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Abstract

Let X be a space of homogeneous type with the doubling order n. Let L be a non-
negative self-adjoint operator on L?(X) and suppose that the kernel of e '~ satisfies a
Gaussian upper bound. This paper shows that for0 < p < lands =n(l/p — 1/2),

I+ D)7 flgr ey S A+ D1 llgr o

for all t € R, where H f (X) is the Hardy space associated to L. This recovers the
classical results in the particular case when L = — A and extends a number of known
results.

Keywords Schrodinger group - Gaussian upper bound - Hardy space
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1 Introduction

Let (X, d, 1) be a metric space endowed with a nonnegative Borel measure . Denote
by B(x,r) the open ball of radius » > 0 and center x € X, and by V(x, r) its
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measure (B (x, r)). In this paper we assume that the measure p satisfies the doubling
condition: there exists a constant C > 0 such that

V(x,2r) <CV(x,r) @))

forall x € X, r > 0 and all balls B(x, r).
We note that the doubling property (1) yields a constant n > 0 so that

V(x,ar) < CA'V(x,r), )
forall A > 1,x € X and r > 0; and that

Vir) < C(l i @)nV(y,r), 3)

forallx,y € X andr > 0.

Suppose that L is a non-negative self-adjoint operator on L?(X). Suppose further
that the operator L generates an analytic semigroup e~/ whose kernels e 'L satisfy
the Gaussian estimate. That is, there exist constants C, ¢ > 0 and m > 1 such that

_ C d(x, yym/m=1
1L =
e 001 = exp (- ) (G)
forall x,y € X andt > 0.
Through spectral theory we can define the Schrodinger group, for ¢ € R,

oo
ellL — / el[)»dEL()\)’
0

where E (1) is the spectral decomposition of L.

The mapping properties of the Schrodinger group ¢/’L has a wide range of appli-
cations spanning fields such as harmonic analysis and nonlinear dispersive equations.
The Schrodinger group is bounded on LZ(X ) but not bounded in L?(X) for p # 2,
even in the case when L = —A is the Laplacian on R”. Despite this, (1 4+ L) *e/'L
is known to be LP-bounded for s sufficiently large. It was shown in [7] that for every
Il <p<ooandt e R,

1 1 4
2750 4)

I+ L) e fllpy S A+ 1D fllee, s >n

Similar results can be found in [2, 5, 7, 11, 20, 23] and the references therein.
In the classical case when L = —A, we also have the following sharp estimate: for
alll < p <ocoand? > 0 one has

11— A" fllee S A+1UDNFllee, s=n

1
T
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see [22]. Also for p < 1, it was proved by Miyachi [21] that for each 0 < p < 1 and
t € R we have

s i ' I 1
10— 27 fllpny S A 1D 1 lwrn, s =n( = 5). ©

where H? (R") is the classical Hardy spaces. See [24].

Let us turn to some more recent results concerning (4)-(6), which also serves to
motivate the results in our paper. The first concerns sharpness for p > 1. In comparison
with (5), estimate (4) is not sharp. However this point has recently been addressed in
[9]; more precisely, it was proved there that (4) also holds for s = n|% — 1

Secondly, the following endpoint estimates for p = 1 were obtained inp[8]:
I+ L2 fll o+ 1A+ D72 flly S A+ 1D . (D

under more general assumptions than G. Here H 12 (X) is the Hardy space associated
to L (see Sect. 2 for the precise definition of H; (X)). In this paper we address the
sharp extension of (7) to p < 1 in the sense of (6). Our main result is the following.

Theorem 1.1 Let L be a non-negative self-adjoint operator on L*>(X) generating an
analytic semigroup e 'L whose kernels satisfy the Gaussian upper bound G. Then for
eachO < p <lands =n(1/p —1/2), we have

(I + L)_seith”Hf(X) <1+ |l‘|)S||f||H]f’(X), teRR, 8)

where H 1{7 (X) is the Hardy space associated to L (defined in Sect. 2).

Some comments on Theorem 1.1 are in order.

(i) Itisnaturalto speculate ontherelationship between Theorem 1.1 and [8, Theorem
1.1]. While the endpoint p = 1 is implied by [8, Theorem 1.1], to the best of
our knowledge, the result for p < 1 is new. It is also important to note that the
approach in [8] is not immediately applicable to p < 1; indeed, the inequality
(4.7) in [8], which plays a crucial role in the proof of [8, Theorem 1.1], is not true
if the L'-norm is replaced by the L”-norm when p < 1. We believe therefore
that any generalization of Theorem 1.1 under the less restrictive assumptions
employed in [8] will require new ideas.

