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Abstract
Let X be a space of homogeneous type with the doubling order n. Let L be a non-
negative self-adjoint operator on L2(X) and suppose that the kernel of e−t L satisfies a
Gaussian upper bound. This paper shows that for 0 < p ≤ 1 and s = n(1/p − 1/2),

‖(I + L)−seit L f ‖H p
L (X) � (1 + |t |)s‖ f ‖H p

L (X)

for all t ∈ R, where H p
L (X) is the Hardy space associated to L . This recovers the

classical results in the particular case when L = −� and extends a number of known
results.

Keywords Schrödinger group · Gaussian upper bound · Hardy space

Mathematics Subject Classification 42B37 · 35J10 · 42B30

1 Introduction

Let (X , d, μ) be a metric space endowed with a nonnegative Borel measureμ. Denote
by B(x, r) the open ball of radius r > 0 and center x ∈ X , and by V (x, r) its
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measureμ(B(x, r)). In this paper we assume that the measureμ satisfies the doubling
condition: there exists a constant C > 0 such that

V (x, 2r) ≤ CV (x, r) (1)

for all x ∈ X , r > 0 and all balls B(x, r).
We note that the doubling property (1) yields a constant n > 0 so that

V (x, λr) ≤ CλnV (x, r), (2)

for all λ ≥ 1, x ∈ X and r > 0; and that

V (x, r) ≤ C
(
1 + d(x, y)

r

)n
V (y, r), (3)

for all x, y ∈ X and r > 0.
Suppose that L is a non-negative self-adjoint operator on L2(X). Suppose further

that the operator L generates an analytic semigroup e−t L whose kernels e−t L satisfy
the Gaussian estimate. That is, there exist constants C, c > 0 and m > 1 such that

|e−t L(x, y)| ≤ C

V (x, t1/m)
exp

(
− d(x, y)m/m−1

ct1/m−1

)
(G)

for all x, y ∈ X and t > 0.
Through spectral theory we can define the Schrödinger group, for t ∈ R,

eit L =
∫ ∞

0
eitλdEL(λ),

where EL(λ) is the spectral decomposition of L .
The mapping properties of the Schrödinger group eit L has a wide range of appli-

cations spanning fields such as harmonic analysis and nonlinear dispersive equations.
The Schrödinger group is bounded on L2(X) but not bounded in L p(X) for p �= 2,
even in the case when L = −� is the Laplacian on R

n . Despite this, (1 + L)−seit L

is known to be L p-bounded for s sufficiently large. It was shown in [7] that for every
1 < p < ∞ and t ∈ R,

‖(1 + L)−seit L f ‖L p � (1 + |t |)s‖ f ‖L p , s > n

∣∣∣∣
1

2
− 1

p

∣∣∣∣. (4)

Similar results can be found in [2, 5, 7, 11, 20, 23] and the references therein.
In the classical case when L = −�, we also have the following sharp estimate: for

all 1 < p < ∞ and t > 0 one has

‖(1 − �)−seit� f ‖L p � (1 + |t |)s‖ f ‖L p , s = n

∣∣∣∣
1

2
− 1

p

∣∣∣∣, (5)
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see [22]. Also for p ≤ 1, it was proved by Miyachi [21] that for each 0 < p ≤ 1 and
t ∈ R we have

‖(1 − �)−seit� f ‖H p(Rn) � (1 + |t |)s‖ f ‖H p(Rn), s = n
( 1

p
− 1

2

)
, (6)

where H p(Rn) is the classical Hardy spaces. See [24].
Let us turn to some more recent results concerning (4)-(6), which also serves to

motivate the results in our paper. The first concerns sharpness for p > 1. In comparison
with (5), estimate (4) is not sharp. However this point has recently been addressed in
[9]; more precisely, it was proved there that (4) also holds for s = n

∣∣ 1
2 − 1

p

∣∣.
Secondly, the following endpoint estimates for p = 1 were obtained in [8]:

‖(1 + L)−n/2eit L f ‖L1 + ‖(1 + L)−n/2eit L f ‖H1
L

� (1 + |t |)n/2‖ f ‖H1
L
, (7)

under more general assumptions than G. Here H1
L(X) is the Hardy space associated

to L (see Sect. 2 for the precise definition of H1
L(X)). In this paper we address the

sharp extension of (7) to p < 1 in the sense of (6). Our main result is the following.

Theorem 1.1 Let L be a non-negative self-adjoint operator on L2(X) generating an
analytic semigroup e−t L whose kernels satisfy the Gaussian upper bound G. Then for
each 0 < p ≤ 1 and s = n(1/p − 1/2), we have

‖(I + L)−seit L f ‖H p
L (X) � (1 + |t |)s‖ f ‖H p

L (X), t ∈ R, (8)

where H p
L (X) is the Hardy space associated to L (defined in Sect. 2).

Some comments on Theorem 1.1 are in order.

(i) It is natural to speculate on the relationshipbetweenTheorem1.1 and [8,Theorem
1.1]. While the endpoint p = 1 is implied by [8, Theorem 1.1], to the best of
our knowledge, the result for p < 1 is new. It is also important to note that the
approach in [8] is not immediately applicable to p < 1; indeed, the inequality
(4.7) in [8], which plays a crucial role in the proof of [8, Theorem 1.1], is not true
if the L1-norm is replaced by the L p-norm when p < 1. We believe therefore
that any generalization of Theorem 1.1 under the less restrictive assumptions
employed in [8] will require new ideas.

(ii) By using interpolation, estimate (8) implies the following sharp L p estimate: for
1 < p < ∞, we have

‖(1 + L)−seit L f ‖L p � (1 + |t |)s‖ f ‖L p , s = n

∣∣∣∣
1

2
− 1

p

∣∣∣∣.

