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Abstract
We consider Gabor frames generated by a general lattice and a window function that
belongs to one of the following spaces: the Sobolev space V1 = H1(Rd), the weighted
L2-space V2 = L2

1+|x |(Rd), and the space V3 = H
1(Rd) = V1 ∩ V2 consisting of

all functions with finite uncertainty product; all these spaces can be described as
modulation spaces with respect to suitable weighted L2 spaces. In all cases, we prove
that the space of Bessel vectors in Vj is mapped bijectively onto itself by the Gabor
frame operator. As a consequence, if the window function belongs to one of the three
spaces, then the canonical dual window also belongs to the same space. In fact, the
result not only applies to frames, but also to frame sequences.
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1 Introduction

Analyzing the time-frequency localization of functions is an important topic in har-
monic analysis. Quantitative results on this localization are usually formulated in terms
of function spaces such as Sobolev spaces, modulation spaces, or Wiener amalgam
spaces. An especially important space is the Feichtinger algebra S0 = M1 [8, 16]
which has numerous remarkable properties; see, e.g., [5, Sect. A.6] for a compact
overview. Yet, in some cases it is preferable to work with more classical spaces like
the Sobolev space H1(Rd) = W 1,2(Rd), the weighted L2-space L2

1+|x |(Rd) = { f :
R
d → C : (1+|x |) f (x) ∈ L2}, or the space H

1(Rd) = H1(Rd)∩ L2
1+|x |(Rd) which

consists of all functions g ∈ L2(Rd) with finite uncertainty product

(∫
Rd
|x |2 · |g(x)|2 dx

) (∫
Rd
|ω|2 · |̂g(ω)|2 dω

)
< ∞. (1.1)

Certainly, one advantage of these classical spaces is that membership of a function in
the space can be decided easily. We remark that all of these spaces fall into the scale
of modulation spaces (see Sect. 3).

In Gabor analysis, it is known (see e.g., [12, Proposition 5.2.1] and [5, Theo-
rem 12.3.2]) that for a Gabor frame generated by a lattice, the canonical dual frame
is again a Gabor system (over the same lattice), generated by the so-called dual win-
dow. An important question is what kind of time-frequency localization conditions of
the generating window are inherited by the dual window. Precisely, if g ∈ L2(Rd)

belongs to a certain “localization Banach space” V and if� ⊂ R
2d is such that (g,�)

forms a Gabor frame for L2(Rd), then does the canonical dual window belong to V
as well? A celebrated result in time-frequency analysis states that this is true for the
Feichtinger algebra V = S0(Rd); see [14] for separable lattices � and [1, Theorem 7]
for irregular sets �. In the case of separable lattices, the question has been answered
affirmatively also for the Schwartz space V = S(R) [17, Proposition 5.5] and for the
Wiener amalgam space V = W (L∞, �1v) with a so-called admissible weight v; see
[19]. Similarly, the setting of the spaces V = W (Cα, �

q
v ) (with the Hölder spaces Cα)

is studied in [26]—but except in the case q = 1, some additional assumptions on the
window function g are imposed.

To the best of our knowledge, the question has not been answered for modulation
spaces other than V = M1

v , and in particular, not for any of the spaces V = H1(Rd),
V = L2

1+|x |(Rd), and V = H
1(Rd). In this note, we show that the answer is affirmative

for all of these spaces:

Theorem 1.1 Let V ∈ {H1(Rd), L2
1+|x |(Rd), H

1(Rd)}. Let g ∈ V and let� ⊂ R
2d be

a lattice such that the Gabor system (g,�) is a frame for L2(Rd) with frame operator
S. Then the canonical dual window S−1g belongs to V . Furthermore, (S−1/2g,�) is
a Parseval frame for L2(Rd) with S−1/2g ∈ V .

Weemphasize thatwedonot show that the inverse frameoperatormapsV into itself;
in fact, it maps the smaller space V� = { f ∈ V : the Gabor system ( f ,�) is a Bessel
system} into itself; see Proposition 4.5 below.
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To indicate the practical relevance of Theorem 1.1, recall that a Gabor frame (g,�)

for L2(Rd) allows for the frame expansion f = ∑
λ∈�〈 f , π(λ)S−1g〉π(λ)g for every

f ∈ L2(Rd), where π(λ) denotes the time-frequency shift by λ (see (2.1) below). The
sequence (cλ)λ∈� of the frame coefficients cλ = 〈 f , π(λ)S−1g〉, λ ∈ �, in general
only belongs to �2(�), whichmeans that if one truncates the sum f = ∑

λ∈� cλπ(λ)g
to N terms (as is necessary in practical applications), the L2-approximation error may
decay arbitrarily slowly as N →∞.

However, one can impose a faster decay of the coefficients— and therefore
improve the decay rate of the L2-approximation error— by restricting f and g
to certain subspaces of L2(Rd). For example, if f , g ∈ V = S0(Rd), then it is
well-known that

(〈 f , π(λ)S−1g〉)
λ∈�

∈ �1(�). Then, Stechkin’s inequality (see
e.g. [11, Propositions 2.3 and 2.11]) implies that if one truncates the sum f =∑

λ∈�〈 f , π(λ)S−1g〉π(λ)g to the N terms with the largest frame coefficients, the
resulting approximation error will be O(N−1/2). If f , g ∈ V = H

1(Rd) and if
( f ,�) is a Bessel sequence, then Theorem 1.1 combined with the proof of Propo-
sition 3.2 shows that

(
λk〈 f , π(λ)S−1g〉)

λ∈�
∈ �2(�) for each k = 1, . . . , 2d.

Since
(
(1 + |λ|)−1)

λ∈�
∈ �2d,∞(�), this implies by Hölder’s inequality for weak

Lebesgue spaces (cf. [4, Theorem 5.23]) that
(〈 f , π(λ)S−1g〉)

λ∈�
∈ �

2d
d+1 ,∞(�), so

that Stechkin’s inequality shows that the error of truncating the frame expansion to
the N terms with the largest frame coefficients decays like O(N−1/(2d)). At least in
dimension d = 1, this is just as good as for V = S0(Rd).

As mentioned above, the corresponding statement of Theorem 1.1 for V = S0(Rd)

with separable lattices � was proved in [14]. In addition to several deeper insights,
the proof given in [14] relies on a simple but essential argument showing that the
frame operator S = S�,g maps V boundedly into itself, which is shown in [14] based
on Janssen’s representation of S�,g . In our setting, this argument is not applicable,
because—unlike in the case of V = S0(Rd)— there exist functions g ∈ H

1 for which
(g,�) is not an L2-Bessel system. In addition, the series in Janssen’s representation is
not guaranteed to converge unconditionally in the strong sense for H

1-functions, even
if (g,�) is an L2-Bessel system; see Proposition A.1. To bypass these obstacles, we
introduce for each space V ∈ {H1, L2

1+|x |, H
1} the associated subspace V� consisting

of all those functions g ∈ V that generate a Bessel system over the given lattice �.
We remark that most of the existing works concerning the regularity of the (canon-

ical) dual window rely on deep results related to Wiener’s 1/ f -lemma on absolutely
convergent Fourier series. In contrast, our methods are based on elementary spectral
theory (see Sect. 4) and on certain observations regarding the interaction of the Gabor
frame operator with partial derivatives; see Proposition 3.2.

