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Abstract
We study the problem of recovering a signal x ∈ C

N from samples of its phaseless
periodic short-time Fourier transform (STFT): the magnitude of the Fourier transform
of the signal multiplied by a sliding window w ∈ C

W . We show that if the window w

is known, then a generic signal can be recovered, up to a global phase, from less than
4N phaseless STFT measurements. In the blind case, when the window is unknown,
we show that the signal and the window can be determined simultaneously, up to a
group of unavoidable ambiguities, from less than 4N + 2W measurements. In both
cases, our bounds are optimal, up to a constant smaller than two.

Keywords phase retrieval · short-time Fourier transform · ptychography

1 Introduction

The short-time Fourier transform (STFT) of a signal x ∈ C
N can be interpreted as the

Fourier transform of the signal multiplied by a sliding window w ∈ C
W

Ym,r (x, w) =
N−1∑

n=0

x[n]w[r L − n]e−2πιnm/N , (1.1)
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for 0 ≤ m ≤ N − 1 and 0 ≤ r ≤ R − 1, where L is the separation between
sections, R = N/ gcd(N , L) is the number of short time sections, and w[n] = 0 for
W ≤ n ≤ N − 1. We assume that all signals are periodic, and thus all indices should
be considered modulo N .

This paper studies the fundamental conditions allowing unique signal recovery—up
to unavoidable ambiguities that will be precisely defined later—from the magnitude of
its STFT |Ym,r (x, w)|, namely, from its phaseless STFT measurements. In particular,
we study two cases: (1) the window function w is known, and (2) the blind case
when w is unknown and needs to be recovered simultaneously with the signal x . We
prove near-optimal bounds for both cases. For the known-window case, we show that
no more than 4N measurements suffice to recover the 2N parameters of x ∈ C

N ,
substantially improving upon previous results [18, 45]. In the blind case, we prove
that merely∼ 4N+2W measurements determine the 2N+2W parameters that define
the signal and window. As far as we know, this is the first uniqueness result for the
blind setup.

Section 2 introduces and discusses the main results of this paper, which are proved
in Sect. 3. It should be emphasized that our results concern only the question of
uniqueness, and do not imply that practical algorithms can robustly recover the signal
with only O(N )measurements; the computational and stability properties of different
algorithms were studied in [2, 16, 18, 25, 36, 37, 45, 47]. Nevertheless, in Sect. 4, we
show numerical results suggesting that O(N ) might suffice for signal recovery, when
the window is known.
Motivation. The motivation of this paper is twofold. First, phaseless STFT mea-
surements naturally arise in ptychography: a computational method of microscopic
imaging, inwhich the specimen is scanned by a localized beamandFouriermagnitudes
of overlapping windows are recorded [23, 41, 46, 50, 56, 57]. The precise structure of
the window might be unknown a priori and thus standard algorithms in the field opti-
mize over the signal and the window simultaneously [34, 42, 53]. This paper illustrates
the fundamental conditions required for unique recovery in ptychography, regardless
of the specific algorithm used. Second, this paper is part of ongoing efforts to unveil
the mathematical and algebraic properties standing at the heart of the phase retrieval
problem—the problem of recovering a signal from phaseless measurements [7, 10,
12, 30, 51]. Next, we succinctly present some of the main results in the field.
The Phase Retrieval Problem. Phase retrieval is the problem of recovering a signal
x ∈ C

N from

y = |Ax |, (1.2)

for some sensing matrix A ∈ C
M×N , where the absolute value should be understood

entry-wise. In some cases, we may also assume prior knowledge on the signal, such as
sparsity or known support. The phaseless periodic STFT setup is a special case of (1.2),
where the matrix A represents samples of the STFT operator. The first mathematical
and statistical works on phase retrieval focused on a random “generic” matrix A, see
for example [3, 4, 19, 20, 29, 52]. These works were extended to the coded diffraction
model [19, 33], which resembles our model, but the deterministic sliding window is
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replaced by a set of random masks. Unfortunately, the measurements in practice are
not random, and thus this line of work is of theoretical rather than applicable interest.

In recent years, there has been a growing interest in deterministic phase retrieval
setups that better describe imaging applications. In particular, the non-periodic phase-
less STFT problem with a known window was studied in [13, 38, 43, 44]. This setup
differs from our case since out of range indices are set equal to zero, and there are
�(N + W − 1)/L� distinct short-time sections instead of R = N/ gcd(N , L) in the
periodic case. The authors of [38] proved unique recovery with∼ N samples, and also
proposed a convex program to recover the signal. The blind case was studied by two
of the authors in [13], who proved that the signal and the window can be recovered,
up to trivial ambiguities of dimension L , from ∼ 10(N + W ) measurements. In this
work, we show that in the periodic case, ∼ 4N and ∼ 4N + 2W measurements are
enough in the known-window case and blind case, respectively. The continuous STFT
setup was studied in [1, 28, 31, 32].

More phase retrieval applications whose fundamental conditions for unique recov-
ery were studied include ultra-short pulse characterization using frequency-resolved
optical gating (FROG) [14, 17, 54] or usingmulti-mode fibers [15, 55, 58], X-ray crys-
tallography (recovering a sparse signal from its Fouriermagnitude) [11, 26], recovering
a one-dimensional signal from its Fourier magnitude [8, 9, 24, 35], holographic phase
retrieval [5, 6], and vectorial phase retrieval [48, 49].

2 Main Results

We begin by stating our result for the known-window case.

Theorem 2.1 (Known window) For a generic known window vector w ∈ C
W , a

generic vector x ∈ C
N can be recovered, up to a global phase, from

2(2W − 1) +
⌈

(4α − 1)(N − (W + α))

α

⌉

phaseless periodic STFT measurements of step length L, where α = gcd(L, N ).

