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Abstract
We establish the uniform boundedness of oscillatory singular integral operators on L p

spaces for C∞ phases and Hölder class singular kernels. Our main result improves
and unifies several existing L p results for oscillatory singular integrals.
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1 Introduction

Both oscillatory and singular integrals have played very important roles in the history
of harmonic analysis. Oscillatory singular integrals, as a hybrid between the two, have
attracted a considerable amount of interest in the past few decades. In this paper we
shall focus our attention on the L p theory for oscillatory singular integral operators.
The kernel of such an operator is given by the product of an oscillatory factor ei�(x,y)

and a Calderón-Zygmund type kernel function K (x, y). More precisesly, we define
T�,K by

T�,K f (x) = p.v.
∫
Rn

ei�(x,y)K (x, y) f (y)dy. (1)

The phase function� is assumed to be real-valued. In [11], for anyCalderón-Zygmund
kernel K (x, y) which is smooth away from � = {(x, x) : x ∈ R

n}, Phong and Stein
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established the uniform L p boundedness for all T�,K with � being in the family
of bilinear forms. Subsequently in [12], for any Calderón–Zygmund kernel K (x, y)
which isC1 onRn×R

n\�, Ricci and Stein proved the L p boundedness of T�,K for all
polynomial phase functions �(x, y) = P(x, y), with the bound on ‖TP,K ‖p,p being
uniform as long as a cap is placed on deg(P). Their result can be stated as follows.

Theorem 1.1 ([12]) Let n ∈ N and P(x, y) be a real-valued polynomial in x, y ∈ R
n.

Suppose that there is an A > 0 such that K (x, y) satisfies

|K (x, y)| ≤ A

|x − y|n ; (2)

K (·, ·) ∈ C1(Rn × R
n\�) and

|∇x K (x, y)| + |∇yK (x, y)| ≤ A

|x − y|n+1 (3)

for all (x, y) ∈ (Rn × R
n)\�;

‖To‖L2(Rn)→L2(Rn) ≤ A (4)

where

To f (x) = p.v.
∫
Rn

K (x, y) f (y)dy. (5)

Then, for 1 < p < ∞, there exists a Cp > 0 such that

‖TP,K f ‖L p(Rn) ≤ Cp‖ f ‖L p(Rn) (6)

for all f ∈ L p(Rn). The constant Cp may depend on p, n, A and deg(P) but is
independent of the coefficients of P.

Oscillatory singular integral operators with general C∞ phase functions were stud-
ied in [9] where, among other things, the L p boundedness was obtained under a
“finite-type” phase function condition, both of which are described below.

Definition 1.1 Let (x0, y0) ∈ R
n × R

n and �(x, y) be C∞ in an open set containing
(x0, y0). � is said to be of finite type at (x0, y0) if there exist two multi-indices
α, β ∈ (N ∪ {0})n such that |α|, |β| ≥ 1 and

∂α+β�

∂xα∂ yβ
(x0, y0) 
= 0.

Theorem 1.2 ([9]) Let ϕ ∈ C∞
0 (Rn × R

n) and �1(x, y), . . . , �m(x, y) be C∞ such

that, for every (u1, . . . , um) ∈ S
m−1,

m∑
j=1

u j� j (x, y) is of finite type at every point in
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(supp(ϕ))∩�. Let K (x, y) satisfy (2), (3) and (4). Then, for 1 < p < ∞, the operators

Tλ�, ϕK are uniformly bounded on L p(Rn) for all �(x, y) =
m∑
j=1

u j� j (x, y) where

λ ∈ R and (u1, . . . , um) ∈ S
m−1.

For any polynomial phase function P(x, y), if it has at least one nonzero term
aαβxα yβ with min{|α|, |β|} ≥ 1, then the L p boundedness of the corresponding
oscillatory singular integral operators is covered by Theorem 1.2. Otherwise one has
P(x, y) = g(x)+h(y), inwhich case the L p boundedness follows from ‖TP, K ‖p,p =
‖T0, K ‖p,p.

On the other hand, it has been well-known that Calderón-Zygmund singular inte-
grals are bounded on L p spaces even when the C1 assumption and the bounds for∇K
in (3) are replaced by the following weaker Hölder type condition:

There exists a δ > 0 such that

|K (x, y) − K (x ′, y)| ≤ A|x − x ′|δ
(|x − y| + |x ′ − y|)n+δ

whenever |x − x ′| < (1/2)max{|x − y|, |x ′ − y|}, and

|K (x, y) − K (x, y′)| ≤ A|y − y′|δ
(|x − y| + |x − y′|)n+δ

whenever |y − y′| < (1/2)max{|x − y|, |x − y′|}.

