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Abstract
Weestablish a family of uncertainty principles for finite linear combinations ofHermite
functions. More precisely, we give a geometric criterion on a subset S ⊂ R

d ensuring
that the L2-seminorm associated to S is equivalent to the full L2-norm on R

d when
restricted to the space of Hermite functions up to a given degree. We give precise
estimates how the equivalence constant depends on this degree and on geometric
parameters of S. From these estimates we deduce that the parabolic equation whose
generator is the harmonic oscillator is null-controllable from S. In all our results, the
set S may have sub-exponentially decaying density and, in particular, finite volume.
We also show that bounded sets are not efficient in this context.
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1 Introduction

We establish uncertainty relations for functions in the linear span EN of Hermite
functions up to degree N ∈ N. More precisely, we show that their restriction to a
properly chosen subset S ⊂ R

d has equivalent norm to the function on all of Rd

with explicitly spelled out constant. Such estimates bear various names depending on
the area of analysis where they appear. For instance, quantitative unique continuation
estimate, see, e.g., [15, 16], uncertainty principle, see, e.g., [23], or spectral inequality
(in the context of control theory), see, e.g., [14, 15]. It is also closely related to the
notion of vanishing order, see, e.g., [4, 14], and annihilating pairs in Fourier analysis,
see for instance [1, 5, 9].

Our estimate improves upon recent results from [1, 18] in several aspects simulta-
neously:

(i) The set S is allowed to become sparse near infinity and may even have finite
Lebesgue measure,

(ii) the gaps or holes in S are allowed to increase near infinity in a very general manner.

Although this means that S may be quite sparse, we show that there are still constants
d0, d1 > 0 and ζ ∈ (0, 1) such that for all N ∈ N we have

‖ f ‖2L2(Rd )
≤ d0e

d1N ζ ‖ f ‖2L2(S)
, f ∈ EN .

Since Ran 1(−∞,2N+d](−� + |x |2) = EN , this is a so-called spectral inequality for
the harmonic oscillator −� + |x |2. An important feature here is that the exponent is
sublinear in N . This allows for an application to null-controllability for the Hermite
semigroup, see Sect. 3. For general lower semibounded, self-adjoint operators H on
L2, such spectral inequalities take the form

‖ f ‖2L2 ≤ d0e
d1λζ ‖ f ‖2L2(S)

, f ∈ 1(−∞,λ](H),

with constants d0, d1 > 0 and ζ ∈ (0, 1) depending on the subset S of the domain
under consideration. If such an inequality holds, we call the set S efficient (for H ).
Note that if a set S is not efficient in this sense, this does a priori not imply that the
corresponding parabolic equation is not null-controllable from S.

While our results belong to the realm of harmonic analysis, they have a number
of applications in various areas of the theory of partial differential equations and
operators. In this paper, we focus on just one of the applications and present it in
Sect. 3, namely the above mentioned null-controllability for the parabolic harmonic
oscillator evolution. A wider range of applications in control theory will be presented
in a forthcoming project.

Two questions arising from earlier papers triggered our research:

Fast Decay of Hermite Functions

For the heat equation on R
d it has recently been established independently in [7]

and [26] that a sensor set S ensures null-controllability if and only if it is thick in
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Table 1 Geometric criteria for efficient sets

Operator Domain Spectral type Efficient set

−� Bounded Purely discrete Necessarily bounded, finite measure

−� + |x |2 R
d Purely discrete Necessarily unbounded, may have finite measure

−� R
d Purely continuous Necessarily unbounded, infinite measure

the sense of Definition 2.2. In [1] it was shown that thickness is sufficient for the
null-controllability of the Hermite semigroup. However, the quadratic potential of the
harmonic oscillator enforces fast decay of any eigenfunction. This begs the following
question: Is it possible to control the Hermite semigroup from a sensor set S that has
finite measure?

Reconciling Phenomena on Bounded and Unbounded Domains

On bounded domains any set of positive Lebesgue measure can serve as a sensor or
control set for observability or null-controllability, respectively, of the heat equation.
As mentioned above, for the heat equation on R

d this is no longer the case: It can be
controlled from a set S if and only if S is a thick set (thus excluding finite measure
sets).

Note that the generator of the heat equation, that is, the Laplacian with suitable
boundary conditions, has purely discrete spectrum if the domain is bounded while it
has purely continuous spectrum on R

d . Thus one wonders how much this spectral
dichotomy has to do with the different criteria for null-controllability.

Table 1 juxtaposes necessary geometric criteria for efficient sets. The second row
for the harmonic oscillator already contains some of the results we prove.

The above raises the following natural question: Can one develop a better under-
standing of both ‘extremal cases’ by studying interpolating models? The harmonic
oscillator may serve as such an interpolating model: On the one hand it is defined on
the whole of Rd but, on the other hand, it exhibits purely discrete spectrum. Thus, it
shares properties with both the Laplacian on bounded and unbounded domains. We
make this intuition more precise at the end of Sect. 7.1.

