHW@)G<¢)%J
which gives (5.8). Therefore, by (5.7) and (5.8), we complete the proof. O

Now, we shall proceed to the estimates of the operators considered in Proposition
3.4. In order to simplify the notations appearing in Lemma 5.1, let us denote

o |m = ||(§>_m0(x, €)||L515((R”)N)L§°(R")’ 5.9)

N
oln = | [T ™ 0.8 (5.10)
j=1

L2 ((RHV) LR
and further for 0 < p; <ocand0 <r; < o0
Fy7 () = S ()P0, £;)(0),  a(p)) =n/2 —max{n/2,n/p;}. (5.11)

5.1 Proof of Proposition 3.4 (1)-(a)

Take a real valued function g € S(R") satisfying |g] > ¢ > 0 on [—1, 1]" and
suppg C Bj. We have by Lemma 4.5 and duality

1o Cfrvees e S WVelTo (i ADICE Ol 2oy 0 e

(5.12)
= sw | [ VTt ol oh©dc]|
heL2®n) ' JR” LY(R™)
Hence, in what follows, we consider
h=A¥%UMﬁ~~JMK&OMOd§ (5.13)

for x € R" and h € L*(R"), which is decomposed by (5.2) as

=y Vel To, @y f1 -, Doy NI, ) h(8) dg.
Rn

ve(ZMN

Here, we shall observe that

supp Vel Ty, (O, f1. ... Doy S, ) C{E € R 1|6 — (01 + -+ +vw)| S Ro}-
(5.14)
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In fact, since supp Fooy (-, §) C Bg, and suppk (- —v;) C v; +[—1, 1], the identity

f[TO'v(DWfls 7|:|vaN)](§)

_ 1
- (2m)Nn

N
/(-Rn)N (}—OGV)(C — &+ +5;'N),E) HK(SJ- — pj)fj(%'j)dg
j=1

implies that

supp F[To, @y, fiv ..., Oy fI C{¢ €R" 1 |¢ — (i 4+ -+ +vw)| S Ro}
(5.15)

Hence, regarding the short-time Fourier transform given in (2.2) as

Vel To, Oy f1o - Dy SN, §) = Flg (- — )T, (L, f1, - Dy fn)1©),

we see that (5.14) holds. Now, we take a function ¢ € S(R") satisfying ¢ = 1 on
{¢ € R" : |¢| < 1}. Then, the expression I considered in (5.13) can be written as

= 5 [ VelTa @ fie D e, 0
Rn
ve(Zm)N
SRR AT
% Ro

Jne)de

=) /g(r)Tgv(Dvlfl,...,DvaN><x+z)

ve(Z”)N R"

X .7-'[g0(‘ — (1 +R;). T l)N))h](x +1)dt.

By (2.1), we can further rewrite the above as

=% > fg(u+t)Tav@vlfl,...,DVNfN)(x+u+r>
weZr ye@mn ¥ 2 (5.16)

xfp(_WHg“+w»4@+u+0m.

Now, we shall actually estimate the expression in (5.16). Using the fact that, for
sufficiently large L > 0, |g(u + 1)| < ()~ % holds for t € Q, we have

HEDIEDS fQ|g(u+r>||Tav<Dvlf1,...,DvaN)<x+u+t>|

WEL" ve(ZMN

47@(‘“”@”+W64u+u+ﬂm
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Sty /|Tav(Dvlf1,...,DvaN)(x+u+z>|

WEZL" ve(ZmN
x ‘f[go(' T I vN))h](x tu +t))dt.
Ro

Since [(x + u+1) — (x+ )| < 1forr € Q, Lemma 5.1 with W (§) = ]_[yzl(éj)’”/
yields that

|To, @0, f1. - Doy fN) (& + 1+ 1)
N

Slolm [ T)™ |8, @y, £ +,U«+Tj)||@z (Ar,
j=1

holds for any t € Q, where we used the notation (5.10), and thus,

IS lolm Y ™t > ]_[ )i ||Sr,(Dv,f,)(x+u+f;)||ez (s,
WEL" ve(ZmN j=1
— i)
fo‘f[w( z )h](x—l—u—i—t)‘dt.
(5.17)

