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Abstract
We establish Fourier extension estimates for compact subsets of the hyperbolic hyper-
boloid in three dimensions via polynomial partitioning.

Keywords Fourier restriction · Polynomial partitioning · Hyperboloid · Oscillatory
integrals

1 Introduction

In this article, we establish Fourier extension estimates for compact subsets of the
hyperbolic, or one-sheeted, hyperboloid in three dimensions. This surface may be
defined as the set of points (τ, ξ) ∈ R×R

2 satisfying the relation τ 2 = 1+ ξ21 − ξ22 .

Setting φ(ξ) :=
√
1+ ξ21 − ξ22 and� := {ξ ∈ R

2 : 1+ ξ21 − ξ22 ≥ 0}, we may restrict
our attention to the graph

� := {(φ(ξ), ξ) : ξ ∈ �}.

We aim to adapt the polynomial partitioning method of Guth [5] to obtain extension
estimates for a bounded subset of � near (1, 0), which we denote by �1. Use of the
parabolic scalings Pr (τ, ξ) := (r−2τ, r−1ξ) in Guth’s argument presents an imme-
diate obstacle here, as hyperboloids are not invariant under such transformations. To
overcome this minor issue, we will simultaneously prove extension estimates for all
parabolic rescalings of �1 with constants uniform in the scaling parameter. Toward
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that end, let U := {ξ : |ξ | ≤ δ0/10}, where δ0 > 0 is a small constant to be chosen
later, and for each r ∈ (0, 1], let φr (ξ) := r−2(φ(rξ)− 1) and

�r := {(φr (ξ), ξ) : ξ ∈ U }.

Each �r is the image of �1 ∩ {(τ, ξ) : ξ ∈ rU } under the parabolic scaling Pr , and
the ‘−1’ in φr just makes �r converge to the hyperbolic paraboloid �0 := {( 12 (ξ21 −
ξ22 ), ξ) : ξ ∈ U } as r → 0. We associate to �r the extension operator

Er f (t, x) :=
∫

U
e2π i(t,x)·(φr (ξ),ξ) f (ξ)dξ.

Theorem 1.1 If q > 13/4 and p > (q/2)′, then Er : L p(U )→ Lq(R3)with operator
norm bounded uniformly in r .

Remark 1.2 The bilinear and bilinear-to-linear theories for E1 appear in a separate
article [1] of Stovall, Oliveira e Silva, and the author. Using the bilinear machinery
and Theorem 1.1, boundedness of Er on the parabolic scaling line p = (q/2)′ (for
q > 13/4) can also be proved. See [1, Remark 5.2], as well as [8], [9], and [6] for
arguments of this type.

Theorem 1.1 can be compared to several recent developments in the restric-
tion/extension theory for hyperbolic surfaces in three dimensions. Cho and Lee [3]
generalized Guth’s argument in [5] to the hyperbolic paraboloid, proving strong type
(p, q) extension estimates in the range q > 13/4, p ≥ q. Later work of Kim [6] and
Stovall [8] brought those estimates to the scaling line p = (q/2)′. (Letting r → 0 and
applying Fatou’s lemma, Theorem 1.1 reproves the off-scaling extension estimates for
the hyperbolic paraboloid.) Recently, Buschenhenke–Müller–Vargas [2] and Guo–Oh
[4] independently obtained extension estimates for all smooth compact surfaces inR3

with negative Gaussian curvature using polynomial partitioning. In particular, Theo-
rem 1.1 is now (essentially) a special case of their results, which were announced after
the completion of the arXiv preprint version of the present article.

The rest of the article is organized as follows: In Sect. 2, we adapt the notion of
‘broad points’ in [5] to the hyperbolic hyperboloid, motivating our definition through
the geometry of the surface. In Sect. 3,we useKim’s argument in [6] to reduceTheorem
1.1 to Theorem 2.1, an estimate on the contribution to Er from broad points. Finally, in
Sect. 4, the heart of the article, we prove Theorem 2.1 using polynomial partitioning
as in [5].

Notation and Terminology As is standard, we write A � B or A = O(B) if there
exists a constant C > 0 such that A ≤ CB. Generally, an implicit constant is not
allowed to depend on any parameters present in the article. In particular, constants
never depend on the parabolic scaling parameter r . There are exceptions: In Sect. 4,
constants may depend on the exponent ε from Theorems 2.1 and 4.1. To highlight
dependence on a parameter s, we will sometimes write �s in place of �. Likewise,
we write c � 1 to mean that c is sufficiently small, and we use subscripts to indicate
dependence on parameters. A number δ is ‘dyadic’ if δ = 2 j for some j ∈ Z, and an
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interval I is ‘dyadic’ if I = [k2 j , (k + 1)2 j ) for some j, k ∈ Z. If u, v are geometric
objects that form an angle, such as two lines or a vector and a plane, then ∠(u, v)

denotes the measure of their (smallest) angle. Finally, ‘hyperboloid’ always means the
hyperbolic (one-sheeted) hyperboloid.

2 Broad Points and the Geometry of the Hyperboloid

In this section, we adapt the notion of ‘broad points’ to the hyperboloid. Informally,
given a function f ∈ L1(U ), a point (t, x) ∈ R × R

2 is ‘broad’ for Er f if there
exist small, well-separated squares τ1, τ2 ⊆ U such that f χτ1 and f χτ2 contribute
significantly to Er f (t, x); otherwise (t, x) is ‘narrow’. To estimate Er f , it suffices to
bound the contributions from broad and narrow points separately. The narrow contri-
bution will be handled by a parabolic rescaling argument, since (morally) its Fourier
transform is supported in a small rectangular cap in�r . The broad contribution will be
handled by polynomial partitioning, using, in particular, some techniques from bilin-
ear restriction theory. In the latter argument, the precise separation condition imposed
on the squares τ1, τ2 will be crucial for ensuring that their lifts to �r are appropri-
ately transverse. Our choice of this condition will be motivated by the geometry of the
hyperboloid, which we now describe.

First, the basic symmetries of the hyperboloid are the Lorentz transformations,
linear maps on R × R

2 that preserve the quadratic form (τ, ξ) 
→ τ 2 − ξ21 + ξ22 .
Concretely, the spatial rotations

Rω(τ, ξ) := (−ω2ξ2 + ω1τ, ξ1, ω1ξ2 + ω2τ), ω ∈ S
1, (2.1)

boosts

Bν(τ, ξ) := (− νξ1 +
√
1+ ν2τ,

√
1+ ν2ξ1 − ντ, ξ2

)
, ν ∈ R, (2.2)

and dilations

Dλ(τ, ξ) :=
(

τ,
λ+ λ−1

2
ξ1 + λ− λ−1

2
ξ2,

λ− λ−1

2
ξ1 + λ+ λ−1

2
ξ2

)
, λ ∈ R,

(2.3)

will be of particular use to us. We define a measure dμ on � by setting

∫

�

gdμ :=
∫

�

g(φ(ξ), ξ)
dξ

φ(ξ)
(2.4)

for g continuous and compactly supported. This measure is Lorentz invariant in the
following sense: If L is a Lorentz transformation and supp g ⊆ � and L−1(supp g) ⊆
�, then

∫

�

(g ◦ L)dμ =
∫

�

gdμ.
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We also record the following notation for later use. Given a Lorentz transformation L
and ξ ∈ �, let

L(ξ) := π(L(φ(ξ), ξ)), (2.5)

where π(τ, ξ) := ξ is the projection to the spatial coordinates. If L(φ(ξ), ξ) ∈ �

(equivalently, if e1 · L(φ(ξ), ξ) ≥ 0), then ML(ξ) = M(L(ξ)) for any other Lorentz
transformation M . In particular, if V ⊆ � and L(φ(ξ), ξ) ∈ � for ξ ∈ V , then L is

invertible on V with L
−1

(ζ ) = L−1(ζ ) for ζ ∈ L(V ).
Second, the (hyperbolic) hyperboloid is doubly ruled. The aforementioned sep-

aration condition will be adapted to this structure: Informally, two small squares
τ1, τ2 ⊆ U will be ‘separated’ if their lifts to the hyperboloid do not intersect a
common line contained in the surface. While the precise version of this condition will
be stated in Sect. 4, we record a few preparatory details here. The Lorentz norm of
(τ, ξ) ∈ R× R

2 is defined as

�(τ, ξ)� :=
√
|τ 2 − ξ21 + ξ22 |.

It is clearly Lorentz invariant, and if (τ, ξ), (τ ′, ξ ′) ∈ �, then �(τ, ξ)− (τ ′, ξ ′)� = 0
if and only if (τ, ξ) and (τ ′, ξ ′) belong to a common line contained �. The latter
property can be checked by using the formulae

�±(τ,ξ)(t) := (τ, ξ)+ t(ξ1τ ∓ ξ2, 1+ ξ21 , ξ1ξ2 ± τ), (2.6)

which parametrize the lines �±(τ,ξ) ⊂ � that intersect at (τ, ξ) ∈ �. We also define the
Lorentz separation of ξ, ζ ∈ � as the quantity

distL(ξ, ζ ) := �(φ(ξ), ξ)− (φ(ζ ), ζ )�,

which can be viewed as the ‘distance’ between (φ(ξ), ξ) and (φ(ζ ), ζ ) modulo the
rulings of�. Given this definition, amore accurate rendering of our separation require-
ment would be that distL(ξ, ζ ) � 1 for all ξ ∈ τ1 and ζ ∈ τ2. Near the end of this
section, we will prove Lemma 2.2, which relates distL to some other geometric quan-
tities.