Remark 2.2 We say that a condition holds for generic signals x and windows w if
the set of signals and windows for which the condition does not hold is defined by
polynomial conditions. In particular, the set of pairs (x, w) ∈ C

N ×C
W for which the

conclusion of Theorem 2.1 holds is dense and its complement For a precise definition
of the term generic see Definition 3.1.

It is not hard to deduce that Theorem 2.1 implies that the number of required
measurements for signal recovery is smaller than

4N − N − W

α
− 2 < 4N ,

while the number of parameters to be recovered is 2N . If N is a prime number, then
α = 1 (independently of L) and the bound improves to∼ 3N +W . For a long window
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(a) The bound of Theorem 2.1
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(b) The bound of Theorem 2.4

Fig. 1 The bounds of Theorems 2.1 and 2.4 for N = 100 as a function of the window lengthW , for various
values of L

W ≈ N , the bound tends to 4N . Figure 1a presents the bound of Theorem 2.1 for
N = 100 as a function of W for various values of L . As can be seen, the curves are
bounded by 4N .

Remark 2.3 Given a vector y ∈ C
N , let T�y denote the cyclically shifted vector defined

by (T�y)[n] = y[n − �] with all indices taken modulo N . Likewise, define the mod-
ulated vector Mmy by setting (Mmy)[n] = ωmn y[n], where ω = e2πι/N . For a given
generic window vector w ∈ C

W , the vectors fm,r = MmTrLw form an N R-element
frame inC

N consisting of vectorswhose supports all have lengthW .With this notation,
the phaseless STFTmeasurement |Ym,r (x)| equals to the phaseless framemeasurement
|〈x, fm,r 〉|. Theorem 2.1 implies that a subset of the { fm,r } forms a highly structured
framewith less than 4N elements for which it is possible to recover a generic vector, up
to global phase, from its phaseless framemeasurements. By contrast, [4, Theorem 3.4]
implies that if M ≥ 2N then for a generic M-element frame it is possible to recover
a generic vector, up to a global phase, from its phaseless frame measurements. Also,
note that if M ≥ 4N − 4 then [22, Theorem 1.1] states that for a generic M-element
frame every vector can be recovered, up to a global phase, from its phaseless frame
measurements.

Our second result deals with the blind case where the window w is unknown, and
therefore there are 2N + 2W parameters to be recovered.

Theorem 2.4 (Unknown window) A generic pair (x, w) ∈ C
N × C

W can be recov-
ered, up to a group of trivial ambiguities of dimension α+2 defined in Proposition 3.4,
from at most

3(2W − 1) +
⌈

(4α − 1)(N − (W + 2α))

α

⌉

phaseless periodic STFT measurements of step length L, where α = gcd(L, N ).

Once again, the set of pairs (x, w) ∈ C
N×C

W forwhich the conclusionofTheorem2.1
holds is dense and its complement has measure 0.
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Theorem 2.4 shows that the number of measurements is bounded by

4N + 2W − N − W

α
− 3 < 4N + 2W ,

exceeding the number of parameters to be recovered by a constant smaller than 2. For
α = 1, the bound reads∼ 3N +3W : much smaller than 4N +2W forW � N , which
is the typical situation in ptychography—a chief motivation of this paper. However,
in contrast to the known-window case, in the blind case α has a big impact on the
dimensionality of the ambiguity group: the dimension of the ambiguity group is α+2,
substantially larger than the dimension one ambiguity in the known-window case.
Therefore, if possible, in this case it is preferable to choose a prime N . Figure 1b
presents the bound of Theorem 2.4 for N = 100 as a function of W .

The proofs of both theorems rest on extensions of technical results proved in [13].
The key point is that ∼ 4W (known window) or ∼ 6W (unknown window) phase-
less periodic STFT measurements determine the Fourier intensity functions of short
sequences of vectors in C

W that satisfy certain polynomial constraints. Using the
method of [24, Theorem 5.3], we show that the Fourier phase retrieval problem is
solvable for generic vectors satisfying these constraints. Knowledge of these short
sequences gives information about some of the entries in the vector x and in the blind
case fully determine the window. We then use [13, Proposition IV.2] to bound the
number of further phaseless STFT measurements needed to fully determine the signal
x .

3 Proofs

3.1 Preliminaries

3.1.1 Notation About the Discrete Fourier Transform

In this section we establish some notation about the discrete Fourier transform and
Fourier intensity function. For a reference, see [8, 24].

If y ∈ C
W is a vector, let ŷ(ω) = y[0] + y[1]ω + · · · y[W − 1]ωW−1 be the

polynomial on the unit circle ω = e−ιθ ∈ S1. The discrete Fourier transform vector ŷ
is obtained by evaluating this polynomial at the W -th roots of unity; i.e.,

ŷ =
(
ŷ(1), ŷ(η), . . . , ŷ(ηW−1)

)
,

where η = e−2πι/W .
By abuse of notation, we will sometimes view ω as a coordinate on the entire

complex plane and then we can speak about the roots of ŷ(ω). We typically assume
that our vectors satisfy y[0], y[W − 1] �= 0 so the polynomial ŷ(ω) will have W − 1
(not necessarily distinct) roots in C. If (β1, . . . , βW−1) are the roots of ŷ(ω), then we
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can write

ŷ(ω) = y[W − 1](ω − β1) · · · (ω − βW−1).