Outline

The rest of this paper is organized as follows: Our main results are given in Sect. 2,
where we also compare our results to previous ones. An application in control theory
for the Hermite semigroup is spelled out in Sect. 3. Thereafter, in Sect. 4, we state
our core result, Theorem 4.3. Section 5 collects technical ingredients from previous
papers for the proof of Theorem 4.3, which is given in Sect. 6. Theorems 2.1 and 2.7
are then deduced in Sect. 7.
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2 Main Results and Discussion

We denote by EN , N ∈ N, the space spanned by the Hermite functions of degree at
most N , that is linear combinations of functions

�α(x) =
d∏

j=1

φα j (x j ), α = (α1, . . . , αd) ∈ N
d
0 , x = (x1, . . . , xd) ∈ R

d ,

with |α| ≤ N . Here,

φk(t) = (−1)k√
2kk!√π

et
2/2 dk

dtk
e−t2 , k ∈ N0,

denotes the kth standard Hermite function. Moreover, for ρ > 0 and k ∈ (ρZ)d we
denote by 
ρ(k) = k + (−ρ/2, ρ/2)d the cube with sides of length ρ centered at k.
A particular case of our general result reads as follows.

Theorem 2.1 Let S ⊂ R
d be measurable satisfying

|S ∩ 
ρ(k)|
|
ρ(k)| ≥ γ 1+|k|β for all k ∈ (ρZ)d (2.1)

with some fixed β ∈ [0, 1), ρ > 0, and γ ∈ (0, 1).
Then, there is a universal constant K ≥ 1 such that for every N ∈ N we have

‖ f ‖2L2(S)
≥ 3

( γ

Kd

)Kd5/2+β (1+ρ)2N (1+β)/2

‖ f ‖2L2(Rd )
for all f ∈ EN . (2.2)

For S to be an efficient set, we need that the exponent of N is smaller than one. The
latter is obviously satisfied with the hypothesis β < 1. However, our more general
result in Sect. 4 shows that (2.2) holds for all β ≥ 0.

The case β = 0 in (2.1) corresponds essentially to so-called thick sets:

Definition 2.2 (Thick set) Let γ ∈ (0, 1] and ρ > 0. A measurable set S ⊂ R
d is

called (γ, ρ)-thick if |S ∩ 
ρ(x)| ≥ γ |
ρ(x)| for all x ∈ R
d .

If S is a thick set, an uncertainty principle for Hermite functions was established in
[1, Theorem 2.1 (iii)]. Hence, our Theorem 2.1 covers and extends this result.

However, [1, Theorem 2.1 (ii)] also considers sets S that are not thick, but satisfy

lim inf
R→∞

|S ∩ B(0, R)|
|B(0, R)| > 0. (2.3)

In this case [1] obtains an uncertainty relation with exponent linear in N , which is
not enough for control theory. By contrast, our result with β ∈ (0, 1) gives a class of
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efficient sets S satisfying

lim inf
R→∞

|S ∩ B(0, R)|
|B(0, R)| = 0. (2.4)

In order to demonstrate this, we give an easy example.

Example 2.3 Let β, γ ∈ (0, 1), ρ = 1, and set

S =
⋃

k∈Zd


rk (k) with rk = 1

2
γ (1+|k|β)/d .

Then, S satisfies

|S ∩ 
ρ(k)|
|
ρ(k)| ≥ γ 1+|k|β for all k ∈ Z

d ,

so that the hypotheses of Theorem 2.1 are satisfied, and we obtain

‖ f ‖2L2(S)
≥ 3

( γ

Kd

)4Kd7/2N (1+β)/2

‖ f ‖2L2(Rd )
for all f ∈ EN .

Note that (1 + β)/2 < 1, while on the other hand, the set S has finite measure since
γ ∈ (0, 1), so that (2.4) holds.

Remark 2.4 In a recent parallel development, null-controllability of the (time depen-
dent) Schrödinger equation with quadratic potential has been studied in [11] and [17].
To the best of our knowledge, our Theorem 2.1 is the first result that treats efficient
sets for the harmonic oscillator from which the corresponding Schrödinger equation
is not null-controllable. Indeed, in [17, Theorem 2.2] it has been shown that condition
(2.3) is equivalent to the exact null-controllability of the Schrödinger equation with
quadratic potential in dimension d = 1. A similar condition is necessary in dimension
d ≥ 2, see [17, Theorem 2.4].

We have already given an example of an efficient set for the harmonic oscillator
with finite measure. In view of Table 1, we now show that a bounded set can not be
an efficient set for the harmonic oscillator; see also [20, Section 4.2.3]. For simplicity,
we here only consider the one-dimensional case. Note however, that this does not yet
prove that null-controllability of the Hermite semigroup is impossible from a bounded
control set.

