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Abstract
We show that bandlimited signals can be uniquely recovered (up to a constant global
phase factor) from Gabor transform magnitudes sampled at twice the Nyquist rate in
two frequency bins.
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1 Introduction

We consider the recovery of square-integrable signals f ∈ L2(R) from the magnitude
of their Gabor transforms

G f (x, ω) := 4
√
2

∫
R

f (t)e−π(t−x)2e−2π itω, (x, ω) ∈ R
2, (1)

also called the Gabor phase retrieval problem. Specifically, we are interested in ques-
tions related to the reconstruction of f from |G f | measured on lattices1 � ⊂ R

2,
which we refer to as sampled Gabor phase retrieval.

The first uniqueness result for sampled Gabor phase retrieval was presented in
[1] where it is shown that real-valued, bandlimited, square-integrable signals f with

1 A lattice � ⊂ R
2 is a discrete subset of the time–frequency plane that can be written as� = LRk , where

L ∈ R
2×k is a matrix with linearly independent columns and k ∈ {1, 2}.
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bandwidth B > 0 can be recovered (up to a constant global sign factor) from |G f |
sampled on 1

4BZ × {0}. Just 2 months later, the paper [2] appeared in which it is
revealed that the real-valuedness assumption from [1] can be dropped: specifically,
the bandlimited square-integrable signals f whose Fourier transform is in L4 can be
recovered (up to a constant global phase factor) from |G f | sampled on 1

4BZ × Z.
Another 2 months later, the paper [3] appeared, showing that the bandlimitedness
assumption cannot be dropped. This is achieved by constructing two square-integrable
functions that do not agree (up to a constant global phase factor) but whose Gabor
transform magnitudes agree on �, where � ⊂ R

2 is a general lattice in the time–
frequency plane.

Finally, we mention the recent preprint [4] in which results from [2] are extended
to show that all bandlimited square-integrable signals f can be recovered (up to a
constant global phase factor) from |G f | sampled on 1

4BZ×N. In this paper, we further
strengthen this result and prove that in fact bandlimited square-integrable signals f ,
with bandwidth B > 0, can be recovered (up to a constant global phase factor) from
|G f | sampled on 1

4BZ×{ω0, ω1}, where ω0 �= ω1. As 1
4B is exactly twice the Nyquist

rate, we therefore show that sampling at twice the Nyquist rate in two frequency bins
guarantees uniqueness in Gabor phase retrieval as advertised in the title. We point out
that a similar result was already known for the Cauchy wavelet transform [5]: more
precisely, sampling at twice the Nyquist rate at two scales guarantees uniqueness in
Cauchy wavelet phase retrieval.

Remark 1 The originalmotivation for this paper stems from a resemblance of the result
in [1] on Gabor sign retrieval with the work in [6] on finite-dimensional sign retrieval:
in the prior, it is shown that sampling at twice the Nyquist rate in a single frequency
bin guarantees uniqueness in Gabor sign retrieval while, in the latter, it is shown that
2n − 1 generic measurement vectors are necessary and sufficient for uniqueness in
finite-dimensional sign retrieval. As it is also known that on the order of 4n generic
measurement vectors are necessary and sufficient for uniqueness in finite-dimensional
phase retrieval [6, 7], it seems natural to askwhether sampling at four times theNyquist
rate in one frequency bin or at twice the Nyquist rate in two frequency bins would
guarantee uniqueness in Gabor phase retrieval. The former is clearly untrue as can be
seen from considering f , g ∈ PW2

B real-valued and

|G( f + ig)| = |G( f − ig)| on R × {0}.

The latter is shown to be true in this paper.

1.1 Notation

We denote the normalised Gaussian by φ(t) = 4
√
2 exp(−π t2), where t ∈ R. For

−∞ < a < b < ∞ and f ∈ L p(R), with p ∈ [1,∞), we write supp f ⊂ [a, b]
if f (t) = 0, for a.e. t /∈ [a, b]. Moreover, we define the families of translation and
modulation operators (Tx )x∈R : L p(R) → L p(R) and (Mω)ω∈R : L p(R) → L p(R)
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by

Tx f (t) := f (t − x), Mω f (t) := f (t)e2π itω.

