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1 Introduction

The theory of pseudo-differential operators has always been of immense interest in
Harmonic analysis. This present article is the first of a series of articles wherewe inves-
tigate quantitative weighted norm inequalities for pseudo–multipliers corresponding
to Grushin operators. In order to describe our results, let us first review the relevant
literature concerning pseudo-differential operators on the Euclidean space as well as
Hermite pseudo-multipliers.

Given m ∈ L∞ (Rn × R
n), consider the pseudo-differential operator m(x, D)

defined by

m(x, D) f (x) := (2π)−n/2
∫

Rn
m(x, ξ) f̂ (ξ)eix ·ξ dξ,

for Schwartz class functions f on R
n , where f̂ denotes the Fourier transform of f

which is defined by f̂ (ξ) = (2π)−n/2
∫

Rn f (x)e−i x ·ξ dx . We call m to be the symbol
of the pseudo-differential operator m(x, D). When the function m does not depend
on the space variable x , the associated operator m(D) is indeed a Fourier multiplier
operator.

Given σ ∈ R, 0 ≤ ρ ≤ 1, 0 ≤ δ < 1, let S σ
ρ,δ(R

n) represent the class of smooth
functions m : R

n × R
n → C such that for all α, β ∈ N

n ,

|∂α
x ∂

β
ξ m(x, ξ)| ≤ Cα,β(1 + |ξ |)σ−ρ|β|+δ|α|. (1.1)

It is well known that pseudo-differential operators with symbols belonging to
S σ

1,0(R
n), σ ≤ 0, fall into the realm of generalized Calderón-Zygmund operators,

that is, their kernels satisfy Hörmander’s condition. Sharp L p-boundedness results for
pseudo-differential operators are attributed to the seminal work of Fefferman [25].
For details on the classical development in the theory of pseudo-differential operators,
we refer to [13, 54, 55]. In this article, we are concerned with an analogue of symbol
classesS 0

1,δ , for 0 ≤ δ < 1, in the context of pseudo-multipliers associated to Grushin
operators. One of our primary objectives is to obtain minimal smoothness assumptions
on the symbol function such that the associated Grushin pseudo–multiplier operators
fall into the category of Calderón–Zygmund operators on spaces of homogeneous type
in the sense of Coifman–Weiss [50]. Henceforth, for the sake of brevity, we shall write
in short “a space of homogeneous type" to denote such a space.

Recall that an important aspect of the study of multiplier theorems is to obtain
their counterparts in the context of weights. To begin with, we recall the work of
Kurtz–Wheeden [34]. They studied weighted L p-estimates for Mihlin–Hörmander
type Fourier multipliers, deducing also the best class of Muckenhoupt Ap weights
depending on the order of differentiability of the multiplier function. For pseudo-
differential operators, there is already an extensive literature on weighted inequalities.
We mention a few here. Miller [44] initiated the study of the weighted boundedness of
pseudo-differential operators. He employed the Fefferman–Stein sharp maximal func-
tionM
 and obtained pointwise estimates of the following form: Let m ∈ S 0

1,0(R
n),

then for 1 < r < ∞,
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M
(m(x, D) f )(x) �r Mr f (x), (1.2)

where Mr f := (M(| f |r ))1/r with M denoting the Hardy-Littlewood maximal func-
tion. Invoking good-λ-inequalities and reverse Hölder’s inequality for Ap weights,
estimate (1.2) implies that m(x, D) : L p(Rn, w) → L p(Rn, w) is bounded for every
w ∈ Ap, 1 < p < ∞.

The approach explained above is a key step in producing weighted estimates for
pseudo-differential operators and was also employed in the works of Fefferman [25],
Chanillo–Torchinsky [10],Michalowski–Rule–Staubach [43], andmany others. How-
ever, in order to obtain sharper quantitative dependence of ‖m(x, D)‖L p(w)→L p(w) on
the Ap characteristic ([w]Ap ) of the weight w, one employs the modern technique
known as “sparse domination", which evolved during the development of the cele-
brated A2-conjecture. A2-conjecture was solved in complete generality by Hytönen
[29]. We also mention the fundamental work of Lerner [37] where a comparatively
simple proof of A2-conjecture was obtained by proving norm domination of Calderón-
Zygmundoperators by sparse operators. Subsequently,Lacey [35],CondeAlonso–Rey
[15], Hytönen et al. [31] and Lerner [38] obtained pointwise domination of Calderón-
Zygmund operators by sparse operators. Thanks to their wide applications in obtaining
sharp quantitative estimates, establishing sparse operator bounds for classical opera-
tors in Harmonic analysis is a growing area of research and the same has been applied
in various contexts. For example, see [5, 7, 16, 36], and references therein.

Before we move further, let us also mention here that beyond the Euclidean space,
analogues of pseudo-differential operators (or pseudo-multipliers) are also being stud-
ied in various other contexts. In a non-Euclidean setting, probably this is the first work
where we are able to obtain pointwise estimates for pseudo-multipliers in terms of
sparse operators. As far as (unweighted) L p-boundedness is concerned, there has
been a lot of recent interest in studying pseudo-multipliers in the set-up beyond the
Euclidean spaces. For compact Lie groups, we refer to [51] and the references therein.
For Heisenberg groups and more general graded Lie groups, we refer to [4, 9, 26] and
the references therein. For pseudo-multipliers on certain homogeneous type spaces
associated with a class of self-adjoint operators, we refer to [6, 27].

Originally introduced in [24], Hermite pseudo-multipliers were further studied
by the first author and S. Thangavelu in [3]. Under some Mihlin–Hörmander-type
conditions on symbol functions, authors of [3] established the following weighted
L p-boundedness result for Hermite pseudo-multipliers. Let us denote by � the
forward-difference operator defined by �m(x, k) = m(x, k + 1) − m(x, k), and
define � jm = �(� j−1m) for j ≥ 2. Also, let us denote by Ap(R

n) the space of
Muckenhoupt Ap weights.

Theorem 1.1 [3] Let m ∈ L∞ (Rn × N
n) be such that the Hermite pseudo-multiplier

m(x, H) ∈ B
(
L2(Rn)

)
. Assume in addition that for some N ∈ N,

sup
x∈Rn

∣∣∣� jm(x, k)
∣∣∣ �N (2k + n)− j , for all j ≤ N + 1,

and sup
x∈Rn

∣∣∣∂xi � jm(x, k)
∣∣∣ �N (2k + n)− j , for all j ≤ N and 1 ≤ i ≤ n,
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then the following results hold true.

(1) If N ≥ �n/2	, then m(x, H) extends to a bounded operator on L p(Rn, w) for
every p ∈ (2,∞) and w ∈ Ap/2(R

n).
(2) If N ≥ n, then m(x, H) extends to a bounded operator on L p(Rn, w) for every

p ∈ (1,∞) and w ∈ Ap(R
n).

In the next subsection, we recall some preliminaries on Grushin operators before
presenting our results in detail.

1.1 Grushin Pseudo-multipliers

We write points in R
n1+n2 as x = (x ′, x ′′) ∈ R

n1 × R
n2 . For each κ ∈ {1, 2, 3, . . .},

let us consider Grushin operators

Gκ = −�x ′ − Vκ

(
x ′) �x ′′ (1.3)

with Vκ

(
x ′) denoting either |x ′|2κ or

∑n1
j=1 x

′
j
2κ .

Grushin operators were introduced in [28]. The operator Gκ is degenerate elliptic
along the n2-dimensional plane {0} × R

n2 . It is studied in various contexts related
to Dirichlet problems in weighted Sobolev spaces, free boundary problems in partial
differential equations etc. In particular, when κ = 1, Grushin operators are closely
connected to the sub-Laplacian on theHeisenberg group (see, for example, [22]). Since
in this article we are interested in studying pseudo-multipliers associated to Grushin
operators, we start with their spectral decomposition.

For a Schwartz class function f on R
n1+n2 , let f λ denote (upto a dimensional

constant multiple) its inverse Fourier transform in x ′′-variable, given by f λ(x ′) =∫
R
n2 f (x ′, x ′′)eiλ·x ′′

dx ′′. It follows that

Gκ f (x) = (2π)−n2

∫
R
n2
e−iλ·x ′′

Hκ(λ) f λ(x ′) dλ,

where, for λ �= 0, Hκ(λ) = −�x ′ + |λ|2|x ′|2κ or Hκ(λ) = −�x ′ + |λ|2 ∑n1
j=1 x

′
j
2κ ,

depending on the choice of Vκ(x ′).
In particular, when κ = 1, operators H1(λ) = H(λ) = −�x ′ + |λ|2|x ′|2, for

λ �= 0, are called the scaled Hermite operators on R
n1 . In that case, we drop the suffix

and denote the Grushin operator as G itself.
It is well known (see, for example, Theorems XIII.16, XIII.64, and XIII.67 in [47])

that there exists a complete orthonormal basis {hκ,k : k ∈ N} of L2 (Rn1) such that
Hκ(1)hκ,k = νκ,khκ,k with 0 < νκ,1 ≤ νκ,2 ≤ νκ,3 ≤ . . . and limk→∞ νκ,k = ∞.

It is straightforward to verify that for each k ∈ N and λ �= 0, if we consider

hλ
κ,k(x

′) = |λ| n1
2(κ+1) hκ,k

(
|λ| 1

κ+1 x ′) ,
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then {hλ
κ,k : k ∈ N} forms an orthonormal basis for L2(Rn1), and that

Gκ

(
hλ

κ,k(x
′) eiλ·x ′′) = |λ| 2

κ+1 νκ,k h
λ
κ,k(x

′) eiλ·x ′′
.

Thus, we can write the the spectral decomposition of the Grushin operator Gκ as
follows:

Gκ f (x) = (2π)−n2

∫
R
n2
e−iλ·x ′′ ∑

k∈N

|λ| 2
κ+1 νκ,k

(
f λ, hλ

κ,k

)
hλ

κ,k(x
′) dλ.

As also done in [2] (see Subsections 1.3 and 2.1 of [2]), given a symbol functionm ∈
L∞ (

R
n1+n2 × R+

)
, it is natural to consider the Grushin pseudo-multiplierm(x,Gκ),

defined (densely) on L2
(
R
n1+n2

)
by

m(x,Gκ) f (x) := (2π)−n2∫
R
n2
e−iλ·x ′′ ∑

k∈N

m
(
x, |λ| 2

κ+1 νκ,k

) (
f λ, hλ

κ,k

)
hλ

κ,k(x
′) dλ. (1.4)

When the function m does not depend on the space variable x , the associated oper-
ator is said to be a Grushin multiplier and is denoted by m(Gκ). In the last decade,
boundedness of spectral multipliers for more general Grushin-type operators has been
extensively studied by various authors. See, for example, [11, 17–20, 33, 41, 42], and
references therein.

Now, consider the following first order gradient vector fields:

X j = ∂

∂x ′
j

and Xα,k = x ′α ∂

∂x ′′
k
, (1.5)

for 1 ≤ j ≤ n1, 1 ≤ k ≤ n2, and α ∈ N
n1 with |α| = κ.

Clearly, with either choice of potential Vκ(x ′), the corresponding Grushin operator
Gκ can be expressed as a negative sum of X2

j ’s and X2
α,k’s (see, for example, Sect. 3

of [49]). Let us denote by X the first order gradient vector field

X := (X j , Xα,k)1≤ j≤n1, 1≤k≤n2, |α|=κ . (1.6)

We write n0 = n1 + n2
(
κ+n1−1
n1−1

)
, and consider symbol functions m ∈

L∞ (
R
n1+n2 × R+

)
which satisfy the following estimate for some ρ, δ ≥ 0:

∣∣∣X�∂ lηm(x, η)

∣∣∣ ��,l (1 + η)−(1+ρ) l
2+δ

|�|
2 (1.7)

for some � ∈ N
n0 and l ∈ N.

