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Abstract
Time and band limiting operators are expressed as functions of the confluent Heun
operator arising in the spheroidal wave equation. Explicit formulas are obtained when
the bandwidth parameter is either small or large and results on the complete Fourier
transform are recovered.

Keywords Finite Fourier transform · Prolate spheroidal wave functions · Heun
equation

1 Introduction

In a famous series of papers on the time and band limiting of functions [13, 14, 21,
23, 24], Slepian, Pollack and Landau made the surprisingly useful observation that a
second order linear differential operator arising in the confluent Heun equation [18,
20],
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T = (1 − x2)
∂2

∂x2
− 2x

∂

∂x
− c2x2, (1)

commutes with the finite Fourier transform Fc [16, 26]:

Fc[φ](x) =
∫ 1

−1
eicxtφ(t)dt, (2)

where the bandwidth parameter c is an arbitrary positive number. The eigenfunctions
of T and Fc were further recognized to be prolate spheroidal wave functions, which
appear in solutions of the Helmholtz equation in appropriate coordinates. Naturally,
these functions were also found to diagonalize the integral operator with sinc kernel
Qc = 2π

c F∗
c ◦ Fc,

Qc[φ](x) =
∫ 1

−1

sin(c(x − t))

π(x − t)
φ(t)dt, (3)

and were used to derive asymptotic expressions for its spectrum [7, 22]. As noted in
[4], similar ideas also appear in an earlier work by Bateman [3] and were discovered
independently by Mehta [15].

Since then, many fields have benefited from these results. Applications have in
particular been made in limited angle tomography [6, 10], random matrix theory [7,
15], signal processing, number theory [5] and in the study of entanglement in fermionic
systems [9]. The unexpected discovery of this commuting operator raised the following
question: what is behind this “miracle” or what is the nature of the relation between
the Heun operator T and the finite Fourier transform Fc?

Recently, an answer explaining the existence of a commuting second order dif-
ferential operator was presented [12]. By relating Fc to a certain type of bispectral
problem, it was shown that T could be constructed as a special case of an algebraic
Heun operator. Furthermore, this framework was applied to other settings where a
second order differential operator commutes with an integral one and to cases where
a full matrix commutes with a tridiagonal one.

To understand how the confluent Heun operator T and the finite Fourier transform
Fc are related, an alternative avenue would be to express one as a function of the other.
This has been carried out in the case of the complete Fourier transform F ,

F[φ](x) = 1√
2π

∫ ∞

−∞
eixtφ(t)dt (4)

which commutes with the operator

H = 1

2

(
∂2

∂x2
− x2 − 1

)
. (5)
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This last property becomes manifest upon observing that F can be expressed as the
following exponential ofH [8]:

F = e−i π
2 H. (6)

Our objective is thus to generalize this formula and to obtain an analogue for Fc and
T . The paper is divided in three parts. In Sect. 2, we introduce a family of operators
which are functions of T and for which the action on the space of square-integrable
functions L2[−1, 1] is easy to derive. In Sect. 4, we obtain formulas for Fc andQc in
terms of T . In Sect. 7, we consider the limits c → 0 and c → ∞ and recover equation
(6).

2 The Operators U(�; T)
To express Fc as a function of T , let us start by constructing a set of operators
{U (ξ ; T )}ξ∈]−2,2[ which are functions of T and for which the action on functions
f ∈ L2[−1, 1] of the variable x is easy to derive. Consider the following equation:

[
(1 − x2)

∂2

∂x2
− 2x

∂

∂x
− c2x2

]
f (x, y)

=
[
(1 − y2)

∂2

∂ y2
− 2y

∂

∂ y
− c2y2

]
f (x, y),

(7)

or equivalently

Tx f (x, y) = Ty f (x, y), (8)

where Tx and Ty refer to the Heun operator defined in (1) acting on the variable x
and y respectively. It is interesting to note that Eq. (7) (restricted to x ∈ [−1, 1] and
y > 1) arises from the Helmholtz equation in prolate spheroidal coordinates when a
cylindrical symmetry is assumed [17].