(i) By using interpolation, estimate (8) implies the following sharp L? estimate: for
1 < p < 0o, we have

s i . 1
I+ D)~ fllee S A+ 1D N flle,  s=n 7

See [8]. Thus, Theorem 1.1 completes the scale of sharp estimates for the
Schrddinger group for all 0 < p < oco.
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For s > 0, consider the operator defined by
t .
I (L) f = st_S/ (t =2t fan, >0,
0

and I, ;(L) = I_s,,t(L) for t < 0. These operators are known as the ‘Riesz means’
associated to L. The Riesz means have close connections with the solution to the
Schroédinger equation

io;u+ Lu =0,
ux,0) = f.

See for example [23].
By using Theorem 1.1, the spectral theorem in [14, Theorem 1.1], and a standard
argument from [23], we can obtain the following result.

Corollary 1.2 Assume that L satisfies the conditions of Theorem 1.1. Then for each
0 < p < 1 there exists a constant C > O independent of t such that

1 1
s, (D) fllgr ) = Clfllap ey, = (; - 5)

forallt # 0.

The organization of this paper is as follows. In Sect. 2, we fix some notations that
will be employed throughout the article and detail some properties of the Hardy spaces
associated to the operator L. The proof of Theorem 1.1 will be given in Sect. 3. Finally,
Sect. 4 will discuss some applications of the main result.

2 Preliminaries
2.1 Notations and Elementary Estimates on the Space of Homogeneous Type

As usual we use C and c to denote positive constants that are independent of the main
parameters involved but may differ from line to line. The notation A < B means
A < CB,and A ~ B means that both A < B and B < A hold.

The space of Schwarz functions on R” is denoted by . (R") and given ¢ € . (R),
A €Rand j € Z, we use the notation ¥ (A) := Y (277 1). For f € .7 (R") we denote
by F f the Fourier transform of f. That is,

1

FfE) = G

/f(x)eiix"s dx, §&eR".

To simplify notation, we will often just use B for B(xp, rp) and V (E) for u(E) for
any measurable subset E C X. Also given A > 0, we will write A B for the B(xp, Arp).

Birkhauser
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For each ball B C X we set
So(B) =0, S;(B)=2/B\2/"'B forjeN.

Let w € Ay and 0 < r < oco. The Hardy-Littlewood maximal function M, is
defined by

1 1/r
M1 = s (i [ 170 du)

xXeB

where the sup is taken over all balls B containing x. We will drop the subscripts r
when r = 1. It is well-known that for 0 < r < oo one has

M fllp S U (C))
whenever p > r.
The following elementary estimates will be used frequently. See for example [2].
Lemma2.1 Lete > 0.

(a) Forany p € [1, co] we have

(/X [(1 + d(xs’ y)>_n_e]pdu(y))l/p < Vix, s)r,

forallx € X and s > 0.
(b) Forany f € L} (X) we have

loc

1 d(x,y)\—n—€
/XV(x/\y,s) (1+ S ) | fDldu(y) S Mf(x),

forallx € X and s > 0, where V(x A y,s) = min{V (x, s), V(y, s)}.

We also recall the Fefferman-Stein vector-valued maximal inequality in [17]. For
0<p<00,0<gqg=<ooand0 < r < min{p, g}, we have for any sequence of
measurable functions { f, },

6> M) < s> )" (10)

2.2 Hardy Spaces Associated to the Operator L
We firstrecall from [16, 19] the definition of the Hardy spaces associated to an operator.
Let L be a nonnegative self-adjoint operator on L*(X) satisfying the Gaussian upper
bound G. Let 0 < p < 1. Then the Hardy space H f (X) is defined as the completion
of

(f € L2(X): ALf € LP(X))

Birkhauser
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under the norm ||f||HLp(X) = || AL fllLr, where the square function 4y is defined as

zdu(y)dt)l/z. 0

Le —t"L
Apf(x) = / fd(xy)<z " F VD)

Next we have a notion of molecules from [16, 19].

Definition 2.2 (Molecules for L) Lete > 0,0 < p < 1 and M € N. A function m(x)
is called a (p, 2, M, L, €)-molecule associated to a ball B C X of radius rp if there
exists a function b € D(LM) such that

(i) m=LMp;
(@) IL*Bl s,y < 27y MOV QIB)2IP forall k = 0,1,..., M and j =
0,1,2....

The molecular property (ii) in particular can be thought of as a mild locality condition
on the operator L.