Example 2.5 LetM > 0 and S = [−M, M]. Assume that for all N ∈ N the uncertainty
relation

‖ f ‖2L2(R)
≤ CeC

′h(N )‖ f ‖2L2(S)
, f ∈ EN , (2.5)

holds with some non-negative function h and constants C,C ′ > 0 independent from
N .
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Consider fN (x) = xN e−|x |2/2. Then fN ∈ EN and it is easy to calculate that

‖ fN‖2L2(R)
= 

(
N + 1

2

)
and ‖ fN‖2L2(S)

≤ √
πM2N ,

where  denotes the Gamma function. Plugging these into (2.5), we derive


(
N + 1

2

)
≤ √

πCeC
′h(N )+2N logM , N ∈ N.

Using Stirling’s formula for , this can only hold if h(N ) ≥ N log N for large N and,
in particular, h can not be of the form h(N ) = Nβ with β ≤ 1. This also shows that
[1, Theorem 2.1 (i)] is best possible in this situation.

Remark 2.6 In dimension d ≥ 2, a similar argument with the function fN (x) =
xNj e

−|x |2/2, j ∈ {1, . . . , d}, shows that a set can not be efficient if it has bounded
intersection with any hyperplane.

In [18], the authors studied the case where the density of the set S is considered
not with respect to a fixed scale ρ, but rather a variable one ρ = ρ(x), which is even
allowed to grow sublinearly. Our technique allows to recover this result, while getting
rid of some technical assumptions on ρ(x). More importantly, we cover again cases
where the density of S decays at infinity. In order to put the corresponding result into
the context of [18, Theorem 2.1], we slightly change the geometry from cubes to balls.

Theorem 2.7 Let ρ : Rd → (0,∞) be any function that satisfies

ρ(x) ≤ R(1 + |x |2) 1−ε
2 for all x ∈ R

d

with R > 0 and ε ∈ (0, 1]. Suppose that S ⊂ R
d is a measurable set with

|S ∩ B(x, ρ(x))|
|B(x, ρ(x))| ≥ γ 1+|x |α for all x ∈ R

d

for some fixed α ∈ [0, ε) and γ ∈ (0, 1).
Then, there is a universal constant K ≥ 1 such that for all N ∈ N we have

‖ f ‖2L2(S)
≥ 3

( γ

Kd

)K 1+αd(11+3α)/2(1+R)2N1− ε−α
2

‖ f ‖2L2(Rd )
, f ∈ EN .

The previous theorem extends the main result of [18] in the following sense: We do
not assume that ρ is 1

2 -Lipschitz and we allow a certain subexponential decay of the
density of the set S. In addition, our ρ does not need to be bounded away from zero.
Note also that [18] studies the case where ρ is merely continuous, but only for certain
choices of γ and R. This case is also covered by our result. Moreover, the constant in
Theorem 2.7 is explicit in all parameters.

Both our Theorems 2.1 and 2.7 are particular cases of a more general result, The-
orem 4.3. How to derive these two theorems from the general result is discussed in
Sect. 7.
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3 Application to Null-Controllability

In this section we show how to derive null-controllability of the parabolic evolution
driven by the harmonic oscillator. The shortest route to arrive at this claim is to spell
out a criterion for observability that we take from [21]. It was inspired by previous
similar results, see, e.g., [2, 24].

Theorem 3.1 ([21, Theorem 2.8]) Let H be a non-negative, self-adjoint operator on
L2(Rd), and let S ⊂ R

d be measurable. Assume that there are d0 > 0, d1 ≥ 0 and
ζ ∈ (0, 1) such that for all λ > 0 and all ϕ ∈ L2(Rd) we have

‖1(−∞,λ](H)ϕ‖2 ≤ d0e
d1λζ ‖1(−∞,λ](H)ϕ‖2L2(S)

. (3.1)

Then, for all T > 0 and all ϕ ∈ L2(Rd) we have the observability estimate

∥∥e−HTϕ
∥∥2 ≤ C2

obs

∫ T

0

∥∥e−Htϕ
∥∥2
L2(S)

dt,

where Cobs satisfies

C2
obs = C1d0

T
KC2
1 exp

(
C3

(
d1
T ζ

) 1
1−ζ

)
with K1 = 2d0 + 1. (3.2)

Here, C1,C2,C3 > 0 are constants depending only on ζ .

By canonical arguments, see, e.g., [3, 5, 25, 27], the conclusion of the theorem
implies that for any initial value ϕ0 ∈ L2(Rd) and any positive time T we can find a
control function u ∈ L2(Rd × [0, T ]) such that the mild solution to

ϕ̇ + Hϕ = 1Su, ϕ(0) = ϕ0, (3.3)

satisfies ϕ(T ) ≡ 0. This is called null-controllability of the parabolic equation (3.3).
The above theorem also implies that in this case the so-called control cost, that is

CT := sup
‖ϕ0‖=1

min
{
‖u‖L2(Rd×[0,T ])) : e−HTϕ0 +

∫ T

0
e−(T−s)H1Su(τ ) dτ = 0

}
,

satisfies

CT ≤ Cobs

with Cobs as in (3.2).
We apply this now to the Harmonic oscillator H = −� + |x |2, where

Ran 1(−∞,λ](H) = EN for 2N + d ≤ λ < 2(N + 1) + d.