Remark 1.2 Condition (1.7) is motivated by Euclidean symbol classes S 0
ρ,δ(R

n).
Observe that the Grushin operator Gκ is homogeneous of degree two, that is,
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Gκ ◦ Dr = r2(Dr ◦ Gκ), where Dr (x ′, x ′′) = (r x ′, r1+κx ′′) are the non-isotropic
dilations associated toGκ .Thus, a natural analogue ofS 0

ρ,δ(R
n) condition forGrushin

pseudo-multiplier m̃(x,
√
G) is

∣∣∣X�∂ lηm̃(x, η)

∣∣∣ ��,l (1 + η)−ρl+δ|�|.

It is technically convenient to work with the symbol m(x, η) := m̃(x,
√

η), which
results into condition (1.7). For more details on this aspect, we refer to [2] (see the
discussion immediately after the statement of Theorem 1.5 as well as Remark 2.2 in
[2]).

Before moving on, let us mention that an analogue of the Calderón–Vaillancourt
theorem for Grushin pseudo-multipliers for κ = 1 was studied in [2], establishing
L2-boundedness of Grushin pseudo-multipliers m(x,G) for symbol functions m sat-
isfying condition (1.7) with 0 ≤ δ < ρ ≤ 1. In its full generality, the endpoint case of
0 ≤ δ = ρ < 1 is still open.

In this paper, we study pseudo-multiplier operators m(x,Gκ) corresponding to
symbols m(x, η) satisfying condition of the type (1.7) with ρ = 1 and 0 ≤ δ < 1. In
this direction, following are our main results. Throughout this article, Q := n1 + (1+
κ)n2 denotes the homogeneous dimension associated to the operator Gκ, see (2.5)
for details.

Theorem 1.3 Let m ∈ L∞ (
R
n1+n2 × R+

)
be such that

∣∣∣∂ lηm(x, η)

∣∣∣ �l (1 + η)−l

for all l ≤ Q + 1. Assume also that m(x,Gκ) is bounded on L2(Rn1+n2). Then
m(x,Gκ) is of weak type (1, 1) and as a consequence bounded on L p(Rn1+n2) for
every 1 < p < 2.

The above theorem implies L p-boundedness in the range 1 < p < 2 only, and we
can not use duality to conclude boundedness in the range 2 < p < ∞ because the
adjoint operator m(x,Gκ)∗ is not necessarily a Grushin pseudo-multiplier.

In the following two theorems, we establish weighted L p-boundedness results for
m(x,Gκ) in the range 2 < p < ∞ and 1 < p < ∞, depending on the assumed
number of derivatives of the symbol function m(x, η). Let us remark that part of
our motivation comes from the work of [21], where the authors studied weighted
L p-boundedness results for spectral multipliers corresponding to a non-negative self-
adjoint operator on a space of homogeneous type (see Theorem 3.1 in [21]). Compared
to the results of [21], in our work we are only concerned with Grushin operators, but
more importantly our methods are well suited for Grushin pseudo-multipliers as well.

We are now ready to state our main results on sparse domination for operators
m(x,Gκ). Let S denote a family of generalised-dyadic cubes in the context of the
homogeneous type space, which we will explain in detail in Sect. 2.4. We say a col-
lection of measurable sets S ⊂ S to be an η-sparse family (for some 0 < η < 1) if for
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every member Q ∈ S there exists a set EQ ⊆ Q such that |EQ| ≥ η|Q|, and the sets
{EQ}Q∈S are pairwise disjoint. Corresponding to a sparse family S and 1 ≤ r < ∞,
we define the sparse operator as follows:

Ar ,S f (x) =
∑
Q∈S

(
1

|Q|
∫
Q

| f |r
)1/r

χQ(x). (1.8)

We simply write AS for A1,S .

Theorem 1.4 For a fixed 0 ≤ δ < 1, let m ∈ L∞ (
R
n1+n2 × R+

)
be such that

∣∣∣∂ lηm(x, η)

∣∣∣ �l (1 + η)−l , for all l ≤ �Q/2	 + 1,

and
∣∣∣Xx∂

l
ηm(x, η)

∣∣∣ �l,δ (1 + η)−l+ δ
2 , for all l ≤ �Q/2	.

Assume also that the operator T = m(x,Gκ) is bounded on L2(Rn1+n2). Then,
for every compactly supported bounded measurable function f there exists a sparse
family S ⊂ S such that

|T f (x)| �T A2,S f (x),

for almost every x ∈ R
n1+n2 .

Theorem 1.5 For a fixed 0 ≤ δ < 1, let m ∈ L∞ (
R
n1+n2 × R+

)
be such that

∣∣∣∂ lηm(x, η)

∣∣∣ �l (1 + η)−l , for all l ≤ Q + 1,

and
∣∣∣Xx∂

l
ηm(x, η)

∣∣∣ �l,δ (1 + η)−l+ δ
2 , for all l ≤ Q.

Assume also that the operator T = m(x,Gκ) is bounded on L2(Rn1+n2). Then,
for every compactly supported bounded measurable function f there exists a sparse
family S ⊂ S such that

|T f (x)| �T AS f (x),

for almost every x ∈ R
n1+n2 .

1.2 Methodology of the Proof and Organisation of the Paper

Obtaining sharp quantitative estimates through sparse domination method has pro-
duced many fascinating results in recent times in the theory of singular integrals. In
this article, one of our main objectives is to establish pointwise sparse domination for
Grushin pseudo-multipliers. The approach of obtaining suitable end-point bounded-
ness of some variants of the sharpmaximal function and stopping time arguments have
played a crucial role in obtaining sparse operator bounds in homogeneous type as well
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as in the non-homogeneous type spaces. In the present work, we also adapt this strat-
egy. More precisely, in our work we are going to make use of the sparse domination
principle developed in [39, 40] (see Theorem 2.7). There is a rich and ever growing lit-
erature on the existence of quantitative weighted estimates for sparse operators, which
explains why one looks for sparse domination of various operators at hand. For our
purposes, we state one such result in Theorem 2.8. So, in view of Theorem 2.7, it boils
down to establishing appropriate weak type boundedness of the operator T that we
are concerned with as well as an appropriate weak type boundedness of an associated
grand maximal truncated operator M#

T ,s (defined in (2.12)).
Rest of the article is structured as follows.

• We collect the preliminary results relevant to our work in Sect. 2.
• With assumptions onweighted kernel estimates with respect to the control distance
associated to Grushin operators Gκ , we state and prove our pointwise sparse
domination results (Theorems 3.2, 3.3 and 3.4) for a general class of operators
in Sect. 3. The main idea is to show that the sharp grand maximal truncation
operator M#

T ,s (for a suitable choice of s) could be dominated by a maximal
operator, and the exact type of the maximal operator is dictated by the assumptions
on the weighted kernels, and this allows us to conclude appropriate end-point
boundedness for M#

T ,s . In our proof, we also suitably make use of a mean-value
inequality associated with the sub-Riemannian structure of the Grushin metric. It
is an elementary property satisfied by most reasonable sub-Riemannian metrics,
but for the convenience of readers, we explain it in Sect. 2 in our context (see the
discussion leading to the formulation of Lemma 2.1).

• In Sect. 4, we specialise to the case of the Grushin pseudo-multipliers. In order
to do so, we prove the weighted (gradient) Plancherel estimates for the Grushin
pseudo-multiplier operators, and with that our results (Theorems 1.3, 1.4 and
1.5) follow from results of Sect. 3. Our proofs of weighted (gradient) Plancherel
estimates are of self-interest, and we systematically document these in Subsect.
4.1. While the ones for the integral kernels follow quite easily from results of the
existing literature ([8, 20]) on kernels corresponding to the spectral multipliers,
we are able to show that by making an appropriate use of the gradient estimates
for the heat kernels (see estimates (2.10)), it is possible to repeat ideas of [8, 20]
in establishing analogous weighted Plancherel estimates for the gradients of the
integral kernels of spectral multipliers. From this, the estimates for integral kernels
of the pseudo-multipliers easily follow.

1.3 Notations and Parameters

In the following list, we have written most of the notations and parameters that are
being used in this paper.

• N = {0, 1, 2, 3, . . .}, and R+ = [0,∞).
• For A, B > 0, by the expression A � B we mean A ≤ CB for some C > 0.
Whenever the implicit constant C may depend on ε, we write A �ε B. When
A � B and B � A, we write A ∼ B.
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• For a Banach space Y , we write B (Y ) for the Banach space of all bounded linear
operators on Y and ‖T ‖op denotes the operator norm of T ∈ B (Y ).

• We write x = (x ′, x ′′) ∈ R
n1 × R

n2 = R
n1+n2 .

• For each κ ∈ {1, 2, 3, . . .}, the homogeneous dimension of the space R
n1+n2 with

respect to the Grushin operator Gκ is Q = n1 + (1 + κ)n2.
• Whenever μ = (μ1, . . . , μn1) belongs to N

n1 we write |μ| = ∑n1
j=1 μ j . For a

general vector c = (c1, . . . , cn1) from R
n1 , we have |c| = (

∑n1
j=1 |c j |2)1/2 and

|c|1 = ∑n1
j=1 |c j |.

• r, R0, η etc always correspond to elements of R+.
• l, j, N etc always correspond to elements of N.
• μ, ν, γ, α etc always correspond to elements of N

n1 .
• β, β j etc always correspond to elements of N

n2 .
• �,� j etc always correspond to elements of N

n0 , where n0 = n1 + n2
(
κ+n1−1
n1−1

)
.

In particular, when κ = 1, we have n0 = n1 + n1n2.
• λ represents the element of R

n2 .
• When we talk about the case of the Euclidean space or for the Hermite operator,
we always take R

n as our underlying space and use the indices as tabulated above
with the convention of n = n1.

2 Preliminaries and Basic Results

In this section, we write down the preliminary details relevant to the subject matter of
this article.

2.1 Control Distance for Grushin Operators Gκ

The control distance d̃(x, y) (see equation (11) of [48]) associated with the Grushin
operator Gκ is given by

d̃(x, y) = sup
ψ∈E

|ψ(x) − ψ(y)| , (2.1)

where E =
{

ψ ∈ W 1,∞(Rn1+n2) : ∑
1≤ j≤n1

∣∣X jψ
∣∣2 + ∑

|α|=κ

∑
1≤k≤n2

∣∣Xα,kψ
∣∣2 ≤ 1

}
.

It was established in Proposition 5.1 of [48] that d̃ has the following asymptotics:

d̃(x, y) ∼ d(x, y) := ∣∣x ′ − y′∣∣

+
{ |x ′′−y′′|

(|x ′|+|y′|)κ if
∣∣x ′′ − y′′∣∣1/(1+κ) ≤ ∣∣x ′∣∣ + ∣∣y′∣∣∣∣x ′′ − y′′∣∣1/(1+κ) if
∣∣x ′′ − y′′∣∣1/(1+κ) ≥ ∣∣x ′∣∣ + ∣∣y′∣∣ . (2.2)
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Since d̃ is a metric, it follows that d is a quasi-metric, that is, there exists a constant
C0 > 1 such that

d(x, y) ≤ C0 (d(x, z) + d(z, y)) (2.3)

for all x, y, z ∈ R
n1+n2 .

Using the asymptotic estimates from (2.2), it can be easily verified that
(
R
n1+n2 , d̃

)
is a completemetric space (equivalently, (Rn1+n2 , d) is a complete quasimetric space).

By abuse of notation, throughout this article, we refer to d(x, y) of (2.2) as the
Grushin metric. Let B(x, r) := {y ∈ R

n1+n2 : d(x, y) < r} and |B(x, r)| denote the
Lebesgue measure of the ball B(x, r) in R

n1+n2 . Again, it was shown in Proposition
5.1 of [48] that

|B(x, r)| ∼ rn1+n2 max{r , |x ′|}κ n2 , (2.4)

for all x ∈ R
n1+n2 and r > 0. The ball volume estimates of (2.4) imply that the space

(Rn1+n2 , d, | · |) is a homogeneous type metric space, that is, the underlying measure
(the Lebesgue measure of R

n1+n2 ) satisfies the following doubling condition

|B(x, sr)| �n1,n2,κ (1 + s)Q |B(x, r)| (2.5)

for s > 0, where Q stands for the homogeneous dimension n1 + (1 + κ)n2.
Furthermore, since (Rn1+n2 , d, |·|) and (Rn1+n2 , d̃, |·|) are doublingmetricmeasure

spaces, it follows that open balls (of arbitrary finite radius) in any of these spaces are
totally bounded (see Corollary 2.3 of [52]). As a consequence, we get that the closed
balls (of arbitrary finite radius) in (Rn1+n2 , d, | · |) or (Rn1+n2 , d̃, | · |) are compact.