The paper is organized as follows: Sect. 2 discusses the concept of Gabor Bessel
vectors and introduces some related notions. Then, in Sect. 3, we endow the space
V� (for each choice V ∈ {H1, L2

1+|x |, H
1}) with a Banach space norm and show that

the frame operator S maps V� boundedly into itself, provided that the Gabor system
(g,�) is an L2-Bessel system and that the window function g belongs to V . Finally,
we prove in Sect. 4 that for any V ∈ {H1, L2

1+|x |, H
1} the spectrum of S as an operator

on V coincides with the spectrum of S as an operator on L2. This easily implies our
main result, Theorem 1.1.
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2 Bessel Vectors

For a, b ∈ R
d and f ∈ L2(Rd) we define the operators of translation by a and

modulation by b as

Ta f (x) := f (x − a) and Mb f (x) := e2π ib·x · f (x),

respectively. Both Ta and Mb are unitary operators on L2(Rd) and hence so is the
time-frequency shift

π(a, b) := TaMb = e−2π ia·b MbTa . (2.1)

The Fourier transform F is defined on L1(Rd) ∩ L2(Rd) by F f (ξ) = f̂ (ξ) =∫
Rd f (x)e−2π i x ·ξ dx and extended to a unitary operator on L2(Rd). For z = (z1, z2) ∈

R
d × R

d ∼= R
2d and f ∈ L2(Rd), a direct calculation shows that

F[π(z) f ] = e−2π i z1·z2 · π(J z) f̂ , (2.2)

where

J =
(

0 I
−I 0

)
.

A (full rank) lattice in R
2d is a set of the form � = AZ

2d , where A ∈ R
2d×2d is

invertible. The volume of� is defined byVol(�) := |det A| and its density by d(�) :=
Vol(�)−1. The adjoint lattice of � is denoted and defined by �◦ := J A−�Z

2d .
The Gabor system generated by a window function g ∈ L2(Rd) and a lattice

� ⊂ R
2d is given by

(g,�) := {
π(λ)g : λ ∈ �

}
.

We say that g ∈ L2(Rd) is a Bessel vector with respect to � if the system (g,�) is a
Bessel system in L2(Rd), meaning that the associated analysis operator C�,g defined
by

C�,g f :=
(〈 f , π(λ)g〉)

λ∈�
, f ∈ L2(Rd), (2.3)

is a bounded operator from L2(Rd) to �2(�). We define

B� :=
{
g ∈ L2(Rd) : (g,�) is a Bessel system

}
,

which is a dense linear subspace of L2(Rd) because each Schwartz function is a
Bessel vector with respect to any lattice; see [9, Theorem 3.3.1]. It is well-known that
B� = B�◦ (see, e.g., [9, Proposition 3.5.10]). In fact, we have for g ∈ B� that

∥∥C�◦,g
∥∥ = Vol(�)1/2 · ∥∥C�,g

∥∥; (2.4)
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see [18, proof of Theorem 2.3.1]. The cross frame operator S�,g,h with respect to �

and two functions g, h ∈ B� is defined by

S�,g,h := C∗�,hC�,g.

In particular,wewrite S�,g := S�,g,g which is called the frame operator of (g,�). The
system (g,�) is called a frame if S�,g is bounded and boundedly invertible on L2(Rd),
that is, if A IdL2(Rd ) ≤ S�,g ≤ B IdL2(Rd ) for some constants 0 < A ≤ B < ∞ (called
the frame bounds). In particular, a frame with frame bounds A = B = 1 is called a
Parseval frame.

In our proofs, the so-called fundamental identity of Gabor analysis will play an
essential role. This identity states that

∑
λ∈�

〈 f , π(λ)g〉〈π(λ)γ, h〉 = d(�) ·
∑

μ∈�◦
〈γ, π(μ)g〉〈π(μ) f , h〉. (2.5)

It holds, for example, if f , h ∈ M1(Rd) = S0(Rd) (the Feichtinger algebra) and
g, γ ∈ L2(Rd); see [9, Theorem 3.5.11]. Here, we will use the following version of
the fundamental identity:

Lemma 2.1 The fundamental identity (2.5) holds if g, h ∈ B� or f , γ ∈ B�.

Proof The proof can be carried out similarly as [13, Theorem 4.3.2 (ii)] which shows
(2.5) under the assumption that g, γ ∈ B� and

∑
μ∈�◦ |〈γ, π(μ)g〉| < ∞. Note

that the latter condition guarantees the absolute convergence of the right-hand side of
(2.5). In our case, each of the conditions g, h ∈ B� and f , γ ∈ B� already implies
the absolute convergence of both sides of (2.5) (by the Cauchy-Schwarz inequality)
so that the proof in [13] is also valid here. ��

3 Certain Subspaces of Modulation Spaces Invariant Under the Frame
Operator

The L2-Sobolev-space H1(Rd) = W 1,2(Rd) is the space of all functions f ∈ L2(Rd)

whose distributional derivatives ∂ j f := ∂ f
∂x j

, j ∈ {1, . . . , d}, all belong to L2(Rd).
We will frequently use the well-known characterization

H1(Rd) = {
f ∈ L2(Rd) : (1+ | · |) f̂ (·) ∈ L2(Rd)

}

of H1(Rd) in terms of the Fourier transform. With the weight function

w : Rd → R, x �→ 1+ |x |,

we define the weighted L2-space L2
w(Rd) := { f ∈ L2(Rd) : w(·) f (·) ∈ L2(Rd)},

equipped with the norm ‖ f ‖L2
w
:= ‖w f ‖L2 . It is then clear that L2

w(Rd) =
F[H1(Rd)] = F−1[H1(Rd)]. Finally, we define H

1(Rd) = H1(Rd) ∩ L2
w(Rd)
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which is the space of all functions f ∈ H1(Rd) whose Fourier transform f̂ also
belongs to H1(Rd). Equivalently, H

1(Rd) is the space of all functions g ∈ L2(Rd)

with finite uncertainty product (1.1).
It is worth to note that each of the spaces H1(Rd), L2

w(Rd), and H
1(Rd) can be

expressed as a modulation space M2
m(Rd) = { f ∈ L2(Rd) : ∫

R2d |〈 f , π(z)ϕ〉|2 |m(z)
|2 dz < ∞} with a suitable weight function m : R

2d → C, where ϕ ∈ S(Rd)\{0} is
any fixed function,1 for instance a Gaussian. Indeed, we have

H1(Rd) = M2
m1

(Rd), L2
w(Rd) = M2

m2
(Rd), and

H
1(Rd) = H1(Rd) ∩ L2

w(Rd) = M2
m3

(Rd),

with

m1(x, ω) = 1+ |ω|, m2(x, ω) = 1+ |x |, and m3(x, ω) =
√
1+ |x |2 + |ω|2,

see [12, Proposition 11.3.1] and [25, Corollary 2.3].
Our main goal in this paper is to prove for each of these spaces that if the window

function g of a Gabor frame (g,�) belongs to the space, then so does the canonical
dual window. In this section, we will mostly concentrate on the space H1(Rd), since
this will imply the desired result for the other spaces as well.