(7)

In a recent paper [2], the results of Ricci and Stein in Theorem 1.1 were extended
to allow K (x, y) to be such a Hölder class kernel.

Theorem 1.3 ([2]) Let P(x, y) be a real-valued polynomial. Let K (x, y) be a Hölder
class Calderón-Zygmund kernel, i.e. there exist δ, A > 0 such that K (x, y) satisfies
(2), (7) and (4). Then, for 1 < p < ∞, there exists a Cp > 0 such that

‖TP,K f ‖L p(Rn) ≤ Cp‖ f ‖L p(Rn) (8)

for all f ∈ L p(Rn). The constant Cp may depend on p, n, δ, A and deg(P) but is
independent of the coefficients of P.

See also [1, 6].
We now state the main result of this paper in which not only the kernels K (x, y)

are allowed to be in the Hölder class, but the phase functions can be fairly general.

Theorem 1.4 Let U be an open set in R
m and G be a compact subset of U. Let

�(x, y, u) ∈ C∞(Rn × R
n × U ) and ϕ(x, y) ∈ C∞

0 (Rn × R
n) such that, for every

u ∈ U, �( · , · , u) is of finite type at every point in (supp(ϕ)) ∩ �. Let K (x, y) be
a Hölder class Calderón-Zygmund kernel, i.e. there exist δ, A > 0 such that K (x, y)
satisfies (2), (7) and (4). Then, for 1 < p < ∞, there exists a Cp > 0 such that

‖Tλ�, ϕK f ‖L p(Rn) ≤ Cp‖ f ‖L p(Rn) (9)
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for all f ∈ L p(Rn), λ ∈ R and u ∈ G. The constant Cp may depend on
p, n,m, δ, A, ϕ and G but is independent of λ and u.

Remarks.
(i) It is a well-known fact that the conclusion of Theorems 1.2 and 1.4 can fail if the
“finite type" assumption for the phase functions is dropped [8, 9, 16].
(ii) The phase functions in Theorem 1.2 are subsumed in the family of phase functions
in Theorem 1.4 as one can simply let U = R

m\{0}, G = S
m−1 and

�(x, y, u) = u · (�1(x, y), . . . , �m(x, y)).

(iii) By (2), it is easy to see that Theorem 1.4 continues to hold if the smooth cut-off
function ϕ(x, y) is replaced by, say, χB(x − y), where B is the unit ball in Rn .
(iv) The conclusion of Theorem 1.4 remains valid in the more general context of
weighted spaces L p(Rn, w(x)dx) with Muckenhoupt Ap weights. See Theorem 4.2.
(v) It follows from Theorem 1.4 that the operators Tλ�, ϕK are uniformly bounded on
L p spaces for λ ∈ R and u ∈ G if the phase function �(x, y, u) is real-analytic in
R
n × R

n × U , where U is an open subset of R (i.e. m is taken to be 1) and G is a
compact subset of U (see Theorem 5.1). It would be interesting to know whether the
same holds for m > 1.

In the rest of the paper we shall use A � B (A � B) tomean that A ≤ cB (A ≥ cB)
for a certain constant c whose actual value is not essential for the relevant arguments
to work. We shall also use A ≈ B to mean “A � B and B � A”.

2 A van der Corput type lemma

A version of the classical van der Corput’s lemma can be stated as follows.

Lemma 2.1 ([14]) Letφ be a real-valuedCk function on [a, b] satisfying |φ(k)(x)| ≥ 1
for every x ∈ [a, b]. Suppose that k ≥ 2, or that k = 1 and φ′ is monotone on [a, b].
Then there exists a positive constant ck such that, for every ψ ∈ C1([a, b]),

∣∣∣∣
∫ b

a
eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ ck |λ|−1/k
(

|ψ(b)| +
∫ b

a
|ψ ′(x)|dx

)
(10)

holds for all λ ∈ R. The constant ck is independent of λ, a, b, φ and ψ .

The following lemma, which is in the spirit of Lemma 2.1, is needed in our proof
of Theorem 1.4.

