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Abstract
We study the δ-discretized Szemerédi–Trotter theorem and Furstenberg set problem.
We prove sharp estimates for both two problems assuming tubes satisfy some spac-
ing condition. For both problems, we construct sharp examples that share common
features.
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1 Introduction

1.1 Incidence Estimate

To begin with, let us first recall the famous Szemerédi–Trotter theorem in incidence
geometry. SupposeL is a set of lines in the plane. For r ≥ 2, let Pr (L) denote the r -rich
points of L—the set of points that lie in at least r lines of L. The Szemerédi–Trotter
theorem gives sharp bounds for |Pr (L)|:

|Pr (L)| � |L|3
r3

+ |L|
r

.
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There is also a dual version. Suppose P is a set of points in the plane. For r ≥ 2, let
Lr (P) denote the r -rich lines of P—the set of lines that contain at least r points of
P . We have:

|Lr (P)| � |P|3
r3

+ |P|
r

.

A natural question is to replace the points by δ-balls (the balls of radius δ) and
the lines by the δ-tubes (the tubes of dimensions 1 × δ), and then ask the incidence
estimate between these δ-balls and δ-tubes.

This question is considered in [5], assuming some spacing conditions on tubes. In
our paper, we generalize the incidence estimates on the plane in [5]. We will consider
some more general spacing conditions.

To state our results, we need the following notions.

Definition 1 (Essentially distinct balls and tubes) For a set of δ-balls B, we say these
balls are essentially distinct if for any B1 �= B2 ∈ B, m(B1 ∩ B2) ≤ (1/2)m(B1).
Similarly, for a set of δ-tubes T, we say these tubes are essentially distinct if for any
T1 �= T2 ∈ T,m(T1∩T2) ≤ (1/2)m(T1). Herem(X) stands for the Lebesgue measure
of set X .

In the rest of the paper, we will always consider essentially distinct δ-balls and
essentially distinct δ-tubes.

In the discrete case, it’s easy to define the incidence between points and lines, and
to define the r -rich points and r -rich lines. Here we make analogies of these notions
for δ-balls and δ-tubes.

Definition 2 (r -rich balls and r -rich tubes) Given a set of δ-tubes T, we define the
r -rich balls for T in the following way. We choose a set B to be a maximal set of
essentially distinct δ-balls. We define

Br (T) := {B ∈ B : B intersects more than r tubes from T}.

We say Br (T) is the set of r -rich δ-balls for T. Here we have many choices for B,
but we will see in the proof that the choice of B doesn’t affect the result for the upper
bound of |Br (T)|. We could just choose B to be all δ-balls centered at (δ/2)Z2).

Similarly, given a set of δ-balls B, we define the r -rich tubes for B in the following
way. We choose a set T to be a maximal set of essentially distinct δ-tubes. We define

Tr (B) := {T ∈ T : T intersects more than r balls from B}.

We say Tr (B) is the set of r -rich δ-tubes for B.

Now we state our main results.

Theorem 1 Let 1 ≤ W ≤ X ≤ δ−1. Let T be a collection of essentially distinct
δ-tubes in [0, 1]2. We also assume T satisfies the following spacing condition: every
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W−1-tube contains at most X
W many tubes of T, and the directions of these tubes are

1
X -separated.
We denote |Tmax| := WX (as one can see that T contains at most ∼ WX tubes).

Then for r > max(δ1−2ε |Tmax|, 1), the number of r-rich balls is bounded by

|Br (T)| �ε δ−ε |T||Tmax| · r−2(r−1 + W−1). (1)

Remark 1 If we take X = W in the above theorem and note that in this case |Br (T)| =
0 for r > W , we recover Theorem 1.1 in [5]. If we take X = δ−1 in the above theorem
and note that in this case r > δWX = W , we recover Theorem 1.2 (with N1 = 1)
in [5]. There are two new ingredients in our theorem. First, we use |T||Tmax| as our
upper bound in (1), whereas in [5] it was |Tmax|2. Second, our theorem also concerns
about the intermediate spacing conditions, i.e. we introduce a new parameter X .

There is another version of Theorem 1. To motivate our idea, we introduce two
notions: direction and position. Any δ-tube contained in [0, 1]2 that forms an angle
≥ π

4 with the x-axis is determined by its direction, as well as its intersection with
x-axis (which we call its position). Switching the role of direction and position gives
us the following theorem.

Theorem 2 Fix a line � that intersects [0, 1]2. Let 1 ≤ W ≤ X ≤ δ−1. Let T be a
collection of essentially distinct δ-tubes in [0, 1]2, such that every tube in T forms an
angle ≥ π

4 with �. We also assume T satisfies the following spacing condition: every
W−1-tube which form an angle ≥ π

4 with � contains at most X
W many tubes of T, and

the intersections of these tubes with � are 1
X -separated.

We denote |Tmax| := WX (as one can see that T contains at most ∼ WX tubes).
Then for r > max(δ1−2ε |Tmax|, 1), the number of r-rich balls is bounded by

|Br (T)| �ε δ−ε |T||Tmax| · r−2(r−1 + W−1).

Remark 2 The above two theorems give upper bounds for the number of r -rich balls
Br (T) when tubes T satisfy some spacing condition. We can actually switch the roles
of balls and tubes, so the question becomes to estimate the number of r -rich tubes
Tr (B) assuming some spacing condition on B. This is our Theorem 3 stated below. In
Sect. 3, we will discuss a tube-ball duality and show that Theorem 3 implies Theorems
1 and 2.

Theorem 3 Let 1 ≤ W ≤ X ≤ δ−1. Divide [0, 1]2 into W−1 × X−1 rectangles as in
Fig. 1. Let B be a set of δ-balls with at most one ball in each rectangle.

We denote |Bmax| := WX (as one can see that B contains at most ∼ WX balls).
Then for r > max(δ1−2ε |Bmax|, 1), the number of r-rich tubes is bounded by

|Tr (B)| �ε δ−ε |B||Bmax| · r−2(r−1 + W−1).

Remark 3 There are two special cases of Theorem 3: X = W , X = δ−1 (see
Fig. 2). These two cases actually correspond to (the dual version of) Theorem 1.1
and Theorem 1.2 in [5].
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Fig. 1 The general case of
Theorem 3
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Fig. 2 Special cases of Theorem 3

1.2 Furstenberg Set Problem

Wolff discussed the Furstenberg set problem in [13]. Given α ∈ (0, 1), we say a set
E ⊂ R

2 is an α-Furstenberg set if for each direction e ∈ S1, there exits a line le
pointing in direction e such that dimH(E ∩ le) ≥ α. The problem is to find the lower
bound of dimH E . Wolff proved that dimH E ≥ max( 12 + α, 2α) and conjectured that
dimH E ≥ 3

2α + 1
2 .

Some progress has been made on this problem. In [7], Katz and Tao showed that
when α = 1

2 , the Furstenberg problem is related to other two problems: Falconer
distance problem and Erdös ring problem. Later, Bourgain [1] improved the bound to
dimH E ≥ 1+ε when α = 1

2 . Recently, Orponen and Shmerkin [10] further improved
the bound to dimH E ≥ 2α + ε for α ∈ ( 12 , 1).

A general Furstenberg set problemwas also considered by many authors, for exam-
ple in [6, 8, 10]. For (u0, v0) ∈ [0, 1]2, define the line l(u0, v0) : v0y = x−u0.We say
E ⊂ R

2 is a (α, β)-Furstenberg set, if there exists an β-dimensional set X ∈ [0, 1]2
such that for each line l ∈ {l(u, v) : (u, v) ∈ X}, we have dimH(l ∩ E) ≥ α. The
problem is to find the lower bound of dimH E .
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There are also some variants of the Furstenberg problem. In [14], Zhang considered
the discrete Furstenberg problem and proved the sharp estimates.

In our paper we consider the δ-discretized version assuming an evenly spacing
condition. We consider the following question.

