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Abstract
We give Littlewood–Paley type characterizations for Besov–Triebel–Lizorkin–type
spaces Bsτ

pq ,F
sτ
pq and Besov-Morrey spaces N s

uqp on a special Lipschitz domain
� ⊂ R

n : for a suitable sequence of Schwartz functions (φ j )
∞
j=0,

‖ f ‖Bsτ
pq (�) ≈ supP dyadic cubes |P|−τ‖(2 jsφ j ∗ f )∞j=log2 �(P)‖�q (L p(�∩P));

‖ f ‖F sτ
pq (�) ≈ supP dyadic cubes |P|−τ‖(2 jsφ j ∗ f )∞j=log2 �(P)‖L p(�∩P;�q );

‖ f ‖N s
uqp(�) ≈ ∥

∥
(

supP dyadic cubes |P| 1u − 1
p · 2 js‖φ j ∗ f ‖L p(�∩P)

)∞
j=0

∥
∥

�q
.

We also show that ‖ f ‖Bsτ
pq (�), ‖ f ‖F sτ

pq (�) and ‖ f ‖N s
uqp(�) have equivalent (quasi-)

norms via derivatives: for X • ∈ {B•,τ
pq ,F •,τ

pq ,N •
uqp}, we have ‖ f ‖X s (�) ≈

∑

|α|≤m ‖∂α f ‖X s−m (�).

In particular ‖ f ‖F s∞q (�) ≈ ∑

|α|≤m ‖∂α f ‖F s−m∞q (�) ≈ supP |P|−n/q‖(2 jsφ j ∗
f )∞j=log2 �(P)‖�q (Lq (�∩P)).
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1 Introduction

Let � ⊂ R
n be a special Lipschitz domain, that is, � is of the form {(x ′, xn) : xn >

ρ(x ′)} where ρ : R
n−1 → R is a Lipschitz function such that ‖∇ρ‖L∞ < ∞. (See

also [14, Definition 1.103].)
In [9], based on the construction of his extension operator, Rychkov gave a

Littlewood-Paley type intrinsic characterization of the Triebel-Lizorkin spaces on �:
for 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R, F s

pq(�) has the following equivalent
(quasi-)norm (see [9, Theorem 3.2]):

f → ‖(2 jsφ j∗ f )∞j=0‖�q (Z≥0;L p(�)) =
( ∫

�

( ∞
∑

j=0

2 jsq |φ j∗ f (x)|q
)p/q

dx

)1/p

. (1)

We take obvious modification for q = ∞. Here (φ j )
∞
j=0 is a carefully chosen family

of Schwartz functions such that the convolution φ j ∗ f is defined on �, see Definition
4.

In [12, version 3, Proposition 6.6], we used Rychkov’s construction to prove that
‖ f ‖F s

pq (�) have equivalent (quasi-)norms via their derivatives.More precisely, letm ≥
1, for every 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R there is a C = C(�, p, q, s,m) > 0
such that

C−1‖ f ‖F s
pq (�) ≤

∑

|α|≤m

‖∂α f ‖F s−m
pq (�) ≤ C‖ f ‖F s

pq (�), ∀ f ∈ F s
pq(�). (2)

Both (1) and (2)miss the endpoint: dowehave the analogyof (1) and (2) for p = ∞?
In this paper,wegive the positive answers to both cases, byusing the recently developed

Triebel-Lizorkin-type spacesF sτ
pq : we have the coincidencesF

s∞q = F
s, 1p
pq = B

s, 1q
qq

for 0 < p < ∞ (see (9)).
To make the results more general, we include the discussions of Besov-type spaces

Bsτ
pq and the Besov-Morrey spaces N sτ

pq , see Definition 6.
We denote by Q the set of dyadic cubes in R

n , that is

Q := {QJ ,v : J ∈ Z, v ∈ Z
n}, where QJ ,v := 2−Jv + (0, 2−J )n . (3)

Our result for (1) is the following:

Theorem 1 (Littlewood-Paley type characterizations) Let � = {(x ′, xn) : xn >

ρ(x ′)} ⊂ R
n be a special Lipschitz domain and let (φ j )

∞
j=0 be a Littlewood-Paley

family associated with� (see Definition 4). Then for 0 < p, q ≤ ∞, s ∈ R and τ ≥ 0
(p < ∞ forF -cases), we have the following equivalent (quasi-)norms:

‖ f ‖Bsτ
pq (�) ≈φ,p,q,s,τ ‖(2 js1� · (φ j ∗ f ))∞j=0‖�q L p

τ

= sup
QJ ,v∈Q

2nJτ
( ∞

∑

j=max(0,J )

2 jsq‖φ j ∗ f ‖qL p(QJ ,v∩�)

) 1
q ;
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‖ f ‖F sτ
pq (�) ≈φ,p,q,s,τ ‖(2 js1� · (φ j ∗ f ))∞j=0‖L p

τ �q

= sup
QJ ,v∈Q

2nJτ
( ∫

QJ ,v∩�

( ∞
∑

j=max(0,J )

2 jsq |φ j ∗ f (x)|q
) p

q
dx

) 1
p ;

‖ f ‖N sτ
pq (�) ≈φ,p,q,s,τ ‖(2 js1� · (φ j ∗ f ))∞j=0‖�q M p

τ

=
( ∞

∑

j=0

sup
QJ ,v∈Q

2( js+nJτ)q‖φ j ∗ f ‖qL p(QJ ,v∩�)

) 1
q
.

(See Definition 5 for �q L p
τ , L

p
τ �q and �qM p

τ .) In particular for 0 < q ≤ ∞ and
s ∈ R,

‖ f ‖F s∞q (�) ≈φ,q,s sup
J∈Z,v∈Zn

2J
n
q

∫

QJ ,v∩�

( ∞
∑

j=max(0,J )

2 jqs |φ j ∗ f (x)|qdx
) 1

q
.

One can also get some characterizations on bounded Lipschitz domain, whose
expressions are less elegant however. See Remark 24.

Similar to [9, Theorem 2.3], we also have the corresponding characterizations using
Peetre maximal functions, see Proposition 21 and Corollary 23.

Our result for (2) is the following:

Theorem 2 (Equivalent normcharacterizations via derivatives) LetA ∈ {B,F ,N },
0 < p, q ≤ ∞, s ∈ R and τ ≥ 0 (p < ∞ for F -cases). Let � ⊂ R

n be either a
special Lipschitz domain or a bounded Lipschitz domain. Then for any positive integer
m, the space A sτ

pq (�) has the following equivalent (quasi-)norm:

‖ f ‖A s,τ
p,q (�) ≈p,q,s,m,τ,�

∑

|α|≤m

‖∂α f ‖A s−m,τ
p,q (�)

. (4)

In particular ‖ f ‖F s∞,q (�) ≈q,s,m,�

∑

|α|≤m ‖∂α f ‖F s−m∞,q (�) for all 0 < q ≤ ∞ and
s ∈ R.

The Besov-Morrey case A = N of Theorem 2 was stated in [25, Proposition 4.15].
However, the key step in their proof requires [15, (4.70)] (see [25, Remark 4.14]),
which cannot be achieved.