Having described the geometry of the hyperboloid, we turn to defining broad points.
Our first step is to divide each surface �r into caps that lie above special sets which
we call tiles. Consider the map � : R2 → R

2 given by

�(ξ) :=
(ξ1

√
1+ ξ22 + ξ2

√
1+ ξ21 , ξ2 − ξ1)√

1+ ξ21 +
√
1+ ξ22

and, for each r ∈ (0, 1], let �r (ξ) := r−1�(rξ). Recall the constant δ0 used to define
U , and assume henceforth that δ0 is dyadic. Given two dyadic numbers δ, δ′ ∈ (0, δ0],
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a (δ, δ′, r)-tile is any nonempty set of the form

ρ := �r (Iδ × Iδ′) ∩U ,

where Iδ and Iδ′ are dyadic intervals contained in [−δ0, δ0) of length δ and δ′,
respectively. We denote the set of (δ, δ′, r)-tiles by Tδ,δ′,r . Observe that � is a dif-
feomorphism near the origin. (Indeed, � can be viewed as a perturbation of the
map ξ 
→ 1

2 (ξ1 + ξ2, ξ2 − ξ1) for ξ small.) Taking δ0 sufficiently small, it is
straightforward to check that ‖�−1r ‖C1(U ) � 1 uniformly in r , and consequently that
U ⊆ �r ([−δ0, δ0)

2) for every r . We also note that for fixed δ, δ′, r , the (δ, δ′, r)-tiles
are pairwise disjoint and satisfy

U =
⋃

ρ∈Tδ,δ′,r

ρ.

Let us briefly mention the geometry underlying these definitions. The map � was
created with the following property in mind: If � ⊂ R

2 is a vertical or horizontal
line that intersects �−1r (U ), then �r (�) is a line that lifts to a line contained in �r .
Thus, each tile lifts to a quadrilateral (in fact, nearly rectangular) cap bounded by four
lines. We can think of the collection {Tδ,δ′,r }δ,δ′ as a dyadic grid adapted to �r . A
more precise geometric description of � will appear in Lemma 2.3 at the end of this
section.

Now, let K ≥ δ−10 be a large dyadic constant. As suggested above, we will analyze
contributions to Er from square-like sets τ . The (K−1, K−1, r)-tiles will function as
these basic pieces. However, controlling contributions from longer rectangle-like sets
will also be essential. (As we will see, a collection of non-separated squares τ must
cluster around a line.) For each dyadic number δ ∈ [K−1, δ0], let

Rδ,r := TK−1,δ,r ∪ Tδ,K−1,r

and also set

Rr :=
⋃

δ∈[K−1,δ0]
Rδ,r .

Elements ofRδ,r resemble rectangles of dimensions K−1×δ and slope approximately
1 or −1. We are now ready to define broad points. Given f ∈ L1(U ) and α ∈ (0, 1],
we say that (t, x) ∈ R× R

2 is α-broad for Er f if

max
ρ∈Rr

|Er fρ(t, x)| ≤ α|Er f (t, x)|,

where fρ := f χρ . The α-broad part of Er f is defined as

Brα Er f (t, x) :=
{
Er f (t, x) if (t, x) is α-broad for Er f ,
0 otherwise.
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In the next section, we will reduce Theorem 1.1 to the following estimate on the broad
part:

Theorem 2.1 For every 0 < ε � 1, there exists a constant Cε, depending only on ε,
such that if K = 2�ε−10�, then

‖BrK−ε Er f ‖L13/4(BR) ≤ CεR
ε‖ f ‖12/132 ‖ f ‖1/13∞

for all r ∈ (0, 1], R ≥ 1, and balls BR of radius R.

To conclude this section, we present two geometric lemmas. We will need the
following notation: For ξ ∈ �, let �±ξ denote the lines in R

2 parametrized by

�±ξ (t) := ξ + t(1+ ξ21 , ξ1ξ2 ± φ(ξ)). (2.7)

Geometrically, �±ξ are the projections to the spatial coordinates of the lines �±(φ(ξ),ξ)

defined in (2.6).

Lemma 2.2 For all ξ, ζ ∈ U, we have

(a) dist(ξ, �+ζ ∪ �−ζ ) � distL(ξ, ζ ) � |ξ − ζ |;
(b) distL(ξ, ζ )2 ∼ |〈(∇2φ(ξ))−1(∇φ(ξ)−∇φ(ζ )),∇φ(ξ)−∇φ(ζ )〉|.
Proof (a) Let ξ ′ be the intersection of �−ξ and �+ζ . An easy calculation shows that

∠(�+η , �−
η′) � 1 for all η, η′ ∈ U . (In fact, the lines are nearly orthogonal.) In particular,

the law of sines implies that ξ ′ ∈ CU for some constantC . Let L := BνRω, as defined
in (2.1) and (2.2), with

ν := ζ1,

ω :=
(

φ(ζ )√
1+ ζ 2

1

,− ζ2√
1+ ζ 2

1

)
.

Then L(φ(ζ ), ζ ) = (1, 0). Let η := L(ξ) and η′ := L(ξ ′), using the notation from
(2.5). Since ν and ω2 are very small, L is essentially a perturbation of the identity. It
is easy to check that L(φ(ξ), ξ) ∈ � for all ξ ∈ CU , provided δ0 is sufficiently small,

and thus L is invertible onCU . Additionally, we have the bound ‖L−1‖C1(L(CU )) � 1.
Combining these facts, we see that

dist(ξ, �+ζ ) ≤ |ξ − ξ ′| � |η − η′|. (2.8)

Since L preserves the hyperboloid and is linear, it must permute the lines contained
in the surface. Therefore, since L is close to the identity,

L(�+ζ ) = �+0 = R(1, 1),

L(�−ξ ) = �−η ,
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which implies that {η′} = R(1, 1) ∩ �−η . Then, since η ∈ �−η and ∠(R(1, 1), �−η ) � 1,
it follows that |η − η′| � dist(η,R(1, 1)). Thus, by (2.8), we have dist(ξ, �+ζ ) �
dist(η,R(1, 1)) ≤ |η1 − η2|. A similar argument shows that dist(ξ, �−ζ ) � |η1 + η2|.
Hence,

dist(ξ, �+ζ ∪ �−ζ ) = min{dist(ξ, �+ζ ), dist(ξ, �−ζ )}
≤

√
|η21 − η22|

�
√|1− φ(η)|

∼ �(φ(η), η)− (1, 0)�

= distL(ξ, ζ ),

where the last step used the Lorentz invariance of the Lorentz norm. The second
inequality in (a) can be proved in a similar (but easier) fashion. (It also follows from
part (b), using the Cauchy–Schwarz inequality and bounds on the derivatives of φ.)

(b) A straightforward computation shows that the right-hand side of (b) is equal to

1

φ(ξ)φ(ζ )2
|(1+ ξ21 )(ξ1φ(ζ )− ζ1φ(ξ))2 + 2ξ1ξ2(−ξ2φ(ζ )+ ζ2φ(ξ))(ξ1φ(ζ )

− ζ1φ(ξ))+ (−1+ ξ22 )(−ξ2φ(ζ )+ ζ2φ(ξ))2|.

The expression inside absolute value signs is equal to

φ(ξ)2[(1+ ξ21 )ζ 2
1 − 2ξ1ξ2ζ1ζ2 + (−1+ ξ22 )ζ 2

2 ] + φ(ξ)φ(ζ )[−2(1+ ξ21 )ξ1ζ1

+ 2ξ1ξ2(ξ2ζ1 + ξ1ζ2)− 2(−1+ ξ22 )ξ2ζ2] + φ(ζ )2[(1+ ξ21 )ξ21 − 2ξ21 ξ22

+ (−1+ ξ22 )ξ22 ],

which, by the relations φ(ξ)2 = 1+ ξ21 − ξ22 and φ(ζ )2 = 1+ ζ 2
1 − ζ 2

2 , simplifies to

φ(ξ)2[(ξ1ζ1 − ξ2ζ2)
2 + φ(ζ )2 − 1] + 2φ(ξ)φ(ζ )[−ξ1ζ1 + ξ2ζ2]

+ φ(ζ )2φ(ξ)2[φ(ξ)2 − 1].

Thus, by a bit more algebra, the right-hand side of (b) factors as

φ(ξ)

φ(ζ )2
|1+ ξ1ζ1 − ξ2ζ2 − φ(ξ)φ(ζ )||ξ1ζ1 − ξ2ζ2 − φ(ξ)φ(ζ )− 1|.

We also compute that

distL(ξ, ζ )2 = 2|1+ ξ1ζ1 − ξ2ζ2 − φ(ξ)φ(ζ )|,

and (b) follows. ��
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Let us briefly interpret Lemma 2.2. Part (a) says that points with small Lorentz
separation lie near a common line, while points with large Lorentz separation are
genuinely separated. Part (b) relates Lorentz distance to a measure of ‘transversality’
that naturally arises in bilinear restriction theory (see [7, Theorem 1.1]). Crucially,
whenever ξ and ζ belong to separated squares (as discussed above), the right-hand
side of (b) will be bounded below.

Lemma 2.3 If ξ ∈ U and ζ = �−1(ξ), then �+ξ ∩ 2U = �({ζ1} × R) ∩ 2U and

�−ξ ∩ 2U = �(R× {ζ2}) ∩ 2U.

Proof We will only prove the first equality; the second follows in a similar manner.
The proof rests on two claims.

Claim 1. If |ξ |, |ξ ′| ≤ 1/2 and ξ ′ ∈ �+ξ , then �+
ξ ′ = �+ξ . Consider the lines �+ξ ,

�+
ξ ′ , and �−

ξ ′ . Each one contains ξ ′ and lifts to a line contained in �. By elementary
geometry, no three lines in the hyperboloid intersect at a common point. Thus, two of
�+ξ , �

+
ξ ′ , and �−

ξ ′ must be identical. Since �+
ξ ′ �= �−

ξ ′ and �+ξ �= �−
ξ ′ , as is easy to check,

we conclude that �+
ξ ′ = �+ξ .

Claim 2. For every ξ ∈ R
2, we have {�(ξ)} = �+(ξ1,0) ∩ �−(ξ2,0). This relation can

be checked directly, using (2.7). It is helpful to reparametrize (2.7) so that the second
coordinates of �+(ξ1,0)(t) and �−(ξ2,0)(t) are identically t and −t , respectively.