Question 1 Fix α ∈ (0, 1). Let T = {T } be a set of δ-tubes that are δ-separated in
direction, and with cardinality ∼ δ−1. Assume for each T there is a set of δ-balls
Y (T ) = {Bδ} satisfying: each ball in Y (T ) intersects T ; #Y (T ) ∼ δ−α and the balls
in Y (T ) have spacing � δα .

If we define the union of these δ-balls to be B = ∪T Y (T ), can we show

|B| � δ− 3
2α− 1

2 ?

We will give an affirmative answer to this question in Sect. 5. Actually, we will
prove a more general result as follows, which could be thought of as the evenly spaced
(α, β)-Furstenberg problem.

Theorem 4 (Evenly spaced Furstenberg) Let 1 ≤ W ≤ X ≤ δ−1. LetT be a collection
of essentially distinct δ-tubes in [0, 1]2 that satisfies the following spacing condition:
every W−1-tube contains at most X

W many tubes of T, and the directions of these tubes
are 1

X -separated. We also assume |T| ∼ XW.
Assume for each T there is a set of δ-balls Y (T ) = {Bδ} satisfying: each ball in

Y (T ) intersects T ; #Y (T ) ∼ δ−α and the balls in Y (T ) have spacing � δα . Define
the union of these δ-balls to be B = ∪T Y (T ). Then we have the estimate

|B| � (log δ−1)3.5 min(δ−α−1, δ− 3
2α(XW )

1
2 , δ−αXW ). (2)

Question 1 is a special case of Theorem 4 when W = 1, X = δ−1.

Remark 4 In our theorem, the Y (T ) satisfies an evenly spacing condition which is
stronger than the (δ, α)1 spacing condition introduced in [7]. The (δ, α)1 spacing
condition roughly says that #Y (T ) ∼ δ−α and for any δ×w-subtube Tw ⊂ T ∩[0, 1]2
there holds #{Bδ ∈ Y (T ) : Bδ ∩ Tw �= ∅} � (w/δ)α . Our tube set T also satisfies
an evenly spacing condition which is stronger than the (δ, β)2 spacing condition:
|T| ∼ δ−β (one may think δ−β = XW ); any w × 1 tube in [0, 1]2 contains � (w/δ)β

many tubes in T. It was shown in [6] Lemma 3.3 that the δ-discretized version under
the (δ, β)2-condition for T and (δ, α)1-condition for Y (T ) will imply the original
Furstenberg problem (in terms of Hausdorff dimension).

Remark 5 Given the sharp estimate (2) under the evenly spacing condition, it might
be reasonable to ask whether for any (α, β)-Fustenberg set E we have

dimH E ≥ min(α + 1,
3

2
α + 1

2
β, α + β)?

To end this section, we discuss the plan of this paper. In Sect. 2, we discuss the sharp
examples. In Sect. 3, we discuss the tube-ball duality and show Theorem 3 implies
Theorems 1 and 2. In Sect. 4, we prove Theorem 3. In Sect. 5, we prove Theorem 4.
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Notation. We use the notation A � B to mean A ≤ CB for some constant C > 0.
We use the notation A � B in several sections. The meaning of this notation may
be slightly different in different places, but the precise definition is given where it
appears.

2 Sharp Examples

In this subsection, we discuss the sharp example for Theorem 1 when |T| ∼ |Tmax|
and Theorem 4.

The sharp examples for Theorems 2 and 3 can be constructed in a similar way as
for Theorem 1 by using the tube-ball duality (which will be discussed in Sect. 3). So
we omit the construction for other two theorems.

2.1 Examples for Incidence Estimate

First, we construct the example for Theorem 1. For simplicity, we assume W | X (W
divides X ).

Case 1 2 ≤ r < W .
For each 0 ≤ a ≤ W and 0 ≤ b ≤ X , draw a line from ( a

W , 0) to ( b
X , 1). These

lines, when thickened to δ-tubes, will satisfy the spacing condition as in Theorem 1,
since two lines are either parallel or differ by angle 1

X ≥ δ. Let S be the set of rational
numbers p

q in [ 14 , 3
4 ] such that X

100r ≤ p, q ≤ 100X
r , gcd(p, q) = 1, and p is a multiple

of X
W . We claim that each point of the form ( c

qW ,
p
q )with p

q ∈ S and c ≤ qW is r -rich.

To see this, note that the point on the line through ( a
W , 0) and ( b

X , 1)with y-coordinate
p
q has x-coordinate p

q · b
X + (1 − p

q ) · a
W , so it suffices to show the equation

p

q
· b

X
+ (1 − p

q
) · a

W
= c

qW

has � r solutions (a, b) (0 ≤ a ≤ W , 0 ≤ b ≤ X), for any p
q ∈ S and c ≤ qW .

Multiplying by qW , the equation is equivalent to

pW

X
· b + (q − p) · a = c. (3)

Note that pW
X is an integer since we assumed p is a multiple of X

W . We also have

gcd
(
pW
X , q − p

)
= 1, since gcd(p, q − p) = 1. Now we can show (3) has � r

solutions (a, b). Note that if (a0, b0) is a solution (there is always a solution since

gcd
(
pW
X , q − p

)
= 1), then (a0 + pW

X m, b0 − (q − p)m),m ∈ Z are also solutions.

When c ≤ qW , we can properly choose� r manym ∈ Z such thata0+ pW
X m ∈ [0,W ]

and b0 − (q − p)m ∈ [0, X ].
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Westill need to check the points
{
( c
qW ,

p
q ) : p

q ∈ S, c ≤ qW
}
are δ-separated. Con-

sider two different points
(
p
q · b

X + (1 − p
q ) · a

W ,
p
q

)
and

(
p′
q ′ · b′

X + (1 − p′
q ′ ) · a′

W ,
p′
q ′

)

in this set. If their second coordinates are different, then since we assumed each of p,
p′ is a multiple of X

W , we see the difference of their second coordinates is

∣∣∣∣
p

q
− p′

q ′

∣∣∣∣ =
∣∣∣∣
pq ′ − p′q

qq ′

∣∣∣∣ ≥ X/W

(X/r)2
≥ r

XW
≥ δ, (4)

where the last inequality is because of the assumption r > δ|Tmax| = δWX in
Theorem 1. If their second coordinates are same, then since their first coordinates are
of form c

qW and c′
qW , we see the difference of their first coordinates is

≥ 1

qW
∼ r

XW
≥ δ.

Finally,we calculate the cardinality of the set of r -richpoints:
{
( c
qW ,

p
q ) : p

q ∈ S, c ≤ qW
}
.

There are WX
r2

elements in S and ∼ WX
r choices for c, so the number of r -rich points

is ∼ W 2X2

r3
.

Case 2 W < r < X .
At each ( a

W , 0) with 0 ≤ a ≤ W , place an X -bush, i.e. a set of X−1-direction
separated δ-tubes with cardinality X . The number of r -rich δ-balls in each bush is
∼ X2

r2
. Actually these r -rich points are contained in the ball centered at ( a

W , 0) of

radius X
r δ. Also note that the the r -rich balls from different bush are disjoint (since

X
r δ ≤ W−1), so the total number of r -rich points is ∼ WX2

r2
. �

2.2 Examples for Furstenberg Problem

Next we discuss the sharp examples for Theorem 4. Without loss of generality, we
may assume the directions of tubes in T are within 1/10 angle with the y-axis. We
also assume X and W are square numbers and W | X for technical reasons.

Case 1 δ−α−1.
Choose ∼ δ−α many length-δ intervals in [0, 1] such that any two intervals have

distance ≥ δα from each other. Denote these intervals by {Ii }i . We set B to be all the
lattice δ-balls that intersect [0, 1]×∪i Ii . We can easily check B satisfies the condition
in Theorem 4 for any choice of tubes, and

|B| � δ−α−1.