Lemma 2.2 Let φ ∈ C∞(Rn) be real-valued and ψ ∈ C∞
0 (Rn). Let M > 0, k ∈ N

and α ∈ (N ∪ {0})n such that |α| = k. Suppose that |∂βφ/∂xβ(x)| ≤ M holds for all
|β| = k + 1 and x ∈ V1, where Va is defined by

Va = {x ∈ R
n : dist(x, supp(ψ)) ≤ a‖∂αφ/∂xα‖L∞(supp(ψ))}
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for a > 0. Let

‖ψ‖0,1 = ‖ψ‖L∞(Rn) + sup
x∈Rn ,v∈Sn−1

∫
R

|∇ψ(x + tv)|dt .

Then there exists a c > 0 such that

∣∣∣∣
∫
Rn

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤ c(a−n‖ψ‖0,1)|λ|−ε/k
∫
Va

∣∣∣∣∂
αφ(x)

∂xα

∣∣∣∣
−ε(1+1/k)

dx (11)

for all a, ε ∈ (0, 1] and λ ∈ R. The constant c may depend on M, α (and thus k) but
is otherwise independent of a, ε, λ, ψ and φ.

The above lemma is a refined version of Lemma 3.2 of [10]. We shall sketch its
proof below where our focus will primarily be on providing the necessary details for
the current incarnation.

Proof Without loss of generality we may assume that

|{∂αφ/∂xα = 0} ∩ supp(ψ)| = 0.

Let A > 1 be a suitably chosen constant which depends on M, n and α only, and let
r(x) = A−1|∂αφ/∂xα(x)| whenever it is nonzero. By applying the Vitali covering
procedure, there exist x1, x2, . . . ∈ {∂αφ/∂xα 
= 0} ∩ supp(ψ) such that

{∂αφ/∂xα 
= 0} ∩ supp(ψ) ⊆
⋃
j

B(x j , r j/2) where r j = r(x j ), (12)

{
B(x j , r j/10)

}
j=1,2,... are pairwise disjoint. (13)

It follows from our selection of A and a packing argument of Sogge and Stein in [13]
(see also [14]) that, for each j , there exists a v j ∈ S

n−1 such that

|∂αφ/∂xα(y)| ≈ r j ; (14)

|(v j · ∇)kφ(y)| � r j (15)

for all y ∈ B(x j , r j ) and

∑
j

χB(x j , r j ) � 1. (16)

Thus, there exists a partition of unity {η j (x)} j=1,2,... such that each η j is supported in
B(x j , r j ),

∑
j η j (x) = 1 for x ∈ ⋃

j B(x j , r j/2), and

|∂βη j/∂x
β | � r−|β|

j (17)
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for all β ∈ (N ∪ {0})n .
For y = (y1, y2, . . . yn) ∈ R

n , let ỹ = (y2, . . . , yn). For each j , let � j denote an
orthogonal linear transformation on R

n such that � j ((1, 0, . . . , 0)) = v j . Then by
(15), for |y| ≤ r j ,

∣∣∣∣ ∂k

∂ yk1

(
φ(x j + � j (y))

)∣∣∣∣ � r j . (18)

When k ≥ 2, by using (18), Lemma 2.1 and (17), we have

∣∣∣∣
∫
B(x j , r j )

eiλφ(x)ψ(x)η j (x)dx

∣∣∣∣

≤
∫

|ỹ|≤r j

∣∣∣∣
∫ (r2j −|ỹ|2)1/2

−(r2j −|ỹ|2)1/2
eiλφ(x j+� j (y))ψ(x j + � j (y))η j (x j + � j (y))dy1

∣∣∣∣d ỹ

� (λr j )
−1/k

∫
|ỹ|≤r j

(
|ψ(x j + � j (((r

2
j − |ỹ|2)1/2, ỹ)))η j (x j + � j (((r

2
j − |ỹ|2)1/2, ỹ)))|

+
∫ (r2j −|ỹ|2)1/2

−(r2j −|ỹ|2)1/2

∣∣∣∣ ∂

∂ y1

(
ψ(x j + � j (y))η j (x j + � j (y))

)∣∣∣∣dy1
)
d ỹ

� ‖ψ‖0,1(|λ|r j )−1/krn−1
j . (19)

For k = 1, one cannot use Lemma 2.1 because the monotonicity of the first derivative
of φ(x j + � j (y)) in y1 is not known. Fortunately we have the following upper bound
for the corresponding second derivative:

∣∣∣∣ ∂2

∂ y21
(φ(x j + � j (y)))

∣∣∣∣ = |(v j · ∇)2φ(x j + � j (y))| ≤ M

for |y| ≤ r j , which allows us to use integration by parts and (15) to get

∣∣∣∣
∫
B(x j , r j )

eiλφ(x)ψ(x)η j (x)dx

∣∣∣∣

=
∣∣∣∣
∫

|ỹ|≤r j

∫ (r2j −|ỹ|2)1/2

−(r2j −|ỹ|2)1/2
∂

∂ y1

(
eiλφ(x j+� j (y))

