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Abstract
We prove that if G is a discrete group and (A, G, α) is a C*-dynamical system such
that the reduced crossed product A �r ,α G possesses property (SOAP) then every
completely compact Herz–Schur (A, G, α)-multiplier can be approximated in the
completely bounded norm by Herz–Schur (A, G, α)-multipliers of finite rank. As a
consequence, if G has the approximation property (AP) then the completely compact
Herz–Schur multipliers of A(G) coincide with the closure of A(G) in the completely
bounded multiplier norm. We study the class of invariant completely compact Herz–
Schur multipliers of A �r ,α G and provide a description of this class in the case of the
irrational rotation algebra.
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1 Introduction

Fourier multipliers are transformations on function spaces associated with abelian
topological groups that act term-wise on the Fourier series of their elements. In the
case of the group Z, such mappings have a natural significance in classical Analysis,
where the approximation of a given function by trigonometric polynomials has been
of paramount importance. When such truncations are realised as Fourier multipliers,
these mappings have finite rank and are hence compact. In subsequent developments,
compactness of Fourier multipliers has been studied from other perspectives as well,
for example, in relation with the compactness of pseudo-differential operators (see
e.g. [8]).

For non-commutative locally compact groups G, where Fourier transform is not
readily available, the natural setting for the study of Fourier multipliers is provided by
the Fourier algebra A(G) of the group G—a commutative Banach algebra consisting
of all coefficients of the left regular representation of G whose Gelfand spectrum
can be canonically identified with G. This study was initiated in [6], with illustrious
subsequent history and some far-reaching applications to approximation techniques in
operator algebra theory, where finite rank multipliers have played a cornerstone role
(see [5]). In [22], Lau showed that the Fourier algebra A(G) has a non-zero weakly
compact left multiplier if and only if G is discrete and that, for discrete amenable
groups, A(G) coincides with the algebra of its weakly compact multipliers. We refer
the reader to [7, 11, 15] for further related results.

In the case of non-abelian groups, the new property of complete boundedness—
brought about by non-commutativity—becomes a natural requirement, and the
associated multipliers of A(G) are known as Herz–Schur multipliers [6]. Herz–Schur
multipliers are related to Schur multipliers—transformations on the algebra of all
bounded operators on L2(G) that extend point-wise multiplication of integral kernels
by a given fixed function—via operator transference, pioneered in the area by Bożejko
and Fendler [3]. We refer the reader to [34, 35] for a survey of these results and ideas.

A natural quantised version of the notion of compactness in the non-commutative
setting—complete compactness—wasfirst introducedbySaar in hisDiplomarbeit [32]
under G. Wittstock’s supervision and further developed in unpublished paper [37] by
Webster. More recently it was also studied in the context of operator multipliers in
[16] and completely almost periodic functionals on completely contractive Banach
algebras in [31]. The notion has been important for the study of various operator space
analogues of theGrothendieck approximation property and, in particular, for questions
revolving around finite rank approximation. The main aim of this paper is to initiate
the study of complete compactness for Herz–Schur multipliers. We work in the higher
generality of dynamical systems. Herz–Schur multipliers of crossed products were
introduced, and their relation with the surrounding class of operator-valued Schur
multipliers investigated, in [25] (see also [1] for discrete dynamical systems). The
completely compact operator-valued Schur multipliers were characterised in [18].
Here we provide a characterisation of completely compact Herz–Schur multipliers of
the reduced crossed product of (unital) C*-algebras A by the action of a discrete group
G, under a mild approximation property.
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The paper is organised as follows. In Sect. 2, we recall some results about operator-
valued Schur multipliers, Herz–Schur multipliers of C*-dynamical systems (A, G, α)

and their interrelation [26] that will be needed in the sequel. In Sect. 3, we associate
with every completely boundedmap�with domain A�α,r G a Herz–Schur multiplier
F�, and identify some properties of the map � → F�. This is the main technical
tool, used in several subsequent results. We focus on actions of discrete groups, since
the dynamical systems of non-discrete groups have no non-trivial compact Herz–
Schur multipliers (see Proposition 3.2). Theorem 3.7 provides a characterisation of
completely compact Herz–Schur (A, G, α)-multipliers in the case where A �α,r G
possesses the strong operator approximation property (SOAP) [9]. As a consequence,
one can choose the maps, approximating the identity, to be in this case Herz–Schur
multipliers of finite rank. As an immediate corollary, we obtain that for groups with
the approximation property (AP) [17], a Herz–Schur multiplier u : G → C defines
a completely compact map Su : C∗

r (G) → C∗
r (G) if and only if u belongs to the

closure Acb(G) of A(G) in the space McbA(G) of Herz-Schur multipliers. Using a
result of Bożejko [2], we prove that the classes of compact and completely compact
Herz–Schur multipliers u : G → C are in general different.

The rest of the paper is devoted to special classes of completely compact (A, G, α)-
multipliers. Namely, in Sect. 4 we examine the subclass of invariant multipliers of a
C*-dynamical system (A, G, α), obtained by lifting completely bounded maps on
the C*-algebra A that satisfy a natural covariance property, and exhibit a canonical
way of constructing completely compact multipliers. We provide a description of the
latter class in the case of the irrational rotation algebra. Finally, in Sect. 5, we con-
sider completely compact multipliers of the dynamical system (c0(G), G, α), where
α is induced by left translations. Such multipliers induce, via the Stone-von Neumann
Theorem, mappings on the space K of all compact operators on �2(G) that are char-
acterised in terms of the Haagerup tensor product K ⊗ K. In the opposite direction,
we show that any compact Schur multiplier on K gives rise to a natural completely
compact (c0(G), G, α)-multiplier.

We finish this introductionwith a general comment about a separability assumption.
Many of our results rely on the development of the theory of Herz–Schur multipliers
of C*-dynamical systems (A, G, α), undertaken in [25]. In [25], the C*-algebra A
of the dynamical system is assumed to be separable. However, if the group G of the
dynamical system is discrete, as pointed out before [26,Theorem 2.1], an inspection
of the proofs from [25] reveals that the separability assumption on A can be lifted.
In the present paper, all C*-dynamical systems (A, G, α) will be assumed to be over
discrete groups and arbitrary C*-algebras A.

2 Schur and Herz–Schur Multipliers

We denote by B(H) the algebra of all bounded linear operators acing on a Hilbert
space H , and by IH (or I when H is clear from the context) the identity operator on
H . For an operator spaceX ⊆ B(H), we let Mn(X ) be the space of all n by n matrices
with entries inX , and identify it with a subspace ofB(Hn) (where Hn is the direct sum
of n copies of H ). If X and Y are operator spaces, acting on Hilbert spaces H and K ,
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respectively, and ϕ : X → Y is a linear map, we let as usual ϕ(n) : Mn(X ) → Mn(Y)

be the map given by ϕ(n)
(
(xi, j )i, j

) = (
ϕ(xi, j )

)
i, j . The map ϕ is called completely

bounded if ‖ϕ‖cb := supn∈N

∥∥ϕ(n)
∥∥ < ∞. We write CB(X ,Y) for the space of all

completely bounded maps from X into Y . We let X ⊗min Y be the minimal tensor
product of X and Y , that is, the closure of the algebraic tensor product X ⊗ Y when
considered as a subspace of B(H ⊗ K ). We will use throughout the paper basic results
from operator space theory, and we refer the reader to the monographs [10, 29] for the
necessary background.

For a locally compact group G, we let λ0 be its left regular representation on L2(G);
thus,

λ0t g(s) = g(t−1s), g ∈ L2(G), s, t ∈ G.