Case 2 δ−αXW .
First we fix a set of tubes T that satisfies the spacing condition. Let B be the set

of lattice δ-balls that intersect ([0, 1] × ∪i Ii )
⋂ ∪T∈TT , where Ii are the same as in



59 Page 8 of 28 Journal of Fourier Analysis and Applications (2022) 28 :59

Case 1. Noting |T| ∼ XW , we can easily check that

|B| � δ−αXW .

Case 3: δ− 3
2α(XW )

1
2 .

We will borrow the idea from Case 1 of the examples for incidence estimate in the
last subsection. The notation here will be the same as there. We choose the same set
of tubes T as in Case 1 of the last subsection. We choose B to be the set of δ-balls
whose centers are from the set {( c

qW ,
p
q ) : p

q ∈ S, c ≤ qW }. We have

|B| � W 2X2

r3
.

We check that B satisfies the condition in Theorem 4. Fix a T ∈ T, let the line
connecting ( a

W , 0) and ( b
X , 1) be the core line of T . We see that the points {((1 −

p
q ) a

W + p
q

b
X ,

p
q ) : p

q ∈ S} lie on the core line of T . We can also show that these points

belong to the set {( c
qW ,

p
q ) : p

q ∈ S, c ≤ qW }, since

(1 − p

q
)
a

W
+ p

q

b

X
= qW − pa + p W

X b

qW

and noting that p is a multiple of X
W .

We have shown that for each number p
q ∈ S, the core line of T contains points

whose y-axis is p
q . Recall that #S ∼ XW

r2
, and from (4) we see that each pair of

nearby points have distance ≥ r2
XW . If we have 2 ≤ (δαXW )

1
2 ≤ W , then we set

r = (δαXW )
1
2 which means δ−α = XW

r2
. A simple calculation gives

|B| � W 2X2

r3
= δ− 3

2α(XW )
1
2 .

Next, we will get rid of the requirement 2 ≤ (δαXW )
1
2 ≤ W .

When (δαXW )
1
2 ≤ 2, we just use the example in Case 2 and note that δ−αXW �

δ− 3
2α(XW )

1
2 .

Now we can assume (δαXW )
1
2 ≥ 2. We set another pair (X ′,W ′) =

((XW )
1
2 , (XW )

1
2 ). We can easily check 2 ≤ (δαX ′W ′) 1

2 ≤ W ′. If we just construct
the sets T,B as above using parameters (W ′, X ′), we have

|B| � δ− 3
2α(X ′W ′)

1
2 = δ− 3

2α(XW )
1
2 .

However, our problem is:with the newpair ((XW )
1
2 , (XW )

1
2 ), theTdoesn’t satisfy the

spacing condition in Theorem 4. We overcome this by using the irrational translation

trick in [13]. We slightly modify the definition T. For each 0 ≤ a, b ≤ (XW )
1
2 , draw
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a line segment from ( a

(XW )
1
2
, 0) to (

√
2b

(XW )
1
2
, 0). We define T to be the set of tubes that

are the δ-neighborhoods of these line segments. The intersection pattern of tubes and
balls are the same with

√
2 replaced by 1, so we still get the bound

|B| � δ− 3
2α(XW )

1
2 .

But now, T satisfies the spacing condition in Theorem 4. To check this, we consider
anyW−1-tubewhose intersectionwith {y = 0} is [a0, a0+W−1] and intersectionwith
{y = 1} is [b0, b0 +W−1]. We see that the line segments that lie in thisW−1-tube are

those connecting points (a0 + a

(XW )
1
2
, 0) and (b0 +

√
2b

(XW )
1
2
, 1) for 0 ≤ a, b � ( X

W )
1
2 .

It suffices to show a−√
2b

(XW )
1
2

� 1
X , which is a simple result of the fact that |a − √

2b| =
|a2−2b2|
|a+√

2b| ≥ 1
|a+√

2b| ≥ 1
4max(a,b) . �

3 Tube-Ball Duality

We know there is a duality between lines and points. More precisely, in the projective
plane every point has its dual line and every line has its dual point. A point and a line
intersect if and only if their dual line and dual point intersect. So, we can transform
the point-line incidence into line-point incidence.

In this section, we are going to show there is also a duality between δ-tubes and δ-
balls that lie in (or near) [0, 1]2. The advantage is that we can transform Theorem 1 and
Theorem 2 into Theorem 3. We assume all the δ-tubes and δ-balls considered here lie
in�1 = [0, 1]2, which we call the physical space. We also set�2 = [0, 1]2 which we
call the dual space. Our goal is to define a correspondence between these two spaces
so that: the δ-balls (respectively δ-tubes) in �1 correspond to δ-tubes (respectively
δ-balls) in�2, and the ball-tube incidence in�1 correspond to the tube-ball incidence
in �2. A similar discussion for such duality can be found in [10, Sect. 2.3].

3.1 Line-Point Duality

First, let’s look at the line-point duality between �1 and �2. We will use (x, y) to
denote the coordinates of �1 and (u, v) to denote the coordinates of �2.

Define P2 to be all the points in �2. For any (u0, v0) ∈ P2, we define the corre-
sponding line in �1 to be

l1(u0, v0) : v0y = x − u0.

We also define

L1 := l1(P2) = {v0y = x − u0 : (u0, v0) ∈ P2},

which is a set of lines in �1. We see l1 : P2 ↔ L1 is a one-to-one correspondence.
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Remark 6 There is a good way to think about this correspondence. Given a point
(u0, v0), then its corresponding line l1 has “position” u0 (which is its intersection
with {y = 0}) and has “direction” v0 (which is the inverse of its slope). In the next
subsection, we will define a correspondence between balls in �2 and tubes in �1
so that a ball with center (u0, v0) corresponds to the tube with “position” u0 and
“direction” v0.

Next, we define P1 to be all the points in �1. For any (x0, y0) ∈ P1, we know the
lines passing through it are of the form vy = x − x0 +vy0. This motivates us to define
the line in �2 corresponding to (x0, y0) as

l2(x0, y0) : u = x0 − vy0.

We also define

L2 = l2(P1) = {u = x0 − vy0 : (x0, y0) ∈ P1},

which is a set of lines in �2. We see l2 : P1 ↔ L2 is a one-to-one correspondence.
We can also show the incidence is preserved under the duality. Given a point

(x0, y0) ∈ P1 and a line l1(u0, v0) : v0y = x − u0 ∈ L1, we have (x0, y0) ∈
l1(u0, v0) ⇐⇒ (u0, v0) ∈ l2(x0, y0) by definition.

3.2 Tube-Ball Duality

Now we generalize our line-point duality to tube-ball duality.
For (u0, v0) ∈ P2, let B = Bδ(u0, v0) be the ball of radius δ with center (u0, v0).

The intersection of its image under l1 with [−2, 2]2 is roughly a δ-tube. That is to say:

l1(B) :=
⋃

(u,v)∈B
l1(u, v)

⋂
[−2, 2]2

is roughly a δ-tube. Intuitively, one can think of l1(B) as the δ-neighborhood of
l1(u0, v0)

⋂[−2, 2]2. If we letB2 be all the lattice δ-balls in�2, and letT1 := {l1(B) :
B ∈ B2}, then l1 : B2 ↔ T1 is a one-to-one correspondence. We can similarly define
l2,B1 and T2, so that l2 : B1 ↔ T2 is a on-to-one correspondence.

Moreover, we can check the incidence is preserved under the duality, i.e. given a
ball B1 ∈ B1 and a tube T1 = l1(B2) ∈ T1, then (B1, T1) counts one incidence in �1
if and only if (l−1

1 (T1), l2(B1)) = (B2, T2) counts one incidence in �2.
To get a better understanding of this tube-ball duality, see Fig. 3. Here, for each

orange ball B in �2, there is a corresponding orange tube l1(B) in �1. Similarly, for
each blue ball B ′ in �1, there is a corresponding blue tube l2(B ′) in �2. Also the
incidence is preserved in the sense that the orange tube and the blue ball intersect if
and only if the corresponding orange ball and blue tube intersect.
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←→

Π1 Π2

Fig. 3 Tube-ball duality

3.3 Relations Between the Theorems

We prove that Theorem 3 implies Theorems 1 and 2 in this subsection.
As mentioned in the beginning of this section, we can use this duality to turn from

ball-tube incidence to tube-ball incidence. For example, if we are given a set of δ-
balls B and δ-tubes T and T satisfying some spacing condition, then by duality this
is equivalent to the problem for a set of δ-balls B′ and δ-tubes T′ with B

′ satisfying
a similar spacing condition. What we did is we transfer the spacing condition from
tubes to balls. This gives the heuristic that Theorem 1 (or Theorem 2) can be reduced
to Theorem 3.