Fromgeometric point of view, space (Rn1+n2 , d̃) carries a sub-Riemannian structure
g induced by the orthonormal frame {X j , Xα,k : 1 ≤ j ≤ n1, 1 ≤ k ≤ n2, andα ∈ N

n1

with |α| = κ}, where X j and Xα,k are given by (1.5). It is easy to see that these vector
fields satisfy Hörmander’s hypoellipticity condition, and therefore it follows from
Lemma 3.2 and Theorem 7.1 of [53] that given any x, y ∈ R

n1+n2 , there always exists
a length minimising curve (geodesic in the sub-Riemannian set-up) joining x and y.
Moreover, it was shown in Sect. 3 of [32] that the distance d̃(x, y) defined by (2.1)
equals the infimum of the length minimising curves joining x and y. With that, we
can invoke the proof of Lemma 3.2 of [53] to argue that given x ∈ R

n1+n2 and r > 0,
if d̃(x, y) < r then the length minimising curve γ0 between x and y lies in the ball
B̃(x, 2r) := {z ∈ R

n1+n2 : d̃(x, z) < 2r}. Moreover,

| f (y) − f (x)| =
∣∣∣∣
∫ 1

0
( f ◦ γ0)

′ (t) dt
∣∣∣∣ ≤

∫ 1

0

∣∣( f ◦ γ0)
′ (t)

∣∣ dt

≤
∫ 1

0

∣∣d fγ0(t)(γ ′
0(t))

∣∣ dt

≤
∫ 1

0

∥∥(∇g f
)
(γ0(t))

∥∥
g

∥∥γ ′
0(t)

∥∥
g dt
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= d̃(x, y)
∫ 1

0

∥∥(∇g f
)
(γ0(t))

∥∥
g dt

= d̃(x, y)
∫ 1

0
|X f (γ0(t))| dt . (2.6)

Since d ∼ d̃, we can use estimate (2.6) to write an analogous estimate with respect
to d.

Lemma 2.1 (Mean-value estimate) There exist constants C1,κ,C2,κ > 0 (depending
also on n1 and n2) such that for any ball B(x0, r) and points x, y ∈ B(x0, r), there
exists a d̃-length minimising curve γ0 : [0, 1] → B(x0,C1,κ r) joining x to y, and
for any f ∈ C1

(
B(x0,C1,κ r)

)
,

| f (x) − f (y)| ≤C2,κ d(x, y)
∫ 1

0
|X f (γ0(t))| dt . (2.7)

2.2 Weighted Plancherel Estimates

Spectral multipliers corresponding to a self-adjoint positive definite operator (with
appropriate heat kernel bounds) have a long history. In particular, we refer to [20]
where the authors studied spectral multipliers on general homogeneous type metric
spaces. For our convenience, we simply recall it for Grushin operators Gκ . Let pt (for
t > 0) denote the heat kernel associated with the operator Gκ , that is, pt (x, y) is the
integral kernel of the operator e−tGκ . It is well known (see, Corollary 6.6 of [48]) that
pt satisfies the following Gaussian type bounds: there exist constants b,C > 0 such
that

|pt (x, y)| ≤ C |B(x, t1/2)|−1 exp
(
−bd(x, y)2/t

)
. (2.8)

It was shown in [20] that as a consequence of estimate (2.8), one has the following
Plancherel estimates for kernels corresponding to symbols with compact support. Let
Km(Gκ) denotes the integral kernel of the Grushin multiplier operator m(Gκ), then

‖Km(Gκ)(x, ·)‖2 � |B(x, R−1)|−1/2‖m‖L∞ , (2.9)

for every bounded Borel function m supported on [0, R2] for any R > 0.
Building on estimate (2.9), weighted Plancherel estimates of the following type

were established in [20]:

Lemma 2.2 (Lemma 4.3, [20]) For every r, ε > 0, we have

∥∥(1 + Rd(x, ·))rKm(Gκ)(x, ·)
∥∥
2 �r,ε |B(x, R−1)|−1/2

∥∥∥m(R2 ·)
∥∥∥
W∞

r+ε

,

for every bounded Borel function m supported on [0, R2] for any R > 0.
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Following the ideas of [20], the authors of [8] recently studied pointwise weighted
kernel estimates, establishing the following analogue of the above lemma:

Lemma 2.3 (Lemma 4.3, [8]) For every r, ε > 0, we have

(1 + Rd(x, y))r|Km(Gκ )(x, y)| �r,ε |B(x, R−1)|−1/2|B(y, R−1)|−1/2
∥∥m(R2 ·)∥∥W∞

r+ε
,

for every bounded Borel function m supported on [0, R2] for any R > 0.

Interpolating estimates of Lemmas 2.2 and 2.3, one can conclude that given p ∈
[2,∞] and r, ε > 0,

∥∥∥|B(·, R−1)|1/2−1/p (1 + Rd(x, ·))rKm(Gκ)(x, ·)
∥∥∥
p

�r,ε,p |B(x, R−1)|−1/2
∥∥∥m(R2·)

∥∥∥
W∞

r+ε

,

for every bounded Borel function m supported on [0, R2] for any R > 0.
In [23], the authors systematically explained that given an operator of the type Gκ ,

one can associate a nilpotent Lie group with it. In fact, the method of [23] is applicable
for a larger class of operators which include Gκ . Now, the estimates for the gradients
of the heat kernel of such Lie groups are well known (see, for example, [56]), and
with that one can deduce analogous estimates for the gradients of the heat kernel of
Grushin operator Gκ . See, for example, Corollary 4.1 in [23], where the first order
gradient estimate for the Poisson kernel is deduced. It is explicit from themethodology
that the same could be done for the heat kernel and its gradients (of arbitrary order).
In particular, one can show that the following gradient estimates hold true for every
� ∈ N

n0 :

∣∣(X�
x pt (x, y)

)
(x)

∣∣ �� t−|�|/2
∣∣∣B

(
x, t1/2

)∣∣∣−1
exp

(
−bd(x, y)2/t

)
,

and
∣∣∣
(
X�
y pt (x, y)

)
(y)

∣∣∣ �� t−|�|/2
∣∣∣B

(
x, t1/2

)∣∣∣−1
exp

(
−bd(x, y)2/t

)
. (2.10)

Again, with the help of the above mentioned transference technique, the authors
of [49] studied boundedness of Riesz transforms X�G−|�|/2

κ (of arbitrary order �)
associated with the Grushin operator Gκ = −�x ′ − |x ′|2κ�x ′′ (see Theorem 3.1 in
[49]). It is not difficult to verify that their technique is also applicable for the operator
Gκ = −�x ′ − ∑n1

j=1 x
′
j
2κ

�x ′′ .

Summarising, with Gκ = −�x ′ − |x ′|2κ�x ′′ or Gκ = −�x ′ − ∑n1
j=1 x

′
j
2κ

�x ′′ ,
we have

‖X�G−|�|/2
κ

‖L p(R
n1+n2)→L p(R

n1+n2) < ∞ (2.11)

for any 1 < p < ∞, and also ‖X�G−|�|/2
κ ‖L1(R

n1+n2)→L1,∞(R
n1+n2) < ∞.



Journal of Fourier Analysis and Applications (2023) 29 :27 Page 13 of 38 27

2.3 Homogeneous Spaces and ApWeights

Starting with the pioneering work of Muckenhoupt in [45], the theory of Ap weights
has been studied in various aspects. In recent times obtaining quantitative weighted
estimates for operators in Harmonic analysis is an active area of research. The devel-
opment of the seminal A2-conjecture gave rise to the powerful technique of sparse
operators and it has been studied in various contexts even beyond Euclidean spaces.
We mention a few here.

Recall that a metric (or quasi-metric) measure space is of homogeneous type in
the sense of Coifman–Weiss [50]) if the underlying measure satisfies the doubling
condition. We have already seen that the space (Rn1+n2 , d, | · |) is of homogeneous
type. The theory of Calderón-Zygmund operators and Ap weights have been studied
systematically in the spaces of homogeneous type. The A2 conjecture for the spaces of
homogeneous type was established in [1, 46]. In [30], Hytönen–Pérez–Rela developed
sharp reverse Hölder’s inequality in spaces of homogeneous type. In recent times, the
theory of sparse operators is in fact extended to spaces that need not be of homogeneous
type, we refer interested readers to [14, 57].

Let us recall Ap weights on the homogeneous type space (Rn1+n2 , d, | · |).
Definition 2.4 For 1 < p < ∞, we say a weight w on R

n1+n2 belongs to the class
Ap(R

n1+n2) if

[w]Ap(R
n1+n2 ) = sup

B

(
1

|B|
∫
B

w dx

) (
1

|B|
∫
B

w1−p′
dx

)p−1

< ∞,

where the supremum is taken over all balls B in the homogeneous type space
(Rn1+n2 , d, | · |). For p = 1, w ∈ A1(R

n1+n2) if there exists a constant C > 0
such that for all balls B,

1

|B|
∫
B

w dx ≤ C ess inf
x∈B w(x).

It is not difficult to construct examples of Ap weights in our case. In fact, power
weights provide plenty of examples in the case of the Euclidean Ap weights.

Example 2.5 Consider the weights ωa(x) = d(0, x)−a for a ∈ R. Then ωa ∈ A1 if
0 ≤ a < Q. To see this, consider any ball B = B(x0, r). If B ∩ B(0, r

2 ) = ∅ then
for any x, y ∈ B, d(0, x) ≤ C0(d(x, y) + d(y, 0)) � C2

0 (r + d(y, 0)) � C2
0d(y, 0),

hence

1

|B|
∫
B
d(0, x)−a dx � ess inf

x∈B d(x, 0)−a .

For balls B such that B∩B(0, r
2 ) �= ∅we proceed as follows. Observe that in this case

B ⊂ B(0, 2C0r)which in turn implies B(0, 2C0r) ⊂ BR
n1 (0, cr)×BR

n2 (0, cr (1+κ)),
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where BR
n1 (0, cr) and BR

n2 (0, cr (1+κ)) are Euclidean balls in R
n1 and R

n2 respec-
tively. Now

1

|B|
∫
B
d(0, x)−a dx ≤ 1

rn1+(1+κ)n2

∫
B

R
n1 (0,cr)∫

B
R
n2 (0,cr (1+κ))

max{|x ′|, |x ′′|1/(1+κ)}−a dx ′ dx ′′

� 1

rn1+(1+κ)n2
r−a/2+n1r−a/2+(1+κ)n2 � r−a � ess inf

x∈B d(0, x)−a .

Since, v0v
1−p
1 ∈ Ap for vi ∈ A1, we can conclude that for 1 < p < ∞, ωa(x) =

d(0, x)−a ∈ Ap(R
n1+n2) if −Q(p − 1) < a < Q.

2.4 Sparse Domination

In this article, we address quantitative weighted estimates for Grushin pseudo-
multiplier operatorswith respect to Ap(R

n1+n2)weights. In order to state the results, let
us first recall the definition of sparse families and sparse operators on a homogeneous
type space. We also need the following notion of dyadic cubes for a homogeneous
type space. For details, we refer to [12, 40].

Theorem 2.6 [12] There exist absolute constants 0 < h1 ≤ h2 < ∞, 0 < ε0, δ0 < 1,
a family of measurable sets S = ⋃

k∈Z
Sk (called a dyadic decomposition of

(Rn1+n2 , d, | · |)) and a corresponding family of points {cQ}Q∈S that satisfy the fol-
lowing properties:

(i)

∣∣∣∣∣Rn1+n2\ ⋃
Q∈Sk

Q
∣∣∣∣∣ = 0 for all k ∈ Z.

(ii) For k ≥ l, if P ∈ Sk and Q ∈ Sl , then either P ∩ Q = ∅ or P ⊂ Q.
(iii) For anyQ1 ∈ Sk there exists at least oneQ2 ∈ Sk+1 such thatQ2 ⊂ Q1 (called

a child ofQ1) and there exists exactly oneQ3 ∈ Sk−1 such thatQ1 ⊂ Q3 (called
the parent of Q1).

