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Abstract
In this paper, we study the conjecture of Bansal, Kumar and Sharma, which is an
analog of Hardy’s theorem for Gabor transform in the setup of connected nilpotent
Lie groups. To approach this conjecture, we use the orbit method and the Plancherel
theory. When the Lie group G is simply connected, we show that the conjecture is
true.

Keywords Hardy’s theorem · Nilpotent Lie group · Gabor transform · Plancherel
formula
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1 Introduction

A classical version of the uncertainty principle states that an integrable function f
defined on the real line and its Fourier transform f̂ cannot be simultaneously and
sharply localized unless f = 0 almost everywhere. An important result making this
precise, is the Hardy Theorem (see [13]):

Theorem 1 Let α, β, c be positive real numbers and f a measurable function on R

such that:

(i) | f (t)| ≤ ce−απ t2 , t ∈ R,
(ii) | f̂ (k)| ≤ ce−βπk2 , k ∈ R.
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If αβ > 1, then f = 0 a.e. If αβ = 1 then f (t) = be−απ t2 , for some constant b. If
αβ < 1, then any finite linear combination of Hermite functions satisfies (i) and (ii).

For the Fourier transformation we use the normalization

f̂ (k) =
∫
R

f (t)e−2iπ tkdt, k ∈ R.

Note that Hardy’s theorem is also valid on R
n (see [19, Theorem 4]). Much efforts

have been deployed to prove Hardy-like theorems for various classes of non-Abelian
connected Lie groups. Specifically, analogues and variants of Hardy’s theorem have
been shown for nilpotent Lie groups [1, 2, 14, 19, 21], some classes of solvable Lie
groups [3], non-compact connected semisimple Lie groups G with finite center [9,
15, 17, 18] and motion groups [16, 20]. For more information and further references
concerning the entire subject, we refer the readers to the excellent monograph by
Thangavelu [22].

The continuous Gabor transform (also known as windowed Fourier transform) is a
classical tool in mathematical signal processing. Roughly speaking, it is the Fourier
transform of a signal f seen through a sliding window ψ . For f ∈ L2(Rn) and
a nonzero function ψ ∈ L2(Rn) called a window function, the continuous Gabor
transform with respect to ψ is defined on R

n × R̂
n by

Gψ f (x, w) :=
∫
Rn

f (y)ψ(y − x)e−2iπ〈y,w〉dy.

According to [11], we have for all f1, f2, ψ1, ψ2 ∈ L2(Rn) the functions Gψ1 f1 and
Gψ2 f2 belong to L2(Rn × R̂

n) and

〈Gψ1 f1,Gψ2 f2〉L2(Rn×R̂n)
= 〈 f1, f2〉L2(Rn)〈ψ1, ψ2〉L2(Rn). (1)

This transformplays an important role in time-frequency analysis namely by providing
an interesting way to study the local frequency spectrum of signals. For a detailed
discussion of time-frequency analysis, we refer the readers to [11]. It has been shown
in the early 2000s that many uncertainty principles for the Fourier transform have a
counterpart for the continuous Gabor transform (see e.g. [7, 12]). We specify that a
Hardy-type theorem has been established in [12, Theorem 2.6.2].

Theorem 2 Let f , ψ ∈ L2(Rn). Assume that

∣∣∣Gψ f (x, w)

∣∣∣ ≤ Ce−π(αx2+βw2)/2,

for some constants α, β,C > 0. Then three cases can occur.

(i) If αβ > 1, then either f = 0 a.e. or ψ = 0 a.e.
(ii) If αβ = 1 and Gψ f is not zero almost everywhere, then both f andψ are multiples

of some time-frequency shift of the Gaussian e−απx2 .
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(iii) If αβ < 1, then the decay condition is satisfied whenever f and ψ are finite linear
combinations of Hermite functions.

On the other hand, the continuous Gabor transform has also been extended to sepa-
rable locally compact unimodular group of type I (see [10]). One should notice that,
in the Euclidean setting, the continuous Gabor transform has many symmetries which
are lost in the Lie group setting (the dual of G does not identify with G) and this
is then a serious obstacle for stating uncertainty principles for the continuous Gabor
transform. However, some attempts to extend Theorem 2 on special classes of non-
Abelian Lie groups have already been made. In particular, we cite here the work of
Bansal, Kumar and Sharma [6], where the authors generalized Hardy’s theorem for
the Gabor transform on locally compact abelian groups having noncompact identity
component and groups of the form R

