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Abstract
The representation of a general Calderón–Zygmund operator in terms of dyadic Haar
shift operators first appeared as a tool to prove the A2 theorem, and it has found a
number of other applications. In this paper we prove a new dyadic representation
theorem by using smooth compactly supported wavelets in place of Haar functions.
A key advantage of this is that we achieve a faster decay of the expansion when the
kernel of the general Calderón–Zygmund operator has additional smoothness.
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1 Introduction

It was long conjectured that classical inequalities for singular integrals T on weighted
spaces L2(w) with a Muckenhoupt A2 weight w should take the sharp form

‖T f ‖L2(w) ≤ cT [w]A2‖ f ‖L2(w).

This A2 conjecture was first verified by one of us [7] by introducing a dyadic rep-
resentation of T , an expansion in terms of simpler discrete model operators (called
dyadic/Haar shifts). Earlier versions of the A2 conjecture for special operators such as
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the martingale transform, the Beurling–Ahlfors transform, the Hilbert transform and
the Riesz transform were due to Wittwer [29], Petermichl and Volberg [25], Peter-
michl [23, 24], respectively. Since then, simpler proofs of the A2 theorem as in Lerner
[12], Lacey [11], and Lerner–Ombrosi [13] replaced the dyadic representation by
sparse domination, but the original dyadic representation theorem continues to have
an independent interest and other applications.

One such application is the extension of the linear dyadic representation to bi-
parameter (also known as product-space, or Journé-type, after [10]) singular integrals
in [17], which has defined the new standard framework for the study of these oper-
ators. The multi-parameter extension of this is due to Y. Ou [21] and a bi-linear
version is due to Li–Martikainen–Ou–Vuorinen [14]. In the bi-parameter context the
representation theorem has proven to be extremely useful e.g., in connection with
bi-parameter commutators and weighted analysis, see Holmes–Petermichl–Wick [6],
Ou–Petermichl–Strouse [22] and Li–Martikainen–Vuorinen [15, 16]. On the other
hand, there are some fundamental obstacles to sparse domination of bi-parameter
objects, see [1], which makes the dyadic representation particularly useful in this
setting.

In another direction, an open problem in vector-valued Harmonic Analysis is to
describe the linear dependence of the norm of a vector-valued Calderón–Zygmund
operator on the UMD constant of the underlying Banach space. In abstract UMD
spaces, the linear bound has only been shown for the Beurling–Ahlfors transform and
for some other special operators with even kernel such as certain Fourier multiplier
operators (see [19]). It is also interesting to mention that, as was the case with the
A2 theorem, the linear bound for the Beurling–Ahlfors transform has been known
for some time, yet the possible linear dependence between the vector-valued Hilbert
transform and theUMDconstant is still a famous open problem (see [9, ProblemO.6]).
More recently, Pott and Stoica established in [26] the linear dependence of sufficiently
smooth Banach space-valued even singular integrals on the UMD constant by showing
such a linear estimate for symmetric dyadic shifts. Their estimate for dyadic shifts
grows like 2max(i, j)/2 in terms of the parameters (i, j) of the shifts. As explained
in their work, to have convergence, one needs a decay factor 2−s max(i, j), which is
guaranteed by kernel smoothness s > 1

2 and only in dimension d = 1. It is interesting
to notice that in most other applications of the dyadic representation theorem, notably
to the weighted inequalities, the rate of convergence of the representation is irrelevant
as long as it is exponential. Formally, the same argument shouldwork in any dimension
d assuming smoothness of order s > 1

2d, but the existing Haar dyadic representation
can only “see” smoothness up to order s ≤ 1; thus 1

2d < s ≤ 1 forces d = 1.
This motivated us to find a new version of the dyadic representation theorem with

faster decay using smooth wavelets with compact support. Our main result is the
following (see Sect. 2 for a precise definition of the wavelet shifts Si j

ω and the required
regularity of the wavelets):

Theorem 1.1 Let s ∈ Z+, and T be a bounded Calderón–Zygmund operator in L2(Rd)

with a kernel satisfying |∂α K (x, y)| ≤ ‖K‖C Zs |x − y|−d−|α| for every |α| ≤ s. In
addition, suppose that T , T ∗ : Ps → Ps , where Ps is the space of polynomials of
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degree less than s. Then for any given ε > 0, T has an expansion, say for f , g ∈
C1

c (Rd),

〈g, T f 〉 = c · (‖K‖C Zs + ‖T ‖L2→L2
) · Eω

∞∑

i, j=1

2−(s−ε)max(i, j)〈g, Si j
ω f 〉,

where c depends only on d, s and ε, Eω is the expectation with respect to the random
parameter ω, and Si j

ω is a version of a dyadic shift with parameters (i, j) but using
sufficiently regular wavelets in place of the Haar functions.

Having this result at our disposal, we can hope to extend the result of [26] to
dimensions d > 1. We plan to address this question in future work. Another possible
area of applications is numerical algorithms for singular integrals, as in [2], where an
ancestor of the dyadic representation is used for this purpose. It is clear that, in such
applications, a high rate of convergence would be preferred.

The interpretation of the assumption that T and T ∗ map the space of polynomials
Ps into itself is made rigorous in Sect. 3, where we restate Theorem 1.1 as Theorem
3.2. These are “special cancellation” or “vanishing paraproduct” assumptions that one
might like to remove in future work.

Since the circulation of this work, Di Plinio et al. [5] have presented an alternative
“representation theorem using smooth wavelets”, where they also deal with the para-
product terms arising from more general cancellation assumptions; see also [4] for an
extension of their representation to bi-linear operators. Their version is a closer relative
of the continuous wavelet transform, in contrast to the semi-discrete representation in
our Theorem 1.1.