)
ψ(x j + � j (y))η j (x j + � j (y))

(iλ)∂/∂ y1(φ(x j + � j (y)))
dy1d ỹ

∣∣∣∣
� ‖ψ‖0,1(|λ|r j )−1rn−1

j ,

which is just (19) for the case k = 1.
Trivially we have

∣∣∣∣
∫
B(x j , r j )

eiλφ(x)ψ(x)η j (x)dx

∣∣∣∣ � ‖ψ‖0,1rnj . (20)
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By (19)–(20), for every j and every ε ∈ (0, 1],
∣∣∣∣
∫
B(x j , r j )

eiλφ(x)ψ(x)η j (x)dx

∣∣∣∣ � ‖ψ‖0,1|λ|−ε/kr−ε(1+1/k)
j rnj . (21)

By (21), (14) and (16), for every a ∈ (0, 1],
∣∣∣∣
∫
Rn

eiλφ(x)ψ(x)dx

∣∣∣∣ ≤
∑
j

∣∣∣∣
∫
B(x j , r j )

eiλφ(x)ψ(x)η j (x)dx

∣∣∣∣
� (‖ψ‖0,1|λ|−ε/ka−n)

∑
j

r−ε(1+1/k)
j (ar j )

n

� (‖ψ‖0,1|λ|−ε/ka−n)

∫
Rn

∣∣∣∣∂
αφ(x)

∂xα

∣∣∣∣
−ε(1+1/k)( ∑

j

χB(x j , ar j )(x)

)
dx

� (a−n‖ψ‖0,1)|λ|−ε/k
∫
Va

∣∣∣∣∂
αφ(x)

∂xα

∣∣∣∣
−ε(1+1/k)

dx .

��

3 Proof of Theorem 1.4

For k ∈ N, r > 0 and a ∈ R
k , let Bk(a, r) = {x ∈ R

k : |x − a| < r}. For any
function F(x, y) defined on a product space Rn1 ×R

n2 , where x ∈ R
n1 and y ∈ R

n2 ,
and multi-indices α ∈ (N ∪ {0})n1 , β ∈ (N ∪ {0})n2 , we let

Dα
1 F = ∂αF

∂xα
, Dβ

2 F = ∂βF

∂ yβ
.

The same goes for functions defined on more general product spacesRn1 ×· · ·×R
nk .

Let K (x, y) be a Hölder class Calderón-Zygmund kernel. Clearly, the three prop-
erties (2), (7) and (4) of K (x, y) remain intact under the translation (x, y) →
(x − ζ, y − ζ ) for any ζ ∈ R

n . This observation, together with the compactness
of supp(ϕ) and G, allows the proof of Theorem 1.4 to be reduced to the task of
establishing the following:

Proposition 3.1 Suppose that�(x, y, u) is C∞ in an open neighborhood of the origin
in R

n × R
n × R

m and there are two nonzero multi-indices α0, β0 ∈ (N ∪ {0})n such
that

Dα0
1 Dβ0

2 �(0, 0, 0) 
= 0. (22)



86 Page 8 of 16 Journal of Fourier Analysis and Applications (2022) 28 :86

Then there exists an r0 > 0 such that for every p ∈ (1,∞) and every ϕ ∈
C∞
0 (B2n(0, r0)), the operator

Tλ�, ϕK : f → p.v.
∫
Rn

eiλ�(x,y,u)K (x, y)ϕ(x, y) f (y)dy

is uniformly bounded on L p(Rn) for λ > 2 and u ∈ Bm(0, r0).

Proof Let λ > 2, k0 = |α0| and l0 = |β0|. Without loss of generality we may assume
that

Dα0
1 Dβ

2 �(0, 0, 0) = 0 (23)

for all |β| < l0. By using a transformation (x, y) → (�(x), �(y)) where � is an
orthogonal transformation, if necessary, we may also assume that β0 = (l0, 0, . . . , 0).
Let

F(x, y, z, u) = Dα0
1 �(z, x, u) − Dα0

1 �(z, y, u).

Then

∂ j F

∂ y j
1

(0, 0, 0, 0) = 0

for 0 ≤ j ≤ l0 − 1 and

∂ l0F

∂ yl01
(0, 0, 0, 0) 
= 0.