Definition 2.3 (Hardy spaces associated to L) Givene€ > 0,0 < p < land M € N,
we say that f = ) Ajmj is a molecule (p, 2, M, L, €)-representation if {Aj}?":O S

£?,eachm; is a (p,2, M, L, €)-atom, and the sum converges in L2(X). The space
H f,mol, M. (X) is then defined as the completion of

{f € LZ(X) : f has amolecule(p,2, M, L, €) — representation} ,

with the norm given by

MG(X)zinf[ZMjV’:f

= ijmj is amolecule(p,2, M, L, €) — representation] .

117,

L,mol,

The following gives a molecular characterization for the Hardy spaces H f (X).

Theorem 2.4 ([6, 16, 19]) Lete > 0, p € (0, 1] and M > "(22,;;). Then the Hardy

spaces H I{),mol, M. (X) and H f (X) coincide and have equivalent norms.

We note that if L = —A then H Lp (R™) coincides with the standard Hardy space
HP(R") on R" for p € (0, 1]. In general, depending on the choice of the operator L,
the space H f (R™) may be quite different to H” (R"). See for example [12].

2.3 Discrete Square Functions

In this section we obtain an inequality for certain square functions that will be important
in the proof of Theorem 1.1.

Birkhauser
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In what follows, by a “partition of unity”” we shall mean a function ¥ € .%/(R) such
that supp ¥ C [1/2,2], [ (&) % # 0 and

> 9j(A) =1on (0,00).

JEZ

where ¥ (1) := w(2_/ M) foreach j € Z. Now let ¢ be a partition of unity and define
the discrete square function Sy y by

suuf = ()",

JEZL
which is bounded on L?(X) by Khintchine’s inequality. We also have the following,
which is the main result of this section.

Theorem 2.5 Let  be a partition of unity. Then for each 0 < p < 1, we have

I p S WSy flp

forall f € Hf(X).

In order to prove the theorem we follow the ideas in [2]. Before presenting the
proof we gather some technical elements which will play a core role in the proof of
the theorem.

The first concerns certain kernel estimates.

Lemma2.6 ([18]) Let ¢, ¥ € S (R) supported in [1/2, 2]. Then the kernel K1) of
@(tL) satisfies the following: for any N > 0 there exists C such that

d(x,y)>—N’ (12)

C
Ky, Y| < (1+=m%

“Vix vy, t1/m)

forallt > 0andx,y € X, where V(x V y, tl/’”) = max{V (x, tl/’”), V(y, tl/’”)}.

Next we introduce and give estimates for certain ‘Peetre-type’ maximal functions.
For & > 0, j € Z and ¢ € .7 (R) the Peetre-type function is defined, for f € £*(X),
by

x _ lo; (L) f (W)
@i L) fx) = )S}slg 03 27mdG )7

x e X. (13)

Obviously, we have

P (D f) = g (L) f(X)], xe€X.

Birkhauser
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Similarly, for s, . > 0 we set

L
0 L) f ) = sup —LODI O

P e, sty € L*(X). (14)

Proposition 2.7 Let y € . (R) withsupp ¢ C [1/2,2] and ¢ € . (R) be a partition
of unity. Then for any . > 0 and j € 7Z we have

j+3
sup  YFGLFO) S Y g (D) f() (15)
se[2=i=1,2-/] k=j—2

forall f € L>(X) and x € X.

Proof The proof can be done in the same way as [2, Proposition 2.16] with s1/m and
27/™ in place of s and 2/ respectively. We omit the details. O

Proposition 2.8 Let v be a partition of unity. Then for any A, s > Qandr € (0, 1) we
have:

1 Wehf@I" ( )]l/r

ViEDf S [/X Vi s/ (L +d(x, 2)/s1/m)7

forall f € L>(X) and x € X.

Proof The proof can be done in the same way as [2, Proposition 2.17] and we omit
the details.

(]
We next prove the following result.

Proposition 2.9 Let r be a partition of unity. Then for 0 < p < land A > n/p we
have:

[Zwiwse] "] ~iseori.

J€Z

Proof Since |¢j(ﬁ)f| < w}k’k(L)f, it suffices to prove that

H[Z“”;J(L)f'z]l/zup SUSLy fllp- (16)

J€Z

Choose r < p so that A > n/r. Then applying Proposition 2.8 and Lemma 2.1 we
have

1 [V (L) f@I
Vi(z,277) (1 +27d(x, 2)*

1/r
Viaf@ s | /X dn@] " S My F1) @

Birkhauser



Journal of Fourier Analysis and Applications (2022) 28:70 Page90f23 70

At this stage, we may apply the weighted Fefferman-Stein maximal inequality (10) to
obtain (16) as desired. m]

We now ready to prove Theorem 2.5.