n × K , where K is a compact group having irre-
ducible representations of bounded dimension. When it comes to connected nilpotent
Lie groups, only a conjecture are now available. In the same reference, the previ-
ous authors conjecture that if α, β and C are positive real numbers and f , ψ are
square integrable functions on connected nilpotent Lie group G = exp g such that
‖Gψ f (g, πl)‖HS ≤ Ce−π(α‖g‖2+β‖l‖2)/2 for all (g, l) ∈ G × W , then f = 0 a.e. or
ψ = 0 a.e. provided that αβ > 1. Here W is a suitable cross-section for the generic
coadjoint orbits in g∗, the vector space dual of g, and ‖g‖ and ‖l‖ are substitutes (in
terms of bases of g and g∗) for the Euclidean norms on R

n and R̂
n = R

n . For details
and unexplained notation see Sect. 2. They also proved that this conjecture fails for
a connected nilpotent Lie group G having a square integrable irreducible representa-
tion. This paper is the first attempt to establish analog of Hardy’s theorem for Gabor
transform on nilpotent Lie groups. By exploiting Hardy’s Theorem for R and a local-
ized version of the Plancherel formula, we show in Sect. 4 that the above-mentioned
conjecture holds. Our main result is the following:

Theorem 3 Let G be connected, simply connected nilpotent Lie group. Let f , ψ ∈
L2(G) be such that

‖Gψ f (g, πl)‖2HS ≤ Ce− π
2 (α‖g‖2+β‖l‖2), (2)

for all (g, l) ∈ G × W , where α, β and C are positive real numbers. If αβ > 1, then
either f = 0 a.e. or ψ = 0 a.e.

2 Backgrounds

2.1 Continuous Gabor Transform

Let G be a separable locally compact unimodular group of type I, and let dg be its
Haar measure. We endow the unitary dual of G with the Mackey Borel structure. We
denote by L p(G) the space of L p-functions on G for p ≥ 1, and we define

π( f ) =
∫
G

f (g)π(g)dg, π ∈ Ĝ, f ∈ L1(G).



56 Page 4 of 17 Journal of Fourier Analysis and Applications (2022) 28 :56

Then by the abstract Plancherel theorem, there exists a unique Borel measure ρ on Ĝ
such that for any function f ∈ L1(G) ∩ L2(G),

∫
G

| f (g)|2dg =
∫
Ĝ

‖π( f )‖2HSdρ(π),

where ‖π( f )‖HS = (
tr
(
π( f )∗π( f )

))1/2 denotes the Hilbert-Schmidt norm of π( f ).
Let f ∈ Cc(G), the set of all continuous complex-valued functions on G with

compact supports, and ψ a fixed nonzero function in L2(G), usually called window
function. For (x, π) ∈ G × Ĝ, the continuous Gabor transform of f with respect to
the window function ψ is defined as a measurable field of operators on G × Ĝ by

Gψ f (x, π) :=
∫
G

f (g)ψ(x−1g)π(g)dg.

Let f xψ be the function defined on G by

f xψ(g) = f (g)ψ(x−1g), ∀g ∈ G.

Then, f xψ ∈ L1(G) ∩ L2(G) and

π( f xψ) =
∫
G

f xψ(g)π(g)dg =
∫
G

f (g)ψ(x−1g)π(g)dg = Gψ f (x, π). (3)

By the Plancherel theorem, Gψ f (x, π) is a Hilbert-Schmidt operator for all x ∈ G
and for almost all π ∈ Ĝ. Furthermore,

∫
G

∫
Ĝ

‖Gψ f (x, π)‖2HSdρ(π) dx = ‖ψ‖22‖ f ‖22. (4)

Thus, the continuous Gabor transform Gψ : f �→ Gψ f ( f ∈ Cc(G)) is a multiple of
an isometry. So, we can extend Gψ uniquely to a bounded linear operator on L2(G)

which we still denote by Gψ and this extension satisfies (4) for each f ∈ L2(G).

2.2 Nilpotent Lie Groups

We begin this subsection by reviewing some useful facts and notations for nilpotent
Lie group. This material is quite standard, we refer the reader to [8] for details. We
assume henceforth that G = exp g is a connected, simply connected nilpotent Lie
group.

Let B = {X1, ..., Xn} be a strong Malcev basis of g passing through the center of
g. We introduce a norm function on G by setting for x = exp(x1X1 + · · · + xn Xn) ∈
G, x j ∈ R,

‖x‖ =
√

(x21 + · · · + x2n ).
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The map:

R
n → G, (x1, ..., xn) �→ exp

( n∑
j=1

x j X j
)

is a diffeomorphism and maps the Lebesgue measure on R
n to the Haar measure on

G. In this setup, we shall identify G as set with R
n . We consider the Euclidean norm

of g∗ with respect to the basis B∗ = {X∗
1, ..., X

∗
n}, that is,

∥∥∥
n∑
j=1

l j X
∗
j

∥∥∥ =
√

(l21 + · · · + l2n) = ‖l‖, l j ∈ R.

