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Abstract
We study approximation properties of multivariate periodic functions from weighted
Wiener spaces by sparse grid methods constructed with the help of quasi-interpolation
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Keywords Sparse grid · Weighted Wiener spaces · Quasi-interpolation operators ·
Kantorovich operators · Smolyak algorithm · Littlewood–Paley-type
characterizations

Mathematics Subject Classification 41A25 · 41A63 · 42A10 · 42A15 · 41A58 ·
41A17 · 42B25 · 42B35

Dedicated to the 80th anniversary of Professor Stefan Samko.

Communicated by E.Liflyand.

Supported by the German Research Foundation, project KO 5804/1-2
Support by the German Research Foundation in the framework of the RTG 2088
Supported by PID2020-114948GB-I00, 2017 SGR 358, AP14870758 and the CERCA Programme of the
Generalitat de Catalunya. Also, supported by the Spanish State Research Agency, through the Severo
Ochoa and María de Maeztu Program for Centers and Units of Excellence in R&D (CEX2020-001084-M).
The author thanks CERCA Programme/Generalitat de Catalunya for institutional support.

B Yurii Kolomoitsev
kolomoitsev@math.uni-goettingen.de

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-023-09994-2&domain=pdf


19 Page 2 of 32 Journal of Fourier Analysis and Applications (2023) 29 :19

1 Introduction

In many applied problems one needs to approximate high-dimensional functions in
smooth function spaces. As it is known from previous research, traditional numerical
methods such as the interpolation with tensor product grids suffer from the so-called
“curse of dimensionality”. In other words, the computation time of such methods
grows dramatically with the number of variables and the problem becomes intractable
already formild dimensions.Oneof themeans to overcome these obstacles is to employ
different sparse grids approximation methods and to impose additional assumption
on smoothness. Typically, one assumes that a function belongs to a certain mixed
smoothness Sobolev or Besov space (see, e.g., [6, 17]).

In this paper, we consider approximation methods that are based on generalized
sparse grids (see, e.g., [6, 26]). Recall that for given parameters T ∈ [−∞, 1), n ∈ N,
and a family of univariate operators Y = (Y j ) j∈Z+ , a sparse grid approximation
method is defined as follows:

PY
n,T =

∑

j∈�(n,T )

ηYj , η jY =
d∏

i=1

(
Y i
ji − Y i

ji−1

)
, (1.1)

where

�(n, T ) =
{
k ∈ Z

d+ : |k|1 − T |k|∞ ≤ (1 − T )n
}

and Y i
j denotes the univariate operator Y j acting on functions in the variable xi and

Y−1 = 0. The most well studied case of the family Y is the classical Lagrange inter-
polation operators I = (I j ) j∈Z+ given by

I j ( f )(x) = 2− j
2 j−1−1∑

k=−2 j−1

f
(
x j
k

)
D j

(
x − x j

k

)
,

where x j
k = πk

2 j−1 andD j (x) =∑2 j−1−1
�=−2 j−1 e

i�x is the Dirichlet kernel. The correspond-
ing sparse grid for a given level n is then

�(n, T ) =
⋃

j∈�(n,T )

I j1 × · · · × I jd ,

where I j = {x j
k : k = −2 j , . . . , 2 j − 1}, i.e., P I

n,T f (y) = f (y) for all y ∈ �(n, T )

and f ∈ C(Td). Here, the case T = −∞ corresponds to the interpolation on the full
tensor grid; the case T = 0 represents interpolation on the Smolyak grid, which is also
called the regular sparse grid (see [46], see also [17, Ch. 5]); and the case 0 < T < 1
resembles the so-called energy-norm based sparse grids (see [6, 24]).
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One of the important characteristics of a sparse grid is its cardinality. Note that (see,
e.g., [26])

card�(n, T ) �
∑

k∈�(T ,n)

2|k|1 �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2n, if 0 < T < 1,
2nnd−1, if T = 0,

2

(
1−T

1−T /d

)
n
, if T < 0,

2dn, if T = −∞
(1.2)

and the same upper bound holds for the number of frequencies of the polynomial
P I
n,T f . Thus, the most interesting cases for approximation with the algorithm P I

n,T is
when 0 ≤ T < 1 since in this case, for the number of elements needed to construct the
corresponding algorithm, there is no exponential growth with the dimension d. Let us
consider this case in more detail.

Approximation properties of the operators P I
n,T have been mainly studied in the

case T = 0, which corresponds to the classical Smolyak grids (see, e.g., [1, 2, 8,
12, 27, 45, 47–49]; see also the book [17, Ch. 4 and Ch. 5]). As an example, we
mention the following Lq -error estimates for the Smolyak algorithm P I

n,0 in the case

of approximation of functions from the Sobolev spaceWα
p(T

d) of dominating mixed
smoothness α > 0 (see, e.g., [45] and [17, Chapters 4 and 5]): if 1 < p, q < ∞ and
α > max{1/p, 1/2}, then

sup
f ∈UWα

p

‖ f − P I
n,0( f )‖Lq (Td ) �

{
2−αnn

d−1
2 , if p ≥ q,

2−(α−1/p+1/q)n, if q > p,
(1.3)

whereUWα
p denotes the unit ball in the spaceW

α
p(T

d). Similar estimates (for T = 0)
in the weighted Wiener spaces (or Korobov spaces) were obtained in [11, 27, 47].

In the case 0 < T < 1, the approximations by operators P I
n,T have been mostly

investigated for functions from the so-called generalized mixed smoothness (or hybrid
smoothness) Sobolev space

Hα,β(Td) :=
⎧
⎨

⎩ f ∈ L2(T
d) :

∑

k∈Zd

d∏

j=1

(1 + |k j |)2α(1 + |k|)2β | f̂ (k)|2 < ∞
⎫
⎬

⎭ ,

where the parameter β governs for the isotropic smoothness, whereas α reflects the
smoothness in the dominating mixed sense. Herewith, the approximation error is esti-
mated in the metric of the classical isotropic Sobolev space Hγ (Td) = H0,γ (Td),
see, e.g., [6, 7, 24, 25]. In particular, we mention a general result obtained in the recent
paper [25]: let α ≥ 0, β ≥ 0, γ − β < α, α + β

d > 1
2 . Then, for all f ∈ Hα,β(Td)

and n ∈ N, one has

‖ f − P I
n,T f ‖Hγ (Td ) � 
I (n)‖ f ‖Hα,β (Td ), (1.4)
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where1


I (n) =
{
2
−
(
α−(γ−β)−(αT−(γ−β)) d−1

d−T

)
n
n

d−1
2 , T ≥ γ−β

α
,

2−(α−(γ−β))n, T <
γ−β

α
,

which again shows the importance of the case 0 ≤ T ≤ γ−β
α

< 1, cf. (1.2).
Along with the classical interpolation operators I = (I j ) j∈Z+ one also considers

the family of the partial sums of Fourier series (see, e.g., [1, 2, 13]), families of
convolution type operators (see, e.g., [45, 54]), quasi-interpolation operators based on
scaled B-splines with integer knots (see, e.g., [14–16]).

In this paper, as a family Y in (1.1), we make use of the general quasi-interpolation
operators defined by

Q j ( f , ϕ j , ϕ̃ j )(x) = 2− j
2 j−1−1∑

k=−2 j−1

( f ∗ ϕ̃ j )(x
j
k )ϕ j (x − x j

k ), j ∈ Z+, (1.5)

where (ϕ j ) j∈Z+ is a family of univariate trigonometric polynomials and (ϕ̃ j ) j∈Z+ is
a family of functions/distributions on T. Note that in the non-periodic case approxi-
mation properties of operators of such type in various function spaces (classical and
weighted L p, Sobolev, Besov, Wiener) have been studied, for example, in the works
[21, 29, 30, 38, 39]. It worths noting that the operators (1.5) can be successfully
employed in such applied problems, where the data contains some noise and the func-
tional information is provided by other means than point evaluation (averages, divided
differences, etc.), see, e.g., [10, 56].

In the periodic case, an analog of estimate (1.3) for any α > 0 has been recently
established in [32] for the approximation processes PQ

n,0 with Q = (Q j ) j∈Z+ defined
by (1.5). The corresponding proof is essentially based on the results from [35],
where under different compatibility conditions on (ϕ j ) j∈Z+ and (ϕ̃ j ) j∈Z+ , L p-error of
approximation by the operators Q j were obtained. Similar results in weightedWiener
spaces and L2(T) have been derived in [28, 34], correspondingly.