Proof of Theorem 2.5: Setting ¢ (L) = Ae~*. Observe that
lp(tL) f(¥)| < @5 (tL) f (x)
forall A > O and d(x, y) < t1/m Therefore,

) _dp(y)dt_y12
( / /d(x o [PPSOV /m))

du(y)dt }1/2
L 2

172
§UO |<pik(tL)f(X)|27t] .

Since

’

» du(y)dt )1/2‘
P

10 = ( /0 /d oy WD TP GRS

it suffices to prove that

H UOOO Iwi(tL)f(x)p%T/z Hp SISz fllps a7

where ¢ is a partition of unity.
By the spectral theory,

o0 ds .,
f :cv,/ w(sL)f? in L°(X),
0
—1
where ¢y = [fooo w(s)%] . Hence it follows that for every ¢ > 0,

o d
pL)(f) = 01///0 w(tL)W(SL)f?s- (18)

Now let A > 0,7 € [27"~!,27"] for some v € Z and M > A. For convenience we
may assume ¢y, = 1. We then have

o0 d
o(tL)(f) = /0 ¢<sL)¢(rL)f§

Birkhauser
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2—J

d 27 d
=Z/, w(sL)<p<rL>f—s+Zf, Y(sLyp(L) f =
2-j-1 N = 2-j-1 K

277 M d
(3) LML MeeL)f=
't L ,ds
+ Z/ ~(sL)Y(sLye " f—,

= 2—-j-18§ S
where in the last line we used ¢(tL) = (tL)e™"'L.

We now set ¥/7 (x) = x My (x) and @(x) = xy(x). Then the above can be written
as

2 e\M ds
w(tL)(f)Z; /2 G e ey

2—J ~ d
+Z/2__,~_1 ée_’LW(sL)fTS.

j<v

Since (tL)YM@(tL) = (tL)yM*+1e'L satisfies the Gaussian upper bound (see [13]), we
have

1 (1 d(y.z)

—A-N
V(y.t1/m) 1/m ) [Wm (sL) f(2)1dpu(2)

(LMot Lyyrar (sL) fF ()] < /X

where N > n.
It follows that

(2 LYM ot LYYm (tL) f (y)] </ 1 ( d(y,z)>*N
(A +dx, y)/ttmy ™ Jx V(y, tt/m) t1/m
[Ym(sL) f(2)]

(14d(x, z)/t1/m)*

du(z)

forx,y € X.
Hence, for j > v,r € [27""!, 27" and s € [27/~, 277] we have

(D)Mot L)Y (sL) £ ()]
(1 +d(x, y)/t!/m)*

S 22Uy (L) £ (x)

1 d(y,z)\—N
/XV(y,tl/m)<1+ m ) du(y)

S2MTIyx L (sL) f(x).

Since ¥ € .%,(R) and supp ¢ C [1/2,2], x" "¢ (x) € .#(R). Using Lemma 2.6
and an argument similar to the above, we obtain, for j < v, t € [2_”_1, 27"] and

) Birkhduser
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se[2-i1 27,

e ML D

1 +d(x, y)/[l/m)A ~ J}T(SL)f(x)

The above two estimates imply that

@y LY <Y 270D qup g L) f
]

= se@i127)
+ Z 27 2mv=J) sup Vi(sL) f.
= se@i1277]

This, along with Proposition 2.7, implies that

pr LIS Y 27 MUy (@ f 4+ Y 27y () f

j=v—1 Jj<v+3

Sy 2milyE () f

JEZ

19)

forallz € 27", 27V ]and M > A.
By Young’s inequality,

NG )" y-Cn-alvilys (1) ]
(/0 L)) tt>/ (Z[Z Q2m—a)|v—j 2>1/2

VEZ JEL

< (Zwhwrr)”

JEL

Hence, (17) follows from this and Proposition 2.9. The proof of Theorem 2.5 is thus
complete. O

3 Estimates for the Schrédinger Group on Hardy Spaces

This section is devoted to the proof of Theorem 1.1. Before embarking on the proof,
we need the following result from [8, Proposition 3.4]. Define

1 f e =f FFOI + [t)dx,

—00
where F f denotes the Fourier transform of f.

Lemma 3.1 ([8]) Suppose that L is a non-negative self-adjoint operator on L*(X) and
satisfies the Gaussian upper bound G. Then for every s > 0, there exists C > 0 such

Birkhauser
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that for every j € NU {0},
118 F(L)1s;p)ll2—2 < C(VR2/rp) ™ |8 F | s

forallballs B, and all Borel functions F such thatsupp F C [—R, R], where SR F () =
F(R").