However, there is still a shortage that the tubes Ti (i = 1, 2) we defined do not
contain all the tubes lying in�i (i = 1, 2). For example, all the tubes inT1 have slopes
in [−∞,−1] ∪ [1,∞], which means T1 only contains the tubes that form an angle
≤ π

4 with y-axis. However, we can find several rotations {ρk}k≤100 (for example, ρk
is the rotation with angle 2πk

100 and center ( 12 ,
1
2 )), so that

⋃100
k=1 ρk(T1) are morally all

the δ-tubes in �1. Since B1 is all the δ-balls in �1, B1 is morally the same under any
rotation: ρk(B1) = B1.

Let us see how this work. Suppose we are given a set of δ-tubes T which satisfies
some spacing condition. We want to estimate the number of r -rich balls Br (T). By
pigeonholing, we have

|Br (T)| �
100∑
k=1

|Br/100(T ∩ ρk(T1))| =
100∑
k=1

|Br/100(ρ−1
k (T) ∩ T1)|.

By the tube-ball duality, it is bounded by

100∑
k=1

|Tr/100(B′
k)|.
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where B
′
k = l−1

1 (ρ−1
k (T) ∩ T1). Now B

′
k inherits the same spacing condition from

T, so it suffices to estimate the number of r/100-rich tubes assuming δ-balls satisfy
some spacing condition.

To prove that Theorem 3 implies Theorem 1 (or Theorem 2), we only need to verify:
If T is a set of tubes in T1 that satisfies spacing condition in Theorem 1 (Theorem
2), then the set of δ-balls B = {l−1

1 (T ) : T ∈ T} satisfies the spacing condition in
Theorem 3.

First, we supposeT is a set of tubes inT1 that satisfies spacing condition in Theorem
1. That is, any W−1-tube contains at most X

W many tubes of T, and the directions of
these tubes are 1

X -separated. For any W−1-ball BW−1 in �2 with center (u0, v0),
consider the W−1-tube TW−1 with “position” u0 and “direction” v0 (see Remark in
Sect. 6), i.e. TW−1 is the W−1-neighborhood of v0y = x − u0. We see that the map l1
induce a correspondence between the δ-balls lying in BW−1 and the δ-tubes lying in
TW−1 . By the spacing condition, the tubes T ∈ T that lie in TW−1 are 1

X -separated in
direction, so the corresponding balls in BW−1 have 1

X -separated v-coordinates. That
means, if we partition BW−1 into about X

W many W−1 × X−1-rectangles (the long
side of the rectangles point to the direction of u-axis), we have that in each rectangle
there is at most one δ-ball from B = {l−1

1 (T ) : T ∈ T}. Since our BW−1 can be any
W−1-ball, we see that B satisfies the spacing condition in Theorem 3.

Similarly we could make the same argument as above for Theorem 2 by switching
the role of u-coordinate and v-coordinate in �2. First, we may assume the line �

in Theorem 2 is parallel to x-axis by rotation. Next, we may assume � is {y = 0},
otherwise we just consider the incidence estimate in the portion of [0, 1]2 above �

and the portion of [0, 1]2 below � separately. If the � in Theorem 2 is {y = 0}, we
can prove the following result: Let T be a set of tubes in T1 that satisfies the spacing
condition in Theorem 2. Partition �2 = [0, 1]2 into X−1 × W−1-rectangles (the
long side of the rectangles now point to the direction of v-axis which is different
from that in the last paragraph). Then, each rectangle contains at most one ball from
B = {l−1

1 (T ) : T ∈ T}. Since the proof is similar, we omit the proof.

4 Proof of Theorem 3

In this section, we prove Theorem 3. We will first prove two lemmas and then use
them to finish the proof of Theorem 3.

4.1 Two Lemmas

First, we will need the “dual version” of Proposition 2.1 from [5], which was inspired
by ideas of Orponen [9] and Vinh [12]. We state the version for n = 2. The dual
version just follows from the original one (Proposition 2.1 in [5]) by the tube-ball
duality discussed in Sect. 3, so we omit the proof.

Proposition 1 Fix a tiny ε > 0. There exists a constant C(ε) with the following
property: Suppose that B is a set of unit balls in [0, D]2 and T is a set of essentially
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distinct tubes of length D and radius 1 in [0, D]2. Suppose that each tube ofT contains
about E balls of B. Let S = Dε/20. Then either:

Thin case |T| � S2E−2|B|D, or
Thick case There is a set of finitely overlapping 2S × D-tubes U j (heavy tubes)

such that:

(1)
⋃

j U j contains a fraction � 1 of the tubes of T;
(2) Each U j contains � SE balls of B.

In particular, if we define T̃ to be the set of � SE-rich 2S × D-tubes, we have

|T| � S2(E−2|B|D + |T̃|). (5)

Here, � means ≤ C(ε)Dε7 . The reason for (5) is that: either in Thin case, we have
|T| � S2E−2|B|D; or in the Thick case, most tubes in T are contained in T̃ and each
2S × D-tube in T̃ contains at most 4S2 tubes in T.

We will need a slight generalization which is our first lemma:

Lemma 1 Fix a tiny ε > 0. There exists a constant C(ε) with the following property:
Let δ < 1. Suppose that U is a set of δ × 1-rectangles in [0, D]2. Let S = Dε/20, and
define Tr (U) to be the set of δ × D-rectangles that contain at least r rectangles from
U, T̃r̃ (U) to be the set of 2Sδ × D-rectangles that contain at least r̃ rectangles from
U. Here we set r̃ to be a number � Sr. Then:

|Tr (U)| �ε S2(r−2|U|D + |T̃r̃ (U)|). (6)

Here, � means ≤ C(ε)Dε7 .

Note that Proposition 1 corresponds to δ = 1.

Proof Consider about δ−1 many δ-separated directions. For each direction, we tile
[0, D]2 with rectangles pointing in this direction of dimensions Dδ×D. We call these
rectangles cells. Denote these cells by {R j }Mj=1, then one actually sees that the number

of cells is M ∼ δ−2. One also sees that these cells are essentially distinct.
Next, for each δ × 1-rectangle U ∈ U, we will attach it to a cell. We observe that

there is a cell R j such that all δ × D-rectangles that contain this δ × 1-rectangle U
are essentially contained in R j . We attach this U to R j . Now for each j , we let U j be
the rectangles in U that are attached to R j . We have

∑
j

|U j | = |U|,

|Tr (U)| =
∑
j

|Tr (U j )|, (7)

|T̃r̃ (U)| �
∑
j

|T̃r̃ (U j )|. (8)
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The reason for the last inequality is that a 2Sδ × D-rectangle cannot contain δ × 1-
rectangles frommore than O(1) differentU j , whichmeans each tube in T̃r̃ (U) belongs
to O(1) many T̃r̃ (U j ).

For each R j , we rescale so that R j becomes [0, D]2. Also, U j becomes a set of
unit squares and any δ × D-tube in R j becomes a 1 × D-tube. Applying Proposition
1, we see from (5) that

|Tr (U j )| � S2(r−2|U j |D + |T̃r̃ (U j )|).