The goal of the present work is to establish analogues of error estimate (1.4)
for sparse grid approximation methods constructed using general quasi-interpolation
operators. Comparing our findings with the previously known results, we stress
two important differences. Firstly, we build the approximation schemes using quasi-
interpolation operators (1.5) rather than the classical interpolation operators (I j ) j∈Z+
constructed using the Dirichlet kernel and the values of a function at sets of equidistant
interpolation nodes as in [7, 24, 25]. Secondly, we work with a more general scale
of spaces, namely with the weighted Wiener spaces Aα,β

p (Td) rather than with the
Sobolev spaces Hα,β(Td), which correspond to the case p = 2. We would like to
stress that possibility to vary the family (ϕ̃ j ) j∈Z+ allows us to prove the results under
essentiality less restrictive conditions on the parameters α and β.

The paper is organized as follows. In Sect. 2 we introduce basic notations, define
isotropic, mixed, and hybrid weighted Wiener spaces and general quasi-interpolation

1 Note that there are typos in formula (21) and related estimates in [25]. See also [24, Lemma 8].
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operators. Section 3 is devoted to auxiliary results. In particular, we prove the following
useful estimate

‖ f − Q j ( f , ϕ j , ϕ̃ j )‖Aγ
q (T) � 2− j min(α−γ,s)‖ f ‖Aα

q (T),

see Lemma 3.1. In Sect. 4 we establish our main tools, the so-called “discrete”
Littlewood-Paley type characterizations. In Sect. 5 we prove our main results: we
consider approximation in the isotropic Wiener space Aγ

q (Td) (in Subsect. 5.1) and in
the mixed Wiener spaces Aγ

q,mix(T
d) (in Subsect. 5.2). In Subsect. 5.3 we discuss the

sharpness of the obtained results. In Sect. 6 we consider the specific sets of parame-
ters, where our main results (Theorems 5.1 and 5.3) provide the most effective error
estimateswith respect to the approximation rate and the number of degrees of freedom.

2 WeightedWiener Spaces and Quasi-interpolation Operators

2.1 Basic Notation

In what follows, Zd+ = {x ∈ Z
d : xi ≥ 0, i = 1, . . . , d} and T

d = R
d/2πZd is the

d-dimensional torus. Further, for vectors x = (x1, . . . , xd) and k = (k1, . . . , kd) in
R
d , we denote (x, k) = x1k1 + · · · + xdkd .
If j ∈ Z

d+, we set | j |1 = ∑d
k=1 jk , | j |∞ = maxdk=1 jk , and 2 j = (2 j1 , . . . , 2 jd ).

For 1 ≤ p ≤ ∞, p′ is given by 1
p + 1

p′ = 1. For 1 ≤ p, q ≤ ∞, we set σp,q =(
1
q − 1

p

)

+.
If f ∈ L1(T

d), then

f̂ (k) = (2π)−d
∫

Td
f (x)e−i(k,x)dx, k ∈ Z

d ,

denotes the k-th Fourier coefficient of f . As usual, the convolution of integrable
functions f and g is given by

( f ∗ g)(x) = (2π)−d
∫

Td
f (x − t)g(t)dt.

By T d
j , j ∈ Z

d+, we denote the following set of trigonometric polynomials:

T d
j = span

{
ei(k,x) : k ∈ Dj1 × · · · × Djd

}
,

where

Dj = [−2 j−1, 2 j−1) ∩ Z.

LetD = C∞(T) be the space of infinitely differentiable functions on T. The linear
space of periodic distributions (continuous linear functionals on D) is denoted by D′.
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It is known (see, e.g., [44, p. 144]) that any periodic distribution ϕ̃ can be expanded
in a weakly convergent (in D′) Fourier series

ϕ̃(x) =
∑

k∈Z
̂̃ϕ(k)eikx ,

where the sequence (̂ϕ̃(k))k has at most polynomial growth.
Throughout the paper, we use the notation A � B,with A, B ≥ 0, for the estimate

A ≤ C B, where C is a positive constant independent of the essential variables in A
and B (usually, f , j , and n). If A � B and B � A simultaneously, we write A � B
and say that A is equivalent to B. For two function spaces X and Y , we will use the
notation Y ↪→ X if Y ⊂ X and ‖ f ‖X � ‖ f ‖Y for all f ∈ Y . The unit ball in some
normed vector space X is denoted by UX .

2.2 WeightedWiener Spaces

We will employ the following function spaces with the parameters α, β ∈ R, and
0 < q ≤ ∞.
• The periodic (isotropic) Wiener space Aα

q (Td) is the collection of all f ∈ L1(T
d)

such that

‖ f ‖′
Aα
q (Td )

:=
⎛

⎝
∑

k∈Zd

(1 + |k|)qα| f̂ (k)|q
⎞

⎠
1/q

< ∞, q < ∞,

‖ f ‖′
Aα∞(Td )

:= sup
k∈Zd

(1 + |k|)α| f̂ (k)| < ∞, q = ∞.

In the case α = 0, we use the following standard notation Aq(T
d) = A0

q(T
d).

• The periodic (mixed) Wiener space Aα
q,mix(T

d) is the collection of all f ∈ L1(T
d)

such that

‖ f ‖′
Aα
q,mix(T

d )
:=
⎛

⎝
∑

k∈Zd

d∏

j=1

(1 + |k j |)qα| f̂ (k)|q
⎞

⎠
1/q

< ∞, q < ∞,

‖ f ‖′
Aα∞,mix(T

d )
:= sup

k∈Zd

d∏

j=1

(1 + |k j |)α| f̂ (k)| < ∞, q = ∞.

• The periodic (hybrid) Wiener space Aα,β
q (Td) is the collection of all f ∈ L1(T

d)

such that

‖ f ‖′
Aα,β
q (Td )

:=
⎛

⎝
∑

k∈Zd

d∏

j=1

(1 + |k j |)qα(1 + |k|)qβ | f̂ (k)|q
⎞

⎠
1/q

< ∞, q < ∞,
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‖ f ‖′
Aα,β∞ (Td )

:= sup
k∈Zd

d∏

j=1

(1 + |k j |)α(1 + |k|)β | f̂ (k)| < ∞, q = ∞.

Remark 2.1 (i) It is easy to see that for any α > 0 and 1 ≤ q ≤ ∞, the following
embeddings hold:

Adα
q (Td) ↪→ Aα

q,mix(T
d) ↪→ Aα

q (Td).

(ii) Note that the isotropic Wiener space Aα
q (Td) coincides with the corresponding

periodic Sobolev space Hα(Td) in the case q = 2. The same holds for the mixed
or hybrid Wiener spaces.

(iii) For more information about the weighted Wiener spaces Aα,β
q (Td), see papers

[5, 19, 20, 40, 41, 43].
(iv) Note that according to the terminology suggested by H. Feichtinger, the spaces

Aα,β
q (Td) can be also called Fourier-Wermer spaces, see [55] for the motivation.

As usual, for f ∈ L1(T
d), we define the diadic blocks δk( f ), k ∈ Z

d+, by

δk( f )(x) =
∑

k∈Pk

f̂ (k)ei(k,x),

where

Pk := Pk1 × · · · × Pkd ,

Pj = {� ∈ Z : 2 j−1 ≤ |�| < 2 j } for j > 0, and P0 = {0}.
Recall that for all f ∈ L p(T

d), 1 < p < ∞, the Littlewood-Paley decomposition
reads as follows

f =
∑

�∈Zd+

δ�( f ).

The next lemma is a simple consequence of the definition of the space Aα,β
q (Td).

Lemma 2.2 Let 0 < q ≤ ∞, α ≥ 0, and let β ∈ R be such that α + β ≥ 0. Then

Aα,β
q (Td ) =

⎧
⎪⎨

⎪⎩
f ∈ L1(T

d ) : ‖ f ‖
Aα,β
q (Td )

:=
( ∑

k∈Zd+

2q(α|k|1+β|k|∞)‖δk( f )‖qAq (Td )

)1/q

< ∞

⎫
⎪⎬

⎪⎭

with the usual modification in the case q = ∞ in the sense of equivalent norms.
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2.3 Quasi-interpolation Operators

Consider a family of general univariate quasi-interpolation operators Q = (Q j ) j∈Z+
given by

Q j ( f , ϕ j , ϕ̃ j )(x) = 2− j
∑

k∈Dj

( f ∗ ϕ̃ j )(x
j
k )ϕ j (x − x j

k ), x j
k = πk

2 j−1 ,

where (ϕ j ) j∈Z+ is a family of univariate trigonometric polynomials in T 1
j , (ϕ̃ j ) j∈Z+

is a family of functions/distributions, and the convolution f ∗ ϕ̃ j is defined in some
suitable way for any j ∈ Z+.

