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Abstract
Let I = (a, b) × (c, d) ⊂ R

2+ be an index set and let {Gα(x)}α∈I be a collection
of Gaussian functions, i.e. Gα(x) = exp(−α1x21 − α2x22 ), where α = (α1, α2) ∈
I , x = (x1, x2) ∈ R

2. We present a complete description of the uniformly discrete
sets � ⊂ R

2 such that every bandlimited signal f admits a stable reconstruction from
the samples { f ∗ Gα(λ)}λ∈�.

Keywords Multi-dimensional sampling · Dynamical sampling · Paley–Wiener
spaces · Bernstein spaces · Gaussian kernel · Hermite polynomials · Delone set

1 Introduction

The sampling problemdealswith recovery of bandlimited signals f from the collection
ofmeasurements { f (λ)}λ∈� taken at the points of someuniformlydiscrete set� ⊂ R

d .
The classical results deal with one dimensional signals that are elements of the Paley-
Wiener or Bernstein spaces over a fixed interval [−σ, σ ]. The sets � that provide the
stable reconstruction, in this case, are completely described. For the Bernstein spaces,
the answer is given in terms of a certain density of � and bandwidth parameter σ , see
[5]. The result for Paley-Wiener spaces is more complicated, see [16, 18]. It cannot
be expressed in terms of a density of �. We refer the reader to [5, 18] for the detailed
exposition and the proofs.
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The complexity of the task significantly increases in the multi-dimensional setting.
Landau [11] proved that the necessary conditions for stable sampling remain valid
for the Paley-Wiener spaces over any domain (see [13] for a much simpler proof). A
sufficient condition for a sampling of signals from the Bernstein space with spectrum
in a ball was obtained by Beurling, see [6]. We also refer the reader to [15] for some
extensions. However, there is a gap between the necessary and sufficient conditions.
Moreover, even for the simplest spectra as balls or cubes, examples show that no
description of sampling sets is possible in terms of a density of �, see Sect. 5.7
in [14].

Recently the so-called dynamical sampling problem (in what follows, we will more
often use the term space-time sampling problem) attracted a lot of attention, see [2–4,
19], and references therein.

In this paper, we consider the following variant of dynamical sampling problem.

Main Problem
Let � be a uniformly discrete subset of Rn and let Gα(x) be a collection of functions
parametrized by α ∈ I . What assumptions should be imposed on the spatial set �,
index set I , and functions Gα to enable the recovery of every band-limited signal f
from its space-time samples { f ∗ Gα(λ)}λ∈�,α∈I ?

For signals f from a Paley-Wiener space PWσ (see the definition below) it means
that the inequalities

D1‖ f ‖22 ≤
∑

λ∈�

∫

I

| f ∗ Gα(λ)|2 dα ≤ D2‖ f ‖22 for every f ∈ PWσ (1)

are true with some constants D1 and D2. Here, as usual, ‖ · ‖ denotes the L2-norm.
Recall that a set � = {λk} ⊂ R

n is called uniformly discrete1 (u.d.) if

δ(�) := inf
λ�=λ′

λ,λ′∈�

|λ − λ′| > 0.

The constant δ(�) is called the separation constant of �.
In the one-dimensional setting, this problem appears in particular in connection

with tasks of mathematical physics. Several examples are presented in [4]. One of
them is the initial value problem for the heat equation

∂

∂α
u(x, α) = σ 2 ∂2u

∂x2
(x, α), σ �= 0, x ∈ R, α > 0, (2)

with initial condition
u(x, 0) = f (x). (3)

1 Sometimes, the term uniformly separated is used.
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It is well-known that the solution is given by the formula

u(x, α) = f ∗ gα(x) =
∫

Rn

gα(x − y) f (y)dy, (4)

where gα(x) = 1√
(4πασ)

exp
(
− x2

4ασ

)
.Note thatMain Problem applied to equation (2)

provides the reconstruction of initial function f from the states {u(λ, α)}λ∈�,α∈I .
A variant of Main Problem for the one-dimensional setting was considered by

Aldroubi et al. in [4]. In particular, it was established that unlike the classical sampling
setting, the assumptions that should be imposed on the set� to solve theMain Problem
cannot be expressed in terms of some density of �, see Example 4.1 in [4]. More
precisely, one may construct a set with an arbitrarily small density that provides stable
reconstruction of the initial signal. Also in that paper, it was shown that for the solution
of Main Problem we have to require � to be relatively dense.

In the one-dimensional setting, for a large collection of kernels, a solution of Main
Problem was presented in [19]: It turns out the stable recovery from the samples on
� is possible if and only if � is not (in a certain sense) “close” to an arithmetic
progression.

It seems natural to extend the results of [4, 19] to the multi-dimensional situation.
Belowwe focus on the two-dimensional variant of the problem for the case ofGaussian
kernel

Gα(x) = e−α1x21−α2x22 , α = (α1, α2) ∈ I ,

I = (a, b) × (c, d) ⊂ R
2+, x = (x1, x2) ∈ R

2.

Our approach is similar to the one in [19]. However, this problem is considerably
more involved than the one in the one-dimensional setting. One needs to apply some
additional ideas. See Sect. 5 for some remarks on cases dimension higher than 2.

We pass to the description of the geometry of the sets � that solve the planar Main
problem.

Definition 1 A curvilinear lattice in R
2 defined by three vectors

t = (t1, t2) ∈ R
2, ξ = (ξ1, ξ2) ∈ R

2, and r = (r1, r2) ∈ R
2, r21 + r22 = 1,

is the set of all vectors λ = (λ1, λ2) ∈ R
2 satisfying

lt,ξ,r := {λ ∈ R
2
∣∣∣ r1 cos(λ1ξ1 + λ2ξ2 + t1) = r2 cos(−λ1ξ1 + λ2ξ2 + t2)}.

The blue curves on Fig. 1 correspond to the curvilinear lattice lt,ξ,r with t =
(0, 0), ξ = (1, 1), and r = (1/

√
10, 3/

√
10).

In what follows the notation W (�) stands for the collection of all weak limits of
translates of a uniformly discrete set �, see the definition in Sect. 2.

Condition (A): A uniformly discrete set� = {λ = (λ1, λ2)} ⊂ R
2 satisfies condition

(A) if every set �∗ ∈ W (�) is not empty and does not lie on any lattice lt,ξ,r .