Rearranging Eq. (7), one finds that the first derivative of f (x, y) with respect to y
can be expressed as

∂

∂ y
f (x, y) = 1

2y

(
(1 − y2)

∂2

∂ y2
− Tx − c2y2

)
f (x, y). (9)

In particular, the first derivative evaluated at the regular singular points y = ±1 can
be expressed as a linear function of Tx acting on f (x,±1):

∂

∂ y
f (x, y)

∣∣∣
y=±1

= ∓1

2

(
Tx + c2

)
f (x,±1). (10)
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Furthermore, the application of ∂k

∂ yk
on (7) gives

∂k+1

∂ yk+1 f (x, y) =
[

(1 − y2)

2y(k + 1)
∂k+2∂ yk+2 −

(
Tx + c2y2 + k(k + 1)

)
2y(k + 1)

∂k∂ yk

− c2yk

y(k + 1)
∂k−1∂ yk−1 − c2k(k − 1)

2y(k + 1)
∂k−2∂ yk−2

]
f (x, y),

(11)

which can be used to obtain the following lemma:

Lemma 1 Let f (x, y) be a solution of Eq. (7). The kth derivative of f (x, y) with
respect to y evaluated at y = ±1 can be expressed in terms of a polynomial Uk of Tx
acting on f (x,±1), i.e.

∂k∂ yk f (x, y)
∣∣∣
y=±1

= (∓1)kUk(Tx ) f (x,±1). (12)

The polynomials Uk are given by the following four-term recurrence relation:

Uk+1(Tx ) = (Tx + c2 + k(k + 1))

2(k + 1)
Uk(Tx )

− c2k

k + 1
Uk−1(Tx ) + c2k(k − 1)

2(k + 1)
Uk−2(Tx ),

(13)

and the initial condition U0(Tx ) = 1.

Remark 1 Given the four-term recurrence relation (13), Theorem 3.2 in [25] can be
applied and one concludes that the polynomials Uk form a family of 2-orthogonal
polynomials.

Using the polynomials Uk , we can define the operators

U (ξ ; Tx ) ≡
∞∑
k=0

ξ kUk(Tx )

k! , ξ ∈] − 2, 2[. (14)

They are well defined since their action on the eigenbasis of Tx (which has real eigen-
values [19]) is well defined. Indeed, the series U (ξ, λ) converges for any λ ∈ R. One
can check that the four-term recurrence relation (11) yields

lim
k→∞

ak
max (ak−1, ak−2, ak−3)

= ξ

2
, ak = ξ kUk(λ)

k! , (15)
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which implies (by using geometric series) that
∑∞

k=0 ak converges as long as ξ ∈
] − 2, 2[. By Eq. (12) the operators U (ξ ; Tx ) also verify

U (ξ ; Tx )[ f ](x,±1) =
∞∑
k=0

ξ k

k!Uk(Tx )[ f ](x,±1)

=
∞∑
k=0

(∓ξ)k

k! ∂k∂ yk f (x, y)
∣∣∣
y=±1

= f (x,±(1 − ξ)).

(16)

In other words, they can be interpreted as translation operators on the variable y. The
next theorem follows.

Theorem 1 Let f0 ∈ L2[−1, 1], ξ ∈] − 2, 2[ and Tx be the second order linear
differential operator defined in (1). Then,

U (ξ ; Tx )[ f0](x) = f (x,±(1 − ξ)) (17)

where U (ξ ; Tx ) is the operator defined in (14) and f is the solution of

Tx f (x, y) = Ty f (x, y), (18)

which verifies the boundary condition

f (x,±1) = f0(x). (19)

A similar construction holds when Tx is replaced by an arbitrary constant λ ∈ R and f
by a univariate function of y in Eqs. (8), (12) and (16).We still have the convergence of
U (ξ ; λ) for ξ ∈]−2, 2[. This operator is further identified as a solution of a differential
equation in the variable y = ξ − 1:

Corollary 3 Let λ ∈ R. It is observed that

U (y + 1; λ) =
∞∑
k=0

(y + 1)kUk(λ)

k! , (20)

with the polynomials Uk given by the four-term recurrence relation (13), verifies the
confluent Heun equation

(Ty − λ)U (y + 1; λ) =
(

(1 − y2)
∂2

∂ y2
− 2y

∂

∂ y
− c2y2 − λ

)
U (y + 1; λ) = 0,

(21)
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for all y ∈] − 3, 1[, and the boundary condition

U (0; λ) = 1. (22)

Next, we shall look for linear combinations of U (ξ ; Tx ) which reproduce the action
of Fc and Qc on L2[−1, 1].