Here, we observe from the notation (5.11) that
S @y, fi) = ()PP, (w200, f7) = () PO ET L (5.18)

Moreover, recalling Q = [—1/2, 1/2)", we have by the Cauchy—Schwarz inequality
and the Plancherel theorem

/Q’f[w(' — 1 +"'+”N))h](x+u+t)’dr

Ro
=+ N)
< ]—'[ ( )h] t 5.19
_” ¢ E CHutn] e, (5.19)
= o (5
B L2RY’
Gathering together (5.17), (5.18), and (5.19), we obtain
1 Slolm Y ()"
WEL!
m-—a(p) Pjirj — it 4oy
: ve(ZZ")N]l_[l / / ”F (X+M+fj)le 5 () ‘(p( Ro >h L2RY)
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Since the assumptions (3.1) and (3.2) imply respectively that —n/2 < m j—a(p;) <0
and Y3 (mj — a(p;)) = n/2 — Nn/2, we have by Lemma 4.2 with r = 2

)|

and further have by using that |¢((x — v)/Ro) ||£% < Rg/z for any x € R"

1 Zlohn 3 00~ o

/g

122 1_[ |F TJ)“ez (AR;)E,”

N
115 R Pzl 30 00~ TR Gt s ag - (520
nezn j=1

Collecting (5.12), (5.13), and (5.20), we obtain

1o i )l S RGPl | D ) H LSRR ] PRI
J 4

r’
v llL
WUEL! J A

Apply the embedding ¢™™1-7} < ¢1 to the sum over y and choose L > n/ min{1, p}.
Then, by Minkowski’s inequality, the L quasi-norm above is bounded by

N
H (/‘L)_L H ]1:[1 ”vaj]’” (x +un+ Tj)”e%/-(ARj)Z%j 1%

gmint1.p)

N
~ H 1_[1 Hvaj]’rl(x + Tj)He%/(ARj)K%j P
j= ) y

We take p; € (0,00], j = 1,..., N, satisfying (5.1) and use Hélder’s inequality to
have

N
n/2 pjirj -
1T (froes e S R 10l ]"[1 A PN T
/:
. min{2, p;} 2 . . ~ . by .
Using thatﬁrj s ZTJ_, sincemin{2, p;} < p;, we have by Minkowski’s inequal-
ity
pPjirj ) PjTj ~
IFS ™ G Dl (4 50 = IF G Dl iy o5
' 5.22)
Di.ri max{n/2,n/p;} pDisti (
<INy 5 e, R R g 10

Here, recall the definition of the operator S, from (4.1) and the fact which7; € (0, co)
can be chosen arbitrarily. Then, by taking r; < min{1, p;}, Minkowski’s inequality
for integrals implies
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Pjirj ;
1ES N i = 1Se, (o)™ P00, fll 15
J J

—(n+1 ; Tj
< (Lo oo, sl 5 a)
vj X

~ )P0 fillg o S I
J

1/r;

[ o o, gy - )" ay

eié’j ij/’j

U, (5.23)

B
Waip))

Use (2.3) with p; < p;, and then use (2.4) if p; < oo and (2.5) if p; = co. Then we
have

i,z SUFN e S I Fillges (5.24)

a(pj) G(Pj)

where 1”7 can be replaced by bmo when p; = oo. Hence, gathering (5.22), (5.23),
and (5.24), we obtain

P 2’ .
IES (4 )l < RPN (5.25)

i N

(AR Ly J

Lastly, substituting (5.25) into (5.21), we obtain
a {n/2.,n/pj}
2 maxi{n/2,n i

1Ty (fiveon S0 S lolm R [T R N il
j=1
which completes the proof of Proposition 3.4 (1)-(a).