We furthermore use the convention

F f (ξ) =
∫
R

f (t)e−2π itξ dt, ξ ∈ R,

for the Fourier transform of f ∈ L1(R)∪ L2(R) and note that the Fourier transform of
the normalised Gaussian is the normalised Gaussian itself, i.e. Fφ = φ. Additionally,
as is usual in the phase retrieval literature, we will introduce an equivalence relation
on the set of complex-valued functions via

f ∼ g : ⇐⇒ ∃α ∈ R : f = eig

and say that f and g agree up to global phase if f ∼ g. The space of polynomials
with complex argument and complex coefficients is denoted by C[z]. Similarly, the
subspace of degree n ∈ N polynomials in C[z] is denoted by Cn[z]. Finally, for an
entire function F : C → C, we denote its zero set by Z(F) ⊂ C and define a function
m F : C → N0 which assigns the multiplicity of z as a zero of F to every z ∈ C. Note
that we use the convention m F (z) = 0, for z /∈ Z(F).

1.2 Definitions and Basic Notions

We will work with the Paley–Wiener spaces of bandlimited functions

PWp
B := { f ∈ L p(R); supp(F f ) ⊂ [−B, B]}, p ∈ [1,∞],

where B > 0. With this definition, it is well known that PW1
B ⊂ PW2

B . It turns out to
be useful to consider the Bargmann transform of square-integrable signals f ∈ L2(R)

given by

B f (z) := 4
√
2

∫
R

f (t)e2π t z−π t2−π
2 z2 dt, z ∈ C.

One of the two main reasons for this is that the Bargmann transform and the Gabor
transform [as defined in Eq. (1)] are related via the formula [8, Proposition 3.4.1 on
p. 54]

G f (x,−ω) = eπ ixωB f (x + iω)e−π
2

(
x2+ω2

)
, (x, ω) ∈ R

2.

The other main reason is that the Bargmann transform of a square-integrable signal
is an entire function of finite order. More precisely, we define the order of an entire
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function F : C → C to be

ρ := lim sup
r→∞

log(log(sup|z|=r |F(z)|))
log r

and say that F is of finite order if ρ < ∞. For F = B f , with f ∈ L2(R), one can use
[8, Theorem 3.4.2 on p. 54] to show that ρ ≤ 2: we say that B f is of second-order.

2 Preliminaries

Our goal is to recover a bandlimited function f with bandwidth B from themagnitudes
of its Gabor transform |G f | sampled on the set 1

4BZ × {ω0, ω1}, where ω0 �= ω1. In
order to do this, we follow a three-step procedure.

(1) We note that |G f (·, ω)|2 is bandlimited, for all ω ∈ R, and use the Nyquist–
Shannon sampling theorem to recover |G f |2 on R × {ω0, ω1}.

(2) Relating this to the Bargmann transform of f shows that it suffices to analyse
the recovery of a second-order entire function from magnitude measurements on
two parallel lines. In this direction, we show that a second-order entire function is
either uniquely determined (up to global phase) by its magnitude on two parallel
lines or it has infinitely many evenly spaced zeroes.

(3) Finally, we make use of the bandlimitedness of f again and show that the
Bargmann transform of f can only have infinitely many evenly spaced zeroes
if f = 0.

Let us start with the realisation of item 1.We note that the following lemma already
follows from the considerations in [4]. A considerably simpler proof based on a
different convention for the Paley–Wiener spaces is given here.

Lemma 1 Let B > 0, ω ∈ R and f ∈ PW2
B. Then, x �→ |G f (x, ω)|2 ∈ PW2

2B.

Proof Wehave x �→ e2π ixωG f (x, ω) ∈ PW2
B since it is the (inverse) Fourier transform

of F f · Tω φ ∈ L2(R) which satisfies supp(F f · Tω φ) ⊂ [−B, B] [8, Eq. (3.5) on
p. 39]. Therefore, x �→ |G f (x, ω)|2 ∈ L1(R) and applying the Fourier convolution
theorem to

x �→ |G f (x, ω)|2 = G f (x, ω)G f (x, ω)

shows that x �→ |G f (x, ω)|2 ∈ PW1
2B ⊂ PW2

2B . ��
Next, wemove on to item 2 of our three-step procedure: the analysis of the recovery

of a second-order entire function frommagnitude measurements on two parallel lines.
Interestingly, it can be shown that it is impossible to reconstruct a finite order entire
function (up to global phase) from magnitude information on two parallel lines [9].
It is therefore also impossible to recover a square-integrable signal from Gabor phase
retrieval measurements on two parallel lines; a fact which has been used to construct
the counterexamples to Gabor phase retrieval in [3]. We are not considering general
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square-integrable signals here however and the bandlimitedness assumption turns out
to be sufficient to exclude counterexamples.