See [8]. Thus, Theorem 1.1 completes the scale of sharp estimates for the
Schrödinger group for all 0 < p < ∞.
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For s > 0, consider the operator defined by

Is,t (L) f = st−s
∫ t

0
(t − λ)s−1e−iλL f dλ, t > 0,

and Is,t (L) = Īs,−t (L) for t < 0. These operators are known as the ‘Riesz means’
associated to L . The Riesz means have close connections with the solution to the
Schrödinger equation

{
i∂t u + Lu = 0,

u(x, 0) = f .

See for example [23].
By using Theorem 1.1, the spectral theorem in [14, Theorem 1.1], and a standard

argument from [23], we can obtain the following result.

Corollary 1.2 Assume that L satisfies the conditions of Theorem 1.1. Then for each
0 < p ≤ 1 there exists a constant C > 0 independent of t such that

‖Is,t (L) f ‖H p
L (X) ≤ C‖ f ‖H p

L (X), s =
( 1

p
− 1

2

)

for all t �= 0.

The organization of this paper is as follows. In Sect. 2, we fix some notations that
will be employed throughout the article and detail some properties of the Hardy spaces
associated to the operator L . The proof of Theorem 1.1 will be given in Sect. 3. Finally,
Sect. 4 will discuss some applications of the main result.

2 Preliminaries

2.1 Notations and Elementary Estimates on the Space of Homogeneous Type

As usual we use C and c to denote positive constants that are independent of the main
parameters involved but may differ from line to line. The notation A � B means
A ≤ CB, and A ∼ B means that both A � B and B � A hold.

The space of Schwarz functions onR
n is denoted byS (Rn) and givenψ ∈ S (R),

λ ∈ R and j ∈ Z, we use the notationψ j (λ) := ψ(2− jλ). For f ∈ S (Rn)we denote
by F f the Fourier transform of f . That is,

F f (ξ) = 1

(2π)n/2

∫
f (x)e−i x ·ξ dx, ξ ∈ R

n .

To simplify notation, we will often just use B for B(xB, rB) and V (E) forμ(E) for
anymeasurable subset E ⊂ X . Also givenλ > 0, wewill writeλB for the B(xB, λrB).
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For each ball B ⊂ X we set

S0(B) = 0, S j (B) = 2 j B\2 j−1B for j ∈ N.

Let w ∈ A∞ and 0 < r < ∞. The Hardy–Littlewood maximal function Mr is
defined by

Mr f (x) = sup
x∈B

( 1

V (B)

∫

B
| f (y)|r dμ(y)

)1/r

where the sup is taken over all balls B containing x . We will drop the subscripts r
when r = 1. It is well-known that for 0 < r < ∞ one has

‖Mr f ‖p � ‖ f ‖p, (9)

whenever p > r .
The following elementary estimates will be used frequently. See for example [2].

Lemma 2.1 Let ε > 0.

(a) For any p ∈ [1,∞] we have
( ∫

X

[(
1 + d(x, y)

s

)−n−ε]p
dμ(y)

)1/p
� V (x, s)1/p,

for all x ∈ X and s > 0.
(b) For any f ∈ L1

loc(X) we have

∫

X

1

V (x ∧ y, s)

(
1 + d(x, y)

s

)−n−ε | f (y)|dμ(y) � M f (x),

for all x ∈ X and s > 0, where V (x ∧ y, s) = min{V (x, s), V (y, s)}.
We also recall the Fefferman-Stein vector-valued maximal inequality in [17]. For

0 < p < ∞, 0 < q ≤ ∞ and 0 < r < min{p, q}, we have for any sequence of
measurable functions { fν},

∥∥∥
( ∑

ν

|Mr fν |q
)1/q∥∥∥

p
�

∥∥∥
( ∑

ν

| fν |q
)1/q∥∥∥

p
. (10)

2.2 Hardy Spaces Associated to the Operator L

Wefirst recall from [16, 19] the definition of theHardy spaces associated to an operator.
Let L be a nonnegative self-adjoint operator on L2(X) satisfying the Gaussian upper
bound G. Let 0 < p ≤ 1. Then the Hardy space H p

L (X) is defined as the completion
of

{ f ∈ L2(X) : AL f ∈ L p(X)}
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under the norm ‖ f ‖H p
L (X) = ‖AL f ‖L p , where the square function AL is defined as

AL f (x) =
(∫ ∞

0

∫

d(x,y)<t
|tm Le−tm L f (y)|2 dμ(y)dt

tV (x, t)

)1/2
. (11)

Next we have a notion of molecules from [16, 19].

Definition 2.2 (Molecules for L) Let ε > 0, 0 < p ≤ 1 and M ∈ N. A function m(x)
is called a (p, 2, M, L, ε)-molecule associated to a ball B ⊂ X of radius rB if there
exists a function b ∈ D(LM ) such that

(i) m = LMb;
(i) ‖Lkb‖L2(S j (B)) ≤ 2− jεrm(M−k)

B V (2 j B)1/2−1/p for all k = 0, 1, . . . , M and j =
0, 1, 2 . . ..

The molecular property (ii) in particular can be thought of as a mild locality condition
on the operator L .

Definition 2.3 (Hardy spaces associated to L) Given ε > 0, 0 < p ≤ 1 and M ∈ N,
we say that f = ∑

λ jm j is a molecule (p, 2, M, L, ε)-representation if {λ j }∞j=0 ∈

p, each m j is a (p, 2, M, L, ε)-atom, and the sum converges in L2(X). The space
H p
L,mol,M,ε(X) is then defined as the completion of

{
f ∈ L2(X) : f has a molecule(p, 2, M, L, ε) − representation

}
,

with the norm given by

‖ f ‖p
H p
L,mol,M,ε (X)

= inf
{∑

|λ j |p : f

=
∑

λ jm j is a molecule(p, 2, M, L, ε) − representation
}

.

The following gives a molecular characterization for the Hardy spaces H p
L (X).