5.2 Proof of Proposition 3.4 (1)-(b)

We take a function ¢ € S(R") satisfying ¢ = 1 on {¢ € R" : |¢| < 1}. By (5.2) and
(5.15), we have

”TO'(fl""’fN)”LP
=sup | Y. AnTov(Dvlfl,...,DvaN)(x)h(x)dx

/
helL?P ve(ZmN

D+vi+---+vy
Ro

= sup
heL?’ ve(ZmN

[ 10 @i B o )it dx
Rn

(5.26)
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In what follows, we consider

D
= 2 [ @ufi B @Y Y a

R
ve(Zn)N 0
(5.27)

Here, observe that Lemma 5.1 holds for y = x. Then, by Lemma 5.1 with W (&) =
]_[;y:1 (€;)™/ and the notations (5.10) and (5.11), we have

T <10 |m Z / ]_[v, mfllSr,(Du,f])(err])llez (Ag))

ve(le)N
D+vi+---+wvn
x "p( Ro )

h(x)‘dx

|U|m/ Z 1_[ m/—Ol(P;)”FPJ rj(x—i—‘lf])sz (Ak))

ve(ZmN j=1
D
w (B2 NN
Ro

Note here that (3.1) and (3.2) imply respectively that —n/2 < m; — a(p;) < 0 and
Zj»v:l (mj—oa(p;)) =n/p—Nn/2. Then, using Lemma 4.2 withr = p and Holder’s
inequality with p; € (0, oo] satisfying (5.1), the integral above is estimated by

J.
<%

which implies, from Lemma 4.6, that

(2o

PjsTj .
p U IF @+ T2 (a4

'p‘.
G (ARG Ly

H IES"" (x + 1))

ey

N
n/p pjrj . _
115 Ry Al ol [ TR Gt el e
j=1 J J J
Since?2 < ﬁj < ooforthecase2 < p < oo of this subsection, Minkowski’s inequality
gives

. B i
I (4Tl < IFET @I, 5 ~ R

PjTj
Fl
2, (Mg, L é%ij-’Z%j(AR,) 157 g

LPit
J

) Birkhduser



40 Page240f37 Journal of Fourier Analysis and Applications (2023) 29:40

Moreover, we have by (5.23) and (5.24)

., . 2 2
IFS"" (e + ) R f1,5,2 S R

oz(])

||fj||h"] s

2 (Mg L

where h”/ can be replaced by bmo when p; = co. Gathering the above inequalities,
we obtain

N
2
11 S 1o lm R TT R0 £illes Ul
j=I

where h?J can be replaced by bmo when p; = oco. Combining the above inequality
with (5.26) and (5.27), we complete the proof of Proposition 3.4 (1)-(b).

5.3 Proof of Proposition 3.4 (2)

By using (5.2) and Lemma 5.1 with W (&) = (§)™,

To(fio o @IS D T, @y fin -, Doy S )]

ve(ZmN

Slolm Y (T4l +-+lvwl) H\!Sr](mv,f])(xﬂj)luz (s,
ve(ZmN Jj=1

where |0 |, is as in (5.9). Since m = —Nn/2 + Z —1a(pj), where a(p;) < 0 (see
(5.11)), the sum over v is bounded by

=

Sl o) T s, @, f) (x+rj)||£2 (M)
vG(Z")N ]=1

N
—NnJ/2 DjTj
= Z (L+ il + -+ lowl) " l_[ £y (x + l'j)”z%j(ARj)
ve(@mN j=1

(for the notation F), PiTi

by

,see (5.11)). By Lemma 4.3, the sum above is further estimated

Pjs
l_[ I Fo; 7 J(X+Tj)||e%j(ARj)e%j,
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which yields that
N
1T (fr - @IS lobn [TIRTY 4 Tl (g e, - (5.28)
Jj=1
As in (5.25), we shall show that
. 5
sup IR (e + )l gy < R lns (5.29)
xeRn ’ Joo

where h”7 can be replaced by bmo when p; = ooc. Since (5.23) holds for pj = oo,
we have