In this case, Theorems 2.1 and 2.7 imply the following result.
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Theorem 3.2 Let H = −� + |x |2 denote the harmonic oscillator and let S ⊂ R
d be

a measurable subset such that

(a) there exist ρ > 0, β ∈ [0, 1) and γ ∈ (0, 1) with

|S ∩ 
ρ(k)|
|
ρ(k)| ≥ γ 1+|k|β for all k ∈ (ρZ)d

or

(b) there exist R > 0, ε ∈ (0, 1], α ∈ [0, ε), γ ∈ (0, 1) and ρ : Rd → (0,∞) with

ρ(x) ≤ R(1 + |x |2) 1−ε
2 for all x ∈ R

d

and

|S ∩ B(x, ρ(x))|
|B(x, ρ(x))| ≥ γ 1+|x |α for all x ∈ R

d .

Then the parabolic equation (3.3) is null-controllable.

Example 3.3 Assume that S is as in (b) for some ε ∈ (0, 1] with α = ε/2. Then (3.1)
holds with ζ = 1 − ε/4, d0 = 1, and

d1 = K 2d7(1 + R)2 log
( γ

Kd

)
.

The upper bound (3.2) for the observability constant then becomes

C2
obs ≤ C13C2

T
exp

(C3K 8/εd28/ε(1 + R)8/ε

T 4/ε−1

)
.

In the particular situation ε = 1, this gives

C2
obs ≤ C13C2

T
exp

(C3K 8d28(1 + R)8

T 3

)
,

which agrees (up to constants) with the observability constant we get if S is as in (a)
with β = 1/2 [where the parameter R in (b) corresponds to the parameter ρ in (a)].

4 A Reduction Argument and the General Theorem

In the proofs an interplay between global and local properties of elements of EN plays
a crucial role. Hence, it is natural to decompose the unbounded domain R

d into a
collection of subsets. Throughout this section, let (Qk)k∈J be any finite or countably
infinite family of measurable subsets Qk ⊂ R

d and κ ≥ 1 such that

∣∣∣Rd \
⋃

k∈J
Qk

∣∣∣ = 0 and
∑

k∈J
1Qk (x) ≤ κ for all x ∈ R

d . (4.1)
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In other words, such a family of subsets gives an essential covering ofRd with κ being
an upper bound for the number of overlaps between the Qk .

In view of the strong localization of eigenfunctions induced by the quadratic poten-
tial of the harmonic oscillator, one expects that most of the mass of some f ∈ EN will
be concentrated in a ball centered at the origin. However, the radius of the ball will
depend on the degree N . This is spelled out in the following two lemmas. The first is
taken from [1] and formulates the exponential decay of Hermite functions in terms of
a weighted L2-estimate.

Lemma 4.1 ([1, Proposition 3.3]) For all f ∈ EN we have

‖e|·|2/64d f ‖2L2(Rd )
≤ 22(d+1)+N‖ f ‖2L2(Rd )

.

With this at hand it is possible to spell out a concentration statement, making the
above discussed intuition precise. The corresponding result is similar to one in [1].

Lemma 4.2 (cf. [1, Lemma 3.2]) Let N ∈ N. Then, with the constant C = 32d(1 +√
log κ) the subset Jc := {k ∈ J : Qk ∩ B(0,CN 1/2) = ∅} satisfies

∑

k∈J �
c

‖ f ‖2L2(Qk )
≤ 1

4
‖ f ‖2L2(Rd )

for all f ∈ EN .

Proof For f ∈ EN and s > 0, we have by Lemma 4.1 that

‖ f ‖2L2(Rd\B(0,s)) = ‖e−|·|2/64de|·|2/64d f ‖2L2(Rd\B(0,s))

≤ e−s2/32d22(d+1)+N‖ f ‖2L2(Rd )
.

From this we easily see that

‖ f ‖2L2(Rd\B(0,s)) ≤ 1

4κ
‖ f ‖2L2(Rd )

if s ≥ CN 1/2.

Moreover, if k ∈ J �
c , then Qk ∩ B(0,CN 1/2) = ∅. Hence,

∑

k∈J �
c

‖ f ‖2L2(Qk )
≤ κ‖ f ‖2L2(Rd\B(0,CN1/2))

≤ 1

4
‖ f ‖2L2(Rd )

.

��
The above then motivates the following general hypothesis on the covering.