55 Page 4 of 24 Journal of Fourier Analysis and Applications (2022) 28 :55

Fig. 1 Curvilinear lattice defined by cos(x + y) = 3 cos(y − x)

Remark 1 A Delone set is a set that is both uniformly discrete and relatively dense. In
particular, it is easy to check that every set that satisfies condition (A) is a Delone set.

We denote by PW 2
σ the space of square integrable on R

2 functions with spectrum
supported in the square [−σ, σ ]2, i.e.

PW 2
σ = { f ∈ L2(R2)

∣∣ supp f̂ ⊂ [−σ, σ ]2},

where

f̂ (ξ1, ξ2) =
∫

R2

e−i(ξ1x1+ξ2x2) f (x1, x2) dx1dx2.

Now, we are ready to formulate the main result.

Theorem 1 Given a u.d. set � ⊂ R
2 and a rectangle I = (a, b) × (c, d) with 0 <

a < b < ∞, 0 < c < d < ∞. The following statements are equivalent:

(i) For every σ > 0 there are positive constants D1 = D1(σ, I ,�) and D2 =
D2(σ, I ,�) such that (1) holds true.

(ii) � satisfies condition (A).

The paper is organized as follows. In Sect. 2 we give all necessary definitions and
fix some notations. As it was mentioned above, we employ the approach from [19]
and divide the solution into two parts. We start with solving Main Problem for the
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Bernstein spaces Bσ and prove an analogue of Theorem 1 in Sect. 3. In Sect. 4 we
investigate the connection between the sampling with Gaussian kernel in the Paley-
Wiener and Bernstein spaces. We also prove the main result in Sect. 4. The remarks on
multi-dimensional cases and some open problems that puzzle us are placed in Sect. 5.

2 Notations and Preliminaries

In the present paper,we dealwith signals that belong to theBernstein andPaley-Wiener
spaces. Since we investigate Main Problem simultaneously for all bandwidth parame-
ters, we may consider only the functions with the spectrum supported in squares. This
leads us to

Definition 2 Given a positive number σ , we denote by Bσ the space of all entire
functions f in C2 satisfying the estimate

| f (z)| ≤ Ceσ(|y1|+|y2|), z = (z1, z2) ∈ C
2, z j = x j + iy j ∈ C, j = 1, 2, (5)

where the constant C = C( f ) depends only on f .

It is well-known that Bσ consists of the bounded continuous functions that are the
inverse Fourier transforms of tempered distributions supported on the square [−σ, σ ]2.
We refer the reader to [12] for more information about Bernstein spaces.

For 1 ≤ p < ∞ we may define the Paley-Wiener spaces by the formula

PW p
σ = Bσ ∩ L p(R2)

or equivalently

PW p
σ = { f ∈ L p(R2)

∣∣ supp f̂ ⊂ [−σ, σ ]2}.

Following [5] (see also Chapter 3.4 in [10, 14, 17]), we introduce auxiliary

Definition 3 Let {�k} and � be u.d. subsets of Rn , satisfying δ(�k) ≥ δ > 0, k ∈ N.
We say that the sequence {�k} converges weakly to � if for every large R > 0 and
small ε > 0 there exists such N = N (R, ε) that

�k ∩ (−R, R)n ⊂ � + (−ε, ε)n,

� ∩ (−R, R)n ⊂ �k + (−ε, ε)n .

for all k ≥ N .

Definition 4 By W (�) we denote all weak limits of the translates �k := � − xk ,
where {xk} ⊂ R

n is an arbitrarily bounded or unbounded sequence.

We supply these definitions with several examples concerning the condition (A).
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Example 1 To construct the set that does not satisfy condition (A), one may consider
the following perturbation of the rectangle lattice:

� =
{(

2πn + 1

2m2+n2
, 2πm + 1

2|m|+|n|

)
, m, n ∈ Z

}
.

Taking any sequence {xk} ⊂ R
2 such that |xk | → ∞, one may check by the definition

that the sequence�−xk weakly converges to the set� = {(2πn, 2πm) , m, n ∈ Z},
which, clearly, lies in lt,ξ,r with t = (0, 0), ξ = (1, 1), and r =

(
1√
2
, 1√

2

)
.

The following example is inspired by the papers [10, 17], which considered a planar
mobile sampling problems.

Example 2 Set

DZ =
{
(x, y) ⊂ R

2 | x2 + y2 = 4π2k2, k ∈ Z

}
,

i.e. DZ is a collection of the concentric equidistant circles with center (0, 0). Now,
one may consider � to be any u.d. set located on the circles DZ. One may check (see
the proofs in [10, 17]) that any weak limit of translates for every unbounded sequence
{xn} for DZ lies on the parallel lines. The argument is based on the simple observation
that the traces of translated circles in the rectangle [−R, R]2 (for a fixed R > 0) are
getting closer and closer to the parallel lines as the value |xn| increases. Moreover,
the distance between these lines is 2πk. For instance, one may take xn = (0, 2πn)

and pass to a weak limit � − xn → �∗ to obtain that �∗ ⊂ lt,ξ,r with t = (0, 0),

ξ = (1, 1), and r =
(

1√
2
, 1√

2

)
.

The next example concerns the set that satisfy condition (A). In what follows, we
skip some technical details.

Example 3 One may easily find a u.d. set � inR2 such that its projection P� onto any
rectangle P = [0, a] × [0, b] is dense in P , where

P� = {(λ1 mod a, λ2 mod b) : λ = (λ1, λ2) ∈ �} .

For instance, one may take a u.d. subset of (
√
2Z ∪ Z) × (

√
3Z ∪ Z) (with a dense

projection ). Therefore, the set � and all its weak limits of translates do not lie on any
curvilinear lattice, and � satisfy the condition (A).

Below we will use the simple fact that for every sequence xk there is a subsequence
xk j such that � − xk j converges weakly.

Throughout this paper we will adopt the following notations:

• Let x ∈ R
n, y ∈ R

n, n ∈ N. Define |x | :=
√
x21 + · · · + x2n . Notation x · y stands

for the scalar product of vectors x and y.
• Set Br (x) := {y ∈ R

n : |x − y| < r}, where x ∈ R
n and r > 0.
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• Given λ = (λ1, . . . , λn) and f ∈ L∞(Rn), we set

fλ(x) := f (x − λ) = f (x1 − λ1, . . . , xn − λn).

