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1 Introduction

Let Q C R” be a special Lipschitz domain, that is, 2 is of the form {(x', x;) : x, >
p(x")} where p : R"™! — R is a Lipschitz function such that |[Vp||;~ < oo. (See
also [14, Definition 1.103].)

In [9], based on the construction of his extension operator, Rychkov gave a
Littlewood-Paley type intrinsic characterization of the Triebel-Lizorkin spaces on 2:
for0 < p < 00,0 < g <oocands € R, f;q(Q) has the following equivalent
(quasi-)norm (see [9, Theorem 3.2]):

i 1/p
. : r/q
f o 1 P gllen g o ) = ( | (X 2ris5cor) dx) -
‘ o \“
J=0
We take obvious modification for ¢ = oco. Here (¢ j)?ozo is a carefully chosen family
of Schwartz functions such that the convolution ¢; * f is defined on €2, see Definition
4.

In [12, version 3, Proposition 6.6], we used Rychkov’s construction to prove that
WAl F3,(Q) have equivalent (quasi-)norms via their derivatives. More precisely, letm >
1,forevery0 < p < 00,0 <g <oocands € RthereisaC = C(R2, p,q,s,m) >0
such that

C Sl @ = D 10 fllgng < Clfllz,@. V€T (@. (@)

loe|<m

Both (1) and (2) miss the endpoint: do we have the analogy of (1) and (2) for p = 00?

In this paper, we give the positive answers to both cases, by using the recently developed
1 1

Triebel-Lizorkin-type spaces .#,7: we have the coincidences 75, = ﬁ;;f = %’;;f
for 0 < p < oo (see (9)).

To make the results more general, we include the discussions of Besov-type spaces
Py, and the Besov-Morrey spaces ,/Vpxqf, see Definition 6.

We denote by Q the set of dyadic cubes in R", that is

Q:=(Qj,:JeZvelZ"), where Q;,:=2""v+©0,27)". (3

Our result for (1) is the following:

Theorem 1 (Littlewood-Paley type characterizations) Let Q = {(x',x,) : x, >
p(x")} C R" be a special Lipschitz domain and let (¢ j);?';o be a Littlewood-Paley
family associated with Q2 (see Definition 4). Then for0 < p,q < o0o,s € Randt > 0

(p < oo for F -cases), we have the following equivalent (quasi-)norms:

Iz @) X¢.p.g.s.c 127 1g - (¢ * INZollearr

o]

= sup 211]‘[( Z 24/'3"] ||¢] * f”(ip(QJ,vﬂQ)) 5
07069 Jj=max(0,J)

E
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1f L7550 X, p.g.se 127 1a - (@)% )Tl 2
1

"ot 2”(/%“2( i 2”‘1|¢j*f(x)|‘1)§dx)”;

0yveQ Jj=max(0,J)

1 rr @ ~o.ps.e 1271 - @) % )0l gapsr
o

= (X2 sup 29k £l 0, o)
jonJ,veQ Y

Ey.

(See Definition 5 for ¢9LY, LL¢4 and ¢4 MY ) In particular for 0 < q < oo and
s € R,

00 1
Ju / ‘
175, Xg.qs sup 274 f ( Z 2/ * f(X)qux>‘i.
JeL,velr 07N j=max(0,J)

One can also get some characterizations on bounded Lipschitz domain, whose
expressions are less elegant however. See Remark 24.

Similar to [9, Theorem 2.3], we also have the corresponding characterizations using
Peetre maximal functions, see Proposition 21 and Corollary 23.

Our result for (2) is the following:

Theorem 2 (Equivalent norm characterizations via derivatives) Let o/ € { B, F, N},
0<p,g=<oo,seRandt >0 (p < o for F-cases). Let @ C R" be either a
special Lipschitz domain or a bounded Lipschitz domain. Then for any positive integer

m, the space 42{1‘)” (82) has the following equivalent (quasi-)norm:

q

1z Rpgsmeg D 18% fll grome g )

lee|<m

In particular ||f||ygw(g) Ry s,m,Q Z\alsm Ila“f”ﬁéo’,;”(ﬂ) forall 0 < g < oo and
s eR

The Besov-Morrey case &/ = .4 of Theorem 2 was stated in [25, Proposition 4.15].
However, the key step in their proof requires [15, (4.70)] (see [25, Remark 4.14]),
which cannot be achieved.

Remark 3 1In the proof of [15, Proposition 4.21], Triebel claimed the following state-
ment:

A v A ¢ s (Rn
1 ez @) & NEf llarg, any & Y~ 10“ES gy, oy

lee]<m
= > NEC fllag,en S D 10 fllus, - (5)
loe|<m la|<m

Here E = Eg is an extension operator which is bounded on Jz%p‘ " () — JZfI; " (R™)
and &%Ifq_’"(Q) — ﬂlfq_m(R”).
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However, the commutativity 0% o E = E o 3% in (5) (see [15, (4.70)]) cannot be
achieved. In [12, Remark 1.6] we borrowed some facts from several complex variables
to show that 9% o E = E o 0% can never be true: if it is true (even locally) then 9-
equation for €2 can gain 1 derivative. To prove Theorem 2 (also to fix the proof of [25,
Proposition 4.15]), simply using the boundedness of Eq is not enough.