Given a vector y = (y[0], . . . , y[W − 1]), the Fourier intensity of y is Ay(ω) =
|ŷ(ω)|2. Expanding out and using the fact that ω = ω−1 on the circle S1, the Fourier
intensity function factors as [24]

Ay(ω) = ω1−W y[0]y[W − 1](ω − β1)

(
ω − 1

β1

)
. . . (ω − βW−1)

(
ω − 1

βW−1

)
.

(3.1)

(Note that for any complex number β, 1
β

= β

|β|2 , a fact we will use extensively.) If y
′

is another vector such that Ay = Ay′ , then the proof of [9, Theorem 3.1] implies

ŷ′(ω) = eιθ |y[W − 1]|
∏

i∈I
|βi |

(
ω − 1

β i

) ∏

i /∈I
(ω − βi ),

for some subset I ⊂ [1,W − 1].

3.1.2 Notation for the STFT Measurements

For our proofs, it is convenient to use the fact that x is periodic and that w[n] = 0 for
W ≤ n ≤ N − 1 to rewrite the STFT (1.1) as

Ym,r (x, w) = ηr Lm

N−1∑

n=0

ηn−mx[r L − n]w[n], (3.2)

where ηm := e2πιm/N , so η−m := e−2πιm/N and ηnm := e2πιmn/N . Let TrL x ◦ w,
where

TrL x = (x[r L], x[r L − 1], . . . , x[N − 1 − r L]) ∈ C
N

be the vector x shifted by r L , and ◦ denotes the entry-wise product. Thus, for fixed r ,
the measurements {Ym,r }N−1

m=0 determine N values of the Fourier transform of the
vector yr L = TrL x ◦ w, where the indices are taken modulo R. The phaseless STFT
measurements |Ym,r |N−1

m=0 give N values of the Fourier intensity function AyrL of the
vector yr L .

3.1.3 Terminology from Algebraic Geometry

Definition 3.1 A property P holds generically on C
M if the set Z ⊂ C

M where
property P does not hold is contained in a subset Y of C

M defined by a non-zero
polynomial. More generally, if X ⊂ C

M is a subset defined by polynomial equations,
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then a property P holds generically on X if the set Z ⊂ X where property P does not
hold is contained in a subset of X , which is defined by a polynomial which does not
vanish identically on X .

3.2 Proof of Theorem 2.1

Sincew and x are generic, we assume thatw[0], . . . , w[W−1] and x[0], . . . , x[N−1]
are all non-zero. By applying the action the group of ambiguities, S1, we can also
assume that x[0]w[0] is real and positive. Since w is fixed and known, in this section
we will use the notation Ym,r (x) instead of Ym,r (x, w).

Let x ′ be a solution to the system of quadratic equations {|Ym,r (x ′)|2 = |Ym,r (x)|2}.
We will use a recursive method to show that for generic x , there is a unique solution
x ′ with x ′[0]w[0] real and positive and that x ′ can be determined using at most

2(2W − 1) +
⌈
(4α − 1)

N − (W + α)

α

⌉
< 4N

phaseless STFTmeasurements. The proof consists of twomain stages, outlined below.

3.2.1 Step 1: Determining x[˛], x[˛− 1], . . . , x[−W + 1]with 4W − 2 Phaseless
STFT Measurements

Using 2W −1 phaseless measurements of the form |Ym,0| for 2W −1 different values
of m we can obtain the Fourier intensity function of the vector

y0 = T0x ◦ w = (x[0]w[0], x[−1]w[1], . . . , x[−W + 1]w[W − 1]).

Likewise, 2W−1 phaselessmeasurements of the form |Ym,r1 |, where r1L ≡ α mod R,
determine the Fourier intensity function of the vector

yα = Tαx ◦ w = (x[α]w[0], . . . , x[α − W + 1]w[W − 1]).

Note that because α = gcd(L, N ) and R = N/α, there is a unique r1 with 0 < r1 ≤
R − 1 such that r1L ≡ α mod R. The two vectors y0 and yα are not algebraically
independent as they satisfy the linear equations

w[ j + α]y0[ j] = w[ j]yα[ j + α], j = 0, . . . ,W − 1 − α. (3.3)

The proof of the following result is somewhat technical and is given in Appendix A.
Recall from Sect. 3.1.1 that if y ∈ C

W , Ay denotes the Fourier intensity function
|ŷ(ω)|2.
Proposition 3.2 A generic pair of vectors (y0, yα) satisfying equations (3.3) is deter-
mined, up to a global phase, from theFourier intensity functions of y0 and yα . Precisely,
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if (y′
0, y

′
α) is a pair of vectors satisfying equations (3.3) such that Ay0 = Ay′

0
and

Ayα = Ay′
α
, then (y′

0, y
′
α) = eιθ (y0, yα) for some eιθ ∈ S1.

We also need the following lemma.

Lemma 3.3 If all coordinates of w are non-zero, then for any pair (y0, yα) satisfying
equations (3.3) there exists a vector x such that (y0, yα) = (x ◦ w, Tαx ◦ w).

Proof Given y0, yα satisfying (3.3), define a vector x by setting

x[n] =

⎧
⎪⎨

⎪⎩

y0[n]/w[−n] if − W + 1 ≤ n ≤ 0,

yα[n]/w[α − n] if 0 < n ≤ α,

arbitrary else.