Theorem 2.4 ([6, 16, 19]) Let ε > 0, p ∈ (0, 1] and M >
n(2−p)
2mp . Then the Hardy

spaces H p
L,mol,M,ε(X) and H p

L (X) coincide and have equivalent norms.

We note that if L = −� then H p
L (Rn) coincides with the standard Hardy space

H p(Rn) on R
n for p ∈ (0, 1]. In general, depending on the choice of the operator L ,

the space H p
L (Rn) may be quite different to H p(Rn). See for example [12].

2.3 Discrete Square Functions

In this sectionweobtain an inequality for certain square functions thatwill be important
in the proof of Theorem 1.1.
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In what follows, by a “partition of unity” we shall mean a functionψ ∈ S (R) such
that suppψ ⊂ [1/2, 2], ∫ ψ(ξ)

dξ
ξ

�= 0 and

∑
j∈Z

ψ j (λ) = 1 on (0,∞).

whereψ j (λ) := ψ(2− jλ) for each j ∈ Z. Now letψ be a partition of unity and define
the discrete square function SL,ψ by

SL,ψ f =
(∑

j∈Z
|ψ j (L) f |2

)1/2
,

which is bounded on L2(X) by Khintchine’s inequality. We also have the following,
which is the main result of this section.

Theorem 2.5 Let ψ be a partition of unity. Then for each 0 < p ≤ 1, we have

‖ f ‖H p
L

� ‖SL,ψ f ‖p

for all f ∈ H p
L (X).

In order to prove the theorem we follow the ideas in [2]. Before presenting the
proof we gather some technical elements which will play a core role in the proof of
the theorem.

The first concerns certain kernel estimates.

Lemma 2.6 ([18]) Let ϕ,ψ ∈ S (R) supported in [1/2, 2]. Then the kernel Kϕ(t L) of
ϕ(t L) satisfies the following: for any N > 0 there exists C such that

|Kϕ(t L)(x, y)| ≤ C

V (x ∨ y, t1/m)

(
1 + d(x, y)

t1/m

)−N
, (12)

for all t > 0 and x, y ∈ X, where V (x ∨ y, t1/m) = max{V (x, t1/m), V (y, t1/m)}.
Next we introduce and give estimates for certain ‘Peetre-type’ maximal functions.

For λ > 0, j ∈ Z and ϕ ∈ S (R) the Peetre-type function is defined, for f ∈ L2(X),
by

ϕ∗
j,λ(L) f (x) = sup

y∈X
|ϕ j (L) f (y)|

(1 + 2 j/md(x, y))λ
, x ∈ X . (13)

Obviously, we have

ϕ∗
j,λ(L) f (x) ≥ |ϕ j (L) f (x)|, x ∈ X .
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Similarly, for s, λ > 0 we set

ϕ∗
λ(sL) f (x) = sup

y∈X
|ϕ(sL) f (y)|

(1 + d(x, y)/s1/m)λ
, f ∈ L2(X). (14)

Proposition 2.7 Let ψ ∈ S (R) with suppψ ⊂ [1/2, 2] and ϕ ∈ S (R) be a partition
of unity. Then for any λ > 0 and j ∈ Z we have

sup
s∈[2− j−1,2− j ]

ψ∗
λ (sL) f (x) �

j+3∑
k= j−2

ϕ∗
k,λ(L) f (x) (15)

for all f ∈ L2(X) and x ∈ X.

Proof The proof can be done in the same way as [2, Proposition 2.16] with s1/m and
2 j/m in place of s and 2 j respectively. We omit the details. �
Proposition 2.8 Let ψ be a partition of unity. Then for any λ, s > 0 and r ∈ (0, 1) we
have:

ψ∗
λ (sL) f (x) �

[ ∫

X

1

V (z, s1/m)

|ψ(sL) f (z)|r
(1 + d(x, z)/s1/m)λr

dμ(z)
]1/r

for all f ∈ L2(X) and x ∈ X.

Proof The proof can be done in the same way as [2, Proposition 2.17] and we omit
the details.

�
We next prove the following result.

Proposition 2.9 Let ψ be a partition of unity. Then for 0 < p ≤ 1 and λ > n/p we
have:

∥∥∥
[∑

j∈Z
|ψ∗

j,λ(L) f |2
]1/2∥∥∥

p
∼ ‖SL,ψ f ‖p.

Proof Since |ψ j (
√
L) f | � ψ∗

j,λ(L) f , it suffices to prove that

∥∥∥
[ ∑

j∈Z
|ψ∗

j,λ(L) f |2
]1/2∥∥∥

p
� ‖SL,ψ f ‖p. (16)

Choose r < p so that λ > n/r . Then applying Proposition 2.8 and Lemma 2.1 we
have

ψ∗
j,λ(L) f (x) �

[ ∫

X

1

V (z, 2− j )

|ψ j (L) f (z)|r
(1 + 2 j d(x, z))λr

dμ(z)
]1/r

� Mr
(|ψ j (L) f |)(x)



Journal of Fourier Analysis and Applications (2022) 28 :70 Page 9 of 23 70

At this stage, we may apply the weighted Fefferman-Stein maximal inequality (10) to
obtain (16) as desired. �

We now ready to prove Theorem 2.5.

Proof of Theorem 2.5: Setting ϕ(λ) = λe−λ. Observe that

|ϕ(t L) f (y)| ≤ ϕ∗
λ(t L) f (x)

for all λ > 0 and d(x, y) < t1/m . Therefore,

( ∫ ∞

0

∫

d(x,y)<t1/m
|ϕ(t L) f (y)|2 dμ(y)dt

tV (x, t1/m)

)1/2

≤
[∫ ∞

0

∫

d(x,y)<t1/m
|ϕ∗

λ(t L) f (x)|2 dμ(y)dt

tV (x, t1/m)

]1/2

�
[∫ ∞

0
|ϕ∗

λ(t L) f (x)|2 dt
t

]1/2
.