By observing (5) more carefully, the argument still works if 9% o E = E% o0 9%
hold for some extension operators E¢: ,;zflfq*m (Q) — ,safgl;’" (€2). This can be done if
E is the standard half space extension.! Using the operators E% Triebel proved the
equivalent norms via derivatives for R’j_ and for smooth domains, see [16, Section
3.3.5].

In our case E is Rychkov’s extension operator (see (31)). Even on special Lipschitz
domain, it is not known to the author whether 0% o E = E“ o 0 can be achieved
(which in general should have the form (27)). Nevertheless, a weaker form 0% o E =
Zﬂ E%P o 3B is enough to fix (5). In the proof we introduce E*# in (41) and get the
proof using (42).

See also [12, Section 2.2 and Remark 6.5].

2 Function Spaces and Notations

Let U € R” be an open set, we define .#”/(U) to be the space of restricted tempered
distributions: .7"(U) := {f|y : f € .#/(R")}. See also [9, Proposition 3.1].

We use the notation A < B tomean that A < C B where C is a constant independent
of A, B.Weuse A~ Bfor“A < Band B < A”. And we use A <, B to emphasize
that the constant depends on the quantity x.

When p or g < 1, we use “norms” (for %If ; etc.) as the abbreviation to the usual
“quasi-norms”.

In the paper we use the following Littlewood—Paley family, whose elements do not
have compact supports in the Fourier side. It is crucially useful in the construction of
Rychkov’s extension operator.

Definition 4 Let Q@ = {x, > p(x’)} be a special Lipschitz domain, a Littlewood-
Paley family associated with Q is a sequence ¢ = (¢ j)?ozo C Z(R") of Schwartz
functions that satisfies the following:

(P.a) Moment condition: [ x*¢1(x)dx = 0 for all multi-indices & € 7L,

(Pb) Scaling condition: ¢;(x) = 2U~D1¢;(2/~1x) for all j > 2.

(P.c) Approximate identity: Z?io ¢ = dp is the Direc delta measure.

(P.d) Support condition: supp ¢; C {(x", x,) : x, < —[|Vpllr - |x'|} forall j > 0.

! The half space extension works on R = {x,, > 0}. It has the form Ef(x’, x,) = Zj ajf(x’, —bjxn)
when x;, < 0. In this case E® f (x/, x) = Zj aj (—bj)”’" f, —bxy) has the similar expression to E.
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In the paper we use the sequence spaces ¢4 LY, LY ¢4, ¢4 MY given by the following:

Definition 5 Let 0 < p, g < oo and t > 0. We denote by £¢ LY (R") and L?¢4(R")
the spaces of vector valued measurable functions (f j)?ozo C Ll[z)c (R™) such that the
following (quasi-)norms are finite respectively:

1D Zolent 3= sup 2N Emanco.n lerr @
Jw€
00 1
J .
= sup nzn ‘L’( Z ”fj”(il)(Qj,v))q’
JEL e j=max(0,J)
I D520l Lren = QS“sznh”(ff Femax,) 1120y,
Jw€
00 L ?
— sp 2;1]1'(/ ( Z Ifj(x)|q)qu)
JEeZ,veln Qv j=max(0,J)

We define the Morrey space.” MY (R") to be the set of all f € L{;C(R”) whose
(quasi-)norm below is finite:

1 Nz == supg, e 2" I fllLro, .-

We define ¢4 M7 (R") = €(Z=0: MY (R™) with (/) gllpr = (X7
1
4 q
01 )

Our Besov-type? spaces A, Triepel-Lizorkin-type spaces .77 and Besov-Morrey
spaces ./, are given by the following:

Definition 6 Let A = (A./‘)?io be a sequence of Schwartz functions satisfying:

(P.a>) The Fourier transform io(é) = fR" )\o(x)2’2” ix§ g x satisfies supp 3»0 c{l&] <

2} andio|{!g|<1} = 1. ‘ .
(Pb) Aj(x) =2/"ho(2/x) — 20Dy (277 x) for j > 1.

Let0 < p,g <00,s € Rand t > 0 (p < oo for .%#-cases). We define the Besov-
type Morrey space %8, (R"), the Triebel-Lizorkin-type Morrey space F g (R") and the
Besov-Morrey space </V[qu (R™), to be the sets of all tempered distributions f € ./ (R")

such that the following norms are finite, respectively:

1f sz ey == 1272 % )50l gar

1f 1l 7gg geny o= 1272 % )50l oo
LAl gy ey = 127 %) % )50l gapgr- (6)

2 QOur notation is different from the standard one, which can be found in for example [20, Definition 2.1].
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Let & € {%, ﬁ: A}, For an (arbitrary) open subset U C R", we define
g (U) :={flu: fedpy R} (p < oo for % -cases) with the norm

1/ gz @y = 0 f Lz ey = S € g R, flu = f). @)

The definitions of the spaces M,f; (U) do not depend on the choice of (1 ;)2 , which
satisfies (P.a’) and (P.b”). See [24, Page 39, Corollary 2.1] and [20, Theorem 2.8].

Remark 7 We remark some known results and different notations for these spaces in

R" from the literature:

(i) Clearly %5, (R") = 55;;; (R") = %ZO(R”) and ygg (R") = Z3,(R") (pro-
vided p < 00).