Now, fix ξ ∈ U and let ζ := �−1(ξ). Let ξ ′ ∈ �+ξ ∩ 2U and ζ ′ := �−1(ξ ′). Claim
2 implies that ξ ∈ �+(ζ1,0) and ξ ′ ∈ �+

(ζ ′1,0)
. Hence, by claim 1, we have �+(ζ1,0) = �+ξ =

�+
ξ ′ = �+

(ζ ′1,0)
, and it follows that ζ1 = ζ ′1. Since ξ ′ was arbitrary, we conclude that

�+ξ ∩2U ⊆ �({ζ1}×R)∩U . The other direction is similar: Let ξ ′ ∈ �({ζ1}×R)∩2U ,

so that ξ ′ = �(ζ1, t)with (ζ1, t) ∈ �−1(2U ) ⊆ �. Claim2 implies that ξ, ξ ′ ∈ �+(ζ1,0).
Hence, ξ ′ ∈ �+ξ by claim 1, and it follows that �({ζ1} × R) ∩ 2U ⊆ �+ξ ∩ 2U . ��

3 Reduction to Theorem 2.1

In this section, we adapt the argument of Kim in [6] to show that Theorem 2.1 implies
Theorem 1.1. The following parabolic rescaling lemma is the main tool required for
this reduction.

Lemma 3.1 Let r ∈ (0, 1] be dyadic and let θ ∈ [0, 1]. If ‖Esg‖Lq (BR/2) ≤
M‖g‖1−θ

2 ‖g‖θ∞ for all s ∈ (0, 1], balls BR/2 of radius R/2, and g ∈ L∞(U ), then

there exists an absolute constant C such that ‖Er h‖Lq (BR) ≤ CM(δδ′)
1+θ
2 − 2

q ‖h‖1−θ
2‖h‖θ∞ for all bounded functions h supported in ρ ∈ Tδ,δ′,r , provided δ, δ′ are suffi-

ciently small.

Proof Fix h ∈ L∞(U ) supported in ρ ∈ Tδ,δ′,r . There exists ρ1 ∈ Trδ,rδ′,1 such that
rρ ⊆ ρ1. By parabolic rescaling, we have

‖Er h‖Lq (BR) = r
4
q−2‖E1hρ1‖Lq (Pr (BR)),
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where hρ1 := h(r−1·) is supported in ρ1. We assume without loss of generality
that δ ≤ δ′ and fix η ∈ ρ1. We claim that ρ1 lies in the intersection of an O(rδ)-
neighborhood of �+η and an O(rδ′)-neighborhood of �−η . Indeed, let η′ ∈ ρ1 and set
ζ = �−1(η) and ζ ′ = �−1(η′). By the definition of (rδ, rδ′, 1)-tile, we have

dist(ζ ′, ({ζ1} × R) ∩�−1(U )) ≤ rδ,

dist(ζ ′, (R× {ζ2}) ∩�−1(U )) ≤ rδ′.

Thus, by Lemma 2.3 and the boundedness of ‖∇�‖ near the origin, it follows that

dist(η′, �+η ) � rδ,

dist(η′, �−η ) � rδ′,

proving the claim.
Now, let L := (DλBνRω)−1 with

λ :=
√

δ

δ′
,

ν := η1,

ω :=
(

φ(η)√
1+ η21

,− η2√
1+ η21

)
,

using the notation from (2.1)–(2.3). As in the proof of Lemma 2.2, the map BνRω

sends η to the origin and �±η to �±0 = R(1,±1) and satisfies ‖BνRω‖C1(U ) � 1. Thus,

by the claim, BνRω(ρ1) lies in an O(rδ)× O(rδ′) rectangle with slope 1 centered at
the origin, and consequently Dλ(BνRω(ρ1)) is contained in sU for some s � r

√
δδ′.

It is easy to check that BνRω(φ(ξ), ξ) ∈ � for all ξ ∈ U , and thus by the discussion
following (2.5),

L−1(ρ1) = Dλ(BνRω(ρ1)) ⊆ sU . (3.1)

We claim that

L
−1

(ρ1) := {ξ ∈ � : L(ξ) ∈ ρ1} = L−1(ρ1). (3.2)

Indeed, given a set V ⊆ �, let V± := {(±φ(ξ), ξ) : ξ ∈ V }. Then

L
−1

(ρ1) = {ξ ∈ � : L(φ(ξ), ξ) ∈ ρ+1 ∪ ρ−1 }
= {ξ ∈ � : (φ(ξ), ξ) ∈ L−1(ρ+1 ) ∪ −L−1((−ρ1)

+)}.
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It is easy to check that e1 · L−1(φ(ζ ), ζ ) > 0 for every ζ ∈ U . Thus, since −ρ1 ⊆ U
and φ ≥ 0, we have (φ(ξ), ξ) /∈ −L−1((−ρ1)

+) for every ξ . Hence,

L
−1

(ρ1) = {ξ ∈ � : (φ(ξ), ξ) ∈ L−1(ρ+1 )} = L−1(ρ1),

proving the claim.
Now, define F : � → C by F(τ, ξ) := hρ1(ξ)φ(ξ) and assume that δ, δ′ are small

enough that s ≤ 1. Then, using (3.2) and (3.1), it is straightforward to check that
L−1(supp F) ⊆ �. Thus,

E1hρ1(t, x) = e−2π i t
∫

�

e2π i(t,x)·(τ,ξ)F(τ, ξ)dμ(τ, ξ)

= e−2π i t
∫

�

e2π i(t,x)·L(τ,ξ)F(L(τ, ξ))dμ(τ, ξ),

where dμ is the Lorentz-invariant measure given by (2.4). Hence, for H(ξ) :=
hρ1(L(ξ))

φ(L(ξ))
φ(ξ)

, we have

|E1hρ1(t, x)| = |E1H(L∗(t, x))|.

Noting that | det L| = 1, we obtain the relation

‖Er h‖Lq (BR) = r
4
q−2‖E1H‖Lq (L∗Pr (BR)),

and parabolic rescaling then gives

‖Er h‖Lq (BR) ∼ (δδ′)1−
2
q ‖Es[H(s·)]‖Lq (Ps−1 L∗Pr (BR)),

where H(s·) is supported in U by (3.2) and (3.1).
We claim that Ps−1L

∗Pr (BR) is covered by a bounded number of balls of radius
R/2. Assuming the claim is true, the hypothesis of the lemma implies that

‖Er h‖Lq (BR) � M(δδ′)1−
2
q ‖H(s·)‖1−θ

2 ‖H(s·)‖θ∞. (3.3)

To prove the claim, we may assume by translation invariance that BR is centered at
the origin. Let Q(a, b, c) denote any rectangular box centered at zero with sides of
length O(a), O(b), O(c) parallel to (1, 0, 0), (0, 1, 1), (0, 1,−1), respectively. Thus,
for example, BR ⊆ Q(R, R, R) and

Pr (BR) ⊆ Q

(
R

r2
,
R

r
,
R

r

)
.

We have L∗ = D−∗λ B−∗ν R−∗ω , where S−∗ := (S−1)∗. Since R−∗ω and B−∗ν have
bounded norm, we can ignore their contribution. Thus, from the definition of Dλ, we
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have

L∗Pr (BR) ⊆ Q

(
R

r2
,

√
δ′R√
δr

,

√
δR√
δ′r

)
.

The definition of s then implies that

Ps−1L
∗Pr (BR) ⊆ Q(δδ′R, δ′R, δR),

which proves claim.
Finally, to finish the proof, we need to undo the changes of variable we have used.

Using (3.2) and (3.1), we have L(φ(ξ), ξ) ∈ � for all ξ ∈ L
−1

(ρ1). Thus, L is

invertible on supp H with L
−1

(ζ ) = L−1(ζ ) for ζ ∈ L(supp H) ⊆ U . Moreover,

L−1 = Dλ◦Bν ◦Rω onU , so a straightforward calculation shows that | det∇L
−1| � 1

on U . Using these observations, we find that

‖H(s·)‖2 � 1√
δδ′
‖h‖2,

‖H(s·)‖∞ � ‖h‖∞.

Plugging these bounds into (3.3) completes the proof. ��
Proposition 3.2 Assume that Theorem 2.1 holds. Then for every θ ∈ (3/13, 1] and
0 < ε �θ 1, there exists a constant Cε,θ , depending only on ε and θ , such that

‖Er f ‖L13/4(BR) ≤ Cε,θ R
ε‖ f ‖1−θ

2 ‖ f ‖θ∞
for all r ∈ (0, 1], R ≥ 1, and balls BR of radius R.

Proof Wewill induct on R. The base case, that R ∼ 1, holds trivially.We assume as our
induction hypothesis that the proposition holds with R/2 in place of R. Additionally,
we may assume that 2C13/4

ε ≤ C13/4
ε,θ , where Cε is the constant from Theorem 2.1.

The definition of K−ε-broad implies that

|Er f (t, x)| ≤ max{|BrK−ε Er f (t, x)|, K ε max
ρ∈Rr

|Er fρ(t, x)|}

for every (t, x) ∈ R× R
2. It follows that

∫

BR

|Er f |13/4 ≤
∫

BR

|BrK−ε Er f |13/4 + K
13
4 ε

∑
ρ∈Rr

∫

BR

|Er fρ |13/4 =: I+ II.