PjTj n/2 pj:rj n/2
1Fo" (x + Tllez a1 S RCIR ]||zgjL°<> S R; ”fj”WSfiﬁ)'
J

Here, since pj < 00, j =1,..., N, the embeddings (2.3)—(2.5) of Lemma 2.1 yield
that

il SISl pi2 S N illRess
alpj) a(pj)

where 4%/ can be replaced by bmo when p; = oo. This concludes (5.29). Therefore,
substituting (5.29) into (5.28), we obtain
N
2
1To (froeeon Sl S ol [T R £5 ] s

J=l1
with h?J replaced by bmo when p; = oo, which completes the proof of Proposition
34 (2).
6 Sharpness

In this section, we consider the sharpness of the conditions of the order m € R and
the smoothness s = (59, 51, ..., sy) € [0, 00)N ! stated in Theorem 1.2.

6.1 Sharpness of m of Theorem 1.2

In this subsection, we show the following.

Proposition6.1 Let N > 2, p, p1,...,py € (0,00], 1/p < 1/p1 +---+ 1/pn,
m e R, sg,S1,...,5v € [0,00), and t € (0, o). If

Op(Sg'o(s. 1; R", N)) C B(H' x --- x HPN — LP),
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with L? replaced by BM O when p = oo, then

N
n n n o n
mfmin{—,—}— max —,—}. (6.1)
p2 ; pj 2

This is immediately obtained by the inclusion ngO(R", N) C Sf)’fo(s, t; R", N)
stated in Proposition 3.5 and the following theorem proved in [28, Theorem 1.5].

Theorem6.2 Let N >2,0 < p, p1,...,py <00, 1/p <1/p1+---+1/py, and
m e R If

Op(ng()(R", N)) C B(HP' x --- x HPN — LP),
with L? replaced by BM O when p = 0o, then (6.1) holds.

6.2 Sharpness of sg of Theorem 1.2
In this subsection, we show the following.

Proposition6.3 Letr N > 2, p, p1,..., pNy € (0, 00], so,S1,...,5ny € [0,00), t €
(0, o0}, and

N
. (n n} { n n
m=min{—, —t — max { —, —t. (6.2)
p 2 ]Z:% pj 2
Suppose that the estimate

ITo e x.xmrny e S ||2k‘s||<§>_mAk0(x»§)||L§?E((R")N+l)”z;c((NU)NH) (6.3)

holds for all smooth functions o with the right hand side finite, where L? is replaced
by BM O for p = oo. Then so > min{n/p, n/2}.

To show this, we will use the following lemma which was given by Wainger [43,
Theorem 10] and by Miyachi and Tomita [32, Lemma 6.1].

Lemma6.4 Let0 <a < 1,0 <b <n,and p € S(R"). For € > 0, set

fape@)y= Y e Mk PeM e g (x).
keZm\{0}

Ifl<p<ocandb>n—an/2—n/p+an/p, thensup._q || fa,p.ellLr@r) < 00.

Now, let us begin with the proof of Proposition 6.3. See also [27, Proposition 7.3].
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Proof In this proof, for p; € (0, oo], we define the sets J and J¢ by
J={je{l,....N}:2<pj<oo}, Ji={jefl,....N}:0<p; <2}.

It is sufficient to show that the condition so > min{n/p, n/2} is deduced under
the assumption (6.3) with ¢ = oo. In fact, once this is proved, then replacing s; by
si+ee>0,j=0,1,..., N, we see that (6.3) with r € (0, c0) implies 5o + € >
min{n/p, n/2}. Thus since € > 0 is arbitrary, we must have so > min{n/p, n/2}.