The corresponding result for the Feichtinger algebra S0(Rd) was proved in [14] by
showing the much stronger statement that the frame operator maps S0(Rd) boundedly
into itself and is in fact boundedly invertible on S0(Rd). However, the methods used
in [14] cannot be directly transferred to the case of a window function in H

1(Rd) (or
H1(Rd)), since the proof in [14] leverages two particular properties of the Feichtinger
algebra which are not shared by H

1(Rd):

(a) Every function from S0(Rd) is a Bessel vector with respect to any given lattice;
(b) The series in Janssen’s representation of the frame operator converges strongly

(even absolutely in operator norm) to the frame operatorwhen thewindow function
belongs to S0(Rd).

Indeed, it is well-known that g ∈ L2(R) is a Bessel vector with respect to Z × Z if
and only if the Zak transform of g is essentially bounded (cf. [2, Theorem 3.1]), but
[2, Example 3.4] provides an example of a function g ∈ H

1(R) whose Zak transform
is not essentially bounded; this indicates that (a) does not hold for H

1(Rd) instead of
S0(Rd). Concerning the statement (b) for H

1(Rd), it is easy to see that if Janssen’s
representation converges strongly (with respect to some enumeration of Z

2) to the
frame operator of (g,�), then the frame operator must be bounded on L2(R) and
thus the associated window function g is necessarily a Bessel vector. Therefore, the
example above again serves as a counterexample: namely, the statement (b) fails for
such a non-Bessel window function g ∈ H

1(R). Even more, we show in the Appendix
that there exist Bessel vectors g ∈ H

1(R) for which Janssen’s representation neither
converges unconditionally in the strong sense nor conditionally in the operator norm.

1 The definition of M2
m is known to be independent of the choice of ϕ; see e.g., [12, Proposition 11.3.2].
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We mention that in the case of the Wiener amalgam space W (L∞, �1v) with an
admissible weight v, the convergence issue was circumvented by employingWalnut’s
representation instead of Janssen’s to prove the result for W (L∞, �1v) in [19].

Fortunately, it turns out that establishing the corresponding result for V = H1(Rd),
L2

w(Rd), andH
1(Rd)only requires the invertibility of the frameoperator on aparticular

subspace of V . Precisely, given a lattice � ⊂ R
2d , we define

H1
�(Rd) := H1(Rd) ∩ B�, H

1
�(Rd) := H

1(Rd) ∩ B�, and

L2
w,�(Rd) := L2

w(Rd) ∩ B�.

We equip the first two of these spaces with the norms

‖ f ‖H1
�
:= ‖∇ f ‖L2 + ‖C�, f ‖L2→�2 and

‖ f ‖
H
1
�
:= ‖∇ f ‖L2 + ‖∇ f̂ ‖L2 + ‖C�, f ‖L2→�2 ,

respectively, where

‖∇ f ‖L2 :=
d∑
j=1
‖∂ j f ‖L2

andC�, f is the analysis operator defined in (2.3). Finally,we equip the space L2
w,�(Rd)

with the norm

‖ f ‖L2
w,�

:= ‖ f ‖L2
w
+ ‖C�, f ‖L2,�2 , where ‖ f ‖L2

w
:= ‖w · f ‖L2 .

We start by showing that these spaces are Banach spaces.

Lemma 3.1 For a lattice � ⊂ R
2d , the spaces H1

�(Rd), L2
w,�(Rd), and H

1
�(Rd) are

Banach spaces which are continuously embedded in L2(Rd).

Proof We naturally equip the space B� ⊂ L2(Rd) with the norm ‖ f ‖B�
:=

‖C�, f ‖L2→�2 . Then (B�, ‖ · ‖B�
) is a Banach space by [15, Proposition 3.1]. More-

over, for f ∈ B�,

‖ f ‖L2 = ∥∥C∗�, f δ0,0
∥∥
L2 ≤ ‖C∗�, f ‖�2→L2 = ‖ f ‖B�

, (3.1)

which implies that B� ↪→ L2(Rd). Hence, if ( fn)n∈N is a Cauchy sequence in
H1

�(Rd), then it is a Cauchy sequence in both H1(Rd) (equipped with the norm
‖ f ‖H1 := ‖ f ‖L2 + ‖∇ f ‖L2 ) and in B�. Therefore, there exist f ∈ H1(Rd) and
g ∈ B� such that ‖ fn − f ‖H1 → 0 and ‖ fn − g‖B�

→ 0 as n → ∞. But as
H1(Rd) ↪→ L2(Rd) and B� ↪→ L2(Rd), we have fn → f and fn → g also in
L2(Rd), which implies f = g. Hence, ‖ fn − f ‖H1

�
→ 0 as n → ∞, which proves

that H1
�(Rd) is complete. The proof for L2

w,�(Rd) and H
1
�(Rd) is similar. ��
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Proposition 3.2 Let � ⊂ R
2d be a lattice. If g, h ∈ H1

�(Rd), then S�,g,h maps
H1

�(Rd) boundedly into itself with operator norm not exceeding ‖g‖H1
�
‖h‖H1

�
. For

f ∈ H1
�(Rd) and j ∈ {1, . . . , d} we have

∂ j (S�,g,h f ) = S�,g,h(∂ j f )+ d(�) · C∗�◦, f d j,�◦,g,h, (3.2)

where d j,�◦,g,h ∈ �2(�◦) is defined by

(d j,�◦,g,h)μ :=
〈
∂ j h, π(μ)g

〉+ 〈
h, π(μ)(∂ j g)

〉
, μ ∈ �◦. (3.3)

Proof Let f ∈ H1
�(Rd) and set u := S�,g,h f . First of all, we have u ∈ B�. Indeed,

a direct computation shows that S�,g,h commutes with π(λ) for all λ ∈ �, and that
S∗�,g,h = S�,h,g , which shows for v ∈ L2(Rd) that

(C�,uv)λ=〈v, π(λ)u〉=〈v, π(λ)S�,g,h f 〉=〈S�,h,gv, π(λ) f 〉=(C�, f S�,h,g v)λ,

and therefore

‖C�,u‖ ≤ ‖S�,h,g‖ · ‖C�, f ‖ ≤ ‖C�,g‖ · ‖C�,h‖ · ‖C�, f ‖ < ∞, (3.4)

since S�,h,g = C∗�,gC�,h .

We now show that u ∈ H1(Rd). To this end, note for v ∈ H1(Rd), a, b ∈ R
d , and

j ∈ {1, . . . , d} that

∂ j (Mbv) = 2π i · b j · Mbv + Mb(∂ jv) and ∂ j (Tav) = Ta(∂ jv)

and therefore

∂ j (π(z)v) = 2π i · zd+ j · π(z)v + π(z)(∂ jv).