Remark 3 In the proof of [15, Proposition 4.21], Triebel claimed the following state-
ment:

‖ f ‖A s
pq (�) ≈ ‖E f ‖A s

pq (Rn) ≈
∑

|α|≤m

‖∂αE f ‖A s
pq (Rn)

=
∑

|α|≤m

‖E∂α f ‖A s
pq (Rn) �

∑

|α|≤m

‖∂α f ‖A s
pq (�). (5)

Here E = E� is an extension operator which is bounded on A s
pq(�) → A s

pq(R
n)

and A s−m
pq (�) → A s−m

pq (Rn).
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However, the commutativity ∂α ◦ E = E ◦ ∂α in (5) (see [15, (4.70)]) cannot be
achieved. In [12, Remark 1.6] we borrowed some facts from several complex variables
to show that ∂α ◦ E = E ◦ ∂α can never be true: if it is true (even locally) then ∂-
equation for � can gain 1 derivative. To prove Theorem 2 (also to fix the proof of [25,
Proposition 4.15]), simply using the boundedness of E� is not enough.

By observing (5) more carefully, the argument still works if ∂α ◦ E = Eα ◦ ∂α

hold for some extension operators Eα:A s−m
pq (�) → A s−m

pq (�). This can be done if
E is the standard half space extension.1 Using the operators Eα Triebel proved the
equivalent norms via derivatives for R

n+ and for smooth domains, see [16, Section
3.3.5].

In our case E is Rychkov’s extension operator (see (31)). Even on special Lipschitz
domain, it is not known to the author whether ∂α ◦ E = Eα ◦ ∂α can be achieved
(which in general should have the form (27)). Nevertheless, a weaker form ∂α ◦ E =
∑

β Eα,β ◦ ∂β is enough to fix (5). In the proof we introduce Eα,β in (41) and get the
proof using (42).

See also [12, Section 2.2 and Remark 6.5].

2 Function Spaces and Notations

Let U ⊆ R
n be an open set, we define S ′(U ) to be the space of restricted tempered

distributions:S ′(U ) := { f̃ |U : f̃ ∈ S ′(Rn)}. See also [9, Proposition 3.1].
We use the notation A � B tomean that A ≤ CB whereC is a constant independent

of A, B. We use A ≈ B for “A � B and B � A”. And we use A �x B to emphasize
that the constant depends on the quantity x .

When p or q < 1, we use “norms” (for A sτ
pq etc.) as the abbreviation to the usual

“quasi-norms”.
In the paper we use the following Littlewood–Paley family, whose elements do not

have compact supports in the Fourier side. It is crucially useful in the construction of
Rychkov’s extension operator.

Definition 4 Let � = {xn > ρ(x ′)} be a special Lipschitz domain, a Littlewood-
Paley family associated with � is a sequence φ = (φ j )

∞
j=0 ⊂ S (Rn) of Schwartz

functions that satisfies the following:

(P.a) Moment condition:
∫

xαφ1(x)dx = 0 for all multi-indices α ∈ Z
n≥0.

(P.b) Scaling condition: φ j (x) = 2( j−1)nφ1(2 j−1x) for all j ≥ 2.
(P.c) Approximate identity:

∑∞
j=0 φ j = δ0 is the Direc delta measure.

(P.d) Support condition: suppφ j ⊂ {(x ′, xn) : xn < −‖∇ρ‖L∞ · |x ′|} for all j ≥ 0.

1 The half space extension works on R
n+ = {xn > 0}. It has the form E f (x ′, xn) = ∑

j a j f (x
′, −b j xn)

when xn < 0. In this case Eα f (x ′, xn) = ∑

j a j (−b j )
αn f (x ′, −b j xn) has the similar expression to E .
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In the paper we use the sequence spaces �q L p
τ , L

p
τ �q , �qM p

τ given by the following:

Definition 5 Let 0 < p, q ≤ ∞ and τ ≥ 0. We denote by �q L p
τ (Rn) and L p

τ �q(Rn)

the spaces of vector valued measurable functions ( f j )∞j=0 ⊂ L p
loc(R

n) such that the
following (quasi-)norms are finite respectively:

‖( f j )∞j=0‖�q L p
τ

:= sup
QJ ,v∈Q

2nJτ‖( f j )∞j=max(0,J )‖�q (L p(QJ ,v))

= sup
J∈Z,v∈Zn

2nJτ
( ∞

∑

j=max(0,J )

‖ f j‖qL p(QJ ,v)

) 1
q ;

‖( f j )∞j=0‖L p
τ �q := sup

QJ ,v∈Q
2nJτ‖( f j )∞j=max(0,J )‖L p(QJ ,v;�q )

= sup
J∈Z,v∈Zn

2nJτ

( ∫

QJ ,v

( ∞
∑

j=max(0,J )

| f j (x)|q
) p

q
dx

) 1
p

.

We define the Morrey space.2 Mp
τ (Rn) to be the set of all f ∈ L p

loc(R
n) whose

(quasi-)norm below is finite:

‖ f ‖Mp
τ

:= supQJ ,v∈Q 2nJτ‖ f ‖L p(QJ ,v).

We define �qM p
τ (Rn) := �q(Z≥0; Mp

τ (Rn)) with ‖( f j )∞j=0‖�q M p
τ

:= ( ∑∞
j=0

‖ f j‖qM p
τ (Rn)

) 1
q .

Our Besov-type spacesBsτ
pq , Triebel-Lizorkin-type spacesF

sτ
pq and Besov-Morrey

spaces N sτ
pq are given by the following:

Definition 6 Let λ = (λ j )
∞
j=0 be a sequence of Schwartz functions satisfying:

(P.a’) The Fourier transform λ̂0(ξ) = ∫

Rn λ0(x)2−2π i xξdx satisfies supp λ̂0 ⊂ {|ξ | <

2} and λ̂0|{|ξ |<1} ≡ 1.
(P.b’) λ j (x) = 2 jnλ0(2 j x) − 2( j−1)nλ0(2 j−1x) for j ≥ 1.

Let 0 < p, q ≤ ∞, s ∈ R and τ ≥ 0 (p < ∞ for F -cases). We define the Besov-
typeMorrey spaceBsτ

pq(R
n), theTriebel-Lizorkin-typeMorrey spaceF sτ

pq (R
n) and the

Besov-Morrey spaceN sτ
pq (Rn), to be the sets of all tempereddistributions f ∈ S ′(Rn)

such that the following norms are finite, respectively:

‖ f ‖Bsτ
pq (Rn) := ‖(2 jsλ j ∗ f )∞j=0‖�q L p

τ
;

‖ f ‖F sτ
pq (Rn) := ‖(2 jsλ j ∗ f )∞j=0‖L p

τ �q ;
‖ f ‖N sτ

pq (Rn) := ‖(2 jsλ j ∗ f )∞j=0‖�q M p
τ
. (6)

2 Our notation is different from the standard one, which can be found in for example [20, Definition 2.1].
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Let A ∈ {B,F ,N }. For an (arbitrary) open subset U ⊆ R
n , we define

A sτ
pq (U ) := { f̃ |U : f̃ ∈ A sτ

pq (Rn)} (p < ∞ for F -cases) with the norm

‖ f ‖A sτ
pq (U ) := inf{‖ f̃ ‖A sτ

pq (Rn) : f̃ ∈ A sτ
pq (Rn), f̃ |U = f }. (7)

The definitions of the spacesA sτ
pq (U ) do not depend on the choice of (λ j )

∞
j=0 which

satisfies (P.a’) and (P.b’). See [24, Page 39, Corollary 2.1] and [20, Theorem 2.8].