(i1) In applications only 0 < 7 < % is interesting: by [27, Theorem 2] and [10,
Lemma 3.4],
+ (r—
L@S T (Rn) — G‘S T(Rn) — OO 00 P (Rn)
JV”(R")_{O} VO<p,q§oo,seR,t>%. (8)

(iii) For the case T = 1/p, by [27, Theorem 2] and [10, Remark 11(ii)],

l 1

27
(Rn) = Fp @R = Boo.co®),
p(R")_ (R") V0 < p,g<oo, seR.

(iv) Although .# ;;-spaces are only defined for p < oo, we have a description for
ﬁ;oq-spaces as the following (see [24, Page 41, Proposition 2.4(iii)] and [2,
Section 5]):

1 1
Ty ®") = Fpd RY) = By s (R"), Y0 <p<o0, 0<q=o0,seck.
©
(v) Our notation .4/, sq’ corresponds to the nyfi in [10, Definition 5]. For the classical

notations® N

ugp W€ have correspondence (see [10, Remark 13(iii)] for example):

1
u

1_
N,y R = A7 "(RY), YO<p<u=<oo, 0<g<oo, sck.

(vi) We do not talk about the Triebel-Lizorkin-Morrey spaces &,,, in the paper,

because they are special cases of the Triebel-Lizorkin-type spaces: we have
5,1/ p—1
&, p®D = Fy /PR for all p € (0,00), g € (0,00], u € [p, 0]
and s € R. See [24, Corollary 3.3].

3 Some papers may have different order of the indices. For example, in [7] this is written as N/ iqu

Birkhauser
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(vii) There are also papers that use the notations A€ .o/ g and Ag o g for o € B, F)
and —n < o < 0 (p < oo for .F-cases), for example [6, 19]. These spaces
describe the same collection to dlj; for .o € {AB,.F, NV}, see [6, Remarks 2.7
and 2.9] for example.

For more discussions, we refer the reader to [6, 18, 24].

3 Proof of the Theorems

Our proof follows from some results in [9] and [26].
The key ingredient is the Peetre maximal operators introduced in [8].
Definition8 Let N > 0, U € R” be an open set and let n = (771)"o be a sequence

of Schwartz functions. The associated Peetre maximal operators (PU ] / - are given
by

Inj * f(I

_ e . (R, eR* j>0.
S T2y & ED X /=

Py F) =

Lemma9 Let ¢ = (¢ j)°° be a Littlewood—Paley family associated with a special
Lipschitz domain Q (see Definition 4). Then there is a = (1/f])°o o C S (RM)
satisfying (P.a) and (P.b) such that (\/j * ¢>])°°:0 is also associated wzth Q.

Proof The assumptions ¢;(x) = 2U~D"¢;(2/=x) for j > 1 and Y09 = b
imply ¢ (x) = 2"¢0(2x) — ¢o(x), i.e. P1(§) = ¢po(£/2) — do(&). We can take ¢ =

W j)?ozo via the Fourier transforms:

Do€) =200 (&) — (&)’ | |

Ui (€)== (o7TE) + o' TE))NQ2 — go27E) — po(2' /)%, for j = 1.
See [9, Proposition 2.1] for details.
Lemma 10 (/1, Lemma2.1]) Letn = (771')510 and 6 = (9]-)?0:0 C L (R") both satisfy

conditions (P.a) and (P.b). Then for any N > 0 there existsa C = C(n,0, N) > 0
such that

/ ;% 0011+ 24 x)Vdx oy 2 V0K, Vi k=0,
RV!

Lemma 11 LetO < p,q < 00,7 > 0and$ > nt.ThereisaC = C(n, p,q,1,8) >0
such that for every (g/)<>o 0 C LY (R™),

(2 e)

k>0

loc

e = Cli(g)5Zollearr: (10)
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(2 e) |

< Cl(g)jZoll rea,  provided p < oo;  (11)

pre LY
(227 7418) ™ [ ye = CIED oMy (12)
—0 Zqu — J7j=0l¢apm; -
k>0

Proof (10) and (11) have been done in [26, Lemma 2.3]. We only prove (12).
Using the case T = 0 in (10) we have

_§li—k )
”(21@02 g lfk)j:O HM(LI’)
Spaas 1D S2olleacery, V()52 € ¢1(Z=0; LY (R™)).

Note that llgrlyr = lsupg,, 2"/ 1g,, - gllLrzn). By taking fi =
Supy, 12771, , - gk| above we have

(S ),

k>0 e

- (Qf‘jEQZ"hIQ“ k;}z ) |0,
- <,§2 81j—kI Qflfzgznth” ngl). aLr
= (Zz_alj_k‘fk)j ea(Lr)

k>0
Spaas 1D 2o llercwry = 1108) 520/l ga pr -
O

Lemma12 Let 2 C R" be a special Lipschitz domain, let ¢ = (¢j)7io be a
Littlewood-Paley family associated with 2, and let 6 = (9]-)?‘;0 satisfies condi-
tions (Pa), (P.b) and (Pd). Then for any N > 0 and y € (0,00] there is a
C=C(,¢,N) >0, such that, for every f € &' (R"), j > 0and x € Q,

o Nyljkl [ 2"k F Ay
fa 50( 2-N7l k'/ —> : 13
aif@=c( 2 o (L 2Fx — )V 4

Proof The special case 6 = ¢ of (13) is proved in [9, Proof of Theorem 3.2, Step 1].
Namely, we have