Below, we assume that the following conditions on (ϕ j ) j∈Z+ and (ϕ̃ j ) j∈Z+ hold:
• The growth condition of order N ≥ 0 for the Fourier coefficients of ϕ̃ j :

| ̂̃ϕ j (�)| ≤ Cϕ̃(1 + |2− j�|N ) for all � ∈ Z, j ∈ Z+. (2.1)

• The uniform boundedness condition for the Fourier coefficients of ϕ j :

|ϕ̂ j (�)| ≤ Cϕ for all � ∈ Z, j ∈ Z+. (2.2)

• The compatibility condition of order s > 0 for ϕ j and ϕ̃ j :

|1 − ϕ̂ j (�) ̂̃ϕ j (�)| ≤ Cϕ,ϕ̃,s |2− j�|s for all � ∈ Dj , j ∈ Z+. (2.3)

Let us consider two important classes of quasi-interpolation operators and examine
the above conditions.

Example 2.3 Quasi-interpolation sampling operators are defined by

S j ( f , ϕ j )(x) = 2− j
∑

k∈Dj

⎛

⎝
∑

|ν|≤m

aν, j f
(rν )(x j

k−ν)

⎞

⎠ϕ j (x − x j
k ), (2.4)

where aν, j ∈ C, rν ∈ Z+, and ϕ j ∈ T 1
j . Note that S j ( f , ϕ j ) = Q j ( f , ϕ j , ϕ̃ j ) with

ϕ̃ j (x) =
∑

|ν|≤m

aν, jδ
(rν )(x − x j

ν ) ∼
∑

�∈Z

⎛

⎝
∑

|ν|≤m

aν, j (i�)
rν e−i�x j

ν

⎞

⎠ ei�x .

One can see that condition (2.1) with N = max|ν|≤m rν is satisfied if

sup
j∈Z+

∑

|ν|≤m

2rν j |aν, j | < ∞
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and condition (2.3) with s > 0 is fulfilled if

∣∣∣∣1 − ϕ̂ j (�)
∑

|ν|≤m

aν, j (−i�)rν ei�x
j
ν

∣∣∣∣ ≤ c|2− j�|s for all � ∈ Dj , j ∈ Z+.

(i) A particular example of (2.4) is the classical Lagrange interpolation operator

I j ( f )(x) = 2− j
∑

k∈Dj

f (x j
k )D j (x − x j

k ), (2.5)

where

D j (x) =
∑

�∈Dj

ei�x

is the Dirichlet kernel. Note that I j ( f ) = S j ( f , ϕ j ) with ϕ j = D j , m = 0, a0, j = 1,
and r0 = 0. In this case it is easy to see that conditions (2.1)–(2.3) are fulfilled for
N = 0 and any s > 0.
(i i) As an example of quasi-interpolation operators that are generated by an average
sampling instead of the exact samples of f , we consider

A j ( f )(x) = 2− j
∑

k∈Dj

λ j ( f )(x
j
k )D j (x − x j

k ), (2.6)

where

λ j ( f )(x) = 1

4

(
f
(
x − π

2 j

)
+ 2 f (x) + f

(
x + π

2 j

))
.

We have that A j ( f ) = Q j ( f , ϕ j , ϕ̃ j ) with ϕ j (x) = D j (x) and ϕ̃ j (x) ∼
∑

�∈Z cos2
(

π�
2 j+1

)
ei�x and conditions (2.1)–(2.3) are fulfilled with N = 0 and s = 2.

Note that the operators of such type are used in applications, for example, in order to
reduce noise contribution (see, e.g., [56]).
(i i i) At the same time if in (2.6), we replace the Dirichlet kernel D j by

D∗
j (x) =

∑

�∈Dj

1

cos2
(

π�
2 j+1

)ei�x ,

then condition (2.3) will hold for arbitrary s > 0.
(iv) We also consider the following type of operators:

Bj ( f , ϕ j )(x) = 2− j
∑

k∈Dj

(
f
(
x j
k

)
+ a2− j f ′ (x j

k

)
+ b2−2 j f ′′ (x j

k

))
D j

(
x − x j

k

)
.

(2.7)
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We have that Bj ( f , ϕ j ) = Q j ( f , ϕ j , ϕ̃ j ) if ϕ j = D j and

ϕ̃ j (x) = δ(x) + a2− jδ′(x) + b2−2 jδ′′(x).

It is not difficult to see that if b �= 0, then condition (2.1) holds with N = 2. At the
same time if a �= 0, then compatibility condition (2.3) holds with s = 1. Note that in
the non-periodic case operators of type (2.7) have been studied, e.g., in [4, 33].

Example 2.4 Kantorovich-type operators are defined by

K j ( f , ϕ j )(x) =
∑

k∈Dj

2σ−1

π

∫ π2− j−σ

−π2− j−σ

f
(
t + x j

k

)
dt ϕ j

(
x − x j

k

)
, (2.8)

where σ ≥ 1 and as above ϕ j ∈ T j . It is clear that by taking ϕ̃ j (x) =
2 j+σ χ[−π2− j−σ ,π2− j−σ ](x), i.e., the normalized characteristic function of
[−π2− j−σ , π2− j−σ ], we have that K j ( f , ϕ j ) = Q j ( f , ϕ j , ϕ̃ j ). Next, since

̂̃ϕ j (�) = sin π2− j−σ �

π2− j−σ �
, � ∈ Z,

it is not difficult to see that (2.1) holds for N = 0. Concerning condition (2.3), we
have that in this case it has the following form:

∣∣∣∣1 − ϕ̂ j (k)
sin π2− j−σ k

π2− j−σ k

∣∣∣∣ � |2− j k|s, ∀k ∈ Dj , ∀ j ∈ Z+. (2.9)

(i) If ϕ j = D j , we have that (2.9) holds for s = 2.
(i i) At the same time, for

ϕ j (x) = D∗
j (x) =

∑

�∈Dj

π2− j−σ �

sin π2− j−σ �
ei�x ,

condition (2.9) holds for any s > 0.
Note that in recent years, theKantorovich type operators (2.8) have been intensively

studied in many works, see, e.g., [3, 9, 10, 33, 36, 38] in the non-periodic case and
[28, 34, 35] in the periodic case. It is worth noting that operators of this type have
several advantages over the interpolation and sampling operators. Particularly, using
the averages of a function instead of the sampled values f (x j

k ) allows to deal with
discontinues signals and to reduce the so-called time-jitter errors,which is an important
issue in digital image processing.
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3 Auxiliary Results

For j ∈ Z+ and ψ ∈ L1(T), we define the following amalgam-type norm:

‖ψ‖ Ã p, j (T) = sup
�∈Dj

⎛

⎝
∑

μ∈Z
|ψ̂(� + 2 jμ)|p

⎞

⎠
1/p

if 1 ≤ p < ∞

and

‖ψ‖ Ã∞, j (T) = ‖ψ‖A∞(T) if p = ∞.

Lemma 3.1 Let 1 ≤ q ≤ ∞, 0 ≤ γ < α, and let (ϕ j ) j∈Z+ and (ϕ̃ j ) j∈Z+ be such that
ϕ̃ j ∈ D′(T) and ϕ j ∈ T 1

j for each j ∈ Z+. Suppose conditions (2.1), (2.2), and (2.3)
are fulfilled with N ≥ 0 and s > 0. Further suppose that

(i) α > N + 1/q ′ if q �= 1 and α ≥ N if q = 1 or
(ii) N = 0 and sup j∈Z+ ‖ϕ̃ j‖ Ãq′, j (T) < ∞.

Then, for all f ∈ Aα
q (T) and j ∈ Z+, we have

‖ f − Q j ( f , ϕ j , ϕ̃ j )‖Aγ
q (T) � 2− j min(α−γ,s)‖ f ‖Aα

q (T). (3.1)

Proof The proof of the lemma under conditions in (i) can be found in [34, Remark 7].
In what follows, we prove (3.1) assuming that condition (i i) holds. We consider only
the case 1 ≤ q < ∞. The case q = ∞ can be treated similarly. First we show that

‖Q j ( f , ϕ j , ϕ̃ j )‖Aγ
q (T) � ‖ f ‖Aγ

q (T). (3.2)

Indeed, using the representation

Q j ( f , ϕ j , ϕ̃ j )(x) =
∑

�∈Dj

ϕ̂ j (�)

⎛

⎝2− j
∑

k∈Dj

( f ∗ ϕ̃ j )(x
j
k )e−i�x j

k

⎞

⎠ ei�x

=
∑

�∈Dj

ϕ̂ j (�)

⎛

⎝
∑

ν∈Z
f̂ (ν) ̂̃ϕ j (ν)2− j

∑

k∈Dj

e
2π i ν−�

2 j

⎞

⎠ ei�x

=
∑

�∈Dj

ϕ̂ j (�)

⎛

⎝
∑

μ∈Z
f̂ (� + 2 jμ) ̂̃ϕ j (� + 2 jμ)

⎞

⎠ ei�x ,
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condition (2.2), and Hölder’s inequality, we derive

‖Q j ( f , ϕ j , ϕ̃ j )‖qAγ
q (T)

�
∑

�∈Dj

(1 + |�|)qγ

∣∣∣∣
∑

μ∈Z
f̂ (� + 2 jμ) ̂̃ϕ j (� + 2 jμ)

∣∣∣∣
q

�
∑

�∈Dj

(1 + |�|)qγ
∑

μ∈Z
| f̂ (� + 2 jμ)|q

⎛

⎝
∑

μ∈Z
| ̂̃ϕ j (� + 2 jμ)|q ′

⎞

⎠
q/q ′

� sup
�∈Dj

⎛

⎝
∑

μ∈Z
| ̂̃ϕ j (� + 2 jμ)|q ′

⎞

⎠
q/q ′

‖ f ‖q
Aγ
q (T)

� ‖ f ‖q
Aγ
q (T)

,

which gives (3.2).
Now, we prove inequality (3.1). Let

t j (x) =
∑

k∈Dj

f̂ (k)eikx .