Summing over j and using (7) and (8), we proved (6). �
Our second lemma concerns about the case when X ∼ δ−1 in Theorem 3. It is

actually the dual version of Corollary 5.5 in [2]. We state our lemma:

Lemma 2 Let 1 ≤ W ≤ δ−1. Tile [0, 1]2 with W−1 × δ rectangles. Let B be a set of
δ-balls with at most one ball in each rectangle. We denote |Bmax| = Wδ−1. Then for
r > max(δ1−3ε |Bmax|, 1), the number of r-rich tubes is bounded by

|Tr (B)| �ε δ−ε |B||Bmax|
Wr2

.

Remark 7 Lemma 2 actually takes care of the case when r > W by rescaling.

To prove Lemma 2, we need the following dual version of Theorem 5.4 from [2].

Proposition 2 Let 1 ≤ W ≤ δ−1. Tile [0, 1]2 with W−1 × δ-rectangles. Let B be a
set of δ-balls with at most N balls in each rectangle. Let r ≥ 1 and Tr (B) be a set of
essentially distinct δ-tubes, each of which contains at least r balls in B. Then there
exist a scale 1 ≤ s ≤ δ−1 and an integer Ms such that

|Tr (B)| � |B|Msδ
−1

sr2
, (9)

r � Msδ
−1

s2
, (10)

Ms � Nsmax(1, sWδ). (11)

Here � means ≤ Cεδ
−ε for any ε > 0.

Let us quickly see how Proposition 2 implies Lemma 2.

Proof (Proof of Lemma 2) Apply Proposition 2 with N = 1 to get a scale s and an
integer Ms . We claim that sWδ ≤ 1. If this is not true, then from (10) and (11), we
get

δ−3εW ≤ r ≤ Cεδ
−ε Msδ

−1

s2
≤ C2

ε δ−2εs2Wδ · δ−1

s2
= C2

ε δ−2εW ,
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which is a contradiction when δ is small. Hence, sWδ ≤ 1, and so Ms � s and

|Tr (B)| � |B|δ−1

r2
= |B||Bmax|

Wr2

�
Now, it suffices to prove Proposition 2.

Proof (Proof of Proposition 2) It’s convenient to explicitly write down (9), (10) and
(11) as

|Tr (B)| ≤ Cεδ
−ε |B|Msδ

−1

sr2
, (12)

r ≤ Cεδ
−ε Msδ

−1

s2
, (13)

Ms ≤ Cεδ
−εNsmax(1, sWδ). (14)

We induct on δ and r . There are three base cases.

• δ ∼ 1,
• r = 10δ−1,
• NW ≥ δ−1+ε/2.

The base case δ ∼ 1 is true by choosing large constant. The base case r = 10δ−1

is taken care of by setting s = 1 and Ms = 1, and note that |Tr (B)| = 0 since a δ-tube
contains at most δ−1 many δ-balls. For the base case NW ≥ δ−1+ε/2, set s = δ−1 and
Ms = s2. Then r2|Tr (B)| counts the number of triples (B1, B2, T ) ∈ B × B × Tr (B)

such that B1 ∩ T and B2 ∩ T are nonempty. For a given B1, there are at most δ−1

many choices for B2 and δ−1 many choices for T , hence r2|Tr (B)| ≤ |B|δ−2, which
is what we want.

For the inductive step, assuming that the proposition holds for the tuple {(r , δ) :
r ≥ 2r̃ , δ = δ̃} and {(r , δ) : δ ≥ 2δ̃}, we prove the proposition for r = r̃ , δ = δ̃. Let
T ⊂ Tr (B) be the subset of δ-tubes intersecting ∼ r balls of B. If |Tr (B)| ≥ 10|T|,
then |Tr (B)| ≤ 10

9 |T2r (B)|. Using induction hypothesis to δ and 2r , we find s and Ms

such that

|T2r (B)| ≤ Cεδ
−ε |B|Msδ

−1

s(2r)2
�⇒ |Tr (B)| ≤ Cεδ

−ε |B|Msδ
−1

sr2
,

2r ≤ Cεδ
−ε Msδ

−1

s2
,

Ms ≤ Cεδ
−εNsmax(1, sWδ),

which verifies (12), (13) and (14). Hence we assume |Tr (B)| ≤ 10|T|.
We apply the rescaled version of Proposition 1 to B and T. Note that D = δ−1,

S = δ−ε/20. There are two possible cases. We discuss the two cases.
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If we are in the thin case, we pick s = 1, Ms = 1 and obtain

|Tr (B)| ≤ 10|T| ≤ 10C(ε)δ−ε7δ−ε/10 |B|δ−1

r2
≤ Cεδ

−ε |B|Msδ
−1

sr2
(Cε large enough),

r ≤ 10δ−1 ≤ Cεδ
−ε Msδ

−1

s2
,

which verifies (12) and (13). Also, (14) is easily verified.
If we are in the thick case, we obtain a set T̃ of � Sr -rich Sδ-tubes that contain

� 1 of the tubes in T (these two “ �′′ means “≥ C(ε)−1δε7 )”, which implies

|T| ≤ C(ε)δ−ε7S2|T̃|. (15)

Now we cover the balls in B using essentially distinct Sδ-balls denoted by B̃. There
is a partition

B̃ =
⊔

M dyadic

B̃M ,

where B̃M are those Sδ-balls that contain ∼ M balls in B.
We know each T̃ ∈ T̃ contains ≥ C(ε)−1δε7 Sr balls in B. For a fixed T̃ , by dyadic

pigeonholing, there exist a dyadic number MT̃ such that T̃ contains ≥ C ′(ε)−1δ2ε
7
Sr

balls in B̃MT̃
. By a further dyadic pigeonholing, there exists a dyadic M such that a

C ′(ε)−1δε7 -fraction of tubes T̃ in T̃ satisfy MT̃ = M , i.e., each of these T̃ contains

≥ C ′(ε)−1δ2ε
7
Sr balls in B̃M . Now we fix M , and just still denote these Sδ-tubes by

T̃. From (15), we have

|T| ≤ C ′′(ε)δ−2ε7 S2|T̃|. (16)

A tube in T̃ contains more than r̃ = M−1C ′(ε)−1δ2ε
7
Sr balls in B̃M . Furthermore,

a W−1 × Sδ rectangle now contains at most Ñ = M−1NS Sδ-balls in B̃M since each
W−1 × Sδ contains S many W−1 × δ rectangles.

Since we are not in the base cases, we assume NW ≤ δ−1+ε/2 which implies
W ≤ (Sδ)−1 (recall S = δ−ε/20). We can apply the induction hypothesis to

r̃ = M−1C ′(ε)−1δ2ε
7
Sr , W̃ = W , δ̃ = Sδ, Ñ = M−1NS (17)

and the set of δ̃-balls B̃M . Thus, there exists 1 ≤ s̃ ≤ (Sδ)−1 and M̃s such that

|T̃| ≤ |Tr̃ (B̃M )| ≤ Cε δ̃
−ε |B̃M |M̃s δ̃

−1

s̃r̃2
(18)

r̃ ≤ Cε δ̃
−ε M̃s δ̃

−1

s̃2
, (19)
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M̃s ≤ Cε δ̃
−ε Ñ s̃max(1, s̃W δ̃). (20)

Now set s = Ss̃ and Ms = MM̃s . Combined with (16), we get

|Tr (B)| ≤ 10|T| ≤ C ′′(ε)δ−2ε7 S2|T̃|

≤ C ′′(ε)δ−2ε7 S2Cε δ̃
−ε |B̃M |M̃s δ̃

−1

s̃r̃2

= (
C ′′(ε)C ′(ε)2δ−6ε7 S−ε

)
Cεδ

−ε M |B̃M |Msδ
−1

sr2
.