• By |A| we denote the n-th dimensional Lebesgue measure of a set A ⊂ R
n .

• By C we denote different positive constants.

Basically, we will focus on two-dimensional case. It is convenient to fix the follow-
ing notations.

• Given a point x = (x1, x2) ∈ R
2, denote x̃ := (−x1, x2).

• A symmetrization operator S is defined by the formula

S f (x) := f (x) + f (x̃) + f (−x̃) + f (−x), f ∈ L∞(R2).

• Set T := {|x | = 1, x ∈ R
2}.

3 Sampling with Gaussian Kernel in Bernstein Spaces

An analogue of Theorem 1 for the Bernstein spaces is as follows:

Theorem 2 Given a u.d. set � ⊂ R
2 and I = (a, b) × (c, d) with 0 < a < b <

∞, 0 < c < d < ∞. The following statements are equivalent:

(i) For every σ > 0 there is a constant K = K (σ ) such that

‖ f ‖∞ ≤ K sup
α∈I

sup
λ∈�

‖ f ∗ Gα‖∞ for every f ∈ Bσ .

(ii) � satisfies condition (A).

Above, as usual, ‖ · ‖∞ denotes the sup-norm

‖ f ‖∞ := sup
x∈R2

| f (x)|.

3.1 Proof of Theorem 2, Part I

(ii) ⇒ (i). In what follows we assume that (i) is not true. We have to show that (i i)
fails, i.e. there is a set �∗ ∈ W (�) such that it lies on some curvilinear lattice. The
proof is divided into 5 steps. For the convenience of the reader, we will briefly describe
them here and then pass to the argument.

In Step 1, using the standard Beurling technique, we find �∗ ∈ W (�) and g ∈ Bσ

such that g∗Gα vanishes on�∗ for every α ∈ I . Our next step is to show that Sgλ = 0
for every λ ∈ �∗. In Step 3 we prove that�∗ lies on some curvilinear lattice under the
assumption that g ∈ L2(R2). In Steps 4 and 5, using some approximation technique,
we show how to get rid of the requirement that g is square integrable.
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1. Due to the assumption made one can find a sequence of Bernstein functions
fn ∈ Bσ satisfying

‖ fn‖∞ = 1, ‖ fn ∗ Gα|�‖∞ ≤ 1/n.

We may then introduce a sequence of functions

gn(z) := fn(z − x(n)), z = (z1, z2), x(n) = (x1(n), x2(n)),

where x(n) are chosen so that | fn(x(n))| > 1 − 1
n , n ∈ N. Then we have

‖gn‖∞ = 1 and
∥∥g ∗ Gα|�+x(n)

∥∥∞ ≤ 1/n, n ∈ N.

Using the compactness property of Bernstein space (see, e.g., [14], Proposition 2.19),
we may assume that sequence gn converges (uniformly on compacts in C

2) to some
function g ∈ Bσ . Moreover, passing if necessary to a subsequence, we may assume
that the translates � + x(n) converge weakly to some u.d. set �∗. Of course, we
may assume that �∗ is non-empty. Otherwise, we have arrived at contradiction with
condition (A). Clearly, g satisfies

‖g‖∞ = 1, and for every α ∈ I : g ∗ Gα|�∗ = 0, �∗ ∈ W (�). (6)

For a point z = (z1, z2) ∈ C
2 we consider its complex conjugate point z̄ = (z̄1, z̄2).

Consider the decomposition g(z) = ϕ(z) + iψ(z), where

ϕ(z) := g(z) + g(z̄)

2
, ψ(z) := g(z) − g(z̄)

2i
.

Then ϕ and ψ are real (on R
2) entire functions satisfying (5). Thereby, functions ϕ

and ψ belong to Bσ , and since the kernel Gα takes only real values on R
2, we have

(ϕ ∗ Gα)(λ) = 0 and (ψ ∗ Gα)(λ) = 0 for every λ ∈ �∗. Thus, we can continue the
argument assuming that g is a real-valued function.

2. Recall that the notations x̃ and S f were introduced in Sect. 2.

Lemma 1 Assume a function g ∈ Bσ satisfies (6). Then for every λ ∈ �∗ the equality

Sgλ(x) = 0 (7)

holds for a.e. x ∈ R
2.

Proof Without loss of generality, we may assume that λ = (0, 0) and I = ( 12 , 1
)2
.

Observe that

(Sg ∗ Gα)(0, 0) = 4(g ∗ Gα)(0, 0) = 0 for every α ∈ I . (8)
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Set

h(x1, x2) := Sg(x1, x2) exp

{
− x21 + x22

4

}
and I+ :=

(
1

2
,
3

4

)2
.

Clearly, h ∈ L2(R2) and it is even in variables x1 and x2. Moreover, using (8), one
can check that (h ∗ Gα)(0, 0) = 0 for any α ∈ I+.

For every multi-index m = (m1,m2) ∈ N
2 and u ∈ I+ we have

∂m

∂um1
1 ∂um2

2

∫

R2

h(x1, x2) exp
{
−u1x

2
1 − u2x

2
2

}
dx1dx2 = 0.

In particular, h is orthogonal to every monomial xα1
1 xα2

2 with even indexes α1 and
α2 in the weighted space L2

(
R
2, exp

{− 1
2 (x

2
1 + x22 )

})
. Moreover, since h is even in

any variable, from the symmetry, we see that h is orthogonal to every polynomial in
this space. To finish the proof we use the completeness property of multi-dimensional
analogues of Hermite polynomials. More precisely, we invoke Theorem 3.2.18 from
[7] to deduce h = 0. Consequently, Sg(x) = 0 for every x ∈ R

2, and the lemma
follows. ��

3. We will need a simple technical

Lemma 2 Given a function F ∈ L2(R2) such that its inverse Fourier transform f is
a real function. Then

S fλ(x) = 2
∫

R2

cos(x · t)Re
(
eiλ·t F(t) + ei λ̃·t F(t̃)

)
dt .

Proof Indeed, we may write

f (x) = Re
∫

R2

eix ·t F(t)dt .