LetU denote theZariski open subset of g∗ consisting of all elements in generic orbits
with respect to the basis B∗. Let S be the set of jump indices, and set T = {1, ..., n}\S
and VT = R-span{X∗

i : i ∈ T }. Then,W = U ∩ VT is a cross section of the generic

orbits andW supports the Plancherel measure on Ĝ. Let P f (l) denote the Pfaffian of
the skew-symmetric matrix MS(l) = (l([Xi , X j ]))i, j∈S . Then, one has that:

|P f (l)|2 = det MS(l).

If dl is the Lebesgue measure on W, then dτ = |P f (l)|dl is a Plancherel measure
for Ĝ. Let dg be the Haar measure on G. For ϕ ∈ L1(G) ∩ L2(G), the Plancherel
formula reads:

‖ϕ‖22 =
∫
G

|ϕ(g)|2dg =
∫
W

‖πl(ϕ)‖2HSdτ(l). (5)

3 Some Lemmas

In this section we prove three results, Lemmas 1, 2 and 3 which are required to prove
Theorem 3.

For every x, w ∈ R
n , we denote byMw and Tx the modulation and the translation

operators defined respectively on L2(Rn) by

∀z ∈ R
n, Mw f (z) = e2iπ〈z,w〉 f (z),

∀z ∈ R
n, Tx f (z) = f (z − x).

Then we deduce that,

∀z ∈ R
n, Mw(Tx f )(z) = e2iπ〈z,w〉 f (z − x), (6)

and

∀z ∈ R
n, Tx (Mw f )(z) = e−2iπ〈x,w〉e2iπ〈z,w〉 f (z − x). (7)
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The results in the following lemma are quite standard.

Lemma 1 Let f , ψ ∈ L2(Rn) and ξ, λ, y, z ∈ R
n. Then,

(i) G(MξTzψ)(MλTy f )(x, w) = e2iπ〈x,ξ〉e−2iπ〈y,w−λ+ξ〉Gψ f (x− y+ z, w−λ+ξ).

In particular, Gψ(MλTy f )(x, w) = e−2iπ〈y,w〉e2iπ〈y,λ〉Gψ f (x − y, w − λ).
(ii) Gψ f (−x,−w) = e−2iπ〈x,w〉G f ψ(x, w).

(iii) Let F(x, w) = Gψ f (x, w)Gψ f (−x,−w)e2iπ〈x,w〉. Then,

F̂(ν, θ) = F(−θ, ν), ν, θ ∈ R
n .

Let’s fix as above a strong Malcev basis {X1, ..., Xn} of g such that X1 is in the
center of g. For a = (a2, ..., an) ∈ R

n−1, let ( f gψ)a be the complex valued function
defined on R by

( f gψ)a(t) = f gψ(t, a) = f gψ

(
exp

(
t X1 +

n∑
j=2

a j X j
))

.

For k ∈ R and s = (s2, ..., sn) ∈ R
n−1, let g = exp

(
kX1 + ∑n

j=2 s j X j
)
and

f k,sψ = f gψ . It is easy to see that f gψ ∈ L1(G) for all g ∈ G, it sufficient to use
Cauchy–Schwarz inequality. Moreover by [5, Lemma 3.1], we have

Gψ f (g, πl) = πl( f
g
ψ), (8)

for all g ∈ G. We should also mention that f gψ ∈ L2(G), for almost all g ∈ G. In fact,

∫
G

∫
G

| f gψ(x)|2dx dg =
∫
G

∫
G

| f (x)|2|ψ(g−1x)|2dx dg = ‖ f ‖22‖ψ‖22 < ∞.

Then obviously
∫
G | f gψ(x)|2dx < ∞, for almost all g ∈ G.

Lemma 2 Let f , ψ ∈ L2(G) meet the condition (2) of Theorem 3. Then

I ( f k,sψ ) :=
∫
Rn−1

( ∫
R

∣∣( f k,sψ )a(t)
∣∣dt

)2

da < ∞,

for all k ∈ R and almost all s = (s2, ..., sn) ∈ R
n−1.

Proof By using (2), we have

∫
G

∫
W

(1 + ‖g‖2)‖Gψ f (g, πl)‖2HS|P f (l)|dl dg

≤
∫
G

∫
W

(1 + ‖g‖2)e−π(α‖g‖2+β‖l‖2)|P f (l)|dl dg. (9)
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Assume that the degree of the polynomial function P f (l) is equal to δ. Then,

|P f (l)| ≤ cst (1 + ‖l‖2) δ
2 .