We use the same symbol, λ0, to denote the left regular representation of L1(G) on
L2(G). Let

C∗
r (G) = {λ0( f ) : f ∈ L1(G)} ⊆ B(L2(G))

be the reduced C*-algebra of G, VN(G) := C∗
r (G)

w∗
the von Neumann algebra of G

(herew∗ denotes the weak* topology of B(L2(G))), and A(G) be the Fourier algebra
ofG, that is, the collectionof the functions onG of the form s → (λ0s ξ, η),where ξ, η ∈
L2(G). The algebra A(G) will be equipped with the operator space structure arising
from its identificationwith the predual ofVN(G); its normwill be denoted by ‖·‖A, and
by ‖·‖A(G) in cases where we need to emphasise the group.We also write B(G) (resp.
Br (G)) for the Fourier-Stieltjes (resp. the reduced Fourier-Stieltjes) algebra of G. The
space B(G) (resp. Br (G)) is generated by continuous positive-definite functions on G
(resp. by positive-definite functionsweakly associated to the left regular representation
λ0 ofG), and one has the inclusions A(G) ⊆ Br (G) ⊆ B(G). By [12,Proposition 2.1],
B(G) and Br (G) can be identified with the dual space of the full C*-algebra C∗(G)

and reduced C*-algebra C∗
r (G) of G, respectively. Moreover, when B(G) is equipped

with the norm arising from the identification B(G) = C∗(G)∗, it becomes a Banach
algebra with respect to the pointwise multiplication, and A(G) and Br (G) are closed
ideals of B(G). The norms on A(G) and Br (G) inherited from B(G) coincide with
the norms arising from the identifications A(G)∗ = VN(G) and Br (G) = C∗

r (G)∗.
We refer the reader to the monograph [21] for necessary further background from
Abstract Harmonic Analysis.

A function u : G → C is called a multiplier of A(G) if uv ∈ A(G) for every
v ∈ A(G). We denote by M A(G) the algebra of all multipliers of A(G). An element
u ∈ M A(G) is called a Herz–Schur multiplier of A(G) [6] if the map v → uv on
A(G) is completely bounded (here, and in the sequel, we equip A(G) and B(G) with
the operator space structures, arising from the identifications A(G)∗ = VN(G) and
B(G) = C∗(G)∗). We let McbA(G) be the algebra of all Herz–Schur multipliers of
A(G). We note that u ∈ McbA(G) if and only if the map Su : C∗

r (G) → C∗
r (G),

λ0( f ) 	→ λ0(u f ), f ∈ L1(G), is completely bounded, which is proved using similar
arguments to the ones in [6,Proposition 1.2].
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We henceforth fix a Hilbert space H and a non-degenerate C*-algebra A ⊆ B(H).
Let G be a discrete group and α : G → Aut(A) be a point-norm continuous homo-
morphism; thus, (A, G, α) is a C*-dynamical system. We write {δs : s ∈ G} for the
canonical orthonormal basis of �2(G). We let �1(G, A) be the convolution *-algebra
of all summable functions f : G → A, set H := �2(G) ⊗ H and identify it with
the Hilbert space �2(G, H) of all square summable H -valued functions on G. Let
λ : G → B(H), t → λt , be the unitary representation of G given by

λtξ(s) = ξ(t−1s), s, t ∈ G, ξ ∈ H;

note that λt = λ0t ⊗ I . Let π : A → B(H) be the *-representation given by

π(a)ξ(s) = αs−1(a)(ξ(s)), a ∈ A, ξ ∈ H, s ∈ G.

We note the covariance relation

π(αt (a)) = λtπ(a)λ∗
t , a ∈ A, t ∈ G. (1)

The pair (π, λ) gives rise to a *-representation π̃ : �1(G, A) → B(H), given by

π̃( f ) =
∑

s∈G

π( f (s))λs, f ∈ �1(G, A). (2)

(Note that the series on the right hand side of (2) converges in norm for every f ∈
�1(G, A)). The reduced crossed product A �α,r G is defined by letting

A �α,r G = π̃(�1(G, A)),

where the closure is taken in the operator norm of B(H). Note that, after identifying A
with π(A), we may consider A as a C*-subalgebra of A �α,r G. It is well-known that
if ρ : A → B(K ) is a faithful non-degenerate *-representation and α′ is the canonical
action of G on ρ(A), arising from α, then A �α,r G ∼= ρ(A) �α′,r G canonically (see
e.g. [30,Theorem 7.7.5]).

Identifying H with ⊕s∈G H , we associate to every operator x ∈ B(H) a matrix
(x p,q)p,q , where x p,q ∈ B(H), p, q ∈ G; thus,

〈x p,qξ, η〉 = 〈x(δq ⊗ ξ), δp ⊗ η〉, ξ, η ∈ H , p, q ∈ G.

In particular, if a ∈ A and t ∈ G then

(π(a)λt )p,q =
{

αp−1(a) if pq−1 = t

0 if pq−1 �= t .
(3)

Equation (3) implies that

(π(a)λt )e,qp−1 = δt,pq−1a
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(here δs,r is the Kronecker symbol). By linearity and continuity,

x p,q = αp−1(xe,qp−1), x ∈ A �α,r G. (4)

Let E : B(�2(G)) ⊗min A → A be the (unital completely positive) map given by
E(x) = xe,e; note that E(π(a)) = a, a ∈ A. Equation (3) implies that xe,r = E(xλr ),
x ∈ A �α,r G, r ∈ G. Now (4) can be rewritten as

x p,q = αp−1(E(xλqp−1)), x ∈ A �α,r G, p, q ∈ G. (5)

To every operator x ∈ A �α,r G, one can associate the family (as)s∈G ⊆ A,
where at = E(xλt−1); we call

∑
t∈G π(at )λt the Fourier series of x and write x ∼∑

t∈G π(at )λt (no convergence is assumed). Equation (5) shows that

x ∼
∑

t∈G

π(at )λt �⇒ x p,q = αp−1(apq−1). (6)

Thus, if x ∈ A �α,r G then the diagonal of its matrix coincides with the family
(αr−1(E(x)))r∈G .

We note that

αt (E(x)) = E(λt xλ∗
t ), t ∈ G, x ∈ A �α,r G. (7)

The latter equality follows from (1) in the case where x = π(a)λs and follows by
linearity and continuity for a general x ∈ A �α,r G.

If F : G → CB(A) is a bounded map and f ∈ �1(G, A), let F · f ∈ �1(G, A) be
the function given by

(F · f )(t) = F(t)( f (t)), t ∈ G.

Recall [25,Definition 3.1] that F is called a Herz–Schur (A, G, α)-multiplier if the
map SF , given by

SF (π̃( f )) = π̃(F · f ), f ∈ �1(G, A), (8)

is completely bounded. If F is a Herz–Schur (A, G, α)-multiplier, then SF has a
(unique) extension to a completely bounded map on A �α,r G, which will be denoted
in the same way. We write S(A, G, α) for the space of all Herz–Schur (A, G, α)-
multipliers, and set ‖F‖m = ‖SF‖cb, F ∈ S(A, G, α). Note that, if u ∈ McbA(G)

and ũ : G → CB(A) is the function given by ũ(t) = u(t)idA, then ũ ∈ S(A, G, α)

and its norm inS(A, G, α) coincides with its norm in McbA(G) [25,Remark 3.2 (ii)].
Without risk of confusion, for brevity we will denote by Su the map Sũ .

Let ϕ : G × G → CB(A,B(H)) be a bounded function and Sϕ be the map from
the space of all G × G A-valued matrices into the space of all G × G B(H)-valued
matrices, given by
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Sϕ

(
(x p,q)p,q

) = (
ϕ(q, p)(x p,q)

)
p,q .

The map ϕ is called a Schur A-multiplier if Sϕ is a completely bounded map from
B(�2(G)) ⊗min A into B(H). By the paragraph after [26,Theorem 2.1], this defini-
tion is equivalent, for a discrete group G, to the definition of Schur A-multipliers
in [25,Definition 2.1]. For a Schur A-multiplier ϕ, we write ‖ϕ‖m = ‖Sϕ‖cb.
Schur C-multipliers are referred to as Schur multipliers. For a bounded function
F : G → CB(A), let N (F) : G × G → CB(A) be the function given by

N (F)(s, t)(a) = αt−1(F(ts−1)(αt (a))), s, t ∈ G, a ∈ A.