Then, it is easy to check that (y0, yα) = (x ◦ w, Tαx ◦ w). ��
Proposition 3.2 and Lemma 3.3 imply that for generic (x, w) the vectors x ◦ w and
Tα ◦ w are uniquely determined, up to a global phase, by 2(2W − 1) phaseless STFT
measurements of the form |Y0,m(x)| and |Yr1,m(x)|. In particular, if x ′ is another
vector such that |Ym,0(x ′)| = |Ym,r1(x

′)| for 2W − 1 distinct values of m, then (x ′ ◦
w, Tαx ′◦w) = eιθ (x◦w, Tαx◦w). By imposing the condition that x[0]w[0] is positive
real, we can eliminate the global phase ambiguity and conclude that (x ′ ◦ w, Tαx ′ ◦
w) = (x ◦ w, Tαx ◦ w). In other words, (x ′[0]w[0], . . . x ′[−W + 1]w[W − 1]) =
(x[0]w[0], . . . , x[W − 1]w[W − 1]) and (x ′[α]w[0], . . . x ′[α −W + 1]w[W − 1]) =
(x[α]w[0], . . . x[α − W + 1]w[W − 1]). If we assume that w[0], . . . , w[W − 1] are
non-zero, then it follows that x ′[n] = x[n] for −W + 1 ≤ n ≤ α. Therefore, we
conclude that the 2(2W − 1) phaseless STFT measurements determineW +α entries
of the signal x , namely, x[−W + 1], x[−W + 2], . . . x[0], . . . x[α].

3.2.2 Determining the Remaining N − (W + ˛) Entries of x using
(4˛− 1)

⌈
N−(W+˛)

˛

⌉
Phaseless STFT Measurements

Consider the vector

y2α = (x[2α]w[0], . . . , x[α + 1]w[α − 1], x[α]w[α], . . . , x[−W + 2α + 1]x[W − 1]).

By Step 1 we know the entries y2α[n] for n ∈ [α,W − 1] ⊂ [0,W − 1]. In particular,
all unknown entries of y2α lie in the subset S = [0, α − 1] of [0,W − 1]. Hence, by
[13, Proposition IV.3, Corollary IV.4], a generic vector y2α can be recovered from the
values of its Fourier intensity function Ay2α at 2|S − S| − 1 + 2|S| distinct roots of
unity. In our case, |S| = |S − S| = α. Hence, y2α can be recovered from the value
of Ay2α at 4α − 1 distinct roots of unity. Now, the phaseless STFT measurements
|Ym,r2 |, where r2L ≡ 2α mod N , are the values of the Fourier intensity function of
y2α . Hence, we can recover y2α from |Ym,r2 | for 4α − 1 values of m.

We can now complete the proof by induction. If x[−W +1], . . . , x[ jα] are known,
then we require 4α − 1 phaseless measurements of the form |Yr j ,m | to determine the
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next α entries x[ jα + 1], . . . x[( j + 1)α] of x . (Here, r j L ≡ jα mod R). It follows
that we can determine all entries of x from (at most)

2(2W − 1) +
⌈

(4α − 1)(N − (W + α))

α

⌉

phaseless STFT measurements.

3.3 Proof of Theorem 2.4

In this section, we prove that even if the window is not known, we can recover a
generic pair (x, w) ⊂ C

N × C
W from ∼ 4N + 2W measurements, up to the action

of the group G of trivial ambiguities. The strategy of our proof follows the proof of
Theorem 2.1. We begin by explicitly define the group of ambiguities.

3.3.1 The Group of Ambiguities

Let G be the group S1 × (C∗)α × ZR , where we identify ZR with the group of R-th
roots of unity. We define an action of G on C

N × C
W as follows:

• eιθ ∈ S1 acts by eιθ (x, w) = (eιθ x, eιθw).
• λ = (λ[0], . . . , λ[α − 1]) ∈ (C∗)α acts on x by

(
λ[0]x[0], λ[1]x[1], . . . , λ[N − 1]x[N − 1]) ,

and on w by

(
λ[0]−1w[0], λ[−1]−1w[1], . . . , λ[−W + 1]−1w[W − 1]

)
,

where j indicates the residue of j modulo α.
• If ω is an R-th root of unity, then ω acts by ω(x, w) = (x ′, w′), where x ′[n] =

ω�n/α�x[n] and w′[n] = ω�n/α�w[n]. Note that since R|N this action is well
defined even though our indices are always taken modulo N .

Proposition 3.4 If g ∈ G then for all m, r , we have |Ym,r (x, w)| = |Ym,r (g(x, w))|;
i.e., the phaseless STFT periodic STFT measurements are invariant under the action
of G.

Proof The action of S1 on C
N × C

W clearly preserves the magnitude of the STFT
measurements. The STFT measurements are measurements of Fourier transform of
the vectors y jα(x, w) = (x[ jα]w[0], . . . , x[ jα − W + 1]w[W − 1]), where j ∈
[0, R − 1] is defined by equation jα ≡ r L mod N . If λ = (λ0, . . . , λα−1), then
y jα(λ(x, w))[n] = λ[ jα−n]λ[−n]−1x[ jα−n]w[n]. Since jα−n ≡ −n mod α, we
see that y jα(λ(x, w))[n] = yrα(x, w)[n]. In otherwords, the action of (C∗)α preserves
the STFT measurements. Finally, if ωR = 1 then y jα(ω(x, w))[n] = ω j y jα(x, w).
Hence, the y jα(x, w) and y jα(ω(x, w)) have the same Fourier intensity functions. ��
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3.3.2 Strategy of the Proof of Theorem 2.4

Our goal is to prove that for generic (x, w), if |Ym,r (x ′, w′)| = |Ym,r (x, w)| then
(x ′, w′) is related to (x, w) by the action of the ambiguity group G. Moreover, we will
show that we can determine (x ′, w′) using at most

3(2W − 1) +
⌈

(4α − 1)(N − (W + 2α))

α

⌉

STFT measurements.
To begin, by applying the S1 × (C∗)α factor in G, we may assume that

w[0], . . . , w[α − 1] are known (for example, we can assume that they are all equal to
1) and that x[0] is positive real. Hence, our goal is to show that if (x ′, w′) is a solution
for |Ym,r (x ′, w′)| = |Ym,r (x, w)| with x ′[0] positive real and w′[0] . . . w′[α −1] = 1,
then (x ′, w′) is obtained from (x, w) by the action of the group of R-th roots of unity.