Since

‖ f ‖H p
L

=
∥∥∥
( ∫ ∞

0

∫

d(x,y)<t1/m
|ϕ(t L) f (y)|2 dμ(y)dt

tV (x, t1/m)

)1/2∥∥∥
p
,

it suffices to prove that

∥∥∥
[∫ ∞

0
|ϕ∗

λ(t L) f (x)|2 dt
t

]1/2 ∥∥∥
p

� ‖SL,ψ f ‖p, (17)

where ψ is a partition of unity.
By the spectral theory,

f = cψ

∫ ∞

0
ψ(sL) f

ds

s
in L2(X),

where cψ =
[ ∫ ∞

0 ψ(s) dss

]−1
. Hence it follows that for every t > 0,

ϕ(t L)( f ) = cψ

∫ ∞

0
ϕ(t L)ψ(sL) f

ds

s
. (18)

Now let λ > 0, t ∈ [2−ν−1, 2−ν] for some ν ∈ Z and M > λ. For convenience we
may assume cψ = 1. We then have

ϕ(t L)( f ) =
∫ ∞

0
ψ(sL)ϕ(t L) f

ds

s
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=
∑
j≥ν

∫ 2− j

2− j−1
ψ(sL)ϕ(t L) f

ds

s
+

∑
j<ν

∫ 2− j

2− j−1
ψ(sL)ϕ(t L) f

ds

s

=
∑
j≥ν

∫ 2− j

2− j−1

( s
t

)M
(sL)−Mψ(sL)(t L)Mϕ(t L) f

ds

s

+
∑
j<ν

∫ 2− j

2− j−1

t

s
(sL)ψ(sL)e−t L f

ds

s
,

where in the last line we used ϕ(t L) = (t L)e−t L .
We now setψM (x) = x−Mψ(x) and ψ̃(x) = xψ(x). Then the above can bewritten

as

ϕ(t L)( f ) =
∑
j≥ν

∫ 2− j

2− j−1

( s
t

)M
(t L)Mϕ(t L)ψM (sL) f

ds

s

+
∑
j<ν

∫ 2− j

2− j−1

t

s
e−t L ψ̃(sL) f

ds

s
.

Since (t L)Mϕ(t L) = (t L)M+1e−t L satisfies the Gaussian upper bound (see [13]), we
have

|(t L)Mϕ(t L)ψM (sL) f (y)| �
∫

X

1

V (y, t1/m)

(
1 + d(y, z)

t1/m

)−λ−N |ψM (sL) f (z)|dμ(z)

where N > n.
It follows that

|(t2L)Mϕ(t L)ψM (t L) f (y)|
(1 + d(x, y)/t1/m)λ

�
∫

X

1

V (y, t1/m)

(
1 + d(y, z)

t1/m

)−N

|ψM (sL) f (z)|
(1 + d(x, z)/t1/m)λ

dμ(z)

for x, y ∈ X .
Hence, for j ≥ ν, t ∈ [2−ν−1, 2−ν] and s ∈ [2− j−1, 2− j ] we have

|(t2L)Mϕ(t L)ψM (sL) f (y)|
(1 + d(x, y)/t1/m)λ

� 2λ( j−ν)ψ∗
M,λ(sL) f (x)

∫

X

1

V (y, t1/m)

(
1 + d(y, z)

t1/m

)−N
dμ(y)

� 2λ( j−ν)ψ∗
M,λ(sL) f (x).

Since ψ ∈ Sm(R) and suppψ ⊂ [1/2, 2], x−2mψ(x) ∈ S (R). Using Lemma 2.6
and an argument similar to the above, we obtain, for j < ν, t ∈ [2−ν−1, 2−ν] and
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s ∈ [2− j−1, 2− j ],

|e−t L ψ̃(sL) f (y)|
(1 + d(x, y)/t1/m)λ

� ψ̃∗
λ (sL) f (x).

The above two estimates imply that

|ϕ∗
λ(t L)( f )| ≤

∑
j≥ν

2−( j−ν)(M−λ) sup
s∈(2− j−1,2− j ]

ψ∗
M,λ(sL) f

+
∑
j<ν

2−2m(ν− j) sup
s∈(2− j−1,2− j ]

ψ̃∗
λ (sL) f .

This, along with Proposition 2.7, implies that

|ϕ∗
λ(t L)( f )| �

∑
j≥ν−1

2−(M−λ)( j−ν)ψ∗
j,λ(L) f +

∑
j<ν+3

2−2m(ν− j)ψ∗
j,λ(L) f

�
∑
j∈Z

2−2m|ν− j |ψ∗
j,λ(L) f

(19)

for all t ∈ [2−ν−1, 2−ν] and M > λ.
By Young’s inequality,

( ∫ ∞

0
|ϕ∗

λ(t L)( f )|2 dt
t

)1/2
�

( ∑
ν∈Z

[ ∑
j∈Z

2−(2m−α)|ν− j ||ψ∗
j,λ(L) f |2

)1/2

�
( ∑

j∈Z
|ψ∗

j,λ(L) f |2
)1/2

.

Hence, (17) follows from this and Proposition 2.9. The proof of Theorem 2.5 is thus
complete. �

3 Estimates for the Schrödinger Group on Hardy Spaces

This section is devoted to the proof of Theorem 1.1. Before embarking on the proof,
we need the following result from [8, Proposition 3.4]. Define

‖ f ‖Bs =
∫ ∞

−∞
|F f (τ )|(1 + |τ |)sdτ,

where F f denotes the Fourier transform of f .

Lemma 3.1 ([8]) Suppose that L is a non-negative self-adjoint operator on L2(X) and
satisfies the Gaussian upper bound G. Then for every s ≥ 0, there exists C > 0 such
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that for every j ∈ N ∪ {0},

‖1B F(L)1S j (B)‖2→2 ≤ C(
m
√
R2 j rB)−s‖δRF‖Bs

for all balls B, and all Borel functions F such that supp F ⊂ [−R, R], where δRF(·) =
F(R·).