Suppose (6.3) holds with # = co. For 0 < §1, 62 < 1, we take real-valued radial
functions ¢, ¥ € S(R") such that

suppg C {& e R" : |E] < 81}, /w#o, /qﬂ#o,

Suppw C {s € Rn : 271/2762 < |é:| < 21/2+62}’
=1 on (R :2 /20 < g <21/2-%, 64)

(We note that F~ 'y has integral zero.) For 83 > 0 and A € N, we set
Dy ={teZ":247% < |g <2415y,
Here, notice that there exist 81, 82, 63 > 0 such that for any A € N
Y2 4) =1 on suppe(-—£) with £ € Dy (6.5)
(for instance, take §; = 2719, 8, =272, and 83 = 273). For A € Nand € > 0 we set

) N
oalx, &) = (p(x)efix~(~§1+~~+§1v) Z (Z)m*SO( 1_[ e7i|(j|a/ ) ( l_[ & — Zj)),
j=1

L1y, INEDY jeJ
fapppe@) = > e gy bl T F (), e
£;€Zm\{0)
fiatx) =24Pi(Flyy ), je e,

where £ = (£1,...,4n) € (ZMHN,0 < aj < l,andb; =n—ajn/2 —n/p; +
ajn/p; + ¢; with ¢; > 0. Here, we choose sufficiently small £; > 0 satisfying
0<bj<n.

Firstly, we show that

125 (6) ™" Aoa (x, ©)llx e S 1. (6.6)
I fay by ellgrs ST, €, ©6.7)
Ifjalges ST e e, (6.8)

with the implicit constants independent of A € N and € > 0. Since H” = L? for
2 < p < 00, (6.7) follows from Lemma 6.4. Since | fj allgr; = ||.7-"_11//||Hpj,
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(6.8) holds. In what follows, we shall consider (6.6). Let L ; be a nonnegative integer
satisfying L; > s;, j = 0,1,..., N. Observing that the supports of (- — £;),
L; € Dy, are mutually disjoint, we see that

000" ... 05 oA (x, §)| < Cag ...y (§)"0H0L (6.9)

Then, we obtain

<£)m—s02—k1L1—-~—kNLN’

|Agoa(x, &) S {<§>m—xo+L02—k0Lo—k1L1—---—kNLN (6.10)

forany k € (Ng)V*! (see Remark 6.5 below or [26, Sect. 5.3]). By taking 0 < 6 < 1
satisfying so = Lbp, we have

|Akoa(x, &) = |Agoa(x, ©)'"|Agoa(x, §)|°

< <<$>m—s02—k1L1—..._kNLN)]700 ((E)m—so+L02—koLo—k1L1—---—kNLN)GO (6.11)

— (S)mz_koso_lel_“‘_kNLN

forany k € (No)V*+1. Thus, we obtain (6.6) with the implicit constant independent of
AeN.
Choosing 61, 82, §3 > 0 such that (6.5), we have by the conditions in (6.4)

Toy(fonoo s fO) = Q) Vo) Y (@)
x [Te " 1e;17 fRn Q& — €)% dg;
jeJ

x [T 24n/ei=D /R Qe (€ — £)) dE;

jelJ¢

= Cop(x) Z (()m—So l_[ e—G\ljllgjl—bj l—[ 2An(l/pj—1).

l1,..., INEDZ jedJ jeJe

Hence, collecting (6.6), (6.7), (6.8), and the assumption (6.3) with ¢ = oo, we see that

Z <e>mfso Hefewj\'ejlfbj l_[ 2An(1/pj71) <1

Lly...y InNEDY jeJ jeJe¢

with the implicit constant independent of € > 0, where we used that ||Af|pyo =
M fllBmo, A € R, when p = co. Then, a limiting argument gives that