3.3.3 Recovery of y0, y˛, y−˛, up to a Phase, from 3(2W − 1)Measurements

Consider the three vectors

(1) y−α := (x[−α]w[0], . . . , x[−α − (W − 1)]w[W − 1]);
(2) y0 := (x[0]w[0], . . . , x[−(W − 1)]w[W − 1]]);
(3) yα := (x[α]w[0], . . . , x[0]w[α], . . . x[α − (W − 1)]w[W − 1]).
The phaseless 3(2W − 1) measurements of the form |Ym,0(x, w)|, |Ym,r1(x, w)|,
|Ym,r−1(x, w)|, for 2W − 1 distinct values of m, determine the Fourier intensity
functions Ay0 , Ayα , Ay−α , respectively. Here r1, r−1 ∈ [0, R − 1] are defined by the
condition that α ≡ r1L mod N and −α ≡ r−1L mod N .

The triple (y0, y−α, yα) satisfies the quadratic relations

y−α[�]yα[� + α] = y0[�]y0[� + α], � = 0, . . . ,W − 1 − α. (3.4)

By construction, themap� : C
N×C

W → C
W×C

W×C
W ,�(x, w) = (y0, y−α, yα),

has image contained in the algebraic subset of (CW )3 by equations (3.4). Let Z be the
closure of the image. The following proposition is proved in Appendix 1.

Proposition 3.5 For generic (z0, zα, z−α) ∈ Z ⊂ (CW )3, if (z′0, z′α, z′−α) ∈ Z have
the same Fourier intensity functions as (z0, zα, z−α), then there are angles θ0, θα such
that z′0 = eιθ0 z0, z′α = eι(θ0+θα)zα , and z′−α = eι(θ0−θα)z−α .

Applying the action of the subgroup S1 × C
∗ of the ambiguity group G we may

assume that x[0] is real and positive and that

w[0] = . . . = w[α − 1] = 1.

It then follows fromProposition3.5 that if (x ′, w′) is a pair such that |Ym,r (x ′, w′)| =
|Ym,r (x, w)| for 2W − 1 distinct values of m for r = 0, r1, r−1, then we may assume
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that

y0(x
′, w′) = y0(x, w),

yα(x ′, w′) = eιθα yα(x, w),

y−α(x ′, w′) = e−ιθα y−α(x, w).

and

w′[0] = w[0], . . . w′[α − 1] = w[α − 1].

It follows that x ′[−�] = x[−�] for � = 0, . . . , α−1. The equality yα(x ′, w′)[α+�] =
eιθα yα(x, w)[α + l] implies

w′[α + �] = eιθαw[α + �].

Since y0(x ′, w′)[α + �] = y0(x, w)[α + �], we conclude that

x ′[−α − �] = e−ιθα x[−α − �].

The equality yα(x ′, w′)[2α + �] = eιθα yα(x, w)[2α + �], then implies that

w′[2α + �] = e2ιθαw[2α + �].

Going back to y0(x ′, w′)[2α + �] and y0(x, w)[2α + �], we deduce that

x ′[−2α − �] = e−2ιθα x[−2α − �].

This procedure goes on. In the end, we conclude that

w′[n] = eι�n/α�θαw[n],

for n = 0, . . .W − 1 and

x ′[m] = eι�m/α�θα x[m],

for the W + 2α values m = α, α − 1, . . . , 0, . . . ,−(W − 1 + α).

3.3.4 Determining the Other Values of x[n]

We can now proceed recursively to compute x[n] for n /∈ [−W + 1− α, α]. Consider
the vector

y2α[x, w] = (x[2α]w[0], x[2α − 1]w[1], . . . x[α]w[α], . . . , x[2α − W + 1]w[W − 1]).

By our first step, we know the W − α entries of y2α up to the unknown common
phase e2ιθα . Precisely, y2α(x ′, w′)[n] = e2ιθα y2α(x, w)[n] for n ≥ α. In particular, we
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know the last W − α entries of the vector z2α = y2α(x ′, w′)/(x ′[α]w′[α]). (Note that
we assume that x[α]w[α] is non-zero.) Also, since |x[α]w[α]| is known, the STFT
measurements Yr2,m(x, w)/|x[α]w[α]| give values of the Fourier intensity function
Az2α of z2α . By [13, Corollary IV.3], the vector z2α can be determined from 4α − 1
phaseless measurements. It follows that for 0 ≤ � ≤ α − 1, x ′[2α − �]w′[�] =
e2ιθα x[2α − �]w[�]. Since we have assumed that w′[�] = w[�] = 1 for 0 ≤ �α − 1,
we deduce that x ′[α + �] = e2ιθα x[α + �] for 0 ≤ �α − 1.

We can now continue by recursion, using 4α − 1 phaseless STFT measurements at
each step, to determine that y jα(x ′, w′) = eι jθα y jα for j = 3, . . . , �(N−W−2α)/α�.
This in turn implies that x ′[n] = eι�n/α�θα x[n]. However, since our indexing is taken
modulo N , x[−n] = x[N − n] so that eι�−n/α�θα = eι�N−n/α�θα . Recalling that
N = Rαwesee that this condition is equivalent to the condition that Rθα ≡ 0 mod 2π ;
i.e., eιθα is an R-th root of unity. Hence, (x ′, w′) is equivalent to (x, w) under the action
of the ambiguity group G, as desired.