The paper is organized as follows: in Sect. 2 we recall the necessary definitions
and results that we are using. Section 3 is dedicated to a detailed statement of our
main result (see Theorem 3.2). As in the case of the dyadic representations using Haar
functions, our proof of Theorem 1.1/3.2 relies on an expansion (see Proposition 3.4)
of the Calderón–Zygmund operator in terms of the (previously Haar, now smooth)
wavelet basis, but the subsequent analysis of the expansion presents some significant
departures from the Haar case. We split the series that appears in this expansion into
five parts which are treated in Sect. 4.

1.1 Notation

Throughout the paper, we denote by c, C constants that depend at most on some fixed
parameters that should be clear from the context. The notation A � B means that
A ≤ C B holds for such a constant C . Moreover, when Q is a cube and t > 0, then
t Q represents the cube with the same centre and t times the sidelength of Q. Also, we
make the convection that | | stands for the �∞ norm on R

d , i.e., |x | := max1≤i≤d |xi |.
While the choice of the norm is not particularly important, this choice is slightly more
convenient than the usual Euclidean norm when dealing with cubes as we will: e.g.,
the diameter of a cube in the �∞ norm is equal to its sidelength �(Q).
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2 Preliminaries

We recall the following from [8, Sect. 2].
The standard (or reference) system of dyadic cubes is

D0 := {2−k([0, 1)d + l) : k ∈ Z, l ∈ Z
d}.

We will need several dyadic systems, obtained by translating the reference system as
follows. Let ω = (ω j ) j∈Z ∈ ({0, 1}d)Z and

I +̇ω := I +
∑

j :2− j <�(I )

2− jω j .

Then
Dω := {I +̇ω : I ∈ D0},

and it is straightforward to check that Dω inherits the important nestedness property
of D0: if I , J ∈ Dω, then I ∩ J ∈ {I , J , ∅}. When the particular ω is unimportant,
the notation D is sometimes used for a generic dyadic system.

2.1 RandomDyadic Systems; Good and Bad Cubes

We obtain a notion of random dyadic systems by equipping the parameter set � :=
({0, 1}d)Z with the natural probability measure: each component ω j has an equal
probability 2−d of taking any of the 2d values in {0, 1}d , and all components are
independent of each other.We denote byEω the expectation over the random variables
ω j , j ∈ Z.

Consider the modulus of continuity �(t) = tθ , θ ∈ (0, 1), for which we will
formulate the notion of good and bad cubes. We also fix a (large) parameter r ∈ Z+.

Definition 2.1 A cube I ∈ Dω is called bad if there exists J ∈ Dω such that �(J ) ≥
2r�(I ) and

dist(I , ∂ J ) ≤
( �(I )

�(J )

)θ

�(J ) : (2.2)

roughly, I is relatively close to the boundary of a much bigger cube. A cube is called
good if it is not bad.

We repeat from [8, Sect. 2.3] some basic probabilistic observations related to
badness. Let I ∈ D0 be a reference interval. The position of the translated interval

I +̇ω = I +
∑

j :2− j <�(I )

2− jω j ,
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by definition, depends only on ω j for 2− j < �(I ). On the other hand, the badness of
I +̇ω depends on its relative position with respect to the bigger intervals

J +̇ω = J +
∑

j :2− j <�(I )

2− jω j +
∑

j :�(I )≤2− j <�(J )

2− jω j .

The same translation component
∑

j :2− j <�(I ) 2
− jω j appears in both I +̇ω and J +̇ω,

and so does not affect the relative position of these intervals. Thus this relative position,
and hence the badness of I , depends only on ω j for 2− j ≥ �(I ). In particular:

Lemma 2.3 For I ∈ D0, the position and badness of I +̇ω are independent random
variables.

Another observation is the following: by symmetry and the fact that the condition
of badness only involves relative position and size of different cubes, it readily follows
that the probability of a particular cube I +̇ω being bad is equal for all cubes I ∈ D0:

Pω(I +̇ω bad) = πbad = πbad(r , d, θ).

The final observation concerns the value of this probability:

Lemma 2.4 We have

πbad ≤ 8d

2−r∫

0

tθ
dt

t
= 8d

θ
2−rθ ;

in particular, πbad < 1 if r = r(d, θ) is chosen large enough.

The proof of the previous lemma can be found in [8, Lemma 2.3].

2.2 Wavelet Functions

We introduce the notion of the smooth wavelet functions with compact support asso-
ciated to any given dyadic system D . Such wavelets were originally constructed by I.
Daubechies [3] but in this paper we will follow [18].

In [18,Chapter 3] one canfind the construction of the smoothwaveletswith compact
support for d = 1. Moreover, once the 1-dimensional wavelets and the related father
wavelets ψ0 = φ are available, the d-dimensional wavelets can be constructed by
ψη(x) = ∏d

i=1 ψηi (xi ), where η ∈ {0, 1}d \{0} and wemake the conventionψ1 = ψ .

Definition 2.5 We say that
{
ψ

η
I

}
I∈D ,η∈{0,1}d\{0} is a system of wavelets with param-

eters (m, u, v) if
ψ

η
I (x) := 2dk/2ψη(2k x − l),

for some d-dimensional wavelet ψη, I = 2−k([0, 1)d + l), and this collection has the
following fundamental properties of a wavelet basis:

(i) Being an orthonormal basis of L2(Rd)
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(ii) Localization: suppψ
η
I ⊂ m I

(iii) Regularity: |∂αψ
η
I | ≤ C�(I )−|α||I |−1/2, for every multi-index α ∈ N of order

|α| ≤ u
(iv) Cancellation:

∫
xαψ

η
I (x) dx = 0, when |α| ≤ v.

Here u, v ∈ N are two parameters that may or may not be equal. Note that Haar
functions correspond to m = 1, u = v = 0, but in general m > 1.