In the casewhere A = C, wewrite N (u) in the place ofN (u). The following statement
[25,Theorem 3.18] is a crossed product version of a classical result of Bożejko and
Fendler [3] in the case A = C.

Theorem 2.1 The map N is an isometric injection from S(A, α, G) into the algebra
of Schur A-multipliers.

Note that the image N (S(A, α, G)) coincides with the so-called invariant Schur-
A-multipliers, denoted by Sinv(G, G, A) in [25,p. 413].

We remark that in [25] Herz–Schur (A, G, α)-multipliers and Schur A-multipliers
were defined for general locally compact group G and separable C*-algebra A. But
in the case of discrete G the separability condition on A can be removed without
changing the statements from [25] (see the comment before [26,Theorem 2.1]).

The following observation will be frequently used: If G is discrete then
SN (F)|A�α,r G = SF for any F ∈ S(A, α, G). To see this, it suffices to show that

SN (F)(π(a)λs) = π(F(s)(a))λs, a ∈ A, s ∈ G.

Write π(a)λs = (x p,q)p,q for x p,q = δs,pq−1αp−1(a) (see (3)) and

(SN (F)(π(a)λs)p,q = δs,pq−1N (F)(q, p)(αp−1(a))

= δs,pq−1αp−1(F(pq−1)(a))

= δs,pq−1αp−1(F(s)(a)) = (π(F(s)(a))λs)p,q .

3 Characterisation of Complete Compactness

Let X and Z be operator spaces. A completely bounded map � : X → Z is called
completely compact if for very ε > 0 there exists a finite dimensional subspaceY ⊆ Z
such that

dist(�(m)(x), Mm(Y)) < ε, for all x ∈ Mm(X ), ‖x‖ ≤ 1, and all m ∈ N. (9)

We denote by CC(X ,Z) the space of all completely compact linear maps from X to
Z , and write CC(X ) for CC(X ,X ). By F(X ) we denote the subspace of all (linear)
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maps of finite rank on X . Clearly, F(X ) ⊆ CC(X ) and any completely compact map
on X is compact.

A net (�i )i∈I ⊆ CB(X ) is said to converge to � ∈ CB(X ) in the strongly stable
point norm topology [9,p. 197] if

‖(id ⊗ �i )(x) − (id ⊗ �)(x)‖ →i∈I 0, x ∈ B(K ) ⊗min X ,

for any Hilbert space K . An operator space X is said to possess the strong operator
approximation property (SOAP) if the identitymap onX can be approximated by finite
rank maps in the strongly stable point norm topology. The notion was introduced by
Effros and Ruan in [9] as an operator space analogue of the approximation property
for Banach spaces. It admits a characterisation using complete compactness. Namely,
X has the SOAP if for any operator space Z and any completely compact map � ∈
CC(Z,X ), � can be approximated by finite rank maps completely uniformly, i.e. in
the ‖ · ‖cb-norm, see [37,Theorem 5.9] or [36,Proposition 4.4.6]. In particular, if X
has the SOAP then F(X )

cb = CC(X ).

Lemma 3.1 Let X be an operator space, � ∈ CC(X ), � ∈ CB(X ) and (�i )i∈I ⊆
CB(X ) be a net such that �i →i∈I � in the strongly stable point-norm topology.
Then ‖�i ◦ � − � ◦ �‖cb →i∈I 0.

Proof By [37,Proposition 5.6] �i →i∈I � completely uniformly on completely com-
pact sets ofX (see [37,Definitions 5.1 and 5.2] for the terminology). If� is completely
compact then ({�(n)(x) : x ∈ Mn(X ), ‖x‖ ≤ 1})n∈N is a subset of a completely com-
pact set and hence ‖�i ◦ � − � ◦ �‖cb →i∈I 0. ��

The following observation shows that, when studying compact or completely com-
pact multipliers, the interest lies only in discrete groups.

Proposition 3.2 Let G be a non-discrete locally compact group and u : G → C be a
Herz–Schur multiplier. If the map Su : C∗

r (G) → C∗
r (G) is compact then u = 0.

Proof Suppose that Su is compact. Let Br (G) be the reduced Fourier-Stieltjes algebra
of G. Identifying the dual C∗

r (G)∗ of C∗
r (G)with Br (G), we have that the adjoint map

S∗
u : Br (G) → Br (G) is compact (see e.g. [28,Theorem1.4.4]). Note that S∗

u (v) = uv,
v ∈ Br (G). Since A(G) ⊆ Br (G), A(G) is the closed hull of its compactly supported
elements and A(G) ∩ Cc(G) = Br (G) ∩ Cc(G) (see [21,Proposition 2.3.3]), the map
S∗

u leaves A(G) invariant. The restriction of S∗
u to A(G) is thus compact, and by

[22,Proposition 6.9], u = 0. ��
We henceforth assume that the group G is discrete. Recall that A ⊆ B(H) is a

fixed non-degenerate C*-algebra, equipped with an action α : G → Aut(A). It will
be convenient to set

VA,G,α = span {π(a)λs : a ∈ A, s ∈ G} ;

thus, VA,G,α is a (dense) subalgebra of A �α,r G. We will write

Scc(A, G, α) = {F ∈ S(A, G, α) : SF is completely compact} .
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If� : A�α,r G → B(�2(G))⊗min A is a bounded linear map, we let F� : G → B(A)

be the function given by

F�(s)(a) = E(�(π(a)λs)λ
∗
s ). (10)

Proposition 3.3 Let � : A �α,r G → B(�2(G)) ⊗min A be a completely bounded
map.

(i) The map F� is a Herz–Schur (A, G, α)-multiplier and ‖F�‖m ≤ ‖�‖cb;
(ii) If F ∈ S(A, G, α) then FSF = F;
(iii) If � completely compact then F�(s) is completely compact for every s ∈ G;
(iv) If � has finite rank and ran� ⊆ VA,G,α then F�(s) has finite rank for every

s ∈ G and SF� ∈ F(A �α,r G);
(v) If ϕ is a Schur A-multiplier and � is the restriction of Sϕ to A �α,r G then

F�(s) = ϕ(s−1, e), s ∈ G.

Proof (i) By the Haagerup-Paulsen-Wittstock Theorem (see e.g. [29,Theorem 8.4]),
there exist a Hilbert space K , operators V , W : H → K and a *-representation
ρ : A �α,r G → B(K ) such that

�(x) = W ∗ρ(x)V , x ∈ A �α,r G. (11)

Using (7), we have

N (F�) (s, t)(a) = αt−1

(
F�(ts−1)(αt (a))

)

= αt−1
(E(�(π(αt (a))λts−1)λ∗

ts−1)
)

= αt−1
(E(�(λtπ(a)λt−1λts−1)λ∗

ts−1)
)

= E (
λt−1�((λtπ(a)λs−1)λsλt−1)λt

)

= E (
λt−1�(λtπ(a)λs−1)λs

)

= E (
λ∗

t W ∗ρ(λt )ρ(π(a))ρ(λs)
∗V λs

)
. (12)

Note that, if E p,q denotes the matrix unit in B(�2(G, H)) with I at the (p, q)-entry,
p, q ∈ G, and zero elsewhere, then E(x) = Ee,ex Ee,e, x ∈ A �r ,α G. Let Ṽ (s) =
ρ(λs)

∗V λs Ee,e and W̃ (t) = ρ(λt )
∗Wλt Ee,e, s, t ∈ G; thus, Ṽ , W̃ : G → B(H , K ),

and

sup
s∈G

‖Ṽ (s)‖ sup
t∈G

‖W̃ (t)‖ ≤ ‖V ‖‖W‖. (13)

By (12),

N (F�)(s, t)(a) = W̃ (t)∗(ρ ◦ π)(a)Ṽ (s), a ∈ A, s, t ∈ G. (14)
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By [25,Theorems 2.6 and 3.8], F� is a Herz–Schur (A, G, α)-multiplier. Equations
(13), (14) and Theorem 2.1 show that

‖F�‖m = ‖SN (F�)‖cb ≤ ‖V ‖‖W‖.