We are now ready to give the proof of Theorem 1.1.

Proof of Theorem 1.1: To prove the theorem, we will use Theorem 2.5 and the standard
argument in, for example, [8, 14, 16, 19].

Set F(L) = (1 +A) ¢! witht > 0and s = n(1/p — 1/2). Let ¢ be a partition
of unity. By Theorem 2.5 it suffices to show that there exists C > 0 such that

”SL,gaa”p <C

for every (p,2, M, L, €) molecule a withe > 0and M > n(1/p —1/2) + 1.
Suppose a is a such a molecule that is associated with some ball B, and b be a
function satisfying @ = L™ b from Definition 2.2. Using the following identity

m
d=(—e 5" 43 ()M e ™ bl = (1 — e 5)M + P(ry L)
k=1
we can write

SLp(F(L)a) = Sy o[(I — e " BHYM F(Lyal + Sp [ LYM P(rip LYF(L)rz™™ b]

S Y SLpltd — e TEM F(Lyar]
k>0

+ Y SLlF DM PG LYF(Lyrg™ by
k>0

=Y Ef+) Ej.

k>0 k>0

where aj = a-lSk(B) and bk = b.lsk(g).
Therefore, it suffices to prove that there exists €’ > 0 such that

IEXI, + 1ESN, S 275 (1 4 /=12 (20)

for each k € NU {0}.
Estimate for £ ’1‘ : We now show that

IEK), S 275 a4+ 0 W/p=12 0 ke NU{0} 1)
for some €/ > 0.

Birkhauser
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For each k > 0, setting B; x = (1 + t)ZkB, we have

IESI, = 1S2.6[( — e 3YM F(Darll] iy, )

+1SL. LT = e BYM FLailll] pxap, o
k k
Using Holder’s inequality and the L?-boundedness of S L,p We obtain
2-p _ym
IET ) S V@A +DB) T ISLlU = e 8)Y F(La ]z,
SVEA+02"B)' P 1§

S22 V@ 402k B) PRy @ By
< z—ekp(l + t)n(l—p/Z),

where in the last inequality we used (2).
It remains to estimate the second term E’fz. To do this, setting

Frp () = oI — e "BMHMF(3),

we then write

p
LP(X\4B; )

1/2
1ELIG = | (30 1P (D)

LeZ

p

LP(X\4B 1)

<| X Py (L
@)

5 Z l F@,rB (L)ax ||IL71>(X\4B,,,()
el

=Y ...+) ...=F+F,

>4 l<lg

where £ is the largest integer such that 200=1/m < ok
We estimate F ]k first. To do this, we write

Ff =Y I Fery(Darl ] px s, )
>4

P P
=2 2 WP oes; s, )+ D 1Fers W]y gy s sy

(2% j> 4*240 (2%
.k k

) Birkhduser
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By Holder’s inequality and property (ii) of Definition 2.2 we obtain

k (m—1 1—p/2
Fi S ) VB, 2500+ ) PR Foy (L)al] s e stinvimr 0y,
=Ly
<Y VB, 28I ) PR Fy ey Bl -

{>£y

This, along with the fact that || Fy ,, [loo < min{1, 2¢75)M 2= 1/P=1/2) implies

that

Fiy S ) 277V (B, 2 DM (L 4 1)) 7P/
>4
min{1, 2'rf)PMy2=tn=r2y 2k gyl=r/2,

On the other hand, since 2¢0@=D/m ~ 2kp . e have, for £ > ¢,

Vg, 280D 4 1)V ep, 200D 4 128
V(2kB) V(2*B)
S [2((—{0)(}’"—1)/}%(1 + t)]n
~ (1 + t)n[zf(m—l)/m(zkrg)—l]n
5 (1 + t)l’l[2€(ﬂl*1)/mr§1]n

We thus deduce that

F1k2 S 2—]([76(1 + t)n(l—p/2) Z min{l, (zfrg)pM}z—Zn(l—p/z)[zf(m—l)/mrgl]n(l—p/2)
>0y
S22+ 0" PR Y min(1, ) PMY 28 g )
>0y

S27he(1 - pyni=riD),
We now take care of Flkl. For ¢ > £pand j > wﬂiﬁl) we have

k p J 1=p/2
Fivs 20 20 WFergail o, g, )Y @ Bri)
ZZZOJ‘Z%

< P 14
~ Z Z ”F}’B,Z(L)”LZ(SI((B))_)LZ(SJ_(B”C))”ak”2
£eN />(f*io)(mfl)

V(@B )P/

—k p k 2—1 j 1-p/2
5 Z Z 2 pe”FrB’E(L)”Lz(Sk(B))ﬁLZ(S_/(B,'k))V(z B)I’/ V(ZJB[’]() [7/ .