For a fixed D , all the wavelet functions ψ
η
I , I ∈ D and η ∈ {0, 1}d \ {0}, form

an orthonormal basis of L2(Rd). Hence any function f ∈ L2(Rd) has the orthogonal
expansion

f =
∑

I∈D

∑

η∈{0,1}d\{0}
〈 f , ψ

η
I 〉ψη

I .

Since the different η’s seldom play any major role, this will be often abbreviated (with
slight abuse of language) simply as

f =
∑

I∈D
〈 f , ψI 〉ψI ,

and the finite summation over η is understood implicitly.

2.3 Wavelet Shifts

A wavelet shift with parameters i, j ∈ N := {0, 1, 2, . . .} is an operator of the form

S f =
∑

K∈D
AK f , AK f =

∑

I ,J∈D :I ,J⊆K
�(I )=2−i �(K )

�(J )=2− j �(K )

aI J K 〈 f , ψI 〉ψJ ,

where ψI is a wavelet function on I (similarlyψJ ), and the aI J K are coefficients with

|aI J K | ≤
√|I ||J |

|K | . (2.6)

Remark 2.7 The dyadic shifts considered in many other papers correspond to the spe-
cial case of Haar wavelets.

The wavelet shift is called good if all dyadic cubes I , J , K such that aI J K �=
0 satisfy m I , m J ⊂ K ; otherwise, it is called bad. We note that this condition is
automatic when m = 1, but not in general. Nevertheless, a closely related notion of
good shifts already appeared in [7], where it played a certain role. This notion was not
needed in the many works that appeared on this topic since [7]. The L2 boundedness
of the good wavelet shift S is a consequence of the following facts:
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Lemma 2.8 If S is a good wavelet shift then AK indicates an “averaging operator”
on K which satisfies:

|AK f | � 1K
1

|K |
∫

K

| f |.

Proof Since S is a good wavelet shift, if aI J K �= 0 then m J ⊂ K and m I ⊂ K , for
fixed m ≥ 1, i.e., m J and m I are good cubes inside K .

Using the bound (2.6) for the coefficients aI J K , the regularity of ψI , and the pre-
vious fact that m J ⊂ K , m I ⊂ K , for fixed m ≥ 1, we have

|AK f | �
∑

I ,J∈D :I ,J⊆K
�(I )=2−i �(K )

�(J )=2− j �(K )

√|I ||J |
|K |

1m J√|J | ·
∫ | f |1m I√|I |

= 1

|K |
( ∑

J∈D :J⊆K
�(J )=2− j �(K )

1m J

) ∫
| f |

( ∑

I∈D :I⊆K
�(I )=2−i �(K )

1m I

)

� 1K
1

|K |
∫

K

| f |,

where the (easy to check) bounded overlap of the cubes m J (respectively m I ) was
used in the last step. ��
Corollary 2.9 Let S be a good wavelet shift. The following estimate for the “averaging
operator” AK holds:

‖AK f ‖L p � ‖ f ‖L p , ∀p ∈ [1,∞].

Proof Applying the pointwise bound of Lemma 2.8 to each AK we have

‖AK f ‖L p �
∥∥
∥1K

1

|K |
∫

K
| f |

∥∥
∥

L p
� |K |1/p 1

|K | |K |1/p′ ‖ f ‖L p = ‖ f ‖L p .

��
Lemma 2.10 Let S be a good wavelet shift. Then

‖S f ‖L2 � ‖ f ‖L2 .

Proof We use the orthonormality of the wavelet functions. Let

Hi
K := span{ψI : I ⊆ K , �(I ) = 2−i�(K )},

and let P
i
K be the orthogonal projection of L2 onto this subspace. For a fixed i , these

spaces are orthogonal, as K ranges over D .
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We have 〈 f , ψI 〉 = 〈Pi
K f , ψI 〉 for all I appearing in AK , and hence AK f =

AK P
i
K f . Also, ψJ = P

j
K ψJ for all J appearing in AK , and hence AK f = P

j
K AK f .

We can apply these identities and Pythagoras’ theorem to the result that:

‖S f ‖L2 =
∥
∥∥

∑

K∈D
P

j
K AK P

i
K f

∥
∥∥

L2

=
( ∑

K∈D
‖P

j
K AK P

i
K f ‖2L2

)1/2

�
( ∑

K∈D
‖P

i
K f ‖2L2

)1/2

� ‖ f ‖L2 ,

where we used the L2 boundedness of AK from Corollary 2.9 in the second-to-last
step. ��

3 The Dyadic Representation Theorem for Smooth Compactly
SupportedWavelets

Let T be a Calderón–Zygmund operator on R
d . That is, it acts on a suitable dense

subspace of functions in L2(Rd) (for the present purposes, this class should at least
contain the indicators of cubes in R

d ) and has the kernel representation

T f (x) =
∫

Rd

K (x, y) f (y) dy, x /∈ supp f .

Moreover, we assume that the kernel is s-times differentiable and satisfies the higher
order standard estimate:

|∂α K (x, y)| ≤ C1

|x − y|d+|α| (3.1)

for all x, y ∈ R
d , x �= y, α ∈ N and |α| ≤ s. Let us denote the smallest admissible

constant C1 by ‖K‖C Zs .
We say that T is a bounded Calderón–Zygmund operator, if in addition T :

L2(Rd) → L2(Rd), and we denote its operator norm by ‖T ‖L2→L2 .
Under such assumptions, we can also define the action of T on the space Ps of

polynomials of degree less than s. This is well known, and the reader can consult [28]
(see also [27]) for a comprehensive discussion. The necessary set-up for our needs is
as follows:
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If ψ ∈ Cs
c (B(0, R)) satisfies

∫
Rd Pψ = 0 for all P ∈ Ps , then we have, for

|x | > 2R,

T ψ(x) =
∫

Rd

K (x, y)ψ(y) dy =
∫

B(0,R)

(
K (x, y) −

∑

0≤|α|<s

yα

α! ∂
α
2 K (x, 0)

)
ψ(y) dy

and hence

|T ψ(x)| ≤
∫

B(0,R)

s
( 1∫

0

∑

|α|=s

|y||α|

α! |∂α
2 K (x, t y)|(1 − t)s−1 dt

)
|ψ(y)| dy

� ‖K‖C Zs

∫

B(0,R)

Rs
( 1∫

0

s

|x − t y|d+s
(1 − t)s−1 dt

)
|ψ(y)| dy

� ‖K‖C Zs

Rs

|x |d+s
‖ψ‖1.