Hence, setting cλ, j := 2π i · λd+ j · 〈 f , π(λ)g〉 for λ = (a, b) ∈ �, we see that

cλ, j = 〈∂ j f , π(λ)g〉 + 〈 f , π(λ)(∂ j g)〉. (3.5)

In particular, (cλ, j )λ∈� ∈ �2(�) for each j ∈ {1, . . . , d}, because f , g ∈ B� and
∂ j f , ∂ j g ∈ L2.

In order to show that ∂ j u exists and is in L2(Rd), letφ ∈ C∞c (Rd) be a test function.
Note that C∞c (Rd) ⊂ B�. Therefore, we obtain

−〈
u, ∂ jφ

〉 = −∑
λ∈�

〈 f , π(λ)g
〉〈
π(λ)h, ∂ jφ

〉

=
∑
λ∈�

〈 f , π(λ)g
〉〈
2π iλd+ j · π(λ)h + π(λ)(∂ j h), φ

〉

=
∑
λ∈�

cλ, j ·
〈
π(λ)h, φ

〉+∑
λ∈�

〈
f , π(λ)g

〉〈
π(λ)(∂ j h), φ

〉
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(3.5)= 〈S�,g,h(∂ j f ), φ〉 +
∑
λ∈�

〈 f , π(λ)(∂ j g)〉〈π(λ)h, φ〉

+
∑
λ∈�

〈
f , π(λ)g

〉〈
π(λ)(∂ j h), φ

〉

(2.5)= 〈S�,g,h(∂ j f ), φ〉 + d(�)
∑

μ∈�◦

[〈
h, π(μ)(∂ j g)

〉+ 〈
∂ j h, π(μ)g

〉]〈
π(μ) f , φ

〉

=
〈
S�,g,h(∂ j f )+ d(�)

∑
μ∈�◦

[〈
h, π(μ)(∂ j g)

〉+ 〈
∂ j h, π(μ)g

〉]
π(μ) f , φ

〉

=
〈
S�,g,h(∂ j f )+ d(�) · C∗�◦, f d j , φ

〉
,

with d j = d j,�◦,g,h as in (3.3). Note that d j ∈ �2(�◦) because g, h ∈ B� = B�◦ and
∂ j h, ∂ j g ∈ L2. Since j ∈ {1, . . . , d} is chosen arbitrarily, this proves that u ∈ H1(Rd)

with

∂ j u = S�,g,h(∂ j f )+ d(�) · C∗�◦, f d j ∈ L2(Rd)

for j ∈ {1, . . . , d}, which is (3.2). Next, recalling Eq. (2.4) we get

‖d j‖�2 ≤ ‖C�◦,h‖ · ‖∂ j g‖L2 + ‖C�◦,g‖ · ‖∂ j h‖L2

= Vol(�)1/2
(‖C�,h‖ · ‖∂ j g‖L2 + ‖C�,g‖ · ‖∂ j h‖L2

)
,

and ‖C∗�◦, f ‖ = Vol(�)1/2‖C�, f ‖. Therefore,

‖∂ j u‖L2 ≤ ‖S�,g,h‖ · ‖∂ j f ‖L2 + (‖C�,h‖ · ‖∂ j g‖L2 + ‖C�,g‖ · ‖∂ j h‖L2
) ‖C�, f ‖.

Hence, with (3.4), we see

‖S�,g,h f ‖H1
�
= ‖∇u‖L2 + ‖C�,u‖ ≤

d∑
j=1
‖∂ j u‖L2 + ‖C�,g‖ · ‖C�,h‖ · ‖C�, f ‖

≤ ‖S�,g,h‖·‖∇ f ‖L2 + (‖C�,h‖·
‖∇g‖L2+‖C�,g‖·‖∇h‖L2+‖C�,g‖·‖C�,h‖

)‖C�, f ‖
≤ ‖C�,g‖ · ‖C�,h‖ · ‖∇ f ‖L2 + (‖∇g‖L2

+ ‖C�,g‖
)(‖∇h‖L2 + ‖C�,h‖

) ‖C�, f ‖
≤ ‖g‖H1

�
‖h‖H1

�
· ‖ f ‖H1

�
,

and the proposition is proved. ��
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4 Spectrum and Dual Windows

Let X be a Banach space. As usual, we denote the set of bounded linear operators from
X into itself by B(X). The resolvent set ρ(T ) of an operator T ∈ B(X) is the set of
all z ∈ C for which T − z := T − z I : X → X is bijective. Note that ρ(T ) is always
open in C. The spectrum of T is the complement σ(T ) := C\ρ(T ). The approximate
point spectrum σap(T ) is a subset of σ(T ) and is defined as the set of points z ∈ C

for which there exists a sequence ( fn)n∈N ⊂ X such that ‖ fn‖ = 1 for all n ∈ N and
‖(T − z) fn‖ → 0 as n →∞. By [6, Proposition VII.6.7] we have

∂σ(T ) ⊂ σap(T ). (4.1)

Lemma 4.1 Let (H, ‖ · ‖) be a Hilbert space, let S ∈ B(H) be self-adjoint, and let
X ⊂ H be a dense linear subspace satisfying SX ⊂ X. If ‖ · ‖X is a norm on X such
that (X , ‖ · ‖X ) is complete and satisfies X ↪→ H, then A := S|X ∈ B(X). If, in
addition, σap(A) ⊂ σ(S), then σ(A) = σ(S).

Proof The fact that A ∈ B(X) easily follows from the closed graph theorem. Next,
since X ↪→ H, there exists C > 0 with ‖ f ‖ ≤ C ‖ f ‖X for all f ∈ X . Assume
now that additionally σap(A) ⊂ σ(S) holds. Note that σ(S) ⊂ R, since S is self-
adjoint. Since σ(A) ⊂ C is compact, the value r := maxw∈σ(A) |�w| exists. Choose
z ∈ σ(A) such that |�z| = r . Clearly, z cannot belong to the interior of σ(A), and hence
z ∈ ∂σ(A). In view of Eq. (4.1), this implies z ∈ σap(A) ⊂ σ(S) ⊂ R, hence r = 0
and thusσ(A) ⊂ R. Therefore,σ(A)has empty interior inC,meaningσ(A) = ∂σ(A).
Thanks to Eq. (4.1), this means σ(A) ⊂ σap(A), and hence σ(A) ⊂ σ(S), since by
assumption σap(A) ⊂ σ(S).