Recall S = δ−ε/20, so when δ is small enough,
(
C ′′(ε)C ′(ε)2δ−6ε7 S−ε

) ≤ 1
10 . Also,

from the definition of B̃M , we have M |B̃M | ≤ 2|B|. Thus we have

|Tr (B)| ≤ Cεδ
−ε |B|Msδ

−1

sr2
,

which closes the induction for (12).
From (17) and (19), we have

r = C ′(ε)δ−2ε7MS−1r̃

≤ C ′(ε)δ−2ε7MS−1Cε δ̃
−ε M̃s δ̃

−1

s̃2

= (
C ′(ε)δ−2ε7 S−ε

)
Cεδ

−ε Msδ
−1

s2

≤ Cεδ
−ε Msδ

−1

s2

when δ is small enough. This close the induction for (13).
From (20), we have

Ms = MM̃s ≤ MCε δ̃
−ε Ñ s̃max(1, s̃W δ̃)

= Cε(Sδ)−εNsmax(1, sWδ)

≤ Cεδ
−εNsmax(1, sWδ),

which close the induction for (14).
This completes the inductive step and thus finishes the proof. �

Remark 8 It is not clear to us whether Proposition 2 follows from [2] Theorem 5.4.
Actually, we only know Proposition 2 implies [2] Theorem 5.4.

Let us try to prove “Theorem 5.4 in [2]⇒ Proposition 2”, and see where is the gap.
Suppose we are given a set of δ-balls B satisfying the spacing condition in Proposition
2, and we want to estimate |Tr (B)|. Following the notation in Sect. 3, we assume that
B and Tr (B) lie in �2. We want to apply the tube-ball duality as in Sect. 3.2, so that
B → l1(B) becomes δ-tubes in �1 and Tr (B) → l−1

2 (Tr (B)) becomes δ-balls in �1.
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Note that l1(B) inherits the spacing condition from B which meets the requirement in
[2] Theorem 5.4. Also since the incidence are preserved, we have l−1

2 (Tr (B)) is just
Br (l1(B)), the r -rich balls with respect to l1(B). It seems we can use [2] Theorem 5.4,
but the only shortage of this argument is that: l−1

2 is not defined on all the tubes in
Tr (B), but only defined on Tr (B) ∩ T2 (recall the definition of T2 in Sect. 3.2). So,
Theorem 5.4 in [2] actually implies the estimate

|Tr (B) ∩ T2| � |B|Msδ
−1

sr2
,

instead of (9). What if we use a set of rotations {ρk}k≤100 as in Sect. 3.3 to partition
the r -rich tubes Tr (B) = ∪100

k=1Tr (B) ∩ ρk(T2), and estimate each Tr (B) ∩ ρk(T2)

independently? We see that ρ−1
k

(
Tr (B) ∩ ρk(T2)

) = Tr (ρ
−1
k (B)) ∩ T2. Now we can

apply duality so that the question becomes to estimate the r -rich δ-balls with respect
to l1

(
ρ−1
k (B)

)
. Let us explain the trouble. The original B are arranged in W−1 × δ-

rectangles whose edges are parallel to the axes, so l1(B) satisfies the spacing condition
in Theorem 5.4 [2]; but after rotation, ρ−1

k (B) are arranged in tilted rectangles, so the
dual tubes l1(ρ

−1
k (B)) no longer satisfies the spacing condition in Theorem 5.4 [2].We

remark that when ρk is a 90◦-rotation, then ρ−1
k (B) are arranged in δ×W−1-rectangles

whose shortest edges are now parallel to x-axis (originally were parallel to y-axis).
In this case, l1(ρ

−1
k (B)) satisfies some spacing condition similar to Theorem 2 with

X = δ−1.

4.2 Proof of Theorem 3

In this subsection, we prove Theorem 3. Let us recall Theorem 3 here.

Theorem 5 Let 1 ≤ W ≤ X ≤ δ−1. Divide [0, 1]2 into W−1 × X−1 rectangles as in
Fig. 1. Let B be a set of δ-balls with at most one ball in each rectangle.

We denote |Bmax| := WX (as one can see that B contains at most ∼ WX balls).
Then for r > max(δ1−2ε |Bmax|, 1), the number of r-rich tubes is bounded by

|Tr (B)| ≤ Cεδ
−ε |B||Bmax| · r−2(r−1 + W−1). (21)

The proof has the same idea as Theorem 4.1 in [5]. There are three base cases.

• r ≥ 10δ−1

• X ≥ δ−1+ε/2

• r � δ−ε/4 or W � δ−ε/4

In the first base case r � δ−1 we have Tr (B) is empty. The second base case X ≥
δ−1+ε/2 is dealt with by Lemma 2. Actually, Lemma 2 (with ε/2 in place of ε) implies

|Tr (B)| ≤ Cεδ
−ε/2|B|Wδ−1 · r−2W−1 ≤ Cεδ

−ε |B||Bmax| · r−2(r−1 + W−1),

where we use |Bmax| = WX ≥ Wδ−1+ε/2.
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For the third base case r � δ−ε/4 orW � δ−ε/4, we use a double counting argument
similar to [3]. We count the number of triples (B1, B2, T ) ∈ B×B× Tr (B) such that
B1 ∩ T and B2 ∩ T are nonempty. Fix a ball B1 ∈ B. For any dyadic radius w

(X−1 ≤ w ≤ 1), consider those balls B2 that are at distance ∼ w from B1. The
number of those B2 is � wX(1 + wW ). Also note that for two balls B1, B2 with
distance ∼ w, there are � 1

w
many tubes T intersecting them. Thus, the number of

triples is

� |B|
∑

X−1 ≤ w ≤ 1
w dyadic

wX(1 + wW )
1

w
� (log X)|B|WX . (22)

Also, the number of triples has a lower bound r2|Tr (B)|. Combining these two
bounds, we get

|Tr (B)| � (log X)
|B|WX

r2
= (log X)

|B||Bmax|
r2

≤ Cεδ
−ε |B||Bmax|

r2
(r−1 + W−1).

which gives the estimate (21).
For the inductive step, assuming that the theorem holds for the tuple {(r , δ) : r ≥

2r̃ , δ = δ̃} and {(r , δ) : δ ≥ 2δ̃}, we prove the theorem for r = r̃ , δ = δ̃. In the rest of
the proof, “ �′′ will mean “ ≤ C(ε)δ−O(ε7)”.

From the base case, we have W � δ−ε/4. We define D = δ−ε4 , then 1 ≤ D ≤ W .
Cover the unit square with finitely overlapping D−1-squaresQ = {Q}. LetT ⊂ Tr (B)

be the set of tubes intersecting ∼ r balls from B, and by induction we just need to
consider the case

|Tr (B)| ≤ 10|T|, (23)

as we did in the proof of Proposition 2.
A tube T ∈ T intersects Q ∈ Q in a tube segment UD of dimensions δ × D−1.

Note that one UD can be essentially contained in many tubes T ∈ T. For dyadic
1 ≤ M ≤ δ−1, let UM be the set of essentially distinct tube segments UD which
essentially contain ∼ M balls of B. Then we have

∑
M dyadic

MI (UM ,T) ∼ I (B,T). (24)

Here I (UM ,T) is the number of tuples (U , T ) ∈ UM × T such that U is essentially
contained in T . We may choose a dyadic M satisfying

MI (UM ,T) � I (B,T). (25)
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Next, let TE ⊂ T be the set of tubes that contain ∼ E tube segmentsUD ∈ UM . Since∑
E dyadic I (UM ,TE ) � I (UM ,T), we may choose E satisfying

MI (UM ,TE ) � I (B,T). (26)

Note that we have I (B,TE ) � MI (UM ,TE ), together with (26) to obtain
I (B,TE ) � I (B,T). Since each tube in T contains ∼ r balls of B by definition,
we get

|TE | � |T|. (27)

Since each T ∈ TE contains ∼ E tube segments UD ∈ UM and each UD ∈ UM

contains ∼ M balls in B, we have each T ∈ TE contain � ME balls in B. On the
other hand, every tube in T contains ∼ r balls in B by definition. So, we have

r � ME . (28)

Also note that from (26), we have

r |T| ∼ I (B,T) � MI (UM ,TE ) � ME |TE | ≤ ME |T|,

which implies

r � ME . (29)

Now we apply a rescaled version of Lemma 1 with U = UM and r = E to get

|TE | � S2(E−2|UM |D + |T̃r̃ (UM )|) := I + I I . (30)

Here, S = Dε/20, r̃ � SE . T̃r̃ (UM ) is the set of 2Sδ × 1-tubes that contain at least r̃
rectangles from UM .