Hypothesis (HN) Let (Qk)k∈J be finite or countably infinite giving an essential cov-
ering of Rd with overlap at most κ as in (4.1). For fixed N ∈ N, let

Jc = Jc(N ) = {k ∈ J : Qk ∩ B(0,CN 1/2) = ∅}

with C = 32d(1 + √
log κ). For each k ∈ Jc, we suppose that
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(i) Qk is non-empty, convex, open, and contained in a hyperrectangle with sides of
length lk = (l(1)k , . . . , l(d)

k ) ∈ (0,∞)d parallel to the coordinate axes;
(ii) there is a linear bijection �k : Rd → R

d with

|�k(Qk)|
(diam�k(Qk))d

≥ η

for some η > 0 independent of k ∈ Jc;
(iii) we have ‖lk‖1 := l(1)k + · · · + l(d)

k ≤ DN (1−ε)/2 for some ε ∈ (0, 1] and D > 0
independent of k ∈ Jc.

Our general result now reads as follows. Its proof is postponed to the end of Sect. 6.

Theorem 4.3 With fixed N ∈ N assume Hypothesis (HN). Moreover, let S ⊂ R
d be

measurable satisfying

|S ∩ Qk |
|Qk | ≥ γ Nα/2

for all k ∈ Jc (4.2)

with some fixed α ≥ 0 and γ ∈ (0, 1).
Then, every f ∈ EN satisfies

‖ f ‖2L2(S)
≥ 3

κ

( ηγ

24dτd

)7
(
800e

√
dD(D+1)+log(4κ1/2)

)
N1−(ε−α)/2

‖ f ‖2L2(Rd )
, (4.3)

where τd denotes the Lebesgue measure of the Euclidean unit ball in R
d .

Remark 4.4 (a) Examples for families (Qk)k∈J satisfying (i)–(iii) of Hypothesis (HN)
are discussed in Sect. 7.

(b) Let us emphasize that η and D in conditions (ii) and (iii), respectively, need to
be uniform in k ∈ Jc.

(c) The constants η and D introduced in conditions (ii) and (iii) above are formally
allowed to depend on N . However, in all applications we have in mind this will not be
the case. Consequently, the constant in (4.3) then depends on N only by the explicit
power law N 1− ε−α

2 . In this case the relevant exponent satisfies 1 − ε−α
2 < 1 if and

only if α < ε.

5 The Local Estimate and Good Covering Sets

On a bounded domain the following local estimate is sufficient to derive the type of
uncertainty relation we are aiming at. It goes back to Nazarov [22] and Kovrijkine
[12, 13]. It is implicitly contained in several recent works such as [8, Sect. 5], [26],
[1, Sect. 3.3.3], [18], and [6, Lemma 3.5]. We rely here on the formulation in the last
mentioned reference.
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Lemma 5.1 ( [6, Lemma 3.5]) Let N ∈ N, f ∈ EN , and let Q ⊂ R
d be a non-empty

bounded convex open set that is contained in a hyperrectangle with sides of length
l ∈ (0,∞)d parallel to coordinate axes.

Then, for every measurable set ω ⊂ Q and every linear bijection � : Rd → R
d

we have

‖ f ‖2L2(ω)
≥ 12

( |�(ω)|
24dτd(diam�(Q))d

)4 logM
log 2 +1‖ f ‖2L2(Q)

with

M :=
√|Q|

‖ f ‖L2(Q)

· sup
z∈Q+D4l

| f (z)|,

where D4l := B(0, 4l(1)) × . . . × B(0, 4l(d)) ⊂ C
d denotes the polydisc of radius 4l

centered at the origin.

Remark 5.2 It is worth to note that the quantity M in the above lemma automatically
satisfies M ≥ 1. Moreover, the bijection � can be chosen to optimize the right-hand
side of

|�(ω)|
(diam�(Q))d

= |ω|
|Q| · |�(Q)|

(diam�(Q))d
, (5.1)

cf. [6, Remark 3.6] and also Sect. 7.
The proof of [6, Lemma 3.5] also shows that

|�(Q)| ≤ dτd(diam�(Q))d .

In particular, the parameter η in condition (ii) of the covering always satisfies the upper
bound η ≤ dτd .

Throughout the remainder of this section, for fixed N ∈ N we assume Hypothe-
sis (HN). Given a non-zero f ∈ EN , let

Mk :=
√|Qk |

‖ f ‖L2(Qk )

· sup
z∈Qk+D4lk

| f (z)| (5.2)

denote the normalized supremum from the local estimate in Lemma 5.1 corresponding
to Qk . We do not know how to guarantee an upper bound on Mk for all k, but for
‘sufficiently many’ k. In order to make this precise, we first recall the Bernstein-type
inequalities for functions in EN first established in [1, Proposition 4.3 (ii)] and later
reproduced in a slightly different form in [6, Proposition B.1].