Taking the infimum over all possible choices of V and W in the representation (11)
of �, we obtain that ‖F�‖m ≤ ‖�‖cb.

(ii) Let F ∈ S(A, G, α). The fact that FSF = F follows from the definition (8) of
SF and the definition (10) of F�.

(iii) follows from the definition (10) of F� and the fact that E is completely bounded.
(iv) Since � has finite rank, there exists a finite subset E ⊆ G and a finite dimen-

sional subspace U ⊆ A, s ∈ E , such that

ran� ⊆ span{π(a)λs : s ∈ E, a ∈ U}.

A direct verification shows that

ranF�(s) ⊆
{U if s ∈ E ,

{0} if s /∈ E .

Clearly, ranSF� ⊆ span{π(a)λs : s ∈ E, a ∈ U}.
(v) According to (3),

(
�(π(a)λs)λs−1

)
p,q = (Sϕ(π(a)λs)p,s−1q =

{
ϕ(s−1q, p)(αp−1(a)) if p = q

0 if p �= q.

Thus,

F�(s)(a) = (
�(π(a)λs)λs−1

)
e,e = ϕ(s−1, e)(a), a ∈ A. ��

Proposition 3.3 (ii) and (iii) give the following immediate corollary.

Corollary 3.4 If F ∈ Scc(A, G, α) then F(s) is completely compact for every s ∈ G;

We will call a (possibly vector-valued) function ϕ defined on G × G band finite if
there exists a finite set E ⊆ G such thatϕ(s, t) = 0 if ts−1 /∈ E . Let V : �2(G)⊗H →
�2(G) ⊗ �2(G) ⊗ H be the isometry given by

V (δs ⊗ ξ) = δs ⊗ δs ⊗ ξ, s ∈ G, ξ ∈ H ,

and τ : A �r ,α G → C∗
r (G) ⊗min (A �r ,α G) be the dual co-action to α, that is, the

*-homomorphism, given by

τ (π(a)λt ) = λ0t ⊗ π(a)λt , a ∈ A, t ∈ G,

(see e.g. [20]).
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Lemma 3.5 The following hold:

(i) V ∗τ(x)V = x, x ∈ A �r ,α G;
(ii) If � ∈ CB(A �r ,α G) then

SF�(x) = V ∗(id ⊗ �)(τ(x))V , x ∈ A �r ,α G. (15)

Proof (i) If a ∈ A, s, r , t ∈ G and ξ, η ∈ H then

〈
V ∗τ(π(a)λt )V (δs ⊗ ξ), δr ⊗ η

〉

= 〈(λt ⊗ π(a)λt )(δs ⊗ δs ⊗ ξ), δr ⊗ δr ⊗ η〉
= 〈δts ⊗ π(a)λt (δs ⊗ ξ), δr ⊗ δr ⊗ η〉 = 〈π(a)λt (δs ⊗ ξ), δr ⊗ η〉 ,

by (3).
(ii) Let a ∈ A, s, r , t ∈ G and ξ, η ∈ H . Using (3) and (5), we have

〈V ∗(id ⊗ �)(τ(π(a)λt ))V (δs ⊗ ξ), δr ⊗ η〉
= 〈(id ⊗ �)(λ0t ⊗ π(a)λt )(δs ⊗ δs ⊗ ξ), δr ⊗ δr ⊗ η〉
= 〈

(
λ0t ⊗ �(π(a)λt )

)
(δs ⊗ δs ⊗ ξ), δr ⊗ δr ⊗ η〉

= 〈δts ⊗ �(π(a)λt )(δs ⊗ ξ), δr ⊗ δr ⊗ η〉
=

{
0 if ts �= r ,
〈�(π(a)λt )(δs ⊗ ξ), δr ⊗ η〉 if ts = r .

=
{
0 if ts �= r ,〈
α(ts)−1

(E(�(π(a)λt )λ
∗
t )

)
ξ, η

〉
if ts = r .

= 〈
π

(E(�(π(a)λt )λ
∗
t )

)
(δts ⊗ ξ), δr ⊗ η

〉

= 〈
SF� (π(a)λt ) (δs ⊗ ξ), δr ⊗ η

〉
.

��
Lemma 3.6 Let G be a discrete group and (A, G, α) be a C*-dynamical system such
that A �r ,α G has the SOAP. Then there exists a net (Fi )i∈I of finitely supported
Herz–Schur (A, G, α)-multipliers with Fi (s) ∈ F(A), i ∈ I, s ∈ G, such that (SFi )i∈I

converges to the identity map on A �r ,α G in the strongly stable point norm topology.

Proof Write A = A �r ,α G and let (�i )i∈I ⊆ F(A) be a net such that

‖(id ⊗ �i )(x) − x‖ →i∈I 0, x ∈ B(�2) ⊗min A.

Following the proof of [24,Theorem 4.3], given ε > 0, for each i ∈ I there exists a
finite rank map �i,ε ∈ CB(A) whose range lies in VA,G,α , such that

‖�i − �i,ε‖cb < ε, i ∈ I.
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Hence

‖(id ⊗ �i,ε)(x) − x‖ →(i,ε) 0, x ∈ B(H) ⊗min A,

along the product directed set.
The function Fi,ε := F�i,ε is finitely supported. By Proposition 3.3 (i) and (iv), Fi,ε

is a Herz–Schur multiplier and Fi,ε(s) ∈ F(A), s ∈ G, i ∈ I. If y ∈ B(H) ⊗min A,
using Lemma 3.5 we have

‖id ⊗ SFi,ε (y) − y‖ = ‖(id ⊗ V ∗)(id ⊗ id ⊗ �i,ε(id ⊗ τ(y))(id ⊗ V )

−(id ⊗ V ∗)(id ⊗ τ(y)(id ⊗ V )‖
≤ ‖(id ⊗ id ⊗ �i,ε)((id ⊗ τ)(y)) − (id ⊗ τ)(y)‖ →(i,ε) 0,

that is, SFi,ε converges to the identity map in the strongly stable point norm topology.
��

Theorem 3.7 Let F be a Herz–Schur multiplier of (A, G, α). Assume that A �r ,α G
possesses the SOAP. The following are equivalent:

(i) the map SF is completely compact;
(ii) there exist a net (Fi )i∈I ⊆ S(A, G, α) and a finite dimensional subspaceUi ⊆ A,

such that Fi is finitely supported, ranFi (s) ⊆ Ui for each i ∈ I and each s ∈ G,
and ‖Fi − F‖m →i∈I 0;

(iii) there exists a net (ϕi )i∈I of band finite Schur A-multipliers and a finite dimen-
sional subspace Ui ⊆ A, i ∈ I, such that ranαs ◦ ϕi (s, e) ⊆ Ui for all i ∈ I and
all s ∈ G, and ‖SN (F) − Sϕi ‖cb →i∈I 0.

Proof (i)⇒(ii) Let (F̃i )i∈I be a net as in Lemma 3.6 and Fi = F̃i ◦ F , i ∈ I. By Lemma
3.1, (Fi )i∈I satisfies the conditions of (ii).

(ii)⇒(iii) Set ϕi = N (Fi ); by Theorem 2.1, ϕi is a Schur A-multiplier, i ∈ I. Since
Fi is finitely supported, ϕi is band finite. Moreover,

ϕi (s, t)(a) = αt−1(Fi (ts
−1)(αt (a))), a ∈ A,

and hence

ranαs ◦ ϕi (s, e) ⊆ ranFi (s
−1) ⊆ Ui , s ∈ G.