To bound the first term, we use Theorem 2.1 and Hölder’s inequality to get

I ≤ (Cε‖ f ‖12/132 ‖ f ‖1/13∞ )13/4 ≤ (Cε‖ f ‖1−θ
2 ‖ f ‖θ∞)13/4 ≤ 1

2
(Cε,θ‖ f ‖1−θ

2 ‖ f ‖θ∞)13/4.
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To bound the second term, we will use Lemma 3.1. We may assume that r is dyadic
by parabolic rescaling, and the other hypothesis of the lemma holds by our inductive
assumption. Additionally, by Hölder’s inequality, we may assume that θ is close to
3/13; in particular, that θ ≤ 5/13. Then

II ≤ K
13
4 ε

∑

δ∈[K−1,δ0]

∑
ρ∈Rδ,r

(CCε,θ R
ε(δK−1)

1
2 (θ− 3

13 )‖ fρ‖1−θ
2 ‖ fρ‖θ∞)13/4

≤ K
13
4 ε+ 13

8 ( 3
13−θ)C13/4

∑

δ∈[K−1,δ0]
δ
13
8 (θ− 3

13 )(Cε,θ R
ε)13/4

∑
ρ∈Rδ,r

‖ fρ‖
13
4 (1−θ)

2 ‖ f ‖
13
4 θ
∞

≤
[
K

13
4 ε+ 13

8 ( 3
13−θ)C13/4

( ∑

δ∈[K−1,δ0]
δ
13
8 (θ− 3

13 )

)
2

13
8 (1−θ)

]
(Cε,θ R

ε‖ f ‖1−θ
2 ‖ f ‖θ∞)13/4,

where the last step used the inclusion �2 ↪→ �
13
4 (1−θ) and that Rδ,r covers U with

overlap of multiplicity 2. Since θ > 3/13, the sum over δ is bounded and the power
of K is negative for ε sufficiently small. Thus, since K → ∞ as ε → 0 by the
hypothesis of Theorem 2.1, the expression in square brackets is at most 1/2 for ε

sufficiently small, and the induction closes. ��
Assuming Theorem 2.1 holds, Proposition 3.2 implies the restricted strong type

bounds

‖Er fE‖L13/4(BR) �ε,p Rε|E |1/p.

for all p > 13/5, measurable sets E ⊆ U , and | fE | � χE . Then, by real interpolation
with the trivial L1 → L∞ estimate, we obtain the strong type bounds

‖Er f ‖Lq (BR) �ε,p,q Rε‖ f ‖p
for all q > 13/4 and p > (q/2)′. Tao’s epsilon removal lemma, in the form of
Theorem 5.3 in [6], consequently gives the global strong type bounds

‖Er f ‖q �p,q ‖ f ‖p (3.4)

for the same range of p, q, completing the proof of Theorem 1.1.

4 Proof of Theorem 2.1

We are left to prove Theorem 2.1; this will occupy the rest of the article. To enable an
inductive argument, we will actually need to prove a slightly stronger theorem, as in
[5]. In Sect. 2, we defined broad points by considering the contribution to Er f from
each fρ , where fρ := f χρ and ρ ∈ Rr . Soon we will work with wave packets of the
form Er fρ,T , where fρ,T is supported not in ρ but in a slight enlargement of it. Thus,
we need a more general definition of broad points in which the functions fρ may have
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larger, overlapping supports. Given ρ = �r (Iδ × Iδ′) ∩ U ∈ Tδ,δ′,r and m ≥ 1, we
define

mρ := �r (m(Iδ × Iδ′)) ∩U ,

wherem(Iδ× Iδ′) is them-fold dilate of the rectangle Iδ× Iδ′ with respect to its center.
Let

Sr := RK−1,r ;

elements of Sr are essentially K−1 × K−1 squares. Now, given f ∈ L1(U ), suppose
that f = ∑

τ∈Sr
fτ , with each fτ supported in mτ , for some m ≥ 1. In our modified

definition, (t, x) ∈ R× R
2 is α-broad for Er f if

max
ρ∈Rr

∣∣∣∣
∑

τ∈Sr :τ⊆ρ

Er fτ (t, x)
∣∣∣∣ ≤ α|Er f (t, x)|.

We define the α-broad part of Er f , still denoted by Brα Er f , as in Sect. 2. These
definitions depend on the particular decomposition f =∑

τ fτ .

Theorem 4.1 For every 0 < ε � 1, there exists a constant C ′ε, depending only on ε,

such that if K = 2�ε−10�, then the following holds: If f = ∑
τ∈Sr

fτ with each fτ
supported in mτ , for some m ≥ 1, and if additionally f satisfies

−
∫

D(ξ,R−1/2)
| fτ |2 ≤ 1 (4.1)

for all ξ ∈ U and τ ∈ Sr , then
∫

BR

|Brα Er f |13/4 ≤ C ′εRε+ε6 log(K εαm2)

( ∑
τ∈Sr

‖ fτ‖22
)3/2+ε

for all r ∈ (0, 1], R �ε 1, balls BR of radius R, and α ∈ [K−ε, 1].
A couple of remarks may be helpful. Firstly, the dyadic structure of our tiles, as

defined in Sect. 2, implies that if τ ∈ Sr and ρ ∈ Rr , then either τ ∩ ρ = ∅ or
τ ⊆ ρ. More generally, if ρ1 ∈ Tδ1,δ

′
1,r

and ρ2 ∈ Tδ2,δ
′
2,r

, then either ρ1 ∩ ρ2 = ∅ or
ρ1 ∩ ρ2 ∈ Tmini δi ,mini δ′i ,r . Secondly, Theorem 4.1 is indeed stronger than Theorem
2.1. We can derive the latter from the former as follows: If R ∼ε 1, then the estimate
in Theorem 2.1 is trivial, so we may assume that R �ε 1. By scaling, we also may
assume that ‖ f ‖∞ = 1. Thus, the condition (4.1) holds automatically. We now apply
Theorem 4.1 with α = K−ε and m = 1 to get

∫

BR

|BrK−ε Er f |13/4 ≤ C ′εRε‖ f ‖3+2ε2 ≤ |U |εC ′εRε‖ f ‖32,

and then raising both sides to the power 4/13 finishes the proof.
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4.1 Preliminaries

Before beginning the proof of Theorem 4.1, we lay some groundwork. For the remain-
der of the article, ε, m, r , R, BR , and α are fixed. Implicit constants will be allowed
to depend on ε. The propositions and lemma we record in this subsection are by now
quite standard.

We begin with the wave packet decomposition. Let � be a collection of discs θ of
radius R−1/2 which cover U with bounded overlap. We denote by cθ the center of θ ,
and we let vθ be the unit normal vector to �r at (φr (cθ ), cθ ). We may assume that
cθ ∈ U for every θ . Let δ := ε2, and for each θ , let T(θ) be a collection of tubes
parallel to vθ with radius Rδ+1/2 and length R and which cover BR with bounded
overlap. If T ∈ T(θ), then v(T ) := vθ denotes the direction of T . Finally, we set
T := ⋃

θ∈� T(θ). The following wave packet decomposition resembles Proposition
2.6 in [5]:

Proposition 4.2 For each T ∈ T, there exists a function fT ∈ L2(R2) such that:

(i) If T ∈ T(θ), then fT is supported in 3θ ;
(ii) If (t, x) ∈ BR \ T , then |Er fT (t, x)| ≤ R−1000‖ f ‖2;
(iii) |Er f (t, x)−∑

T∈T Er fT (t, x)| ≤ R−1000‖ f ‖2 for every (t, x) ∈ BR;
(iv) If T1, T2 ∈ T(θ) and T1 ∩ T2 = ∅, then |

∫
fT1 fT2 | ≤ R−1000‖ f ‖2

L2(θ)
;

(v)
∑

T∈T(θ) ‖ fT ‖22 � ‖ f ‖2
L2(θ)

.

Proof Adapting Guth’s argument in [5] is straightforward. The fact that the derivatives
of φr are bounded in r (i.e. supξ∈U |∇kφr (ξ)| �k 1) ensures that all constants arising
in the argument can be made uniform in r . We note, in particular, that the crucial
derivative estimates appearing in line (17) of [5] hold uniformly in r when adapted to
our setting. ��

Next, we record an orthogonality lemma from [5]. The special case N = 1 will be
of particular use.

Lemma 4.3 Let T1, . . . ,TN be subsets of T. Suppose that each tube in T belongs to
at most M of the Ti , and for each τ ∈ Sr , let

fτ,i :=
∑
T∈Ti

fτ,T ,

where the functions fτ,T come from applying Proposition 4.2 to fτ . Then

N∑
i=1

∫

3θ
| fτ,i |2 � M

∫

10θ
| fτ |2

for every θ ∈ �, and

N∑
i=1

∫

U
| fτ,i |2 � M

∫

U
| fτ |2.
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Finally, we turn to polynomial partitioning. Let P be a polynomial on R
d . We

denote the zero set of P by Z(P) and say that z ∈ Z(P) is nonsingular if ∇P(z) �= 0.
If z is nonsingular, then Z(P) is a smooth hypersurface near z. If every point of Z(P)

is nonsingular, then we say that P is nonsingular.

Proposition 4.4 (Guth [5]) Given g ∈ L1(Rd) and D ≥ 1, there exists a polynomial
P of degree at most D such that P is a product of nonsingular polynomials and each
connected component O of Rd \ Z(P) satisfies

∫

O
|g| ∼ 1

Dd

∫

Rd
|g|.

We note that a product of nonsingular polynomials may have singular points. How-
ever, by a perturbation argument using Sard’s theorem, one can ensure that nonsingular
points are dense in the zero set of the partitioning polynomial.