Let us start by realising that fixing the magnitude of an entire function on two
parallel lines enforces a periodicity in its zeroes. More precisely, we show that, if two
entire functions F and G have magnitudes that agree on R∪ (R+ iτ), then m F − mG

is (2iτ)-periodic.

Lemma 2 Let τ > 0 and let F, G ∈ C → C be two entire functions such that
|F | = |G| on R ∪ (R + iτ). Then,

m F (z + 2iτ) − mG(z + 2iτ) = m F (z) − mG(z), z ∈ C.

Proof Let z ∈ C denote an arbitrary complex number. According to [10, Proposition
1 on p. 261], |F | = |G| on R implies that

F(z)F(z) = G(z)G(z).

Therefore, after looking at the zeroes of the above equation exclusively, we have

m F (z) + m F (z) = mG(z) + mG(z).

The same argument applied to Fτ (z) := F(z + iτ) and Gτ (z) := G(z + iτ) yields

m F (z + iτ) + m F (z + iτ) = mG(z + iτ) + mG(z + iτ)

such that we can conclude that

m F (z + 2iτ) − mG(z + 2iτ) = mG(z) − m F (z) = m F (z) − mG(z).

��
The periodicity in m F − mG directly implies that the zeroes (with multiplicities)

of F and G agree everywhere if they agree on the strip R + i(−τ, τ ]. Combining
this insight with the Hadamard factorisation theorem yields that a second-order entire
function is either uniquely determined (up to global phase) by its magnitude on the
two parallel lines R∪ (R+ iτ) or that it has at least one zero in the strip R+ i(−τ, τ ].
Corollary 3 Let τ > 0 and let F, G ∈ C → C be two entire functions of second-order
such that |F | = |G| on R∪ (R+ iτ). If m F − mG = 0 on R+ i(−τ, τ ], then F ∼ G.

Proof If m F − mG = 0 on R + i(−τ, τ ], then Lemma 2 implies m F − mG = 0
such that the zeroes (with multiplicity) of F and G agree. It therefore follows from
Hadamard’s factorisation theorem (cf. [11, Sect. 8.24 on p. 250]) that

F(z) = eQ(z)G(z), z ∈ C,
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where Q ∈ C2[z] is a quadratic polynomial. As |F | = |G| onR, we furthermore have

|F(x)| = e�Q(x) |G(x)| = e�Q(x) |F(x)| , x ∈ R,

which implies that exp(�Q) = 1 holds on R \ Z(F). As F is entire, Z(F) has no
accumulation point in R and is thus of measure zero. It follows that �Q = 0 almost
everywhere (and thus everywhere) on R. We can now write

Q(z) = i
(
α + λ1z + λ2z2

)
, z ∈ C,

for some α, λ1, λ2 ∈ R. The same argument as above shows that |F | = |G| on R+ iτ
implies �Q = 0 on R + iτ . Therefore, we find

�Q(x + iτ) = λ1τ + 2λ2τ x = 0, x ∈ R,

which proves that λ1 = λ2 = 0 and thus F = eiG. ��
Remark 2 Corollary 3 actually holds for general entire functions of finite order F, G ∈
C → C. The proof remains mostly the same: only the polynomial Q ∈ C[z] is of
arbitrary order instead of quadratic.

We can finally turn to item 3 of our three step procedure: using bandlimitedness
to show that f = 0 if B f has infinitely many evenly spaced zeroes. The inspiration
for this step actually comes from [2, 4], where a Müntz–Szász type result from [12]
is used in order to recover bandlimited f from |G f | on R × N. We rely on a slight
generalisation of that same Müntz–Szász type result for this paper.

Theorem 4 (Zalik’s theorem; cf. Theorem 4 in [12]) Let p ∈ [1,∞), let a, b ∈ R be
such that a < b, let r > 0 and let (cn)n∈N ∈ C be a sequence of distinct complex
numbers such that there exists a δ > 0 and an N0 ∈ N with

∣∣� [
cn − 1

2

]∣∣ ≥ δ
∣∣cn − 1

2

∣∣ , n ≥ N0.