2%y FOIY dy \ MY
Nylj—kl|
) So.n (Zz g fsz (1 +2Fx —y|)NV) -9
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Also see [21, Proof of Theorem 2.6, Step 1] for the argument. Thus it suffices to prove
the case y = oo:

PeN () Sogn sup2 NIHPEN F(x), Vfe SR, j=0, xeq.
k>0

15)

Let = (V)32 satisfies the consequence of Lemma 9, s0 0; x f = Y reo (0 =

Yi) * (¢ x f) for j > 0. By assumption ¢;, ¥, 0; are supported in K = {x, <

—|IVpllLe - |x’|} where p is the defining function for Q = {x, > p(x’)}. Using the
property Q2 — K C €2, we have

Lo - (0 f) = 1o - 2¢O * i) * (L - (Px * £));

6% @)
and thus PQ’N X)=S8u j—
2. /) =S T 27— 27

[ 16 % iz — W)llgw * fF)Idy
=2 T (2

The elementary inequality yields

1 - 2N 1=k (1 42Kz — ypV
(1+2/1x —zDN = (1 +2k|x — 2DV (1 + 2]z — y¥
— N1k A+ 28z =D
- (142K — y N

Therefore,
Pl f(x)
e x QR :
=sup —— /2N‘f‘k'|9»*wk<z—y>|<1+2"|z—y|>Ndy
zeq (1+ 2¢jx — 2V ,;) o !
. ° .
< sup2 M UHPEY £ 3 [ 2V g )I(1 421y
k>0 ’ =0 /9

(0.¢]
59,¢,N sup 2—N|j—k\'pg’2’f(x) Z 22N—-CN+D)[j— < sup 2_N|j_k‘73$’2/f(x).
k=0 ' =0 k=0 '
(16)
Here the last inequality is obtained by applying Lemma 10.
Therefore we get (15). Combining it with (14) we complete the proof.

Recall the Hardy-Littlewood maximal function M f(x) := supgp.|B(0, R
Jpeemy |fOdy for f € L.

) Birkhduser
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Lemma 13 Let N > n. There isa C = C(N) > 0 such that for any g € LIIOC(R”),
JeZvelZl k> Jandx € Qj .,

kn .
2% e (y)ldy <C Z My, , -8 (x) an

kiy — N — _ N—-n"
wr (T+ 2K =)DV = 2 (o — wpN

Our lemma here is weaker than the corresponding estimate in [26, Proof of Theorem

1.2, Step 3].

Proof By taking a translation, it suffices to prove the estimate onx € Q ,i.eforv =
0.Notethatify € Q. then |[x—y| > dist(Q v, QJ.0) > ﬁz—f max (0, lw|—+/n)

and |x — y| < |w| + /n. Therefore

/ 251 g(y)ldy
re (14 2Fx — yPN

- / 2%lgWldy 3 / 215 (y)Idy
= JBe3yma-7y (1428 x — yp» wion i Qo (14 2K]x — ypN
n(k—J)
<zl
~ I+ 26 ypy
2kn
3 | sy
QJ,w

sy (1 F ZkZ_J(%l -n)"
S ). Mdg,, 9

M@ -
L& (Ap0.4ym-7) - 8)(X)

|w|<4y/n
2—k=I)(N—n)  onJ
i o 1o, - sIdy
lw|>2vn Jw| ¥ W oot ity 2
1
S Y gy M 9.
weZ

m}

Combining Lemmas 11 - 13 we have the following Morrey—type estimates for Peetre
maximal functions.

Proposition 14 Keeping the assumptions of Lemma 12, for every 0 < p,q < oo,
s € Rt > 0and N > max(2n/min(p, q), |s| + nt), there is a C =
C®,¢,p,q,s,t, N) > 0such that for every f € .7'(Q),
” (2js19 ) (sz',ljf))jionmﬁ = C” (stlﬂ (¢ * f));.io”euf; (18)
110 PGT M) ZolLre = CI@ 0 @)% 1)Ll pesr  provided p < oo;
(19)
(2”10 (Psgz’,l;‘lf));io I Ml = cl2”1a- @ f));io”eq/w{" (20)

) Birkhduser
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2n
D |s| + nt) can be
In applications, we only need a large enough N that does not

Remark 15 1t is possible that the assumption N > max(
relaxed to N >
depend on f.

A similar result for (20) can be found in [20, Proposition 2.12]. Note that we require
0; to have Fourier compact supports in that proposition.

_n_
min(p,q) "

Proof We use a convention ¢; := 0 for j < —1. Thus in the computations below
every sequence (a ]) ~ ; isidentical to (a DR Tmax(0, /)"

By the assumptlon on N we can take y € (0, min(p, g)) such that Ny > 2n. We
first prove (19).