(iii)⇒(i) Let�i be the restriction of the map Sϕi to A �r ,α G, i ∈ I. By Proposition
3.3 (i) and (ii), ‖F − F�i ‖m →i∈I 0. Since ϕi is band finite, Fi := F�i is supported
on a finite set, say Ei ⊆ G. By Proposition 3.3 (v),

ranFi (s) ⊆ ranϕi (s
−1, e) ⊆ αs(Ui ), s ∈ G.

Let Vi = span
(∪s∈Ei αs(Ui )

)
; then Vi is finite dimensional and

ranSFi ⊆ span{π(a)λs : a ∈ Vi , s ∈ Ei }.
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Thus, SFi has finite rank, i ∈ I. Since the set CC(A�r ,α G) is closed in the completely
bounded norm, SF ∈ Scc(A �r ,α G). ��
Corollary 3.8 If A �r ,α G possesses the SOAP then every completely compact Herz–
Schur (A, G, α)-multiplier is a limit of (A, G, α)-multipliers of finite rank.

Remark By [37,Theorem 5.9], any completely compact map on a C∗-algebra with
SOAP is a limit of finite rank maps. Corollary 3.8 is a refinement of this statement.

Let Acb(G) be the closure of A(G) within McbA(G) with respect to ‖ · ‖m. The
algebra was first introduced and studied in [13]. It is a regular commutative Taube-
rian Banach algebra whose Gelfand space can be canonically identified with G (see
[14,Proposition 2.2]).

It is known that McbA(G) is a dual Banach space [6,Proposition 1.10]. Recall that
G has the approximation property (AP) [17] if there exists a net (ui )i∈I of finitely
supported Herz–Schur multipliers such that ui →i∈I 1 in the weak* topology of
McbA(G). By [17,Theorem 1.9] (see also [5,Theorem 12.4.9], G has (AP) if and only
if C∗

r (G) has SOAP. We note that, by [33,Theorem 3.6], A �r ,α G has the SOAP if A
has the SOAP and G has the AP. The SOAP for A �r ,α G was also recently studied
in [27].

Theorem 3.7 has the following immediate consequence.

Corollary 3.9 Let G be a discrete group possessing property (AP) and u : G → C be
a Herz–Schur multiplier. The following are equivalent:

(i) the map Su : C∗
r (G) → C∗

r (G) is completely compact;
(ii) there exists a net (ui )i∈I of finitely supported elements of A(G) such that ‖Su −

Sui ‖cb →i∈I 0;
(iii) there exists a net (ϕi )i∈N of band finite Schur multipliers such that ‖SN (u) −

Sϕi ‖ →i∈I 0;
(iv) u ∈ Acb(G).

Proof The equivalences (i)⇔(ii)⇔(iii) follow from Theorem 3.7. The equivalence
(ii)⇔(iv) follows from the facts that the finitely supported functions in A(G) form a
dense set in A(G) and ‖Su‖cb = ‖u‖m. ��
Remark 3.10 Let G be a discrete group possessing (AP) and u ∈ M A(G). The map

Su is compact if and only if u ∈ AM (G) := A(G)
‖·‖M A(G) .

Proof By [17,Theorem 1.9], there exists a net (ui )i∈I consisting of finitely supported
functions such that Sui (x) →i∈I x , x ∈ C∗

r (G). If Su is compact then Sui Su →i∈I Su

in norm; thus, ‖u − uui‖M A(G) →i∈I 0.
Conversely, suppose that u ∈ AM (G). Since ‖ · ‖M A(G) ≤ ‖ · ‖A(G), there exists

a net (ui )i∈I of finitely supported functions such that ‖ui − u‖M A(G) →i∈I 0. Thus,
‖Sui − Su‖ →i∈I 0; since Sui has finite rank, i ∈ I, we have that Su is compact. ��

If the group G is amenable then B(G) = McbA(G) = M A(G) and the norms on
these three spaces coincide, ( [6,Corollary 1.8 (ii)]). It was shown in [22,Proposition
6.10] that, in this case, the map Su is compact precisely when u ∈ A(G). By Corollary
3.9, automatic complete compactness holds:
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Corollary 3.11 Let u : G → C be a Herz–Schur multiplier. If G is a discrete amenable
group then the following are equivalent:

(i) the map Su is completely compact;
(ii) u ∈ A(G).

Proposition 3.12 Let G be a discrete group containing the free group F∞ on infinitely
many generators. If G has the (AP), then there exists a multiplier u ∈ M A(G), for
which the map Su is compact but not completely compact.

Proof Write H = F∞, considering it as a subgroupofG.Wenotefirst that ifϕ ∈ A(H)

and ϕ̃ is the extension by zero of ϕ to G, then ‖ϕ‖A(H) = ‖ϕ̃‖A(G). In fact, we
have ϕ(s) = (λH (s)ξ, η) for some ξ, η ∈ �2(H) such that ‖ϕ‖A(H) = ‖ξ‖2‖η‖2.
Considering �2(H) as a subspace of �2(G) and letting ξ̃ and η̃ be the extensions
by zero to �2(G) of ξ and η, respectively, we have that ϕ̃(s) = (λG(s)ξ̃ , η̃) and
hence ‖ϕ‖A(G) ≤ ‖ξ̃‖2‖η̃‖2 = ‖ϕ‖A(H). As the restriction map r : A(G) → A(H),
u 	→ u|H , is contractive [12,Proposition 3.21], we have also ‖ϕ‖A(H) ≤ ‖ϕ̃‖A(G),
giving ‖ϕ‖A(H) = ‖ϕ̃‖A(G).

In the proof of [2,Theorem 2], Bożejko constructed functions ϕn ∈ A(H) with
finite supports En ⊆ H ⊆ G such that ‖ϕn‖M A(H) = 1 but ‖ϕn‖Mcb A(H) ≥ C

√
n,

for some constant C > 0. Given u ∈ A(G), we now have

‖ϕnu‖A(G) = ‖ϕnu|H ‖A(H) ≤ ‖u|H ‖A(H) ≤ ‖u‖A(G);

for the last inequality we use the contractability of r . Thus, ‖ϕn‖M A(G) ≤ 1. Let ϕ̃n

be the extension by zero of ϕn to a function on G, n ∈ N, and ψn = N (ϕ̃n). By [3],
ψn is a Schur multiplier, n ∈ N, and

‖ϕn‖Mcb A(G) = ‖Sψn ‖cb ≥ ‖SψnχH⊗H ‖cb = ‖ϕn‖Mcb A(H) ≥ C
√

n.

This shows that the norms ‖ · ‖M A(G) and ‖ · ‖Mcb A(G) are not equivalent on A(G). As
the completely bounded norm dominates the multiplier norm, by applying the open
mapping theorem one obtains that Acb(G) �= AM (G). By Corollary 3.9 and Remark
3.10, there exists a compact multiplier which is not completely compact. ��

We remark that, for the free group F2 on two generators, the inequality Acb(F2) �=
AM (F2) was proved in [4,Proposition 4.2].

4 Subclasses of Completely Compact Herz–Schur Multipliers

In this section,we exhibit some canonicalways to construct completely compactHerz–
Schur multipliers of dynamical systems, and describe them explicitly in an important
special case. We assume throughout the section that (A, G, α) is a C*-dynamical
system, where G is a discrete group. A linear map T : A → A will be called α-
invariant if

αt ◦ T = T ◦ αt , t ∈ G. (16)
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Note that, if T ∈ CB(A) is α-invariant then

(T ⊗ idB(�2(G)))(π(a)) = π(T (a)), a ∈ A.