Therefore,

S fλ(x) = Re
∫

R2

(
eix ·t + ei x̃ ·t + e−i x ·t + e−i x̃ ·t) eiλ·t F(t)dt

= 2Re
∫

R2

(cos(x · t) + cos(x̃ · t))eiλ·t F(t)dt

= 2Re
∫

R2

cos(x · t)
(
eiλ·t F(t) + ei λ̃·t F(t̃)

)
dt,

which proves the lemma. ��
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3. If we additionally assume that g ∈ L2(R2), the result follows from the next
statement.

Lemma 3 Assume g ∈ L2(R2). Then �∗ lies on some curvilinear lattice.

Proof Denote by G the inverse Fourier transform of g. Recall that g is real, whence

G(t) = G(−t) and G(t̃) = G(−t̃).

Denote by U (t) = Re
(
eiλ·tG(t) + ei λ̃·tG(t̃)

)
. Since

2U (t) = 2Re
(
eiλ·tG(t) + ei λ̃·tG(t̃)

)

=
(
eiλ·tG(t) + ei λ̃·tG(t̃)

)
+
(
eiλ·tG(t) + ei λ̃·tG(t̃)

)

= eiλ·tG(t) + ei λ̃·tG(t̃) + e−iλ·tG(−t) + e−i λ̃·tG(−t̃),

we deduce that U (t) = U (−t). Combining this observation with Lemmas 1 and 2,
we see that equality

Re
(
eiλ·tG(t) + ei λ̃·tG(t̃)

)
= 0

holds for a.e. t ∈ R
2 and for every λ ∈ �∗.

Recall that G = 0 a.e. outside (−σ, σ )2. For every ε > 0, find a real Schwartz
function Fε whose support lies on [−σ, σ ]2 satisfying ‖G − Fε‖2 < ε. Then

‖Fε‖2 ≥ ‖G‖2 − ε (9)

and ⎛

⎜⎝
∫

R2

∣∣∣Re
(
eiλ·t Fε(t) + ei λ̃·t Fε(t̃)

)∣∣∣
2
dt

⎞

⎟⎠

1/2

< 2ε, λ ∈ �∗. (10)

Using these inequalities, one can check that there are a point tε , tε ∈ [−σ, σ ]2 and
constants C and c depending only on σ such that

|Fε(tε)| > C and
∣∣∣Re
(
eiλ·tε Fε(tε) + ei λ̃·tε Fε(t̃ε)

)∣∣∣ < cε|Fε(tε)|, (11)

for every small enough ε. Indeed, by Plancherel theorem,we have ‖G‖2 = ‖g‖2. Since
‖g‖∞ = 1 and g ∈ Bσ , using Bernstein inequality, we deduce ‖G‖2 = ‖g‖2 ≥ C(σ ).
Now, assuming that for all t , the inequalities (11) do not hold true, by integration with
respect to variable t and using the estimate (9), for sufficiently small ε we arrive at
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∫

R2

∣∣∣Re
(
eiλ·t Fε(t) + ei λ̃·t Fε(t̃)

)∣∣∣
2
dt ≥ c2ε2‖Fε‖22 ≥ c2

2
ε2‖G‖22 ≥ c2

2
ε2C2(σ ),

which contradicts to estimate (10) when c > 2
√
2/C(σ ).

Write

Fε(tε) =: Rεe
iuε , Fε(t̃ε) =: rεeivε .

Then we get

|Rε | > C,

∣∣∣Rε cos(λ · tε + uε) + rε cos(λ̃ · tε + vε)

∣∣∣ < cεRε, λ ∈ �∗.

Then normalizing we arrive at

∣∣∣∣∣
Rε√

R2
ε + r2ε

cos(λ · tε + uε) + rε√
R2

ε + r2ε
cos(λ̃ · tε + vε)

∣∣∣∣∣ < cε.

Clearly, we may assume that uε ∈ [0, 2π ] and vε ∈ [0, 2π ]. Recall that tε ∈ [−σ, σ ]2
and, of course,

Rε√
R2

ε + r2ε
∈ [0, 1] and

rε√
R2

ε + r2ε
∈ [0, 1].

Taking ε = 1
n and passing if necessary to a subsequence, we deduce that � lies on

some curvilinear lattice.
4. In what follows we assume that

g ∈ Bσ \ L2(R2). (12)

For ε > 0 we set

hε(ξ) := sin(εξ)

εξ
, �ε(x1, x2) := hε(x1)hε(x2), and δε := ‖g�ε‖−1/2

2 .

��
The next statement easily follows from (12).

Lemma 4 We have δε → 0 as ε → 0.

We skip the simple proof.
Let us introduce auxiliary functions

ϕε(x) := δε�ε(x), gε(x) := g(x)ϕε(x), x ∈ R
2.

By Lemma 4,
‖gε‖2 = 1/δε → ∞, ε → 0. (13)
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Lemma 5 For every λ ∈ �∗ satisfying |λ| < 1/
√

δε we have

‖S(gε)λ‖2 ≤ C
√

δε.

Proof By Lemma 1, Sgλ = 0. Since the function ϕε is even with respect to each
variable, we have

Sgλϕε(x) = (Sg(· − λ)ϕε(·))(x)
=g(x−λ)ϕε(x)+g(x̃−λ)ϕε(x̃)+g(−x − λ)ϕε(−x) + g(−x̃ − λ)ϕε(−x̃) = 0.

Hence,

|S(gε)λ(x)| = |S(gϕε)(· − λ)(x)| = |S(gϕε)(x − λ) − Sg(· − λ)ϕε)(x)|
≤ |g(x − λ)(ϕε(x − λ) − ϕε(x))| + |g(x̃ − λ)(ϕε(x̃ − λ) − ϕε(x̃))|

+ |g(−x−λ)(ϕε(−x − λ)−ϕε(−x))| + |g(−x̃ − λ)(ϕε(−x̃ − λ) − ϕε(−x̃))| .

Below we focus on the estimate of the first term at the right hand-side of the
inequality above. The remaining terms admit the same estimate.

Write λ = (λ1, λ2). Observe that

|ϕε(x − λ) − ϕε(x)| ≤ δε

(
|hε(x1 − λ1) − hε(x1)| |hε(x2 − λ2)|

+ |hε(x2 − λ2) − hε(x2)| |hε(x1)|
)
.