This expression is integrable against any P ∈ Ps over the region B(0, 2R)c. On
the other hand, it is clear that T ψ ∈ L2(Rd) ⊂ L1

loc(R
d) is also integrable against

P ∈ Ps ⊂ L∞
loc(R

d) over B(0, 2R). Thus

〈T ∗ P, ψ〉 := 〈P, T ψ〉 :=
∫

Rd

P(x)T ψ(x) dx

is well defined for every P ∈ Ps and every ψ ∈ Cs
c (R

d) that is orthogonal to Ps . This
defines T ∗ P as a functional on the said subspace of Cs

c (R
d), and the definition of T P

can be given in a similar way, since the adjoint T ∗ satisfies the same assumptions.
We say thatT mapsPs into itself, if 〈T P, ψ〉 = 0 for all P ∈ Ps and allψ ∈ Cs

c (R
d)

that are orthogonal to Ps .
Here is our main result:

Theorem 3.2 Let T be a bounded Calderón–Zygmund operator with a kernel satisfying
(3.1) and suppose that both T and T ∗ map Ps into itself, in the sense defined above.
Moreover, let the wavelet ψI satisfy the regularity and cancellation property for u = s
and v = s − 1, respectively. Then for any given ε > 0, T has an expansion, say for
f , g ∈ C1

c (Rd),

〈g, T f 〉 = c · (‖K‖C Zs + ‖T ‖L2→L2
) · Eω

∞∑

i, j=1

2−(s−ε)max(i, j)〈g, Si j
ω f 〉,

where c depends only on d, s and ε, and Si j
ω is a good wavelet shift of parameters

(i, j) on the dyadic system Dω.
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The following remark shows that the assumption that T and T ∗ map Ps into itself
follows from the other assumptions of Theorem 3.2, if in addition the operator T is
translation invariant.

Remark 3.3 Let T be a bounded Calderón–Zygmund operator with a kernel satisfying
(3.1) and suppose in addition that T is translation invariant. Then both T and T ∗ map
Ps into itself.

Proof It is enough to consider just T , since all the assumptions, and hence the conclu-
sions, pass to the adjoint T ∗. For the result concerning T , we refer the reader to [28,
Proposition 2.2.17]. ��

A key to the proof of the dyadic representation is a random expansion of T in terms
of wavelet functions ψI , where the bad cubes are avoided:

Proposition 3.4 Let T ∈ L (L2(Rd)) and f ∈ C1
c (Rd), g ∈ C1

c (Rd). Then the
following representation is valid:

〈g, T f 〉 = 1

πgood
Eω

∑

I ,J∈Dω

1good(smaller{I , J }) · 〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉,

where

smaller{I , J } :=
{

I if �(I ) ≤ �(J )

J if �(I ) > �(J ),

and πgood := 1 − πbad > 0.

Proof The proof is analogous to the one given in [8, Proposition 3.5], replacing the
Haar functions hI and h J should be replaced by the wavelet functions ψI and ψJ ,
respectively. We provide the details for the convenience of the reader.

Recall that
f =

∑

I∈D0

〈 f , ψI +̇ω〉ψI +̇ω

for any fixed ω ∈ �; and we can also take the expectation Eω of both sides of this
identity.

Let

1good(I +̇ω) :=
{
1, if I +̇ω is good,

0, else

We make use of the above random wavelet expansion of f , multiply and divide by

πgood = Pω(I +̇ω good) = Eω1good(I +̇ω),
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and use the independence from Lemma 2.3 to get:

〈g, T f 〉 = Eω

∑

I

〈g, T ψI +̇ω〉〈ψI +̇ω, f 〉

= 1

πgood

∑

I

Eω[1good(I +̇ω)]Eω[〈g, T ψI +̇ω〉〈ψI +̇ω, f 〉]

= 1

πgood
Eω

∑

I

1good(I +̇ω)〈g, T ψI +̇ω〉〈ψI +̇ω, f 〉

= 1

πgood
Eω

∑

I ,J

1good(I +̇ω)〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉.

On the other hand, using independence again in half of this double sum, we have

1

πgood

∑

�(I )>�(J )

Eω[1good(I +̇ω)〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉]

= 1

πgood

∑

�(I )>�(J )

Eω[1good(I +̇ω)]Eω[〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉]

= Eω

∑

�(I )>�(J )

〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉,

and hence

〈g, T f 〉 = 1

πgood
Eω

∑

�(I )≤�(J )

1good(I +̇ω)〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉

+ Eω

∑

�(I )>�(J )

〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉.

Comparison with the basic identity

〈g, T f 〉 = Eω

∑

I ,J

〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉 (3.5)

shows that

Eω

∑

�(I )≤�(J )

〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉

= 1

πgood
Eω

∑

�(I )≤�(J )

1good(I +̇ω)〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉.
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Symmetrically, we also have

Eω

∑

�(I )>�(J )

〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉

= 1

πgood
Eω

∑

�(I )>�(J )

1good(J +̇ω)〈g, ψJ +̇ω〉〈ψJ +̇ω, T ψI +̇ω〉〈ψI +̇ω, f 〉,

and this completes the proof. ��
For the analysis of the series appearing in Proposition 3.4 we recall the notion of

the long distance [20, Definition 6.3]

D(I , J ) := �(I ) + dist(I , J ) + �(J ).