It follows that the map T ⊗ idB(�2(G)) ∈ CB(B(H)) leaves A �α,r G invariant, and

hence its restriction to A �α,r G, which will be denoted by T̃ , is well-defined. We
have that

T̃ (π(a)λt ) = π(T (a))λt , a ∈ A, t ∈ G. (17)

Thus, letting FT : G → CB(A) be the function given by FT (s) = T , s ∈ G, we
have that T̃ = SFT , and that FT (s) is α-invariant for every s ∈ G. This leads us to
introducing the following classes of Herz–Schur multipliers:

Sinv(A, G, α) = {F ∈ S(A, G, α) : F(s) is α−invariant f oreverys ∈ G} ,

and

Sinv
cc (A, G, α) = Sinv(A, G, α) ∩ Scc(A, G, α).

We remark that Sinv(A, G, α) should not be confused with Sinv(G, G, A) which
appears in [25] and denotes the so-called invariant Schur-A-multipliers (see the remark
after Theorem 2.1); while invariance is a property of the map ϕ : G × G → CB(A),
α-invariance is a property of the maps F(s), s ∈ G.

We will denote by Z(A) the centre of A, and by Z(A)+ the cone of its positive
elements. Recall that the action of a discrete group G on A is amenable [5,Definition
4.3.1] if there exists a net (ξi )i∈I of finitely supported functions ξi : G → Z(A)+,
such that

∑
i∈I

ξi (t)2 = 1A and

∥∥∥
∥∥

∑

s∈G

(
ξi (s) − αt (ξi (t

−1s))
)2

∥∥∥
∥∥

→i∈I 0

for every t ∈ G.

Theorem 4.1 Let α be an amenable action of a discrete group G on a unital C*-
algebra A. Let u ∈ McbA(G), T ∈ CB(A) be α-invariant and FT ,u : G → CB(A)

be given by FT ,u(t)(a) = u(t)T (a), a ∈ A, t ∈ G. The following hold:

(i) FT ,u ∈ Sinv(A, G, α);
(ii) FT ,u ∈ Sinv

cc (A, G, α) if u ∈ Acb(G) and T ∈ CC(A);

(iii) FT ,u ∈ F(A �α,r G) ∩ S(A, G, α)
cb

if u ∈ Acb(G) and T ∈ F(A)
cb

.

Proof (i) Let ũ : G → CB(A) be given by ũ(t) = u(t)idA. The map Sũ is the
restriction to A �α,r G of the map idB(H) ⊗ Su ∈ CB(B(H) ⊗min C∗

r (G)) and hence
ũ ∈ S(A, G, α). Since T̃ = SFT and FT ∈ Sinv(A, G, α), we conclude that

FT ,u = T̃ ◦ Sũ ∈ Sinv(A, G, α).
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(ii) Since the space of finitely supported functions in A(G) is dense in A(G) [12]
and ‖·‖m ≤ ‖·‖A, given ε > 0, there exists v ∈ A(G) supported in a finite set E ⊆ G
such that ‖u − v‖m < ε/‖T ‖cb. Let F ⊆ A be a finite dimensional space such that
dist(T (n)(a), Mn(F)) < ε/|E | for every a ∈ Mn(A), ‖a‖ ≤ 1, and every n ∈ N.

Set

Y =
{

∑

s∈E

π(as)λs : as ∈ F
}

and Z =
{

∑

s∈E

π(as)λs : as ∈ A

}

;

we have that Y is a finite-dimensional subspace of Z . Let x = [xk,l ] ∈ Mn(Z),
‖x‖ ≤ 1, and write Ls = diag(λs, . . . , λs) ∈ Mn(Z). Then

[xk,l ] =
∑

s∈E

(π ◦ E)(n)
([xk,l ]Ls−1

)
Ls;

as E is completely contractive,
∥∥E (n)

([xk,l ]Ls−1
)∥∥ ≤ 1. For each s ∈ E , choose

ys = [ys
k,l ] ∈ Mn(F) such that

∥∥∥T (n)
(
E (n)

([xk,l ]Ls−1
)) − ys

∥∥∥ < ε/|E | (18)

and set y = ∑
s∈E π(n)(ys)Ls ∈ Mn(Y). By (18),

∥
∥∥T̃ (n)

([xk,l ]
) − y

∥
∥∥ =

∥∥
∥∥∥

∑

s∈E

[
T

(E (
xk,lλs−1

))
λs − ys

k,lλs
]
∥∥
∥∥∥

≤ ε.

Thus, T̃ |Z is completely compact. Since the image of Sv is inZ we obtain that T̃ ◦ Sv

is completely compact. The statement now follows from the inequalities

‖T̃ ◦ Sv − T̃ ◦ Su‖cb ≤ ‖T̃ ‖cb‖Sv − Su‖cb = ‖T̃ ‖cb‖u − v‖m ≤ ε

and the fact that the space of completely compact maps is closed with respect to the
completely bounded norm.

(iii) Let (Tk)k∈N ⊆ F(A) be a sequence such that ‖Tk − T ‖cb →k→∞ 0. We follow
the idea in the proof of [26,Corollary 4.6]. Let (ξi )i∈I be a net as in definition of
amenable action and the maps Fi,k(s) : A → A, s ∈ G, i ∈ I, k ∈ N, be given by

Fi,k(s)(a) =
∑

q∈G

ξi (q)αq(Tk(α
−1
q (a))αs(ξi (s

−1q)), a ∈ A. (19)
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Note that if Ei ⊆ G is a finite set with suppξi ⊆ Ei then the sum on the right hand
side of (19) is over the (finite) set Ei ∩ s Ei , for every k ∈ N. We have

N (Fi,k)(s, t)(a) = αt−1

⎛

⎝
∑

q∈G

ξi (q)αq(Tk(α
−1
q (αt (a)))αts−1(ξi (st−1q))

⎞

⎠

=
∑

q∈G

αt−1(ξi (q))αt−1q(Tk(αq−1t (a)))αs−1(ξi (st−1q))

=
∑

p∈G

αt−1(ξi (tp))αp(Tk(αp−1(a)))αs−1(ξi (sp)).

Since Tk : A → A is a completely bounded map, by Haagerup-Paulsen-Wittstock
Theorem, there exist a Hilbert space Hp,k , a *-representation πp,k : A → B(Hp,k)

and bounded operators Vp,k , Wp,k : H → Hp,k , such that

αp(Tk(α
−1
p (a))) = W ∗

p,kπp,k(a)Vp,k, a ∈ A,

and ‖Tk‖cb = ‖αp ◦ Tk ◦ α−1
p ‖cb = ‖Vp,k‖‖Wp,k‖. Renormalising we may assume

that ‖Vp,k‖ = ‖Wp,k‖ = ‖Tk‖1/2cb for all p.
Set ρk := ⊕p∈Gπp,k and let Vi,k(s) : H → ⊕p∈G Hp,k and Wi,k(t) : H →

⊕p∈G Hp,k be the column operators given by

Vi,k(s) = (Vp,kα
−1
s (ξi (sp)))p∈G and Wi,k(t) = (Wp,kα

−1
t (ξi (tp)))p∈G .

Then

N (Fi,k)(s, t)(a) = W∗
i,k(t)ρk(a)Vi,k(s)

and

‖Wi,k(t)‖‖Vi,k(s)‖ =
∥∥∥∥∥
∥

∑

p∈G

αt−1(ξi (tp))W ∗
p,k Wp,kαt−1(ξi (tp))

∥∥∥∥∥
∥

1/2

×
∥∥∥∥∥
∥

∑

p∈G

αs−1(ξi (sp))V ∗
p,k Vp,kαs−1(ξi (sp))

∥∥∥∥∥
∥

1/2

≤ ‖Tk‖cb
∥∥∥∥∥∥

∑

p∈G

αs−1(ξi (sp))2

∥∥∥∥∥∥

= ‖Tk‖cb
∥
∥∥∥∥∥

∑

p∈G

ξi (p)2

∥
∥∥∥∥∥

= ‖Tk‖cb.
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Hence, by [25,Theorem 2.6], N (Fi,k) is a Schur A-multiplier, for all i ∈ I and all
k ∈ N. By Theorem 2.1, Fi,k is a Herz–Schur (A, G, α)-multiplier; moreover, as the
sequence (‖Tk‖cb)k∈N is bounded, there exists C > 0 such that ‖SFi,k ‖cb ≤ C , i ∈ I,
k ∈ N.