4.2 Main Proof

We are now ready to prove Theorem 4.1 in earnest. We will induct on R and∑
τ∈Sr

‖ fτ‖22. The base cases, that R ∼ 1 or
∑

τ ‖ fτ‖22 ≤ R−1000, are easy to check,
and our induction hypotheses are that Theorem 4.1 holds with: (i) R/2 in place of R,
or (ii) g in place of f whenever

∑
τ ‖gτ‖22 ≤ 1

2

∑
τ ‖ fτ‖22. Throughout the proof, we

will assume that ε is sufficiently small and that R is sufficiently large in relation to ε.
We begin by setting D := Rε4 and applying Proposition 4.4 to the function

|Brα Er f |13/4χBR to produce a polynomial P of degree at most D such that

R
3 \ Z(P) =

⋃
i∈I

Oi ,

where the ‘cells’ Oi are connected, pairwise disjoint, and satisfy

∫

BR∩Oi

|Brα Er f |13/4 ∼ 1

D3

∫

BR

|Brα Er f |13/4. (4.2)

In particular, the number of cells is #I ∼ D3. We define the ‘wall’ W as the R1/2+δ-
neighborhood of Z(P), and we set O ′i := Oi \W . Thus,

∫

BR

|Brα Er f |13/4 =
∑
i∈I

∫

BR∩O ′i
|Brα Er f |13/4 +

∫

BR∩W
|Brα Er f |13/4. (4.3)

We now argue by cases, according to which term on the right-hand side of (4.3)
dominates.
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4.3 Cellular Case

Suppose that the total contribution from the shrunken cells O ′i dominates. In this case,
we have

∫

BR

|Brα Er f |13/4 �
∑
i∈I

∫

BR∩O ′i
|Brα Er f |13/4.

Using (4.2), we then see that the contribution from any single O ′i is controlled by the
average of all such contributions. Thus, ‘most’ cells should contribute close to the
average, and it is straightforward to show that there exists J ⊆ I such that #J ∼ D3

and
∫

BR∩O ′i
|Brα Er f |13/4 ∼ 1

D3

∫

BR

|Brα Er f |13/4 (4.4)

for all i ∈ J . The lower bound on #J will be the basis for a pigeonholing argument
shortly.

First, some definitions are needed. For each i ∈ I and τ ∈ Sr , we set

Ti := {T ∈ T : T ∩ O ′i �= ∅}

and

fτ,i :=
∑
T∈Ti

fτ,T ,

where the functions fτ,T come from applying Proposition 4.2 to fτ . We also set

fi :=
∑
τ∈Sr

fτ,i .

Since fτ is supported inmτ , property (i) inProposition4.2 implies that fτ,i is supported
in an O(R−1/2)-neighborhood of mτ . Let f i := χU fi and f i,τ := χU fi,τ . If R is
sufficiently large, then supp f τ,i ⊆ 2mτ . Consequently, f i has a well defined broad
part with respect to these larger squares. Soon we will apply our induction hypothesis
to f i (for some special i) with m replaced by 2m.

Lemma 4.5 If (t, x) ∈ O ′i and α ≤ 1/2, then

|Brα Er f (t, x)| ≤ |Br2α Er f i (t, x)| + R−900
∑
τ∈Sr

‖ fτ‖2.

Proof First, we may assume that

|Er f (t, x)| ≥ R−900
∑
τ

‖ fτ‖2; (4.5)
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otherwise, the required inequality is trivial. Since (t, x) ∈ O ′i , properties (iii) and (ii)
in Proposition 4.2 imply that

Er fτ (t, x) =
∑
T∈Ti

Er fτ,T (t, x)+ O(R−990‖ fτ‖2)

for each τ . Summing over τ , we get

Er f (t, x) = Er fi (t, x)+ O
(
R−990

∑
τ

‖ fτ‖2
)
. (4.6)

Now it suffices to show that if (t, x) is α-broad for f , then (t, x) is 2α-broad for f i .
Assume the former and fix ρ ∈ Rr . Using Proposition 4.2 again, we have

∣∣∣∣
∑

τ :τ⊆ρ

Er f τ,i (t, x)

∣∣∣∣ =
∣∣∣∣

∑
τ :τ⊆ρ

Er fτ,i (t, x)
∣∣∣∣

=
∣∣∣∣

∑
τ :τ⊆ρ

Er fτ (t, x)
∣∣∣∣+ O

(
R−990

∑
τ

‖ fτ‖2
)

≤ α|Er f (t, x)| + O
(
R−990

∑
τ

‖ fτ‖2
)
.

Using (4.5), (4.6), and the fact that α ≥ K−ε, the right-hand side is at most
2α|Er fi (t, x)| = 2α|Er f i (t, x)| for R sufficiently large. ��

If α > 1/2, then the estimate in Theorem 4.1 holds trivially, since the power of R
can then be made at least 1000 by taking ε sufficiently small. Thus, we may assume
that α ≤ 1/2. Applying Lemma 4.5 to (4.4) and recalling that D = Rε4 , we get

∫

BR

|Brα Er f |13/4 � D3
∫

BR∩O ′i
|Br2α Er f i |13/4 + O

(
R−1000

( ∑
τ∈Sr

‖ fτ‖2
)13/4)

(4.7)

for every i ∈ J . We will now pick i0 ∈ J so that
∑

τ∈Sr
‖ f τ,i0‖22 is small, which will

allow us to apply our induction hypothesis to f i0 . Because Z(P) is the zero set of
a polynomial of degree at most D, any line is either contained in Z(P) or intersects
Z(P) at most D times. Thus, each tube in T belongs to at most D + 1 of the sets Ti .
Now, applying Lemma 4.3 and the bound #J � D3, we must have

1

#J

∑
i∈J

∑
τ

‖ fτ,i‖22 ≤
C

D2

∑
τ

‖ fτ‖22
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for some constant C . Consequently, there exists i0 ∈ J such that

∑
τ

‖ f τ,i0‖22 ≤
∑
τ

‖ fτ,i0‖22 ≤
C

D2

∑
τ

‖ fτ‖22 ≤
1

2

∑
τ

‖ fτ‖22 (4.8)

for R sufficiently large. We can apply Theorem 4.1 to f i0 with 2m in place of m,
provided (4.1) holds. Since (4.1) holds for f , Lemma 4.3 gives

−
∫

D(ξ,R−1/2)
| f τ,i0 |2 ≤ −

∫

D(ξ,R−1/2)
| fτ,i0 |2 � −

∫

D(ξ,100R−1/2)
| fτ |2 � 1.

Thus, after multiplying f i0 by a constant, we can apply Theorem 4.1 to (4.7) with
i = i0 to get

∫

BR

|Brα Er f |13/4 ≤ CD3C ′εRε+ε6 log(8K εαm2)
( ∑

τ∈Sr

‖ f τ,i0‖22
)3/2+ε

+ O
(
R−1000

( ∑
τ∈Sr

‖ fτ‖2
)13/4)

for some C . If the big O term dominates, then the desired estimate follows easily.
Assuming it does not, then by (4.8) and the definition of D, we have altogether

∫

BR

|Brα Er f |13/4 ≤ 2CR−2ε5+ε6 log(8)C ′εRε+ε6 log(K εαm2)
( ∑

τ∈Sr

‖ fτ‖22
)3/2+ε

,

and the induction closes if ε is sufficiently small and R sufficiently large.

4.4 Algebraic Case

Next, suppose that the contribution from W dominates in (4.3), so that

∫

BR

|Brα Er f |13/4 �
∫

BR∩W
|Brα Er f |13/4. (4.9)

Following Guth [5], we distinguish between tubes that intersect W transversely and
those essentially tangent to W . Let B be a collection of balls B of radius R1−δ that
cover BR with bounded overlap.

Definition 4.6 Fix B ∈ B. Let T�
B be the set of tubes T satisfying T ∩ W ∩ B �= ∅

and ∠(v(T ), Tz Z(P)) ≤ R2δ−1/2 for every nonsingular point z ∈ Z(P)∩ 2B ∩ 10T .
Let T�

B be the set of tubes T satisfying T ∩W ∩ B �= ∅ and T /∈ T
�
B .

Observe that if T intersects W ∩ B, then T belongs to exactly one of T�
B and T

�
B .

(The definition of T�
B would be vacuous if Z(P)∩ 2B ∩ 10T contained only singular
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points; however, as noted above, we can arrange for nonsingular points to be dense in
Z(P).) Thus, on W ∩ B, each Er fτ is well approximated by the sum of the ‘tangent’
and ‘transverse’wave packets, {Er fτ,T }T∈T�

B
and {Er fτ,B}T∈T�

B
, respectively. Roughly

speaking, our desired bound for ‖Brα Er f ‖L13/4(B∩W ) will soon be reduced to a broad
part estimate on the transverse contribution and a bilinear estimate on the tangent
contribution. The following geometric lemma, due to Guth [5], will be critical for
establishing those bounds:

Lemma 4.7 (a) Each T ∈ T belongs to T
�
B for at most DO(1) balls B ∈ B. (b) For

each B ∈ B, the number of discs θ ∈ � such thatT�
B∩T(θ) �= ∅ is at most RO(δ)+1/2.

To carry out the bilinear argument, we need to define the separation condition
mentioned in Sect. 2. Recall how we defined the Lorentz separation distL(ξ, ζ ) of
ξ, ζ ∈ �. We say that two squares τ1, τ2 ∈ Sr are separated if

distL(rξ, rζ ) ≥ C0rmK−1

for all ξ ∈ 2mτ1 and ζ ∈ 2mτ2, where C0 ≥ 1 is a constant to be chosen later. Part
(a) of Lemma 2.2 implies that points having small Lorentz separation must lie near a
common line. The next lemma extends this property to collections of non-separated
squares.

Lemma 4.8 Let I ⊆ Sr be a collection of pairwise non-separated squares. Then there
exist σ1, σ2, σ3, σ4 ∈ Tδ,δ0,r ∪Tδ0,δ,r , with K−1 ≤ δ � mK−1, such that τ ⊆⋃4

i=1 σi
for every τ ∈ I.

Proof For ξ ∈ U , let ξ := �−1(rξ) and also set

I :=
⋃
τ∈I

τ,

I := {ξ : ξ ∈ I }.

Fix τ1, τ2 ∈ I. By part (a) of Lemma 2.2 and the definition of (non-)separated squares,
there exist ξ∗ ∈ 2mτ1 and ζ ∗ ∈ 2mτ2 such that

dist(rξ∗, �+rζ ∗ ∪ �−rζ ∗) � rmK−1.

Let η be a point in �+rζ ∗ ∪ �−rζ ∗ closest to rξ∗. By elementary geometry, η lies in 2U .