We would like to rewrite the second term a little bit. Note that by definition each
UD ∈ UM contain ∼ M balls in B, so T̃r̃ (UM ) ⊂ T̃r̃ M (B). Here T̃r̃ M (B) is the set of
2Sδ × 1-tubes that contain at least r̃ M balls from B. We have

|TE | � S2(E−2|UM |D + |T̃r1(B)|) := I + I I , (31)

where r1 = r̃ M � SEM � Sr .

4.2.1 Estimate of I

Fix a D−1-square Q ∈ Q in our finitely overlapping covering. Also, we consider the
set of tubesUQ := {U ∈ UM : U ⊂ Q} and the set of balls BQ := {B ∈ B : B ⊂ Q}.
If we rescale Q to [0, 1]2, then UQ becomes a set of Dδ-tubes and BQ becomes a set
of Dδ-balls. Meanwhile, BQ satisfies the spacing condition in Theorem 5. We use the
induction hypothesis of Theorem 5 to BQ with
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(1) δ′ = Dδ,
(2) r ′ = M ,
(3) W ′ = W/D, X ′ = X/D.

In order to apply the induction hypothesis, we need to check r ′ = M >

max(δ′1−2εW ′X ′, 1). Actually, by (29) and noting E ≤ D, r > δ1−2εWX , D = δ−ε4 ,
we have

M ≥ C(ε)−1δε7E−1r ≥ C(ε)−1δε7D−1δ1−2εWX ≥ δ′1−2εW ′X ′.

To check M ≥ 2, by the base case r ≥ δ−ε/4 is big, and E ≤ D = δ−ε4 is small, so
(29) implies M ≥ 2.

Now we can apply induction. From (21), we obtain:

|UQ | ≤ Cε(Dδ)−ε |BQ |D−2WX · M−2(M−1 + DW−1).

Summing over Q ∈ Q we get

I = S2E−2D|UM | = S2E−2D
∑
Q

|UQ |

≤ S2E−2D ·
∑
Q

Cε(Dδ)−ε |BQ |D−2WX · M−2(M−1 + DW−1).

= S2D−εCεδ
−ε

∑
Q

|BQ |WX(ME)−2((MD)−1 + W−1)

Since S = Dε/20,
∑

Q |BQ | = |B|, ME � r , E ≤ D, we have

I � D−ε/2Cεδ
−ε |B|WXr−2(r−1 + W−1). (32)

Recall “ �′′ means ≤ C(ε)δ−ε7 .

4.2.2 Estimate of II

For the second term in (31), we have a collection of 2Sδ-tubes T̃r1(B), each of which
intersects r1 � Sr balls of B. Let B̃ be the set of balls formed by thickening each
δ-ball of B to a Sδ-ball. From the base case, we have X ≤ (Sδ)−1, so B̃ is a set of
Sδ-separated balls satisfying the spacing condition in Theorem 5.

Apply the induction hypothesis to B̃with δ′ = Sδ, r ′ = r1 � Sr ,W ′ = W , X ′ = X
(it is easy to check r ′ > max(δ′1−2εW ′X ′, 1). We obtain from (21)

|T̃r1(B̃)| ≤ Cε(Sδ)−ε |B|WX · r−2
1 (r−1

1 + W−1).

So, we have

I I = S2|T̃r1(B)| ≤ S2Cε(Sδ)−ε |B|WX · r−2
1 (r−1

1 + W−1)
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� S2Cε(Sδ)−ε |B|WX · (Sr)−2((Sr)−1 + W−1)

≤ S−εCεδ
−ε |B|WX · r−2(r−1 + W−1) (33)

Combining (23), (27), (32), (33), and recalling D = δ−ε4 , S = Dε/20, we have

|Tr (B)| � |TE | � δε6/20Cεδ
−ε |B|WX · r−2(r−1 + W−1).

Recall “ �′′ means ≤ C(ε)δ−O(ε7). We see if δ is small enough, this closes the
induction for (21).

5 Proof of Theorem 4

In this section we prove Theorem 4 which we recall here.

Theorem 6 Let 1 ≤ W ≤ X ≤ δ−1. LetT be a collection of essentially distinct δ-tubes
in [0, 1]2 that satisfies the following spacing condition: every W−1-tube contains at
most X

W many tubes of T, and the directions of these tubes are 1
X -separated. We also

assume |T| ∼ XW.
Assume for each T there is a set of δ-balls Y (T ) = {Bδ} satisfying: each ball in

Y (T ) intersects T ; #Y (T ) ∼ δ−α and the balls in Y (T ) have spacing � δα . Define
the union of these δ-balls to be B = ∪T Y (T ). Then we have the estimate

|B| � (log δ−1)3.5 min(δ−α−1, δ− 3
2α(XW )

1
2 , δ−αXW ). (34)

Remark 9 As we discussed in Sect. 3, it’s more intuitive to view the tubes T in the
theorem through their corresponding dual balls in the dual space. Actually, we see that
the dual balls of T have the configuration as in Fig. 1.

5.1 A Try Using Incidence Estimates

It seems we can use Theorem 1 to study Theorem 6. We discuss this here and will see
where we fail.

Since the spacing condition for T is the same in Theorem 1 and Theorem 6, we can
use the incidence estimate in Theorem 1.We denote by I (B,T) the incidence between
T and B. Since each tube intersects ≥ δ−α balls in B, we simply get the lower bound
for incidence:

I (B,T) � δ−α|T|.

For the upper bound, since I (B,T) �
∑

r dyadic r |Br (T)|, there exists a dyadic r such
that

I (B,T) � r |Br (T)|
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(In this subsection “�” means “≤ Cεδ
−ε” for any ε > 0). So, we have

δ−α|T| � r |Br (T)|. (35)

Our estimates will be based on (35). When r � max(δ|T|, 1), we have δ−α|T| �
r |Br (T)| � max(δ|T|, 1)|B|, which implies that

|B| � min(δ−α−1, δ−αXW ). (36)

When max(δ|T|, 1) � r ≤ W , by Theorem 1 we have |Br (T)| � |T|2r−3. Com-
bined with the trivial bound |Br (T)| ≤ |B|, we get δ−α|T| � r min(|T|2r−3, |B|) ≤
|T|2/3|B|2/3, and hence

|B| � δ− 3
2α|T|1/2 � δ− 3

2α(XW )1/2. (37)

When r ≥ W , by Theorem 1 we have |Br (T)| � |T|2r−2W−1. Combined with
the trivial bound |Br (T)| ≤ |B|, we get δ−α|T| � r min(|T|2r−2W−1, |B|) ≤
|T||B|1/2W−1/2, and hence

|B| � δ−2αW . (38)

Combining (36), (37) and (38), we obtain

|B| � min(δ−α−1, δ− 3
2α(XW )1/2, δ−αXW , δ−2αW ). (39)

In the above inequality, we see that the fourth term δ−2αW is not good in the case
when W = 1 and X = δ−1. This is our main enemy, which is exactly the case of
Question 1.

5.2 The Proof of Theorem 6

We will use a graph-theoretic proof whose idea dates back to [11]. First we discuss
our main tool: crossing number. For a graph G, the crossing number cr(G) of G is
the lowest number of edge crossings of a plane drawing of the graph G. We have the
following well-known result for crossing numbers. A detailed discussion can be found
in [4].

Lemma 3 (Crossing number) For a graph G with n vertices and e edges, we have

n � min(e,
e3/2

cr(G)1/2
). (40)

To prove Theorem 6, we do several reductions. First, we can assume all the δ-
tubes from T lie in [0, 1]2 and each tube forms an angle ≤ 1

10 with y-axis. We also
assume δ−1 is an integer, so we can partition [0, 1]2 into lattice δ-squares, denoted by
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Fig. 4 Pseudo-tube

[0, 1]2 = Q. Here, each Q is a square with length δ and center (δ(n− 1
2 ), δ(m− 1

2 ))

for some 1 ≤ m, n ≤ δ−1. We denote the set of these squares by Qδ . Since it is not
harmful to replace the δ-balls by δ-cubes, we may assume B ⊂ Qδ .