Since N > |s|+nt.ByLemma 12 and using 27752~ Nvli=kl < o=(N=lsDyli—kIpkys

PP D Rolluzn = 1@ PR D)ol Lot

(iz(mmmm/ 2"”|2’”¢k*f(y)lydy>°° v
k=0 j=0

o (1425 —ypVr Lk

By Lemma 11 and since (N — |s])y > nty,

q
Y

izmmyuk/ 2120 gy f(y)lydy)
o (142K —ypNr Jj=0

H k=0 @

2k |2ks gy % f(y)l”dy)oo
~INJe A2k —ypNY k=0, 7

q-
”,ZV

Applymg Lemma 13 with g(x) = 1q(x)- |25 ¢y f (x)|” foreachk > 0and expanding

the Lwﬁ G -norm,

H 2k |2k g f(y)lydy)
Q k=0

(142K —yDNr Lheh
1
—  sup 2an 2k"|2“¢k*f<y>|ydy>oo v
JeLverr o (425 =DV k=il 1} g, ,0F)
1
Mg, -1g-128¢r % f1Y)\oo ||7¥
SN,)/ sup 2n1r (Z ( OJ.w Q | N¢k_n fl )) , ,
JeLverr wan A+ w—ovhtY k=LY g7y
1
- ( Z 1 ) /v
=, (L [oNr=
x sup  2"T[(Mg, ne - 1250+ £17) ’
JeLweln [(Mdd, )= ’”LV(R"M)

Since Ny —n > nthe sum Y, (1 + [v])"~N7 is finite.

) Birkhduser
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Finally, applying Fefferman-Stein’s inequality to (M(l 0w " 12K gy % f |V))]<:i ;

in Lg(]R”; 6%) for each J € 7Z (see [3, Theorem 1(1)] and also [5, Remark 5.6.7]),
since 1l < p/y <ocand1 < ¢q/y < o0,

2n1r Ma 2]“ 4
30 27 [(M g, on - 120 7Y JHWRW)

< nJt ks y 12
S sup 27| (Tosuna - 28 0ex 1), JIIU(RW)

= Zup onlt ” (IQ 2% ¢y f))k J“LP(QJ w3 €7)
Jow

ks oo
= [ (21 - (@ f))k=0”L513q-
This completes the proof of (19).
The proof of (18) and (20) are similar but simpler: by assumption 1 < p/y < oo
we have » ,
M : Ly ([R") — L7 (R"). (21)
Therefore, we prove (18) by the following:

j 6,N
1P PEN HZ ol

-~ 1
. 228 gy fFOI7dyye ||
<, . ( 27(nr+l)y|]7k|/ ) , by (13)
$.5. TN,y g o (A+2k.—ypNr Jj=0o e%LT]Z, Y
1
2kn 2ks Ydy\oo || v
<o </ | ¢:*f(y)|N y) Vl ) by (10)
o (+2°0-=yD™ Ji=0lly7 7
S (Z;)WH(MO A by (17)
SNy Z A+ o)V Q k k=0 ZlLi y
1
Spo (e 12 = £17);2 0”@7né’£r =210 @+ N)Zollwry by QL.

Finally we prove (20). Using (15) and (12) (since N > |s| 4+ nt) we have
1P PEN ol So.6.5.8

H(ZZ(N IsD1j—kI gks pg- Nf)

k=0

jsp?.N oo
j=0llgam? gpqr,N (2 PQ’]' f)j=0||equ-

(22)
Taking y € (n/N,min(p, q)), we have 2”(73'1’ Nf) Sy M(2751g - (¢ *

IV pointwise in R”.
When p < oo and T < 1/p, by [20, Lemma 2.5] we have

12°PEY Flgr Sny [M(2700 - @)% HI)7 |4y

) Birkhduser
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Soye 12710 - @) % Pllyr, =0 (23)

We see that (23) is valid forall 1 < p/y < oo, 7 > 0.

When t = 1/p, we have MP =L by [10, Remark 11(ii)], so (23) follows from
(21). When 7 > 1/p we have M?F = {0}, so (23) holds trivially.

Thus by taking £7-sum of (23), we get (20), completing the proof.

Proposition 16 Let 6 = (0; )°°O satisfies (P.a) and (Pb), and let . = (1;)32 720
satisfies (P.a’) and (P.D’). ForcmyO < p,qg <00, 5 € R > OandN >
max(2n/ min(p, q), |s|+nt), thereisaC = C(0, A, p,q, s, T, N) > 0 such that for
every f € ' (R"),

PPN P olarr < CIQI A 5 2ol paprs (24)
1P PN P2l e < CIQI A 20l ra,  provided p < o0;  (25)
||<2”7>9nN HZ0lganr < CHQRP A% H3Z 0l apr- (26)

Proof The proof is the same as that for Proposition 14, except that we replace every
Q2 by R" in the arguments. We leave the details to readers.

Based on Proposition 14, we can prove a boundedness result of Rychkov-type
operators on &/, 7 -spaces.

Proposition 17 Let Q C R” be a special Lipschitz domain and let y € R. Let n =
(nj);?’;o and 0 = (0; )°° o satisfy conditions (P.a), (P.b) and (P.d) with respect to S2.

