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Abstract
In this letter we present a dual weight version of a localized Parseval identity found
by Coifman and Steinerberger for the finite Hilbert transform.
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1 Introduction

All the functions considered in this letter are real-valued. Recall that the Hilbert trans-
form H of a function f on R (in proper function spaces) is defined by

H( f )(x) = p.v.
1

π

∫
R

f (y)

x − y
dy,
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where “p.v." stands for the principal value. This singular integral operator has a local
version, say on the interval I = (−1, 1), and is given by

HI ( f )(x) = p.v.
1

π

∫ 1

−1

f (y)

x − y
dy.

It is called the finite Hilbert transform and arises naturally in applied science. In
particular, the resolution of the following airfoil equation from aerodynamics,

HI ( f )(x) = φ(x) (−1 < x < 1),

involves the inversion of HI in proper function spaces. The airfoil equation is
approached by Tricomi in [7] via establishing some convolution theorems for HI ;
these convolution identities are motivated by his earlier study on mixed type equa-
tions. A byproduct from [7] is the following arcsine distribution uniqueness.

Theorem 1.1 (Tricomi 1951)Let f (x)(1−x2)
1
4 ∈ L2

I = L2(−1, 1). If H( f ) vanishes
identically on I = (−1, 1), then for some real-valued constant c,

f (x) = c√
1 − x2

χI (x).

Here, χI is the indicator function of I .

Remark 1.2 For an application of this to Erdös-Turán inequality, see [1].

Recently, this uniqueness result is revisited by Coifman and Steinerberger in [2].
They further observed the following localized Parseval identity for HI .

Theorem 1.3 (Coifman and Steinerberger 2019) Let f (x)(1− x2)
1
4 ∈ L2

I . If the mean

value of f (x)(1 − x2)
1
2 on I is 0, then

∫ 1

−1
HI ( f )

2(x)
√
1 − x2dx =

∫ 1

−1
f 2(x)

√
1 − x2dx . (1.1)

This complements the global L2-isometry for the standard Hilbert transform H :

‖H( f )‖L2(R) = ‖ f ‖L2(R).

Two proofs for the localized Parseval identity (1.1) are offered in [2]: one is by Cheby-
chev orthogonal expansion (see e.g. [6]), another by working on the unit circle and
using the formula of conjugate functions as carried out in [3]. In this letter we point
out that the identity (1.1) admits the following dual weight version.

Theorem 1.4 Let f (x)(1 − x2)− 1
4 ∈ L2

I . Then

∫ 1

−1
HI ( f )

2(x)
dx√
1 − x2

=
∫ 1

−1
f 2(x)

dx√
1 − x2

. (1.2)
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Remark 1.5 Such a dual weight mechanism is indeed quite common in boundary value
problems, see for example Rosén [5] on Euclidean upper half-space.

2 Proof of Theorem 1.4

Our proof of (1.2) adapts the Chebychev orthogonal expansion arguments in [2].
Consider f so that f (x)√

1−x2
is a polynomial. For some N ∈ N we can write

f (x)√
1 − x2

=
N∑

k=0

akUk(x),

where {Uk} denotes the family ofChebychev polynomials of the second kind. Thereby,

∫ 1

−1
f 2(x)

dx√
1 − x2

=
∫ 1

−1

(
f (x)√
1 − x2

)2 √
1 − x2dx

= π

2

N∑
k=0

a2k .

Furthermore, we have

HI ( f ) = p.v.
1

π

∫ 1

−1

f (y)/
√
1 − y2

x − y

√
1 − y2dy

= p.v.
1

π

∫ 1

−1

N∑
k=0

akUk(y)

x − y

√
1 − y2dy.

After using the crucial formulae (see for example [4, p. 187])

p.v.
1

π

∫ 1

−1

Uk(y)

x − y

√
1 − y2dy = −Tk+1(x),

where {Tk} denotes the family of Chebychev polynomials of the first kind, we get

∫ 1

−1
HI ( f )

2(x)
dx√
1 − x2

= π

2

N∑
k=0

a2k .

This proves the identity (1.2) for f such that f (x)√
1−x2

is a polynomial. Note that the

subspace of such functions is dense in L2
(
I , (1 − x2)− 1

2 dx
)
, so HI extends to an

isometry H̃I on L2
(
I , (1 − x2)− 1

2 dx
)
.Moreover, this extension agreeswith HI since

L2
(
I , (1 − x2)− 1

2 dx
)
embeds into L2

I . This finishes the proof of Theorem 1.4.
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