Lemma 5.3 ([6, Proposition B.1]) Given δ > 0, every function f ∈ EN satisfies

∑

|α|=m

1

α! ‖∂
α f ‖2L2(Rd )

≤ CB(m, N )

m! ‖ f ‖2L2(Rd )
for all m ∈ N0



11 Page 12 of 19 Journal of Fourier Analysis and Applications (2023) 29 :11

with

CB(m, N ) = (2δ)2mee/δ
2
(m!)2e2

√
2N+d/δ.

The parameter δ > 0 will be chosen appropriately depending on N later on, see (6.5).
We use the by now well-established approach of localizing the Bernstein-type

inequality on so-called good Qk , which is a modification of ideas introduced byKovri-
jkine [12, 13] and used in many works thereafter. We rely on the form presented in [6,
Sect. 3.3]:

We say that Qk for k ∈ J is good with respect to f ∈ EN if

∑

|α|=m

1

α! ‖∂
α f ‖2L2(Qk )

≤ 2m+1κ
CB(m, N )

m! ‖ f ‖2L2(Qk )
for all m ∈ N,

and we call Qk bad otherwise. It is then not difficult to show that

∑

k : Qk bad

‖ f ‖2L2(Qk )
≤ 1

2
‖ f ‖2L2(Rd )

, (5.3)

see [6, Sect. 3.3]; in particular, good Qk exist. Moreover, for each such bounded Qk

there is a point xk ∈ Qk with

|∂α f (xk)| ≤ 2m+1(κCB(m, N ))1/2
‖ f ‖L2(Qk )√|Qk |

for allm ∈ N0 and all α ∈ N
d
0 with |α| = m, see [6, Eq. (3.9)]. Using Taylor expansion

around xk , we now extract from the proof of [6, Proposition 3.1] the following result.

Lemma 5.4 Let Qk be good. Then, the quantity Mk in (5.2) satisfies

Mk ≤ 2κ1/2
∑

m∈N0

CB(m, N )1/2
(10‖lk‖1)m

m! ,

where ‖lk‖1 = l(1)k + · · · + l(d)
k .

6 Proof of Theorem 4.3

Throughout this section we assume for some fixed N Hypothesis (HN). We need to
find sufficiently many good elements Qk with k ∈ Jc. This is ensured by the following
lemma and its corollary.

Lemma 6.1 Given f ∈ L2(Rd), let J1,J2, . . . ⊂ J be such that

∑

k∈J �
j

‖ f ‖2L2(Qk )
≤ ν j‖ f ‖2L2(Rd )

with σ :=
∑

j∈N
ν j < 1. (6.1)
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Then,

‖ f ‖2L2(Rd )
≤ 1

1 − σ

∑

k∈⋂
j∈N J j

‖ f ‖2L2(Qk )
.

Proof Subadditivity and (6.1) imply

∑

k∈⋃
j∈N J �

j

‖ f ‖2L2(Qk )
≤

∑

j∈N

∑

k∈J �
c

‖ f ‖2L2(Qk )
≤

∑

j∈N
ν j‖ f ‖2L2(Rd )

.

Passing to complements gives

∑

k∈⋂
j∈N J j

‖ f ‖2L2(Qk )
=

∑

k∈J
‖ f ‖2L2(Qk )

−
∑

k∈⋃
j∈N J �

j

‖ f ‖2L2(Qk )
≥ (1 − σ)‖ f ‖2L2(Rd )

,

which proves the claim. ��
We apply a simple version of this lemma considering only two subsets of the index

set J , namely

Jg = {k : Qk good} and Jc = {k : Qk ∩ B(0,CN 1/2) = ∅}. (6.2)

In view of Lemma 4.2 and inequality (5.3), the hypotheses of Lemma 6.1 are satisfied.
This leads to the following corollary.

Corollary 6.2 Given f ∈ EN and Jc,Jg ⊂ J as in (6.2), we have

‖ f ‖2L2(Rd )
≤ 4

∑

k∈Jc∩Jg

‖ f ‖2L2(Qk )
.

In particular, we have Jc ∩ Jg = ∅, unless f = 0.

We are now in position to give the proof of our main result.

Proof of Theorem 4.3 In light of properties (i) and (ii) in Hypothesis (HN), the local
estimate in Lemma 5.1 and identity (5.1) yield

‖ f ‖2L2(Qk∩S)
≥ ak‖ f ‖2L2(Qk )

with ak = 12
( η|S ∩ Qk |
24dτd |Qk |

)4 logMk
log 2 +1

for k ∈ Jc, where Mk is as in (5.2). By Corollary 6.2 we then have

(
min

k∈Jc∩Jg

ak
)
‖ f ‖2L2(Rd )

≤ 4
∑

k∈Jc∩Jg

ak‖ f ‖2L2(Qk )
≤ 4κ‖ f ‖2L2(S)