Remark 7 We remark some known results and different notations for these spaces in
R
n from the literature:

(i) Clearly Bs
pq(R

n) = Bs0
pq(R

n) = N s0
pq (Rn) and F s0

pq(R
n) = F s

pq(R
n) (pro-

vided p < ∞).
(ii) In applications only 0 ≤ τ ≤ 1

p is interesting: by [27, Theorem 2] and [10,
Lemma 3.4],

Bs,τ
p,q(R

n) = F s,τ
p,q(R

n) = B
s+n(τ− 1

p )

∞,∞ (Rn),

N s,τ
p,q (Rn) = {0}, ∀ 0 < p, q ≤ ∞, s ∈ R, τ > 1

p . (8)

(iii) For the case τ = 1/p, by [27, Theorem 2] and [10, Remark 11(ii)],

B
s, 1p
p,∞(Rn) = F

s, 1p
p,∞(Rn) = Bs∞,∞(Rn),

N
s, 1p
p,q (Rn) = Bs∞,q(R

n), ∀ 0 < p, q ≤ ∞, s ∈ R.

(iv) Although F sτ
pq -spaces are only defined for p < ∞, we have a description for

F s∞q -spaces as the following (see [24, Page 41, Proposition 2.4(iii)] and [2,
Section 5]):

F s∞q(R
n) = F

s, 1p
p,q (Rn) = B

s, 1q
q,q (Rn), ∀ 0 < p < ∞, 0 < q ≤ ∞, s ∈ R.

(9)
(v) Our notationN sτ

pq corresponds to the Bsτ
pq in [10, Definition 5]. For the classical

notations3 N s
uqp we have correspondence (see [10, Remark 13(iii)] for example):

N s
u,q,p(R

n) = N
s, 1p − 1

u
p,q (Rn), ∀ 0 < p ≤ u ≤ ∞, 0 < q ≤ ∞, s ∈ R.

(vi) We do not talk about the Triebel-Lizorkin-Morrey spaces E s
uqp in the paper,

because they are special cases of the Triebel-Lizorkin-type spaces: we have
E s
u,q,p(R

n) = F
s,1/p−1/u
p,q (Rn) for all p ∈ (0,∞), q ∈ (0,∞], u ∈ [p,∞]

and s ∈ R. See [24, Corollary 3.3].

3 Some papers may have different order of the indices. For example, in [7] this is written as N s
upq .
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(vii) There are also papers that use the notations��A s
pq and��A s

pq forA ∈ {B,F }
and −n ≤ � ≤ 0 (p < ∞ for F -cases), for example [6, 19]. These spaces
describe the same collection to A sτ

pq for A ∈ {B,F ,N }, see [6, Remarks 2.7
and 2.9] for example.

For more discussions, we refer the reader to [6, 18, 24].

3 Proof of the Theorems

Our proof follows from some results in [9] and [26].
The key ingredient is the Peetre maximal operators introduced in [8].

Definition 8 Let N > 0, U ⊆ R
n be an open set and let η = (η j )

∞
j=0 be a sequence

of Schwartz functions. The associated Peetre maximal operators (Pη,N
U , j )

∞
j=0 are given

by

Pη,N
U , j f (x) := sup

y∈U
|η j ∗ f (y)|

(1 + 2 j |x − y|)N , f ∈ S ′(Rn), x ∈ R
n, j ≥ 0.

Lemma 9 Let φ = (φ j )
∞
j=0 be a Littlewood–Paley family associated with a special

Lipschitz domain � (see Definition 4). Then there is a ψ = (ψ j )
∞
j=0 ⊂ S ′(Rn)

satisfying (P.a) and (P.b) such that (ψ j ∗ φ j )
∞
j=0 is also associated with �.

Proof The assumptions φ j (x) = 2( j−1)nφ1(2 j−1x) for j ≥ 1 and
∑∞

j=0 φ j = δ0

imply φ1(x) = 2nφ0(2x) − φ0(x), i.e. φ̂1(ξ) = φ̂0(ξ/2) − φ̂0(ξ). We can take ψ =
(ψ j )

∞
j=0 via the Fourier transforms:

ψ̂0(ξ) := 2φ̂0(ξ) − φ̂0(ξ)3;
ψ̂ j (ξ) := (φ̂0(2

− jξ) + φ̂0(2
1− jξ))(2 − φ̂0(2

− jξ)2 − φ̂0(2
1− jξ)2), for j ≥ 1.

See [9, Proposition 2.1] for details.

Lemma 10 ([1, Lemma 2.1]) Let η = (η j )
∞
j=0 and θ = (θ j )

∞
j=0 ⊂ S (Rn) both satisfy

conditions (P.a) and (P.b). Then for any N > 0 there exists a C = C(η, θ, N ) > 0
such that

∫

Rn
|η j ∗ θk(x)|(1 + 2k |x |)Ndx �η,θ,N 2−N | j−k|, ∀ j, k ≥ 0.

Lemma 11 Let0 < p, q ≤ ∞, τ ≥ 0and δ > nτ . There is aC = C(n, p, q, τ, δ) > 0
such that for every (g j )

∞
j=0 ⊂ L p

loc(R
n),

∥
∥
∥

( ∑

k≥0

2−δ| j−k|gk
)∞
j=0

∥
∥
∥

�q L p
τ

≤ C‖(g j )
∞
j=0‖�q L p

τ
; (10)
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∥
∥
∥

( ∑

k≥0

2−δ| j−k|gk
)∞
j=0

∥
∥
∥
L p

τ �q
≤ C‖(g j )

∞
j=0‖L p

τ �q , provided p < ∞; (11)

∥
∥
∥

( ∑

k≥0

2−δ| j−k|gk
)∞
j=0

∥
∥
∥

�q M p
τ

≤ C‖(g j )
∞
j=0‖�q M p

τ
. (12)

Proof (10) and (11) have been done in [26, Lemma 2.3]. We only prove (12).
Using the case τ = 0 in (10) we have

∥
∥
(∑

k≥0 2
−δ| j−k| fk

)∞
j=0

∥
∥

�q (L p)

�p,q,δ ‖( f j )∞j=0‖�q (L p), ∀( f j )
∞
j=0 ∈ �q(Z≥0; L p(Rn)).

Note that ‖gk‖Mp
τ

= ‖ supQJ ,v
|2nJτ1QJ ,v

· gk |‖L p(Rn). By taking fk :=
supQJ ,v

|2nJτ1QJ ,v
· gk | above we have

∥
∥
∥

( ∑

k≥0

2−δ| j−k||gk |
)∞
j=0

∥
∥
∥

�q M p
τ

=
∥
∥
∥

(

sup
QJ ,v∈Q

2nJτ1QJ ,v
·
∑

k≥0

2−δ| j−k||gk |
)

j

∥
∥
∥

�q (L p)

≤
∥
∥
∥

( ∑

k≥0

2−δ| j−k| sup
QJ ,v∈Q

2nJτ1QJ ,v
· |gk |

)

j

∥
∥
∥

�q (L p)

=
∥
∥
∥

( ∑

k≥0

2−δ| j−k| fk
)

j

∥
∥
∥

�q (L p)

�p,q,δ ‖( f j )∞j=0‖�q (L p) = ‖(g j )
∞
j=0‖�q M p

τ
.

��

Lemma 12 Let � ⊂ R
n be a special Lipschitz domain, let φ = (φ j )

∞
j=0 be a

Littlewood-Paley family associated with �, and let θ = (θ j )
∞
j=0 satisfies condi-

tions (P.a), (P.b) and (P.d). Then for any N > 0 and γ ∈ (0,∞] there is a
C = C(θ, φ, N ) > 0, such that, for every f ∈ S ′(Rn), j ≥ 0 and x ∈ �,

Pθ,N
�, j f (x) ≤ C

( ∞
∑

k=0

2−Nγ | j−k|
∫

�

2kn |φk ∗ f (y)|γ dy
(1 + 2k |x − y|)Nγ

)1/γ

. (13)

Proof The special case θ = φ of (13) is proved in [9, Proof of Theorem 3.2, Step 1].
Namely, we have

Pφ,N
�, j f (x) �φ,N

( ∞
∑

k=0

2−Nγ | j−k|
∫

�

2kn|φk ∗ f (y)|γ dy
(1 + 2k |x − y|)Nγ

)1/γ

. (14)
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Also see [21, Proof of Theorem 2.6, Step 1] for the argument. Thus it suffices to prove
the case γ = ∞:

Pθ,N
�, j f (x) �θ,φ,N sup

k≥0
2−N | j−k|Pφ,N

�,k f (x), ∀ f ∈ S ′(Rn), j ≥ 0, x ∈ �.