Next we prove that ‖Fi,k(s) − T ‖cb → 0 for each s ∈ G. As T is α-invariant, if
a = [ar ,l ] ∈ Mn(A) then

‖Fi,k(s)
(n)(a) − T (n)(a)‖

=
∥∥∥∥
∥∥

∑

p∈G

[ξi (p)αs(ξi (s
−1 p))αp(Tk(α

−1
p (ar ,l))) − αp(T (α−1

p (ar ,l)))]
∥∥∥∥
∥∥

≤
∑

p∈G

∥∥∥ξi (p)αs(ξi (s
−1 p))

∥∥∥
∥∥∥[αp(Tk(α

−1
p (ar ,l)) − αp(T (α−1

p (ar ,l)))]
∥∥∥

+
∥∥∥∥∥
∥

∑

p∈G

ξi (p)αs(ξi (s
−1 p)) − 1

∥∥∥∥∥
∥

∥∥∥T (n)(a)

∥∥∥

≤
∥∥∥∥∥∥

∑

p∈G

ξi (p)2

∥∥∥∥∥∥
‖Tk − T ‖cb ‖a‖ +

∥∥∥∥∥∥

∑

p∈G

ξi (p)αs(ξi (s
−1 p)) − 1

∥∥∥∥∥∥
‖T ‖cb‖a‖,

where in the last line we used the Cauchy-Schwarz inequality and the fact ξi (p) ∈
Z(A)+, p ∈ G. By [5,Lemma 4.3.2], ‖∑

p ξi (p)αs(ξi (s−1 p))−1‖ →i∈I 0; the facts

that ‖Tk − T ‖cb →k→∞ 0 and
∑

p∈G ξi (p)2 = 1 now imply that

‖Fi,k(s) − T ‖cb →(i,k)∈I×N 0, s ∈ G. (20)

Since Tk ∈ F(A) and the maps Fi,k are finitely supported, the map SFi,k on A �α,G G
has finite rank. In order to prove the statement, it hence suffices to show that

‖SFi,k ◦ Su − SFT ,u ‖cb →(i,k)∈I×N 0. (21)

Let ε > 0. Since u ∈ Acb(G), there exists v ∈ A(G) with finite support E such
that

‖Su − Sv‖cb ≤ ‖u − v‖A ≤ ε.

Set Z = {∑
s∈E π(as)λs : as ∈ A

}
and let x = [xr ,l ] ∈ Mn(Z). As in the proof

of (ii), write Ls for diag(λs, . . . , λs) ∈ Mn(Z). Then x = ∑
s∈E (π ◦ E)(n)(x Ls−1)Ls

and
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‖S(n)
Fi,k

(x) − S(n)
T (x)‖ = ‖

∑

s∈E

[π((Fi,k(s) − T )(E(xr ,lλs−1)))λs]‖

≤
∑

s∈E

‖[(Fi,k(s) − T )(E(xr ,lλs−1)]‖ ≤
∑

s∈E

‖(Fi,k(s) − T )(n)‖‖[E(xr ,lλs−1)]‖

≤
∑

s∈E

‖(Fi,k(s) − T )(n)‖‖x‖ ≤ |E |‖x‖(maxs∈E‖Fi,k(s)
(n) − T (n)‖).

By (20),

‖(SFi,k − ST )|Z‖cb →(i,k)∈I×N 0.

We now have

‖SFi,k ◦ Su − SFT ,u ‖cb
≤ ‖SFi,k ◦ (Su − Sv)‖cb + ‖SFi,k ◦ Sv − ST ◦ Sv‖cb + ‖ST ◦ (Sv − Su)‖cb
≤ ‖(SFi,k − ST )|Z‖cb‖v‖ + ε(‖SFi,k ‖cb + ‖ST ‖cb),

which implies (21). ��

Theorem4.1 exhibits a large class of elements ofSinv
cc (A, G, α). In the next theorem,

we provide a precise description of the latter class ofHerz–Schurmultipliers in the case
of the irrational rotation algebra. Let θ ∈ R be irratrional and α : Z → Aut(C(T)) be
given by

αn( f )(z) = f (e2π inθ z), f ∈ C(T), z ∈ T.

Let M(T)denote theBanach algebra of all complexBorelmeasures on the unit circleT,
and note that L1(T) is a (closed) ideal of M(T). Forμ ∈ M(T), let Tμ : C(T) → C(T)

be the completely bounded map given by Tμ( f ) = μ∗ f . Note that Tμ is α-invariant;
indeed,

αn(μ ∗ f )(z) = (μ ∗ f )(e2π inθ z) =
∫

f (e2π inθw−1z)dμ(w)

=
∫

αn( f )(w−1z)dμ(w) = μ ∗ αn( f )(z).

Theorem 4.2 The functions FT f ,u, where f ∈ L1(T) and u ∈ A(Z), have a dense
linear span in Sinv

cc (A, G, α).

Proof Let F be a completely compact Herz–Schur (C(T), Z, α)-multiplier such that
F(n) ◦ αm = αm ◦ F(n) for all m, n ∈ Z. We show that F(n) = T fn for some
fn ∈ L1(T). In fact, let�n : M(T) → M(T) be the dual map of F(n). As αn( f )(z) =
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f (e2π inθ z) = (δe−2π inθ ∗ f )(z), where δs is the point massmeasure at s ∈ T, we obtain

〈
�n(δe2π imθ ∗ μ), f

〉 = 〈
δe2π imθ ∗ μ, F(n)( f )

〉 = 〈μ, α−m(F(n)( f ))〉
= 〈μ, F(n)(α−m( f ))〉 = 〈

δe2π imθ ∗ �n(μ), f
〉
,

giving

�n(δe2π imθ ∗ μ) = δe2π imθ ∗ �n(μ), m, n ∈ Z, μ ∈ M(T).

In particular, �n(δe2π imθ ) = δe2π imθ ∗ �n(δ1). Using the weak* continuity of �n , the
density of {e2π imθ : m ∈ Z} in T and the fact that every measure μ is a weak* limit
of linear combinations of point mass measures, we obtain

�n(μ) = μ ∗ �n(δ1), μ ∈ M(T).

It now follows that, if μn = �n(δ1) then F(n)( f ) = μn ∗ f , f ∈ C(T) � C∗
r (Z).

By Corollary 3.4, F(n) is completely compact for every n ∈ Z; by Corollary 3.11,
μn ∈ L1(T).

Fix F ∈ Sinv
cc (A, G, α); then F(n) is α-invariant for every n ∈ Z. We show that

SF ∈ [Su ◦ SF(n) : u ∈ A(Z), n ∈ Z]‖·‖cb . By the amenability of Z, there exists a
bounded sequence (ui )i∈N ⊆ A(Z) of finitely supported functions such that Sui → id
in the strong point norm topology (see [17,Theorem 1.12, Theorem 1.9]). Since ui is
finitely supported,

Sui ◦ SF ∈ span{Su ◦ SF(n) : u ∈ A(Z), n ∈ Z}.