Wefocus on the summation insideEω, for a fixed value ofω ∈ �, andmanipulate it into
the required form.Moreover, wewill focus on the half of the sumwith �(J ) ≥ �(I ), the
other half being handled symmetrically. We further divide this sum into the following
parts:

∑

�(I )≤�(J )

=
∑

dist(I ,J )>�(J )(�(I )/�(J ))θ

dist(m I ,m J )> 1
2 D(I ,J )

+
∑

dist(I ,J )>�(J )(�(I )/�(J ))θ

dist(m I ,m J )≤ 1
2 D(I ,J )

+
∑

I�J

+
∑

I=J

+
∑

dist(I ,J )≤�(J )(�(I )/�(J ))θ

I∩J=∅

=: σfar + σbetween + σin + σ= + σnear.

We observe that the main difference in the division of the previous sum and the one
in [8, after the Proposition 3.5] is that the sum σout in [8] has been split into σfar and
σbetween, which are handled differently. Regarding the sum σin we will not use the
same method as in [8, Sect. 3.2]. The sums σ= and σnear will be treated in a similar
but not exactly the same way as in [8, Sect. 3.3].

In order to recognize these series as sums of good wavelet shifts, we need to find,
for each pair (I , J ) appearing here, a common dyadic ancestor which contains m I
and m J . The following lemma provides the existence of such containing cubes, with
control on their size:

Lemma 3.6 If I ∈ D is good and J ∈ D is a cube with �(J ) ≥ �(I ), then there exists
K ⊇ m I ∪ m J which satisfies

�(K )
( �(I )

�(K )

)θ

� D(I , J ), always, and

�(K ) � �(I ), if dist(I , J ) ≤ �(J )
( �(I )

�(J )

)θ

and J ∩ I = ∅.
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Proof Let us start with the following initial observation: if I ∈ D is good and K ∈ D
satisfies I ⊆ K , and �(K ) ≥ 2r�(I ), then

dist(I , K c) = dist(I , ∂K ) > �(K )
( �(I )

�(K )

)θ = �(K )1−θ �(I )θ ≥ 2r(1−θ)�(I ) > m�(I ),

when r is large enough. Hence m I ⊆ K , and we can proceed with the proof of
m J ⊆ K . Using an elementary triangle inequality we estimate dist(I , K c) in the
following way:

dist(I , K c) ≤ dist(I , m J ) + �(m J ) + dist(m J , K c)

≤ dist(I , J ) + m�(J ) + dist(m J , K c).

Thus,
dist(m J , K c) ≥ dist(I , K c) − dist(I , J ) − m�(J )

> �(K )
( �(I )

�(K )

)θ − dist(I , J ) − m�(J ).
(3.7)

In order to conclude that m J ⊆ K we want the right hand side of (3.7) to be non-
negative. This is achieved by taking the smallest �(K ) such that

�(K )
( �(I )

�(K )

)θ ≥ dist(I , J ) + m�(J ).

Then, in fact

�(K )
( �(I )

�(K )

)θ

� dist(I , J ) + m�(J ) � dist(I , J ) + �(J ). (3.8)

Hence,

�(K )
( �(I )

�(K )

)θ

� D(I , J ).

This proves the first estimate.

Case dist(I , J ) ≤ �(J )(�(I )/�(J ))θ and I ∩ J = ∅: As I ∩ J = ∅, we have
dist(I , J ) = dist(I , ∂ J ), and since I is good, this implies �(J ) < 2r�(I ). We can
then dominate the right hand side of (3.8) by

�(J )(�(I )/�(J ))θ + �(J ) � �(J ) � �(I ). (3.9)

Thus, from (3.8) and (3.9) we have

�(K )

�(I )

( �(I )

�(K )

)θ

� 1 and �(K ) � �(I ),

so this proves the second estimate. ��
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We denote the minimal such K by I ∨ J , thus

I ∨ J :=
⋂

K⊇m I∪m J

K .

4 Estimates for the Different Sums �far,�between,�in,�=,�near

4.1 Far Away Cubes,�far

We reorganize the sum σfar with respect to the new summation variable K = I ∨ J ,
as well as the relative size of I and J with respect to K :

σfar =
∞∑

j=1

∞∑

i= j

∑

K

∑

I ,J :dist(I ,J )>�(J )(�(I )/�(J ))θ

dist(m I ,m J )> 1
2 D(I ,J )

I∨J=K
�(I )=2−i �(K ),�(J )=2− j �(K )

.

Note that we can start the summation from 1 instead of 0, since the disjointness of
I and J implies that K = I ∨ J must be strictly larger than either of I and J . The
goal is to identify the quantity in parentheses as a decaying factor times an averaging
operator with parameters (i, j). The proof of the following lemma is similar to [8,
Lemma 3.8] but to make use of the smoothness, we subtract a higher order Taylor
expansion of the kernel K instead of y �→ K (x, y) at y = cI .

Lemma 4.1 For I and J appearing in σfar, we have

|〈ψJ , T ψI 〉| � ‖K‖C Zs

√|I ||J |
|K |

( �(I )

�(K )

)−θ(d+s)( �(I )

�(K )

)s
,

where K = I ∨ J and θ ∈ (0, 1).