LeN = (e—tg)(m—1)

m

) Birkhiuser
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This, in combination with the doubling property (2), yields that

k —k j 1-p/2
Fhis)l D 2R A0l R e DN 1205, 5,000

>4 j= (l—l();(m—l)

(23)
By Lemma 3.1, fora = n(1/p — 1/2) 4+ 6 with 6 € (0, €), we have
1 Frg e (D 1205, By 1265 By = @27 (1 + 125 rg) (183 Frp cllpe. (24)
We claim that for « > 0,
1836 Frp,ellpe S max{1, 2@~ W/P=U2G (1 4 % min{l, QM) (25)
To show this, as in [8], we write

_nt,.m
1850 Frp.ellpe = o) (I — 2 5™ F(2°),)]|
_ntl,.m
S eI — e 2 MM |lga (W) F (2°2) || ge.

It is easy to see that
_otpm .
lp) (I — e 5 M ge < minf1, 24f)HM}.
On the other hand,

00 iRU—1)A

£)(2) — e
FloFQM)() = [_ oW G

where s = n(1/p — 1/2). Next, from integration by parts, we have, foreach N € N,
FpO)FQ'2) () < Cymin{l,27%}(1 + 2% — )™V,
AS a consequence,
le()F 2 A)|Ipe < min{l, 275} / (L+12% — )™M + |t
R

< max{1, 297941 + 1)?,

which proves (25).
Substituting (25) into (24) we then obtain

I Frg e (L) L2 (5 (BY) > L2(S; (Br i) @miokrpy=e

max{1, 2@ V/P=UD8 min(1, 4mM),
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This, in combination with (23), implies that fora = n(1/p —1/2) 46 with 6 € (0, €),

Ffy 5 Z Z 27kpe (1 4 pyn(=p/Dp=ip pt/mok, y~ap

=Ly ;- U=tp)(m=1)
jzE—
max{1, 2“7} min{1, (2£rg1)pM}

= Z .t Z

£>40y: £<0 €>0y: £>0

For the first sum, we have

Z . < Z 27kPe (1 4 1)n =P/ (Q/mok gy =P min{1, (2¢rm)PM)
>0p: £<0 >4

< 30 27 ke (1 "D QUM gy ming 1, (2L PM)
>4
< 27](}76(1 + t)n(lfp/Z),

aslong as M > «.
For the contribution of the second sum we have

Z o< Z 2—/‘/75(1 + t)"(l—[’/z)z—w(Zi/mzkrB)—apZZQp
>00: £>0 £>00: €20

min{1, 2°r)PM)}
< Z 2—kp5(1 _I_t)n(l—p/z)[ze(m—l)/m(zkrB)—l]—0p(22/m2kr3)—ap20pz
>0
min{1, 2°r)PM}
< Z 2—kp(6—9)(1+t)n(l—P/2)(2@/7",,3)—17(0!—9)
€>2pVv0
min{1, 2°)PM}

< z—kp(é—e)(l + t)n(l—P/z)’

where we used the fact that 200" =1/m ~ 2kpp in the second inequality. Therefore, it
holds that

Ffy S27k @4 pr-r

for some €’ > 0.
Collecting the estimates of F’ 1kl and F 1]‘2, we arrive at

Ff <2781 4 nd=r/?
for some €’ > 0.
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It remains to handle the term F2k Indeed, we have

k P P
Fy =Y WFery(DallDpixap, o = D 20 M Fers Darl]ogs, s,
<ty L<tly j>3

Arguing similarly to the estimate of F71, we have

FY < 0 Y amheen oy mp/20m0r8 b m ok gy =@l max(1, 297 min{1, 2°r)PM}

£<ly j>3
< D 2kre 4 =PI @8 m ok ) =P max (1, 294P Y min{1, 2 PM)
<ty
<D 2mRen 4y P/ @8y )y =P min1, 25 PM )
<0
+ Y 2R 4 P/ @t maky gy er 2t ming1, 20 PMY.
O<tl<¥y