For the converse inclusion it suffices to show that ρ(A) ∩ R ⊂ ρ(S). To see that
this holds, let z ∈ ρ(A) ∩ R and denote by E the spectral measure of the self-adjoint
operator S. Since R ∩ ρ(A) ⊂ R is open, there are a, b ∈ R and δ0 > 0 such that
z ∈ (a, b) and [a − δ0, b + δ0] ⊂ ρ(A). By Stone’s formula (see, e.g., [21, Thm.
VII.13]), the spectral projection of S with respect to (a, b] can be expressed as

E((a, b]) f = lim
δ↓0 lim

ε↓0
1

2π i

∫ b+δ

a+δ

[
(S − t − iε)−1 f − (S − t + iε)−1 f

]
dt, f ∈ H,

where all limits are taken with respect to the norm of H.
Note for w ∈ C \ R that w ∈ ρ(S) ⊂ ρ(A). Furthermore, A − w = (S − w)|X ,

which easily implies (S − w)−1|X = (A − w)−1. Hence, for f ∈ X ,

‖E((a, b]) f ‖ ≤ lim
δ↓0 lim

ε↓0
1

2π

∫ b+δ

a+δ

∥∥(S − t − iε)−1 f − (S − t + iε)−1 f
∥∥ dt

≤ C · lim
δ↓0 lim

ε↓0
1

2π

∫ b+δ

a+δ

∥∥(A − t − iε)−1 f − (A − t + iε)−1 f
∥∥
X dt
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= C · lim
δ↓0

1

2π

∫ b+δ

a+δ

lim
ε↓0

∥∥(A − t − iε)−1 f − (A − t + iε)−1 f
∥∥
X dt

= 0,

since the map ρ(A) → X , z �→ (A− z)−1 f is analytic and thus uniformly continuous
on compact sets. This implies E((a, b]) f = 0 for all f ∈ X and therefore E((a, b]) =
0 as X is dense in H. But this means that (a, b) ⊂ ρ(S) (see [21, Prop. on p. 236])
and thus z ∈ ρ(S). ��

For proving the invertibility of S�,g on H1
�, L2

w,�, and H
1
�, we first focus on the

space H1
�(Rd). Note that if g ∈ H1

�(Rd), then S�,g maps H1
�(Rd) boundedly into

itself by Proposition 3.2. For g ∈ H1
�(Rd), we will denote the restriction of S�,g to

H1
�(Rd) by A�,g; that is, A�,g := S�,g|H1

�(Rd ) ∈ B(H1
�(Rd)).

Theorem 4.2 Let � ⊂ Z
2d be a lattice and let g ∈ H1

�(Rd). Then

σ(A�,g) = σ(S�,g).

Proof For brevity, we set A := A�,g and S := S�,g . Due to Lemma 4.1, we only have
to prove that σap(A) ⊂ σ(S). For this, let z ∈ σap(A). Then there exists a sequence
( fn)n∈N ⊂ H1

�(Rd) such that ‖ fn‖H1
�
= 1 for all n ∈ N and ‖(A− z) fn‖H1

�
→ 0 as

n →∞. The latter means that, for each j ∈ {1, . . . , d},
∥∥∂ j (S fn)− z · (∂ j fn)

∥∥
L2 → 0 and

∥∥C�,(S−z) fn
∥∥ → 0. (4.2)

Suppose towards a contradiction that z /∈ σ(S). Since S is self-adjoint, this implies
z /∈ σ(S). Furthermore, because S is self-adjoint and commutes with π(λ) for all
λ ∈ �, we see for f ∈ B� that C�,(S−z) f = C�, f ◦ (S − z) and hence C�, fn =
C�,(S−z) fn ◦ (S− z)−1, which implies that ‖C�, fn‖ → 0. Hence, also ‖C�◦, fn‖ → 0
as n →∞ (see Eq. (2.4)). Now, by Eq. (3.2), we have

∂ j (S fn)− z · (∂ j fn) = (S − z)(∂ j fn)+ C∗�◦, fn d j

with some d j ∈ �2(�◦) which is independent of n. Hence, the first limit in (4.2)
combined with ‖C�◦, fn‖ → 0 implies that ‖(S − z)(∂ j fn)‖L2 → 0 and thus
‖∂ j fn‖L2 → 0 as n → ∞ for all j ∈ {1, . . . , d}, since z /∈ σ(S). Hence,
‖ fn‖H1

�
= ∑d

j=1 ‖∂ j fn‖L2 + ‖C�, fn‖ → 0 as n → ∞, in contradiction to
‖ fn‖H1

�
= 1 for all n ∈ N. This proves that, indeed, σap(A) ⊂ σ(S). ��

We now show analogous properties to Proposition 3.2 and Theorem 4.2 for
L2

w,�(Rd).

Corollary 4.3 Let � ⊂ Z
2d be a lattice. If g, h ∈ L2

w,�(Rd), then S�,g,h maps

L2
w,�(Rd) boundedly into itself.
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If g = h and if Aw
�,g := S�,g|L2

w,�(Rd ) ∈ B(L2
w,�(Rd)) denotes the restriction of

S�,g to L2
w,�(Rd), then

σ(Aw
�,g) = σ(S�,g).

Proof We equip the space B� ⊂ L2(Rd) with the norm ‖ f ‖B�
:= ‖C�, f ‖L2→�2 ,

where we recall from Eq. (3.1) that ‖ f ‖L2 ≤ ‖ f ‖B�
. Equation (2.2) shows that the

Fourier transform is an isometric isomorphism from B� to B�̂, where �̂ := J�. Fur-
thermore, it is well-known (see for instance [10, Sect. 9.3]) that the Fourier transform
F : L2 → L2 restricts to an isomorphism of Banach spacesF : L2

w(Rd) → H1(Rd),
where H1 is equipped with the norm ‖ f ‖H1 := ‖ f ‖L2 + ‖∇ f ‖L2 . Taken together,
we thus see that the Fourier transform restricts to an isomorphism F : L2

w,�(Rd) →
H1

�̂
(Rd); here, we implicitly used that ‖ f ‖H1

�̂

� ‖ f ‖H1 + ‖ f ‖B�̂
, which follows

from ‖ · ‖L2 ≤ ‖ · ‖B�̂
.

Plancherel’s theorem, in combination with Eq. (2.2) shows for f ∈ L2(Rd) that

F[
S�,g,h f

]=∑
λ∈�

〈
f̂ , π̂(λ)g

〉
π̂(λ)h =

∑
λ∈�

〈 f̂ , π(Jλ)ĝ 〉π(Jλ)̂h

=
∑
λ∈�̂

〈 f̂ , π(λ)ĝ 〉π(λ)̂h = S�̂,̂g,̂h f̂ .

Since A�̂,̂g,̂h = S�̂,̂g,̂h |H1
�̂

: H1
�̂
(Rd) → H1

�̂
(Rd) is well-defined and bounded by

Proposition 3.2, the preceding calculation combined with the considerations from the
previous paragraph shows that Aw

�,g,h = S�,g,h |L2
w,�(Rd ) : L2

w,�(Rd) → L2
w,�(Rd)

is well-defined and bounded, with

Aw
�,g,h = F−1 ◦ A�̂,̂g,̂h ◦ F .