Applying (3.2), we obtain

‖ f − Q j ( f , ϕ j , ϕ̃ j )‖Aγ
q (T)

≤ ‖ f − t j‖Aγ
q (T) + ‖t j − Q j (t j , ϕ j , ϕ̃ j )‖Aγ

q (T) + ‖Q j ( f − t j , ϕ j , ϕ̃ j )‖Aγ
q (T)

� ‖ f − t j‖Aγ
q (T) + ‖t j − Q j (t j , ϕ j , ϕ̃ j )‖Aγ

q (T)

� 2− j(α−γ )‖ f ‖Aα
q (T) + ‖t j − Q j (t j , ϕ j , ϕ̃ j )‖Aγ

q (T). (3.3)

Next, using inequality (2.3), we get

‖t j − Q j (t j , ϕ j , ϕ̃ j )‖Aγ
q (T) =

∥∥∥∥
∑

k∈Dj

(1 − ϕ̂ j (k) ̂̃ϕ j (k)) f̂ (k)e
ikx
∥∥∥∥
Aγ
q (T)

�
( ∑

k∈Dj

(1 + |k|)γ q |2− j k|sq | f̂ (k)|q
)1/q

� 2− js
( ∑

k∈Dj

(1 + |k|)(s−(α−γ ))q(1+|k|)αq | f̂ (k)|q
)1/q

� 2−min(α−γ,s) j‖ f ‖Aα
q (T). (3.4)

Finally, combining (3.4) and (3.3), we arrive at (3.1). ��
Remark 3.2 With regard to (i) and (i i) in Lemma 3.1, we note that the condi-
tion (i) can be applied to the operators S j ( f , ϕ j ) in Example 2.3. Condition (i i),
unlike condition (i), allows any parameter α > γ and is especially beneficial for
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the Kantorovich type operators K j ( f , ϕ j ), see Example 2.4. Indeed, for ϕ̃ j (x) =
2 j+σ χ[−π2− j−σ ,π2− j−σ ](x) ∼∑�∈Z sin π2− j−σ �

π2− j−σ �
ei�x , we have

sup
j∈Z+

‖ϕ̃ j‖ Ãq′, j (T) = sup
j∈Z+, �∈Dj

⎛

⎝
∑

μ∈Z

∣∣∣∣
sin π2−σ (2− j� + μ)

π2−σ (2− j� + μ)

∣∣∣∣
q ′
⎞

⎠
1/q ′

< ∞

in the case 1 < q ′ < ∞. The case q ′ = ∞ is clear.

We will need the following Bernstein inequality.

Lemma 3.3 Let 1 ≤ q ≤ ∞, min{α, α + β − γ } > 0, and � ∈ Z
d+. Then, for any

f ∈ T d
� , we have

‖ f ‖
Aα,β
q (Td )

≤ 2α|�|1+(β−γ )|�|∞‖ f ‖Aγ
q (Td ).

Proof The proof is similar to the proof of Lemma 2.10 in [7]. ��

Lemma 3.4 (See [7]) Let α > 0, β ∈ R, ε = min(α, α + β) > 0, and

ψ(k) := α|k|1 + β|k|∞, k ∈ Z
d+.

Then the inequality

ψ(k) ≤ ψ(k′) − ε|k′ − k|1

holds for all k, k′ ∈ Z
d+ with k′ ≥ k componentwise.

Lemma 3.5 Let T < 1, r < t , and t ≥ 0. Then, for all n ∈ N,

∑

k/∈�(n,T )

2−t |k|1+r |k|∞ �
{
2
−
(
t−r−(tT−r) d−1

d−T

)
n
nd−1, T ≥ r

t ,

2−(t−r)n, T < r
t

(3.5)

and

sup
k/∈�(n,T )

2−t |k|1+r |k|∞ �
{
2
−
(
t−r−(tT−r) d−1

d−T

)
n
, T ≥ r

t ,

2−(t−r)n, T < r
t .

(3.6)

Proof Estimate (3.5) can be found in the proof of [31, Theorem 4]. Estimate (3.6)
can be proved by standard arguments using the method of Lagrange multipliers and
Kuhn-Tacker conditions. ��
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4 Littlewood–Paley Type Characterizations

Proposition 4.1 Let 1 ≤ q ≤ ∞, α > 0, β ∈ R, α + β > 0, and let Q =
(Q j (·, ϕ j , ϕ̃ j )) j∈Z+ , where (ϕ j ) j∈Z+ and (ϕ̃ j ) j∈Z+ be such that ϕ̃ j ∈ D′(T) and
ϕ j ∈ T 1

j for each j ∈ Z+. Suppose conditions (2.1), (2.2), and (2.3) are satisfied with
the parameters N ≥ 0 and s > max(α + β, α). Assume also that

(i) min(α + β, α) > N + 1/q ′ or
(ii) N = 0 and sup j∈Z+ ‖ϕ̃ j‖ Ãq′, j (T) < ∞.

Then every function f ∈ Aα,β
q (Td) can be represented by the series

f =
∑

j∈Zd+

η
Q
j ( f ), (4.1)

which converges unconditionally in Aα̃,β
q (Td) with 0 ≤ α̃ < α and satisfies

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
j ( f )‖q

Aq (Td )

)1/q

� ‖ f ‖
Aα,β
q (Td )

. (4.2)

Proof Step 1 First we prove the proposition assuming that the condition in (i) holds.
Let f ∈ Aα,β

q (Td) and j ∈ Z
d+. We have

f (x) =
∑

�∈Zd

δ j+�( f )(x), (4.3)

where we set δ j+�( f ) = 0 for j + � ∈ Z
d \ Zd+. In light of (4.3), we get

|ηQ
j ( f )(x)| ≤

∑

�∈Zd

|ηQ
j

(
δ j+�( f )

)
(x)|

and, therefore,

‖ηQ
j ( f )‖Aq (Td ) ≤

∑

�∈Zd

‖ηQ
j

(
δ j+�( f )

) ‖Aq (Td ). (4.4)

In what follows, for simplicity we consider only the case q < ∞. The case q = ∞
can be treated similarly. Multiplying by 2α| j |1+β| j |∞ and taking �q -norm on both sides
of (4.4), we obtain
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( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
j ( f )‖q

Aq (Td )

)1/q

≤
∑

�∈Zd

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
j (δ j+�( f ))‖qAq (Td )

)1/q

=
∑

�d2∈Zd−1

∑

− j1≤�1<−1

(. . . ) +
∑

�d2∈Zd−1

∑

�1≥−1

(. . . ) = S1 + S2,

(4.5)

where �dk = (�k, . . . , �d), k = 2, . . . , d.
Consider the sum S1. Denoting

η
Q
jdk

= η
Q
jdk ,k

=
d∏

i=k

(Qi
ji − Qi

ji−1), k = 2, . . . , d,

where Qi
ji
is the univariate operator Q ji (·, ϕ ji , ϕ̃ ji ) acting on functions in the variable

xi , we obtain

S1 =
∑

�d2∈Zd−1

∑

− j1≤�1<−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖(Q1
j1 − Q1

j1−1)η
Q
jd2

(δ j+�( f ))‖qAq (Td )

)1/q

≤
∑

b∈{−1,0}

∑

�d2∈Zd−1

∑

− j1≤�1<−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖(Q1
j1+b − I )ηQ

jd2
(δ j+�( f ))‖qAq (Td )

)1/q

,

(4.6)

where I is the identity operator. Taking into account that Q j (t, ϕ, ϕ̃) = ϕ̃ j ∗ ϕ j ∗ t
for any trigonometric polynomial t ∈ T 1

j−1 and using condition (2.3) and Bernstein’s
inequality, we derive that

∑

j∈Zd+

2q(α| j |1+β| j |∞)‖(Q1
j1+b − I )ηQ

jd2
(δ j+�( f ))‖qAq (Td )

�
∑

j∈Zd+

2q(α| j |1+β| j |∞−s j1)
∥∥∥∥

∂s

∂xs1
η
Q
jd2

(δ j+�( f ))

∥∥∥∥
q

Aq (Td )

�
∑

j∈Zd+

2q(α| j |1+β| j |∞+s�1)‖ηQ
jd2

(δ j+�( f ))‖qAq (Td )

� 2(s−α)�1q
∑

j∈Zd+

2q(α| j+�1e1|1+β| j |∞)‖ηQ
jd2

(δ j+�( f ))‖qAq (Td )

� 2(s−max(α+β,α))�1q
∑

j∈Zd+

2q(α| j+�1e1|1+β| j+�1e1|∞)‖ηQ
jd2

(δ j+�( f ))‖qAq (Td )
,

(4.7)
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where in the last inequality we use the estimates

| j |∞ ≤ | j + �1e1|∞ + |�1e1|∞ = | j + �1e1|∞ − �1 in the case β ≥ 0

and

| j |∞ ≥ | j + �1e1|∞ in the case β < 0.