(15)
Let ψ = (ψ j )

∞
j=0 satisfies the consequence of Lemma 9, so θ j ∗ f = ∑∞

k=0(θ j ∗
ψk) ∗ (φk ∗ f ) for j ≥ 0. By assumption φ j , ψ j , θ j are supported in K = {xn <

−‖∇ρ‖L∞ · |x ′|} where ρ is the defining function for � = {xn > ρ(x ′)}. Using the
property � − K ⊆ �, we have

1� · (θ j ∗ f ) = 1� · ∑∞
k=0(θ j ∗ ψk) ∗ (1� · (φk ∗ f ));

and thus Pθ,N
�, j f (x) = sup

z∈�

|θ j ∗ f (z)|
(1 + 2 j |x − z|)N

≤ sup
z∈�

∞
∑

k=0

∫

�

|θ j ∗ ψk(z − y)||φk ∗ f (y)|dy
(1 + 2 j |x − z|)N .

The elementary inequality yields

1

(1 + 2 j |x − z|)N ≤ 2N | j−k|

(1 + 2k |x − z|)N
(1 + 2k |z − y|)N
(1 + 2k |z − y|)N

≤ 2N | j−k| (1 + 2k |z − y|)N
(1 + 2k |x − y|)N .

Therefore,

Pθ,N
�, j f (x)

= sup
z∈�

|φk ∗ f (z)|
(1 + 2k |x − z|)N

∞
∑

k=0

∫

�

2N | j−k||θ j ∗ ψk(z − y)|(1 + 2k |z − y|)Ndy

≤ sup
k≥0

2−N | j−k|Pφ,N
�,k f (x)

∞
∑

l=0

∫

�

22N | j−l||θ j ∗ ψl(y)|(1 + 2l |y|)Ndy

�θ,φ,N sup
k≥0

2−N | j−k|Pφ,N
�,k f (x)

∞
∑

l=0

2(2N−(2N+1))| j−l| � sup
k≥0

2−N | j−k|Pφ,N
�,k f (x).

(16)
Here the last inequality is obtained by applying Lemma 10.

Therefore we get (15). Combining it with (14) we complete the proof.

Recall the Hardy–Littlewood maximal function M f (x) := supR>0 |B(0, R)|−1
∫

B(x,R)
| f (y)|dy for f ∈ L1

loc.
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Lemma 13 Let N > n. There is a C = C(N ) > 0 such that for any g ∈ L1
loc(R

n),
J ∈ Z, v ∈ Z

n, k ≥ J and x ∈ QJ ,v ,

∫

Rn

2kn|g(y)|dy
(1 + 2k |x − y|)N ≤ C

∑

w∈Zn

M(1QJ ,w
· g)(x)

(1 + |v − w|)N−n
. (17)

Our lemma here is weaker than the corresponding estimate in [26, Proof of Theorem
1.2, Step 3].

Proof By taking a translation, it suffices to prove the estimate on x ∈ QJ ,0, i.e for v =
0.Note that if y ∈ QJ ,w, then |x−y| ≥ dist(QJ ,w, QJ ,0) ≥ 1√

n
2−J max(0, |w|−√

n)

and |x − y| ≤ |w| + √
n. Therefore

∫

Rn

2kn|g(y)|dy
(1 + 2k |x − y|)N

≤
∫

B(x,3
√
n2−J )

2kn|g(y)|dy
(1 + 2k |x − y|)N +

∑

|w|>2
√
n

∫

QJ ,w

2kn|g(y)|dy
(1 + 2k |x − y|)N

�
∥
∥
∥

2n(k−J )

(1 + 2k |y|)N
∥
∥
∥
L1(Rn

y)
M(1B(0,4

√
n2−J ) · g)(x)

+
∑

|w|>2
√
n

2kn
(

1 + 2k2−J (
|w|√
n

− 1)
)N

∫

QJ ,w

|g(y)|dy

�
∑

|w|<4
√
n

M(1QJ ,w
· g)(x)

+
∑

|w|>2
√
n

2−(k−J )(N−n)

|w|N−n
· 2nJ

|w|n
∫

B(x,2−J (|w|+√
n))

|1QJ ,w
· g(y)|dy

�
∑

w∈Zn

1

(1 + |w|)N−n
· M(1QJ ,w

· g)(x).

��
Combining Lemmas 11 - 13 we have the following Morrey–type estimates for Peetre
maximal functions.

Proposition 14 Keeping the assumptions of Lemma 12, for every 0 < p, q ≤ ∞,
s ∈ R, τ ≥ 0 and N > max(2n/min(p, q), |s| + nτ), there is a C =
C(θ, φ, p, q, s, τ, N ) > 0 such that for every f ∈ S ′(�),

∥
∥
(

2 js1� · (Pθ,N
�, j f )

)∞
j=0

∥
∥

�q L p
τ

≤ C
∥
∥
(

2 js1� · (φ j ∗ f )
)∞
j=0

∥
∥

�q L p
τ
; (18)

∥
∥
(

2 js1� · (Pθ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
≤ C

∥
∥
(

2 js1� · (φ j ∗ f )
)∞
j=0

∥
∥
L p

τ �q
, provided p < ∞;

(19)
∥
∥
(

2 js1� · (Pθ,N
�, j f )

)∞
j=0

∥
∥

�q M p
τ

≤ C
∥
∥
(

2 js1� · (φ j ∗ f )
)∞
j=0

∥
∥

�q M p
τ
. (20)
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Remark 15 It is possible that the assumption N > max( 2n
min(p,q)

, |s| + nτ) can be
relaxed to N > n

min(p,q)
. In applications, we only need a large enough N that does not

depend on f .
A similar result for (20) can be found in [20, Proposition 2.12]. Note that we require

θ j to have Fourier compact supports in that proposition.

Proof We use a convention φ j :≡ 0 for j ≤ −1. Thus in the computations below
every sequence (a j )

∞
j=J is identical to (a j )

∞
j=max(0,J ).

By the assumption on N we can take γ ∈ (0,min(p, q)) such that Nγ > 2n. We
first prove (19).

Since N > |s|+nτ . ByLemma12andusing2 jγ s2−Nγ | j−k| ≤ 2−(N−|s|)γ | j−k|2kγ s ,

‖(2 jsPθ,N
�, j f )

∞
j=0‖L p

τ �q = ∥
∥
(

2 jγ s(Pθ,N
�, j f )

γ
)∞
j=0

∥
∥

1
γ

L
p
γ
τγ �

q
γ

�
∥
∥
∥
∥

( ∞
∑

k=0

2(|s|−N )γ | j−k|
∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
j=0

∥
∥
∥
∥

1
γ

L
p
γ
τγ �

q
γ

.

By Lemma 11 and since (N − |s|)γ > nτγ ,

∥
∥
∥
∥

( ∞
∑

k=0

2(|s|−N )γ | j−k|
∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
j=0

∥
∥
∥
∥
L

p
γ
τγ �

q
γ

�
∥
∥
∥
∥

( ∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
k=0

∥
∥
∥
∥
L

p
γ
τγ �

q
γ

.