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1: To prove the theorem, we will use Theorem 2.5 and the standard
argument in, for example, [8, 14, 16, 19].

Set F(λ) = (1 + λ)−seitλ with t > 0 and s = n(1/p − 1/2). Let ϕ be a partition
of unity. By Theorem 2.5 it suffices to show that there exists C > 0 such that

‖SL,ϕa‖p ≤ C

for every (p, 2, M, L, ε) molecule a with ε > 0 and M > n(1/p − 1/2) + 1.
Suppose a is a such a molecule that is associated with some ball B, and b be a

function satisfying a = LMb from Definition 2.2. Using the following identity

Id = (I − e−rmB L)M +
m∑

k=1

(−1)k+1CM
k e−krmB L =: (I − e−rmB L)M + P(rmB L)

we can write

SL,ϕ(F(L)a) = SL,ϕ[(I − e−rmB L)MF(L)a] + SL,ϕ[(rmB L)M P(rmB L)F(L)r−mM
B b]

�
∑
k≥0

SL,ϕ[(I − e−rmB L)MF(L)ak]

+
∑
k≥0

SL,ϕ[(rmB L)M P(rmB L)F(L)r−mM
B bk]

=:
∑
k≥0

Ek
1 +

∑
k≥0

Ek
2 ,

where ak = a.1Sk (B) and bk = b.1Sk (B).
Therefore, it suffices to prove that there exists ε′ > 0 such that

‖Ek
1‖p + ‖Ek

2‖p � 2−kε′
(1 + t)n(1/p−1/2) (20)

for each k ∈ N ∪ {0}.
Estimate for Ek

1 : We now show that

‖Ek
1‖p � 2−kε′

(1 + t)n(1/p−1/2), k ∈ N ∪ {0} (21)

for some ε′ > 0.
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For each k ≥ 0, setting Bt,k = (1 + t)2k B, we have

‖Ek
1‖p

p = ‖SL,ϕ[(I − e−rmB L)MF(L)ak]‖p
L p(4Bt,k)

+ ‖SL,ϕ[(I − e−rmB L)MF(L)ak]‖p
L p(X\4Bt,k)

= Ek
11 + Ek

12.

Using Hölder’s inequality and the L2-boundedness of SL,ϕ we obtain

‖Ek
11‖p

p � V (2k(1 + t)B)
2−p
2 ‖SL,ϕ[(I − e−rmB L)MF(L)ak]‖p

L2(4Bt,k)

� V (4(1 + t)2k B)1−p/2‖ak‖p
2

� 2−εkpV (4(1 + t)2k B)1−p/2V (2k B)p/2−1

� 2−εkp(1 + t)n(1−p/2),

where in the last inequality we used (2).
It remains to estimate the second term Ek

12. To do this, setting

F
,rB (λ) = ϕ
(λ)(I − e−rmB λ)MF(λ),

we then write

‖Ek
12‖p

p =
∥∥∥
( ∑


∈Z
|F
,rB (L)ak |2

)1/2∥∥∥
p

L p(X\4Bt,k)

�
∥∥∥

∑

∈Z

|F
,rB (L)ak |
∥∥∥
p

L p(X\4Bt,k)

�
∑

∈Z

‖F
,rB (L)ak‖p
L p(X\4Bt,k )

=
∑

≥
0

. . . +
∑

<
0

. . . =: Fk
1 + Fk

2 ,

(22)

where 
0 is the largest integer such that 2
0(m−1)/m ≤ 2krB .
We estimate Fk

1 first. To do this, we write

Fk
1 =

∑

≥
0

‖F
,rB (L)ak‖p
L p(X\4Bt,k)

≤
∑

≥
0

∑

j≥ 
−
0
2

‖F
,rB (L)ak‖p
L p(S j (Bt,k))

+
∑

≥
0

‖F
,rB (L)ak‖p
L p(B(xB ,2
(m−1)/m(1+t)))

=: Fk
11 + Fk

12.
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By Hölder’s inequality and property (ii) of Definition 2.2 we obtain

Fk
12 �

∑

≥
0

V (B(xB, 2
(m−1)/m(1 + t)))1−p/2‖F
,rB (L)a‖p
L2(B(xB ,2
(m−1)/m (1+t)))

�
∑

≥
0

V (B(xB, 2
(m−1)/m(1 + t)))1−p/2‖F
,rB‖p∞‖ak‖p
2 .

This, along with the fact that ‖F
,rB‖∞ � min{1, (2
rmB )M }2−
n(1/p−1/2), implies
that

Fk
12 �

∑

≥
0

2−kpεV (B(xB, 2
(m−1)/m(1 + t)))1−p/2

min{1, (2
rmB )pM }2−
n(1−p/2)V (2k B)1−p/2.

On the other hand, since 2
0(m−1)/m ∼ 2krB , we have, for 
 ≥ 
0,

V (xB, 2
(m−1)/m(1 + t))

V (2k B)
∼ V (xB, 2(
−
0)(m−1)/m(1 + t)2krB)

V (2k B)

� [2(
−
0)(m−1)/m(1 + t)]n
∼ (1 + t)n[2
(m−1)/m(2krB)−1]n
� (1 + t)n[2
(m−1)/mr−1

B ]n

We thus deduce that

Fk
12 � 2−kpε(1 + t)n(1−p/2)

∑

≥
0

min{1, (2
rmB )pM }2−
n(1−p/2)[2
(m−1)/mr−1
B ]n(1−p/2)

� 2−kpε(1 + t)n(1−p/2)
∑

≥
0

min{1, (2
rmB )pM }[2
/mrB]−n(1−p/2)

� 2−kpε(1 + t)n(1−p/2).