Next, combining (4.6) and (4.7) and using the fact that
∑

�1<−1 2
(s−max(α+β,α))�1 <

∞, we obtain

S1 �
∑

�d2∈Zd−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
jd2

(δ j1, j2+�2,..., jd+�d ( f ))‖qAq (Td )

)1/q

.

(4.8)

Now, we consider the sum S2. Similar to (4.6), we have

S2 =
∑

�d2∈Zd−1

∑

�1≥−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖(Q1
j1 − Q1

j1−1)η
Q
jd2

(δ j+�( f ))‖qAq (Td )

)1/q

≤
∑

b∈{−1,0}

∑

�d2∈Zd−1

∑

�1≥−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖(Q1
j1+b − I )ηQ

jd2
(δ j+�( f ))‖qAq (Td )

)1/q

.

(4.9)

Choosing ζ such that N + 1/q ′ < ζ < min(α, α + β) and applying Lemma 3.1(i),
Bernstein’s inequality, and Lemma 3.4, we obtain for �1 ≥ 0 that

∑

j∈Zd+

2q(α| j |1+β| j |∞)‖(Q1
j1+b − I )ηQ

jd2
(δ j+�( f ))‖qAq (Td )

�
∑

j∈Zd+

2q(α| j |1+β| j |∞−ζ j1)‖ηQ
jd2

(δ j+�( f ))‖q
A(ζ,0,...,0)
q (Td )

�
∑

j∈Zd+

2q(α| j |1+β| j |∞+ζ�1)‖ηQ
jd2

(δ j+�( f ))‖qAq (Td )

� 2−q(min(α,α+β)−ζ )�1
∑

j∈Zd+

2q(α| j+�1e1|1+β| j+�1e1|∞)‖ηQ
jd2

(δ j+�( f ))‖qAq (Td )

� 2−q(min(α,α+β)−ζ )�1
∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
jd2

(δ j1, j2+�2,..., jd+�d ( f ))‖qAq (Td )
.

(4.10)



Journal of Fourier Analysis and Applications (2023) 29 :19 Page 17 of 32 19

A similar estimate clearly holds for �1 = −1. Thus, combining (4.9) and (4.10) and
taking into account that

∑
�1≥−1 2

−(min(α,α+β)−ζ )�1 < ∞, we get

S2 �
∑

�d2∈Zd−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
jd2

(δ j1, j2+�2,..., jd+�d ( f ))‖qAq (Td )

)1/q

.(4.11)

In the next step, collecting (4.5), (4.8), and (4.11) implies

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
j ( f )‖q

Aq (Td )

)1/q

�
∑

�d2∈Zd−1

( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
jd2

(δ j1, j2+�2,..., jd+�d ( f ))‖qAq (Td )

)1/q

.

Then, repeating the above procedure for the parameters �2, . . . , �d , we prove (4.2) by
Lemma 2.2.

Step 2 Let us prove representation (4.1). Applying Lemma 3.3 (here without loss
of generality, we can assume that min(̃α + β, α̃) > 0), Hölder’s inequality, and (4.2),
we obtain

∑

k∈Zd+

‖ηQ
k ( f )‖

Aα̃,β
q (Td )

�
∑

k∈Zd+

2α̃|k|1+β|k|∞‖ηQ
k ( f )‖Aq (Td )

=
∑

k∈Zd+

2−(α−α̃)|k|1 · 2α|k|1+β|k|∞‖ηQ
k ( f )‖Aq (Td )

≤
⎛

⎜⎝
∑

k∈Zd+

2−q ′(α−α̃)|k|1

⎞

⎟⎠

1/q ′ ⎛

⎜⎝
∑

k∈Zd+

2q(α|k|1+β|k|∞)‖ηQ
k ( f )‖q

Aq (Td )

⎞

⎟⎠

1/q

� ‖ f ‖
Aα,β
q (Td )

.

(4.12)

Therefore,
∑

k∈Zd+ η
Q
k ( f ) converges unconditionally in Aα̃,β

q (Td).
Now we show that for any trigonometric polynomial g,

g =
∑

k∈Zd+

η
Q
k (g). (4.13)
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It is clear that it suffices to verify (4.13) for t j (x) = ei( j ,x) with arbitrary j ∈ Z
d . By

the triangle inequality, we have

∥∥∥∥t j −
∑

k∈Zd+

η
Q
k (t j )

∥∥∥∥
Aα̃,β
q (Td )

≤
∥∥∥∥t j −

∑

k∈Zd+, |k|∞≤m

η
Q
k (t j )

∥∥∥∥
Aα̃,β
q (Td )

+
∑

k∈Zd+, |k|∞>m

‖ηQ
k (t j )‖Aα̃,β

q (Td )

:= I1(m) + I2(m).

(4.14)

We obviously have that

I2(m) = 0 for m large enough. (4.15)

Since

m∑

ki=0

(Qi
ki − Qi

ki−1) = Qi
m, i = 1, . . . ,m,

we obtain

∑

k∈Zd+, |k|∞≤m

η
Q
k =

d∏

i=1

Qi
m .

Thus, for any j ∈ (−2m−1, 2m−1)d ∩ Z
d , we have

∑

k∈Zd+, |k|∞≤m

η
Q
k (t j )(x) =

d∏

i=1

ϕ̂m( ji )̂̃ϕm( ji )e
i( j ,x).

Using this and conditions (2.1), (2.2), (2.3), we find

I1(m) =
∣∣∣∣1 −

d∏

i=1

ϕ̂m( ji )̂̃ϕm( ji )

∣∣∣∣

=
∣∣∣∣1 − ϕ̂m( j1)̂̃ϕm( j1) +

d∑

ν=2

ν−1∏

i=1

ϕ̂m( ji )̂̃ϕm( ji )
(
1 − ϕ̂m( jν)̂̃ϕm( jν)

) ∣∣∣∣

�
d∑

ν=1

∣∣∣1 − ϕ̂m( jν)̂̃ϕm( jν)
∣∣∣ � 2−ms

d∑

ν=1

| jν |s → 0 as m → ∞. (4.16)

Therefore, combining (4.14), (4.15), and (4.16), we arrive at (4.13).
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The rest of the proof is quite standard. Denote F :=∑k∈Zd+ η
Q
k ( f ). Using (4.13),

we have for every trigonometric polynomial g that

F − g =
∑

k∈Zd+

η
Q
k ( f − g)

with convergence in Aα̃,β
q (Td). Hence, by (4.12), we derive

‖F − f ‖
Aα̃,β
q (Td )

≤ ‖F − g‖
Aα̃,β
q (Td )

+ ‖g − f ‖
Aα̃,β
q (Td )

� ‖ f − g‖
Aα,β
q (Td )

.

Choosing g close enough to f yields ‖F − f ‖
Aα̃,β
q (Td )

< ε for all ε > 0 and hence

‖F − f ‖
Aα̃,β
q (Td )

= 0, which implies (4.1).

By the same scheme, using Lemma 3.1 (i i), the proof of the proposition under
condition (i i) also follows. ��

We will also need the following modification of inequality (4.2).

Lemma 4.2 Let f ∈ Aq(T
d), 1 ≤ q < p ≤ ∞, and 1 ≤ θ ≤ ∞. Under conditions

of Proposition 4.1, there exists a constant C = C(α, β, q, θ, d) > 0 such that

( ∑

j∈Zd+

2θ(α| j |1+β| j |∞)‖ηQ
j ( f )‖θ

Aq (Td )

)1/θ

≤ C

( ∑

j∈Zd+

2θ((α+ 1
q − 1

p )| j |1+β| j |∞)‖δ j ( f )‖θ
Ap(Td )

)1/θ

(4.17)

whenever the sum in the right-hand side is finite.