It is clear that

Y 27k 4 D Uy )P min1, 24 )PMY < 27RPE (1 4 )R/
<0

aslongas M > «.
For the second sum, we have

S amheer 4 Ump/D @ moky gy~ 298P min(1, 24 PM)
O<tl<ty

< Y 2aRe 4 TP/ @ moky gy me P2 tr min(1, 24 PMY
(IRIRIN

< Z 27kpe(1+t)n(lfp/2)[2€(m7])/m(2krB)71]79p(2£/m2kr3)7ap20p6
O0<tl<ty

min{1, 24r)PM)

>0
< 2_1‘1’(5—9)(1 + t)n(l—p/Z)
where in the second inequality we used the fact that
Zi(mfl)/m(zkrB)fl < 260(m71)/m(2kr3)71 < 1’
along with 24/21’3 > 2_60/21"3 > 1. Therefore we may conclude

sz 5 2—kpé/(1 + t)n(l—p/z)

) Birkhduser
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for some €’ > 0. and this, along with the estimate of Flk and (22), implies that
Ef, S 27 A e/,

completing the proof of (21).
Estimate forE’z‘ : We now show that

<o ke (g /P=12) j—0.1,2, ... (26)

~

k
£ p

for some €’ > 0.
Set Gyry (M) = (W) (rig WM P (% 1) F (A). Then we have

1G ey lloo S min{@rg)~, @“rgHMy2=nt/r=1/2),
Arguing similarly to (25), we see that
185 Grpellpe S max{L, 262U 4+ minf2'rg) ™Y, @)™},
asalongas M >n(l/p—1/2) +1>a=n(1/p —1/2) + 6 with 0 € (0, ¢€).
At this stage, proceed along the same lines as in the proof of (21) to obtain (26).
This completes the proof of (20), and thus of Theorem 1.1. O

4 Some Applications

Our framework is sufficiently general to include a large variety of applications; in this
section we survey a few of the more interesting cases.

4.1 Laplacian-Like Operators

Let us here consider two additional conditions on the operator L: Holder regularity:
there exists 8 € (0, 1] so that whenever d(x, X) < '/ we have

- i d(x, $)\o0 1 d(x, yym/ Y
tL _ tL < _
ey —e @S (S500) T 7 exp (= =)
(H)
Conservation: for all y € X and t > 0 we have
—tL _
/Xe (x, y)ydp (x) = 1. ©)

Examples of typical operators satisfying G, H and C include the 2k-higher order
elliptic operator in divergence form with smooth coefficients, the homogeneous sub-
Laplacian on a homogeneous group and the Laplace-Beltrami operator on a doubling
manifold admits the Poincaré’s inequality as in [1].
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We recall the definition of the Hardy spaces H? (X) for ;47 < p < 1 from [10].
For 0 < p < 1, we say that a function a is a (2, p) atom if there exists a ball B such
that

(i) suppa C B;
(i) llall2 < V(B)!/271/P;
(ii1) fa(x)u(x) =0.

For p = 1 the atomic Hardy space H' is defined as follows. We say that a function
f e H'(X), if f e L' and there exist a sequence (Aj)jeN € I and a sequence of
(2, 1)-atoms (a;) jen such that f = Zj Aja;. We set

Il =inf0Y 1A f =) Ajajh.
J J

For 0 < p < 1, as in [10], we need to introduce the Lipschitz space £,. We say
that the function f € £, if there exists a constant ¢ > 0, such that

|f () = fODI = clBI*

for all ball B and x, y € B. The best constant ¢ above can be taken to be the norm of
f and is denoted by || f| ¢,

Now let0 < p < 1 and @ = 1/p — 1. We say that a function f € H”(X), if
f € (£4)* and there is a sequence (A;);en € [” and a sequence of (2, p)-atoms
(aj)jen such that f =" jAjaj. Furthermore, we set

1flar = inf{(ZM”p)l/P =Y
J

j
Note that when 0 < p < 1, the quantity || - ||g» is not the norm but d(f, g) :=

| f — gllz» forms a metric.

Lemma 4.1 Let L be a nonnegative self-adjoint operator satisfying G, H and C. Then

H](X) = HP(X) for it <P <1

Proof The proof of this lemma is fairly standard but we could not find in the existing
literature. Thus for the reader’s benefit, we will provide a sketch of its proof. Firstly,
arguing similarly to Lemma 9.1 in [16], we have that every (p, 2, M, L, €) molecule
m satisfies

f m(x)du(x) = 0.
X
Therefore, by the argument as in the proof of [3, Proposition 4.16] we can show that

Ilmllgrxy < 1 uniformly for every (p, 2, M, L, €) molecule m with M > "(22’;;),
€ > n and n"? < p < 1. It follows immediately that Hf(X) C HP (X).
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Conversely, if a is a (2, p) atom with m J’r’&) < p < 1, then by a standard argument

we can show that || Aall, < 1, where A is the square function defined by (11). It

~

follows ||a||H£ < 1 and this gives H”(X) C Hf(X). The proof is thus complete. O

From Lemma 4.1 and Theorem 1.1 we deduce the following.