4 Formulas forFc andQc

We want to find α(ξ) and β(ξ) such that

Fc =
∫ 2

−2
α(ξ)U (ξ ; Tx )dξ and Qc =

∫ 2

−2
β(ξ)U (ξ ; Tx )dξ. (23)

Since U (ξ ; Tx ) is a function of Tx for all ξ ∈] − 2, 2[, this is sufficient to express Fc

and Qc as functions of the Heun operator Tx . For (23) to be verified, both sides of
each equation must have the same diagonal action on the basis of L2[−1, 1] given by
the prolate spheroidal wave functions ψc

n (x), n ∈ N, i.e.

Fc[ψc
n ] =

∫ 2

−2
α(ξ)U (ξ ; Tx )[ψc

n ]dξ and Qc[ψc
n ] =

∫ 2

−2
β(ξ)U (ξ ; Tx )[ψc

n ]dξ.

(24)

Let us recall some properties of these functions.

4.1 The Prolate SpheroidalWave Functions

The properties discussed in this subsection can be found in [16, 19, 26]. First, we note
that the prolate spheroidal wave functions ψc

n , n ∈ N, satisfy the following eigenvalue
equation

Txψ
c
n (x) = −χn(c)ψ

c
n (x), (25)

and give a basis of L2[−1, 1]. The eigenvalues χn(c) are positive and ordered such
that for all c > 0

χn(c) < χn+1(c), ∀n ∈ N. (26)

Next, these functions also diagonalize the finite Fourier transform and the sinc kernel
integral operator defined respectively in Eqs. (2) and (3):

Fc[ψc
n ](x) = inλn(c)ψ

c
n (x), Qc[ψc

n ](x) = μn(c)ψ
c
n (x), (27)
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where

μn = c

2π
|λn(c)|2. (28)

Finally, it is also interesting to note that

Rψc
n (x) = ψc

n (−x) = (−1)nψc
n (x), (29)

whereR refers to the reflection operator acting on functions of the variable x . In other
words, these functions are even for n even and odd for n odd.

4.2 The Finite Fourier Transform

We look for α(ξ) such that

(∫ 2

−2
α(ξ)U (ξ ; Tx )dξ

)
[ψc

n ](x) = inλn(c)ψ
c
n (x). (30)

Since ψc
n (−1) �= 0 for all n ∈ N [24], one observes that

f (x, y) = ψc
n (x)ψ

c
n (y)

ψc
n (−1)

(31)

verifies Eq. (7) and that f (x,−1) = ψc
n (x). Thus, Theorem 1 applies and we obtain

U (ξ ; Tx )[ψc
n ](x) =

(
ψc
n (−1 + ξ)

ψc
n (−1)

)
ψc
n (x). (32)

This result is also a natural consequence of takingU (ξ ;−χn(c)) in Corollary 3. Using
the action (32), one finds that

(∫ 2

−2
α(ξ)U (ξ ; Tx )dξ

)
[ψc

n ](x) =
(∫ 2

−2
α(ξ)

ψc
n(−1 + ξ)

ψc
n (−1)

dξ

)
ψc
n (x). (33)

In particular, injecting

α(ξ) =
{
eic(1−ξ) If ξ ∈ [0, 2[,
0 Otherwise,

(34)

in Eq. (33) yields

(∫ 2

0
eic(1−ξ)U (ξ ; Tx )dξ

)
[ψc

n ](x) =
(Fc[ψc

n ](−1)

ψc
n (−1)

)
ψc
n (x). (35)
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Then, it is enough to note that

Fc[ψc
n ](−1)

ψc
n (−1)

= inλn(c) (36)

to prove the following theorem:

Theorem 2 Let Fc be the finite Fourier transform, Tx the Heun operator defined in
(1) and U (ξ ; Tx ) the function of Tx defined by

U (ξ ; Tx ) ≡
∞∑
k=0

ξ kUk(Tx )

k! , (37)

where the polynomials Uk are given by the following four-term recurrence relation:

Uk+1(Tx ) = (Tx + c2 + k(k + 1))

2(k + 1)
Uk(Tx )

− c2k

k + 1
Uk−1(Tx ) + c2k(k − 1)