Thus, from the bound ‖�−1‖C1(2U ) � 1 and Lemma 2.3, we have

dist(ξ∗, ({ζ ∗1 } × R) ∪ (R× {ζ ∗2 })) � |rξ∗ − η| � rmK−1.

Since diam�−1(r · 2mτ) � rmK−1 for each τ , it follows that

dist(ξ , ({ζ 1} × R) ∪ (R× {ζ 2})) ≤ A (4.10)
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for all ξ, ζ ∈ I and some A � rmK−1. Fix ζ ∈ I and set

S := [ζ 1 − A, ζ 1 + A] × R,

T := R× [ζ 2 − A, ζ 2 + A],

so that I ⊆ S ∪ T . Additionally, define

3S := [ζ 1 − 3A, ζ 1 + 3A] × R,

3T := R× [ζ 2 − 3A, ζ 2 + 3A].

We consider three exhaustive cases:

(i) If I ∩ (S \ 3T ) �= ∅, then (4.10) implies that I ∩ (T \ 3S) = ∅, and consequently
I ⊆ 3S.

(ii) If I ∩ (T \ 3S) �= ∅, then (4.10) implies that I ∩ (S \ 3T ) = ∅, and consequently
I ⊆ 3T .

(iii) Otherwise, I ⊆ 3S ∩ 3T .

Thus, by symmetry, we may assume that �−1r (I ) = r−1 I ⊆ (r−1 · 3S) ∩ [−δ0, δ0)
2.

The interval

[r−1(ζ1 − 3A), r−1(ζ1 + 3A)] ∩ [−δ0, δ0)

is covered by two dyadic intervals I1, I2 ⊆ [−δ0, δ0) of length δ � r−1A � mK−1.
Thus, if we set

σ1 := �r (I1 × [−δ0, 0)) ∩U ,

σ2 := �r (I2 × [−δ0, 0)) ∩U ,

σ3 := �r (I1 × [0, δ0)) ∩U ,

σ4 := �r (I2 × [0, δ0)) ∩U ,

then I ⊆⋃4
i=1 σi and the proof is complete. ��

Asmentioned above, estimating ‖Brα Er f ‖L13/4(B∩W ) can be reduced to estimating
certain contributions from transverse and tangentwavepackets. Thenext lemmacarries
out this reduction. First, some notation is needed. For τ ∈ Sr and B ∈ B, we set

f �
τ,B :=

∑

T∈T�
B

fτ,T and f �
τ,B :=

∑

T∈T�
B

fτ,T .

We also let

f �
B :=

∑
τ∈Sr

f �
τ,B and f �

B :=
∑
τ∈Sr

f �
τ,B .
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Given I ⊆ Sr , we set

f �

I,B :=
∑
τ∈I

f �
τ,B and f �

I,B :=
∑
τ∈I

f �
τ,B .

We note that f �

I,B (analogously f �

I,B) has the natural decomposition f �

I,B =∑
τ∈Sr

f �

τ,I,B , where

f �

τ,I,B :=
{
f �
τ,B if τ ∈ I,

0 if τ /∈ I.

Let f
�

I,B := χU f �

I,B and f
�

τ,B := χU f �
τ,B . Then supp f

�

τ,B ⊆ 2mτ , and thus f
�

I,B
has a well defined broad part. Finally, we define

Bil(Er f �
B) :=

∑
τ1,τ2 separated

|Er f �
τ1,B
|1/2|Er f �

τ2,B
|1/2.

Lemma 4.9 If (t, x) ∈ B ∩W and αm is sufficiently small, then

|Brα Er f (t, x)| ≤
∑
I⊆Sr

|Br10α Er f �

I,B(t, x)| + K 100 Bil(Er f �
B)(t, x)

+ R−900
∑
τ∈Sr

‖ fτ‖2.

Proof We may assume that (t, x) is α-broad for Er f and that

|Er f (t, x)| ≥ R−900
∑
τ

‖ fτ‖2. (4.11)

Let

I := {τ ∈ Sr : |Er f (t, x)| ≤ K 100|Er f �
τ,B(t, x)|}.

If I contains a pair of separated squares, then the bound |Brα Er f (t, x)| ≤
K 100 Bil(Er f �

B)(t, x) follows immediately. Thus, we may assume that I contains no
pair of separated squares. By Lemma 4.8, there exist σ1, σ2, σ3, σ4 ∈ Tδ,δ0,r ∪ Tδ0,δ,r ,
with K−1 ≤ δ � mK−1, such that τ ⊆⋃4

i=1 σi for every τ ∈ I. Let

J :=
{
τ ∈ Sr : τ ⊆

4⋃
i=1

σi

}
.
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Then

|Er f (t, x)| ≤
4∑

i=1

∣∣∣∣
∑

τ :τ⊆σi

Er fτ (t, x)
∣∣∣∣+

∣∣∣∣
∑

τ∈J c

Er fτ (t, x)
∣∣∣∣.

Since δ � mK−1, each σi is a union of at most Cm elements of Rδ0,r where C is a
constant. Thus, since (t, x) is α-broad for Er f and αm is sufficiently small, we have

4∑
i=1

∣∣∣∣
∑

τ :τ⊆σi

Er fτ (t, x)
∣∣∣∣ ≤ 4Cmα|Er f (t, x)| ≤ 1

10
|Er f (t, x)|,

and consequently,

9

10
|Er f (t, x)| ≤

∣∣∣∣
∑

τ∈J c

Er fτ (t, x)
∣∣∣∣.

Since (t, x) ∈ B ∩W , properties (iii) and (ii) in Proposition 4.2 imply that

Er fτ (t, x) = Er f �
τ,B(t, x)+ Er f �

τ,B(t, x)+ O(R−990‖ fτ‖2)

for every τ ∈ Sr . Summing over τ ∈ J c, we get

∣∣∣∣
∑

τ∈J c

Er fτ (t, x)
∣∣∣∣ ≤ |Er f �

J c,B(t, x)| + |Er f �

J c,B(t, x)| + O
(
R−990

∑
τ

‖ fτ‖2
)
.

Since J c ⊆ Ic, we have

|Er f �

J c,B(t, x)| ≤ #J cK−100|Er f (t, x)| ≤ K−97|Er f (t, x)|.

Hence,

9

10
|Er f (t, x)| ≤ |Er f �

J c,B(t, x)| + K−97|Er f (t, x)| + O
(
R990

∑
τ

‖ fτ‖2
)
.

Using (4.11), we see that

|Er f (t, x)| ≤ 5

4
|Er f �

J c,B(t, x)| = 5

4
|Er f �

J c,B(t, x)|,

provided ε is sufficiently small and R sufficiently large. To finish the proof, we will

show that (t, x) is 10α-broad for Er f
�

J c,B . It suffices to show that

∣∣∣∣
∑

τ∈J c:τ⊆ρ

Er f
�

τ,B(t, x)

∣∣∣∣ ≤ 8α|Er f (t, x)| (4.12)
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for every ρ ∈ Rr . Fixing ρ ∈ Rr , we have

∣∣∣∣
∑

τ∈J c:τ⊆ρ

Er f
�

τ,B(t, x)

∣∣∣∣ =
∣∣∣∣

∑
τ∈J c:τ⊆ρ

Er f �
τ,B(t, x)

∣∣∣∣

≤
∣∣∣∣

∑
τ∈J c:τ⊆ρ

Er fτ (t, x)
∣∣∣∣+

∣∣∣∣
∑

τ∈J c:τ⊆ρ

Er f �
τ,B(t, x)

∣∣∣∣

+ O
(
R−990

∑
τ

‖ fτ‖2
)
.

As above, J c ⊆ Ic implies that

∣∣∣∣
∑

τ∈J c:τ⊆ρ

Er f �
τ,B(t, x)

∣∣∣∣ ≤ K−97|Er f (t, x)| ≤ α|Er f (t, x)|.

It is straightforward to check that σi ∩ ρ ∈ Rr for each i = 1, . . . , 4. Thus, since
(t, x) is α-broad for Er f , we have

∣∣∣∣
∑

τ∈J c:τ⊆ρ

Er fτ (t, x)
∣∣∣∣ ≤

∣∣∣∣
∑

τ :τ⊆ρ

Er fτ (t, x)
∣∣∣∣+

4∑
i=1

∣∣∣∣
∑

τ :τ⊆σi∩ρ

Er fτ (t, x)
∣∣∣∣

≤ 5α|Er f (t, x)|.

Using the preceding three estimates and (4.11), we arrive at (4.12). ��
Ifαm � 1 so that Lemma 4.9 does not apply, then the estimate in Theorem 4.1 holds

trivially, since the power of R can then be made at least 1000 by taking ε sufficiently
small. Thus, we may assume that αm � 1. We now apply Lemma 4.9 to (4.9) to get

∫

BR

|Brα Er f |13/4 �
∑
B∈B

∑
I⊆Sr

∫

B∩W
|Br10α Er f �

I,B |13/4

+
∑
B∈B

∫

B∩W
Bil(Er f �

B)13/4 + R−1000
( ∑

τ∈Sr

‖ fτ‖2
)13/4;

(4.13)

note that the implicit constant is allowed to depend on K , a function of ε. If the last
term dominates in (4.13), then the estimate in Theorem 4.1 holds trivially.

4.4.1 Transverse Subcase

Suppose that the first term dominates in (4.13), so that

∫

BR

|Brα Er f |13/4 �
∑
B∈B

∑
I⊆Sr

∫

B
|Br10α Er f �

I,B |13/4. (4.14)
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Each ball B ∈ B has radius R1−δ , so by induction on R, we can apply Theorem 4.1 to
each summand in (4.14), whenever (4.1) holds. Since (4.1) holds for f , Lemma 4.3
gives

−
∫

D(ξ,R−1/2)
| f �

τ,B |2 ≤ −
∫

D(ξ,R−1/2)
| f �

τ,B |2 � −
∫

D(ξ,100R−1/2)
| fτ |2 � 1.