Finally, if g = h, we see σ(Aw
�,g,g) = σ(A�̂,̂g,̂g) = σ(S�̂,̂g,̂g) = σ(S�,g,g),

where the second step is due to Theorem 4.2, and the final step used the identity
S�,g,h = F−1 ◦ S�̂,̂g,̂h ◦ F from above. ��

Finally, we establish the corresponding properties for H
1
�(Rd) = H1

�(Rd) ∩
L2

w,�(Rd).

Corollary 4.4 Let � ⊂ Z
2d be a lattice. If g, h ∈ H

1
�(Rd), then S�,g,h maps H

1
�(Rd)

boundedly into itself. If g = h and A�,g := S�,g|H1
�(Rd ) ∈ B(H1

�(Rd)) denotes the

restriction of S�,g to H
1
�(Rd), then

σ(A�,g) = σ(S�,g). (4.3)
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Proof From the definition of H
1
� and the proof of Corollary 4.3 it is easy to see that

H
1
� = H1

� ∩ L2
w,�(Rd), and ‖ · ‖

H
1
�
� ‖ · ‖H1

�
+‖ · ‖L2

w,�
. Therefore, Proposition 3.2

and Corollary 4.3 imply that S�,g,h maps H
1
�(Rd) boundedly into itself.

Lemma 4.1 shows that to prove (4.3), it suffices to show σap(A�,g) ⊂ σ(S�,g).
Thus, let z ∈ σap(A�,g). Then there exists ( fn)n∈N ⊂ H

1
�(Rd) with ‖ fn‖H1

�
= 1 for

all n ∈ N and ‖(A�,g − z) fn‖H1
�
→ 0 as n → ∞. Thus, ‖(A�,g − z) fn‖H1

�
→

0 and ‖(Aw
�,g − z) fn‖L2

w,�
→ 0 as n → ∞. Furthermore, there is a subsequence

(nk)k∈N such that limk→∞ ‖ fnk‖H1
�

> 0 or limk→∞ ‖ fnk‖L2
w,�

> 0. Hence, z ∈
σ(A�,g) or z ∈ σ(Aw

�,g). But Theorem 4.2 and Corollary 4.3 show σ(A�,g) =
σ(Aw

�,g) = σ(S�,g). We have thus shown σap(A�,g) ⊂ σ(S�,g), so that Lemma 4.1
shows σ(A�,g) = σ(S�,g). ��

The next proposition shows that any operator obtained from S�,g through the holo-
morphic spectral calculus (see [22, Sects. 10.21–10.29] for a definition) maps each of
the spaces H1

�(Rd), L2
w,�(Rd), and H

1
�(Rd) into itself.

Proposition 4.5 Let � ⊂ R
2d be a lattice, let V ∈ {H1

�(Rd), L2
w,�(Rd), H

1
�(Rd)},

and g ∈ V . Then for any open set � ⊂ C with σ(S�,g) ⊂ �, any analytic function
F : � → C, and any f ∈ V , we have F(S�,g) f ∈ V .

Proof We only prove the claim for V = H1
�(Rd); the proofs for the other cases are

similar, using Corollaries 4.3 or 4.4 instead of Theorem 4.2. Thus, let g ∈ H1
�(Rd)

and set S := S�,g and A := A�,g . Let f ∈ H1
�(Rd) and define

h = − 1

2π i

∫
�

F(z) · (A − z)−1 f dz ∈ H1
�(Rd),

where� ⊂ �\σ(S) is afinite set of closed rectifiable curves surroundingσ(S) = σ(A)

(existence of such curves is shown in [24, Theorem 13.5]). Note that the integral
converges in H1

�(Rd). Since H1
�(Rd) ↪→ L2(Rd), it also converges (to the same

limit) in L2(Rd) and hence, by definition of the holomorphic spectral calculus,

F(S) f = − 1

2π i

∫
�

F(z) · (S − z)−1 f dz = h ∈ H1
�(Rd).

��
Our main result (Theorem 1.1) is now an easy consequence of Proposition 4.5.

Proof (Proof of Theorem 1.1) Using the fact that S�,g commutes with π(λ) for all
λ ∈ �, it is easily seen that (S−1�,g g,�) is the canonical dual frame of (g,�) and that

(S−1/2�,g g,�) is a Parseval frame for L2(Rd); see for instance, [5, Theorem12.3.2].Note

that since (g,�) is a frame for L2(Rd), we have σ(S�,g) ⊂ [A, B] where 0 < A ≤
B < ∞ are the optimal frame bounds for (g,�). Thus, we obtain S−1�,g g ∈ V� ⊂ V

and S−1/2�,g g ∈ V� ⊂ V from Proposition 4.5 with F(z) = z−1 and F(z) = z−1/2
(with any suitable branch cut; for instance, the half-axis (−∞, 0]), respectively, on
� = {

x + iy : x ∈ ( A
2 ,∞), y ∈ R

}
. ��
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Finally, we state and prove a version of Theorem 1.1 for Gabor frame sequences.
For completeness, we briefly recall the necessary concepts. Generally, a (countable)
family (hi )i∈I in a Hilbert space H is called a frame sequence, if (hi )i∈I is a frame
for the subspace H′ := span{hi : i ∈ I } ⊂ H. In this case, the frame operator
S : H → H, f �→ ∑

i∈I 〈 f , hi 〉hi , is a bounded, self-adjoint operator on H, and
S|H′ : H′ → H′ is boundedly invertible; in particular, ran S = H′ ⊂ H is closed, so
that S has a well-defined pseudo-inverse S†, given by

S† = (S|H′)−1 ◦ PH′ : H→ H′,

where PH′ denotes the orthogonal projection onto H′. The canonical dual system of
(hi )i∈I is then given by (h′i )i∈I = (S†hi )i∈I ⊂ H′, and it satisfies

∑
i∈I 〈 f , hi 〉h′i =∑

i∈I 〈 f , h′i 〉hi = PH′ f for all f ∈ H.
Finally, in the case where (hi )i∈I = (g,�) is a Gabor family with a lattice �, it

is easy to see that S ◦ π(λ) = π(λ) ◦ S and π(λ)H′ ⊂ H′ for λ ∈ �, which implies
PH′ ◦ π(λ) = π(λ) ◦ PH′ , and therefore S† ◦ π(λ) = π(λ) ◦ S† for all λ ∈ �.
Consequently, setting γ := S†g, we have S†(π(λ)g) = π(λ)γ , so that the canonical
dual system of a Gabor frame sequence (g,�) is the Gabor system (γ,�), where
γ = S†g is called the canonical dual window of (g,�). Our next result shows that
γ inherits the regularity of g, if one measures this regularity using one of the three
spaces H1, L2

w, or H
1.

Proposition 4.6 Let V ∈ {H1(Rd), L2
w(Rd), H

1(Rd)}. Let � ⊂ R
2d be a lattice and

let g ∈ V . If (g,�) is a frame sequence, then the associated canonical dual window
γ satisfies γ ∈ V .