We now take care of Fk
11. For 
 ≥ 
0 and j ≥ (
−
0)(m−1)

m we have

Fk
11 ≤

∑

≥
0

∑

j≥ 
−
0
2

‖F
,rB ak‖pL2(S j (Bt,k))
V (2 j Bt,k)

1−p/2

�
∑


∈N

∑

j≥ (
−
0)(m−1)
m

‖FrB ,
(L)‖p
L2(Sk (B))→L2(S j (Bt,k))

‖ak‖p2 V (2 j Bt,k)
1−p/2

�
∑


∈N

∑

j≥ (
−
0)(m−1)
m

2−kpε‖FrB ,
(L)‖p
L2(Sk (B))→L2(S j (Bt,k ))

V (2k B)p/2−1V (2 j Bt,k)
1−p/2.
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This, in combination with the doubling property (2), yields that

Fk
11 �

∑

≥
0

∑

j≥ (
−
0)(m−1)
m

2−kpε[2 j (1 + t)]n(1−p/2)‖FrB ,
(L)‖p
L2(Sk (B))→L2(S j (Bt,k))

.

(23)

By Lemma 3.1, for α = n(1/p − 1/2) + θ with θ ∈ (0, ε), we have

‖FrB ,
(L)‖L2(Sk (B))→L2(S j (Bt,k )) � (2
/m2 j (1 + t)2krB)−α‖δ2
FrB ,
‖Bα . (24)

We claim that for α > 0,

‖δ2
FrB ,
‖Bα � max{1, 2(α−n(1/p−1/2))
}(1 + t)α min{1, (2
rmB )M }. (25)

To show this, as in [8], we write

‖δ2
FrB ,
‖Bα = ‖ϕ(λ)(I − e−2
rmB λ)MF(2
λ)‖Bα

� ‖ϕ(λ)(I − e−2
rmB λ)M‖Bα‖ϕ(λ)F(2
λ)‖Bα .

It is easy to see that

‖ϕ(λ)(I − e−2
rmB λ)M‖Bα � min{1, (2
rmB )M }.

On the other hand,

F(ϕ(λ)F(2
λ))(τ ) =
∫ ∞

−∞
ϕ(λ)

ei(2

t−τ)λ

(1 + 2
λ)s
dλ,

where s = n(1/p − 1/2). Next, from integration by parts, we have, for each N ∈ N,

F(ϕ(λ)F(2
λ))(τ ) ≤ CN min{1, 2−
s}(1 + |2
t − τ |)−N .

As a consequence,

‖ϕ(λ)F(2
λ)‖Bα � min{1, 2−
s}
∫

R

(1 + |2
t − τ |)−N (1 + |τ |)αdτ

� max{1, 2(α−s)
}(1 + t)α,

which proves (25).
Substituting (25) into (24) we then obtain

‖FrB ,
(L)‖L2(Sk (B))→L2(S j (Bt,k)) � (2
/m2 j2krB)−α

max{1, 2(α−n(1/p−1/2))
}min{1, (2
rmB )M }.
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This, in combination with (23), implies that for α = n(1/p−1/2)+θ with θ ∈ (0, ε),

Fk
11 �

∑

≥
0

∑

j≥ (
−
0)(m−1)
m

2−kpε(1 + t)n(1−p/2)2− j pθ (2
/m2krB)−α p

max{1, 2
θ p}min{1, (2
rmB )pM }
=:

∑

≥
0: 
<0

. . . +
∑


≥
0: 
≥0

. . . .

For the first sum, we have

∑

≥
0: 
<0

. . . �
∑

≥
0

2−kpε(1 + t)n(1−p/2)(2
/m2krB)−α p min{1, (2
rmB )pM }

�
∑

≥
0

2−kpε(1 + t)n(1−p/2)(2
/mrB)−α p min{1, (2
rmB )pM }

� 2−kpε(1 + t)n(1−p/2),

as long as M > α.
For the contribution of the second sum we have

∑

≥
0: 
≥0

. . . �
∑


≥
0: 
≥0

2−kpε(1 + t)n(1−p/2)2− pθ(
−
0)(m−1)
m (2
/m2krB)−α p2
θ p

min{1, (2
rmB )pM }
�

∑

≥
0

2−kpε(1 + t)n(1−p/2)[2
(m−1)/m(2krB)−1]−θ p(2
/m2krB)−α p2θ p


min{1, (2
rmB )pM }
�

∑

≥
0∨0

2−kp(ε−θ)(1 + t)n(1−p/2)(2
/mrB)−p(α−θ)

min{1, (2
rmB )pM }
� 2−kp(ε−θ)(1 + t)n(1−p/2),

where we used the fact that 2
0(m−1)/m ∼ 2krB in the second inequality. Therefore, it
holds that

Fk
11 � 2−kε′

(1 + t)n(1−p/2)

for some ε′ > 0.
Collecting the estimates of Fk

11 and Fk
12, we arrive at

Fk
1 � 2−kε′

(1 + t)n(1−p/2)

for some ε′ > 0.
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It remains to handle the term Fk
2 . Indeed, we have

Fk
2 =

∑

<
0

‖F
,rB (L)ak‖p
L p(X\4Bt,k ) =

∑

<
0

∑
j≥3

‖F
,rB (L)ak‖p
L p(S j (Bt,k))

.

Arguing similarly to the estimate of F11, we have

Fk
2 �

∑

<
0

∑
j≥3

2−kpε(1 + t)n(1−p/2)2− j pθ (2
/m2krB)−α p max{1, 2θ
p}min{1, (2
rmB )pM }

�
∑

<
0

2−kpε(1 + t)n(1−p/2)(2
/m2krB)−α p max{1, 2θ
p}min{1, (2
rmB )pM }

�
∑

<0

2−kpε(1 + t)n(1−p/2)(2
/mrB)−α p min{1, (2
rmB )pM }

+
∑

0<
<
0

2−kpε(1 + t)n(1−p/2)(2
/m2krB)−α p2θ
p min{1, (2
rmB )pM }.