Z (050 1—[ 1|7 1—[ 2An(1/pi=1) < 1

L1,y InNEDY jeJ jelJe¢
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and thus,
2ANn2A(m—s0) 1_[2—Abj 1_[ 2An(1/pj—1) < 1.
jeJ jeJe¢
Since this holds for arbitrarily large A € N, we have
n
Nn—i—(m—so)—ij—}- Z (——I’l) <0.
jeJ jeae P
Since b; — n/2 by taking the limits as a; — 1 and ¢; — 0, we have
n n
> — _
so_m+Zz+ Z pj’
jeJ jeJe
which implies from (6.2) that so > min{n/p, n/2}. This completes the proof. O

Remark 6.5 In this remark, we shall show (6.10) in detail. Also, for the sake of sim-
plicity, we write ¢ = o4 (removed the subscript A). We first consider the latter
inequality in (6.10) for k € NV*! Recalling that ¥, = ¥ (27%.) for k € N with
supp ¥ C {€ € R" : 1/2 < |&| < 2}, we see that F~ !4/ satisfies the moment con-
dition f x*F~ 1y (x)dx = i1*19%y(0) = 0. Then, using the Taylor expansion with

respect to the &y variable of the symbol, we have
AkO'(X, g) = 1//ko (Dx)l/jkl (Dél) e WkN (DEN )O'(X, E)
N
= / [T2% Feting
( n)N+1 i=0

— aN -
x{o(x—no,s—m— > I g ) - . E e fd

len|<Ly

N
— nk[ —1 k,‘ .
= [ IT2 )

— an 1 _
x Y ) Ly(1 =)™ (05 o) (x =m0, & — 7, v — tvnw) dindn,
O(N! 0 &v
len|=Ly

where we wrote dn = dnodn; ...dny andé =(,...,En) € (RMN-L, Repeat-

ing the same argument to the remaining variables, we obtain

Ako(x, )= Y % > i,

. N -
leo|=Lo len|=Ly

N
g /< e [T2% F @b n™
i=0
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N
X / . (]_[Li(l - t,-)L,-_1>(agoagn 05N o) —tomo, & — ty) didn,
[0.11 i=0

(6.12)

where we wrote dt = dtodt; ...dty and & —tn = (61 —t1n1, ..., En —tynn). Then,
using the fact (6.9) with the inequality

(& — egymsotho < gym=sotLo gy Im=sotLol - ¢ ¢ [0, 1]V,

we have

I el [T 2% [ =1l iy

(]Rn)NH i=0

S (g)m7S0+L()2 koLo—k1L1—-—kynLy

for all k € NV*+1_ If one of k; is zero, then by avoiding usage of the moment condition
and the Taylor expansion for the corresponding variables, we also obtain the same
conclusion as above. Hence, we see that the latter part in (6.10) holds for all k €
(NO)N +1.

We next consider the former part in (6.10). Using (6.9) with &g = 0 and the
expression

Ago(x. &)= ) % > %

! ay!
leer|=Ly len|=Ly

N
x / 2" (F @ ono) [ T 2% (7~ @) (i)
(Rn)N+l

i=1
/[0 oy (HL (11—t _1)( e o) (x =10, & — tn) dry ....diydn,
instead of (6.12), we have
|Ako (x, )] < (g)" 027 fikim kvt

for k € NV*+!, Now, it is also easy to see that the above estimates actually hold for all
k € (No)V*+!, which concludes the former inequality in (6.10).

6.3 Sharpness of sq, ..., sy of Theorem 1.2

We show that the conditions on s1, . .., sy stated in Theorems 1.2 are sharp. See also
[26, Proposition 5.2] and [27, Proposition 7.4].
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Lemma6.6 Ler N > 2, p,p1,....,pn € (0,00], 1/p = 1/p1 + --- + 1/pn,
50,81, --+,5SN €[0,00), t € (0, 00], and m € R. Suppose that the estimate

1Tl sceexctirw—pr < [ 251067 Do (v, )l s vy [ gaogyy
(6.13)

holds for all smooth functions o with the right hand side finite, where L? is replaced
by BMO for p =00. Thens; >n/pj, j=1,...,N.