Proof Using the properties ofψI , Taylor series of order s of y �→ K (x, y) at the centre
point y = cI of I , higher order standard estimate of the kernel (3.1), and Lemma 3.6

|〈ψJ , T ψI 〉| =
∣∣
∣
∫∫

ψJ (x)K (x, y)ψI (y) dy dx
∣∣
∣

=
∣
∣
∣
∫∫

ψJ (x)
(

K (x, y) −
∑

0≤|α|<s

(y − cI )
α

α! ∂α
2 K (x, cI )

)
ψI (y) dy dx

∣
∣
∣

≤
∫∫

s|ψJ (x)|
( 1∫

0

∑

|α|=s

|y − cI ||α|

α! |∂α
2 K (x, t y + (1 − t)cI )|(1 − t)s−1 dt

)
|ψI (y)| dy dx

� ‖K‖C Zs

∫∫
|ψJ (x)|�(I )s

( 1∫

0

s

|x − (cI + t(y − cI ))|d+s
(1 − t)s−1 dt

)
|ψI (y)| dy dx
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� ‖K‖C Zs

�(I )s

dist(m I , m J )d+s
‖ψJ ‖1‖ψI ‖1

� ‖K‖C Zs

�(I )s

D(I , J )d+s
‖ψJ ‖1‖ψI ‖1

� ‖K‖C Zs

�(I )s

�(K )d+s

( �(I )

�(K )

)−θ(d+s)‖ψJ ‖1‖ψI ‖1

� ‖K‖C Zs

1

�(K )d

( �(I )

�(K )

)s( �(I )

�(K )

)−θ(d+s)|m J ||m I ||J |− 1
2 |I |− 1

2

� ‖K‖C Zs

1

�(K )d

( �(I )

�(K )

)s( �(I )

�(K )

)−θ(d+s)√|J |√|I |.

��
Lemma 4.2

∑

I ,J :dist(I ,J )>�(J )(�(I )/�(J ))θ

dist(m I ,m J )> 1
2 D(I ,J )

I∨J=K
�(I )=2−i �(K )≤�(J )=2− j �(K )

1good(I ) · 〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉

= c‖K‖C Zs2
iθ(d+s)2−is〈g, Ai j

K f 〉,

where θ ∈ (0, 1) and Ai j
K is an averaging operator with parameters (i, j).

Proof By Lemma 4.1, substituting �(I )/�(K ) = 2−i ,

|〈ψJ , T ψI 〉| � ‖K‖C Zs

√|I ||J |
|K | 2iθ(d+s)2−is,

and the first factor is precisely the required size of the coefficients of Ai j
K . ��

Summarizing, we have

σfar = c‖K‖C Zs

∞∑

j=1

∞∑

i= j

2−i(s−ε)〈g, Si j f 〉,

where we choose θ = ε
d+s for any given ε > 0 and Si j is a good wavelet shift with

parameters (i, j).

4.2 Intermediate Cubes,

σbetween Let M > m. In this part, we make use of the fact that ψJ has a Taylor series
of order s at the centre point cI of I and we denote

Tayls(ψJ , cI ) :=
∑

0≤|α|<s

(x − cI )
α

α! ∂αψJ (cI ).
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We drop cI , when it is clear from the context. Thus, we have

〈ψJ , T ψI 〉 = 〈ψJ − Tayls(ψJ , cI ), T ψI 〉 + 〈Tayls(ψJ , cI ), T ψI 〉. (4.3)

Observe that due to the hypothesis of Theorem 3.2 that the operators T , T ∗ mapPs

to itself, and by the cancellation of ψI the last term of (4.3) vanishes. The first term
of (4.3) we can further split as

〈ψJ , T ψI 〉 = 〈1(M I )c (ψJ − Tayls(ψJ , cI )), T ψI 〉
+ 〈1M I (ψJ − Tayls(ψJ , cI )), T ψI 〉. (4.4)

In the following we estimate the remaining non-vanishing terms of (4.4). For these
terms, we obtain estimates that do not depend on the fact that we are dealing with the
intermediate cubes, and in fact we will use these same estimates again to deal with
σin.

Lemma 4.5 For all I , J ∈ D such that �(I ) ≤ �(J ), we have

|〈1(M I )c (ψJ − Tayls(ψJ , cI )), T ψI 〉| � ‖K‖C Zs

( |I |
|J |

)1/2
�

( �(I )

�(J )

)
,

where

�(t) := t s
(
log

1

t
+ 1

)
� t s−ε for any given ε > 0 and t ∈ (0, 1].

Proof Let us denote Tayls(K ) := ∑
0≤|α|<s

(y−cI )
α

α! ∂α
2 K (x, cI ). Using the cancella-

tion of ψI , the Taylor series of order s of y �→ K (x, y) at the centre point y = cI of
I and the higher order standard estimate of the kernel (3.1)

|〈1(M I )c (ψJ − Tayls(ψJ , cI )), T ψI 〉|
≤

∫∫
1(M I )c (x)|ψJ (x) − Tayls(ψJ , cI )||K (x, y) − Tayls(K )||ψI (y)| dy dx

� ‖K‖C Zs �(I )s‖ψI ‖1
∫

1(M I )c (x)
|ψJ (x) − Tayls(ψJ , cI )|

dist(x, m I )d+s
dx . (4.6)

Now, using the regularity property and the Taylor series of order s of ψJ at the
centre point cI of I we derive the following two estimates:

Estimate 1

|ψJ (x) − Tayls(ψJ , cI )| ≤ ‖ψJ ‖∞ +
∑

0≤|α|<s

|x − cI ||α|

α! ‖∂αψJ ‖∞

� |J |−1/2
( ∑

a<s

dist(x, m I )a

�(J )a

)
,

where a = |α| ∈ N.
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Estimate 2

|ψJ (x) − Tayls(ψJ , cI )| ≤ s

1∫

0

∑

|α|=s

|x − cI ||α|

α! |∂αψJ (t x + (1 − t)cI )|(1 − t)s−1 dt

� |x − cI |s‖∂sψJ ‖∞

� |J |−1/2 dist(x, m I )s

�(J )s
.