Theorem 4.2 Let L be a nonnegative self-adjoint operator satisfying G, H and C. Then

for each n-ﬁfso <p<lands=n(1/p—1/2) we have

I+ L)~ fllarcn S A+ 1D 1 fllarx), 1 €R.

4.2 Hermite Operators

Let H = —A + |x|? be the Hermite operator on R” with n > 1. Let p;(x, y) denote
the kernel of the semigroup e /7%, It is clear that p,(x, y) enjoys the Gaussian upper
bound G. Moreover we have an explicit representation for the kernel p;(x, y):

1 —2t

e n/2 11+e % , 11— 5
ren = oa(rmm) e (- o P - g +of)

forall# > 0 and x, y € R". This representation is well known — see for example [26].
Let p(x) = min{l, |x|~'} for x € R". Let p € (0, 1]. A function a is called a
(p, 00, p)-atom associated to the ball B(xq, ) if

(i) suppa C B(xo,r);
(i) llallLe < |B(xo, r)|~/P;

(iii) /x“a(x)dx =O0forall || < |n(1/p — 1] ifr < p(xo)/4.

The Hardy space H f, o (R") is then defined to be the set of all functions f which can be
expressed in the form f = Zj Ajaj where (A;); € €7 and a; are (p, 0o, p)-atoms.
Its norm is given by

. 1/p
1 3= inf{ (o 17) 5 f = 3o ja )
J j

where the infimum is taken over all possible atomic decompositions of f. From the
definition, it is obvious that H” (R") g H,ﬁ, o (R") forall p € (0, 1]; more importantly,
we have H,, ,(R") = HJ,(R") forall 0 < p < 1 (see for instance [4, 15]), thus the
Hardy space associated to the Hermite operator contains the standard Hardy spaces

HP(RM).

Theorem 4.3 Let H = —A + |x|? be the Hermite operator on R" with n > 1. Then
foreachO < p <lands =n(l/p —1/2) we have

—s itH
IH e f”Hzﬁ,p(R") S ”f”Hf:,p(R”)’ treR.
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Proof Since H is a nonnegative self-adjoint operator and satisfies the Gaussian upper
bound G with m = 2, then by Theorem 1.1 and the coincidence H,, ,(R") = Hj, (R")
for every 0 < p < 1, we have

—s itH < s
”(I +H) e f“HaP;,p(R") ~ I+ |t|) “f”Hf,’p(]R”)'

On the other hand, it is well-known that the spectrum of H is contained in [1, 0c0) (see
[26]). It follows that

—s itH ) < s
”H e f”HJ;,p(Rn) ~ (1 + |t|) ”f”H;,p(]R”)

It is also well-known that

dMp— | exp (2(|x|2+|YI2.)c'os2t—2(x,y)
R i sin 2t

)f(y)dy,

which implies that the flow e’ His time-periodic with the period T = 2. Therefore,

—s itH
I f gz gy S 1 gz ey

which completes our proof. O

Note that in [25], Thangavelu proved that for each ¢ > 0,

IH=5 ™ fllicny < Collf ey,
where C; is a constant dependent on ¢. In comparison, our result in Theorem 4.3

improves upon the resultin [25] significantly, evenin the case p = 1 since Hal,‘ LR C

H'(R") ¢ L'(R"). Moreover, the constant in Theorem 4.3 is independent of 7.
We now consider an application of Theorem 4.3 to the Schédinger equation

{za,u +HA=0, o7

u(x,0) = f.

For each 0 < p < 1 and s > 0 we define the Hardy-Sobolev space H/;"(R")
associated to H by

2
||f||H71_’( (Rm) ||H f”Hf;_p(R")’

It is well-known (see [2]) that

L1 s oy = H[;(zﬂm(«/ﬁ)ﬂﬂz]l/z HP
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This means that similar to the classical setting, the Hardy-Sobolev space H{_’[’S(R”)
can be viewed as a Triebel-Lizorkin type space F ;’Z(R") that is associated to H.

Returning to the equation (27), we note that its solution can be formally written as
u = "™ £ From Theorem 4.3 we can then deduce the following result.

Corol[ary 4.4 Suppose u is a solution to (27) and let 0 < p < 1. If the initial data
f € H{ (R") with s = n(1/p — 1/2), then we have

< )
el ey S 05 s -
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