Thus, after multiplying by a constant, Theorem 4.1 implies that

∫

BR

|Brα Er f |13/4 �
∑
B∈B

∑
I⊆Sr

C ′εR(1−δ)εRε6 log(40K εαm2)
( ∑

τ∈Sr

‖ f �

τ,B‖22
)3/2+ε

.

By Lemma 4.7, each T ∈ T belongs to at most DO(1) sets T�
B . Therefore, by Lemma

4.3, we have

∑
B∈B

( ∑
τ∈Sr

‖ f �

τ,B‖22
)3/2+ε ≤

( ∑
τ∈Sr

∑
B∈B

‖ f �
τ,B‖22

)3/2+ε

� DO(1)
( ∑

τ∈Sr

‖ fτ‖22
)3/2+ε

.

Since δ = ε2, D = Rε4 , and the number of subsets I ⊆ Sr depends only on K , we
have altogether

∫

BR

|Brα Er f |13/4 ≤ CR−ε3+ε6 log(40)+O(ε4)C ′εRε+ε6 log(K εαm2)
( ∑

τ∈Sr

‖ fτ‖22
)3/2+ε

for some C (depending on ε). The power of the first R is negative for ε sufficiently
small, and then the induction closes for R sufficiently large.

4.4.2 Tangent Subcase

In the remaining case, the second term in (4.13) dominates, whence

∫

BR

|Brα Er f |13/4 �
∑
B∈B

∫

B∩W
Bil(Er f �

B)13/4.

We will bound the right-hand side directly (i.e. without induction) using basically
standard bilinear restriction techniques and Lemma 4.7. Since #B = RO(δ) ≤ Rε, it
will suffice to prove the following:

Proposition 4.10 For every B ∈ B, we have
∫

B∩W
Bil(Er f �

B)13/4 � RO(δ)
( ∑

τ∈Sr

‖ fτ‖22
)3/2

.
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We will need a preliminary lemma. Fix B ∈ B and let Q be a collection of cubes
Q of side length R1/2 that cover B ∩W with bounded overlap. For each Q ∈ Q, let

T
�
B,Q := {T ∈ T

�
B : T ∩ Q �= ∅}.

Henceforth, wewill write ‘negligible’ in place of any quantity of size O(R−990
∑

τ∈Sr‖ fτ‖2). In particular, if (t, x) ∈ Q, then

Er f �
τ,B(t, x) =

∑

T∈T�
B,Q

Er fτ,T (t, x)+ negligible . (4.15)

It will suffice to bound ‖Bil(Er f �
B)‖L13/4(Q) for each Q ∈ Q. Informally, the tubes

in T
�
B,Q are tangent to W at Q and are thus coplanar. Dually, the wave packets

{Er fτ,T }T∈T�
B,Q

have Fourier support near a curve formed by the intersection of �r

and a plane. Thus, estimating ‖Bil(Er f �
B)‖L13/4(Q) is essentially a two-dimensional

bilinear restriction problem, making the L4 argument a natural approach (as done in
[5], of course).

Lemma 4.11 For all Q ∈ Q and separated τ1, τ2 ∈ Sr , we have
∫

Q
|Er f �

τ1,B
|2|Er f �

τ2,B
|2 � RO(δ)−1/2

( ∑

T1∈T�
B,Q

‖ fτ1,T1‖22
)( ∑

T2∈T�
B,Q

‖ fτ2,T2‖22
)

+ negligible .

Proof Let ψQ be a smooth function satisfying χQ ≤ ψQ ≤ χ2Q and

|ψ̂Q(τ, ξ)| � R3/2(1+ |(τ, ξ)|R1/2)−106/δ.

By (4.15) and Plancherel’s theorem, we have

∫

Q
|Er f �

τ1,B
|2|Er f �

τ2,B
|2

=
∑

T1,T 1,T2,T 2∈T�
B,Q

∫

Q
Er fτ1,T1Er fτ1,T 1

Er fτ2,T2Er fτ2,T 2
+ negligible

≤
∑

T1,T 1,T2,T 2∈T�
B,Q

∫

R3
(ψ̂Q ∗ dστ1,T1 ∗ dστ2,T2)(dστ1,T 1

∗ dστ2,T 2
)+ negligible,

(4.16)

where dστ,T is the measure on �r defined by

∫

�r

gdστ,T :=
∫

U
g(φr (ξ), ξ) fτ,T (ξ)dξ. (4.17)
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Fix T1, T 1, T2, T 2 ∈ T
�
B,Q and let ξ, ξ , ζ, ζ denote the centers of θ(T1), θ(T 1),

θ(T2), θ(T 2), respectively. The rapid decay of ψ̂Q and the fact that suppχU fτ,T ⊆
3
2mτ for every τ ∈ Sr and T ∈ T imply that the contribution of T1, T 1, T2, T 2 to
(4.16) is negligible unless

ξ + ζ = ξ + ζ + O(Rδ−1/2),
φr (ξ)+ φr (ζ ) = φr (ξ)+ φr (ζ )+ O(Rδ−1/2),

and ξ, ξ ∈ 2mτ1 and ζ, ζ ∈ 2mτ2. We need to estimate the number of non-negligible
terms in (4.16) involving given tubes T1, T2.

Toward that end, we adapt some techniques of Cho–Lee [3] and Lee [7]. Assuming
T1, T 1, T2, T 2 contribute non-negligibly, then

φr (ξ)+ φr (ζ ) = φr (ξ)+ φr (ξ + ζ − ξ)+ O(Rδ−1/2). (4.18)

We define a function � : U → R by

�(η) := φr (η)+ φr (ξ + ζ − η)− φr (ξ)− φr (ζ )

and denote by Z := �−1(0) its zero set. We claim that |∇�| � 1 on 2mτ1. Indeed,
if η ∈ 2mτ1, then by the Cauchy–Schwarz inequality, boundedness of ‖(∇2φ)−1‖ on
U , part (b) of Lemma 2.2, and finally the separation of τ1 and τ2, we have

|∇φr (η)− ∇φr (ζ )| = r−1|∇φ(rη)−∇φ(rζ )| � r−1|〈(∇2φ(rη))−1(∇φ(rη)

−∇φ(rζ )),∇φ(rη)− ∇φ(rζ )〉|1/2
∼ r−1distL(rη, rζ )

≥ C0mK−1,

whence

|�(η)| = |∇φr (η)− ∇φr (ξ + ζ − η)| ≥ |∇φr (ζ )−∇φr (ζ )|
− ‖φ‖C1(U ) diam(2mτ1) � 1

if C0 is sufficiently large. By the claim, Z is a smooth curve near ξ , and (4.18) and a
Taylor approximation argument imply that

dist(ξ , Z) � Rδ−1/2 (4.19)

for R sufficiently large. As mentioned above, tubes in T
�
B,Q are nearly coplanar.

Inspecting the definition, it is straightforward to check that ∠(v(T ), Tz Z(P)) ≤
R2δ−1/2 for all T ∈ T

�
B,Q and some (nonsingular) z ∈ 2RδQ ∩ Z(P). Thus,

dually, there exists a plane � through the origin such that dist((−1,∇φr (η)),�) �
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R2δ−1/2 for each η ∈ {ξ, ξ, ζ }. Consequently, there exists a line whose O(R2δ−1/2)-
neighborhood contains ∇φr (ξ), ∇φr (ξ), and ∇φr (ζ ). Since |∇φr (ξ)−∇φr (ζ )| � 1
due to the separation of τ1 and τ2, it follows that ∇φr (ξ) lies in an O(R2δ−1/2)-
neighborhood of the line � containing ∇φr (ξ) and ∇φr (ζ ). We consider now the
smooth curve �̃ := (∇φr )

−1(� ∩ 3U ), noting that ∇φ (and thus ∇φr ) is invertible
near the origin since det∇2φ(0) �= 0. This curve contains ξ by construction, and the
boundedness of ‖(∇2φ)−1‖ implies that

dist(ξ , �̃) � R2δ−1/2. (4.20)

Crucially, �̃ and Z intersect transversely at ξ . Indeed, parametrizing �̃ by

�̃(t) := (∇φr )
−1((1− t)∇φr (ξ)+ t∇φr (ζ )),

the tangent line to �̃ at ξ is parallel to

d

dt
�̃(t)

∣∣∣∣
t=0

= (∇2φr (ξ))−1(∇φr (ζ )−∇φr (ξ)),

and the normal line to Z at ξ is parallel to ∇�(ξ) = ∇φr (ξ) − ∇φr (ζ ). Thus, the
bound

|〈(∇2φr (ξ))−1(∇φr (ξ)− ∇φr (ζ )),∇φr (ξ)− ∇φr (ζ )〉| � 1,

which follows from part (b) of Lemma 2.2 and the separation of τ1 and τ2, implies the
claimed transverse intersection. Consequently, by (4.19) and (4.20), we have |ξ−ξ | �
R2δ−1/2. A similar argument shows that |ζ−ζ | � R2δ−1/2. Since #(T�

B,Q∩T(θ)) � 1

for every θ ∈ �, it follows that for each T1, T2 ∈ T
�
B,Q , there are O(R8δ) pairs

T 1, T 2 ∈ T
�
B,Q such that T1, T1, T2, T 2 contribute non-negligibly to (4.16).

Hence, by the Cauchy–Schwarz inequality (a few times) and Young’s inequality,
(4.16) is at most

RO(δ)
∑

T1,T2∈T�
B,Q

∫

R3
|dστ1,T1 ∗ dστ2,T2 |2 + negligible . (4.21)

To estimate the convolution, we use Plancherel’s theorem and the familiar wave packet
approximation

|Er gT | ≈ R−1/2‖gT ‖2χT ; (4.22)

we will give a rigorous argument in Lemma 4.12, appearing at the end of the article. If
T1, T2 ∈ T are such that 3θ(Ti )∩τi �= ∅, then the separation of τ1 and τ2 implies that the
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directions v(T1) and v(T2) are transverse and consequently that |T1 ∩ T2| � R3δ+3/2.
Hence, by Plancherel’s theorem and (4.22), we (essentially) have

∫

R3
|dστ1,T1 ∗ dστ2,T2 |2 =

∫

R3
|Er fτ1,T1Er fτ2,T2 |2 � R3δ−1/2‖ fτ1,T1‖22‖ fτ2,T2‖22.