4 Numerical Experiments

Weconducted numerical experiments to examine the boundofTheorem2.1. To recover
the signal from samples of its phaseless STFT measurements, we used the relaxed-
reflect-reflect (RRR) algorithm, whose (t + 1)st iteration reads

yt+1 = yt + β(P1(2P2(y
t ) − yt ) − P2(y

t )), (4.1)

where P1 and P2 are projection operators, and β is a parameter; we set β = 1/2.
RRR is a general computational framework for constraint satisfaction problems, such
as phase retrieval, graph coloring, sudoku, and protein folding [26, 27]. In our setting,
the algorithm aims to estimate the full N 2 STFT entries (with phases) from a random
subset of its magnitudes. The full STFT uniquely determines the corresponding signal.
In particular, in our setting, the first projection, P1, is the orthogonal projector onto
the subspace of matrices which are the STFT of some signal. Namely,

P1 = AA†, (4.2)

where A is the STFT operator as a matrix, and A† is its pseudo-inverse. The second
projection, P2, uses the measured data and is acting by

(P2z)[i] =
{
sign(z[i])|y[i]|, i ∈ M,

z[i], i /∈ M,
(4.3)

where M denotes the set of STFT entries for which the magnitudes are known (the
measurements), |y[i]| is the i th STFT magnitude, and sign(z[i]) := z[i]

|z[i]| .
We use RRR since it is guaranteed to halt only when both constraints are satisfied

[39, Corollary 4]. Therefore, we expect (although not guaranteed) to find a point whose
phaseless STFT matches the measurements after enough RRR iterations. The number
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of iterations required to find such a point provides a measure of hardness [26]. In our
experiments, we stopped the algorithm when the ratio ||yt+1 − yt ||/||yt || dropped
below 10−8, or after a maximum of 104 iterations. We did not conduct experiments
for the blind case (Theorem 2.4) since, as far as know, there is no algorithm that is
guaranteed to find a feasible point.

In our experiments, we set N = 11 and collected K N STFTmagnitudes; the entries
were chosen uniformly at random for K = 2, 4, 6, 8.The entries of the real underlying
signal were drawn from a Gaussian distribution with mean zero and variance 1. Note
that since the signal is real, the number of parameters to be recovered is N , and not 2N
as in Theorem 2.1. The entries of the window were drawn from the same distribution.
For each K , we conducted 100 trials for each pair of (L,W ), where L = 1, . . . , 6
and W = 1, . . . , 11. We declared a successful trial if the relative error between the
estimated signal and the underlying signal (up to a sign) dropped below 10−4.

Figure 2 reports the success rate and the average number of RRR iterations per
K ,W , L . As expected, the success rate increases with K . For K = 2 (2N STFT
magnitudes), we can see that for L ≤ 5 and large enough W , the RRR usually does
not require many iterations, but it does not always find a solution. Nevertheless, the
success rate is not negligible. For K = 6 and K = 8, the success rate tends to 1 for
L ≤ 5. As can be seen, the true solution is found after a small number of iterations,
indicating that the problem is rather easy in this regime. Overall, these experiments
indicate that indeed a signal can be recovered from a subset of its phaseless STFT
magnitudes, and in some cases, quite easily.

5 Orbit Frame Phase Retrieval

The periodic STFT phase retrieval problem leads to a natural mathematical general-
ization which we refer to as phase retrieval for orbit frames. Let H be a compact
group acting on C

N . The orbit of a possibly unknown generating kernel u ∈ C
N is

the set {hu|h ∈ H}. An orbit frame is a matrix A ∈ C
M×N (M ≥ N ) of rank N

whose rows are samples of the vectors in hu. The phase retrieval problem for an orbit
frame is determining whether a vector x can be recovered, up to symmetries, from the
phaseless measurements |Ax | ∈ R

M≥0.
The definition of orbit frames is broad, and our main focus for future work is the

case where the group H is of the form G × T, where T is subgroup of S1 acting
on C

N with weights (0, 1 . . . , N − 1), and G is a finite group. In this model, our
phaseless frame measurements on a vector x are samples of the Fourier intensity
functions |̂D1x(ω)|2, . . . , |̂Dr x(ω)|, where D1, . . . Dr are diagonal matrices obtained
from the action of the group G on the kernel vector u, and D̂1x, . . . D̂r x are the
Fourier transforms of D1x, . . . Dr x . In particular, the periodic STFT model can be
thought of as a special case, where T = ZN is the group of N -th roots of unity,
H = ZN is the group of cyclic translations and the kernel u = w has support length
W . (When the kernel u is arbitrary, this is a Gabor frame; perfect phase retrieval
for full Gabor frames was studied in [18].) The diagonal matrices D1, . . . Dr are
diag(w), diag(TLw), . . . diag(TL(R−1)w), where TL is the translation operator shifting
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(c) Success rate for K = 4
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(d) Number of iterations for K = 4
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(e) Success rate for K = 6
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(g) Success rate for K = 8
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Fig. 2 The success rate (left column) and average number of iterations (right column) for recovering a
signal from its NK phaseless STFT measurements for K = 2, 4, 6, 8
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the entries ofw by L entries. The phaseless periodic STFTmeasurements are obtained
by sampling the functions |D̂ j x(ω)|2 at the N -th roots of unity.