Proof First, repeating the same procedure as in the proof of Step 1 of Proposition 4.1,
we obtain

( ∑

j∈Zd+

2θ(α| j |1+β| j |∞)‖ηQ
j ( f )‖θ

Aq (Td )

)1/θ

�
( ∑

j∈Zd+

2θ(α| j |1+β| j |∞)‖δ j ( f )‖θ
Aq (Td )

)1/θ

.

Then, applying the inequality

‖δ j ( f )‖Aq (Td ) � 2( 1q − 1
p )| j |1‖δ j ( f )‖Ap(Td ),

which easily follows from Hölder’s inequality and the fact that spec δ j ( f ) ⊂ Pj1 ×
· · · × Pjd , Pj = {� ∈ Z : 2 j−1 ≤ |�| < 2 j }, we arrive at (4.17). ��
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A reverse statement to Proposition 4.1 is written as follows.

Proposition 4.3 Let α > 0, β ∈ R, α + β > 0, 1 ≤ q ≤ ∞, and let ( f j ) j∈Zd+ be such

that f j ∈ T d
j and

⎛

⎜⎝
∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ f j‖qAq (Td )

⎞

⎟⎠

1/q

< ∞.

Suppose that the series
∑

j∈Zd+ f j converges to a function f in Aq(T
d). Then f ∈

Aα,β
q (Td) and moreover, there is a constant C = C(α, β, q, d) such that

‖ f ‖
Aα,β
q (Td )

≤ C

⎛

⎜⎝
∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ f j‖qAq (Td )

⎞

⎟⎠

1/q

.

Proof The proposition can be proved repeating step by step the proof of Proposition 3.4
in [7]. For completeness we present a detailed proof.

For � ∈ Z
d+, we write f as the series

f =
∑

j∈Zd

f�+ j

with f�+ j := 0 for j + � ∈ Z
d \ Z

d+. Using the triangle inequality and taking into
account that δ�( f�+ j ) = 0 for j /∈ Z

d+, we obtain

‖δ�( f )‖Aq (Td ) =
∥∥∥∥
∑

j∈Zd+

δ�( f�+ j )

∥∥∥∥
Aq (Td )

≤
∑

j∈Zd+

‖δ�( f�+ j )‖Aq (Td ) ≤
∑

j∈Zd+

‖ f�+ j‖Aq (Td ).

This inequality together with Lemma 3.4 yields

2α|�|1+β|�|∞‖δ�( f )‖Aq (Td ) �
∑

j∈Zd+

2−min{α,α+β}| j |1 · 2α|�+ j |1+β|�+ j |∞‖ f�+ j‖Aq (Td ).
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Then, by Minkowski’s inequality, we obtain

⎛

⎜⎝
∑

�∈Zd+

2q(α|�|1+β|�|∞)‖δ�( f )‖qAq (Td )

⎞

⎟⎠

1/q

�
∑

j∈Zd+

2−min{α,α+β}| j |1

⎛

⎜⎝
∑

�∈Zd+

2q(α|�+ j |1+β|�+ j |∞)‖ f�+ j‖qAq (Td )

⎞

⎟⎠

1/q

�

⎛

⎜⎝
∑

�∈Zd+

2q(α|�|1+β|�|∞)‖ f�‖qAq (Td )

⎞

⎟⎠

1/q

.

Thus, Lemma 2.2 concludes the proof. ��
Propositions 4.1 and 4.3 suggest the following useful necessary and sufficient con-

ditions for f ∈ Aα,β
q (Td) to be represented as f = ∑

j∈Zd+ η
Q
j ( f ). This generalizes

Theorem 3.6 in [7].

Theorem 4.4 Let 1 ≤ q ≤ ∞, α > 0, β ∈ R, α + β > 0, and let Q =
(Q j (·, ϕ j , ϕ̃ j )) j∈Z+ , where (ϕ j ) j∈Z+ and (ϕ̃ j ) j∈Z+ be such that ϕ̃ j ∈ D′(T) and
ϕ j ∈ T 1

j for each j ∈ Z+. Suppose conditions (2.1), (2.2), and (2.3) are satisfied with
parameters N ≥ 0 and s > max(α + β, α). Assume also that

(i) min(α + β, α) > N + 1/q ′ or
(ii) N = 0 and sup j∈Z+ ‖ϕ̃ j‖ Ãq′, j (T) < ∞.

Then a function f belongs to Aα,β
q (Td) if and only if it can be represented by

the series (4.1) converging unconditionally in Aα̃,β
q (Td) with α̃ < α and satisfy-

ing
∑

j∈Zd+ 2q(α| j |1+β| j |∞)‖ηQ
j ( f )‖q

Aq (Td )
< ∞. Moreover, the norm ‖ f ‖

Aα,β
q (Td )

is

equivalent to the norm

‖ f ‖+
Aα,β
q (Td )

:=
( ∑

j∈Zd+

2q(α| j |1+β| j |∞)‖ηQ
j ( f )‖q

Aq (Td )

)1/q

.

5 Error Estimates

In this section, we obtain estimates for the error of approximation by quasi-
interpolation operators

PQ
n,T =

∑

j∈�(n,T )

η
Q
j , n ∈ N, T < 1,
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where

�(n, T ) = {k ∈ Z
d+ : |k|1 − T |k|∞ ≤ (1 − T )n}.

In what follows, we distinguish between approximation of a function f ∈ Aα,β
p (Td)

in the isotropic space Aγ
q (Td) (Theorem 5.1) and in the mixed space Aγ

q,mix(T
d)

(Theorem 5.3) since we use slightly different ingredients in the corresponding proofs.
Recall that

σp,q =
(
1

q
− 1

p

)

+
.

5.1 Error Estimates in A�
q(T

d)

Theorem 5.1 Let 1 ≤ p, q ≤ ∞, α > σp,q , β ∈ R, γ ≥ 0, γ − β < α − σp,q ,
and let Q = (Q j (·, ϕ j , ϕ̃ j )) j∈Z+ , where ϕ̃ j ∈ D′(T) and ϕ j ∈ T 1

j for each j ∈ Z+.
Suppose conditions (2.1), (2.2), and (2.3) are satisfied with parameters N ≥ 0 and
s > max(α + β, α). Assume also that

(i) min(α + β, α) > N + 1/p′ or
(ii) N = 0 and sup j∈Z+ ‖ϕ̃ j‖ Ãq′, j (T) < ∞.

Then, for all f ∈ Aα,β
p (Td) and n ∈ N, we have

‖ f − PQ
n,T f ‖Aγ

q (Td ) ≤ C
(n)‖ f ‖
Aα,β
p (Td )

, (5.1)

where


(n) =
⎧
⎨

⎩
2
−
(
α+β−γ−σp,q−((α−σp,q )T−(γ−β)) d−1

d−T

)
n
n(d−1)(1− 1

p )
,

γ−β
α−σp,q

≤ T < 1,

2−(α+β−γ−σp,q )n, T <
γ−β

α−σp,q
,

and the constant C does not depend on f and n.

Remark 5.2 (i) In the case p = q = 2 and Q = (I j ) j∈Z+ , where I j is the Lagrange
interpolation operator defined in (1.3), Theorem 5.1 was proved in [25], see also [7]
and [24]. For similar results in the case p = q = 2, γ = T = 0, and Q = (K j ) j∈Z+ ,
where K j is defined in (2.8), see [32]. (i i) Under conditions of Theorem 5.1 with
1 ≤ q ≤ 2 and γ = 0, by the Hausdorff-Young inequality, estimate (5.1) implies that

‖ f − PQ
n,T f ‖Lq′ (Td ) ≤ C
(n)‖ f ‖

Aα,β
p (Td )

. (5.2)

We can further extend this result considering a more general Pitt’s inequality [23, 52,
53]

‖ f ‖Lη
ξ (Td ) � ‖ f ‖Aγ

q (Td ), 1 ≤ q ≤ ξ ≤ ∞, (5.3)
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where ‖ f ‖Lη
ξ (Td ) = (

∫
Td | f (x)|ξ |x |ηdx)1/ξ under the suitable conditions on ξ and η.

In particular, using [22, (5.4)] we have

‖ f − PQ
n,T f ‖Lξ (Td ) ≤ C
(n)‖ f ‖

Aα,β
p (Td )

(5.4)

for ξ ≥ 2, max(q, q ′) ≤ ξ , and γ = d(1 − 1
ξ

− 1
q ). Taking ξ = q ′ we see that (5.4)

coincides with (5.2).
(i i i) It is clear that the case γ − β = α − σp,q is degenerate since then we have


(n) = 1 and hence the right-hand side of (5.1) does not tend to zero.