. (6.3)
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Using assumption (4.2) on the set S, we have

ak ≥ 12
(ηγ Nα/2

24dτd

)4 logMk
log 2 +1

for all k ∈ Jc. (6.4)

Moreover, condition (iii) of Hypothesis (HN) gives ‖lk‖1 ≤ DN (1−ε)/2 for all k ∈ Jc.
Using Lemma 5.4 and the definition of CB(m, N ) from Lemma 5.3, we therefore get
for all k ∈ Jc ∩ Jg that

Mk ≤ 2κ1/2
∑

m∈N0

CB(m, N )1/2
(10DN (1−ε)/2)m

m!
= 2κ1/2ee/(2δ

2)e
√
2N+d/δ

∑

m∈N0

(20δDN (1−ε)/2)m,

where δ > 0 is still to be chosen. We do this as

δ = (
40DN (1−ε)/2)−1

, (6.5)

so that

Mk ≤ 4κ1/2 exp(800eD2N 1−ε + 40DN (1−ε)/2
√
2N + d)

≤ 4κ1/2 exp(800e
√
dD(D + 1)N 1−ε/2)

(6.6)

and, thus,

logMk ≤ log(4κ1/2) + 800e
√
dD(D + 1)N 1−ε/2

≤ (
800e

√
dD(D + 1) + log(4κ1/2)

)
N 1−ε/2

for all k ∈ Jc ∩ Jg . Combining the latter with (6.4), we arrive at

ak ≥ 12
( ηγ

24dτd

)7
(
800e

√
dD(D+1)+log(4κ1/2)

)
N1−(ε−α)/2

for all k ∈ Jc ∩ Jg,

where we have taken into account the fact that η/(24dτd) ≤ 1/24 < 1 by Remark 5.2
and that 1 + 4/ log 2 ≤ 7. In view of (6.3), this proves the claim. ��
Remark 6.3 (a) It is worth to note that one may get a slightly sharper estimate in (6.6)
by

Mk ≤ 4κ1/2 exp(800eD2N 1−ε + 40D
√
d + 2N 1−ε/2).

This might be interesting in situations with small D, cf. the discussion at the end of
Sect. 7.1.

(b) The only obstacle to extend the main result to an L p-setting is a corresponding
variant of the Bernstein inequality or a suitable replacement thereof.
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7 Proof of Theorems 2.1 and 2.7

In this section we discuss several examples satisfying Hypothesis (HN) from Sect. 4
and thereby deduce Theorems 2.1 and 2.7 from our general result Theorem 4.3. In
what follows, K ≥ 1 denotes a universal constant that can change from line to line.

7.1 Proof of Theorem 2.1

Our first example addresses the situation of Theorem 2.1 with Qk = 
ρ(k) = k +
(−ρ/2, ρ/2)d , ρ > 0. Here, we clearly have J = (ρZ)d and κ = 1, thus C =
32d. With �k in condition (ii) being the identity, we have η = 1/dd/2. Taking into
account the asymptotic formula τd ∼ (2πe/d)d/2/

√
dπ , we infer that 24dτd/η ≤ Kd .

Moreover, it is easy to see that lk = (ρ, . . . , ρ) satisfies ‖lk‖1 = dρ = DN 0 with
D := dρ. Hence, (
ρ(k))k∈J satisfies Hypothesis (HN) for every N ∈ N. Note here
that both D and η are independent of N .

It is also not hard to verify that

|k|
2

≤ inf
x∈
ρ(k)

|x | ≤ CN 1/2 for all k ∈ Jc ⊂ (ρZ)d .

Here the first inequality follows from the definition of
ρ(k)while the second follows
from the definition of Jc. Finally, using these estimate, we calculate

γ 1+|k|β ≥ (
γ 2β )1+(|k|/2)β ≥ (

γ 2β )1+CβNβ/2 ≥ (
γ 2(2C)β

)Nβ/2
.

The claim in Theorem 2.1 now follows from Theorem 4.3 with α = β, ε = 1, and γ

replaced by γ 2(2C)β . The simple estimate

2 · (2C)β · 7(800e√dD(D + 1) + log(4)
) ≤ Kd5/2+β(1 + ρ)2

then provides us with the particular constant in (2.2). ��

Comparison of the Harmonic Oscillator and the Pure Laplacian

Here we discuss in what sense one may regard the harmonic oscillator as an interpo-
lating model. To this end, consider Ht = −� + t |x |2 for t > 0 and let S ⊂ R

d be as
in Theorem 2.1. It is then easy to see that

H = H1 = t−1/2U−1HtU ,

where U : L2(Rd) → L2(Rd) is the unitary transformation defined by

(U f )(x) = td/8 f (t1/4x), x ∈ R
d .
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In particular,

U−1g ∈ Ran 1(−∞,t−1/2λ](H) for all g ∈ Ran 1(−∞,λ](Ht ).