The orbit frame phase retrieval problem has been previously studied by a number
of authors [18, 21, 40, 45] with the main focus being on constructing large frames,
typically of size M = O(N 2), which admit perfect reconstruction from phaseless
measurements. As in this paper, we wish to construct smaller frames, of size O(N ),
for which generic vectors can be recovered from phaseless measurements. Although
this problem is mathematically motivated, understanding the information-theoretic
limits of the general model has the potential to inspire physicists and engineers to
develop new measurement techniques.
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Appendix A: Proof of Proposition 3.2

Let Z ⊂ C
W × C

W be the linear subspace defined by equations (3.3). The subspace
Z is invariant under the action S1, which acts by simultaneous rotation of each vector.
Let H be the quotient by the S1 action of the open set in Z corresponding to pairs
(z0, zα) with z0[0], z0[W − 1], zα[0], zα[W − 1]

all non-zero. This implies that the roots ẑ0(ω) and ẑα(ω) are all non-zero.
Consider the incidence subvariety IH ⊂ H × H consisting of pairs of equivalence

classes
(
(z0, zα), (z′0, z′α)

)
, where z� and z′� have the same Fourier intensity func-

tion. Consider the projection to the first factor IH → H . Observe that for a given
pair (z0, zα) with both vectors non-zero there are at most (2W−1)2 pairs of the form
((z0, zα), (z′0, z′α)) in H . The reason is as follows. We know that for a given vector
z0 there are (at most) 2W−1 vectors z′0, j such than any vector z′0 with Az′0 = Az must

be of the form z′0 = eιθ0 z′0, j for some j . Likewise, there are (at most) 2W−1 vectors

z′α,k such that any vector z′α with Az′α = Azα must be of the form z′α = eιθα yα,k for
some k. However, if we require that the pair (z′0, z′α) lies in Z , then for a given choice
of angle θ0 and vector eιθ0 z′0, j , there can be at most one angle θα such that the pair

(eιθ0 z′0, j , eιθα z′1,k) satisfies the linear equations (3.3).
Note that IH contains the diagonal �H = {(z0, zα), (z0, zα)|(z0, zα) ∈ H}. The

above discussion shows that IH has at most (2W−1)2 possible components that can
surject onto H .We index the possible components as (IH ) j,k with 0 ≤ j, k ≤ 2W−1−1
with (IH )0,0 corresponding to the diagonal.

We will show that none of the components can have image all of H by explicitly
constructing pairs (z0, zα) such that for every component (IH ) j,k with ( j, k) �= (0, 0)
one of our pairs is not in (IH ) j,k , the image of that component. For our first pair, we
take z0 = (1, 1, . . . , 1) (vector of all ones) and

zα = (w[α]/w[0], w[α + 1]/w[1], . . . w[W − 1]/w[W − 1 − α], aW−α, . . . , aW−1),
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where the ak’s are chosen generically. For generic choice of vector w and
aW−α, . . . , aW−1, there will be exactly 2W−1 distinct vectors, up to a global phase,
with the same Fourier intensity function as zα . On the other hand, z0 has been chosen
so that the roots of its Fourier transform all lie on the unit circle, so any vector with
same Fourier intensity function as z0 is obtained from z0 by multiplying by a global
phase. The choice of zα implies that the only pair in the fiber of the map IH → H
lying over (z0, zα) is (z0, zα). (Recall that we have quotiented out by a global phase
ambiguity in our definition of H .) This implies that any component (IH ) j,k whose
image contains (z0, zα) must necessarily be of the form (IH ) j,0 for some j , possibly
non-zero. Here we use the natural notation that a component (IH ) j,0 consists of pairs
of the form

(
(z0, zα), (z′0, zα)

)
.

For our second vector we take zα = (1, . . . , 1) (all ones) and

z0 = (w[0]/w[α], w[1]/w[α + 1], . . . , w[W − 1 − α]/w[W − 1], bW−α, . . . , bW−1)

where the bk’s are chosen generically. The same reasoning as before implies that the
only possible components of IH containing the pair (z0, zα) must necessarily be of
the form (IH )0,k for some k, possibly non-zero.

Putting this together, we see that the only component of IH that contains both of
these test vectors is (IH )0,0. Therefore, no other component has image all of H . Hence,
for a generic vector (z0, zα) ∈ H , the only pair (z′0, z′α) ∈ H with the same Fourier
intensity functions as (z0, zα) is (z0, zα). This concludes the proof of Proposition 3.2.

Appendix B: Proof of Proposition 3.5

The proof of Proposition 3.5 is similar to the proof of Proposition 3.2 butmore intricate.
Again, let Z ⊂ (CW )3 be the closure of the image of C

N × C
W under the map

(x, w) �→ (z0(x, w), zα(x, w), z−α(x, w)).

Any triple in Z satisfies the equations (3.4). The group S1 × S1 acts on Z with the
following action:

(
eιθ0 , eιθα

) · (z0, zα, z−α) = (eιθ0 z0, e
ιθα zα, eι−θα z−α).

Let H be the quotient by S1×S1 of the open set in Z of triples for which z0[0], z0[W−
1], zα[0], zα[W − 1], z−α[0], z−α[W − 1] are all non-zero and at least one product
z0[n]z[n + α] is non-zero.

Let IH ⊂ H×H denote the real algebraic subset of pairs
(
(z0, zα, z−α), (z′0, z′α, z′−α)

)

such that Az j = Az′j for j = 0, α,−α. The same argument used in the proof of
Proposition 3.2 shows that the polynomial constraint given by (3.4) implies that
for any triple (z0, zα, z−α) ∈ H there are at most (2W−1)3 possible pairs of triples(
(z0, zα, z−α), (z′0, z′α, z′−α)

) ∈ IH . Thus, IH has at most (2W−1)3 components which
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can dominate H . We index them by (IH ) j,k,� with j, k, � ∈ [0, 2W−1] and the com-
ponent (IH )0,0,0 is the diagonal.