By the Malgrange preparation theorem [4], there exist an r0 > 0 and C∞ functions
a0(x, ỹ, z, u), . . . , al0−1(x, ỹ, z, u) on I n × I n−1 × I n × Im and c(x, y, z, u) on
I n × I n × I n × Im , where I = (−4r0, 4r0), such that

F(x, y, z, u) = c(x, y, z, u)

×(yl01 + al0−1(x, ỹ, z, u)yl0−1
1 + · · · + a0(x, ỹ, z, u)) (24)

and |c(x, y, z, u)| � 1 for (x, y, z, u) ∈ I n × I n × I n × Im .
Let η ∈ C∞

0 (Rn×R
n) such that 0 ≤ η(x, y) ≤ 1 for (x, y) ∈ R

n×R
n ; η(x, y) = 1

for |(x, y)| ≤ 1/2; and η(x, y) = 0 for |(x, y)| ≥ 1. For t > 0, let ηt (x, y) =
t−2nη(x/t, y/t).

Also, let θ ∈ C∞(Rn) be nonnegative such that θ(x) = 0 for |x | ≤ 4 and θ(x) = 1
for |x | ≥ 8. Let N0 = 6(2n + 1)k0l0, ρ = N−1

0 and

Hλ(x, y) = ϕ(x, y)

J (η)

∫
Rn×Rn

ηλ−ρ (x − v, y − w)K (v,w)θ(λρ(v − w))dvdw
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where J (η) =
∫
Rn×Rn

η(x, y)dxdy � 1.

When Hλ(x, y) 
= 0, there exists a (v,w) ∈ R
n × R

n such that |v − w| ≥ 4λ−ρ

and |(x, y) − (v,w)| < λ−ρ . Thus,

2λ−ρ ≤ |v − w|/2 ≤ |x − y| ≤ 3|v − w|/2.
By (2),

|Hλ(x, y)| � |ϕ(x, y)|
|x − y|n χ[2λ−ρ, ∞)(|x − y|). (25)

Similarly, one can show that, for all x, y ∈ R
n ,

‖Hλ(x, · )‖0,1 + ‖Hλ( · , y)‖0,1 � λ(n+1)ρ . (26)

We now decompose Tλ�, ϕK as the sum of three operators:

Tλ�, ϕK f = T1 f + T2 f + T3 f (27)

where

T1 f (x) =
∫
Rn

eiλ�(x,y,u)Hλ(x, y) f (y)dy, (28)

T2 f (x) =
∫
Rn

eiλ�(x,y,u)
[
K (x, y)θ(λρ(x − y))ϕ(x, y) − Hλ(x, y)

]
f (y)dy,

(29)

T3 f (x) = p.v.
∫
Rn

eiλ�(x,y,u)K (x, y)(1 − θ(λρ(x − y)))ϕ(x, y) f (y)dy. (30)

It follows from (25) that

‖T1‖L1(Rn)→L1(Rn) + ‖T1‖L∞(Rn)→L∞(Rn) � ln(λ). (31)

On the other hand, we have

T ∗
1 T1 f (x) =

∫
Rn

L(x, y) f (y)dy

where

L(x, y) =
∫
Rn

eiλ(�(z,x,u)−�(z,y,u))Hλ(z, x)Hλ(z, y)dz.

By shrinking the support of ϕ if necessary, wemay apply Lemma 2.2 with ε = (3l0)−1

to get

|L(x, y)| � λ−1/(3k0l0)(‖Hλ( · , x)Hλ( · , y)‖0,1)χ[0,2r0](|x |)χ[0,2r0](|y|)
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×
∫

|z|≤2r0
|Dα0

1 �(z, x, u) − Dα0
1 �(z, y, u)|−(k0+1)/(3k0l0)dz. (32)

By using (24), (26), (32), (k0 +1)/(3k0l0) < 1 and the lemma on page 182 of [12],
for every x ∈ R

n ,

∫
Rn

|L(x, y)|dy � λ−1/(3k0l0)λ(2n+1)ρ
∫

|z|≤2r0

∫
|ỹ|≤2r0

(∫
|y1|≤2r0

∣∣∣∣yl01

+al0−1(x, ỹ, z, u)yl0−1
1 + · · · + a0(x, ỹ, z, u)

∣∣∣∣
−(k0+1)/(3k0l0)

dy1

)
d ỹdz

� λ−1/(6k0l0). (33)