For j = 1, 2 using the Cauchy-Schwartz inequality, we have

⎛

⎝
∫

R

|hε(x j − λ j ) − hε(x j )|2dx j
⎞

⎠
1/2

=
⎛

⎜⎝
∫

R

∣∣∣∣∣∣∣

λ j∫

0

h′
ε(x j − u)du

∣∣∣∣∣∣∣

2

dx j

⎞

⎟⎠

1/2

≤ C |λ j |‖h′
ε‖2.

One may check that ‖hε‖2 = C/
√

ε and ‖h′
ε‖2 = C

√
ε. Since ‖g‖∞ = 1 and

|λ| ≤ 1/
√

δε , we arrive at

‖S(gε)λ‖2 ≤ C

⎛

⎜⎝
∫

R2

|ϕε(x − λ) − ϕε(x)|2 dx
⎞

⎟⎠

1/2

≤ Cδε |λ|‖hε‖2‖h′
ε‖2 ≤ C

√
δε.

That finishes the proof. ��
5. Denote by Gε := ĝϕε . Then Gε ∈ L2(R) vanishes a.e. outside some square

(−σ ∗, σ ∗)2 (it is easy to check that one may take σ ∗ = σ + ε).
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Using Lemma 5, for |λ| ≤ 1/
√

δε we get

⎛

⎜⎝
∫

R2

∣∣∣Re
(
eiλ·xGε(x) + e−iλ·x̃ Gε(x̃)

)∣∣∣
2
dx

⎞

⎟⎠

1/2

≤ C
√

δε.

On the other hand, by (13), ‖Gε‖2 ≥ C , for all small enough ε.
To finish the proof, we proceed as in the proof of Lemma 3.

3.2 Proof of Theorem 2, Part II

(i) ⇒ (ii). We will argue by contradiction. Assume that for every σ > 0 there is a
constant K = K (σ ) such that

‖ f ‖∞ ≤ K sup
α∈I

sup
λ∈�

‖ f ∗ Gα‖∞, f ∈ Bσ ,

but condition (ii) is not satisfied, i.e. there exists some�′ ∈ W (�) such that�′ lies on
some curvilinear lattice. Clearly, to come to the contradiction it suffices to construct
for every ε > 0 a function f = fε such that

‖ f ‖∞ ≥ C, sup
α∈I

sup
λ∈�

| f ∗ Gα(λ)| ≤ Cε, (14)

and f ∈ Bσ ∗ for some fixed σ ∗.
Again, let us provide a brief description of the proof. We divide the proof into 4

steps. First, we build a function g such that g ∗ Gα vanishes on �′ for every α ∈ I . A
slightmodification of g provides a function f , which satisfies (14). To verify the second
estimate in (14) we split the set � into the sets �I = �∩ P and �O = �∩ (R2 \ P)

for an appropriate rectangle P . In the steps 3 and 4, we show that f satisfies the
relations (14) for λ ∈ �O and λ ∈ �I respectively.

Now we pass to the proof.
1. By our assumption, there exist �′ ∈ W (�), ξ ∈ R

2, (t1, t2) ∈ R
2, and (r1, r2) ∈

T such that for every λ′ ∈ �′ the equality

r1 cos(λ
′ · ξ − t1) − r2 cos(λ̃′ · ξ − t2) = 0 (15)

holds. Set

g(x) = r1 cos(ξ · x + t1) − r2 cos(ξ̃ · x + t2).

Clearly, g ∈ Bσ for σ = |ξ |. Next, we will show that symmetrization of the function
gλ′ vanishes for every λ′ ∈ �′.

Lemma 6 The equality

Sgλ′(x) = 0
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holds for every x ∈ R
2 and λ′ ∈ �′.

Proof After some simple calculations, we have

Sgλ′(x) = r1 Re
(
ei(t1−ξ ·λ′)S(eiξ ·x )

)
− r2 Re

(
ei(t2−ξ̃ ·λ′)S(ei ξ̃ ·x )

)
,

wherewe, as usual, apply symmetrization operator Swith respect to variable x . Clearly,
S(ei ξ̃ ·x ) = S(eiξ ·x ) = 2(cos(ξ · x) + cos(ξ̃ · x)). Thus, using (15), we have

Sgλ′(x) = 2(cos(ξ · x) + cos(ξ̃ · x))
(
r1 Re e

i(t1−λ′·ξ) + r2 Re e
i(t2−λ̃′·ξ)

)
= 0.

��
Consequently, for every λ′ ∈ �′ and α ∈ I we have

g ∗ Gα(λ′) = 0, (16)

since Gα is even in every variable.
2. Fix small ε > 0 and take large R = R(ε) > 0 (we will specify its value later).

Recall that �′ ∈ W (�). In particular, that means that one can find v = (v1, v2) =
v(R, ε) ∈ R

2 such that inside the square [−R, R]2, the set � − v is "close" to �′:

for every λ ∈ �∩(v+(−R, R)2) there is λ′ ∈ �′∩(−R, R)2 : dist (λ−v, λ′) ≤ ε.

(17)
Set P = [v1 − R, v1 + R] × [v2 − R, v2 + R] and consider the decomposition

� = �I ∪ �O := (� ∩ P) ∪
(
� ∩ (R2 \ P)

)
.

Consider

�ε(t) = �ε(t1, t2) = sin(εt1)

εt1

sin(εt2)

εt2
.

We define the function f by the formula

f (x) = �ε(x − v)g(x − v), x ∈ R
2, v ∈ R

2.

Clearly, ‖ f ‖∞ ≥ C , and it suffices to show that | f ∗ Gα(λ)| ≤ Cε for every λ ∈ �.
We will estimate the value | f ∗ Gα(λ)| for λ ∈ �I and λ ∈ �O separately.

3. Assume that λ ∈ �O . We may choose R = R(ε) = 1
ε2
. Set U = U1 × U2 =

[−√
R,

√
R]2. For s ∈ U we have

| f (λ − s)| ≤ ‖g‖∞
ε2|λ1 − s1 − v1||λ2 − s2 − v2| ≤ ‖g‖∞

ε2|R − √
R|2 ≤ Cε2‖g‖∞, (18)
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since |λ1 − v1| ≥ R and |λ2 − v2| ≥ R. Next, it is easy to check that

J :=
∫

R

∫

R\U1

Gα(s1, s2) ds1ds2 +
∫

R

∫

R\U2

Gα(s1, s2) ds2ds1 ≤ Cε. (19)

Now, to estimate f ∗ Gα(λ) for λ ∈ �O , we write

| f ∗ Gα(λ)| ≤
∫

U

| f (λ − s)|Gα(s) ds +
∫

R

∫

R\U1

| f (λ − s)|Gα(s) ds

+
∫

R

∫

R\U2

| f (λ − s)|Gα(s) ds.