(iv) If Q2 is a child of Q1 then |Q2| ≥ ε0|Q1|.
(v) For every Q ∈ Sk we have

B(cQ, h1δ
k
0) ⊂ Q ⊂ B(cQ, h2δ

k
0),

and for any s > 0, we denote B(cQ, sh2δk0) by sB(Q).

Recall the definition of the sparse family S ⊂ S and the sparse operatorsAr ,S and
AS given in and around (1.8) in the introduction.

We let M stand for the uncentered Hardy–Littlewood maximal function on
(Rn1+n2 , d, | · |) and for 1 < r < ∞, Mr f := (M(| f |r ))1/r . Our proofs on sparse
domination depend on a general sparse domination principle byLerner–Ombrosi (The-
orem 1.1 in [39]) which is recently extended to the homogeneous type spaces by
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Lorist [40]. Corresponding to the dyadic decomposition S and the absolute constants
0 < h1 ≤ h2 < ∞, 0 < ε0, δ0 < 1 (as in Theorem 2.6), and for any linear operator
T acting on functions defined on R

n1+n2 , let us consider the following version of the
grand maximal truncated operator: For s > 0

M#
T ,s f (x) = sup

B:B�x
ess sup
y,z∈B

∣∣T ( f χR
n1+n2\sB)(y) − T ( f χR

n1+n2\sB)(z)
∣∣ , (2.12)

where the supremum is taken over all balls B containing the point x .
With the notations as defined above and with C0 as in (2.3), the following result

was proved in [40]. For our convenience, we state it for the homogeneous type space
(Rn1+n2 , d, | · |).
Theorem 2.7 (Theorem 1.1, [40]) On the homogeneous type space (Rn1+n2 , d, | · |),
let T be a sub-linear operator of weak type (p, p) and M#

T ,s is weak type (q, q) for

some 1 ≤ p, q < ∞ and s ≥ 3C2
0

δ0
. Let r = max{p, q}. Then there is an 0 < η < 1

such that for every compactly supported bounded measurable function f , there exist
an η-sparse family S ⊂ S such that for almost every x ∈ R

n1+n2 we have

|T f (x)| �η,s CTAr ,S f (x),

where CT = ‖T ‖L p→L p,∞ + ‖M#
T ,s‖Lq→Lq,∞ .

The primary usefulness of the sparse domination lies in the fact that it is easy to get
quantitative weighted estimates for sparse operators which can be immediately passed
on to the operator at hand. Quantitative weighted bounds for the sparse operators are
rigorously studied in Euclidean spaces and almost analogous results are also estab-
lished in homogeneous type spaces as well. In particular, we state the following result
from [40].

Theorem 2.8 (Proposition 4.1, [40]) Let S be an η-sparse family and r ∈ [1,∞). Then
for p ∈ (r ,∞), w ∈ Ap/r (R

n1+n2) and f ∈ L p(Rn1+n2 , w) we have

‖Ar ,S f ‖L p(w) � [w]max{ 1
p−r ,1}

Ap/r (R
n1+n2 )

‖ f ‖L p(w),

with the implicit constant depending on p, r , and η.

In the follow up, we shall confine ourselves only to sparse domination results for
operators at hand. Since the associated quantitative weighted estimates follow from
Theorem 2.8, for brevity, we refrain ourselves from stating them each and every time.

3 Kernel Estimates and Pointwise Sparse Domination

We dedicate this section to obtain a framework for sparse domination for a class
of operators T ∈ B

(
L2(Rn1+n2)

)
satisfying certain properties that we shall shortly

discuss.
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Let T ∈ B
(
L2(Rn1+n2)

)
be such that it admits a decomposition T = ∑

j≥0 Tj , with
the convergence in the strong operator topology. We also assume that each operator
Tj has an integral kernel, denoted by Tj (x, y). In this framework, we shall be working
with conditions on the kernels of the following type, with the gradient vector X as in
(1.6).
L2-conditions on the kernel: There exists some R0 ∈ (0,∞) such that for all r ∈
[0, R0], j ≥ 0, and for every positive real number K0, we have

sup
x∈R

n1+n2

|B(x, 2− j/2)|
∫

R
n1+n2

d(x, y)2r|Tj (x, y)|2 dy �R0 2
− jr, (3.1)

sup
x∈R

n1+n2

|B(x, 2− j/2)|
∫
d(x,y)<K0

d(x, y)2r|XxTj (x, y)|2 dy �R0,K0 2
− jr2 j .

(3.2)

L∞-conditions on the kernel: There exists some R0 ∈ (0,∞) such that for all r ∈
[0, R0], j ≥ 0, and for every positive real number K0, we have

sup
x∈R

n1+n2

sup
y∈R

n1+n2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2d(x, y)r|Tj (x, y)| �R0 2
− jr/2,

(3.3)

sup
x∈R

n1+n2

sup
y∈R

n1+n2

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2d(x, y)r|XyTj (x, y)|

�R0 2
− jr/22 j/2. (3.4)

sup
x∈R

n1+n2

sup
d(x,y)<K0

|B(x, 2− j/2)|1/2|B(y, 2− j/2)|1/2d(x, y)r|XxTj (x, y)|

�R0,K0 2
− jr/22 j/2, (3.5)

Remark 3.1 Conditions (3.1), (3.3) and (3.4) are motivated by weighted Plancherel
estimates obtained for spectral multipliers in [8, 20]. In conditions (3.2) and (3.5), we
restrict the integral (or supremum) only on compact sets. In fact, this helps us to achieve
the sparse domination with minimal requirement of derivatives on the symbol function
in Theorems 1.4 and 1.5. A similar idea was already employed by Bagchi–Thangavelu
in their study of Hermite pseudo-multipliers (see Proposition 4.3 of [3]).

Following are our main pointwise sparse domination results for such class of oper-
ators.

Theorem 3.2 Let T ∈ B
(
L2(Rn1+n2)

)
be such that it admits a decomposition T =∑

j≥0 Tj , with the convergence in the strong operator topology, and that the integral
kernels Tj (x, y) satisfy conditions (3.1) and (3.2) for some R0 > Q/2. Then for every
compactly supported bounded measurable function f there exists a sparse family
S ⊂ S such that

|T f (x)| �T A2,S f (x), (3.6)

for almost every x ∈ R
n1+n2 .
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The following theorem reflects the well-known fact that if we assume appropriate
pointwise estimates on the kernels Tj (x, y) then we obtain sharper estimates for the
operator T .

Theorem 3.3 Let T ∈ B
(
L2(Rn1+n2)

)
be such that it admits a decomposition T =∑

j≥0 Tj , with the convergence in the strong operator topology, and that the integral

kernels Tj (x, y) satisfy conditions (3.3) and (3.4) for some R0 ≥ Q+ 1
2 , and condition

(3.5) for some R0 > Q. Then for every compactly supported bounded measurable
function f there exists a sparse family S ⊂ S such that

|T f (x)| �T AS f (x), (3.7)

for almost every x ∈ R
n1+n2 .

We develop proofs of Theorems 3.2 and 3.3 over the next two subsections.

3.1 Proof of Theorem 3.2

In view of Theorem 2.7, Theorem 3.2 follows from the following result.

Theorem 3.4 Let T ∈ B
(
L2(Rn1+n2)

)
be such that it admits a decomposition T =∑

j≥0 Tj , with the convergence in the strong operator topology, and that the integral
kernels Tj (x, y) satisfy conditions (3.1) and (3.2) for some R0 > Q/2. Then, for
s = 3C1,κC2

0δ
−1
0 with δ0 as in Theorem 2.6 and C1,κ as in Lemma 2.1, we have

the following pointwise almost everywhere estimate for every bounded measurable
function f with compact support:

M#
T ,s f (x) �T ,κ,s M2 f (x).

Proof Choose and fix a small ε1 > 0 such that Q(1+ε1) < 2R0. Now, fix x ∈ R
n1+n2

and a ball B = B(z0, r) containing x . Denote r0 = sr . Let k0 be the smallest natural
number such that |B(z0, 2k0r0)| > 2|B(z0, r0)|, and write r1 = 2k0r0. Next, let k1
be the smallest natural number such that |B(z0, 2k1r1)| > 2|B(z0, r1)|, and write
r2 = 2k1r1. Continuing this process, for each l ∈ N, let kl be the smallest natural
number corresponding to rl , that is, rl+1 = 2kl rl with |B(z0, rl+1)| > 2|B(z0, rl)| and
|B(z0, rl+1/2)| = |B(z0, 2kl−1rl)| ≤ 2|B(z0, rl)|. As an immediate consequence of
this construction, we get the following two estimates:

|B(x, rl)| ∼ |B(z0, rl)| � |B(z0, rl+1/2)| � |B(z0, rl+1)| ∼ |B(x, rl+1)|, (3.8)

|B(x, rl)| � 2l |B(x, r0)| � 2lrn1+n2
0 max

{
rκn2
0 , |x ′|κn2

}
. (3.9)

Also, denoting the annulus B(z0, rl+1)\B(z0, rl) by Al , it follows easily from the
choice of s = 3C1,κC2

0δ
−1
0 that

d(z0, v) ∼ d(w, v), (3.10)
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for any w ∈ B(z0,C1,κ r) and v ∈ Al , with the implicit constants uniform in l and r .
We perform our analysis by decomposing operators Tj as follows. Let φ ∈ C∞

c (R)

be such that it is supported in [−5C2
0 , 5C

2
0 ] and φ ≡ 1 on [−3C2

0 , 3C
2
0 ]. Let T 1

j and

T 2
j be operators with kernels given by T

1
j (u, v) = Tj (u, v)φ(d(u, v)) and T 2

j (u, v) =
Tj (u, v)(1−φ(d(u, v))) respectively. Benefit of introducing such a decomposition is
explained later in Remark 3.5.

For y, z ∈ B(z0, r), we write

|T ( f χR
n1+n2\B(z0,r0))(y) − T ( f χR

n1+n2\B(z0,r0))(z)|
≤

∑
j≥0

|Tj ( f χR
n1+n2\B(z0,r0))(y) − Tj ( f χR

n1+n2\B(z0,r0))(z)|

≤
∑
j≥0

|T 1
j ( f χR

n1+n2\B(z0,r0))(y) − T 1
j ( f χR

n1+n2\B(z0,r0))(z)|

+
∑
j≥0

|T 2
j ( f χR

n1+n2\B(z0,r0))(y) − T 2
j ( f χR

n1+n2\B(z0,r0))(z)|

=: I1 + I2. (3.11)

Estimation of I1 in (3.11): Note that

I1 ≤
∑
j≥0

∫
R
n1+n2\B(z0,r0)

|T 1
j (y, v) − T 1

j (z, v)| | f (v)| dv =:
∑
j≥0

I j , (3.12)

and each I j could be further decomposed over annuli Al as

I j ≤
∞∑
l=0

∫
Al

|T 1
j (y, v) − T 1

j (z, v)| | f (v)| dv. (3.13)

We consider each term in the infinite sum in (3.13). Each such term is again dominated
by

∫
Al

|T 1
j (y, v)| | f (v)| dv +

∫
Al

|T 1
j (z, v)| | f (v)| dv.

Since both the terms above are similar we just estimate one of them.
Depending on the nature of the metric d, we make a further decomposition of the

annulus Al into the regions {v ∈ Al : |y′| ≤ d(z0, v)} and {v ∈ Al : |y′| > d(z0, v)}
yielding the following estimates:

∫
Al∩{|y′|≤d(z0,v)}

|T 1
j (y, v)| | f (v)| dv

≤
(∫

Al∩{|y′|≤d(z0,v)}
|B(y, d(z0, v))|−(1+ε1)| f (v)|2 dv

)1/2
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×
(∫

Al∩{|y′|≤d(z0,v)}
|B(y, d(z0, v))|(1+ε1)|T 1

j (y, v)|2 dv

)1/2

�
(

|B(y, rl)|−(1+ε1)

∫
B(z0,rl+1)

| f (v)|2 dv

)1/2

(∫
Al

d(z0, v)Q(1+ε1)|Tj (y, v)|2 dv

)1/2

� 1

|B(y, rl)|
ε1
2

(
1

|B(z0, rl+1)|
∫
B(z0,rl+1)

| f (v)|2 dv

)1/2

(∫
Al

d(y, v)Q(1+ε1)|Tj (y, v)|2 dv

)1/2

� ε1

(
2l r Q0

)−ε1/2
M2 f (x) 2

− j Q(1+ε1)/4|B(y, 2− j/2)|−1/2

� 2−lε1/2
(
2 j/2r0

)−Qε1/2
M2 f (x), (3.14)

where we have used |B(y, rl)| � |B(z0, rl+1)| from (3.8) in the third from the last
inequality, the ball volume lower bound from (3.9) and condition (3.1) in the second
last inequality.