≤ cst (1 + ‖l‖2)δ

Therefore, the integral on the right hand side of (9) converges. Hence,

∞ >

∫
G
(1 + ‖g‖2)

(∫
W

‖π( f gψ)‖2HS|P f (l)|dl
)
dg

=
∫
G

∫
G
(1 + ‖g‖2)| f (x)|2|ψ(g−1x)|2dx dg

(using Plancherel formula of G)

≥
∫
Rn−1

∫
R

∫
Rn−1

∫
R

(1 + |k|2)
∣∣∣ f

(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2

×
∣∣∣ψ

(
exp

(
kX1 +

n∑
j=2

s j X j

)−1
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt da dk ds.

Noting that,

exp
(
kX1 +

n∑
j=2

s j X j

)−1
exp

(
t X1 +

n∑
j=2

a j X j

)

= exp
((
t − k + Q1(a, s)

)
X1 +

n∑
j=2

Q j (a, s)X j

)
, (10)

where, for 1 ≤ j ≤ n, Q j is a polynomial function depending on a = (a2, ..., an)
and s = (s2, ..., sn). Furthermore, one can write

Q j (a, s) = a j − s j + Q′
j (a j+1, ..., an, s j+1, ..., sn), j = 2, ..., n. (11)

It follows that,

∞ >

∫
Rn−1

∫
R

∫
Rn−1

∫
R

(1 + |k|2)
∣∣∣ f

(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2

×
∣∣∣ψ

(
exp

((
t − k + Q1(a, s)

)
X1 +

n∑
j=2

Q j (a, s)X j

))∣∣∣2dt da dk ds

=
∫
Rn−1

∫
R

∫
Rn−1

∫
R

(
1 + ∣∣t − r + Q1(a, s)

∣∣2)∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2
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×
∣∣∣ψ

(
exp

(
r X1 +

n∑
j=2

Q j (a, s)X j

))∣∣∣2dt da dr ds

(by substituting r = t − k + Q1(a, s) for k). Now let’s use the change of variable
σ j = Q j (a, s), j = 2, ..., n, for fixed value of a. Note that, from (11) this change of
variable has Jacobian 1. We then obtain,

∞ >

∫
Rn−1

∫
R

∫
Rn−1

∫
R

(
1 + ∣∣t − r + R(a, σ )

∣∣2)∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2

×
∣∣∣ψ

(
exp

(
r X1 +

n∑
j=2

σ j X j

))∣∣∣2dt da dr dσ,

where R(a, σ ) is a polynomial function depending on a = (a2, ..., an) and σ =
(σ2, ..., σn). Therefore,

∣∣∣ψ
(
exp

(
r X1 +

n∑
j=2

σ j X j

))∣∣∣2
∫
Rn−1

∫
R

(
1 + ∣∣t − r + R(a, σ )

∣∣2)

×
∣∣∣ f

(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt da < ∞,

for almost all r , σ2, ..., σn ∈ R. As ψ is non identically zero, there exists r0, σ0 =
(σ 0

2 , ..., σ 0
n ) such that

ψ
(
exp

(
r0X1 +

n∑
j=2

σ 0
j X j

))
�= 0,

and

∫
Rn−1

∫
R

(
1 + ∣∣t − r0 + R(a, σ0)

∣∣2)∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt da < ∞.

(12)

On the other hand, we have

I ( f k,sψ ) =
∫
Rn−1

( ∫
R

∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))
ψ

(
g−1 exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣dt
)2

da
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=
∫
Rn−1

( ∫
R

∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣

×
∣∣∣ψ

(
exp

((
t − k + Q1(a, s)

)
X1 +

n∑
j=2

Q j (a, s)X j

))∣∣∣dt
)2

da

(using (10))

≤
∫
Rn−1

( ∫
R

∣∣∣ψ
(
exp

((
t − k + Q1(a, s)

)
X1 + ∑n

j=2 Q j (a, s)X j

))∣∣∣2

1 + ∣∣t − r0 + R(a, σ0)
∣∣2 dt

)

×
( ∫

R

(
1 + ∣∣t − r0 + R(a, σ0)

∣∣2)∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt
)
da

(using Cauchy–Shwartz inequality),

≤
∫
Rn−1

( ∫
R

∣∣∣ψ
(
exp

((
t − k + Q1(a, s)

)
X1 +

n∑
j=2

Q j (a, s)X j

))∣∣∣2dt
)

×
(∫

R

(
1 + ∣∣t − r0 + R(a, σ0)

∣∣2)∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt
)
da

=
∫
Rn−1

( ∫
R

∣∣∣ψ
(
exp

(
zX1 +

n∑
j=2

Q j (a, s)X j

))∣∣∣2dz
)

×
(∫

R

(
1 + ∣∣t − r0 + R(a, σ0)