Then,

{
t �→ e−r2(t−cn)2 ; n ∈ N

}

is complete in L p([a, b]) if and only if

∑
n∈N, cn �=0

|cn|−1

diverges.

Proof The theorem follows from the original proof in [12] with some small
modifications. ��
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Remark 3 Zalik’s original result is stated for p = 2 and real numbers (cn)n∈N. We
do not make use of the added generality in the integrability parameter p here but the
proof of our main result does require the sequence (cn)n∈N to be complex-valued.

3 TheMain Result

Weare now in a position to state and prove ourmain result: general bandlimited signals
can be recovered from their Gabor transformmagnitudes sampled at twice the Nyquist
rate in two frequency bins.

Theorem 5 (Main result) Let B > 0, let ω0, ω1 ∈ R be such that ω0 < ω1 and let
f , g ∈ PW2

B. Then, f ∼ g if (and only if) |G f | = |Gg| on 1
4BZ × {ω0, ω1}.

Proof Let us suppose that |G f | = |Gg| on 1
4BZ × {ω0, ω1} and fix j ∈ {0, 1}.

According to Lemma 1, the functions

x �→ |G f (x, ω j )|2, x �→ |Gg(x, ω j )|2

are in PW2
2B . By the Nyquist–Shannon sampling theorem, we therefore find that

∣∣G f (x, ω j )
∣∣2 = ∣∣Gg(x, ω j )

∣∣2 , x ∈ R. (2)

Next,we define the second-order entire functions F(z) := B f (z+iω0) andG(z) :=
Bg(z + iω0), for z ∈ C, which satisfy

|F(x)| = |G(x)| , |F(x + iτ)| = |G(x + iτ)| , x ∈ R,

for τ := ω1−ω0 > 0, according to Eq. (2). In the rest of this proof, wewill distinguish
between two cases:m F −mG = 0 onR× i(−τ, τ ] andm F −mG �= 0 onR× i(−τ, τ ].
In the first case, i.e. when m F − mG = 0 on R × i(−τ, τ ], Corollary 3 implies that
F ∼ G. Since the Bargmann transform is injective2, it follows that f ∼ g.

In the second case, we may without loss of generality assume that there exists a
complex number z0 ∈ R × (−τ, τ ] such that m F (z0) − mG(z0) > 0: indeed, there
exists a complex number at which m F − mG is non-zero and we can exchange F and
G if we have m F (z0) − mG(z0) < 0. By Lemma 2, we therefore find that

m F (z0 + 2ikτ) − mG(z0 + 2ikτ) = m F (z0) − mG(z0) > 0,

for k ∈ Z. It follows that (z0 + 2ikτ)k∈Z ∈ C forms a sequence of zeroes of F , i.e.

B f (z0 + i(ω0 + 2kτ)) = 0, k ∈ Z.

2 Actually, the range of the Bargmann transform can be equipped with an inner product and thereby turned
into a Hilbert space which known as the Fock space F2(C). The Bargmann transform then turns out to be
a unitary operator mapping L2(R) onto F2(C) [8, Theorem 3.4.3 on p. 56].
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The Bargmann transform satisfies the nice symmetry B f (−iz) = BF f (z), for z ∈ C

(c.f. [13, Eq. (3.10a) on p. 207]). Therefore,

0 = B f (z0 + i(ω0 + 2kτ)) = BF f (iz0 − ω0 − 2kτ)

= e
π
2 (iz0−ω0−2kτ)2

∫ B

−B
F f (ξ)e−π(ξ−iz0+ω0+2kτ)2 dξ

which implies that F f is orthogonal to ξ �→ e−π(ξ−iz0+ω0+2kτ)2 in L2([−B, B]), for
all k ∈ Z. Theorem 4 now implies that F f = 0 and thus f = 0. Hence, F = 0 and as
|F | = |G| the identity theorem of complex analysis can be used to show that G = 0
such that g = 0 = f . ��

Our main result may alternatively be stated without reference to the Gabor
transform. Indeed, it is equivalent to the following theorem.

Theorem 6 Let B > 0 and let ω0, ω1 ∈ R be such that ω0 �= ω1. If f , g ∈ PW2
B

satisfy

∣∣φ ∗ (M−ω j f )
∣∣ = ∣∣φ ∗ (M−ω j g)

∣∣ , j = 0, 1,

then f ∼ g.
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