Thus, the right hand side of (4.6) is dominated by

� ‖K‖C Zs �(I )s ‖ψI ‖1
|J |1/2

( ∫

(M I )c

dist(x,m I )≤�(J )

dist(x, m I )s

�(J )s

1

dist(x, m I )d+s
dx

+
∫

dist(x,m I )>�(J )

dist(x, m I )s−1

�(J )s−1

1

dist(x, m I )d+s
dx

)

� ‖K‖C Zs �(I )s
( |I |
|J |

)1/2(
�(J )∫

�(I )

1

�(J )s

1

t
dt +

∞∫

�(J )

1

�(J )s−1

1

t2
dt

)

= ‖K‖C Zs �(I )s
( |I |
|J |

)1/2( 1

�(J )s
log

�(J )

�(I )
+ 1

�(J )s−1

1

�(J )

)

= ‖K‖C Zs

( |I |
|J |

)1/2
�

( �(I )

�(J )

)
.

��
Lemma 4.7 For all I , J ∈ D such that �(I ) ≤ �(J ), we have

|〈1M I (ψJ − Tayls(ψJ , cI )), T ψI 〉| � ‖T ‖L2→L2

( �(I )

�(J )

)s( |I |
|J |

)1/2
. (4.8)

Proof By the Taylor series of order s ofψJ at the centre point cI of I and the regularity
properties of ψI , ψJ , we can compute the left hand side of (4.8) as follows:

∣∣∣
〈
1M I

1∫

0

∑

|α|=s

(x − cI )
α

α! ∂αψJ (t x + (1 − t)cI )(1 − t)s−1 dt, T ψI

〉∣∣∣

� ‖T ‖L2→L2(M�(I ))s‖∂sψJ ‖∞|I |1/2
� ‖T ‖L2→L2�(I )s�(J )−s |J |−1/2|I |1/2

= ‖T ‖L2→L2

( �(I )

�(J )

)s( |I |
|J |

)1/2
.

��
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By combining Eq. (4.4), Lemmata 4.5 and 4.7 we have

|〈ψJ , T ψI 〉| � (‖K‖C Zs + ‖T ‖L2→L2)
( |I |
|J |

)1/2( �(I )

�(J )

)s−ε

. (4.9)

Now, for the completion of the analysis of the sum σbetween we will need the fol-
lowing lemma:

Lemma 4.10 For I and J appearing in σbetween, we have

D(I , J ) � �(J ),

where D(I , J ) is the long distance introduced in Sect. 3.

Proof We start by estimating dist(I , J ) as follows:

dist(I , J ) ≤ 1

2
(m − 1)�(I ) + dist(m I , m J ) + 1

2
(m − 1)�(J )

≤ 1

2
(m − 1)�(I ) + 1

2
D(I , J ) + 1

2
(m − 1)�(J )

= 1

2
(m − 1)�(I ) + 1

2
�(I ) + 1

2
dist(I , J ) + 1

2
�(J ) + 1

2
(m − 1)�(J )

= m

2
�(I ) + 1

2
dist(I , J ) + m

2
�(J ).

(4.11)
Hence, (4.11) implies

dist(I , J ) ≤ m�(I ) + m�(J ). (4.12)

Applying (4.12) we have

D(I , J )

�(J )
= �(I ) + dist(I , J ) + �(J )

�(J )
≤ (m + 1)

�(I ) + �(J )

�(J )
≤ 2(m + 1).

��

Using Lemma 3.6 we can organize the sum σbetween in a similar way as the sum
σfar

σbetween =
∞∑

j=1

∞∑

i= j

∑

K

∑

I ,J :�(I )≤�(J )

dist(I ,J )>�(J )(�(I )/�(J ))θ

dist(m I ,m J )≤ 1
2 D(I ,J )

I∨J=K
�(I )=2−i �(K ),�(J )=2− j �(K )

a(I , J ),

where
a(I , J ) := 〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉 (4.13)
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satisfies, by (4.9), the estimate

|a(I , J )| � |〈g, ψJ 〉|(‖K‖C Zs + ‖T ‖L2→L2)
( |I |
|J |

)1/2( �(I )

�(J )

)s−ε |〈ψI , f 〉|

= |〈g, ψJ 〉|(‖K‖C Zs + ‖T ‖L2→L2)

√|I ||J |
|K |

|K |
|J |

( �(I )

�(J )

)s−ε |〈ψI , f 〉|.
(4.14)

By combining Lemmata 3.6 and 4.10 we can estimate |K |/|J |
(
�(I )/�(J )

)s−ε

of

(4.13) as follows:

|K |
|J |

( �(I )

�(J )

)s−ε = �(K )d

�(J )d

( �(I )

�(J )

)s−ε

� �(K )d

(
�(K )

(
�(I )
�(K )

)θ)d+s−ε
�(I )s−ε

= �(K )d

�(K )(1−θ)(d+s−ε)

�(I )s−ε

�(I )θ(d+s−ε)

=
( �(I )

�(K )

)s−ε−θ(d+s−ε)

≤
( �(I )

�(K )

)s−ε−θ(d+s)

=
( �(I )

�(K )

)s−2ε
,

(4.15)

where we choose θ = ε
d+s for any given ε > 0. Summarizing, from (4.14) and (4.15)

we have

σbetween = c
∞∑

j=1

∞∑

i= j

∑

K

(‖K‖C Zs + ‖T ‖L2→L2)2−i(s−2ε)〈g, Ai j
K f 〉

= c(‖K‖C Zs + ‖T ‖L2→L2)

∞∑

j=1

∞∑

i= j

2−i(s−2ε)〈g, Si j f 〉,

where Ai j
K is an averaging operator and Si j is a good wavelet shift with parameters

(i, j).