It is clear that

∑

<0

2−kpε(1 + t)n(1−p/2)(2
/mrB)−α p min{1, (2
rmB )pM } � 2−kpε(1 + t)n(1−p/2),

as long as M > α.
For the second sum, we have

∑
0<
<
0

2−kpε(1 + t)n(1−p/2)(2
/m2krB)−α p2θ
p min{1, (2
rmB )pM }

�
∑

0<
<
0

2−kpε(1 + t)n(1−p/2)(2
/m2krB)−α p2θ
p min{1, (2
rmB )pM }

�
∑

0<
<
0

2−kpε(1 + t)n(1−p/2)[2
(m−1)/m(2krB)−1]−θ p(2
/m2krB)−α p2θ p


min{1, (2
rmB )pM }
�

∑

>0

2−kp(ε−θ)(1 + t)n(1−p/2)(2
/mrB)−p(α−θ) min{1, (2
rmB )pM }

� 2−kp(ε−θ)(1 + t)n(1−p/2)

where in the second inequality we used the fact that

2
(m−1)/m(2krB)−1 ≤ 2
0(m−1)/m(2krB)−1 ≤ 1,

along with 2−
/2rB ≥ 2−
0/2rB ≥ 1. Therefore we may conclude

Fk
2 � 2−kpε′

(1 + t)n(1−p/2)
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for some ε′ > 0. and this, along with the estimate of Fk
1 and (22), implies that

Ek
12 � 2−kpε′

(1 + t)n(1−p/2),

completing the proof of (21).
Estimate forEk

2 : We now show that

‖Ek
2‖p � 2−kε′

(1 + t)n(1/p−1/2), k = 0, 1, 2, . . . (26)

for some ε′ > 0.
Set G
,rB (λ) = ϕ
(λ)(rmB λ)M P(rmB λ)F(λ). Then we have

‖G
,rB‖∞ � min{(2
rmB )−M , (2
rmB )M }2−
n(1/p−1/2).

Arguing similarly to (25), we see that

‖δ2
GrB ,
‖Bα � max{1, 2(α−n(1/p−1/2))
}(1 + t)α min{(2
rmB )−M , (2
rmB )M },

as along as M > n(1/p − 1/2) + 1 > α = n(1/p − 1/2) + θ with θ ∈ (0, ε).
At this stage, proceed along the same lines as in the proof of (21) to obtain (26).

This completes the proof of (20), and thus of Theorem 1.1. �

4 Some Applications

Our framework is sufficiently general to include a large variety of applications; in this
section we survey a few of the more interesting cases.

4.1 Laplacian-Like Operators

Let us here consider two additional conditions on the operator L: Hölder regularity:
there exists δ0 ∈ (0, 1] so that whenever d(x, x̄) < t1/m we have

|e−t L(x, y) − e−t L(x̄, y)| �
(d(x, x̄)

t1/m

)δ0 1

V
(
x,

√
t
) exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
,

(H)

Conservation: for all y ∈ X and t > 0 we have

∫

X
e−t L (x, y) dμ (x) = 1. (C)

Examples of typical operators satisfying G, H and C include the 2k-higher order
elliptic operator in divergence form with smooth coefficients, the homogeneous sub-
Laplacian on a homogeneous group and the Laplace-Beltrami operator on a doubling
manifold admits the Poincaré’s inequality as in [1].
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We recall the definition of the Hardy spaces H p(X) for n
n+1 < p ≤ 1 from [10].

For 0 < p ≤ 1, we say that a function a is a (2, p) atom if there exists a ball B such
that

(i) supp a ⊂ B;
(ii) ‖a‖L2 ≤ V (B)1/2−1/p;
(iii)

∫
a(x)μ(x) = 0.

For p = 1 the atomic Hardy space H1 is defined as follows. We say that a function
f ∈ H1(X), if f ∈ L1 and there exist a sequence (λ j ) j∈N ∈ l1 and a sequence of
(2, 1)-atoms (a j ) j∈N such that f = ∑

j λ j a j . We set

‖ f ‖H1 = inf{
∑
j

|λ j | : f =
∑
j

λ j a j }.

For 0 < p < 1, as in [10], we need to introduce the Lipschitz space Lα . We say
that the function f ∈ Lα if there exists a constant c > 0, such that

| f (x) − f (y)| ≤ c|B|α

for all ball B and x, y ∈ B. The best constant c above can be taken to be the norm of
f and is denoted by ‖ f ‖Lα

.
Now let 0 < p < 1 and α = 1/p − 1. We say that a function f ∈ H p(X), if

f ∈ (Lα)∗ and there is a sequence (λ j ) j∈N ∈ l p and a sequence of (2, p)-atoms
(a j ) j∈N such that f = ∑

j λ j a j . Furthermore, we set

‖ f ‖H p = inf
{(∑

j

|λ j |p
)1/p : f =

∑
j

λ j a j

}
.

Note that when 0 < p < 1, the quantity ‖ · ‖H p is not the norm but d( f , g) :=
‖ f − g‖H p forms a metric.

Lemma 4.1 Let L be a nonnegative self-adjoint operator satisfying G, H and C. Then
H p
L (X) ≡ H p(X) for n

n+δ0
< p ≤ 1.

Proof The proof of this lemma is fairly standard but we could not find in the existing
literature. Thus for the reader’s benefit, we will provide a sketch of its proof. Firstly,
arguing similarly to Lemma 9.1 in [16], we have that every (p, 2, M, L, ε) molecule
m satisfies

∫

X
m(x)dμ(x) = 0.