2(k + 1)
Uk−2(Tx ),

(38)

and the initial condition U0(Tx ) = 1. Then, we have that

Fc =
∫ 2

0
eic(1−ξ)U (ξ ; Tx )dξ (39)

as an operator acting on L2[−1, 1].
Let R be the reflection operator. Since the series defining U (ξ, Tx ) converges more
quickly for small ξ , it is interesting to note that injecting

α(ξ) =
{
eic(1−ξ) + Re−ic(1−ξ) if ξ ∈ [0, 1],
0 otherwise,

(40)

in (33) also gives

(∫ 1

0

(
eic(1−ξ) + Re−ic(1−ξ)

)
U (ξ ; Tx )dξ

)
[ψc

n ](x) =
(Fc[ψc

n ](−1)
ψc
n (−1)

)
ψc
n (x)

(41)

and does not use U (ξ, Tx ) with ξ ∈]1, 2[. Therefore, we have
Corollary 5 With the same preamble as Theorem (2), we have

Fc =
∫ 1

0

(
eic(1−ξ) + Re−ic(1−ξ)

)
U (ξ ; Tx )dξ (42)

as an operator acting on L2[−1, 1].
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5.1 The Sinc Kernel

Given thatQc = 2π
c F∗

c ◦Fc, Theorem (2) is sufficient to show thatQc can be expressed
as a function of Tx . However, we would like to obtain formulas similar to (39) and
(42), i.e. to find β(ξ) such that

Qc =
(∫ 2

−2
β(ξ)U (ξ ; Tx )dξ

)
(43)

or equivalently

(∫ 2

−2
β(ξ)U (ξ ; Tx )dξ

)
[ψc

n ](x) = μn(c)ψ
c
n (x). (44)

Again, we can use (31) and Theorem 1 to obtain

(∫ 2

−2
β(ξ)U (ξ ; Tx )dξ

)
[ψc

n ](x) =
(∫ 2

−2
β(ξ)

ψc
n (−1 + ξ)

ψc
n (−1)

dξ

)
ψc
n (x). (45)

Then, taking

β(ξ) =
{

sin (cξ)
πξ

If ξ ∈ [0, 2[,
0 Otherwise,

(46)

yields

(∫ 2

0

sin (cξ)

πξ
U (ξ ; Tx )dξ

)
[ψc

n ](x) =
(Qc[ψc

n ](−1)

ψc
n (−1)

)
ψc
n (x). (47)

Since we have that

Qc[ψc
n ](−1)

ψc
n (−1)

= μn(c), (48)

the following theorem is proven:

Theorem 3 Let Qc be integral operator defined in (3), Tx the Heun operator defined
in (1) and U (ξ ; Tx ) the function of Tx defined by

U (ξ ; Tx ) ≡
∞∑
k=0

ξ kUk(Tx )

k! , (49)
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where the polynomials Uk are given by the following four-term recurrence relation:

Uk+1(Tx ) = (Tx + c2 + k(k + 1))

2(k + 1)
Uk(Tx )

− c2k

k + 1
Uk−1(Tx ) + c2k(k − 1)

2(k + 1)
Uk−2(Tx ),

(50)

and the initial condition U0(Tx ) = 1. Then, we have that

Qc =
∫ 2

0

sin (cξ)

πξ
U (ξ ; Tx )dξ (51)

as an operator acting on L2[−1, 1].
To avoid using U (ξ ; Tx ) for ξ ∈]1, 2[, one could also choose

β(ξ) =
{

sin (cξ)
πξ

+ sin (c(2−ξ))
π(2−ξ)

R If ξ ∈ [0, 1],
0 Otherwise,

(52)

to obtain

(∫ 1

0

(
sin (cξ)

πξ
+ sin (c(2 − ξ))

π(2 − ξ)
R

)
U (ξ ; Tx )dξ

)
[ψc

n ](x)

=
(Qc[ψc

n ](−1)

ψc
n (−1)

)
ψc
n (x).

(53)

Then, one finds the following corollary:

Corollary 6 With the same preamble as Theorem (3), we have

Qc =
∫ 1

0

(
sin (cξ)

πξ
+ sin (c(2 − ξ))

π(2 − ξ)
R

)
U (ξ ; Tx )dξ (54)

as an operator acting on L2[−1, 1].