Plugging this estimate into (4.21), we obtain the lemma. ��
Given Lemma 4.11, the rest of the proof of Proposition 4.10 is identical to the

corresponding part of [5]. For the convenience of the reader, we repeat the details
here. We set

S�
τ,B :=

( ∑

T∈T�
B

(R−1/2‖ fτ,T ‖2χ2T )2
)1/2

(cf. (4.22)). Let τ1, τ2 ∈ Sr be separated squares. Lemma 4.11 implies that

∫

Q
|Er f �

τ1,B
|2|Er f �

τ2,B
|2 � RO(δ)

∫

Q
(S�

τ1,B
)2(S�

τ2,B
)2 + negligible .

Summing over Q ∈ Q and exploiting the separation of τ1 and τ2 (as above) leads to
the bound

∫

B∩W
|Er f �

τ1,B
|2|Er f �

τ2,B
|2 � RO(δ)−1/2

( ∑

T1∈T�
B

‖ fτ1,T1‖22
)( ∑

T2∈T�
B

‖ fτ2,T2‖22
)

+ negligible .

By properties (i) and (iv) of Proposition 4.2, the functions fτ,T are nearly orthogonal
and we have

∑

T∈T�
B

‖ fτ,T ‖22 � ‖ f �
τ,B‖22 + negligible

for every τ . Thus, altogether,

∫

B∩W
|Er f �

τ1,B
|2|Er f �

τ2,B
|2 � RO(δ)−1/2‖ f �

τ1,B
‖22‖ f �

τ2,B
‖22 + negligible,

and consequently by Hölder’s inequality,

‖Bil(Er f �
B)‖L4(B∩W ) � RO(δ)−1/8

( ∑
τ∈Sr

‖ f �
τ,B‖22

)1/2

+ negligible .
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The well-known estimate

‖Er g‖L2(BR) � R1/2‖g‖2

(which is a consequence of Plancherel’s theorem for the spatial Fourier transform),
together with Hölder’s inequality, implies that

‖Bil(Er f �
B)‖L2(B∩W ) � R1/2

( ∑
τ∈Sr

‖ f �
τ,B‖22

)1/2

.

Hence, by interpolation,

∫

B∩W
Bil(Er f �

B)p � RO(δ)+ 5
2− 3p

4

( ∑
τ∈Sr

‖ f �
τ,B‖22

)p/2

+ negligible (4.23)

for p ∈ [2, 4]. Now, on one hand, ‖ f �
τ,B‖2 � ‖ fτ‖2 by Lemma 4.3. On the other

hand, Lemma 4.7 gives a different bound: There are at most RO(δ)+1/2 discs θ ∈ �

such that T�
B ∩ T(θ) �= ∅. By property (i) of Proposition 4.2, each f �

τ,B is therefore

supported in RO(δ)+1/2 discs θ , on each of which we have the bound

∫

θ

| f �
τ,B |2 �

∫

10θ
| fτ |2 � R−1,

by Lemma 4.3 and (4.1). Thus, ‖ f �
τ,B‖2 � RO(δ)−1/4. Combining these two estimates

gives ‖ f �
τ,B‖2 � ‖ fτ‖3/p2 RO(δ)− 1

4 (1− 3
p ) for p ≥ 3. Plugging this bound into (4.23)

yields

∫

B∩W
Bil(Er f �

B)p � RO(δ)+ 13
4 −p

( ∑
τ∈Sr

‖ fτ‖22
)3/2

,

and then taking p = 13/4 completes the proof of Proposition 4.10.
To conclude the article, we rigorously prove the convolution estimate used in the

proof of Lemma 4.11. This standard argument is sketched in [5]; we fill in the details
here.

Lemma 4.12 If τ1, τ2 ∈ Sr are separated squares and T1, T2 ∈ T are such that
3θ(Ti ) ∩ τi �= ∅, then

∫

R3
|dστ1,T1 ∗ dστ2,T2 |2 � R−1/2‖ fτ1,T1‖2‖ fτ2,T2‖2,

where dστi ,Ti is given by (4.17).
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Proof Let θi := θ(Ti ) and ci := cθi . Since 3θi ∩ τi �= ∅, we have ci ∈ 2mτi , and
consequently, |∇φr (c1) − ∇φr (c2)| � 1 by the separation of τ1 and τ2. Indeed, by
the Cauchy–Schwarz inequality, boundedness of ‖(∇2φ)−1‖ on U , and part (b) of
Lemma 2.2,

|∇φr (c1)− ∇φr (c2)| = r−1|∇φ(rc1)− ∇φ(rc2)|
� r−1|〈(∇2φ(rc1))

−1(∇φ(rc1)−∇φ(rc2)),∇φ(rc1)

−∇φ(rc2)〉|1/2 ∼ r−1distL(rc1, rc2)

� 1.

It follows (from the law of sines, say) that the unit normal vectors n1 := vθ1 and
n2 := vθ2 satisfy ∠(n1, n2) � 1. Using this angle bound, we will foliate 3θ1 by lines
whose lifts to �r are transverse to the tangent plane T(φr (c2),c2)�r above c2. Define
the direction set

V := {ω ∈ S
2 : ω · n1 = 0 and |ω · n2| ≥ c},

where c > 0. If c is sufficiently small relative to∠(n1, n2), thenV is nonempty. Choose
ω ∈ V , let ω := (ω2, ω3), and let S be the rotation of R2 satisfying S(0, 1) = ω/|ω|
(note that ω �= 0). Define the lines γ s by

γ s(t) := S(s, t)+ c1,

and note that supp dστ1,T1 ⊆ 3θ1 ⊆ {γ s(t) : (s, t) ∈ I 2}, where I :=
[−3R−1/2, 3R−1/2]. The lift of γ s to �r is given by

γs(t) := (φr (γ s(t)), γ s(t))

for s, t small. For almost every s, the function t 
→ fτ1,T1(γ s(t)) is measurable and

∫

γs

gdνs :=
∫

I
g(γs(t)) fτ1,T1(γ s(t))dt

defines a measure dνs on γs . Using (4.17), an easy calculation shows that dστ1,T1 =
dνsχI ds.

Now, to prove the required convolution estimate, it suffices to show that

|〈dστ1,T1 ∗ dστ2,T2 , ψ〉| � R−1/4‖ fτ1,T1‖2‖ fτ2,T2‖2‖ψ‖2

for all ψ ∈ C∞c (R3); the brackets denote the pairing between distributions and test
functions. We compute that

|〈dτ1,T1 ∗ dστ2,T2 , ψ〉|
=

∣∣∣∣
∫

�r

∫

�r

ψ(σ + τ, ζ + ξ)dστ2,T2(σ, ζ )dστ1,T1(τ, ξ)

∣∣∣∣
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=
∣∣∣∣
∫

I

∫

γs

∫

�r

ψ(σ + τ, ζ + ξ)dστ2,T2(σ, ζ )dνs(τ, ξ)ds

∣∣∣∣

� R−1/4
(∫

I

∣∣∣∣
∫

γs

∫

�r

ψ(σ + τ, ζ + ξ)dστ2,T2(σ, ζ )dνs(τ, ξ)

∣∣∣∣
2

ds

)1/2

.

Using the definitions of dστ2,T2 and dνs and the Cauchy–Schwarz inequality, the
quantity between absolute value signs is at most

‖ fτ2,T2‖2
(∫

I

∫

3θ2
|ψ((φr (ζ ), ζ )+ γs(t))|2dζdt

)1/2(∫

I
| fτ1,T1(γ s(t))|2dt

)1/2

.

Thus, if we can show that

∫

I

∫

3θ2
|ψ((φr (ζ ), ζ )+ γs(t))|2dζdt � ‖ψ‖22,

then a simple change of variable, using the definition of γ s , gives the required estimate.
Toward that end, let G(ζ, t) := (φr (ζ ), ζ )+γs(t). We claim that G is invertible on

3θ2× I , provided R is sufficiently large. The definition of S implies that γ ′s(t) = ω/|ω|
for every s, t . Thus, the Jacobian of G at (c2, 0) is given by

∇G(c2, 0) =
⎛
⎝

∂1φr (c2) ∂2φr (c2) ∇φr (γs(0)) · ω/|ω|
1 0 ω2/|ω|
0 1 ω3/|ω|

⎞
⎠ .

The first two columns of this matrix are orthogonal to n2. If we replace γs(0) by c1,
then the third column becomes ω/|ω|, since ω · n1 = 0. The angle between ω and the
orthogonal complement of n2 is bounded below, since |ω · n2| ≥ c. Combining these
observations, we see that

| det∇G(c2, 0)| = 1

|ω|

∣∣∣∣∣∣
det

⎛
⎝

∂1φr (c2) ∂2φr (c2) ω1
1 0 ω2
0 1 ω3

⎞
⎠

∣∣∣∣∣∣
+ O(R−1/2) � 1.

Thus, the inverse function theorem implies that G is invertible on 3θ2 × I , if R is
sufficiently large. (The meaning of ‘sufficiently large’ does not depend on r or s,
since the bounds ‖∇G(c2, 0)‖ ∼ 1 and ‖(∇G(c2, 0))−1‖ ∼ 1 hold uniformly in these
parameters.) Additionally, the bound | det∇G(ζ, t)| � 1 holds on 3θ2 × I , so we
obtain

∫

I

∫

3θ2
|ψ((φr (ζ ), ζ )+ γs(t))|2dζdt

=
∫∫

G(3θ2×I )
|ψ(η)|2| det∇G−1(η)|dη � ‖ψ‖22,

completing the proof. ��
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