Next, by suitably modifying the above calculations, we obtain

∫
A l∩{|y′|>d(z0,v)}

|T 1
j (y, v)| | f (v)| dv

≤
(∫

A l∩{|y′|>d(z0,v)}
|B(y, d(z0, v))|−(1+ε1)| f (v)|2 dv

) 1
2

×
(∫

A l∩{|y′|>d(z0,v)}
|B(y, d(z0, v))|1+ε1 |T 1

j (y, v)|2 dv

) 1
2

�
(

1

|B(y, rl )|ε1 |B(z0, rl+1)|
∫
B(z0,rl+1)

| f (v)|2 dv

) 1
2

×
(∫

A l∩{|y′|>d(z0,v)}
d(z0, v)(n1+n2)(1+ε1)|y′|κn2(1+ε1)|Tj (y, v)|2|φ(y, v)|2 dv

) 1
2

� ε12
−lε1/2r−(n1+n2)ε1/2

0 |y′|κn2/2M2 f (x) 2
− j(n1+n2)(1+ε1)/4|B(y, 2− j/2)|−1/2

= 2−lε1/2
(
2 j/2r0

)−(n1+n2)ε1/2 M2 f (x). (3.15)

Putting the bounds of (3.14) and (3.15) into (3.13) we get

I j � ε1

{(
2 j/2r0

)−(n1+n2)ε1/2 +
(
2 j/2r0

)−Qε1/2
}
M2 f (x)

∑
l≥0

2−lε1/2

� ε1

{(
2 j/2r0

)−(n1+n2)ε1/2 +
(
2 j/2r0

)−Qε1/2
}
M2 f (x). (3.16)
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Case 1 (r0 ≥ 1):
In this case, we apply the bounds of I j from (3.16) into (3.12) to get

∣∣∣T 1 (
f χR

n+n2\B(z0,r0))

)
(y) − T 1 (

f χR
n1+n2\B(z0,r0))

)
(z)

∣∣∣
�ε1

∑
j≥0

{(
2 j/2

)−(n1+n2)ε1/2 +
(
2 j/2

)−Qε1/2
}
M2 f (x) �ε1 M2 f (x).

Case 2 (r0 < 1):
Let us choose and fix j0 such that r02 j0/2 ∼ 1. Let us consider the infinite sum of

(3.12), and stack the pieces in the following way:

|T 1( f χR
n+n2\B(z0,r0))(y) − T 1( f χR

n1+n2\B(z0,r0))(z)| ≤
j0∑
j=0

I j +
∑
j> j0

I j , (3.17)

where I j ’s are same as in (3.12).
For the infinite sum (that is, when j > j0) in (3.17), we use the bounds of I j

from the estimate (3.16), and while doing so we also make use of the fact that(
2 j/2r0

)−(n1+n2)ε1/2+(
2 j/2r0

)−Qε1/2 ∼ε1

(
2 j/2r0

)−(n1+n2)ε1/2 uniformly for j > j0.
We can conclude that

∑
j> j0

I j �ε1 r
−(n1+n2)ε1/2
0 M2 f (x)

∑
j> j0

2− j(n1+n2)ε1/4

�ε1 r
−(n1+n2)ε1/2
0 M2 f (x)2

− j0(n1+n2)ε1/4 �ε1 M2 f (x), (3.18)

where the last inequality follows from the relation r02 j0/2 ∼ 1.
We are therefore left to estimate the finite sum (that is, when j ≤ j0) of (3.17).

In estimating these pieces, we make use of the gradient estimates of the kernels.
Decompose each I j as in (3.13) and note that

|T 1
j (y, v) − T 1

j (z, v)| = |Tj (y, v)φ(d(y, v)) − Tj (z, v)φ(d(z, v))|
≤ |(Tj (y, v) − Tj (z, v))φ(d(y, v))| + |Tj (z, v)(φ(d(y, v))

− φ(d(z, v)))|. (3.19)

To estimate the first term in (3.19), we make use of the mean-value estimate from
Lemma 2.1, to get that

|Tj (y, v) − Tj (z, v)| � d(z, y)
∫ 1

0

∣∣(XxTj
)
(γ0(t), v)

∣∣ dt, (3.20)

with γ0(t) ∈ B(z0,C1,κ r).
Therefore, we are left with estimating d(z, y)

∫
Al

∣∣(XxTj
)
(γ0(t), v)

∣∣ | f (v)| dv

uniformly in t ∈ (0, 1). Fix t ∈ (0, 1). Now, as also done immediately after (3.13),
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we decompose the annulus Al into two regions
{
v ∈ Al : |γ0(t)′| ≤ d(z0, v)

}
and{

v ∈ Al : |γ0(t)′| > d(z0, v)
}
. It is easy to see that with some obvious modification

in the computations of (3.14), one can obtain

d(z, y)
∫

{v∈Al :|γ0(t)′|≤d(z0,v)}
∣∣(XxTj

)
(γ0(t), v)

∣∣ | f (v)| dv

� d(y, z)

(
1

|B(γ0(t), rl)|ε1 |B(γ0(t), rl+1)|
∫
B(z0,rl+1)

| f (v)|2 dv

)1/2

×
(∫

Al

d(z0, v)Q(1+ε1)
∣∣(XxTj

)
((γ0(t), v)

∣∣2 φ(d(y, v))2dv

)1/2

� r0(
2lr Q0

)ε1/2

(
1

|B(z0, rl+1)|
∫
B(z0,rl+1)

| f (v)|2 dv

)1/2

×
(∫

Al

d(γ0(t), v)Q(1+ε1)
∣∣(XxTj

)
((γ0(t), v)

∣∣2 φ(d(y, v))2 dv

)1/2

. (3.21)

Since the function φ is supported on [−5C2
0 , 5C

2
0 ], we have d(y, v) ≤ 5C2

0 in the
domain of the last integration. Also d(z0, v) and d(y, v) are comparable since r < 1,
y ∈ B(z0, r) and v ∈ R

n1+n2\B(z0, r0), hence d(z0, v) ≤κ,C0 d(y, v) ≤ Cκ,C0

in the range of the integration. Finally using the fact that d(z0, v) is comparable to
d(γ0(t), v), condition (3.2) is applicable, and therefore the above term is dominated
by

r0(2
lr Q0 )−ε1/2 M2 f (x) 2

− j Q(1+ε1)/42 j/2|B(γ0(t), 2
− j/2)|−1/2

� M2 f (x) 2
−lε1/2

(
2 j/2r0

)1−Qε1/2
.

Next, as in (3.15), one can modify the above arguments to show that

d(z, y)
∫

{v∈Al :|γ0(t)′|>d(z0,v)}
∣∣(XxTj

)
(γ0(t), v)

∣∣ | f (v)| dv

� ε1M2 f (x) 2
−lε1/2

(
2 j/2r0

)1−(n1+n2)ε1/2
.

Let us nowconsider the second term in (3.19). Bymean-value estimate fromLemma
2.1,

|φ(d(y, v)) − φ(d(z, v))| � d(z, y)
∫ 1

0

∣∣φ′ (d(γ0(t), v))
∣∣ |Xd(γ0(t), v)| dt .

From the definition of φ we see that φ′ (d(γ0(t), v)) can be non-zero only when
3C2

0 ≤ d(γ0(t), v) ≤ 5C2
0 . Now, using the arguments of proof of part (iv) of Lemma

2.8 of [2], in view of the lower and upper bound of the distance function where the
derivative survives, we can conclude that |Xd(γ0(t), v)| is uniformly bounded for
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γ0(t) ∈ B(z0,C1,κr), v ∈ R
n1+n2\B(z0, r0), and r0 < 1. Therefore, the second term

in (3.19) is dominated by d(y, z)|Tj (z, v)|.
Decomposing the annulusAl into two regions exactly as earlier, and in view of the

presence of the extra term d(y, z), we obtain

d(y, z)
∫
Al

|Tj (z, v)| | f (v)| dv �ε1 r02
−lε1/2

(
2 j/2r0

)−Qε1/2
M2 f (x)

� 2−lε1/2
(
2 j/2r0

)1−Qε1/2
M2 f (x),

where we have used the fact that 2 j0/2r0 ∼ 1 implies

(
2 j/2r0

)−(n1+n2)ε1/2 +
(
2 j/2r0

)−Qε1/2 ∼ε1

(
2 j/2r0

)−Qε1/2

uniformly for j ≤ j0.
We can now estimate the finite sum

∑ j0
j=0 I j of (3.17) as follows:

j0∑
j=0

I j �ε1 M2 f (x)
∞∑
l=0

j0∑
j=0

2−lε1/2
(
2 j/2r0

)1−Qε1/2

� M2 f (x)r
1−Qε1/2
0

⎛
⎝

j0∑
j=0

2 j(1− Qε1
2 )/2

⎞
⎠

⎛
⎝∑

l≥0

2−lε1/2

⎞
⎠

�ε1 M2 f (x)
(
2 j0/2r0

)1−Qε1/2

�ε1 M2 f (x), (3.22)

where we have again used the fact r02 j0/2 ∼ 1 in the last inequality.
Estimation of I2 in (3.11):

We follow the analysis which is very similar to the one for I1. The key change here
is that we do not need to make use of the mean-value estimate. Note that

I2 ≤
∑
j≥0

∫
R
n1+n2\B(z0,r0)

|T 2
j (y, v) − T 2

j (z, v)|| f (v)|dv :=
∑
j≥0

J j . (3.23)

Let us write each J j as follows:

J j ≤
∫

R
n1+n2\B(z0,r0)

|T 2
j (y, v)|| f (v)| dv +

∫
R
n1+n2\B(z0,r0)

|T 2
j (z, v)|| f (v)| dv.

(3.24)

We only calculate the first term of right side of (3.24), as the calculation for second
term is similar.
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Case 1 (r0 ≥ 1): We have that

∫
R
n1+n2 \B(z0,r0)

|T 2
j (y, v)|| f (v)| dv =

∫
R
n1+n2 \B(z0,r0)

|Tj (y, v)|(1 − φ(d(y, v))| f (v)| dv

≤
∫

R
n1+n2 \B(z0,r0)

|Tj (y, v)|| f (v)| dv.

In this case, we can make estimation same as we did for I1 to show that the above is
dominated by

{(
2 j/2

)−(n1+n2)ε1/2 +
(
2 j/2

)−Qε1/2
}
M2 f (x),

and therefore if we take sum over j ≥ 0 we get

∑
j≥0

{(
2 j/2

)−(n1+n2)ε1/2 +
(
2 j/2

)−Qε1/2
}
M2 f (x) �ε1 M2 f (x).

Case 2 (r0 < 1): Since φ(t) = 1 for |t | ≤ 3C2
0 , we have

∫
R
n1+n2\B(z0,r0)

|T 2
j (y, v)|| f (v)| dv �

∫
d(y,v)>3C2

0

|Tj (y, v)|| f (v)| dv.

Since r < 1 and d(y, v) > 3C2
0 , by triangle inequality we get d(x, v) > C0.

Therefore, the above term is dominated by

∫
d(x,v)>C0

|Tj (y, v)|| f (v)| dv.