7 Limiting Cases

We are now interested in cases where the formulas in Theorems 2 and 3 can be
simplified. We will consider those where the bandwidth parameter c is either small or
large.
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7.1 The Limit c → 0

Let us start from Eq. (42) which can be rewritten as

Fc =
∫ 1

−1
e−icyU (y + 1; Tx )dy. (55)

From the recurrence relation (13), one finds that Uk is a polynomial of order k in the
parameter c2 and that

Uk+1(Tx ) = (Tx + k(k + 1))

2(k + 1)
Uk(Tx ) + O(c2). (56)

This is a two-term recurrence relation for the terms inUk of order 0 in c2. Its solution
gives

Uk(Tx ) =
∏k

n=1(Tx + k(k − 1))

2kk! + O(c2). (57)

It follows from the Taylor’s expansion e−icy = 1 − icy + O(c2) that

e−icyU (y + 1; Tx ) = (1 − icy)
∞∑
k=0

∏k
n=1(Tx + k(k − 1))

2kk!k! (y + 1)k + O(c2). (58)

Evaluating the integral in Eq. (55) then yields the following:

Fc = 2
∞∑
k=0

∏k
n=1(Tx + k(k − 1))

k!(k + 1)!
(
1 − ick

k + 2

)
+ O(c2)

= 2
∞∑
k=0

∏k
n=1

(
(1 − x2) ∂2

∂x2
− 2x ∂

∂x + k(k − 1)
)

k!(k + 1)!
(
1 − ick

k + 2

)

+ O(c2).

(59)

Using Legendre polynomials {Pn(x)}n∈N, which give a basis of L2[−1, 1] and satisfy
(

(1 − x2)
∂2

∂x2
− 2x

∂

∂x

)
Pn(x) = −n(n + 1)Pn(x), (60)

one can check in (59) that the term in Fc of order 0 in c is the projector onto the space
of functions spanned by P0(x) = 1. Similarly, the term of order 1 in c is the projector
onto the space spanned by P1(x) = x . Recalling the orthogonality property of the
Legendre polynomials, this is indeed what is expected from the definition of Fc given
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by (2) (or Lemma 3.3 in [27]):

Fc[φ](x) =
∫ 1

−1
φ(y)dy − ic

∫ 1

−1
yφ(y)dy + O(c2)

=
∫ 1

−1
P0(y)φ(y)dy − ic

∫ 1

−1
P1(y)φ(y)dy + O(c2).

(61)

Higher order terms in (59) can be obtained in a similar way.

7.2 The Limit c → ∞ and the Complete Fourier Transform

Let Dc be the dilation operator acting as:

Dcφ(x) = φ(
√
cx). (62)

When c → ∞, one can check that the dilated finite Fourier transform F̃c = D−1
c ◦

Fc ◦ Dc yields the complete Fourier transform:

lim
c→∞

√
c

2π
F̃c[φ](x) = lim

c→∞

√
c

2π

∫ 1

−1
ei

√
cxtφ(

√
ct)dt

= lim
c→∞

1√
2π

∫ c

−c
eixtφ(t ′)dt ′

= F[φ](x).

(63)

As for the Heun operator Tx , it depends implicitly on c and under the same dilation it
becomes

T̃x = D−1
c ◦ Tx ◦ Dc = c

(
∂2

∂x2
− x2

)
+ O(c0)

= 2c

(
H + 1

2

)
+ O(c0),

(64)

where O(c0) is with respect to the large c limit, i.e. refers to terms proportional to ck ,
k ≤ 0. Therefore, one expects that taking the limit c → ∞ in Eq. (42) should allow
to recover the known result:

F = e−i π
2 H, (65)

where H is the operator defined in (5). Using Eq. (39), y = −1 + ξ and conjugating
by Dc, we find:

F̃c =
∫ 1

−1
e−icyU (y + 1, T̃x )dy. (66)
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Recall that Uk is a polynomial of order 2k in c. In the limit c → ∞, the four-term
recurrence relation for the polynomials Uk and Eq. (64) yields

Uk+1(T̃x ) = 1

2(k + 1)

(
c2 + 2c

(
H + 1

2

))
Uk(T̃x ) + O(c2k), (67)

and thus

Uk = c2k

2kk! + O(c2k−1). (68)