Tomake the proof clear, we need a substitution for tube, which we call pseudo-tube.
We give the definition of pseudo-tube. Given an 1 × δ tube T which forms an angle
≤ 1

10 with y-axis and lie in [0, 1]2, we define its corresponding pseudo-tube T̃ as in
Fig. 4. Denote the core line of T by l. The squares in Qδ form δ−1 many rows. We
see that l intersect each row with at most two squares. For each row, if l intersect this
row with one square, we pick this square; if l intersect this row with two squares, we
pick the left square. We define T̃ to be the union of these δ−1 many squares we just
picked. We call T̃ the corresponding pseudo-tube of T .

It’s not hard to check that we can make the reduction so that the T in Theorem 6 is a
set of pseudo-tubes and Y (T ) is a set of δ-squares contained in T̃ . Without ambiguity,
we still call pseudo-tube as tube and use T instead of T̃ .

The next reduction is to guarantee some uniformity property among tubes. We set
Y ′(T ) := {B ∈ B : B ⊂ T } (note that Y (T ) is a subset of Y ′(T )). We label the
squares in Y ′(T ) one-by-one from bottom to top as Y ′(T ) = {Q1, Q2 · · · , Qm}. Here
m = #Y ′(T ) and the y-coordinates of Qi is less than that of Qi+1. We define the
distance between nearby squares as di := dist(Qi , Qi+1). Define the d-index set as
Id := {i : di ∼ d, 1 ≤ i ≤ m − 1}.

We claim that there exists a number d � δα such that

|Id | � (log δ−1)−1d−1. (41)

Recalling the condition of Theorem 6, we have that each Y (T ) is a subset of Y ′(T )

satisfying: #Y (T ) ∼ δ−α and each pair of nearby squares in Y (T ) have distance� δα .
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From this, we see that

∑

di�δα

di � 1. (42)

So, by pigeonhole principle we can find d � δα such that

1 � log(δ−1)
∑
di∼d

di ∼ log(δ−1)d|Id |,

which gives (41).
For each T ∈ T, there exists a dT � δα such that (41) holds for d = dT . By dyadic

pigeonholing, we choose a typical d so that there is a set T′ ⊂ T such that |T′| �
(log δ−1)−1|T| and dT = d for any T ∈ T

′. We denote d = δβ , B′ = ∪T∈T′Y ′(T ).
Since B′ ⊂ B and α ≤ β, we only need to prove:

|B′| � (log δ−1)3.5 min(δ−β−1, δ− 3
2β(XW )

1
2 , δ−βXW ). (43)

If we abuse the notation and still write β,T′,B′ as α,T,B, we actually reduce
Theorem 6 to the following problem.

Theorem 7 Let 1 ≤ W ≤ X ≤ δ−1. Let T be a collection of essentially distinct δ-
pseudo-tubes in [0, 1]2 that satisfies the following spacing condition: every W−1-tube
contains at most X

W many tubes ofT, and the directions of these tubes are 1
X -separated.

We also assume |T| � (log δ−1)−1XW.
Let B = {Bδ} ⊂ Qδ be a set of δ-squares and for each T ∈ T define Y (T ) :=

{Bδ ∈ B : Bδ ⊂ T }. Suppose each Y (T ) satisfies (41) for d = δα . Then we have the
estimate

|B| � (log δ−1)3.5 min(δ−α−1, δ− 3
2α(XW )

1
2 , δ−αXW ). (44)

Proof (Proof of Theorem 7) We construct a graph G = (V , E) in the following way.
Let the vertices V be the centers of squares in B. For a T ∈ T, consider all the pairs
of nearby squares in Y (T ). We link the centers of each nearby squares with an edge.
Let E be the edges formed in this way for all T ∈ T.

Each pair of tubes contribute at most one crossing (but they may share a lot of
edges), so we have

cr(G) ≤ |T|2. (45)

On the other hand by Lemma 3 we have

|B| � min(|E |, |E |3/2
cr(G)1/2

). (46)
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So, we have

|B| � min

(
|E |, |E |3/2

|T|
)

. (47)

We will discuss two cases. We remind the readers that (log δ−1)−1XW � |T| �
XW .

Case 1: XW � δ−2+α .
We prove that |E | � (log δ−1)−2δ−α|T|, so as a result we obtain

|B| � (log δ−1)−3.5 min(δ−αXW , δ− 3
2α(XW )1/2). (48)

For each edge e ∈ E , define ne to be the number of tubes T ∈ T that contain e. We
have

|E | =
∑
e∈E

∑
T∈T,e⊂T

1

ne
=

∑
T∈T

∑
e∈E,e⊂T

1

ne
.

It suffices to show for any fixed T0,

∑
e∈E,e⊂T0

1

ne
� (log δ−1)−2δ−α.

Recalling the condition for Y (T ) in Theorem 7 and (41), we have

#{e ⊂ T : length(e) ∼ δα} � (log δ−1)−1δ−α.

So by Cauchy-Schwartz inequality, we have

∑
e∈E,e⊂T0

1

ne
≥

∑
e∈E,e⊂T0,length(e)∼δα

1

ne
≥ (log δ−1)−2δ−2α

∑
e∈E,e⊂T0,length(e)∼δα ne

.

It suffices to prove

∑
e∈E,e⊂T0,length(e)∼δα

ne � δ−α. (49)

For e ∈ E, T ∈ T, we define χ(e, T ) = 1 if e ⊂ T and = 0 otherwise. We rewrite
the left hand side above as

∑
e⊂T0,length(e)∼δα

∑
T∈T

χ(e, T ). (50)

Note that if χ(e, T ) = 1 for some e ⊂ T0 satisfying length(e) ∼ δα , then the
angle between T0 and T is less than δ1−α . We will analyze T according to the angle
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μ = ∠(T0, T ). It’s easy to see that those T that form an angle ∼ μ with T0 lie in a
1 × μ fat tube, and by the spacing condition of T we have

#{T : ∠(T0, T ) ∼ μ} � μ2XW � μ2δ−2+α.

In the last inequality we use the assumption XW � δ−2+α .
We further rewrite (50) as:

∑

μ�δ1−α

∑
T :∠(T0,T )∼μ

∑
e⊂T0,length(e)∼δα

χ(e, T ).

Note that when ∠(T0, T ) ∼ μ, we have
∑

e⊂T0,length(e)∼δα χ(e, T ) ≤ length(T0∩T )
δα �

μ−1δ1−α , so the inequality above is less than

∑

μ�δ1−α

∑
T :∠(T0,T )∼μ

μ−1δ1−α �
∑

μ�δ1−α

μ2δ−2+αμ−1δ1−α � δ−α.

This finishes the proof of (49).
Case 2: XW � δ−2+α . In this case, we choose another pair (X ′,W ′) so that

X ′ ≤ X ,W ′ ≤ W , 1 ≤ W ′ ≤ X ′ ≤ δ−1 and X ′W ′ ∼ δ−2+α . We through away some
tubes from T so that it satisfies the spacing condition for new parameters (X ′,W ′).
This is easily seen from the dual picture as in Fig. 1. Originally, the balls are evenly
spaced in the W−1 × X−1-grid. We throw away some balls so that it fits into the
W ′−1 × X ′−1-grid. We apply Case 1 to the new parameter (X ′,W ′) to obtain

|B| � (log δ−1)−3.5 min(δ−αX ′W ′, δ− 3
2α(X ′W ′)1/2)=(log δ−1)−3.5 min(δ−2, δ−α−1).

(51)

Combining (48) and (51), we obtain the desired estimate

|B| � (log δ−1)−3.5 min(δ−α−1, δ−αXW , δ− 3
2α(XW )1/2).
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