ApplyingLemma13with g(x) = 1�(x)·|2ksφk∗ f (x)|γ for each k ≥ 0 and expanding

the L
p
γ
τγ �

q
γ -norm,

∥
∥
∥
∥

( ∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
k=0

∥
∥
∥
∥
L

p
γ
τγ �

q
γ

= sup
J∈Z,v∈Zn

2nJτγ · 1
γ

∥
∥
∥
∥

( ∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
k=J

∥
∥
∥
∥

1
γ

L
p
γ (QJ ,v;�

q
γ )

�N ,γ sup
J∈Z,v∈Zn

2nJτ

∥
∥
∥
∥

( ∑

w∈Zn

M(1QJ ,w
· 1� · |2ksφk ∗ f |γ )

(1 + |w − v|)Nγ−n

)∞
k=J

∥
∥
∥
∥

1
γ

L
p
γ (QJ ,v;�

q
γ )

≤
( ∑

v∈Zn

1

(1 + |v|)Nγ−n

)1/γ

× sup
J∈Z,w∈Zn

2nJτ
∥
∥
(M(1QJ ,w∩� · |2ksφk ∗ f |γ )

)∞
k=J

∥
∥

1
γ

L
p
γ (Rn;�

q
γ )

.

Since Nγ − n > n the sum
∑

v∈Zn (1 + |v|)n−Nγ is finite.
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Finally, applying Fefferman-Stein’s inequality to
(M(1QJ ,w∩� · |2ksφk ∗ f |γ )

)∞
k=J

in L
p
γ (Rn; �

q
γ ) for each J ∈ Z (see [3, Theorem 1(1)] and also [5, Remark 5.6.7]),

since 1 < p/γ < ∞ and 1 < q/γ ≤ ∞,

sup
QJ ,w∈Q

2nJτ
∥
∥
(M(1QJ ,w∩� · |2ksφk ∗ f |γ )

)∞
k=J

∥
∥

1
γ

L
p
γ (Rn;�

q
γ )

� sup
QJ ,w

2nJτ
∥
∥
(

1QJ ,w∩� · |2ksφk ∗ f |γ )
)∞
k=J

∥
∥

1
γ

L
p
γ (Rn;�

q
γ )

= sup
QJ ,w

2nJτ
∥
∥
(

1� · (2ksφk ∗ f )
)∞
k=J

∥
∥
L p(QJ ,w;�q )

= ∥
∥
(

2ks1� · (φk ∗ f )
)∞
k=0

∥
∥
L p

τ �q
.

This completes the proof of (19).
The proof of (18) and (20) are similar but simpler: by assumption 1 < p/γ ≤ ∞

we have
M : L p

γ (Rn) → L
p
γ (Rn). (21)

Therefore, we prove (18) by the following:

‖(2 jsPθ,N
�, j f )

∞
j=0‖�q L p

τ

�θ,φ,s,τ,N ,γ

∥
∥
∥
∥

( ∞
∑

k=0

2−(nτ+1)γ | j−k|
∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
j=0

∥
∥
∥
∥

1
γ

�
q
γ L

p
γ
τγ

by (13)

�p,q,s,τ

∥
∥
∥
∥

( ∫

�

2kn|2ksφk ∗ f (y)|γ dy
(1 + 2k | · −y|)Nγ

)∞
k=0

∥
∥
∥
∥

1
γ

�
q
γ L

p
γ
τγ

by (10)

�N ,γ

( ∑

v∈Zn

1

(1 + |v|)Nγ−n

)1/γ ∥
∥
(M(1� · |2ksφk ∗ f |γ )

)∞
k=0

∥
∥

1
γ

�
q
γ L

p
γ
τγ

by (17)

�p,γ
∥
∥
(

1� · |2ksφk ∗ f |γ )
)∞
k=0

∥
∥
1/γ

�q/γ L p/γ
τγ

= ∥
∥
(

2ks1� · (φk ∗ f )
)∞
k=0

∥
∥

�q L p
τ

by (21).

Finally we prove (20). Using (15) and (12) (since N > |s| + nτ ) we have

‖(2 jsPθ,N
�, j f )

∞
j=0‖�q M p

τ
�θ,φ,s,N

∥
∥
∥

( ∞
∑

k=0

2(N−|s|)| j−k|2ksPφ,N
�,k f

)∞
j=0

∥
∥
∥

�q M p
τ

�p,q,τ,N ‖(2 jsPφ,N
�, j f )∞j=0‖�q M p

τ
.

(22)

Taking γ ∈ (n/N ,min(p, q)), we have 2 js(Pφ,N
�, j f ) �N ,γ M(|2 js1� · (φ j ∗

f )|γ )1/γ pointwise in R
n .

When p < ∞ and τ < 1/p, by [20, Lemma 2.5] we have

‖2 jsPφ,N
�, j f ‖Mp

τ
�N ,γ

∥
∥M(|2 js1� · (φ j ∗ f )|γ )1/γ ∥

∥
Mp

τ
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�p,γ,τ ‖2 js1� · (φ j ∗ f )‖Mp
τ
, j ≥ 0. (23)

We see that (23) is valid for all 1 < p/γ ≤ ∞, τ ≥ 0.
When τ = 1/p, we have Mp

τ = L∞ by [10, Remark 11(ii)], so (23) follows from
(21). When τ > 1/p we have Mp

τ = {0}, so (23) holds trivially.
Thus by taking �q -sum of (23), we get (20), completing the proof.

Proposition 16 Let θ = (θ j )
∞
j=0 satisfies (P.a) and (P.b), and let λ = (λ j )

∞
j=0

satisfies (P.a’) and (P.b’). For any 0 < p, q ≤ ∞, s ∈ R, τ ≥ 0 and N >

max(2n/min(p, q), |s|+nτ), there is a C = C(θ, λ, p, q, s, τ, N ) > 0 such that for
every f̃ ∈ S ′(Rn),

‖(2 jsPθ,N
Rn , j f̃ )

∞
j=0‖�q L p

τ
≤ C‖(2 jsλ j ∗ f̃ )∞j=0‖�q L p

τ
; (24)

‖(2 jsPθ,N
Rn , j f̃ )

∞
j=0‖L p

τ �q ≤ C‖(2 jsλ j ∗ f̃ )∞j=0‖L p
τ �q , provided p < ∞; (25)

‖(2 jsPθ,N
Rn , j f̃ )

∞
j=0‖�q M p

τ
≤ C‖(2 jsλ j ∗ f̃ )∞j=0‖�q M p

τ
. (26)

Proof The proof is the same as that for Proposition 14, except that we replace every
� by R

n in the arguments. We leave the details to readers.

Based on Proposition 14, we can prove a boundedness result of Rychkov-type
operators on A sτ

pq -spaces.

Proposition 17 Let � ⊂ R
n be a special Lipschitz domain and let γ ∈ R. Let η =

(η j )
∞
j=0 and θ = (θ j )

∞
j=0 satisfy conditions (P.a), (P.b) and (P.d) with respect to �.

We define an operator.4 T η,θ,γ
� as

T η,θ,γ
� f :=

∞
∑

j=0

2 jγ η j ∗ (1� · (θ j ∗ f )), f ∈ S ′(�). (27)

Then for A ∈ {B,F ,N }, 0 < p, q ≤ ∞, s ∈ R and τ ≥ 0 (p < ∞ for F -cases),
we have the boundedness

T η,θ,γ
� : A s,τ

p,q (�) → A
s−γ,τ
p,q (Rn).