∣∣2)∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt
)
da

(using the change of variable z = t − k + Q1(a, s)). By substituting Q j (a, s) for s j ,
j = 2, ..., n, using Eq. (11), we have

∫
Rn−1

I ( f k,sψ ) ds ≤ ‖ψ‖22
∫
Rn−1

∫
R

(
1 + ∣∣t − r0 + R(a, σ0)

∣∣2)

∣∣∣ f
(
exp

(
t X1 +

n∑
j=2

a j X j

))∣∣∣2dt da,

which is finite by (12). This implies that, I ( f k,sψ ) is finite for all k ∈ R and almost all

s ∈ R
n−1. ��

Before stating the next lemma, we need a localized version of the Plancherel mea-
sure (see [4]). Let Z = exp z be the center of G and fix a nonzero vector X1 of z.
Let A = exp a = expRX1 be the closed connected subgroup of Z and χ = χζ ,
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ζ = l1X∗
1 ∈ a∗, be the unitary character of A, defined by

χζ (exp t X1) = e−2iπ tl1 .

Let Ĝχ = {π ∈ Ĝ : π|A = χ · I }. For 1 ≤ p < +∞, let L p(G/A, ζ ) be the set
of all measurable functions ϕ : G → C such that ϕ(xa) = χ(a)ϕ(x) for almost all
x ∈ G and a ∈ A and such that

‖ϕ‖p
L p(G/A) =

∫
G/A

|ϕ(x)|pd ẋ < +∞.

Moreover, let g∗
ζ = ζ + a⊥ and Wζ = W ∩ g∗

ζ . In this case, the Plancherel formula
reads: if

π(ϕ) =
∫
G/A

ϕ(x)π(x)dẋ, π ∈ Ĝχ ,

then, for ϕ ∈ L1(G/A, ζ ) ∩ L2(G/A, ζ ) we have:

‖ϕ‖2 =
( ∫

Wζ

‖πl(ϕ)‖2HS|P f (l)|dl
) 1

2
. (13)

If d is the maximal dimension of coadjoint orbits in g∗, then T has n − d elements
and thus VT can be identified with R

n−d . We can identify VT with RX∗
1 ⊕ R

n−d−1.
We denote by

p∗ : VT → RX∗
1, l �→ l1X

∗
1

the canonical projection. AsW is a Zariski open set of VT , p∗(W) is also a nonempty
Zariski open set of R. Then it will be convenient to write elements l ∈ W , as (l1, l ′)
where l1 ∈ p∗(W) and l ′ ∈ Wl1 = {l ′ ∈ R

n−d−1 : (l1, l ′) ∈ W}. It turns out
that Wl1 is also a Zariski open set of R

n−d−1 for each l1 ∈ p∗(W). The set Wl1
corresponds obviously to the cross-section Wζ used in the localized version of the
Plancherel formula in (13). On the other hand, we obtain a decomposition of the
Plancherel measure: for a function F ∈ Cc(W), we have

∫
W

F(l)dl =
∫
R

∫
Wl1

F(l)dl ′ dl1, (14)

where the measure dl ′ is induced onWl1 by the Lebesque measure on W .

Lemma 3 Let f , ψ ∈ L2(G) satisfying condition (2) of Theorem 3 and γ ∈]0, β[.
Then there exists c > 0, such that

∫
Rn−1

∣∣∣∣ ̂
( f k,sψ )a(l1)

∣∣∣∣
2

da ≤ c exp(−π(αk2 + α‖s‖2 + γ l21)),
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for all k, l1 ∈ R and almost all s ∈ R
n−1.

Proof Let h(k, s) be the function defined on R by

h(k, s)(λ) =
∫
Rn−1

(( f k,sψ )a ∗ ( f k,sψ )�a)(λ)da,

where λ ∈ R and ( f k,sψ )�a(λ) = ( f k,sψ )a(−λ). Then, h(k, s) ∈ L1(R), for all k ∈ R

and almost all s ∈ R
n−1. In fact, from Lemma 2

∫
R

|h(k, s)(λ)|dλ ≤
∫
R

∫
Rn−1

∫
R

∣∣( f k,sψ )a(t)
∣∣∣∣( f k,sψ )a(t − λ)

∣∣dt da dλ

=
∫
Rn−1

( ∫
R

∣∣( f k,sψ )a(t)
∣∣dt

)2

da < ∞, (15)

for all k ∈ R and almost all s ∈ R
n−1. Thus,

ĥ(k, s)(l1) =
∫
Rn−1

∣∣ ̂
( f k,sψ )a(l1)

∣∣2da. (16)

Identifying A = expRX1 with R. Following the idea of Kaniuth and Kumar [14], for
u ∈ L1(A) ∩ L2(A) define u ∗ f k,sψ on G by

u ∗ f k,sψ (x) =
∫
A
u(z) f k,sψ (z−1x) dz

and then h(k, s)u : R → C by

h(k, s)u(t) =
∫
Rn−1

(
(u ∗ f k,sψ )a ∗ (

(u ∗ f k,sψ )a
)�

)
(t) da.