Proof The frame operator S : L2(Rd) → L2(Rd) associated to (g,�) is non-negative
and has closed range. Consequently, there exist ε > 0 and R > 0 such that σ(S) ⊂
{0} ∪ [ε, R]; see for instance [3, Lemma A.2]. Now, with the open ball Bδ(0) := {z ∈
C : |z| < δ}, define

� := Bε/4(0) ∪
{
x + iy : x ∈ ( ε

2 , 2R), y ∈ (− ε
4 ,

ε
4 )

} ⊂ C,

noting that � ⊂ C is open, with σ(S) ⊂ �. Furthermore, it is straightforward to see
that

ϕ : � → C, z �→
{
0, if z ∈ Bε/4(0),

z−1, otherwise

is holomorphic. Since the functional calculus for self-adjoint operators is an extension
of the holomorphic functional calculus, [3, LemmaA.6] shows that S† = ϕ(S). Finally,
since g ∈ V�, Proposition 4.5 now shows that γ = S†g = ϕ(S)g ∈ V� ⊂ V as well.

��
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Appendix A: (Non)-convergence of Janssen’s Representation for H
1

Windows

In this appendix we provide a counterexample showing that Janssen’s representation
of the frame operator associated to a Bessel vector g ∈ H

1 in general does not converge
unconditionally with respect to the strong operator topology. We furthermore show
that for convergence in operator norm, even conditional convergence fails in general.

For simplicity, we only consider the setting d = 1 and the lattice� = Z×Z. Thus,
given a function g ∈ H

1 = H
1(R), we say that g is a Bessel vector if the Gabor system

(TkM� g)k,�∈Z ⊂ L2(R) is a Bessel system. In this case, Janssen’s representation of
the frame operator S := Sg := SZ×Z,g,g is (formally) given by

S =
∑

�,k∈Z
〈g, TkM� g〉 TkM�. (A.1)

We are interested in the question whether the series defining Janssen’s representation
is unconditionally convergent in the strong operator topology (SOT ), as an operator
on L2(R). We will construct a function g ∈ H

1 for which this fails.

A.1. Properties of the Zak Transform

The construction of the counterexample is based on several properties of the Zak
transform that we briefly recall. Given f ∈ L2(R), its Zak transform Z f ∈ L2

loc(R
2)

is defined as

Z f (x, ω) :=
∑
k∈Z

f (x − k)e2π ikω,

where the series converges in L2
loc(R

2); this is a consequence of the fact that

Z : L2(R) → L2([0, 1]2) is unitary, (A.2)

http://creativecommons.org/licenses/by/4.0/
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as shown in [12, Theorem 8.2.3] and of the fact that the Zak transform Z f of a function
f ∈ L2(R) is always quasi-periodic, meaning that

Z f (x + n, ω) = e2π inωZ f (x, ω) and Z f (x, ω + n) = Z f (x, ω) (A.3)

for (almost) all x, ω ∈ R and all n ∈ Z; see [12, Equations (8.4) and (8.5)]. Another
crucial property is the interplay between the Zak transform and the time-frequency
shifts TkMn , as expressed by the following formula (found in [12, Eq. (8.7)]):

Z [TkMn f ](x, ω) = e2π inx e−2π ikωZ f (x, ω) = en,−k(x, ω) Z f (x, ω), (A.4)

where we used the functions

en,k(x, ω) := e2π i(nx+kω) for n, k ∈ Z and x, ω ∈ R.

Note that (en,k)n,k∈Z is an orthonormal basis of L2([0, 1]2).
Finally, we note the following equivalence, taken from [2, Theorem 3.1]:

∀ g ∈ L2(R) : g is a Bessel vector ⇐⇒ Zg ∈ L∞([0, 1]2). (A.5)

A.2. Properties ofH
1

A further important property that we will use is the following characterization of the
space H

1 via the Zak transform, a proof of which is given in [3, Lemma 2.4].

∀ f ∈ L2(R) : f ∈ H
1 ⇐⇒ Z f ∈ W 1,2

loc (R2). (A.6)

It is crucial to observe that the Sobolev space W 1,2(R2) belongs to the “borderline”
case of the Sobolev embedding theorem, meaning W 1,2

loc (R2) �↪→ L∞loc(R2). In fact, it
is easy to verify (see e.g. [7, Page 280]) for x0 := ( 12 ,

1
2 )

T ∈ R
2 that the function

u0 : (0, 1)2 → R, x �→ ln

(
ln

(
1+ 1

|x − x0|
))

belongs toW 1,2((0, 1)2), but is not essentially bounded. Now, using the chain rule and
the product rule for Sobolev functions (see e.g. [20, Exercise 11.51] and [7, Theorem 1
in Sect. 5.2.3]), we see that if ϕ ∈ C∞c ((0, 1)2) is chosen such that 0 ≤ ϕ ≤ 1 and
such that ϕ ≡ 1 on a neighborhood of x0, then the function

u : R
2 → [0,∞), x �→ ϕ(x) · (1+ sin(u0(x))

)
(A.7)

satisfies u ∈ W 1,2(R2), is continuous and bounded on R
2 \ {x0}, but limx→x0 u(x)

does not exist; this uses that limx→∞ sin(x) does not exist and that on each small ball
Bε(x0), the function u0 attains all values from (M,∞), for a suitable M = M(ε) > 0.
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A.3. A Connection to Fourier Series

In this subsection, we show that for any fixed window g ∈ L2(R) the unconditional
convergence of Janssen’s representation in the strongoperator topology implies that the
partial sums of a certain Fourier series are uniformly bounded in L∞. This connection
will be used in the next subsection to disprove the unconditional convergence of
Janssen’s representation in the strong operator topology.

Precisely, define Q := [0, 1]2. For H ∈ L∞(Q), define the associated multiplica-
tion operator as

MH : L2(Q) → L2(Q), F �→ F · H .

It is well-known that ‖MH‖L2→L2 = ‖H‖L∞ .
Let us fix any window g ∈ L2(R). Given a finite set I ⊂ Z

2, we define

SI : L2(R) → L2(R), f �→
∑

(k,�)∈I
〈g, TkM�g〉TkM� f .

Using Eq. A.4 and the isometry of the Zak transform, we then see

Z(SI f ) =
∑

(k,�)∈I
〈Zg, Z [TkM�g]〉L2(Q)Z [TkM� f ]

= Z f ·
∑

(k,�)∈I
〈Zg, Zg · e�,−k〉L2(Q) · e�,−k

= Z f ·
∑

(k,�)∈I
〈Zg · Zg, e�,−k〉L2(Q) · e�,−k

= Z f ·
∑

(k,�)∈I
|̂Zg|2(�,−k) · e�,−k

= MFI ′ [|Zg|2][Z f ],

where I ′ := {(�,−k) : (k, �) ∈ I } and

FJ H :=
∑
α∈J

Ĥ(α) eα with Ĥ(α) = 〈H , eα〉L2(Q) for J ⊂ Z
2.