We define an operator. ng 7 4
0 —
TQ"’ ’yfzzzz”’nj*(lgz~(9j*f)), fes(Q). 27
j=0

Then for of € {B, F, N},0< p,g<00,5s €Randt >0 (p < oo for F-cases),
we have the boundedness

T’l .0,y ﬂb T(Q) N JZ{; q)/ T(Rn)

Proof Recall .7'(Q2) = { f lo @ f € (R} is defined via restrictions. We see that
TQ"’Q”/ () - S (R") is well-defined in the sense that, for every extension
f e S (R") of f, the summation Z?io 2070 % (1g - (8 * £)) converges .7’ (R")
and does not depend on the choice of f. See [12, Propositions 3.11 and 3.16] for

example.
Let A = (& )°O 2 o be as in Definition 6 that defines the ,;zflf; -norms. By Lemma 10,

for every j,k > 0, [pu IAj * mcO)I(1 + 25 [yDNdy <558 27VK Thus by the

4 The notation is slightly different from the one in [12, Theorem 1.2].
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similar argument to (16), for every N > |s — y|,

296K s i % (L - Bk % £)) (%)
o Ok * f(1)]
< 2/6 Wz"yf I x eI 425y DN dy - su _oexJOl_
o’ v (11 26 x — (DN
SA,U,N 2*(N*|S*V|)\j*k|2k5(pgv’flz’f)(x).

Therefore, by Lemma 11, forany N > |s — y| + nt,

.0,
178 5 T3 N2 ollare Sampgusyey 1@EPEY PEZolgarr: (28)
.0,
178 % Ta™Y N0l 20 Sanpagusyery 1QEPEY PEZollprea. (p < 00);
(29)
2161 5 TRV < 2ksp? 30
II( * Lo f) 0||quT Saonpgs,y.tN I( Qkf)k 0||qul’ (30)

Let f € o bg (R") be an extension of f. Clearly ’PQ & f x) = Pg”ll\(’ fx) <

Pﬂi’,& £ (x) holds pointwise for x € R”". Therefore, by choosing N > 2n/ min(p, ¢q)
and combining (28) and (24), we have

.0,
e’ Yl @ = 170 T3 50llgare

Snopasye Q73 % P3Zollare = 1 Fllzy @

Taking the infimum over all extensions f of f we get the boundedness Tg’e‘y
BT (Q) — By L7 (R™). Similarly using (29), (25) and (30), (26) we get T2
g () — S V Y (RM) for of € {(F, N}

Remark 18 Under the definition (7), the operator norms of TQ"’O’V do not depend’ on
2. This is due to the same reason as mentioned in [12, Remark 3.14]:

One can see that the constants in Proposition 14 depend on everything except on
2. The same hold for the implied constants in (28), (29) and (30). After the point-
wise inequality Pg”IZ =< P%;,I’Vk £, it remains to estimate (2”739 N f )OO_O (which is
Proposition 16), where €2 is not involved.

Corollary 19 ([25, 28, 29]) Let Q@ C R" be a special Lipschitz domain. Let ¢ =
(¢ j)?io and = (Y j)?io be as in the assumption and conclusion of Lemma 9 with
respect to Q2. Then the Rychkov’s extension operator

[
Eof =EX?f =Y vix(a-(@;* ). fe Q. (31)
j=0
5 It can depend on the upper bound of ||V p||;c0, which is bounded by inf{— 2 (x', x) € supp ¢}

where ¢ € {n, 60} and j > 0.
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is well-defined and has boundedness Eq : .d”(Q) — M”(R") for of €
(B, F, N}Yandall0 < p,qg <00, s € R, 1'>O(p<oof0r cases)

Proof Eg, is an extension operator because by assumption Eq f|o = > % =0 Yixjx
f = f. The boundedness is immediate since Eq = T;é’ 0 from 27).

Remark 20 Corollary 19 is not new. See [25, Proposition 4.13] for o = 4/, [28

Section 4] for &/ = % and [29, Section 4] for &/ = 2. For the proof we also refer
[4, Theorem 3.6] to readers.

The key to prove Theorem 1 is to use the following analog of [9, Theorem 2.3].

Proposition 21 (Characterizations via Peetre’s maximal functions) Let Q2 C R”" be a
special Lipschitz domain and let ¢ = (p; )°° - o be a Littlewood- Paley family associated
with Q. Then for 0 < p,qg < 00, s € Randr >0(p < oofor -cases), we have

the following intrinsic characterizations: for every N > max(mm(p Ik Is| + nt),
1 F g @) ~o.pasen 1271 - PEY )24l 32)
£ 1750 ~opasen 1270 - (PEY )2yl pyes  provided p < oo; (33)
1/ @) ~opase |21 PG )0 |- (34)

Remark 22 (32) and (33) are not new as well. The case ./ = .% isdonein [13, Theorem
1.7], where a more general setting is considered. See also [4, Proof of Theorem 3.6,
Step 2] for a proof of & € {A, F}.

As already mentioned in Remark 15, it is possible that the assumption of N can be
weakened.

Proof of Proposition 21 Let A = ()52, be as in Definition 6 that defines the szlf; -
norms. We only prove (33) since the proof of (32) and (34) are the same by replacing
LY 09 with ¢4 LY and ¢4 Mf, and including the discussion of p = oco.

(Z)For f € F F g (S2), let feZ F g (R") be an extension of f. We see that pointwisely

(o - P ) < PEY ) =PEY Fooy < PLY F), j =0, xeR"
Thus by Proposition 14,

P et R (LYl P

Srppagoran [0 )0l o = 17 1755 o).