Clearly, ‖g‖L2(Rd ) = ‖U−1g‖L2(Rd ) and ‖g‖L2(S) = ‖U−1g‖L2(t1/4S). Moreover, a
simple calculation shows that t1/4S satisfies the geometric hypotheses from Theo-
rem 2.1 with ρ replaced by t1/4ρ. Thus, using a slightly sharper estimate in the proof
of Theorem 4.3, see Remark 6.3, the proof of Theorem 2.1 applied to U−1g and t1/4S
yields

‖g‖2L2(S)
≥ 3

( γ

Kd

)Kdβ
(
1+d2ρ2t1/2+d3/2ρλ1/2

)
t−β/2λβ/2

‖g‖2L2(Rd )
.

Here we see that the exponent on the right-hand side explodes as t → 0 if β > 0.
On the other hand, if β = 0, then the limit as t → 0 reproduces the known result
[12, 13] for the Laplacian with thick sets. This makes the intuition spelled out in the
introduction that the harmonic oscillator may serve as an interpolating model more
precise.

7.2 Proof of Theorem 2.7

In contrast to the result we have verified in the preceding subsection, the proof of
Theorem 2.7 starts with the construction of the family (Qk)k∈J , as the family is not
given in the formulation of the theorem. To this end, we use the following version of
the well-known Besicovitch covering theorem.

Proposition 7.1 (Besicovitch) If A ⊂ R
d is a bounded set and B is a family of closed

balls such that each point in A is the center of some ball in B, then there are at most
countably many balls (Bk) ⊂ B such that

1A ≤
∑

k

1Bk
≤ Kd .

Proof The proof of Besicovitch’s theorem in [19, Theorem 2.7] establishes that the
statement of the proposition holds with Kd = 16dCd , where Cd is chosen such that
the following implication is true: If y1, . . . , yn ∈ S

d−1 are points with |yr − ys | ≥ 1
for all r = s, then n ≤ Cd .

Since for such points the spherical distance dSd−1(yr , ys) of yr and ys can be
bounded from below by

dSd−1(yr , ys) = arccos
(
1 − |yr − ys |2

2

)
≥ arccos(1 − 1/2) = π/3,

it is easy to see thatCd can be bounded by the dth power of a universal constant, which
proves the proposition. ��
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For given N ∈ N let A = B(0,CN 1/2), where C = 32d(1+√
log(Kd)). It is then

clear that the assumptions of Proposition 7.1 are fulfilled for A and the family of balls
B = {B(x, ρ(x)) : x ∈ A}. This shows that there is a subset I ⊂ N and a collection of
points (yk)k∈I ⊂ A such that the balls Qk = B(yk, ρ(yk)) satisfy |A\⋃

k∈I Qk | = 0.
Setting Q0 = R

d \⋃
k∈I Qk , the family (Qk)k∈J ,J = I∪{0}, is clearly an essential

covering of Rd satisfying

∑

k∈J
1Qk ≤ Kd =: κ.

Note that by construction we have I = {k ∈ J : Qk ∩ A = ∅} = Jc.
It remains to verify that (Qk)k∈J satisfies Hypothesis (HN): It is easy to see that

(i) is satisfied with lk = (2ρ(yk), . . . , 2ρ(yk)), and

|Qk |
(diam Qk)d

= τdρ(yk)d

(2ρ(yk))d
= τd

2d

shows that condition (ii) holds with η = τd/2d , where we have chosen �k as the
identity. In particular, (24dτd)/η = 2d24d ≤ 48d . Since yk ∈ A for all k ∈ Jc = I,
we have |yk | ≤ CN 1/2 and consequently

ρ(yk) ≤ 2RCN (1−ε)/2 for all k ∈ Jc.

Combining this with the identity for lk stated above, we obtain

‖lk‖1 ≤ 2dρ(yk) ≤ DN (1−ε)/2, D = 4dRC .

This proves condition (iii). Thus, Hypothesis (HN) is satisfied.
Using again |yk | ≤ CN 1/2 for k ∈ Jc, we see that the hypothesis on the set S in

Theorem 2.7 yields

|S ∩ Qk |
|Qk | ≥ γ 1+(CN1/2)α ≥

(
γ 1+Cα

)Nα/2

.

We apply Theorem 4.3 with γ replaced by γ 1+Cα
. After adapting the constant K

appropriately, we have κ ≤ Kd , 1 + Cα ≤ K 1+αd3α/2, and D ≤ Rd5/2K . Hence, it
is easy to see that

(1 + Cα) · 7(800e√dD(D + 1) + log(4κ1/2)
) ≤ K 1+αd(11+3α)/2(1 + R)2

and we thereby obtain the precise constant in (2.7). ��
Remark 7.2 Note that the Besicovitch covering theorem holds formore general convex
shapes than just balls, see, e.g., [10, Theorem 1.16], and therefore Theorem 2.7 and
its proof can be adapted accordingly.
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