Applying ‖ f ‖∞ ≤ 1 and estimates (18) and (19), we arrive at

| f ∗ Gα(λ)| ≤ Cε2
∫

U

Gα(s) ds + J ≤ Cε.

4. Now, assume that λ ∈ �I . Take λ′ ∈ �′, satisfying condition (17) corresponding
to λ, i.e. dist (λ − v, λ′) < ε. Since g ∗ Gα(λ′) = 0, we may write

f ∗ Gα(λ) =
∫

R2

f (λ − s)Gα(s)ds + �ε(λ − v)

∫

R2

g(λ′ − s)Gα(s)ds

=
∫

R2

(
�ε(λ − s − v)

(
g(λ − s − v) − g(λ′ − s)

)

+g(λ′ − s) (�ε(λ − v − s) − �ε(λ − v))
)
Gα(s)ds.

Set

H1 := |�ε(λ − s − v) − �ε(λ − v)| ,
H2 := ∣∣g(λ − s − v) − g(λ′ − s)

∣∣ .

Clearly,

| f ∗ Gα(λ)| ≤
∫

R2

(
H1|g(λ′ − s)| + H2 |hε(λ − v)|)Gα(s)ds. (20)
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By Bernstein inequality and relation (17), we have

|H1| ≤ ε(|s1| + |s2|), |H2| ≤ ε‖g′‖∞. (21)

Combining estimates (20) and (21) together, we obtain

| f ∗ Gα(λ)| ≤ Cε

∫

R2

(‖g′‖∞ + |s1| + |s2|)Gα(s1, s2)ds1ds2 ≤ Cε

that finishes the proof.
The following statement easily follows from Theorem 2.

Lemma 7 Assume � and I satisfy the assumptions of Theorem 2 and condition (i) is
fulfilled. Then for every σ > 0 there is a constant C such that

‖ f ‖2∞ ≤ C
∫

I

sup
λ∈�

| f ∗ Gα(λ)|2 dα (22)

for every f ∈ PW 2
σ .

4 Sampling with Gaussian Kernel in Paley–Wiener Spaces

4.1 Auxiliary Statements

Recall that our aim is to describe the geometry of sets� ⊂ R
2 that for every f ∈ PW 2

σ

the estimates

D1‖ f ‖22 ≤
∑

λ∈�

∫

I

| f ∗ Gα(λ)|2 dα ≤ D2‖ f ‖22, (23)

hold with some constants D1 and D2 independent on f .

4.1.1 Bessel-Type Inequality

We start with showing that the right hand-side of (23) follows easily from classical
sampling results for u.d. set �.

Proposition 1 Assume� is a u.d. set, I = (a, b)×(c, d), where 0 < a < b < ∞, 0 <

c < d < ∞. Then there is a constant D2 = D2(I ,�) such that

∑

λ∈�

∫

I

| f ∗ Gα(λ)|2 dα ≤ D2‖ f ‖22,

for every f ∈ PW 2
σ .
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Proof Recall the Bessel inequality for Paley-Wiener spaces: if� is a u.d. subset ofRd

then there is a constant M = M(�, σ) such that

∑

λ∈�

|g(λ)|2 ≤ M‖g‖22 (24)

for every g ∈ PW 2
σ , see [20], Chapter 2, Theorem 17.

Note that convolution with Gaussian KernelGα keeps the function in Paley-Wiener
space. Using Young’s convolution inequality and Bessel inequality, one can find a
constant D2 such that for every f ∈ PW 2

σ the estimate

∑

λ∈�

∫

J

| f ∗ Gα(λ)|2 dα ≤ C |J |‖ f ∗ Gα‖22 ≤ C‖ f ‖22‖Gα‖21 ≤ D2‖ f ‖22

is true. That finishes the proof of proposition. ��

4.1.2 Auxiliary Functions

In what follows we need some auxiliary functions with special properties. These
functions should belong to Paley-Wiener spaces, have a large L2-norm with a small
L2-norm of the gradient. Now, we specify these requirements.

Condition (B): Let ε be a small positive parameter. A family of functions {�ε}
satisfies condition (B) if

(β1) �ε(0, 0) = 1, ‖�ε‖∞ = 1;
(β2) �ε ∈ PW 2

ε ;
(β3) ‖�ε‖2 → ∞ as ε → 0;
(β4) ‖∇�ε‖2 → 0 as ε → 0.

Next, we provide a few examples to illustrate some additional difficulties that occur
in the multi-dimensional setting. Then we present an example of functions �ε that
satisfy condition (B).

Example 4 Let us return to the one-dimensional case. Consider

�ε(x) = sin(εx)

εx
.

Observe that functions�ε satisfy an analogue of condition (B) in the one-dimensional
setting. Clearly,�ε(0) = 1, ‖�ε‖∞ = 1, and�ε ∈ PW 2

ε . One may easily check that

‖�ε‖2 ≤ Cε−1/2 and ‖�′
ε‖2 ≤ Cε1/2.

These relations prove the one-dimensional analogues of (β3) and (β4).

The passage from Bernstein to Paley-Wiener spaces and back in [19] was based on
the properties of the functions in Example 4. One may try to construct functions �ε

that satisfy condition (B) in the two-dimensional setting in the following natural way.
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Example 5 Consider the function �ε defined by the formula

�ε(x, y) = sin(εx)

εx

sin(εy)

εy
.

It is clear that conditions (β1) and (β2) are true. Property (β3) follows from

‖�ε‖2 ≤ Cε−1.

However, one may easily check that ‖∇�ε‖2 does not converge to zero as ε → 0.

However, in two-dimensional setting it is still possible to construct functions that
satisfy condition (B). Now, we pass to the construction.