Then, taking y = −1 + ε/c2 we obtain

U (ε/c2, T̃x ) =
∞∑
k=0

Ukε
k

c2kk! =
∞∑
k=0

εk

2kk!k! + O(1/c)

= J0(i
√
2ε) + O(1/c),

(69)

where J0 refers to the zeroth order Bessel function. In particular, this expression does
not depend on T̃x and is valid as long as y is near −1. For ε large, let us also note that
the Bessel function asymptotic form [1] gives

U (ε/c2, T̃x ) ≈ e
√
2ε

√
2π(2ε)1/4

+ O(1/c). (70)

Outside the interval near y = −1, we can use Corollary 3 to approximateU (y+1; T̃x ).
As long as y does not tend to 0 or ±1, the differential equation

[
(1 − y2)

∂2

∂ y2
− 2y

∂

∂ y
− c2y2 − T̃x

]
U (y + 1, T̃x ) = 0 (71)

has for large c the following asymptotic solution (found using a perturbative approach)

U (y + 1, T̃x ) = Aec
√

1−y2

⎛
⎜⎝ 1√

y(1 − y2)1/4

(
1 + √

1 − y2

1 − √
1 − y2

) T̃x
4c

+ O(1/c)

⎞
⎟⎠

+Be−c
√

1−y2

⎛
⎜⎝ 1√

y(1 − y2)1/4

(
1 + √

1 − y2

1 − √
1 − y2

) T̃x
4c

+ O(1/c)

⎞
⎟⎠ .

(72)

The constants A and B are fixed by the boundary condition U (0, Tx ) = 1. Taking
y + 1 = ε/c2 in Eq. (72), one finds
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Fig. 1 Paths �1 and �2 in the
complex plane

U (y + 1, T̃x ) = A

√
ce

√
2ε

(2ε)1/4
(1 + O(1/c)) (73)

+ B

√
ce−√

2ε

(2ε)1/4
(1 + O(1/c)) . (74)

Thus, we can compare (70) and (74) to deduce that

A = 1√
2πc

, B = 0. (75)

Next, we want to evaluate the integral (66). By introducing the complex variable
z = −iy + √

1 − y2, we can interpret Eq. (66) as an integral

F̃c =
∫

�1

ec
z2−1
2z U (1 + 1 − z2

2i z
, T̃x )

i(1 + z2)

2z2
dz (76)

along a path �1 from z = i to z = −i on the half unit circle where Re(z) > 0. This
path can be deformed to keep away from z = 1 (y = 0). This allows to use (72) with
(75) to obtain

F̃c =
∫

�1

−ecz√
2π ic

√
1 + z2

1 − z2
1

z

(−(1 + z)2

(1 − z)2

) T̃x
4c

dz (77)

Along a path �2 from z = −i to z = i in the half plane Re(z) < 0 (see Fig. 1), the
integrand tends to 0 as c → ∞ because of the term ecz . Thus, the expression (77) is
reduced to the evaluation of its residues in the region |z| < 1, Re(z) ≥ 0. Since there
is only a simple pole at z = 0, we find

F̃c =
√
2π i

c
(−1)

T̃x
4c (1 + O(1/c)) (78)
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and therefore with T̃x = 2c(H + 1/2) + O(c0), we recover

lim
c→∞

√
c

2π
F̃c = e−i π

2 H. (79)

8 Concluding Remarks

We have shown how the finite Fourier transform Fc can be expressed as a function of
the confluent Heun operator T arising in the spheroidal wave equation. In doing so,
we shed new light on the relation between the two operators and have generalized the
formula giving the complete Fourier transform as the exponential of a second order
differential operator.

Other settings exist in which a second order differential operator commutes with
an integral one. The operator which appears in the generic Heun equation is known
to commute with the finite Jacobi transform [12]. A differential operator commuting
with the finite Fourier transform for functions defined on a circle was also identified by
Slepian [23]. It should prove interesting to check if the approach used in this paper can
be applied in those situations and if a formula relating the two commuting operators
can be found. Future work could also be directed to the study of discrete cases, in
which the two objects are tridiagonal matrices and complete ones [11].

Finally, one expects that our results could also be derived using a more algebraic
approach. Such a derivation would connect to the existing literature on the relation
between the finite Fourier transform and the Heun operator, and on their associated
bispectral pair in continuous and discrete settings [2, 12].
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