Therefore, by the argument as in the proof of [3, Proposition 4.16] we can show that
‖m‖H p(X) � 1 uniformly for every (p, 2, M, L, ε) molecule m with M >

n(2−p)
2mp ,

ε > n and n
n+1 < p ≤ 1. It follows immediately that H p

L (X) ⊂ H p(X).
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Conversely, if a is a (2, p) atom with n
n+δ0

< p ≤ 1, then by a standard argument
we can show that ‖Aa‖p � 1, where A is the square function defined by (11). It
follows ‖a‖H p

L
� 1 and this gives H p(X) ⊂ H p

L (X). The proof is thus complete. �
From Lemma 4.1 and Theorem 1.1 we deduce the following.

Theorem 4.2 Let L be a nonnegative self-adjoint operator satisfyingG, H andC. Then
for each n

n+δ0
< p ≤ 1 and s = n(1/p − 1/2) we have

‖(I + L)−seit L f ‖H p(X) � (1 + |t |)s‖ f ‖H p(X), t ∈ R.

4.2 Hermite Operators

Let H = −� + |x |2 be the Hermite operator on R
n with n ≥ 1. Let pt (x, y) denote

the kernel of the semigroup e−tH. It is clear that pt (x, y) enjoys the Gaussian upper
bound G. Moreover we have an explicit representation for the kernel pt (x, y):

pt (x, y) = 1

πn/2

( e−2t

1 − e−4t

)n/2
exp

(
− 1

4

1 + e−2t

1 − e−2t |x − y|2 − 1

4

1 − e−2t

1 + e−2t |x + y|2
)

for all t > 0 and x, y ∈ R
n . This representation is well known – see for example [26].

Let ρ(x) = min{1, |x |−1} for x ∈ R
n . Let p ∈ (0, 1]. A function a is called a

(p,∞, ρ)-atom associated to the ball B(x0, r) if

(i) supp a ⊂ B(x0, r);
(ii) ‖a‖L∞ ≤ |B(x0, r)|−1/p;

(iii)
∫

xαa(x)dx = 0 for all |α| ≤ �n(1/p − 1)� if r < ρ(x0)/4.

TheHardy space H p
at,ρ(Rn) is then defined to be the set of all functions f which can be

expressed in the form f = ∑
j λ j a j where (λ j ) j ∈ 
p and a j are (p,∞, ρ)-atoms.

Its norm is given by

‖ f ‖H p
at,ρ (Rn) := inf

{(∑
j

|λ j |p
)1/p : f =

∑
j

λ j a j

}
,

where the infimum is taken over all possible atomic decompositions of f . From the
definition, it is obvious that H p(Rn) � H p

at,ρ(Rn) for all p ∈ (0, 1]; more importantly,
we have H p

at,ρ(Rn) ≡ H p
H(Rn) for all 0 < p ≤ 1 (see for instance [4, 15]), thus the

Hardy space associated to the Hermite operator contains the standard Hardy spaces
H p(Rn).

Theorem 4.3 Let H = −� + |x |2 be the Hermite operator on R
n with n ≥ 1. Then

for each 0 < p ≤ 1 and s = n(1/p − 1/2) we have

‖H−seitH f ‖H p
at,ρ (Rn) � ‖ f ‖H p

at,ρ (Rn), t ∈ R.
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Proof Since H is a nonnegative self-adjoint operator and satisfies the Gaussian upper
boundGwithm = 2, then by Theorem 1.1 and the coincidence H p

at,ρ(Rn) ≡ H p
H(Rn)

for every 0 < p ≤ 1, we have

‖(I + H)−seitH f ‖H p
at,ρ (Rn) � (1 + |t |)s‖ f ‖H p

at,ρ (Rn).

On the other hand, it is well-known that the spectrum of H is contained in [1,∞) (see
[26]). It follows that

‖H−seitH f ‖H p
at,ρ (Rn) � (1 + |t |)s‖ f ‖H p

at,ρ (Rn).

It is also well-known that

eitH f =
∫

Rn
exp

(
2
(|x |2 + |y|2) cos 2t − 2〈x, y〉

i sin 2t

)
f (y)dy,

which implies that the flow eitH is time-periodic with the period T = 2π . Therefore,

‖H−seitH f ‖H p
at,ρ (Rn) � ‖ f ‖H p

at,ρ (Rn),

which completes our proof. �
Note that in [25], Thangavelu proved that for each t > 0,

‖H−seitH f ‖L1(Rn) ≤ Ct‖ f ‖H1(Rn),

where Ct is a constant dependent on t . In comparison, our result in Theorem 4.3
improves upon the result in [25] significantly, even in the case p = 1 sinceH1

at,ρ(Rn) ⊂
H1(Rn) ⊂ L1(Rn). Moreover, the constant in Theorem 4.3 is independent of t .

We now consider an application of Theorem 4.3 to the Schödinger equation

{
i∂t u + H� = 0,

u(x, 0) = f .
(27)

For each 0 < p ≤ 1 and s > 0 we define the Hardy-Sobolev space Ḣ p,s
H (Rn)

associated to H by

‖ f ‖Ḣ p,s
H (Rn) = ‖Hs/2 f ‖H p

at,ρ (Rn).

It is well-known (see [2]) that

‖ f ‖Ḣ p,s
H (Rn) =

∥∥∥
[ ∑

j

(2− js |ψ j (
√

H))2 f |2
]1/2∥∥∥

p
.
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This means that similar to the classical setting, the Hardy-Sobolev space Ḣ p,s
H (Rn)

can be viewed as a Triebel–Lizorkin type space Ḟ s
p,2(R

n) that is associated to H.
Returning to the equation (27), we note that its solution can be formally written as

u = eitH f . From Theorem 4.3 we can then deduce the following result.

Corollary 4.4 Suppose u is a solution to (27) and let 0 < p ≤ 1. If the initial data
f ∈ Ḣ p,s

H (Rn) with s = n(1/p − 1/2), then we have

‖u‖H p
at,ρ (Rn) � ‖ f ‖

H p,2s
H (Rn)

.
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