Proof Recall S ′(�) = { f̃ |� : f̃ ∈ S ′(Rn)} is defined via restrictions. We see that
T η,θ,γ

� : S ′(�) → S ′(Rn) is well-defined in the sense that, for every extension
f̃ ∈ S ′(Rn) of f , the summation

∑∞
j=0 2

jγ η j ∗ (1� · (θ j ∗ f̃ )) converges S ′(Rn)

and does not depend on the choice of f̃ . See [12, Propositions 3.11 and 3.16] for
example.

Let λ = (λ j )
∞
j=0 be as in Definition 6 that defines the A sτ

pq -norms. By Lemma 10,

for every j, k ≥ 0,
∫

Rn |λ j ∗ ηk(y)|(1 + 2k |y|)Ndy �λ,η,N 2−N | j−k|. Thus by the

4 The notation is slightly different from the one in [12, Theorem 1.2].
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similar argument to (16), for every N > |s − γ |,

2 j(s−γ )2kγ |λ j ∗ ηk ∗ (1� · (θk ∗ f ))(x)|
≤ 2 j(s−γ )2kγ

∫

�

|λ j ∗ ηk(y)|(1 + 2k |y|)Ndy · sup
t∈�

|θk ∗ f (t)|
(1 + 2k |x − t |)N

�λ,η,N 2−(N−|s−γ |)| j−k|2ks(Pθ,N
�,k f )(x).

Therefore, by Lemma 11, for any N > |s − γ | + nτ ,

‖(2 j(s−γ )λ j ∗ T η,θ,γ
� f )∞j=0‖�q L p

τ
�λ,η,p,q,s,γ,τ,N ‖(2ksPθ,N

�,k f )∞k=0‖�q L p
τ
; (28)

‖(2 j(s−γ )λ j ∗ T η,θ,γ
� f )∞j=0‖L p

τ �q �λ,η,p,q,s,γ,τ,N ‖(2ksPθ,N
�,k f )∞k=0‖L p

τ �q , (p < ∞);
(29)

‖(2 j(s−γ )λ j ∗ T η,θ,γ
� f )∞j=0‖�q M p

τ
�λ,η,p,q,s,γ,τ,N ‖(2ksPθ,N

�,k f )∞k=0‖�q M p
τ
. (30)

Let f̃ ∈ A sτ
pq (Rn) be an extension of f . Clearly Pθ,N

�,k f (x) = Pθ,N
�,k f̃ (x) ≤

Pθ,N
Rn ,k f̃ (x) holds pointwise for x ∈ R

n . Therefore, by choosing N > 2n/min(p, q)

and combining (28) and (24), we have

‖T η,θ,γ
� f ‖Bsτ

pq (Rn) = ‖(2 j(s−γ )λ j ∗ T η,θ,γ
� f )∞j=0‖�q L p

τ

�η,θ,λ,p,q,s,γ,τ ‖(2 jsλ j ∗ f̃ )∞j=0‖�q L p
τ

= ‖ f̃ ‖Bsτ
pq (Rn).

Taking the infimum over all extensions f̃ of f we get the boundedness T η,θ,γ
� :

Bs,τ
p,q(�) → B

s−γ,γ
p,q (Rn). Similarly using (29), (25) and (30), (26) we get T η,θ,γ

� :
A s,τ

p,q (�) → A
s−γ,γ
p,q (Rn) for A ∈ {F ,N }.

Remark 18 Under the definition (7), the operator norms of T η,θ,γ
� do not depend5 on

�. This is due to the same reason as mentioned in [12, Remark 3.14]:
One can see that the constants in Proposition 14 depend on everything except on

�. The same hold for the implied constants in (28), (29) and (30). After the point-
wise inequality Pθ,N

�,k f ≤ Pθ,N
Rn ,k f̃ , it remains to estimate (2 jsPθ,N

Rn , j f̃ )
∞
j=0 (which is

Proposition 16), where � is not involved.

Corollary 19 ([25, 28, 29]) Let � ⊂ R
n be a special Lipschitz domain. Let φ =

(φ j )
∞
j=0 and ψ = (ψ j )

∞
j=0 be as in the assumption and conclusion of Lemma 9 with

respect to �. Then the Rychkov’s extension operator

E� f = Eψ,φ
� f :=

∞
∑

j=0

ψ j ∗ (1� · (φ j ∗ f )), f ∈ S ′(�), (31)

5 It can depend on the upper bound of ‖∇ρ‖L∞ , which is bounded by inf{− xn
|x ′| : (x ′, xn) ∈ suppφ j }

where φ ∈ {η, θ} and j ≥ 0.
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is well-defined and has boundedness E� : A sτ
pq (�) → A sτ

pq (Rn) for A ∈
{B,F ,N } and all 0 < p, q ≤ ∞, s ∈ R, τ ≥ 0 (p < ∞ for F -cases).

Proof E� is an extension operator because by assumption E� f |� = ∑∞
j=0 ψ j ∗φ j ∗

f = f . The boundedness is immediate since E� = Tψ,φ,0
� from (27).

Remark 20 Corollary 19 is not new. See [25, Proposition 4.13] for A = N , [28,
Section 4] for A = F and [29, Section 4] for A = B. For the proof we also refer
[4, Theorem 3.6] to readers.

The key to prove Theorem 1 is to use the following analog of [9, Theorem 2.3].

Proposition 21 (Characterizations via Peetre’s maximal functions) Let � ⊂ R
n be a

special Lipschitz domain and let φ = (φ j )
∞
j=0 be a Littlewood-Paley family associated

with �. Then for 0 < p, q ≤ ∞, s ∈ R and τ ≥ 0 (p < ∞ for F -cases), we have
the following intrinsic characterizations: for every N > max( 2n

min(p,q)
, |s| + nτ),

‖ f ‖Bsτ
pq (�) ≈φ,p,q,s,τ,N

∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥

�q L p
τ
; (32)

‖ f ‖F sτ
pq (�) ≈φ,p,q,s,τ,N

∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
, provided p < ∞; (33)

‖ f ‖N sτ
pq (�) ≈φ,p,q,s,τ,N

∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥

�q M p
τ
. (34)

Remark 22 (32) and (33) are not newaswell. The caseA = F is done in [13, Theorem
1.7], where a more general setting is considered. See also [4, Proof of Theorem 3.6,
Step 2] for a proof of A ∈ {B,F }.

As already mentioned in Remark 15, it is possible that the assumption of N can be
weakened.

Proof of Proposition 21 Let λ = (λ j )
∞
j=0 be as in Definition 6 that defines the A sτ

pq -
norms. We only prove (33) since the proof of (32) and (34) are the same by replacing
L p

τ �q with �q L p
τ and �qM p

τ , and including the discussion of p = ∞.
(�) For f ∈ F sτ

pq(�), let f̃ ∈ F sτ
pq(R

n) be an extension of f . We see that pointwisely

(1� · Pφ,N
�, j f )(x) ≤ Pφ,N

�, j f (x) = Pφ,N
�, j f̃ (x) ≤ Pφ,N

Rn , j f̃ (x), j ≥ 0, x ∈ R
n .

Thus by Proposition 14,

∥
∥
(

2 js1� · (Pφ,N
j f )

)∞
j=0

∥
∥
L p

τ �q
≤ ∥

∥
(

2 jsPφ,N
�, j f̃

)∞
j=0

∥
∥
L p

τ �q

�λ,φ,p,q,s,γ,τ,N
∥
∥
(

2 jsλ j ∗ f̃
)∞
j=0

∥
∥
L p

τ �q
= ‖ f̃ ‖F sτ

pq (Rn).