Proof of Theorem 5.1 First, we consider the case 1 < p ≤ q ≤ ∞.
Using the estimate ‖ · ‖�q ≤ ‖ · ‖�p , Proposition 4.1, Lemma 3.3, and Hölder’s

inequality, we obtain

‖ f − PQ
n,T f ‖Aγ

q (Td ) ≤ ‖ f − PQ
n,T f ‖Aγ

p(T
d )

=
∥∥∥∥

∑

j /∈�(n,T )

η
Q
j ( f )

∥∥∥∥
Aγ
p(T

d )

≤
∑

j /∈�(n,T )

‖ηQ
j ( f )‖Aγ

p(T
d )

≤
∑

j /∈�(n,T )

2γ | j |∞‖ηQ
j ( f )‖Ap(Td )

=
∑

j /∈�(n,T )

2−α| j |1−(β−γ )| j |∞2α| j |1+β| j |∞‖ηQ
j ( f )‖Ap(Td )

≤
( ∑

j /∈�(n,T )

2−p′(α| j |1+(β−γ )| j |∞)

)1/p′

×
( ∑

j /∈�(n,T )

2p(α| j |1+β| j |∞)‖ηQ
j ( f )‖p

Ap(Td )

)1/p

(5.5)

Thus, Proposition 4.1 implies

‖ f − PQ
n,T f ‖Aγ

q (Td ) ≤
( ∑

j /∈�(n,T )

2−p′(α| j |1+(β−γ )| j |∞)

)1/p′

‖ f ‖
Aα,β
p (Td )

.

(5.6)

Next, combining (5.6) and (3.5), we derive (5.1) in the case p > 1. The case p = 1 is
treated similarly using (3.6).

Now, we consider the case 1 ≤ q < p ≤ ∞. Since 1/p′ > 1/q ′, we can apply the
intermediate estimate in (5.5) with p = q given by

‖ f − PQ
n,T f ‖Aγ

q (Td ) ≤
∑

j /∈�(n,T )

2γ | j |∞‖ηQ
j ( f )‖Aq (Td ).
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Then, using Hölder’s inequality, Lemmas 3.5, and 4.2 (note that condition (i) implies
that min(α − 1/q + 1/p + β, α − 1/q + 1/p) > N + 1/q ′), we get

‖ f − PQ
n,T f ‖Aγ

q (Td ) ≤
⎛

⎝
∑

j /∈�(n,T )

2−p′((α−σp,q )| j |1+(β−γ )| j |∞)

⎞

⎠
1/p′

×
⎛

⎝
∑

j /∈�(n,T )

2p((α−σp,q )| j |1+β| j |∞)‖ηQ
j ( f )‖p

Aq (Td )

⎞

⎠
1/p

� 
(n)

⎛

⎜⎝
∑

j∈Zd+

2p(α| j |1+β| j |∞)‖δ j ( f )‖p
Ap(Td )

⎞

⎟⎠

1/p

� 
(n)‖ f ‖
Aα,β
p (Td )

, (5.7)

where in the last estimate we have taken into account Lemma 2.2. ��

5.2 Error Estimates in A�
q,mix(T

d)

Theorem 5.3 Let 1 ≤ p, q ≤ ∞, β ∈ R, γ > 0, γ − β + σp,q < α, γ + σp,q ≤ α,
and let Q = (Q j (·, ϕ j , ϕ̃ j )) j∈Z+ , where ϕ̃ j ∈ D′(T) and ϕ j ∈ T 1

j for each j ∈ Z+.
Suppose conditions (2.1), (2.2), and (2.3) are satisfied with parameters N ≥ 0 and
s > max(α + β, α). Assume also that

(i) min(α + β, α) > N + 1/p′ or
(ii) N = 0 and sup j∈Z+ ‖ϕ̃ j‖ Ãq′, j (T) < ∞.

Then, for all f ∈ Aα,β
p (Td) and n ∈ N, we have

‖ f − PQ
n,T f ‖Aγ

q,mix(T
d ) ≤ C
mix(n)‖ f ‖

Aα,β
p (Td )

, (5.8)

where


mix(n) =
⎧
⎨

⎩
2
−
(
α+β−γ−σp,q−((α−γ−σp,q )T+β) d−1

d−T

)
n
n(d−1)σp,q ,

−β
α−γ−σp,q

≤ T < 1,

2−(α+β−γ−σp,q )n, T <
−β

α−γ−σp,q
,

where the constant C does not depend on f and n.

Remark 5.4 (i) This result generalizes Theorem 5.1 in [7], which corresponds to the
case p = q = 2, T = β = 0, and Q = (I j ) j∈Z+ , where I j is defined in (1.3).

(i i) Using the inequality (see, e.g., [7, Lemma 5.7])

‖ f ‖Lr (Td ) � ‖ f ‖
A

1
2− 1

r
2,mix (Td )

, 2 < r < ∞,
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we easily obtain that under conditions of Theorem 5.3 with q = 2 and γ = 1
2 − 1

r ,
inequality (5.8) implies the following error estimate:

‖ f − PQ
n,T f ‖Lr (Td ) ≤ C
̃mix(n)‖ f ‖

Aα,β
p (Td )

, (5.9)

where


̃mix(n) =
⎧
⎨

⎩
2
−
(
α+β−σ̃p,r−((α−σ̃p,r )T+β) d−1

d−T

)
n
n(d−1)σp,2 , T ≥ −β

α−σ̃p,r
,

2−(α+β−σ̃p,r )n, T <
−β

α−σ̃p,r
,

and

σ̃p,r =
(
1

2
− 1

r

)
+
(
1

2
− 1

p

)

+
.

Comparing inequalities (5.2) and (5.9) with r = q ′ and 1 < q < 2, we see that (5.9)
provides better approximation order in the case 1 < q < 2 ≤ p ≤ ∞.

Proof of Theorem 5.3 First, we consider the case 1 ≤ p ≤ q ≤ ∞. Using Proposi-
tion 4.3 with

f j =
{

η
Q
j ( f ), j /∈ �(n, T ),

0, j ∈ �(n, T ),

and taking into account that Aγ
q,mix(T

d) = Aγ,0
q (Td) and f − PQ

n,T f = ∑
j∈Zd+ f j ,

we obtain

‖ f − PQ
n,T f ‖Aγ

q,mix(T
d )

≤ ‖ f − PQ
n,T f ‖Aγ

p,mix(T
d ) �

⎛

⎜⎝
∑

j∈Zd+

2pγ | j |1‖ f j‖p
Ap(Td )

⎞

⎟⎠

1/p

=
⎛

⎝
∑

j /∈�(n,T )

2−p(α−γ )| j |1−pβ| j |∞2p(α| j |1+β| j |∞)‖ηQ
j ( f )‖p

Ap(Td )

⎞

⎠
1/p

� max
j /∈�(n,T )

2−p(α−γ )| j |1−pβ| j |∞

⎛

⎜⎝
∑

j∈Zd+

2p(α| j |1+β| j |∞)‖ηQ
j ( f )‖p

Ap(Td )

⎞

⎟⎠

1/p

� 
mix(n)‖ f ‖
Aα,β
p (Td )

,

(5.10)

where the last inequality follows from Proposition 4.1.
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Second, let 1 ≤ q < p ≤ ∞. Similarly to the proof of (5.7), using estimates (5.10)
with p = q, Hölder’s inequality, and Lemmas 3.5 and 4.2, we have

‖ f −PQ
n,T f ‖Aγ

q,mix(T
d )

≤
⎛

⎝
∑

j /∈�(n,T )

2qγ | j |1‖ηQ
j ( f )‖q

Aq (Td )

⎞

⎠
1/q

≤
(( ∑

j /∈�(n,T )

2− qp
p−q ((α−γ−σp,q )| j |1+β| j |∞)

)1−q/p

×
( ∑

j /∈�(n,T )

2p((α−σp,q )| j |1+β| j |∞)‖ηQ
j ( f )‖p

Aq (Td )

)q/p)1/q

� 
mix(n)

( ∑

j∈Zd+

2p((α−σp,q )| j |1+β| j |∞)‖ηQ
j ( f )‖p

Aq (Td )

)1/p

� 
mix(n)

( ∑

j∈Zd+

2p(α| j |1+β| j |∞)‖δ j ( f )‖p
Ap(Td )

)1/p

� 
mix(n)‖ f ‖
Aα,β
p (Td )

,

which proves (5.8) for 1 ≤ q < p ≤ ∞ by Lemma 2.2. ��
It is not difficult to see that Theorems 5.1 and 5.3 can also be established for more

general operators

PQ
� =

∑

j∈�

η
Q
j ,

where� is some arbitrary set of indices inZd+. More precisely, we obtain the following
remarks.

Remark 5.5 Suppose that conditions of Theorem 5.1 hold with � instead of �(n, T ).
Then, for all f ∈ Aα,β

p (Td), we have

‖ f − PQ
� f ‖Aγ

q (Td ) ≤ C

(∑

j /∈�

2−p′((α−σp,q )| j |1+(β−γ )| j |∞)

)1/p′

‖ f ‖
Aα,β
p (Td )

,

where the constant C does not depend on f and �.