Lemma 8 Assume ε > 0. There exist functions �ε such that

(P1) supp�ε ⊂ Bε(0), �ε ≥ 0,
(P2) C1 ≤ ∫

R2

�ε(x) dx ≤ C2, 0 < C1 ≤ C2 < ∞,

(P3) ‖�ε‖2 ≥ C
ε3/4

,

(P4)

(
∫

R2

|�ε(x)|2|x |2 dx
)1/2

≤ C√
log 1

ε

.

Proof Fix small 0 < ε < 1 and denote the integer part of log 1
ε
by m. For integers n

from [m, 2m] we set an = 22n/n. Next, we define the function �ε layer by layer by
the formula

�ε(x) = an, x ∈ B2−n (0) \ B2−n−1(0).

For |x | > ε and |x | < ε2

2 we set �ε(x) = 0. Note that the area of the ring B2−n (0) \
B2−n−1(0) is equal to 3π

4 2−2n .
Clearly, �ε satisfy (P1). To verify (P2) we write

∫

R2

�ε(x) dx = 3π

4

2m∑

n=m

2−2nan = C
2m∑

n=m

1

n
.

Note that the right-hand side of this equation can be estimated with some fixed positive
constants from above and below by

2 log 1
ε∫

log 1
ε

1

t
dt = log 2.
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Thus, condition (P2) follows. Next, we have

‖�ε‖22 = 3π

4

2m∑

n=m

2−2na2n ≥ C
2m∑

n=m

22n

n2
≥ C

2 log 1
ε∫

log 1
ε

22t t−2 dt ≥ C

ε2 log2 1
ε

≥ C

ε3/2
,

and (P3) follows. The estimate

∫

R2

|�ε(x)|2|x |2 dx ≤ C
2m∑

n=m

2−4na2n ≤ C
2m∑

n=m

1

n2
≤ C

log 1
ε

implies (P4) that finishes the proof. ��
Corollary 1 There exist functions �ε satisfying condition (B).

Proof Denote by c� = ∫
R2

�ε(x) dx . By (P2), c� is positive, finite, and separated

from zero. Now, we may define �ε as the Fourier transform of �ε with a proper
normalization:

�ε(x) = 1

c�

∫

R2
e−i x ·t�ε(t) dt .

The property (β2) follows from (P1). Due to �ε ≥ 0 and normalization condition
(β1) is fulfilled. Relations (P3) and (P4) imply estimates (β3) and (β4) respectively.

��

4.2 From Bernstein to Paley–Wiener Spaces and Back

To prove Theorem 1, we will use the following statement, which describes the con-
nection between sampling in Paley-Wiener and Bernstein spaces.

Theorem 3 Let � be a u.d. set in R
2, I = (a, b) × (c, d), 0 < a < b < ∞, 0 < c <

d < ∞, and σ ′ > σ > 0.

(i) Assume the inequality

‖ f ‖∞ ≤ K sup
α∈I

sup
λ∈�

‖ f ∗ Gα‖∞ for all f ∈ Bσ ′ (25)

holds with some constant K = K (σ ′,�). Then there exists a constant D1 =
D1(σ,�) such that

D1‖ f ‖22 ≤
∑

λ∈�

∫

I

| f ∗ Gα(λ)|2 dα for every f ∈ PW 2
σ (26)

is true.
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(ii) Assume that (26) holds with some constant D1 = D1(σ
′,�) for all f ∈ PWσ ′ .

Then there is a constant K = K (σ ′,�) such that (25) is true for every f ∈ Bσ .

Remark 2 For a similar result for space sampling see [15].

Remark 3 In this theorem we do not need to require I to be a rectangle. One may
take I = (a, b) ⊂ R with 0 < a < b < ∞. In such a case by Gα(x) we mean
Gα(x1, x2) = e−α(x21+x22 ) and dα is a standard one-dimensional Lebesgue measure.

The proof of Theorem 3 is similar to the proof of Theorem 3 in the paper [19]. We
provide the argument for statement (i) and leave the proof of (i i) to the reader. The
functions �ε that satisfy condition (B) play a crucial role in our argument.

Proof of Theorem 3. Take ε > 0 such that σ + ε < σ ′. By our assumption, for every
q ∈ Bσ the estimate

‖q‖∞ ≤ C sup
α∈I

sup
λ∈�

|q ∗ Gα(λ)|, (27)

is true and our aim is to prove (26). Consider functions �ε satisfying condition (B).
Using (β1), we get

‖ f ‖22 =
∫

R2

| f (x)|2dx ≤
∫

R2

sup
t∈R2

|�ε(x − t) f (t)|2 dx . (28)

Note that q(t) := �ε(x − t) f (t) ∈ Bσ+ε, and we can apply Lemma 7 to obtain

|q(t)|2 ≤ C
∫

I

sup
λ∈�

∣∣∣∣∣∣∣

∫

R2

Gα(λ − s)�ε(x − s) f (s) ds

∣∣∣∣∣∣∣

2

dα, (29)

where the constant C does not depend on t . To provide the estimate from above we
may replace sup

λ∈�

by
∑
λ∈�

, and switch the order of integration and summation:

‖ f ‖22 ≤ C
∑

λ∈�

∫

I

∫

R2

∣∣∣∣∣∣∣

∫

R2

Gα(λ − s)�ε(x − s) f (s) ds

∣∣∣∣∣∣∣

2

dx dα. (30)

Denote by

Y1 =

∣∣∣∣∣∣∣
�ε(x − λ)

∫

R2

Gα(λ − s) f (s) ds

∣∣∣∣∣∣∣

2

, (31)

Y2 =

∣∣∣∣∣∣∣

∫

R2

Gα(λ − s) (�ε(x − λ) − �ε(x − s)) f (s) ds

∣∣∣∣∣∣∣

2

. (32)
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Using the inequality |a + b|2 ≤ C(|a|2 + |b|2), we deduce from (30), (31), and (32)
that

‖ f ‖22 ≤ C
∑

λ∈�

∫

I

∫

R2

(Y1 + Y2) dx dα. (33)

Next, we estimate the terms with Y1 and Y2 separately. The value of
∑
λ∈�

∫

I

∫

R2

Y1 dx dα

is majorized by

∑

λ∈�

∫

I

⎛

⎜⎝
∫

R2

|�ε(x − λ)|2 dx
⎞

⎟⎠ |( f ∗Gα)(λ)|2 dα ≤ ‖�ε‖22
∫

I

∑

λ∈�

|( f ∗Gα)(λ)|2dα.