Proof We only prove s > n/pj and the rest parts for s2, .. ., sy follow by symmetry.
As stated in the proof of Proposition 6.3, we may assume the assumption (6.13)
with t = oco. Take real-valued radial functions ¢, ¥ € S(R") satisfying [ @> # 0and

suppp C{§ eR": || <2}, ¢=1 on {§ eR":[§] <1},

n (6.14)
suppy C {x e R" : 1/2 < |x| <2}.
We set for A € N
oa(x. §) =271y 2 e g6 . p(En),
) = F o)),
fia) =27"PF )27 ), j=2,... N
Firstly we shall prove
125 (&) ™" Akoa (. )l S 1. (6.15)
I fillae = A fjallgrs =1, j=2,...,N, (6.16)
for A € N. By a scaling property of Hardy spaces (6.16) obviously follows. Let L ;
be a nonnegative integer satisfying L; > s; for j =0, 1, ..., N. Observing that
02095 ... 9gN oA (x, &)| < Capuay...oary (¥) ()™, (6.17)
we see that

(x)—s1 <zg->m 2—k0L0—k2L2—--~—kNLN ,

[Aroa(x,8)] < { (6.18)

(x)—s1+L1 (J;->m 2—k0L0—k1 Li—kyLo—-—knLy ,

for any k € (No)V +1_(See also Remark 6.7 below.) As was done in (6.11), by taking
0 <6; <1suchthats; = L6,

|Akoa(x, §)| < (g)"2 ot mlatam sty
and thus, (6.15) follows with the implicit constant independent of A € N.
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From the condition of ¢, since ¥ (24-)¢ = ¥ (24.) for A € N, we have
Toy (fis faas oy fr,a) () = € 2741y 274y 27 An/pat U0 (=l (27 AV
for A € N, which implies, with the assumption 1/p = 1/py +--- + 1/pn, that

I To, (f12 foas s fna)|Lp A2 27 AS1 27 AR P2t PN g AR P — p=Alsi=n/p1)
(6.19)

where we should use that BM O is scaling invariant when p = oo

Thus, collecting (6.15), (6.16), (6.19), and (6.13) with ¢+ = oo, we see that
2~ Ali—n/p1) < 1. Since this holds for all A € N, we obtain s; > n/p;, which
completes the proof. O

Remark 6.7 We first consider the former part of (6.18). In this remark, we simply write
o = o4. As in Remark 6.5, we observe the expression

Mo ®= Y oo P e Y

! N
leeg|= Lo \Otzl Lz len|=Ly

) /(Rn)N+l 2 (F @t l_[ 2" (F ) @4 (=)

i#1
S (

[Tria—m" —1>
i#1
x (03002 ... 0. o) (x — om0, &1 — 1, &' — ') drodt'dn,

where we wrote §’ — 'y’ = (& — o, ..., Ey —tyny) and dt’ = dt, .. .dty. Then,
using (6.17) with &1 = 0 and the inequality

(x —tono) (&1 — 1, & — )" < (x)70 (§>m(n0)\s1\(n)\m|,
we have
| Ao (x, §)] S (x) 75 (g)m2Fotohelam vl

for k € N¥+1. We can see again that the above estimates actually hold for all k €
(No)V*!, which concludes the former inequality in (6.18).

The latter inequality in (6.18) can be obtained from (6.12) with (6.17) by the same
way.

Lemma6.8 Let N > 2, p,p1,....,pN € (0,00], 1/p = 1/p1 + -+ 1/pn,
80,81, --+,SN € [0,00), t € (0, 00], and m € R. Suppose that the estimate

I ol tprxescrn o S N0 llsp s, v (6.20)
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holds for all smooth functions o with the right hand side finite, where L? is replaced
by BMO for p =00. Thens; >n/2, j=1,...,N.

Proof We only prove s; > n/2 and the rest parts for s, ..., sy follow by symmetry.
We may assume the assumption (6.20) with 1 = oco. We take real-valued radial
functions ¢, ¥ € S(R") satisfying (6.14) and set for A € N

oa(x, &) =04 = F Uy )1EN(E) . .. p(EN),
fiax) =F 'Yy, j=1,...,N.