Similary, we have

∫
Rn

|L(x, y)|dx � λ−1/(6k0l0) (34)

for all y ∈ R
n . It follows from (33)–(34) that

‖T1‖L2(Rn)→L2(Rn) � λ−1/(12k0l0). (35)

By interpolating between (31) and (35) we obtain

‖T1‖L p(Rn)→L p(Rn) � (ln(λ))|1−2/p|λ−(1−|1−2/p|)/(12k0l0) � 1 (36)

for 1 < p < ∞.
To treat the term T2 f , first we observe that

|K (x, y)θ(λρ(x − y))ϕ(x, y) − Hλ(x, y)| � |ϕ(x, y)| ×∫
Rn×Rn

ηλ−ρ (x − v, y − w)
∣∣K (x, y)θ(λρ(x − y)) − K (v,w)θ(λρ(v − w))

∣∣dvdw

� |ϕ(x, y)|
[ ∫

Rn×Rn
ηλ−ρ (x − v, y − w)

∣∣K (x, y) − K (v, w)
∣∣θ(λρ(x − y))dvdw

+
∫
Rn×Rn

ηλ−ρ (x − v, y − w)|K (v,w)|∣∣θ(λρ(x − y)) − θ(λρ(v − w))
∣∣dvdw

]
.

Let the above two integrals be denoted by I1(x, y) and I2(x, y), respectively. For
I1(x, y) to be nonzero, there must exist v,w ∈ R

n such that |x−v| < λ−ρ , |y−w| <

λ−ρ , while |x − y| ≥ 4λ−ρ . Thus, |v − w| ≥ 2λ−ρ and |v − w| ≈ |x − y|. It follows
from (7) that

∣∣K (x, y) − K (v,w)
∣∣ ≤ ∣∣K (x, y) − K (v, y)

∣∣ + ∣∣K (v, y) − K (v,w)
∣∣

� |x − v|δ
(|x − y| + |v − y|)n+δ

+ |y − w|δ
(|v − y| + |v − w|)n+δ
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�
λ−ρδχ[4λ−ρ,∞)(|x − y|)

|x − y|n+δ
,

which implies that

|I1(x, y)| �
λ−ρδχ[4λ−ρ,∞)(|x − y|)

|x − y|n+δ
. (37)

For I2(x, y) to be nonzero, there must exist v,w ∈ R
n such that |x − v| < λ−ρ ,

|y − w| < λ−ρ , while

max{|x − y|, |v − w|} ≥ 4λ−ρ

and

min{|x − y|, |v − w|} ≤ 8λ−ρ.

Thus, |x − y| ≈ |v − w| and

2λ−ρ ≤ |x − y| ≤ 10λ−ρ,

which together imply that

|I2(x, y)| � χ[2λ−ρ, 10λ−ρ ](|x − y|)
|x − y|n . (38)

By (37)–(38),

‖T2‖L p(Rn)→L p(Rn) � λ−ρδ

∫
|x |≥4λ−ρ

dx

|x |n+δ
+

∫
2λ−ρ≤|x |≤10λ−ρ

dx

|x |n � 1. (39)

Now T3 f is the only term left to be treated. For any h ∈ R
n , let Qh = h+ (λ−ρ I )n

and Q∗
h = h + (9λ−ρ I )n where I = (−1/2, 1/2]. Let φβ(x, u) = Dβ

2 �(x, x, u) for
β ∈ (N ∪ {0})n and define the polynomial Ph,u(x, y) by

Ph,u(x, y) =
∑

1≤|β|≤N0−1

( ∑
|α|≤N0−|β|−1

1

α!β!D
α
1 φβ(h, u)(x − h)α(y − x)β

)
.

Thus, for any h ∈ R
n , x ∈ Q∗

h , y ∈ Qh and |u| < r0,

|�(x, y, u) − (�(x, x, u) + Ph,u(x, y))||ϕ(x, y)| �
N0∑
j=1

|x − y| j |x − h|N0− j .
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For any f ∈ L p(Rn) and any h ∈ R
n , we have supp(T3(χQh f )) ⊆ Q∗

h and thus,

∣∣∣∣T3(χQh f )(x) − eiλ�(x,x,u)T
λPh,u , K̃

(χQh f )(x)

∣∣∣∣ �
N0∑
j=1

λ1−(N0− j)ρ
∫
Qh

| f (y)|dy
|x − y|n− j

(40)

where K̃ (x, y) = K (x, y)(1 − θ(λρ(x − y)))ϕ(x, y). It is easy to verify that (2), (7)
and (4) are all satisfied by K̃ ( · , · ) uniformly in λ. By (40) and Theorem 1.3,