It is not hard to see that

h(k, s)u(t) =
∫
Rn−1

(
(u ∗ ( f k,sψ )a) ∗ (u ∗ ( f k,sψ )a)

�
)
(t) da.

Therefore, for every η1 ∈ R

̂h(k, s)u(η1) =
∫
Rn−1

∣∣∣(u ∗ ( f k,sψ )a
)̂
(η1)

∣∣∣2 da
= |û(η1)|2

∫
Rn−1

∣∣∣ ̂
( f k,sψ )a(η1)

∣∣∣2 da = |û(η1)|2ĥ(k, s)(η1) (17)

(using Eq. (16)). Hence,

∫
R

∣∣ ̂h(k, s)u(η1)
∣∣dη1 =

∫
R

|û(η1)|2
∣∣ĥ(k, s)(η1)

∣∣dη1
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≤
∫
R

|û(η1)|2‖h(k, s)‖1dη1 = ‖u‖22‖h(k, s)‖1,

which is finite by (15). By the inversion formula for R, we have

∫
R

̂h(k, s)u(η1) dη1 = h(k, s)u(0)

=
∫
Rn−1

∫
R

∣∣u ∗ ( f k,sψ )a(t)
∣∣2 dt da = ‖u ∗ f k,sψ ‖22. (18)

Now fix l1 ∈ R and let um ∈ L1(A),m ∈ N
∗ such that ûm(η1) = 1 for η1 ∈ Vm(l1) =

[l1 − (1/2m), l1 + (1/2m)] and ûm(η1) = 0 on the complement of Vm(l1). Noting
that, um is also in L2(A). Indeed, since ûm ∈ L1(A) ∩ L2(A),

‖um‖2 = ‖ǔm‖2 = ∥∥̂̂um∥∥
2 = ‖ûm‖2 < ∞,

where ǔm(z) = um(−z).
As ĥ(k, s) is continuous and Vm(l1) has length 1/m, we have: for all k ∈ R and almost
all s ∈ R

n−1,

ĥ(k, s)(l1) = lim
m→∞m

∫
Vm (l1)

ĥ(k, s)(η1) dη1 = lim
m→∞m

∫
R

ĥ(k, s)(η1)1Vm (l1) dη1

= lim
m→∞m

∫
R

̂h(k, s)um (η1) dη1 (using Eq.(17))

= lim
m→∞m‖um ∗ f k,sψ ‖22 (using Eq.(18))

= lim
m→∞m

∫
R

∫
Wη1

|P f (η)|‖πη(um ∗ f k,sψ )‖2HS dη′ dη1

(using Eqs.(5) and (14))

= lim
m→∞m

∫
R

|ûm(η1)|2
(∫

Wη1

|P f (η)|‖πη( f
k,s
ψ )‖2HS dη′

)
dη1

= lim
m→∞m

∫
Vm (l1)

Iη1 dη1,

where η = (η1, η
′) and Iη1 =

∫
Wη1

|P f (η)|‖πη( f
k,s
ψ )‖2HS dη′.

Now by (2) and (8), we obtain

Iη1 ≤ C
∫
Wη1

|P f (η)| exp(−π(αk2 + α‖s‖2 + β‖η‖2))dη′.

Since P f (η) is a polynominal function of η, there exists R > 0 such that

|P f (η)| exp(−π(β − γ )‖η‖2) ≤ 1
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for all η ∈ g∗ with ‖η‖ ≥ R. Let K ≥ 1 such that |P f (η)| ≤ K for all η ∈ g∗ with
‖η‖ ≤ R. It follows that,

Iη1 ≤ CK exp(−π(αk2 + α‖s‖2))
∫
Wη1

exp
(−πγ ‖η‖2)dη′

= CK exp(−π(αk2 + α‖s‖2))
∫
Rn−d−1

exp
(−πγ ‖(η1, η′)‖2)dη′

= CK exp(−π(αk2 + α‖s‖2 + γ η21))

∫
Rn−d−1

exp
(−πγ ‖η′‖2)dη′

= c exp(−π(αk2 + α‖s‖2 + γ η21)),

for some c > 0. Therefore,

ĥ(k, s)(l1) ≤ c lim
m→∞m

∫
Vm (l1)

exp(−π(αk2 + α‖s‖2 + γ η21))dη1

= c exp(−π(αk2 + α‖s‖2 + γ l21)).