Taking infimum over all extensions f of f, we get ||f]| Fr@ 2 [(2751¢ -
o,N 00

(,PQ’J f))j— Lf[q'

(3) By Corollary 19 we have ||fllzyr@ =~ lEafllzgm) = 1274 *

EQf)?o:OHLfeq' Therefore using (28) with the fact that Eq = T;f"p’o,

i i 0,0
1275 % Ea )0l res = 172 % TSP H%0 11 o gq
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Svppase 1QFPEY 200 (35)
Write Q = {(x’, x,) : x, > p(x')}. We define a “fold map” L = Lg : R" — Q as
Lix):=x ifxeQ; L&) :=,20x")—x,), ifx¢Q.

Recall Q = {x, > p(x’)}. By direct computation, we have

2
ILx) =y < (IVolle +/1+ IVplie) lx =yl So lx—y|  xeR", yeQ.

(36)
Therefore

9 * f(Y)] <o Sup |pj * fY)
yesz(1+2f|x—yl)N =T yea T4 2/IL(x) — yDN

= (PEY ML), xeRr"

f(x)

Clearly for 0 < p < oo we have the following estimate for cube Q € Q and
function g € L] (Q):

lg o LllLrcg) Sp Iglrani-10y Sp D e gllLrce).
PEIQ

where Zp :={P € Q : |P| = 0|, PNL(Q) # o).

By (36) we have control of the cardinality #Z <, (1 + [|Vp|lz=)** <q 1, which
is uniform in Q € Q. Therefore,

17 PGS 52ollizw Sv [ PET Do L) o] e
§p,q,9 I( (2°1q- (PQ:j f))j=0 ”Lfeq' (37

Combining (35) and (37) we get || f |l 73z (2) < < (27 1g- (73 f))?‘”=0 Umq,ﬁmshing
the proof.

We can now prove Theorem 1:

Proof of Theorem 1 The .73, -cases follow immediately from the .}/ -cases using
(Q)Fix aN > max(2n/ min(p, q), |s|+nt). We only prove the ﬁlﬁf] -cases. The proofs
of the #)7,-cases and the ./ -cases are the same, except that we replace every LPea
with €9 LY and €9 M? .

By Proposition 21 we have || f| Fa@) N || (215 1g- (77 f));.ozo || Ll Therefore,
it suffices to show that || (2”19 (Pg,j f))j:0 ”Li’zq ~ || (2-’519 (¢ * f));?o:0 “Li’ecr

Clearly |27 10 - (PG} 1)) ol e = |27 10 - @) % )7l Lpia since ¢+
fx) < Pg’,lj\.’f(x) holds for all f € /(2), x € Q and j > 0. The converse
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I (zjslsz‘(qu’Nf))oio“L”zq So.pason | (21'319-(¢>j>|<f))j°=0“L¥M follows from
(18). Thus, we prove the .% 7 q-Cases.

We have the immediate analogy of [26, Theorem 1.1] on Lipschitz domains:

Corollary 23 Keeping the assumptions in Proposition 21, we have the following intrin-
sic characterizations: for every N > max(2n/ min(p, q), |s| + nt),

[} 1

J q.

Ifllzg @ ~p.pg.sen sup 2" T( > 2P e Flir, )
Q.€Q j=max(0,J)

o0 1
1/l g50 ~ sup 27 ( f (> 2Pl m),f(x)lq) %) (p < 00);
() Ql,vmQ j=max(0,J)

o0

~ Jrg+ q
I 1rsg @ ~6.pascen (Zgj“ggz" NP e e, )
j=0 Q10

Q=

Proof Since |¢;  f(x)] < P o i f(x) < PEY f(x) pointwisely for every

QjveQandx € Qy, N, the results follow immediately by combining Theorem
1 and Proposition 21.

Remark 24 By the standard partition of unity argument, we can give the analogy of
Theorem 1 on a bounded Lipschitz domain. An example is the following:

1/ 25z ) Z 127 1ny, - @) * o FINTZollpa 2 (38)

£ 25 ~ Z 127 1y, - @) * G FINTZoll Lrga (39)
v=1
N .

1 gz & D 1@ Lo, - @) G N0l wmes (40)
v=1

Here {U,, (q) ) 70 Xu} _, satisfy the following:

° {UU} _, is an open cover of Q, and there are cones K, C R” such that U, N (2 —
K)gUUﬂQforeachv—l ,N.

e Forv=1,...,N, (¢;);?°:0 satisﬁes (P.a) - (P.c) in Definition 4, with support
condition supp ¢ C K, for j = 0.

e x, € CXWU,) forv=1,...,N,and satisfy© ijvzl wlg=1.

To prove (38), (39) and (40) the only thing we need are the following standard
results (p < oo for .F -cases):

(W.a) Let x € C(R"). Then [f > x f1: 35 (R") — /57 (R") is bounded.

6 In fact we can relax the condition to Zszl xvlg >c¢ for some ¢ > 0.
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(W.b) Let @ be an invertible affine linear transform. Then [ f > fo®] : Ay (R") —
g (R") is bounded.

(¥.c) For every Olm > 1, we have equivalent norms || fll sz @n  ~pg.sem
Zla\gm ”3 f”'!/;;m,r(Rn)'

One can see [24, Sections 6.1.1 and 6.2], [22, Theorem 1.6] and [11, Theorem 3.3]
for their proof. See also [6, Sections 3.4, 4.2 and 4.3]. We remark that because of (8)
it is enough to consider the case 0 < v < L We leave the details to the readers.

One can also write down the analogy ofp Proposition 21 and Corollary 23 similar to
(38), (39) and (40), we leave the details to the readers as well.