(34)
The inequalities for the second term are more complicated. Set

H(x; λ, s) = |�ε(x − λ) − �ε(x − s)|.

We start with the observation

H(x; λ, s) ≤
∣∣∣∣∣∣

λ1∫

s1

∂�ε

∂x
(x − u1, y − λ2)du1

∣∣∣∣∣∣
+
∣∣∣∣∣∣

λ2∫

s2

∂�ε

∂ y
(x − s1, y − u2)du2

∣∣∣∣∣∣
.

Using Cauchy-Schwarz inequality, we write

H2(x; λ, s) ≤ C

(
(λ1 − s1)

λ1∫

s1

∣∣∣∣
∂�ε

∂x
(x − u1, y − λ2)

∣∣∣∣
2

du1

+(λ2 − s2)

λ2∫

s2

∣∣∣∣
∂�ε

∂x
(x − s1, y − u2)

∣∣∣∣
2

du2

)
.

Thereby, for λ = (λ1, λ2) and s = (s1, s2) we get

∫

R2

H2(x; λ, s) dx ≤ C |s1 − λ1||s2 − λ2|‖∇�ε‖22,

whence
‖H( · ; λ, s)‖22 ≤ C |s − λ|2‖∇�ε‖22. (35)
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Now, we return to the estimation of the term with Y2 in the formula (33). Applying
Cauchy–Schwarz inequality, we arrive at

∑

λ∈�

∫

R2

Y2 dx =
∑

λ∈�

∫

R2

∣∣∣∣∣∣∣

∫

R2

f (s)Gα(λ − s)H(x; λ, s) ds

∣∣∣∣∣∣∣

2

dx

≤
∑

λ∈�

∫

R2

⎛

⎜⎝
∫

R2

| f (s)|2Gα(λ−s)ds
∫

R2

Gα(λ−s)H2(x; λ, s)ds

⎞

⎟⎠ dx .

With estimate (35) in hand, we continue

∑

λ∈�

∫

R2

Y2 dx ≤
∑

λ∈�

⎛

⎜⎝
∫

R2

| f (s)|2Gα(λ − s)ds
∫

R2

Gα(λ − s)‖H2(·; λ, s)‖2ds
⎞

⎟⎠

≤ C‖∇�ε‖22
∑

λ∈�

⎛

⎜⎝
∫

R2

| f (s)|2Gα(λ−s)ds
∫

R2

Gα(λ−s)|s−λ|2ds
⎞

⎟⎠ .

Clearly, ∫

R2

Gα(λ − s)|s − λ|2ds ≤ C, (36)

and since � is a u.d. set, we have

∑

λ∈�

Gα(λ − s) ≤ C . (37)

Using relations (36) and (37), we finish the estimate of the term with Y2:

∑

λ∈�

∫

I

∫

R2

Y2 dx dα ≤ C |I |‖∇�ε‖22‖ f ‖22. (38)

Combining (33), (34), and (38) together, we get

‖ f ‖22 ≤ C1|I |‖∇�ε‖22‖ f ‖22 + C2‖�ε‖22
∫

I

∑

λ∈�

|( f ∗ Gα)(λ)|2dα. (39)

To finish the proof we invoke properties (β3) and (β4). Indeed, taking sufficiently

small ε > 0 we make the first summand less than
‖ f ‖22
2 , and (26) follows. ��
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4.3 Proof of Theorem 1

Now, we are ready to prove the main result.
(i) ⇒ (ii) Assume that for the set � condition (i) is satisfied. In particular, for any

σ > 0 inequality (26) is true for every f ∈ PW 2
σ with constant D1 depending on σ .

Then, Theorem 3 implies that for every σ > 0 inequality (25) holds true for every
f ∈ Bσ with constant K depending on σ . By Theorem 2, we deduce that � satisfy
condition (A).

(ii) ⇒ (i) Assume that condition (ii) is fulfilled. Recall that Proposition 1 ensures
that the right hand-side estimate in (1) holds with some universal constant. Thus, it
suffices to verify that inequality (26) is true for every σ > 0 and every f ∈ PW 2

σ with
some constant D1 = D1(σ ). By our assumption and Theorem 2, the inequality (25)
is true for every σ > 0 and every f ∈ Bσ with a constant K depending only on σ .
Applying Theorem 3, we see that (26) holds true for every σ > 0 and f ∈ PW 2

σ with
a constant D1 depending only on σ . Thus, condition (i) is true. That finishes the proof.

��

5 Remarks

First, wewould like to note that Theorems 1, 2, and 3 remain true for a wider collection
of kernels that satisfy some additional assumptions similar to conditions (β) − (θ) in
[19].

Second, one may check that our approach provides a complete solution to the Main
Problem for the Bernstein spaces B[−σ,σ ]n for theGaussian kernel inRn with any index

set I =
n∏

i=1
[ai , bi ]. One may therefore formulate an analogue of Theorem 2 in multi-

dimensional setting. However, the passage to Paley-Wiener spaces faces obstacles
similar to those discussed in Example 5, Sect. 4.

Recall the frame inequalities for a continuous frame {ex }x∈X :

D1‖ f ‖p
p ≤
∫

X

|〈 f , ex 〉|pdx ≤ D2‖ f ‖p
p (40)

Inequalities (1) correspond to the case p = 2, X = I × �, and dx is product of n-
dimensional Lebesgue measure on I and counting measure on �. As it was pointed to
me by a reviewer, the inequalities (40) typically hold true for all range ofBanach spaces
(X , ‖ · ‖p), 1 ≤ p < ∞ simultaneously provided the frame {ex } has a sufficiently
good localization, see [1], [8], and [9]. However, in our setting we did not manage to
prove the analogue of Theorem 1 for all p ∈ [1,∞) when the dimension n > 2.

On the other hand, using our approach, one may check that for every n > 2 there
are a number p(n) and functions �ε such that for p ≥ p(n) we have

‖�ε‖p → ∞, ‖∇�ε‖p → 0 as ε → 0.
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Thus, a modification of the proof of Theorem 3 leads to a complete solution of the
Main Problem for PW p

[−σ,σ ]n spaces with p ≥ p(n).
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