Finally, Eq. (16) allows us to conclude. ��

4 Proof of Theorem 3

For a = (a2, ..., an), s = (s2, ..., sn) ∈ R
n−1, let fa,s ,ψa,s be the complex-valued

functions defined on R by

fa,s(t) = f
(
exp

((
t − Q1(a, s)

)
X1 +

n∑
j=2

a j X j

))
,

and ψa,s(t) = ψ
(
exp

(
t X1 +

n∑
j=2

Q j (a, s)X j

))
,

where the polynomial functions Q j are defined as in (10). Then obviously fa,s, ψa,s ∈
L2(R), for almost all a ∈ R

n−1 and all s ∈ R
n−1. For fixed λ, y ∈ R, let Fλ,y and

Kλ,y be the functions defined on R × R by

Fλ,y(k, l1) = Gψa,s (MλTy fa,s)(k, l1)Gψa,s (MλTy fa,s)(−k,−l1)e
2iπkl1 ,

and

Kλ,y(k, l1) =
∫
Rn−1

∫
Rn−1

Fλ,y(k, l1)φ(a, s)da ds,
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where φ ∈ S(Rn−1 × R
n−1), the Schwartz space of R

n−1 × R
n−1. Now for fixed

μ ∈ R, let Rλ,y,μ be the function defined on R by

Rλ,y,μ(k) = Kλ,y(k, .)̂(μ), (19)

where Kλ,y(k, .)̂ is the partial Fourier transform of Kλ,y with respect the second
variable l1. It follows, using Lemma 1, that

R̂λ,y,μ(w) = K̂λ,y(w,μ) =
∫
Rn−1

∫
Rn−1

F̂λ,y(w,μ)φ(a, s)da ds

=
∫
Rn−1

∫
Rn−1

Fλ,y(−μ,w)φ(a, s)da ds=Kλ,y(−μ,w).

(20)

Lemma 4 There exists a positive constant C1 such that

∣∣∣Rλ,y,μ(k)
∣∣∣ ≤ C1 e

−απk2 .

Moreover, the constant C1 does not depend on λ, μ and y.

Proof From Eq. (19) we have,

|Rλ,y,μ(k)|
= |Kλ,y(k, .)̂(μ)|
≤

∫
R

∫
Rn−1

∫
Rn−1

∣∣∣Gψa ,s(MλTy fa,s)(k, l1)
∣∣∣

∣∣∣Gψa ,s(MλTy fa,s)(−k,−l1)
∣∣∣
∣∣∣φ(a, s)

∣∣∣da ds dl1
≤ cst

∫
R

∫
Rn−1

∫
Rn−1

∣∣∣Gψa ,s(MλTy fa,s)(k, l1)
∣∣∣

∣∣∣Gψa ,s(MλTy fa,s)(−k,−l1)
∣∣∣da ds dl1.

By using Cauchy-Schwartz inequality, we obtain

|Rλ,y,μ(k)| ≤ cst

(∫
R

∫
Rn−1

(∫
Rn−1

∣∣Gψa ,s(MλTy fa,s)(k, l1)
∣∣2da

)
ds dl1

) 1
2

×
(∫

R

∫
Rn−1

(∫
Rn−1

∣∣Gψa ,s(MλTy fa,s)(−k,−l1)
∣∣2da

)
ds dl1

) 1
2

.

Remark that,

∣∣∣Gψa,s (MλTy fa,s)(k, l1)
∣∣∣ =

∣∣∣Gψa,s fa,s(k − y, l1 − λ)

∣∣∣
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(using i) in Lemma 1)

=
∣∣∣∣
∫
R

fa,s(t)ψa,s(t − k + y)e−2iπ t(l1−λ)dt

∣∣∣∣

=
∣∣∣∣
∫
R

f

⎛
⎝exp ((t − Q1(a, s))) X1 +

n∑
j=2

a j X j

⎞
⎠

× ψ

⎛
⎝exp

⎛
⎝(t − k + y)X1 +

n∑
j=2

Q j (a, s)X j

⎞
⎠

⎞
⎠ e−2iπ t(l1−λ)dt

∣∣∣∣

=
∣∣∣∣
∫
R

f

⎛
⎝exp

⎛
⎝r X1 +

n∑
j=2

a j X j

⎞
⎠

⎞
⎠

×ψ

⎛
⎝exp

⎛
⎝(r − (k − y) + Q1(a, s))X1 +

n∑
j=2

Q j (a, s)X j

⎞
⎠

⎞
⎠ e−2iπr(l1−λ)dr

∣∣∣∣

(by substituting r = t − Q1(a, s) for t)