‖T3(χQh f )‖L p(Rn) �
(
1 +

N0∑
j=1

λ1−(N0− j)ρ
∫

|x |≤10λ−ρ

dx

|x |n− j

)
× ‖χQh f ‖L p(Rn)

� ‖χQh f ‖L p(Rn). (41)

By

|T3 f |p =
∣∣∣∣

∑
h∈(λ−ρ)Zn

χQ∗
h
T3(χQh f )

∣∣∣∣
p

≤
∣∣∣∣

∑
h∈(λ−ρ)Zn

χQ∗
h

∣∣∣∣
p/p′( ∑

h∈(λ−ρ)Zn

|T3(χQh f )|p
)

�
∑

h∈(λ−ρ)Zn

|T3(χQh f )|p

and (41), we get

‖T3‖L p(Rn)→L p(Rn) � 1 (42)

for 1 < p < ∞. It follows from (27), (36), (39) and (42) that

‖Tλ�, ϕK ‖L p(Rn)→L p(Rn) � 1

for 1 < p < ∞. ��

4 Extension to Lp spaces with Ap weights

As pointed earlier, the conclusions of Theorem 1.4 continue to hold when the spaces
L p(Rn, dx) is replaced by the weighted spaces L p(Rn, wdx) as long as w is in the
class Ap [7] whose definition is given below:

Definition 4.1 Let p ∈ (1, ∞). A nonnegative, locally integrable functionw(·) onRn

is said to be in the Muckenhoupt weight class Ap(R
n) if there exists a constant C > 0

such that

(
1

|Q|
∫
Q

w(y)dy

)(
1

|Q|
∫
Q

w(y)−1/(p−1)dy

)p−1

≤ C (43)
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holds for all cubes Q inRn . The smallest such constant C in (43) is the corresponding
Ap constant of w.

Let

‖ f ‖p,w =
(∫

Rn
| f (x)|pw(x)dx

)1/p

,

and

L p(Rn, wdx) = { f : ‖ f ‖p,w < ∞}.

We shall need the following result due to Coifman and Fefferman:

Theorem 4.1 ([3]) For each p ∈ (1,∞) and each w ∈ Ap(R
n), there exists a ν ∈

(0, 1) such that w1+ν ∈ Ap(R
n). Both ν and the Ap constant of w1+ν depend on n, p

and the Ap constant of w only.

We shall now state the weighted version of Theorem 1.4 and give a brief sketch of
its proof while leaving out most of the technical details.

Theorem 4.2 Let U be an open set in R
m and G be a compact subset of U. Let

�(x, y, u) ∈ C∞(Rn ×R
n ×U ) and ϕ(x, y) ∈ C∞

0 (Rn ×R
n) be such that, for every

u ∈ U, �( · , · , u) is of finite type at every point in (supp(ϕ)) ∩ �. Let K (x, y) be
a Hölder class Calderón-Zygmund kernel, i.e. there exist δ, A > 0 such that K (x, y)
satisfies (2), (7) and (4). Let p ∈ (1,∞) andw ∈ Ap(R

n). Then there exists a positive
constant Cp,w such that

‖Tλ�, ϕK f ‖p,w ≤ Cp,w‖ f ‖p,w (44)

for all f ∈ L p(Rn, wdx), λ ∈ R and u ∈ G. The constant Cp,w may depend on
p, n,m, δ, A, ϕ, G and Ap the constant of w, but is independent of λ and u.

Proof By (27), it suffices to prove ‖Tj f ‖p,w � ‖ f ‖p,w for j = 1, 2, 3 and λ > 2.
For T1, by (25),

|T1 f | � (ln(λ))M f ,

whereM is theHardy-Littlewoodmaximal operator.ByTheorem4.1 and theweighted
L p boundedness of M,

‖T1 f ‖p,w1+ν � (ln(λ))‖ f ‖p,w1+ν (45)

for a certain ν > 0 (see [5]). By (36) and (45) and a result of Stein and Weiss in [17],
we obtain

‖T1 f ‖p,w � (ln(λ))1/(1+ν)+|1−2/p|λ−(1−|1−2/p|)ν/(12(1+ν)k0l0)‖ f ‖p,w

� ‖ f ‖p,w
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For T2, one can use (37)–(38) to get |T2 f | � M f and thus

‖T2 f ‖p,w � ‖ f ‖p,w.