Finally, we prove Theorem 2 using the following fact:

Proposition 25 ([12, Theorem 1.5 (ii)]) Let (qﬁj)?‘;l be a family’ of Schwartz func-
tions satisfying (Pa), (Pb) and (Pd). Recall that for every j > 1, ¢;(x) =
20=Dng, 27 1x), [x%¢j(x)dx = 0 for all o, and supp¢; C {x, < —Alx'|} for
some A > 0.

Then for any m > 1, there are families of Schwartz functions ¢P = (ci;f);?ozl for
|B| = m that also satisfy (P.a), (P.b) and (P.d), such that

}; =7m Z Bﬁqu, forevery j > 1.
|Bl=m

Proof of Theorem 2 Once the case of special Lipschitz domains is done, the proof of
the case of bounded Lipschitz domains follows from the standard partition of unity
argument (one can read [12, Section 6] for details) along with the facts (¥.a), (V.b)
and (W.c) mentioned in Remark 24. ;

Let @ C R” be a special Lipschitz domain. Let f € .52/;; (R)andlet f € ;zflqu (R™)
be an extejnsion of f. By (V.c) we have ||8“f||%f‘;|a\,f(R,,) Sp.g.5.t. ||f||£¢;;(Rn).
Since 3% f is also an extension of 3“ f, by (7) in Definition 5, taking the infimum over
all extensions f of f we get Z\alfm ||8"‘f||ﬂpsq;m‘z(9) < ||f||py;‘;(9).

To prove the converse inequality || f ||%v; @ S ZI al<m 1% £ AT (@) let
(9, \”j)jzo be as in (31).

We let (&f)jzl Cc Z®R") (|| > 0) be given in Proposition 25. Thus ¢; =
271Ny g1y 8P forall j.g > 1. |

For a # 0, we define y* = (y$)%2 by ¢%(x) 1= 2771%9%y;(x) (for j = 1).
Thus the sequences ¥* (for & # 0) all satisfy (P.a), (P.b) and (P.d).

We define a family of linear operators,

EOf = EZ0f = 9% % (1 - (do * £)),

E“Pf = EGPf=3 "y x (g @)« f)), forla| =g >0.  (41)

J=1

7 Here the index of the Schwartz family start from j = 1. In Definition 5 we start with j = 0.
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For every f € ./(2) and for every multi-index & # 0, we see that

OEf =) 0% x(la- (@) * £)) = 0o * (1o - (g0 * £))

J=0

+Y0Y 2y s g 277 @P g« 1))

Jj=1B:Bl=la] (42)
=0Yo* (- Qo )+ Y. I ¥%*(la- @) xdFf)
prlBI=lal j=1
=E*0f+ > E*Plafy.
plBI=lal

By Proposition 17, E*9, E*f : o7y """ (Q) — o/, """ (R") are all bounded.
Therefore

~||IE = 0" E
1 f ez = NEflaggny = Y 10VES || oys-mr gy

lee] <m

42)

SIEflgme+ D (KE“flygome+ 3 IE“P10P £l )
O<|a|<m B:1Bl=la|

S lggmrgy+ 2 (Ml + 2 107 fllyrme o))
O<|a|<m B:1Bl=la|

S D0 18P fll gz -

[Bl<m

This completes the proof of (4) for the case of special Lipschitz domains.

The fgoq—cases follow immediately from (9) since we have fgoq(R") =

1
61
Fgo (R,

4 Further Open Questions

By the same method, using Lemma 10 - Proposition 14, it is possible for us to get the
analogs of Theorems 1 and 2 on the so-called local spaces.

The local version of %If; (R™) for o7 € {A, %, ./}, denoted by ﬂ;:;umf(R”), is
defined by replacing the supremum among the set of dyadic cubes Q with {Q; , €
Q :J > 0}. See [10, Segtion 3.4] for example. For an open subset 2 C R" we use
Qfl‘f”;unif(ﬁ) ={fla: f € Jz{[f”;unif(]R")} similarly. For more details we refer [17]
to readers.

One can also consider the analog of Theorems 1 and 2 on ,szf; (()) ’5(.), the spaces with
variable exponents. For example [13], which may require certain assumptions on the

exponents.
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In Definition 6, it is known that the norms are equivalent if (A ;) 0 only satisfies
the scaling condition (P.b) and the Tauberian condition:

There exist g9, ¢ > 0 such that |)A\0(§)| > ¢ for || < &p,
and |il(§)| > cforeg/2 < |&] < 2¢9. 43)

See [22, Theorems 2.5 and 2.6] and [23, Theorem 1] for example.

Itis notknown to the author whether we canreplace the assumption (P.c) for (¢ ?‘;0
in Theorem 1 with the Tauberian condition (43).

For Theorem 2, we do not know whether (4) has the following improvement:

Question 26 Keeping the assumptions of Theorem 2, can we finda C = C(R2, p, q, s,
T, m) > 0 such that the following holds?

n
" f
1/ gz = € (1 Nggmean + D ”W V[ e Q).
k=0

Ay (Q)) '

Cf.[22, Theorem 1.6]. The question is open even for the classical Besov and Triebel-
Lizorkin spaces Q%Ifq (£2) when 2 is a (special or bounded) Lipschitz domain.
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