=
∣∣∣
∫
R

f

⎛
⎝exp

⎛
⎝r X1 +

n∑
j=2

a j X j

⎞
⎠

⎞
⎠

×ψ

⎛
⎜⎝exp

⎛
⎝(k − y)X1 +

n∑
j=1

s j X j

⎞
⎠

−1

exp

⎛
⎝r X1 +

n∑
j=2

a j X j

⎞
⎠

⎞
⎟⎠ e−2iπr(l1−λ)dr

∣∣∣

(using Eq. (10))

=
∣∣∣∣∣∣
∫
R

f k−y,s
ψ

⎛
⎝exp

⎛
⎝r X1 +

n∑
j=2

a j X j

⎞
⎠

⎞
⎠ e−2iπr(l1−λ)dr

∣∣∣∣∣∣ =
∣∣∣∣ ̂
( f k−y,s

ψ )a(l1 − λ)

∣∣∣∣.
It results that,

∣∣Rλ,y,μ(k)
∣∣ ≤ cst

(∫
R

∫
Rn−1

(∫
Rn−1

∣∣ ̂
( f k−y,s

ψ )a(l1 − λ)
∣∣2da

)
ds dl1

) 1
2

×
(∫

R

∫
Rn−1

∫
Rn−1

∣∣ ̂
( f −k−y,s

ψ )a(−l1 − λ)
∣∣2da ds dl1

) 1
2

≤ cst

(∫
R

∫
Rn−1

e−π(α|k−y|2+γ (l1−λ)2+α‖s‖2)ds dl1
) 1

2

×
(∫

R

∫
Rn−1

e−π(α|k+y|2+γ (l1+λ)2+α‖s‖2)ds dl1
) 1

2

(using Lemma 3)
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≤ cst e− π
2 α(|k−y|2+|k+y|2)

(∫
Rn−1

e−πα‖s‖2ds
) (∫

R

e−πγ l21dl1

)

≤ cst e−παk2 ,

which is the desired result. ��
Lemma 5 There exists a positive constant C2 such that

∣∣R̂λ,y,μ(w)
∣∣ ≤ C2 e

−πγw2
.

Moreover, the constant C2 does not depend on λ, y and μ.

Proof By (20), we have
∣∣R̂λ,y,μ(w)

∣∣ = ∣∣Kλ,y(−μ,w)
∣∣

≤ cst
∫
Rn−1

∫
Rn−1

∣∣∣Gψa ,s(MλTy fa,s)(−μ,w)

∣∣∣
∣∣∣Gψa ,s(MλTy fa,s)(μ,−w)

∣∣∣dads.

As in the proof of the Lemma 4 we can show that,

∣∣R̂λ,y,μ(w)
∣∣ ≤ cst e− πγ

2 (|w−λ|2+|w+λ|2)e
−πa
2 (|μ+y|2+|−μ+y|2) ×

(∫
Rn−1

e−πα‖s‖2ds
)

≤ cst e−πγw2
,

which is the desired result. ��
We have shown finally that Rλ,y,μ verifies the decay conditions of Hardy theorem

on R. Since αβ > 1, we can choose 0 < γ < β such that αγ > 1. We conclude that
Rλ,y,μ = 0 a.e. and R̂λ,y,μ = 0 for all λ, y, μ ∈ R. In (20), allowing φ to vary through
the space of Schwartz functions on R

n−1 × R
n−1, we obtain Fλ,y(−μ,w) = 0 for all

λ, y, μ in R and almost all w ∈ R. As F−λ,−y is continuous on R × R,

|F−λ,−y(0, 0)| = |Gψa,s fa,s (y,λ)|2 = 0

(using i) in Lemma 1). Hence, Gψa,s fa,s = 0 a.e. By using Eq. (4), we have

‖ψa,s‖22‖ fa,s‖22 = 0,

which implies either ψa,s = 0 a.e. or fa,s = 0 a.e. Observe that,

∫
Rn−1

∫
Rn−1

‖ fa,s‖22‖ψa,s‖22da ds

=
∫
Rn−1

∫
Rn−1

⎛
⎝

∫
R

∣∣∣ f
⎛
⎝exp

⎛
⎝(t − Q1(a, s)) X1 +

n∑
j=2

a j X j

⎞
⎠

⎞
⎠ ∣∣∣2dt

⎞
⎠
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×
⎛
⎝

∫
R

∣∣∣ψ
⎛
⎝exp

⎛
⎝t X1 +

n∑
j=2

Q j (a, s)X j

⎞
⎠

⎞
⎠ ∣∣∣2dt

⎞
⎠ da ds = ‖ f ‖22‖ψ‖22

(by substituting t−Q1(a, s) for t and Q j (a, s) for s j , j = 2, ..., n, using Eq. (11)).
This allow us to achieve the proof.
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