In the beginning of the proof of the theorem, we performed a decomposition of the
space into annuli with keeping z0 as the centre. We can make an analogous decom-
position with keeping x as the centre. This is to ensure that the balls in the integral
average contain x and that would help us establishing bounds involvingM2 f (x). So,
let us write s0 = C0, and choose a sequence {sl} such that sl+1 = 2kl sl , kl ∈ N,
with |B(x, sl+1)| > 2|B(x, sl)| and |B(x, 2kl−1sl) ≤ 2|B(x, sl)|. LetBl denotes the
annulas B(x, sl+1) \ B(x, sl). Then,

∫
d(x,v)>C0

|Tj (y, v)|| f (v)| dv ≤
∑
l

∫
B(x,sl+1)\B(x,sl )

|Tj (y, v)|| f (v)| dv

=
∑
l

(∫
Bl :|y′|≤d(x,v)

+
∫
Bl :|y′|>d(x,v)

)
|Tj (y, v)|| f (v)| dv.
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With the above terms, repeating the calculations as done earlier, it is easy to prove
that

∫
Bl :|y′|≤d(x,v)

|Tj (y, v)|| f (v)| dv �ε1 2
−lε1/2

(
2 j/2

)−Qε1/2
M2 f (x),

∫
Bl :|y′|>d(x,v)

|Tj (y, v)|| f (v)| dv �ε1 2
−lε1/2

(
2 j/2

)−(n1+n2)ε1/2
M2 f (x).

Using the above inequalities and taking sum over j ≥ 0 and l ≥ 0, we get the
desired estimate. This completes the proof of Theorem 3.4. ��
Remark 3.5 We would like to highlight the importance of the decomposition of the
operators Tj into T 1

j and T 2
j in the proof of Theorem 3.4. Since our goal is to prove

Theorem 1.4 with �Q/2	 derivatives on the frequency variable (η-variable) of the
function Xxm(x, η), the presence of the function φ in the first term of (3.19) and
subsequently in (3.21) allowsus to reduce the integrationon a compact set and therefore
we can apply condition (3.2). Moreover, this fact combined with Corollary 4.6 ensures
that we only need �Q/2	 derivatives on the frequency variable (η-variable) of the
function Xxm(x, η). In principle, if one is not concerned with the optimality of the
number of derivatives, such a decomposition can be avoided.

3.2 Proof of Theorem 3.3

In this subsection, we develop the proof of Theorem 3.3. In view of Theorem 2.7,
Theorem 3.3 follows from Theorems 3.6 and 3.7 which we shall establish.

We begin with Theorem 3.6 which is about a sufficient condition ensuring the
control of the grand truncated maximal operator M


T ,s by M, which in turn would
imply the weak type (1, 1) boundedness for the grand truncated maximal operator
M


T ,s .

Theorem 3.6 Let T ∈ B
(
L2(Rn1+n2)

)
be such that it admits a decomposition T =∑

j≥0 Tj , with the convergence in the strong operator topology, and that the integral
kernels Tj (x, y) satisfy conditions (3.3) and (3.5) for some R0 > Q. Then, for s =
8C1,κC3

0δ
−1
0 with δ0 as in Theorem 2.6 and C1,κ as in Lemma 2.1, we have the

following pointwise almost everywhere estimate

M

T ,s f (x) �T ,κ,s M f (x) (3.25)

for every bounded measurable function f with compact support.

Proof The proof follows on exact same lines of the proof of Theorem 3.4. The only
difference is that in various integral estimations, we do not apply Cauchy-Schwarz
inequality as we have already assumed pointwise weighted estimates of the kernels.
For the sake of convenience, keeping notations of proof of Theorem 3.4, let us repeat
calculations of (3.14) in our case here.
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∫
A l∩{|y′|≤d(z0,v)}

|T 1
j (y, v)| | f (v)| dv

≤
∫
A l∩{|y′|≤d(z0,v)}

|B(y, d(z0, v))|−(1+ε1)| f (v)||B(y, d(z0, v))|(1+ε1)|T 1
j (y, v)| dv

� |B(y, rl )|−(1+ε1)

∫
A l∩{|y′|≤d(z0,v)}

| f (v)|d(z0, v)Q(1+ε1)|Tj (y, v)||φ(y, v)| dv

� |B(y, rl )|−(1+ε1)

∫
A l∩{|y′|≤d(z0,v)}

| f (v)|d(y, v)Q(1+ε1)|Tj (y, v)| dv

�ε1 |B(y, rl )|−(1+ε1)

∫
B(z0,rl+1)

| f (v)| 2− j Q(1+ε1)/2

|B(y, 2− j/2)|1/2|B(v, 2− j/2)|1/2 dv

� 2− jε1/2|B(y, rl )|−ε1M f (x)

� 2−lε1
(
r02

j/2
)−Qε1 M f (x). (3.26)

Similar to the above one, we can derive all other estimates of proof of Theorem 3.4,
and we leave the details. ��

Finally, we discuss the following result concerning the weak type (1, 1)-
boundedness.

Theorem 3.7 Let T ∈ B
(
L2(Rn1+n2)

)
be such that it admits a decomposition T =∑

j≥0 Tj , with the convergence in the strong operator topology, and that the integral

kernels Tj (x, y) satisfy condition (3.3) and (3.4) for some R0 ≥ Q + 1
2 , then T is

weak type (1, 1).

Proof We shall prove that the operators TN = ∑N
j=0 Tj are weak type (1, 1), with

their operator norms ‖TN‖L1→L1,∞ being uniform in N ∈ N, which would imply that
T is also weak type (1, 1). To see this, let us assume that we have

|{x : |TN f (x)| > ε}| � 1

ε
‖ f ‖L1 (3.27)

for every ε > 0, N ∈ N and f ∈ S(Rn1+n2).
Given f ∈ S(Rn1+n2), since limN→∞ ‖TN f − T f ‖2 = 0, it follows that TN f

converges to T f in measure, that is, for every ε > 0,

lim
N→∞ |{x : |TN f (x) − T f (x)| > ε}| = 0. (3.28)

In view of (3.27) and (3.28),

|{x : |T f (x)| > ε}| ≤ |{x : |TN f (x) − T f (x)| > ε/2}| + |{x : |TN f (x)| > ε/2}|
� |{x : |TN f (x) − T f (x)| > ε/2}| + 1

ε
‖ f ‖L1

N→∞−−−−→ 1

ε
‖ f ‖L1 ,

establishing that T is weak type (1, 1).
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We now claim that the following estimate holds true:

d(x, y)1/2|Tj (x, y) − Tj (x, z)| � d(y, z)1/2

|B(x, d(x, y))| min

{
2− j/4

d(y, z)1/2
,
d(y, z)1/2

2− j/4

}
,

(3.29)

whenever d(y, z) < 1
2C0

d(x, y).

It follows from (3.29) that whenever d(y, z) < 1
2C0

d(x, y) then we have

d(x, y)1/2|TN (x, y) − TN (x, z)| � d(y, z)1/2

|B(x, d(x, y))| , (3.30)

with the implicit bound uniform in N .
With (3.30), the proof of the weak type boundedness of TN (together with the fact

that the operator norms are uniform in N ) follows from the uniform L2-boundedness
of TN and the Calderón-Zygmund decomposition on homogeneous type spaces, for
more details we refer to [50].

So, we proceed to establish (3.29).
Case 1 (when |x ′| ≤ 2 d(x, y)): In this case (3.29) is equivalent to

d(x, y)Q+ 1
2 |Tj (x, y) − Tj (x, z)| � d(y, z)1/2 min

{
2− j/4

d(y, z)1/2
,
d(y, z)1/2

2− j/4

}
,

(3.31)

whenever d(y, z) < 1
2C0C1,κ

d(x, y).

Since d(y, z) < 1
2C0C1,κ

d(x, y), we have that d(x, y) and d(x, z) are comparable,
and therefore we get from condition (3.3) that

d(x, y)Q+ 1
2 |Tj (x, y) − Tj (x, z)| � d(y, z)1/2

2− j/4

d(y, z)1/2
. (3.32)

On the other hand, using mean-value estimate from Lemma 2.1, we have

d(x, y)Q+ 1
2 |Tj (x, y) − Tj (x, z)| � d(x, y)Q+ 1

2 d(y, z)
∫ 1

0

∣∣(XyTj
)
(x, γ0(t))

∣∣ dt .
(3.33)

Now fromLemma 2.1 we get d(γ0(t), y) ≤ C1,κd(z, y). Thus, the assumption that
d(y, z) < 1

2C0C1,κ
d(x, y) implies that d(γ0(t), y) < 1

2C0
d(x, y). And then, it follows

that d(x, y) � d(x, γ0(t)). With that, condition (3.4) is applicable to imply that

d(x, y)Q+ 1
2 d(y, z)

∫ 1

0

∣∣(XyTj
)
(x, γ0(t)))

∣∣ dt � d(y, z) 2 j/4 = d(y, z)1/2
d(y, z)1/2

2− j/4 .

(3.34)
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The above estimate implies that

d(x, y)Q+ 1
2 |Tj (x, y) − Tj (x, z)| � d(y, z)1/2

d(y, z)1/2

2− j/4 , (3.35)

and (3.32) and (3.35) together establish the claimed estimate (3.31).

Case 2 (when |x ′| > 2 d(x, y)): In this case (3.29) is equivalent to

|x ′|κn2d(x, y)n1+n2+ 1
2 |Tj (x, y) − Tj (x, z)| � d(y, z)1/2 min

{
2− j/4

d(y, z)1/2
,
d(y, z)1/2

2− j/4

}
,

(3.36)

whenever d(y, z) < 1
2C0C1,κ

d(x, y).
As earlier, from condition (3.3) and the fact that d(x, y) and d(x, z) are comparable

whenever d(y, z) < 1
2C0C1,κ

d(x, y), we get

|x ′|κn2d(x, y)n1+n2+ 1
2 |Tj (x, y) − Tj (x, z)|

� |x ′|κn2 2− j/4

|x ′|κn2
2 |y′|κn2

2

= 2− j/4 |x ′|κn2
2

|y′|κn2
2

. (3.37)

Now, |x ′| > 2d(x, y) ≥ 2|x ′ − y′| ≥ 2(|x ′| − |y′|) implies that |x ′| ≤ 2|y′|.
Therefore, we get from (3.37) that

|x ′|κn2d(x, y)n1+n2+ 1
2 |Tj (x, y) − Tj (x, z)| � 2− j/4 = d(y, z)1/2

2− j/4

d(y, z)1/2
.

(3.38)

As in Case 1, one can apply the mean-value estimate to get the form analogous to
(3.33), and then making use of condition (3.4) one can show that

|x ′|κn2d(x, y)n1+n2+ 1
2 |Tj (x, y) − Tj (x, z)| � d(y, z) |x ′|κn2 2 j/4

|x ′|κn2
2 |y′|κn2

2

� d(y, z)1/2
d(y, z)1/2

2− j/4 . (3.39)

where the last inequality follows from the fact that |x ′| ≤ 2|y′|.
Combining (3.38) and (3.39), we have the claimed estimate (3.36), and this com-

pletes the proof of Theorem 3.7. ��

4 Pseudo-multipliers Associated to Grushin OperatorsGκ

In this section, we shall study pseudo-multiplier operators associated to Grushin oper-
ators Gκ , and establish proof of Theorems 1.3, 1.4 and 1.5. We do so by analysing
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range of conditions on symbols that imply various conditions of the type listed between
(3.1) to (3.5). With that our claimed results would follow directly from Theorems 3.2,
3.3 and 3.7 in view of Theorem 2.7.

As seen in Sect. 3, we would require weighted Plancherel estimates (pointwise as
well as of L2-type) for integral kernels Km(x,Gκ)(x, y) of pseudo-multiplier oper-
ators m(x,Gκ). We shall show that the same could be established following (and
slightly modifying) the ideas of [8, 20]. We establish these kernel estimates in the next
subsection before we take up on our main results.

4.1 Weighted Plancherel (Gradient) Estimates

Using estimate (2.10), a straight forward revision of the proof of Lemma 2.1 of [20]
would lead to the following gradient estimates:

|B(x, R−1)|
∫

R
n1+n2

|X�
x pR−2(x, y)|2 dy �� R2|�|,

and |B(x, R−1)|
∫

R
n1+n2

|X�
y pR−2(x, y)|2 dy �� R2|�|, (4.1)

for all � ∈ N
n0 .