Finally, for the treament of T3 f , one uses Theorem 3.2 in [2] instead of Theorem 1.3
but otherwise follows the steps in the proof of Theorem 1.4 to arrive at

‖T3 f ‖p,w � ‖ f ‖p,w. ��

5 Real analytic phases

In this section we will show how one can use Theorem 1.4 (and Theorem 4.2) to obtain
the uniform L p boundedness of oscillatory singular integral operators with Hölder
class kernels and real-analytic phase functions λ�(x, y, u) when the parameter u is
in a compact subset of R.

Theorem 5.1 LetU be an open set inR and G be a compact subset of U. Let ϕ(x, y) ∈
C∞
0 (Rn × R

n) and �(x, y, u) be real-analytic for (x, y) in an open neighborhood
of supp(ϕ) and u ∈ U. Let K (x, y) be a Hölder class Calderón-Zygmund kernel, i.e.
there exist δ, A > 0 such that K (x, y) satisfies (2), (7) and (4). Let p ∈ (1,∞) and
w ∈ Ap(R

n). Then there exists a positive constant Cp,w such that

‖Tλ�, ϕK f ‖p,w ≤ Cp,w‖ f ‖p,w (46)

for all f ∈ L p(Rn, wdx), λ ∈ R and u ∈ G. The constant Cp,w may depend on
p, n, δ, A, ϕ, G and the Ap constant of w, but is independent of λ and u.

Proof Without loss of generality we may assume that supp(ϕ) = B(0, r0), U =
(−2r0, 2r0) and G = [−r0, r0] for some r0 > 0. Let

E = {u ∈ [−r0, r0] : �( · , · , u) fails to have finite type at some point}.

In the case where E = ∅, (46) follows from Theorem 4.2.
Suppose that E 
= ∅. For each u0 ∈ E and 1 ≤ j, k ≤ n, there exists a (x0, y0)

such that all partial derivatives

{
Dα
1 D

β
2

(
∂2�(x, y, u0)

∂x j∂ yk

)
: α, β ∈ (N ∪ {0})n

}

vanish at (x0, y0) which, by real-analyticity, implies that

∂2�(x, y, u0)

∂x j∂ yk
= 0

for all (x, y) ∈ B(0, r0) and 1 ≤ j, k ≤ n.
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If E has a limit point p, then there exists a sequence {ul}∞l=1 in E\{p} such that

lim
l→∞ ul = p.

Thus,

∂2�(x, y, ul)

∂x j∂ yk
= 0

for all (x, y) ∈ B(0, r0), l ∈ N and 1 ≤ j, k ≤ n. Again by real-analyticity,

∂2�(x, y, u)

∂x j∂ yk
= 0

for all (x, y) ∈ B(0, r0), u ∈ (−2r0, 2r0) and 1 ≤ j, k ≤ n. Thus, �(x, y, u) can be
written as φ(x, u) + ψ(y, u) and (46) follows trivially.

Thus we may now assume that E ( 
= ∅) has no limit points. By using a translation
and shrinking r0 if necessary, we may further assume that E = {0} and

�(x, y, u) =
∞∑
k=0

(
uk

k!
)

∂k�(x, y, 0)

∂uk
.

Since �( · , · , 0) fails to be of finite type at least at one point while for every u 
= 0,

�( · , · , u) has finite type at every point, there exists a k ∈ N such that
∂k�(x, y, 0)

∂uk

has finite type at (0, 0). Let k0 be the smallest such k. Then each
1

j !
∂ j�(x, y, 0)

∂u j
can

be written as φ j (x) + ψ j (y) for 0 ≤ j ≤ k0 − 1 and

λ�(x, y, u) = λ

k0−1∑
j=0

(
φ j (x) + ψ j (y)

) + (λuk0)�(x, y, u) (47)

where

�(x, y, u) = 1

k0!
∂k0�(x, y, 0)

∂uk0
+

∞∑
j=k0+1

(
u j−k0

j !
)

∂ j�(x, y, 0)

∂u j
. (48)

Since
∂k0�( · , · , 0)

∂uk0
has finite type at (0, 0), by continuity, for r̃0 > 0 sufficiently

small and |u| ≤ r̃0, �( · , · , u) also has finite type at every point of B2n(r̃0). Let

f̃ (y) = eiλ
(∑k0−1

j=0 ψ j (y)
)
f (y).
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By Theorem 4.2 (after shrinking supp(ϕ) if necessary) and (47)–(48),

‖Tλ�, ϕK f ‖p,w = ‖T(λuk0 )�, ϕK f̃ ‖p,w ≤ Cp‖ f ‖p,w.
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