Remark 5.6 Suppose that conditions of Theorem 5.3 hold with � instead of �(n, T ).
Then, for all f ∈ Aα,β

p (Td), we have

‖ f − PQ
� f ‖Aγ

q,mix(T
d ) ≤ C
�‖ f ‖

Aα,β
p (Td )

,
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where


� =

⎧
⎪⎪⎨

⎪⎪⎩

max
j /∈�

2−p(α−γ )| j |1−pβ| j |∞, 1 ≤ p ≤ q ≤ ∞,

(∑

j /∈�

2− qp
p−q ((α−γ−σp,q )| j |1+β| j |∞)

) 1
q − 1

p

, 1 ≤ q < p ≤ ∞,

and the constant C does not depend on f and �.

5.3 Sharpness

Here, we show that inequalities (5.1) and (5.8) given in Theorems 5.1 and 5.3 are
sharp for specific cases of parameters. Those cases are of special interest since they
provide the best order of approximation and simultaneously are optimal with respect
to the computation time (cf. (1.2)).

Theorem 5.7 (i) Under conditions of Theorem 5.1, if 0 < T <
γ−β

α
, we have

sup
f ∈U Aα,β

p (Td )

‖ f − PQ
n,T f ‖Aγ

p(T
d ) � 2−(α+β−γ )n

(5.11)

for sufficiently large n.
(ii) Under conditions of Theorem 5.3, if 0 < T <

−β
α−γ

, we have

sup
f ∈U Aα,β

p (Td )

‖ f − PQ
n,T f ‖Aγ

p,mix(T
d ) � 2−(α+β−γ )n

for sufficiently large n.

Proof In view of Theorems 5.1 and 5.3, it is enough to consider only estimates from
below. We prove only (i). The assertion (i i) can be treated similarly. We follow the
idea of the proof of [7, Theorem 6.7] (see also [18]) taking into account the following
lemma on lower estimates for linear widths (see, e.g., [Theorem 1][50, 51]).

Lemma 5.8 Let Lm+1 be (m+1)-dimensional subspace in a Banach space X, and let
Bm+1(r):={ f ∈ Lm+1 : ‖ f ‖X ≤ r}. Then

λm(Bm+1(r), X):= inf
Am

sup
f ∈Bm+1(r)

‖ f − Am f ‖X ≥ r ,

where infimum is taken over all continuous linear operators Am in X with rank at
most m.

We use this lemma with X = Aγ
p(T

d) and L2n+1 = span {eikx1 : k = 0, . . . , 2n}.
Let also n0 ∈ N be such that rank PQ

n−n0,T
≤ 2n (we can always find such n0 in view
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of (1.2)). For any f ∈ L2n+1, we have

‖ f ‖
Aα,β
p (Td )

=
⎛

⎝
n∑

k1=0

2p(α+β)k1‖δk1,0,...,0( f )‖p
Ap(Td )

⎞

⎠
1/p

≤ max
k1∈[0,n] 2

(α+β−γ )k1

⎛

⎝
n∑

k1=0

2pγ k1‖δk1,0,...,0( f )‖p
Ap(Td )

⎞

⎠
1/p

≤ 2(α+β−γ )n‖ f ‖Aγ
p(T

d ).

Thus, by choosing r = 2−(α+β−γ )n , we get that B2n+1(r) ⊂ U Aα,β
p (Td). Using this

embedding and Lemma 5.8, we obtain

sup
f ∈U Aα,β

p (Td )

‖ f − PQ
n−n0,T

f ‖Aγ
p(T

d ) ≥ λ2n (B2n+1(r), A
γ
p(T

d)) ≥ 2−(α+β−γ )n,

which implies (5.11). ��

Remark 5.9 Note that the sharpness of Theorem 5.1 under certain natural restrictions
on distributions ϕ̃ j in the case T = 0, β = γ = 0, and p = 2 ≤ q ≤ ∞ follows from
the proof of [32, Theorem 4]. For particular cases of the parameters (mainly for the
cases T = 0, p, q ∈ {1, 2}, p ≤ q, γ ∈ {0, 1}, β = 0), the sharpness of Theorem 5.1
can be also established using general estimates of linear widths (see, e.g., [7, 42]).

6 Effective Error Estimates

6.1 Energy-Norm Based Sparse Grids

Along with the general operators PQ
n,T , in [7] and [15] the authors studied quasi-

interpolation operators

PQ
�(ξ) =

∑

j∈�(ξ)

η
Q
j , ξ > 0,

with specific choice of the family Q, where

�(ξ) = {k ∈ Z
d+ : (α − σp,q − ε)|k|1 − (γ − β − ε)|k|∞ ≤ ξ}.

For the reader’s convenience, we reformulate Theorem 5.1 for PQ
�(ξ) noting that �(ξ)

corresponds to the set �(n, T ) with T = γ−β−ε
α−σp,q−ε

and n = ξ
α−σp,q−γ+β

.
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Corollary 6.1 Under conditions of Theorem 5.1, if 0 < ε < γ − β < α − σp,q , then,

for all f ∈ Aα,β
p (Td) and ξ ∈ N, we have

‖ f − PQ
�(ξ) f ‖Aγ

q (Td ) ≤ C2−ξ‖ f ‖
Aα,β
p (Td )

,

where the constant C does not depend on f and ξ . In particular, in the case p = q = 2
and γ = 0, for all f ∈ Hα,β(Td) and ξ ∈ N, we have

‖ f − PQ
�(ξ) f ‖L2(Td ) ≤ C2−ξ‖ f ‖Hα,β (Td ).

Proof The proof directly follows from Theorem 5.1 by taking T = γ−β−ε
α−σp,q−ε

. ��
Remark 6.2 (i) It follows from the proof of Theorem 5.1 that in the case p = 1, the
assertion of Corollary 6.1 remains true for ε = 0.

(i i) Corollary 6.1 extends Theorem 4.1 in [7], cf. [7, Remark 4.4], which corre-
sponds to the case p = q = 2 and Q = (I j ) j∈Z+ , where I j is defined in (2.5).

6.2 Smolyak Grids

In some special cases of parameters in Theorems 5.1 and 5.3, the Smolyak algorithm,
i.e., the operators PQ

n,T with T = 0, provides more effective error estimates with

respect to the number of frequencies than the operators PQ
n,T , 0 < T < 1, which

correspond to the energy norm based grids. In particular, applying Theorem 5.1 with
T = 0 and β = γ , we obtain the following corollary about approximation in the space
Aβ
q (Td).

Corollary 6.3 Under conditions of Theorem 5.1, for all f ∈ Aα,β
p (Td) and n ∈ N, we

have

‖ f − PQ
n,0 f ‖Aβ

q (Td )
≤ C2−(α−σp,q )nn(d−1)(1− 1

p )‖ f ‖
Aα,β
p (Td )

, (6.1)

where the constant C does not depend on f and n. In particular, if p = q = 2, we
have

‖ f − PQ
n,0 f ‖Hβ(Td ) ≤ C2−αnn

(d−1)
2 ‖ f ‖Hα,β (Td ).

Remark 6.4 (i) By the same arguments as in Remark 5.2(i i), we have that inequal-
ity (6.1) with 1 ≤ q ≤ 2 and β = 0 implies that

‖ f − PQ
n,0 f ‖Lq′ (Td ) ≤ C2−(α−σp,q )nn(d−1)(1− 1

p )‖ f ‖Aα
p,mix(T

d ).

In particular, if q = 1 and Q = (I j ) j∈Z+ , the above inequality generalizes [7, The-
orem 5.6] (the case p = 2) and the main results of [27] (the case p = ∞, which
corresponds to the Korobov space).
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(i i) It follows from (6.1) and [42, Corollary 4.3 and (1.1)] that in the cases p =
q = 1 and p = 1, q = 2 the Smolyak algorithm PQ

n,0 provides optimal in order
approximation among all continuous linear operator of finite rank.

In a similar way, applying Theorem 5.3 with T = β = 0, we get the following
result concerning approximation by PQ

n,0 f in the space Aγ
q,mix(T

d).

Corollary 6.5 Under the conditions of Theorem 5.3, for all f ∈ Aα
p,mix(T

d) and n ∈ N,
we have

‖ f − PQ
n,0 f ‖Aγ

q,mix(T
d ) ≤ C2−(α−γ−σp,q )nn(d−1)σp,q‖ f ‖Aα

p,mix(T
d ),

where the constant C does not depend on f and n. In particular, if p = q = 2, we
have

‖ f − PQ
n,0 f ‖Hγ

mix(T
d ) ≤ C2−(α−γ )n‖ f ‖Hα

mix(T
d ).
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