Using estimates (4.1) and the L2-boundedness of Riesz transforms of various orders
(see (2.11)), one can adapt the proof of Lemma 2.2 of [20] to establish the following
unweighted Plancherel estimates for the gradients of integral kernel.

Lemma 4.1 We have

|B(x, R−1)|
∫

R
n1+n2

∣∣X�
x Km(Gκ)(x, y)

∣∣2 dy �� R2|�|‖m‖2∞, (4.2)

|B(x, R−1)|
∫

R
n1+n2

∣∣∣X�
y Km(Gκ)(x, y)

∣∣∣2 dy �� R2|�|‖m‖2∞, (4.3)

for all � ∈ N
n0 and for every bounded Borel function m supported on [0, R2] for any

R > 0.

Proof Let us write F1(η) = m(η)eη/R2
and F2(η) = e−η/R2

. Then, m(η) =
F1(η)F2(η) = F2(η)F1(η), and therefore following the basic arguments of the proof
of Lemma 2.2 of [20] we have

Km(Gκ)(x, y) =
∫

R
n1+n2

KF1(Gκ)(x, z)KF2(Gκ)(z, y) dz, (4.4)

and similarly

Km(Gκ)(x, y) =
∫

R
n1+n2

KF2(Gκ)(x, z)KF1(Gκ)(z, y) dz. (4.5)
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Step 1: estimate (4.2) is true
Since Gκ is self-adjoint, it follows that the Km(Gκ)(x, y) = Km̄(Gκ)(y, x), and

therefore, proving (4.2) is equivalent to showing that

∫
R
n1+n2

∣∣∣X�
y Km̄(Gκ)(x, y)

∣∣∣2 dx � R2|�||B(y, R−1)|−1‖m‖2∞,

which we now prove.
In view of (4.4), we have∫

R
n1+n2

∣∣∣X�
y Km̄(Gκ)(x, y)

∣∣∣2 dx � ‖F1(Gκ)‖2op
∥∥∥X�

y KF2(Gκ)(·, y)
∥∥∥2
2

= ‖F1(Gκ)‖2op
∥∥∥X�

y pR−2(·, y)
∥∥∥2
2

�� ‖F1‖2∞ R2|�||B(y, R−1)|−1

� R2|�||B(y, R−1)|−1 ‖m‖2∞ ,

where the second last inequality follows from (4.1). This completes the proof of the
claimed estimate.

Step 2: estimate (4.3) is true
As seen earlier, since Gκ is self-adjoint, it suffices to show that∫

R
n1+n2

∣∣X�
x Km̄(Gκ)(x, y)

∣∣2 dx � R2|�||B(y, R−1)|−1‖m‖2L∞ ,

which we now prove.
Let Op

(
X�
x KF2(Gκ)(x, y)

)
stand for the operator whose integral kernel is

X�
x KF2(Gκ)(x, y). Then, in view of (4.5), we have
∫

R
n1+n2

∣∣X�
x Km̄(Gκ )(x, y)

∣∣2 dx �
∥∥Op

(
X�
x KF2(Gκ )(x, y)

)∥∥2
op

∥∥KF1(Gκ )(·, y)
∥∥2
2

��

∥∥Op
(
X�
x KF2(Gκ )(x, y)

)∥∥2
op |B(y, R−1)|−1 ‖F1‖2∞

��

∥∥Op
(
X�
x KF2(Gκ )(x, y)

)∥∥2
op |B(y, R−1)|−1 ‖m‖2∞ ,

(4.6)

where we have made use of Lemma 2.2 of [20] in the second last inequality.
Now, to estimate

∥∥Op
(
X�
x KF2(Gκ)(x, y)

)∥∥
op, take any f , g ∈ S

(
R
n1+n2

)
, then

we have

∣∣(Op
(
X�
x KF2(Gκ )(x, y)

)
f , g

)∣∣ =
∣∣∣∣
∫

R
n1+n2

∫
R
n1+n2

X�
x KF2(Gκ )(x, y) f (y) g(x) dy dx

∣∣∣∣
=

∣∣∣∣
∫

R
n1+n2

∫
R
n1+n2

KF2(Gκ )(x, y) f (y) X�
x g(x) dy dx

∣∣∣∣
=

∣∣∣
(
e−R−2Gκ f , X�

x g
)∣∣∣

=
∣∣∣
(
G|�|/2

κ
e−R−2Gκ f , G−|�|/2

κ
X�
x g

)∣∣∣
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≤
∥∥∥G|�|/2

κ
e−R−2Gκ f

∥∥∥
2

∥∥∥G−|�|/2
κ

X�
x g

∥∥∥
2

��

∥∥∥G|�|/2
κ

e−R−2Gκ f
∥∥∥
2

‖g‖2 , (4.7)

where we have used (2.11) in the last inequality.
Finally, note from (1.4) that G|�|/2

κ e−R−2Gκ is a Grushin multiplier operator with
symbol function FR,� , where FR,�(η) = η|�|/2e−R−2η. Therefore,

∥∥∥G|�|/2
κ

e−R−2Gκ f
∥∥∥
2

≤ ‖FR,�‖∞ ‖ f ‖2 �� R|�| ‖ f ‖2 ,

and putting this estimate in (4.7) we get

∥∥Op
(
X�
x KF2(Gκ)(x, y)

)∥∥
op �� R|�|.

The claim of Step 2 now follows by using the above estimate in (4.6).
This completes the proof of Lemma 4.1. ��
One can deduce the following analogue of Lemma 4.1 for pseudo-multipliers.

Corollary 4.2 We have

|B(x, R−1)|
∫

R
n1+n2

∣∣X�
x Km(x,Gκ)(x, y)

∣∣2 dy
�� sup

x0∈R
n1+n2

∑
�1+�2=�

R2|�1|‖X�2
x m(x0, ·)‖2∞, (4.8)

|B(x, R−1)|
∫

R
n1+n2

∣∣∣X�
y Km(x,Gκ)(x, y)

∣∣∣2 dy
�� sup

x0∈R
n1+n2

R2|�|‖m(x0, ·)‖2∞, (4.9)

for all � ∈ N
n0 and for every bounded Borel function m : R

n1+n2 × R → C whose
support in the last variable is in [0, R2] for any R > 0.

Proof We write below a proof of (4.8) as a straightforward consequence of Lemma
4.1 by an application of the Leibniz formula. Note from (1.4) that

Km(x,Gκ)(x, y) =
∫

R
n2
e−iλ·(x ′′−y′′)

∑
k∈N

m
(
x, |λ| 2

κ+1 νκ,k

)
hλ

κ,k(x
′) hλ

κ,k(y
′) dλ,

where the integral and the infinite sum is absolutely convergent. This is because

(∫
R
n2

∑
k∈N

∣∣∣m
(
x, |λ| 2

κ+1 νκ,k

)
hλ

κ,k(x
′) hλ

κ,k(y
′)
∣∣∣ dλ

)2

≤ sup
x0∈R

n1+n2

∫
R
n2

∑
k∈N

∣∣∣m
(
x0, |λ| 2

κ+1 νκ,k

)∣∣∣ ∣∣hλ
κ,k(x

′)
∣∣2 dλ
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×
∫

R
n2

∑
k∈N

∣∣∣m
(
x0, |λ| 2

κ+1 νκ,k

)∣∣∣ ∣∣hλ
κ,k(y

′)
∣∣2 dλ

= sup
x0∈R

n1+n2

(∫
R
n1+n2

∣∣∣K√|m|(x0,Gκ )(x, z)
∣∣∣2 dz

) (∫
R
n1+n2

∣∣∣K√|m|(x0,Gκ )(y, z)
∣∣∣2 dz

)
,

where the last equality follows from the orthogonality of the functions hλ
κ,k .

The above process also suggests that one can make use of Fubini’s theorem to
justify taking the gradient in x or y-variable inside the integral, and we have

∣∣X�
x Km(x,Gκ)(x, y)

∣∣
=

∣∣∣∣∣
∫

R
n2
eiλ·y′′ ∑

k∈N

X�
x

{
m

(
x, |λ| 2

κ+1 νκ,k

)
e−iλ·x ′′

hλ
κ,k(x

′)
}
hλ

κ,k(y
′) dλ

∣∣∣∣∣

=
∣∣∣∣∣∣

∑
�1+�2=�

(
�

�1

) ∫
R
n2
eiλ·y′′ ∑

k∈N

X�2
x

{
m

(
x, |λ| 2

κ+1 νκ,k

)}
X�1
x

{
e−iλ·x ′′

hλ
κ,k(x

′)
}
hλ

κ,k(y
′) dλ

∣∣∣
�� sup

x0

∑
�1+�2=�

∣∣∣∣∣
∫

R
n2
eiλ·y′′ ∑

k∈N

X�2
x

{
m

(
x0, |λ| 2

κ+1 νκ,k

)}
X�1
x

{
e−iλ·x ′′

hλ
κ,k(x

′)
}
hλ

κ,k(y
′) dλ

∣∣∣
= sup

x0

∑
�1+�2=�

∣∣∣X�1
x K

X
�2
x m(x0,Gκ)

(x, y)
∣∣∣ .

Now, one can make use of Lemma 4.1 to get

∫
R
n1+n2

∣∣X�
x Km(x,Gκ)(x, y)

∣∣2 dy
�� sup

x0∈R
n1+n2

∑
�1+�2=�

∫
R
n1+n2

∣∣∣X�1
x K

X
�2
x m(x0,Gκ)

(x, y)
∣∣∣2 dy

�� |B(x, R−1)|−1 sup
x0∈R

n1+n2

∑
�1+�2=�

R2|�1|‖X�2
x m(x0, ·)‖2∞,

which completes the proof of (4.8).
The proof of (4.9) is similar, with the observation that the y-gradient does not fall

on the symbol function m. This completes the proof of Corollary 4.2. ��
Having established Corollary 4.2 for the unweighted Plancherel estimates with

gradients of integral kernels, we shall now prove the weighted Plancherel estimates
with gradients of integral kernels. For the same, note first that using (4.1), one can
essentially repeat the proof of Lemma 4.1 of [20] to show that for any r > 0,
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|B(x, R−1)|
∫

R
n1+n2

d(x, y)r|X�
x p(1+i η̃)R−2 (x, y)|2 dy ��,r R2|�|R−r(1 + |η̃|)r,

and |B(x, R−1)|
∫

R
n1+n2

d(x, y)r|X�
y p(1+i η̃)R−2 (x, y)|2 dy ��,r R2|�|R−r(1 + |η̃|)r,

(4.10)

where p(1+i η̃)R−2 is the integral kernel of the operator exp
(−(1 + i η̃)R−2Gκ

)
with

η̃ ∈ R.
Then, making use of (2.10) and Lemma 4.1, we work with the ideas of the proof

of Lemma 4.3 of [20] to prove the following result.

Lemma 4.3 For every r, ε > 0, we have

|B(x, R−1)|
∫

R
n1+n2

(1 + Rd(x, y))2r
∣∣X�

x Km(x,Gκ)(x, y)
∣∣2 dy

��,r,ε sup
x0∈R

n1+n2

∑
�1+�2=�

R2|�1|‖X�2
x m(x0, R

2·)‖2W∞
r+ε

, (4.11)

|B(x, R−1)|
∫

R
n1+n2

(1 + Rd(x, y))2r
∣∣∣X�

y Km(x,Gκ)(x, y)
∣∣∣2 dy

��,r,ε sup
x0∈R

n1+n2

R2|�|‖m(x0, R
2·)‖2W∞

r+ε
, (4.12)

for all � ∈ N
n0 and for every bounded Borel function m : R

n1+n2 × R → C whose
support in the last variable is in [0, R2] for any R > 0.