Again, we will show that the only component of IH that can surject onto H is
(IH )0,0,0.

Consider the triple (z0, zα, z−α), where

z−α[i] =

⎧
⎪⎨

⎪⎩

1/4 if i = 0,W − 1 − α,

1 if i = W − 1,

0 else,

zα[i] =
{
4 if i = 0, α,W − 1 − α,W − 1,

0 else.

z0[i] =
{
1 if i = 0, α,W − 1 − α,W − 1,

0 else.

This particular triple can be seen to be in the image of the map � by setting
w[0] = w[α] = w[W − 1 − α] = w[W − 1] = 1 and w[ j] = 0 otherwise, and
choosing the values of x[ j] accordingly.

The roots of the polynomials ẑ0(ω), ẑα(ω) both lie on the unit circle, while the roots
of ẑ−α(ω) = 1/4+1/4ωW−1−α +ωW−1 all lie strictly inside the unit circle. This can
be deduced by invoking Cauchy’s theorem: the roots of 1/4+1/4zW−1−α + zW−1 lie
strictly inside the unit circle since the unique positive root of the polynomial g(z) =
zW−1 − 1/4zW−1−α − 1/4 is between 0 and 1 since g(0) < 0 and g(1) > 0.

Now, if (z′0, z′α, z′−α) is a triple such that Az′� = Az� for � ∈ {0, α,−α}, then z′0, z′α
are obtained from z0, zα by multiplication by a global phase, because all of the roots
of ẑ0(ω), ẑα(ω) lie on the unit circle. On the other hand, since all of the of the roots
of ẑ−α(ω) are distinct and none lie on the unit circle, there are, up to a global phase,
2W−1 vectors z′−α . We will show that the triple (z′0, z′α, z′−α) is in H if and only if
z′−α is obtained from z−α by multiplication by a global phase. To see this, note that if
(β1, . . . , βW−1) are the roots of the polynomial 1/4 + 1/4ωW−1−α + ωW−1, then

ẑ′−α(ω) =
∏

n∈I
|βn|(ω − βi/|βi |2)

∏

n /∈I
(ω − βn),

for some subset I ⊂ [1,W − 1]. Since |βn| < 1 because (β1, . . . , βW−1) lie inside
the unit circle the constant term of ẑ′−α(ω) will be strictly greater than 1/4, making it
impossible for triple (z′0, z′α, z′−α) to satisfy the constraints of (3.4). This implies that
any component (IH ) j,k,� that contains the triple (z0, zα, z−α) in its image must be of
the form (IH ) j,k,0 for some j, k. Hence, any component of IH which dominates H
must be of the form (IH ) j,k,0.

Now consider the triple (z0, zα, z−α) with z−α = z0 = (1, . . . , 1) (all ones), and
zα = (c, 1, . . . , 1) with c > W −1. The polynomial zα(ω) = c+ω +ω2 . . .+ωW−1

has all roots outside the unit circle, since |ω + . . . + ωW−1| < W − 1 < c for any ω

inside the unit circle. If Az′α = Azα and (β1, . . . , βW−1) are the roots of ẑα(ω), then
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ẑ′α(ω) =
∏

�∈I
|β�|(ω − β�/|β�|2)

∏

�/∈I
(ω − β�),

for some subset I ⊂ [1,W − 1]. In particular, it follows that |z′α[W − 1]| > 1 since
|β�| > 1 for all � unless |I | = ∅. On the other hand, all roots of ẑ0(ω) and ẑ−α(ω)

lie on the unit circle, so if Az′0 = Az0 and Az′−α
= Az−α then z′0, z′α are obtained

from z0, zα by a global phase change and the magnitude of the entries are unchanged.
Hence, the triple (z′0, z′α, z′−α) cannot satisfy equations (3.4) unless (z′0, z′α, z′−α) is
obtained from (z0, zα, z−α) by a global phase. Thus, the only possible components of
IH which dominate H are of the form (IH ) j,0,0.

To show that a component of the form (IH ) j,0,0 does not have image all of H
unless j = 0, it suffices to show that there exists a triple (z0, z−α, zα) in H such that
if (z′0, z−α, zα) ∈ H and Az′0 = Az0 , then z′0 is obtained from z0 by a global phase.
Note that any vector z0 can be part of a triple in H , since for any given z0, the system
of equations

z−α[�]zα[α + �] = z0[�]z0[� + α], � = 0, . . . ,W − 1 − α,

has positive dimensional solution space. We claim that we can choose a vector z0 such
that if z′0 does not differ from z0 by a global phase, then |z0[W − 1]z0[W − 1−α]| �=
|z′0[W − 1]z′0[W − 1 − α]|. This follows from a similar argument used in the proof
[9, Theorem 3.1]. If β1, . . . βW−1 are the roots of the ẑ0(ω), then |z0[W − 1]z0[W −
1 − α]| = |z′0[W − 1]z′0[W − 1 − α]| for some z′0, only if |Sα(β1, . . . , βW−1)| =∏

�∈I |βi |Sα(β ′
1, . . . , β

′
W−1) where β ′

i ∈ {βi , βi/|βi |2} and I ⊂ [1,W − 1] is the
subset where β ′

i = βi/|βi |2. For general choice of (β1, . . . , βW−1), these equations
are not satisfied unless β ′

i = βi for all i . Hence, (IH ) j,0,0 does not surject onto H
unless j = 0. This concludes the proof of Proposition 3.5.
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