4.3 Contained Cubes,�in

Let M > m. When I � J , the argument is the same as in the case of the sum
σbetween but further apart from the corresponding estimate in [8, Sect. 3.2]. Hence, by
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combining Eqs. (4.3) and (4.4), Lemmata 4.5 and 4.7, estimate (4.9) we can organize

σin =
∞∑

j=1

∞∑

i= j

∑

K

∑

I ,J :I�J
I∨J=K

�(I )=2−i �(K ),�(J )=2− j �(K )

a(I , J ),

where a(I , J ) is defined in (4.13) and satisfies the estimate (4.14).
We observe that for the contained cubes σin, we have from Lemma 3.6 the bound

�(K )
(

�(I )
�(K )

)θ

� D(I , J ). Also, from the definition of the contained cubes we have

D(I , J ) � �(J ), which is the same as the conclusion of Lemma 4.10 in the case of
σbetween. Thus, we have all the same auxiliary estimates as in σbetween and the same
conclusion

σin = c
∞∑

j=1

∞∑

i= j

∑

K

(‖K‖C Zs + ‖T ‖L2→L2)2−i(s−2ε)〈g, Ai j
K f 〉

= c(‖K‖C Zs + ‖T ‖L2→L2)

∞∑

j=1

∞∑

i= j

2−i(s−2ε)〈g, Si j f 〉,

where Ai j
K is an averaging operator and Si j is a good wavelet shift with parameters

(i, j).

4.4 Near-by Cubes,�= and�near

We are left to deal with the sums σ= of equal cubes I = J , as well as σnear of disjoint
near-by cubes with dist(I , J ) ≤ �(J )(�(I )/�(J ))θ . Since I is good, this necessarily
implies that �(I ) > 2−r�(J ). Then, for a given J , there are only boundedly many
related I in this sum. Note that in contrast to [8, Sect. 3.3] we compute both sums
using good wavelet shifts of type (i, i) and (i, j).

Lemma 4.16 For all I , J ∈ D , we have

|〈ψJ , T ψI 〉| ≤ ‖T ‖L2→L2 .

Proof Using the L2-boundedness of T , we estimate simply

|〈ψJ , T ψI 〉| ≤ ‖ψJ ‖2‖T ‖L2→L2‖ψI ‖2 = ‖T ‖L2→L2 .

��

Using this lemma and applying Lemma 3.6 for the good I = J ∈ D and a cube
J ′ ∈ D adjacent to I (i.e., �(J ′) = �(I ) and dist(I , J ′) = 0), we have that K := I ∨ J ′
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satisfies �(K ) � �(I ) and m I ⊂ K . Moreover, from Lemma 4.16, we have

|〈ψI , T ψI 〉| ≤ ‖T ‖L2→L2 =
√|I ||J |

|I | ‖T ‖L2→L2 �
√|I ||J |

|K | ‖T ‖L2→L2 .

Thus, we can organize the sum σ= as follows

σ= =
c∑

i=1

∑

K

∑

I :m I⊂K
�(I )=2−i �(K )

〈g, ψI 〉〈ψI , T ψI 〉〈ψI , f 〉

= c
c∑

i=1

∑

K

‖T ‖L2→L2〈g, Aii
K f 〉

= c‖T ‖L2→L2

c∑

i=1

〈g, Sii f 〉,

where Aii
K is an averaging operator and Sii is a good wavelet shift with parameters

(i, i).
For I and J participating in σnear, we conclude from Lemma 3.6 that K := I ∨ J

satisfies �(K ) � �(I ). Also, from Lemma 4.16, we have

|〈ψJ , T ψI 〉| ≤ ‖T ‖L2→L2 ≤
√|I ||J |

|I | ‖T ‖L2→L2 �
√|I ||J |

|K | ‖T ‖L2→L2 .

Hence, we may organize

σnear =
c∑

i=1

i∑

j=1

∑

K

∑

I ,J :dist(I ,J )≤�(J )(�(I )/�(J ))θ

I∩J=∅,I∨J=K
�(I )=2−i �(K ),�(J )=2− j �(K )

〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉

= c
c∑

i=1

i∑

j=1

∑

K

‖T ‖L2→L2〈g, Ai j
K f 〉

= c‖T ‖L2→L2

c∑

i=1

i∑

j=1

〈g, Si j f 〉,

where Ai j
K is an averaging operator and Si j is a good wavelet shift with parameters

(i, j).
Summarizing, we have

σ= + σnear = c‖T ‖L2→L2

c∑

j=1

c∑

i= j

〈g, Si j f 〉,
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where Si j is a good wavelet shift of type (i, j).

4.5 Synthesis

We have checked that
∑

�(I )≤�(J )

1good(I )〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉

= c(‖K‖C Zs + ‖T ‖L2→L2)
( ∑

1≤ j≤i<∞
(2−i(s−ε) + 2−i(s−2ε))〈g, Si j f 〉

)
,

where Si j is a good wavelet shift of type (i, j).
By symmetry (just observing that the cubes of equal size contributed precisely to

the presence of the shifts of type (i, i), and that the dual of a shift of type (i, j) is a
shift of type ( j, i)), it follows that

∑

�(I )>�(J )

1good(J )〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉

= c(‖K‖C Zs + ‖T ‖L2→L2)
( ∑

1≤i< j<∞
(2− j(s−ε) + 2− j(s−2ε))〈g, Si j f 〉

)

so that altogether

∑

I ,J

1good(min{I , J })〈g, ψJ 〉〈ψJ , T ψI 〉〈ψI , f 〉

= c(‖K‖C Zs + ‖T ‖L2→L2)
( ∞∑

i, j=1

(2−max(i, j)(s−ε) + 2−max(i, j)(s−2ε))〈g, Si j f 〉
)
.

(4.17)
The coefficient in (4.17) is dominated by 2−max(i, j)(s−ε′), where ε′ = 2ε for any given
ε > 0. This completes the proof of Theorem 3.2.
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