For these functions, the following hold:

lloallsgrys.c0mn ny S 240142, 6.21)

I fi.allyrs ~24%Pi0 j=1,...,N, (6.22)

for A € N. As in the previous proof, (6.22) is obvious. We shall consider (6.21). Using
the fact that ¥, (Dy)[1] is equal to 1 if ko = O and to 0 if ko > 1, we have
N
Akoa(x. &) = F yn v @ 491G [ | vr, (D)o (E)).

j=2

Moreover, 7_1[1ﬂk1 ¢(2_A~)] vanishes unless |k — A| < 1. Hence,

loallsn s.comrny = sup 2K (E) " Aroa(x, E)| 2 o
’ k=(ko.k1,....kn) ul =¥
N
= sup 2vREEswE e E e w @A) 1ED T vk (D)o E))
ki,..., kn j=2 LulE
[k1—A|<1 .
(6.23)

Here, if |k; — A| < 1, we have for sufficiently large L; > 0

|F g, v Q7 A)1(ED| S 24 24y 711, (6.24)

In fact, observing that

F v @491 =24 F 1y 4%y w14
= pAn /R ) F 'y My1m) (F )24 — n)dn,

since f‘lw € S(R™), we have for large L1 > 0
F i w @71 ED] S 24 2% T /R FET T e 't dn
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~ 24 (2 7
Moreover, we have for sufficient large M; € Npand L; > 0

Wi, (DYp(Ep] S 278 Mgy, j=2,....N. (6.25)

In fact, from the argument used in Remark 6.5, the Taylor expansion yields that for
M j € Np

W, D) = 3 / 2 (F ) (28 ) (-
|la|= M

< /0 M;(1— M~ (3% (&) — 1) didy

for any k; € N. Since ¢ € S(R"), we have for large L; > 0

Wi (D)o (ENI S (5)) 7" /R 2% [(F @5 InM iyt d
<27t M) Th.
Since the case k; = 0 is clear, we see that (6.25) holds for any k; € Ny. Collecting
(6.23), (6.24), and (6.25), we have
lloallsy(s.corn, )

< sup gsiki+tsnkn

P (&)~ (A g L1<1_[2 kiMj (g 1y~ ) -

lki—Al=<1 1§

Hence, by the embedding L? < L2, and the inequality (§)" < ]_[j-vzl (E)m, we see
that

loallsy(s.corn, )

< sup 2S1k1+~»-+SNkN (g >|m\2An 2A L](l_lz k M |m| L )
k| ,,,,, kN Lg
[k1—Al<1
N
< sup 2w @Ag) ity (T2 g i, )
ki, k BN &j
ki —A|<1 J

< 2AGIHR/2)
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which gives (6.21). Moreover, since the conditions of ¢, ¥ imply ¥ (24 )¢ = ¥ (24,
AeN,

Tos (1.4, s fn.a)(x) = 247 (Y« ) QA0 (T @A)V 1,
which implies that
oy (f1oas -y fr.a) e & 240 2407 (6.26)

where we should use that BM O is scaling invariant when p = oo.
Thus, collecting (6.21), (6.22), (6.26), and (6.20) with # = oo and using the assump-
tionl/p=1/py +---+ 1/pyn, we obtain s; > n/2. This completes the proof. O

The following immediately follows from Lemmas 6.6 and 6.8.

Corollary6.9 Let N > 2, p,p1,...,py € (0,00], 1/p = 1/p1 + --- + 1/pn,
50,51, --+,SN € [0,00), t € (0, 00], and m € R. Suppose that the estimate

1o lmrr sy 1o S o llsm s.0:mn N

holds for all smooth functions o with the right hand side finite, where L? is replaced
by BMO for p = 0o. Thens; > max{n/p;,n/2}, j=1,...,N.
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