Taking infimum over all extensions f̃ of f , we get ‖ f ‖F sτ
pq (�) �

∥
∥
(

2 js1� ·
(Pφ,N

�, j f )
)∞
j=0

∥
∥
L p

τ �q
.

(�) By Corollary 19 we have ‖ f ‖F sτ
pq (�) ≈ ‖E� f ‖F sτ

pq (Rn) = ‖(2 jsλ j ∗
E� f )∞j=0‖L p

τ �q . Therefore using (28) with the fact that E� = Tψ,φ,0
� ,

‖(2 jsλ j ∗ E� f )∞j=0‖L p
τ �q = ‖(2 jsλ j ∗ Tψ,φ,0

� f )∞j=0‖L p
τ �q
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�ψ,φ,λ,p,q,s,τ ‖(2 jsPφ,N
�, j f )∞j=0‖L p

τ �q . (35)

Write � = {(x ′, xn) : xn > ρ(x ′)}. We define a “fold map” L = L� : R
n � � as

L(x) := x if x ∈ �; L(x) := (x ′, 2ρ(x ′) − xn), if x /∈ �.

Recall � = {xn > ρ(x ′)}. By direct computation, we have

|L(x)− y| ≤ (‖∇ρ‖L∞ +
√

1 + ‖∇ρ‖2L∞
)2|x − y| �� |x − y| x ∈ R

n, y ∈ �.

(36)
Therefore

Pφ,N
�, j f (x) = sup

y∈�

|φ j ∗ f (y)|
(1 + 2 j |x − y|)N ��,N sup

y∈�

|φ j ∗ f (y)|
(1 + 2 j |L(x) − y|)N

= (Pφ,N
�, j f

)(

L(x)
)

, x ∈ R
n .

Clearly for 0 < p ≤ ∞ we have the following estimate for cube Q ∈ Q and
function g ∈ L p

loc(�):

‖g ◦ L‖L p(Q) �p ‖g‖L p(�∩L−1(Q)) �p

∑

P∈IQ

‖1� · g‖L p(P),

where IQ := {P ∈ Q : |P| = |Q|, P ∩ L−1(Q) �= ∅}.

By (36) we have control of the cardinality #IQ �n (1+ ‖∇ρ‖L∞)2n �� 1, which
is uniform in Q ∈ Q. Therefore,

‖(2 jsPφ,N
�, j f )∞j=0‖L p

τ �q �N
∥
∥
(

2 js(Pφ,N
�, j f ) ◦ L

)∞
j=0

∥
∥
L p

τ �q

�p,q,�

∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
. (37)

Combining (35) and (37)we get ‖ f ‖F sτ
pq (�) �

∥
∥
(

2 js1� ·(Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
, finishing

the proof.

We can now prove Theorem 1:

Proof of Theorem 1 The F s∞q -cases follow immediately from the F sτ
pq -cases using

(9).
Fix a N > max(2n/min(p, q), |s|+nτ).We only prove theF sτ

pq -cases. The proofs
of theBsτ

pq -cases and theN
sτ
pq -cases are the same, except that we replace every L p

τ �q

with �q L p
τ and �qM p

τ .
By Proposition 21 we have ‖ f ‖F sτ

pq (�) ≈ ∥
∥
(

2 js1� ·(Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
. Therefore,

it suffices to show that
∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
≈ ∥

∥
(

2 js1� · (φ j ∗ f )
)∞
j=0

∥
∥
L p

τ �q
.

Clearly
∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
≥ ∥

∥
(

2 js1� · (φ j ∗ f )
)∞
j=0

∥
∥
L p

τ �q
since φ j ∗

f (x) ≤ Pφ,N
�, j f (x) holds for all f ∈ S ′(�), x ∈ � and j ≥ 0. The converse
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∥
∥
(

2 js1� · (Pφ,N
�, j f )

)∞
j=0

∥
∥
L p

τ �q
�φ,p,q,s,τ,N

∥
∥
(

2 js1� · (φ j ∗ f )
)∞
j=0

∥
∥
L p

τ �q
follows from

(18). Thus, we prove the F sτ
pq -cases.

We have the immediate analogy of [26, Theorem 1.1] on Lipschitz domains:

Corollary 23 Keeping the assumptions in Proposition 21, we have the following intrin-
sic characterizations: for every N > max(2n/min(p, q), |s| + nτ),

‖ f ‖B sτ
pq (�) ≈φ,p,q,s,τ,N sup

QJ ,v∈Q
2nJτ

( ∞
∑

j=max(0,J )

2 jsq‖Pφ,N
(QJ ,v∩�), j f ‖qL p(QJ ,v∩�)

) 1
q ;

‖ f ‖F sτ
pq (�) ≈ sup

QJ ,v

2nJτ
(∫

QJ ,v∩�

( ∞
∑

j=max(0,J )

2 jsq |Pφ,N
(QJ ,v∩�), j f (x)|q

) p
q
dx

) 1
p
, (p < ∞);

‖ f ‖N sτ
pq (�) ≈φ,p,q,s,τ,N

( ∞
∑

j=0

sup
QJ ,v∈Q

2nJτq+ jsq‖Pφ,N
(QJ ,v∩�), j f ‖qL p(QJ ,v∩�)

) 1
q
.

Proof Since |φ j ∗ f (x)| ≤ Pφ,N
(QJ ,v∩�), j f (x) ≤ Pφ,N

�, j f (x) pointwisely for every
QJ ,v ∈ Q and x ∈ QJ ,v ∩ �, the results follow immediately by combining Theorem
1 and Proposition 21.

Remark 24 By the standard partition of unity argument, we can give the analogy of
Theorem 1 on a bounded Lipschitz domain. An example is the following:

‖ f ‖Bsτ
pq (�) ≈

N
∑

ν=1

‖(2 js1�∩Uν · (φν
j ∗ (χν f )))

∞
j=0‖�q L p

τ
; (38)

‖ f ‖F sτ
pq (�) ≈

N
∑

ν=1

‖(2 js1�∩Uν · (φν
j ∗ (χν f )))

∞
j=0‖L p

τ �q ; (39)

‖ f ‖N sτ
pq (�) ≈

N
∑

ν=1

‖(2 js1�∩Uν · (φν
j ∗ (χν f )))

∞
j=0‖�q M p

τ
; (40)

Here {Uν, (φ
ν
j )

∞
j=0, χν}Nν=1 satisfy the following:

• {Uν}Nν=1 is an open cover of �, and there are cones Kν ⊂ R
n such thatUν ∩ (� −

Kν) ⊆ Uν ∩ � for each ν = 1, . . . , N .
• For ν = 1, . . . , N , (φν

j )
∞
j=0 satisfies (P.a) - (P.c) in Definition 4, with support

condition suppφν
j ⊂ Kν for j ≥ 0.

• χν ∈ C∞
c (Uν) for ν = 1, . . . , N , and satisfy6

∑N
ν=1 χν |� ≡ 1.

To prove (38), (39) and (40) the only thing we need are the following standard
results (p < ∞ forF -cases):

(�.a) Let χ ∈ C∞
c (Rn). Then [ f̃ → χ f̃ ] : A sτ

pq (Rn) → A sτ
pq (Rn) is bounded.

6 In fact we can relax the condition to
∑N

ν=1 χν |
�

> c for some c > 0.
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(�.b) Let� be an invertible affine linear transform. Then [ f̃ → f̃ ◦�] : A sτ
pq (Rn) →

A sτ
pq (Rn) is bounded.