Since SF is completely compact, Lemma 3.1 implies ‖Sui ◦ SF − SF‖cb →i→∞ 0. ��

5 Herz–Schur Multipliers ofK
Let G be a discrete group and α : G → Aut(c0(G)) be the homomorphism given by
αt ( f )(s) = f (t−1s), s ∈ G, f ∈ c0(G). For a ∈ c0(G), we write Ma for the operator
on �2(G) given by (Maξ)(s) = a(s)ξ(s), ξ ∈ �2(G), s ∈ G, and let

C = {Ma : a ∈ c0(G)};

the map ι : c0(G) → C given by ι(a) = Ma is a *-isomorphism. By abuse of notation,
wewriteαt for the corresponding automorphism of C. Recall that, for t ∈ G, we denote
by λ0t the left regular unitary acting on �2(G). The pair (ι, λ0) of representations is
covariant, and hence gives rise to a (faithful) representation ι � λ0 : C �α,r G →
B(�2(G)). According to the Stone-von Neumann Theorem [38,Theorem 4.24], the
image of ι � λ0 coincides with the C*-algebra K of all compact operators on �2(G).
Thus, the Herz–Schur (C, G, α)-multipliers give rise, in a canonical way, to a certain
class of completely bounded maps on K. The aim of this section is to formalise this
correspondence and examine the complete compactness of the resulting maps on K.
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Set B = (π � λ)(C �α,r G); thus B is a C*-subalgebra of B(�2(G × G)). By
[38,Theorem 4.24], the map

θ : π(a)λt −→ Maλ0t , a ∈ C, t ∈ G,

is a *-isomorphism from B ontoK. For an element � ∈ CB(K), let �̃ = θ−1 ◦ � ◦ θ ;
thus, �̃ ∈ CB(B), and the correspondence � −→ �̃ between CB(K) and CB(B) is
bijective. For a Herz–Schur (C, G, α)-multiplier F , let �F = θ ◦ SF ◦ θ−1 note that
�F ∈ CB(K) and

�F (Maλ0t ) = MF(t)(a)λ
0
t , a ∈ C, t ∈ G.

We call the maps of the form �F the Herz–Schur K-multipliers. We let

S(K) = {�F : F is a Herz–Schur (C, G, α)-multiplier},

andScc(K) = S(K)∩CC(K). We note that the elements ofS(K) are precisely those
completely bounded maps on K which leave its diagonals globally invariant, when
elements of K are viewed as G × G-matrices.

We recall that, if K is a Hilbert space andA ⊆ B(K ) is a C*-algebra, the Haagerup
tensor product A ⊗h A consists of (convergent) series u = ∑∞

i=1 ai ⊗ bi , where
(ai )i∈N ⊆ A and (bi )i∈N ⊆ A are sequences for which the series

∑∞
i=1 ai a∗

i and∑∞
i=1 b∗

i bi converge in norm. Each such u gives rise to a completely bounded map
�u : B(K ) → B(K ) given by

�u(x) =
∞∑

i=1

ai xbi , x ∈ B(K ).

The following fact was noted in [16,Corollary 3.6].

Theorem 5.1 Any completely compact map on K has the form �u for some element
u ∈ K ⊗h K.

Theorem 5.2 The mapping

� −→ �F�̃
(22)

is a linear contractive surjection

(i) from CB(K) onto S(K);
(ii) from CC(K) onto Scc(K).

Proof (i) By Proposition 3.3 (i), if � ∈ CB(K) then F�̃ is a Herz–Schur (C, G, α)-
multiplier and ‖F�̃‖m ≤ ‖�‖cb. Thus, �F�̃

∈ S(K) and ‖�F�̃
‖cb ≤ ‖�‖cb. On the

other hand, if F is a Herz–Schur (C, G, α)-multiplier then, by Proposition 3.3 (ii),
FSF = F and hence �F is the image of itself under the map (22). The linearity of the
map (22) is straighforward.
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(ii) Let � ∈ CC(K). Since K has SOAP, Lemma 3.1 shows that � can be approx-
imated in the completely bounded norm by finite rank maps �n : K → K, n ∈ N.
Clearly, �̃n has finite rank, n ∈ N. As in the proof of Lemma 3.6, we can assume
that the maps �̃n have range in span{π(a)λs : s ∈ G, a ∈ C}. By Proposition 3.3
(iv), SF

�̃n
has finite rank and hence so has �F

�̃n
. Moreover, by Proposition 3.3 (i),

‖F�̃ − F�̃n
‖m → 0, giving ‖�F

�̃
− �F

�̃n
‖cb →n→∞ 0. Hence �F

�̃
is completely

compact. The rest is similar to (i). ��

For b ∈ K and s ∈ G, let bs = λ0s bλ0
s−1 . For u = ∑∞

i=1 ai ⊗ bi ∈ K ⊗h K, write
us = ∑∞

i=1 ai ⊗ (bi )s ; it is clear that us is a well-defined element of K ⊗h K.

Theorem 5.3 Let F : G → CB(C). The following are equivalent:

(i) F is a completely compact Herz–Schur (C, G, α)-multiplier;
(ii) there exists u ∈ K ⊗h K such that �us (a) = F(s)(a), for all a ∈ C and s ∈ G.

Proof (i)⇒(ii) The map Maλ0s 	→ MF(s)(a))λ
0
s extends to a completely compact map

on K. By Theorem 5.1, there exists u = ∑∞
i=1 ai ⊗ bi ∈ K ⊗h K such that

MF(s)(a)λ
0
s =

∞∑

i=1

ai Maλ0s bi =
∞∑

i=1

ai Maλ0s bi (λ
0
s )

∗λ0s , a ∈ C.

Thus, C is an invariant subspace for �us and �us (a) = F(s)(a), a ∈ C.
(ii)⇒(i) By the previous paragraph, �u(Maλ0s ) = �us (Ma)λ0s . Thus, θ

−1 ◦ �u ◦ θ

coincides with SF and so F is a completely compact Herz–Schur multiplier. ��

Suppose that F is a Herz Schur (C, G, α)-multiplier of the form F(s)(Ma) = Mhsa ,
where hs : G → C is a function, s ∈ G. We can associate with it the function
ψ : G × G → C, given by ψ(s, t) = hs(t). This is the identification made the next
statement.

Corollary 5.4 Let ϕ : G × G → C be a compact Schur multiplier. Then the function
ψ : G × G → C, given by ψ(s, t) = ϕ(t, s−1t), is a completely compact Herz Schur
(C, G, α)-multiplier.

Proof By [19], there exists an element u = ∑∞
i=1 ai ⊗ bi ∈ c0(G) ⊗h c0(G) such

that ϕ(p, q) = ∑∞
i=1 ai (p)bi (q), p, q ∈ G. By the injectivity of the Haagerup tensor

product [10,Proposition 9.2.5], u ∈ K ⊗h K. Note that

�us (Ma)(t) =
∞∑

i=1

ai (t)bi (s
−1t)a(t), a ∈ c0(G), t ∈ G;

in other words, �us (Ma) = Mhsa , where hs(t) = ϕ(t, s−1t), t ∈ G. The conclusion
follows from Theorem 5.3. ��
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6 Some Remarks and Open Questions

In Corollary 3.11, we showed that the amenability of a discrete group G is a sufficient
condition for automatic complete compactness: every compactmultiplier is in this case
completely compact. For such automatic complete compactness it suffices, instead of
amenability, to assume that the completely bounded multiplier norm is equivalent to
the multiplier norm. By a result of Losert [23], there exist non-amenable groups such
that McbA(G) = M A(G), for instance SL(2, R). However we do not know whether
there exists a discrete group with this property.

In Proposition 3.12, we exhibited an example of amultiplier u ∈ M A(G), for which
the map Su is compact but not completely compact. This multiplier however may not
be completely bounded, as we only guarantee the boundedness of Su if u ∈ M A(G).
We do not know if there exists a completely bounded compact multiplier which is not
completely compact.

Finally, in Corollary 3.9, we showed that ifG is a discrete group possessing property
(AP) then every completely compact multiplier on G is the limit, in the completely
bounded norm, of finitely supported multipliers. It would be interesting to know if
(AP) is in fact equivalent to the latter approximation property; we do not know if this
holds true.
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