Proof We shall sketch the proof of Lemma 4.3 only mentioning the changes required
in the proof of Lemma 4.3(a) of [20]. Let us define F(x, η) = m(x, R2η)eη. Then, by
Fourier inversion formula we have

F(x,Gκ/R2)e−Gκ/R2 = 1

2π

∫
R

exp
(
(i η̃ − 1)R−2Gκ

)
F̂(x, η̃) dη̃,

where F̂(x, η̃) stands for the Fourier transform of F as a function of η-variable (that
is, with x-fixed), and as a consequence of the above relation we have

Km(x,Gκ)(x, y) = 1

2π

∫
R

F̂(x, η̃)p(1−i η̃)R−2(x, y) dη̃,

which implies that

X�
x Km(x,Gκ )(x, y) = 1

2π

∑
�1+�2=�

(
�

�1

)∫
R

{
̂X�2
x F(x, η̃)

} {
X�1
x p(1−i η̃)R−2 (x, y)

}
dη̃,

(4.13)
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and therefore

∫
R
n1+n2

(1 + Rd(x, y))2r
∣∣Xx Km(x,Gκ)(x, y)

∣∣2 dy
��

∑
�1+�2=�

∫
R
n1+n2

(1 + Rd(x, y))2r

∣∣∣∣
∫

R

{
̂X�2
x F(x, η̃)

} {
X�1
x p(1−i η̃)R−2(x, y)

}
dη̃

∣∣∣∣
2

dy

�� sup
x0

∑
�1+�2=�

∫
R
n1+n2

(1 + Rd(x, y))2r

∣∣∣∣
∫

R

{
̂X�2
x F(x0, η̃)

} {
X�1
x p(1−i η̃)R−2(x, y)

}
dη̃

∣∣∣∣
2

dy (4.14)

For each fixed x0 ∈ R
n1+n2 , each term in the final sum of (4.14) corresponds

to Grushin multiplier symbol X�2
x F(x0, η), so the proof of Lemma 4.3(a) of [20] is

applicable with the only change pertaining to the fact that the analogous estimation
should be done with respect to X�1

x p(1−i η̃)R−2(x, y). Overall, one can repeat the proof
of Lemma 4.3(a) of [20] (leading to estimates (4.4) and (4.5) in [20]) with the help of
(4.1) and (4.10) to get that

∫
R
n1+n2

(1 + Rd(x, y))2r
∣∣∣∣
∫

R

{
̂X�2
x F(x0, η̃)

} {
X�1
x p(1−i η̃)R−2(x, y)

}
dη̃

∣∣∣∣
2

dy

��,r,ε |B(x, R−1)|−1 sup
x0∈R

n1+n2

R2|�1|‖X�2
x m(x0, R

2·)‖2W∞
r+ 1

2+ε

. (4.15)

Putting (4.15) into (4.14), we get the claimed estimate (4.11) modulo a loss of an
extra 1/2 order of differentiability in the Sobolev norm. As explained in [20], this
loss could be removed by an interpolation trick utilising the unweighted Plancherel
estimates. We have these unweighted Plancherel estimates in Corollary 4.2, so we can
repeat the arguments of [20] in our case too. That would establish estimate (4.11). The
proof of (4.12) could be written in the exact same way. This completes the proof of
Lemma 4.3. ��

Next, one can revise the proofs of Lemma4.2 and 4.3 of [8] in a similarmanner aswe
did above, and we can have pointwise unweighted and weighted Plancherel estimates
for gradients. Once we have the pointwise estimates, we can do interpolation with
estimates from Lemma 4.3 and Corollary 4.2, and thus we get the following estimates.

Corollary 4.4 For 2 ≤ p ≤ ∞, we have

|B(x, R−1)|1/2 ∥∥|B(·, R−1)|1/2−1/p X�
x Km(x,Gκ )(x, ·)

∥∥
p

��,p,ε sup
x0

∑
�1+�2=�

R|�1|‖X�2
x m(x0, ·)‖∞,
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|B(x, R−1)|1/2
∥∥∥|B(·, R−1)|1/2−1/p X�

y Km(x,Gκ )(x, ·)
∥∥∥
p

��,p,ε sup
x0

R|�|‖m(x0, ·)‖∞,

for every bounded Borel function m : R
n1+n2 × R → C whose support in the last

variable is in [0, R2] for any R > 0.

Corollary 4.5 For 2 ≤ p ≤ ∞, and every r > 0, ε > 0, we have

|B(x, R−1)|1/2
∥∥∥|B(·, R−1)|1/2−1/p (1 + Rd(x, ·))rX�

x Km(x,Gκ)(x, ·)
∥∥∥
p

��,p,r,ε sup
x0

∑
�1+�2=�

R|�1|‖X�2
x m(x0, R

2·)‖W∞
r+ε

,

|B(x, R−1)|1/2
∥∥∥|B(·, R−1)|1/2−1/p (1 + Rd(x, ·))rX�

y Km(x,Gκ)(x, ·)
∥∥∥
p

��,p,r,ε sup
x0

R|�|‖m(x0, R
2·)‖W∞

r+ε
,

for all � ∈ N
n0 and for every bounded Borel function m : R

n1+n2 × R → C whose
support in the last variable is in [0, R2] for any R > 0.

Before moving further, we record here weighted Plancherel estimates in a special
case where we take the L p-norm in y-variable over a compact set. This would help us
in having a control over the total number of derivatives (space and spectral derivatives
together) of the involved symbol function m(x, η).

Corollary 4.6 For every r ≥ 1, ε > 0, 0 ≤ δ < 1, and positive real number K0, we
have

|B(x, R−1)|
∫
d(x,y)<K0

d(x, y)2r
∣∣Xx Km(x,Gκ )(x, y)

∣∣2 dy
�r,ε,δ sup

x0

(
R−2(r−(1−δ))‖Xxm(x0, R

2·)‖2W∞
r−(1−δ)+ε

+ R−2(r−1)‖m(x0, R
2·)‖2W∞

r+ε

)
,

(4.16)

for every bounded Borel function m : R
n1+n2 × R → C whose support in the last

variable is in [0, R2] for any R > 0.

Proof The proof of the corollary follows by repeating the proof of Lemma 4.3 with
minor changes. Let us take the function F as in the proof of Lemma 4.3. By (4.13) we
can write

Xx Km(x,Gκ)(x, y) = 1

2π

∫
R

{
X̂x F(x, η̃)

} {
p(1−i η̃)R−2(x, y)

}
dη̃

+ 1

2π

∫
R

{
F̂(x, η̃)

} {
Xx p(1−i η̃)R−2(x, y)

}
dη̃.
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Now, for any fixed x , while integrating in y-variable over the set {y : d(x, y) < K0},
we reduce the power of d(x, y) in the term involving X̂x F(x, η̃) as follows:

∫
d(x,y)<K0

d(x, y)2r
∣∣Xx Km(x,Gκ )(x, y)

∣∣2 dy

�K0,δ sup
x0

∫
d(x,y)<K0

d(x, y)2(r−(1−δ))

∣∣∣∣
∫

R

{
X̂x F(x0, η̃)

} {
p(1−i η̃)R−2 (x, y)

}
dη̃

∣∣∣∣
2

dy

+ sup
x0

∫
d(x,y)<K0

d(x, y)2r
∣∣∣∣
∫

R

{
F̂(x0, η̃)

} {
Xx p(1−i η̃)R−2 (x, y)

}
dη̃

∣∣∣∣
2

dy

≤ sup
x0

∫
d(x,y)<K0

(1 + Rd(x, y))2(r−(1−δ))

R2(r−(1−δ))

∣∣∣∣
∫

R

{
X̂x F(x0, η̃)

} {
p(1−i η̃)R−2 (x, y)

}
dη̃

∣∣∣∣
2

dy

+ sup
x0

∫
d(x,y)<K0

(1 + Rd(x, y))2r

R2r

∣∣∣∣
∫

R

{
F̂(x0, η̃)

} {
Xx p(1−i η̃)R−2 (x, y)

}
dη̃

∣∣∣∣
2

dy.

(4.17)

With the above estimate, one can repeat the rest of the proof of Lemma 4.3 to complete
the proof of estimate (4.16). ��

In an analogous manner, one can prove the following L∞-estimate.

Corollary 4.7 For every r ≥ 1, ε > 0, 0 ≤ δ < 1, and positive real number K0, we
have

sup
x∈R

n1+n2

sup
d(x,y)<K0

|B(x, R−1)|1/2|B(y, R−1)|1/2d(x, y)r
∣∣Xx Km(x,Gκ )(x, y)

∣∣

�r,ε,δ,K0 sup
x0

(
R−(r−(1−δ))‖Xxm(x0, R

2·)‖W∞
r−(1−δ)+ε

+ R−(r−1)‖m(x0, R
2·)‖W∞

r+ε

)
,

(4.18)

for every bounded Borel function m : R
n1+n2 × R → C whose support in the last

variable is in [0, R2] for any R > 0.

4.2 Boundedness of Grushin Pseudo-multipliers

We are now in a position to prove Theorems 1.3, 1.4 and 1.5.
Given a boundedBorel functionm : R

n1+n2×R+ → C forwhich T = m(x,Gκ) ∈
B

(
L2(Rn1+n2)

)
, let us decompose T = ∑∞

j=0 Tj as follows.
Choose and fix ψ0 ∈ C∞

c ((−2, 2)) and ψ1 ∈ C∞
c ((1/2, 2)) such that 0 ≤

ψ0(η), ψ1(η) ≤ 1, and

∞∑
j=0

ψ j (η) = 1 and
∞∑

j=−∞
ψ1(2

jη) = 1,

for all η ≥ 0, where ψ j (η) = ψ1
(
2−( j−1)η

)
for j ≥ 2.

Now, for each j ≥ 0, define Tj to be the Grushin pseudo-multiplier operator, with
integral kernel Tj (x, y) = Km j (x,Gκ)(x, y), where m j (x, η) = m(x, η)ψ j (η).
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Proof of Theorem 1.3 We are given that
∣∣∣∂ lηm(x, η)

∣∣∣ ≤l (1 + η)−l for all l ≤ Q + 1,

and also that the operator T = m(x,Gκ) is bounded on L2(Rn1+n2). Note that with
R0 = Q + 1

2 , condition (3.3) follows from Corollary 4.5 (with � = 0 and p = ∞)
and condition (3.4) follows from Corollary 4.5 (with |�| = 1 and p = ∞). Hence, it
follows from Theorem 3.7 that T = m(x,Gκ) is of weak type (1, 1). ��
Proof of Theorem 1.4 For a fixed 0 ≤ δ < 1, we are given that

∣∣∣∂ lηm(x, η)

∣∣∣ ≤�,l (1 + η)−l , for all l ≤ �Q/2	 + 1,

and
∣∣∣Xx∂

l
ηm(x, η)

∣∣∣ ≤�,l (1 + η)−l+ δ
2 , for all l ≤ �Q/2	,

and that the operator T = m(x,Gκ) is bounded on L2(Rn1+n2).
Theorem 1.4 would follow from Theorem 3.2 if we could show that the kernels

Tj (x, y) = Km j (x,Gκ)(x, y) satisfy conditions (3.1) and (3.2) for some R0 > �Q/2	.
To this end, note that condition (3.1) with R0 = �Q/2	 + ε, for any 0 < ε < 1,
follows from Lemma 4.3 (with � = 0). Finally, for any 0 < ε̃ < 1− δ, we can deduce
condition (3.2) with R0 = �Q/2	 + ε̃ from Corollary 4.6. ��
Proof of Theorem 1.5 For a fixed 0 ≤ δ < 1, we are given that

∣∣∣∂ lηm(x, η)

∣∣∣ ≤�,l (1 + η)−l , for all l ≤ Q + 1,

and
∣∣∣Xx∂

l
ηm(x, η)

∣∣∣ ≤�,l (1 + η)−l+ δ
2 , for all l ≤ Q,

and that the operator T = m(x,Gκ) is bounded on L2(Rn1+n2).
Theorem 1.5 would follow from Theorem 3.3 if we could show that the kernels

Tj (x, y) = Km j (x,Gκ)(x, y) satisfy conditions (3.3), (3.4) for R0 = Q + 1
2 and

condition (3.5) for any R0 > Q. For the same, note that with R0 = Q + 1
2 , condition

(3.3) follows from Corollary 4.5 (with � = 0 and p = ∞) and condition (3.4)
from Corollary 4.5 (second inequality, with |�| = 1 and p = ∞). Finally, for any
0 < ε̃ < 1 − δ, we can deduce condition (3.2) with R0 = �Q/2	 + ε̃ from Corollary
4.7. ��
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