(�.c) For every m ≥ 1, we have equivalent norms ‖ f ‖A s,τ
p,q (Rn) ≈p,q,s,τ,m

∑

|α|≤m ‖∂α f ‖A s−m,τ
p,q (Rn)

.

One can see [24, Sections 6.1.1 and 6.2], [22, Theorem 1.6] and [11, Theorem 3.3]
for their proof. See also [6, Sections 3.4, 4.2 and 4.3]. We remark that because of (8)
it is enough to consider the case 0 ≤ τ ≤ 1

p . We leave the details to the readers.
One can also write down the analogy of Proposition 21 and Corollary 23 similar to

(38), (39) and (40), we leave the details to the readers as well.

Finally, we prove Theorem 2 using the following fact:

Proposition 25 ([12, Theorem 1.5 (ii)]) Let (φ j )
∞
j=1 be a family7 of Schwartz func-

tions satisfying (P.a), (P.b) and (P.d). Recall that for every j ≥ 1, φ j (x) =
2( j−1)nφ1(2 j−1x),

∫

xαφ j (x)dx = 0 for all α, and suppφ j ⊂ {xn < −A|x ′|} for
some A > 0.

Then for any m ≥ 1, there are families of Schwartz functions φ̃β = (φ̃
β
j )

∞
j=1 for

|β| = m that also satisfy (P.a), (P.b) and (P.d), such that

φ j = 2− jm
∑

|β|=m

∂βφ̃
β
j , for every j ≥ 1.

Proof of Theorem 2 Once the case of special Lipschitz domains is done, the proof of
the case of bounded Lipschitz domains follows from the standard partition of unity
argument (one can read [12, Section 6] for details) along with the facts (�.a), (�.b)
and (�.c) mentioned in Remark 24.

Let� ⊂ R
n be a special Lipschitz domain. Let f ∈ A sτ

pq (�) and let f̃ ∈ A sτ
pq (Rn)

be an extension of f . By (�.c) we have ‖∂α f̃ ‖
A s−|α|,τ

p,q (Rn)
�p,q,s,τ,α ‖ f̃ ‖A sτ

pq (Rn).

Since ∂α f̃ is also an extension of ∂α f , by (7) in Definition 5, taking the infimum over
all extensions f̃ of f we get

∑

|α|≤m ‖∂α f ‖A s−m,τ
p,q (�)

� ‖ f ‖A sτ
pq (�).

To prove the converse inequality ‖ f ‖A sτ
pq (�) �

∑

|α|≤m ‖∂α f ‖A s−m,τ
p,q (�)

, let

(φ j , ψ j )
∞
j=0 be as in (31).

We let (φ̃
β
j )

∞
j=1 ⊂ S (Rn) (|β| > 0) be given in Proposition 25. Thus φ j =

2− jq ∑

β:|β|=q ∂βφ̃
β
j for all j, q ≥ 1.

For α �= 0, we define ψα = (ψα
j )

∞
j=1 by ψα

j (x) := 2− j |α|∂αψ j (x) (for j ≥ 1).
Thus the sequences ψα (for α �= 0) all satisfy (P.a), (P.b) and (P.d).

We define a family of linear operators,

Eα,0 f = Eα,0
� f := ∂αψ0 ∗ (1� · (φ0 ∗ f )),

Eα,β f = Eα,β
� f :=

∞
∑

j=1

ψα
j ∗ (1� · (φ̃

β
j ∗ f )), for |α| = |β| > 0. (41)

7 Here the index of the Schwartz family start from j = 1. In Definition 5 we start with j = 0.



Journal of Fourier Analysis and Applications (2023) 29 :24 Page 19 of 21 24

For every f ∈ S ′(�) and for every multi-index α �= 0, we see that

∂αE f =
∞
∑

j=0

∂αψ j ∗ (1� · (φ j ∗ f )) = ∂αψ0 ∗ (1� · (φ0 ∗ f ))

+
∞
∑

j=1

∑

β:|β|=|α|
2 j |α|ψα

j ∗ (1� · 2− j |α|(∂βφ̃
β
j ∗ f ))

= ∂αψ0 ∗ (1� · (φ0 ∗ f )) +
∑

β:|β|=|α|

∞
∑

j=1

ψα
j ∗ (1� · (φ̃

β
j ∗ ∂β f ))

= Eα,0 f +
∑

β:|β|=|α|
Eα,β [∂β f ].

(42)

By Proposition 17, Eα,0, Eα,β : A s−m,τ
p,q (�) → A s−m,τ

p,q (Rn) are all bounded.
Therefore

‖ f ‖A sτ
pq (�) ≈ ‖E f ‖A sτ

pq (Rn)

(�.c)≈
∑

|α|≤m

‖∂αE f ‖A s−m,τ
pq (Rn)

(42)
� ‖E f ‖A s−m,τ

pq
+

∑

0<|α|≤m

(

‖Eα,0 f ‖A s−m,τ
pq

+
∑

β:|β|=|α|
‖Eα,β [∂β f ]‖A s−m,τ

pq

)

�‖ f ‖A s−m,τ
pq (�)

+
∑

0<|α|≤m

(

‖ f ‖A s−m,τ
pq (�)

+
∑

β:|β|=|α|
‖∂β f ‖A s−m,τ

pq (�)

)

�
∑

|β|≤m

‖∂β f ‖A s−m,τ
pq (�)

.

This completes the proof of (4) for the case of special Lipschitz domains.
The F s∞q -cases follow immediately from (9) since we have F s∞q(R

n) =
F

s, 1q
qq (Rn).

4 Further Open Questions

By the same method, using Lemma 10 - Proposition 14, it is possible for us to get the
analogs of Theorems 1 and 2 on the so-called local spaces.

The local version of A sτ
pq (Rn) for A ∈ {B,F ,N }, denoted by A s,τ

p,q,unif(R
n), is

defined by replacing the supremum among the set of dyadic cubes Q with {QJ ,v ∈
Q : J ≥ 0}. See [10, Section 3.4] for example. For an open subset � ⊆ R

n we use
A s,τ

p,q,unif(�) := { f̃ |� : f̃ ∈ A s,τ
p,q,unif(R

n)} similarly. For more details we refer [17]
to readers.

One can also consider the analog of Theorems 1 and 2 onA s(·),φ
p(·),q(·), the spaces with

variable exponents. For example [13], which may require certain assumptions on the
exponents.
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In Definition 6, it is known that the norms are equivalent if (λ j )
∞
j=0 only satisfies

the scaling condition (P.b) and the Tauberian condition:

There exist ε0, c > 0 such that |λ̂0(ξ)| > c for |ξ | < ε0,

and |λ̂1(ξ)| > c for ε0/2 < |ξ | < 2ε0. (43)

See [22, Theorems 2.5 and 2.6] and [23, Theorem 1] for example.
It is not known to the authorwhetherwe can replace the assumption (P.c) for (φ j )

∞
j=0

in Theorem 1 with the Tauberian condition (43).
For Theorem 2, we do not know whether (4) has the following improvement:

Question 26 Keeping the assumptions of Theorem 2, can we find a C = C(�, p, q, s,
τ,m) > 0 such that the following holds?

‖ f ‖A sτ
pq (�) ≤ C

(

‖ f ‖A s−m,τ
p,q (�)

+
n

∑

k=0

∥
∥
∥
∂m f

∂xmk

∥
∥
∥
A s−m,τ

p,q (�)

)

, ∀ f ∈ A sτ
pq (�).

Cf. [22, Theorem1.6]. The question is open even for the classical Besov andTriebel-
Lizorkin spaces A s

pq(�) when � is a (special or bounded) Lipschitz domain.
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