In other words, we have

SI = Z−1 ◦ MFI ′ [|Zg|2] ◦ Z . (A.8)

Given J ⊂ Z
2, define J∗ := {(−�, k) : (k, �) ∈ J } and note (J∗)′ = J . Now, suppose

that (SI )I converges strongly to some (bounded) operator, as I → Z
2; this is always

the case if Janssen’s representation converges unconditionally (to S or some other
operator) in the SOT. Then, given any sequence (Jn)n∈N of finite subsets Jn ⊂ Z

2 with
Jn ⊂ Jn+1 and

⋃∞
n=1 Jn = Z

2, we see (Jn)∗ → Z
2 so that the sequence (S(Jn)∗)n∈N
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converges strongly to some bounded operator. By the uniform boundedness principle,
this shows ‖S(Jn)∗‖L2→L2 ≤ C for all n ∈ N and some C > 0. By Eqs. A.2 and A.8,
and because of ((Jn)∗)′ = Jn , this implies

∥∥FJn [|Zg|2]
∥∥
L∞(Q)

= ∥∥MFJn [|Zg|2]
∥∥
L2→L2 ≤ C ∀ n ∈ N,

meaning that the partial Fourier sums FJn [|Zg|2] of the function |Zg|2 are uniformly
bounded in L∞(Q).

A.4. The Counterexample

In this subsection, we prove the following:

Proposition A.1 There exists a Bessel vector g ∈ H
1(R) such that the series defining

Janssen’s representation of the frame operator S = Sg = SZ×Z,g,g associated to g is
not unconditionally convergent in the strong operator topology.

To prove the proposition, we consider the function F := u : (0, 1)2 → [0,∞)

introduced in Eq. A.7. The properties of F that we need are the following:

(1) F has compact support in (0, 1)2, say supp F ⊂ (δ, 1− δ)2 for some δ ∈ (0, 1
2 ).

(2) F is bounded, but discontinuous at x0 ∈ (0, 1)2 (even after adjusting F on a set
of measure zero).

(3) F ∈ W 1,2
(
(0, 1)2

)
.

We now extend F by zero to [0, 1)2 and then extend 1-periodically in both coordinates
to R

2. Thanks to the compact support of F , it is easy to see that F ∈ W 1,2
loc (R2).

Furthermore, we consider the function

G0 : R
2 → C, (x, ω) �→ e2π i�x�ω,

where for each x ∈ R, �x� ∈ Z denotes the unique integer such that x ∈ �x�+ [0, 1).
It is then straightforward to verify that G0 is quasi-periodic (see Eq. A.3), i.e., G0(x+
m, ω) = e2π imωG0(x, ω) and G0(x, ω + m) = G0(x, ω) for x, ω ∈ R and m ∈ Z.
Since F is 1-periodic in both coordinates, it is easy to see that F ·G0 is quasi-periodic
as well.

Finally, we choose a smooth function ψ : R → R satisfying ψ(x) = n for all
x ∈ n + [δ, 1− δ] with n ∈ Z, and define

G : R
2 → C, (x, ω) �→ e2π iψ(x)ω.

Using that F(x, ω) = 0 for n ∈ Z and x ∈ [n, n+ 1] \ (n+ δ, n+ 1− δ), it is easy to
check F ·G0 = F ·G, so that H := F ·G ∈ W 1,2

loc (R2) ⊂ L2
loc(R

2) is quasi-periodic.
Since the Zak transform Z : L2(R) → L2((0, 1)2) is unitary, there exists a unique

function g ∈ L2(R) such that (Zg)|(0,1)2 = H |(0,1)2 . Since both Zg and H are

quasi-periodic, this implies Zg = H almost everywhere. Since H ∈ W 1,2
loc (R2) is

bounded, Eqs. A.5,A.6 show that g ∈ H
1 is a Bessel vector. Let us assume towards
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a contradiction that Janssen’s representation of the frame operator associated to g
converges unconditionally in the strong operator topology.

Note that |Zg|2 = |H |2 = F2 is discontinuous at x0 ∈ (0, 1)2 (since F is discontin-
uous there and also non-negative), even after possibly changing |Zg|2 on a null-set. In
particular, this implies that the Fourier coefficients cα := |̂Zg|2(α) (forα ∈ Z

2) satisfy
c = (cα)α∈Z2 /∈ �1(Z2), since otherwise theFourier series of |Zg|2 wouldbeuniformly
convergent. This implies

∑
α∈Z2 |�cα| = ∞ or

∑
α∈Z2 |�cα| = ∞. For simplicity,

we assume the first case; the second case can be treated by similar arguments. This
implies that there exists an enumeration (αn)n∈N of Z

2 such that |∑N
n=1�cαn | → ∞

as N →∞. Indeed, if
∑

α∈Z2(�cα)+ < ∞ or
∑

α∈Z2(�cα)− < ∞, this is trivial (for
every enumeration); otherwise, existence of the desired enumeration follows from the
Riemann rearrangement theorem (see e.g., [23, Theorem 3.54]).

Now, define Jn := {α1, . . . , αn} for n ∈ N.We have seen inAppendix 1 that the par-
tial Fourier sumsFJn [|Zg|2] are uniformly bounded in L∞, say ‖FJn [|Zg|2]‖L∞ ≤ C
for all n ∈ N. Since each FJn [|Zg|2] is continuous (in fact, a trigonometric polyno-
mial), this implies

C ≥ ∣∣FJN |Zg|2(0)
∣∣ = ∣∣∣ ∑

α∈JN
|̂Zg|2(α) · e2π i〈α,0〉

∣∣∣

=
∣∣∣ ∑
α∈JN

cα

∣∣∣ ≥ ∣∣∣�
N∑

n=1
cαn

∣∣∣ →∞ as N →∞,

which is the desired contradiction.

A.5. Conditional Divergence of Janssen’s Representation in the Operator Norm

We showed above that unconditional convergence of Janssen’s representation (A.1)
in the strong operator topology fails for some Bessel vector g ∈ H

1(R). A similar
argument shows that convergence in the operator norm (with respect to any given
enumeration) also fails in general: Using Eq. A.8 (or more generally the arguments in
Appendix 1), it is relatively easy to see that if for some enumerationZ

2 = {αn : n ∈ N}
and In := {α1, . . . , αn}, the sequence of partial sums (SIn )n∈N of Janssen’s rep-
resentation (A.1) converges in operator norm (not even necessarily to S), then the
associated sequence (FI ′n [|Zg|2])n∈N of partial Fourier sums of |Zg|2 is Cauchy in
L∞(Q) and thus converges uniformly on Q to a (necessarily continuous) function
H̃ : Q → C. However, since |Zg|2 = |H |2 = F2 ∈ L∞(Q) ⊂ L2(Q), we know
that FI ′n [|Zg|2] → F2 with convergence in L2(Q). Hence, F2 = H̃ almost every-
where on Q, where H̃ is continuous. But we saw above that F2 is discontinuous on
Q, even after (possibly) changing it on a null-set. Thus, we have obtained the desired
contradiction:

Proposition A.2 There are Bessel vectors g ∈ H
1 for which Janssen’s representation

fails to converge conditionally in the operator norm.

However, we leave it as an open question whether Janssen’s representation con-
verges conditionally in the strong sense for Bessel vectors g ∈ H

1.
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