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Abstract
We give a new class of equivalent norms for modulation spaces by replacing the
window of the short-time Fourier transform by a Hilbert–Schmidt operator. The main
result is applied to Cohen’s class of time-frequency distributions, Weyl operators
and localization operators. In particular, any positive Cohen’s class distribution with
Schwartz kernel can be used to give an equivalent norm for modulation spaces. We
also obtain a description of modulation spaces as time-frequency Wiener amalgam
spaces. The Hilbert–Schmidt operator must satisfy a nuclearity condition for these
results to hold, and we investigate this condition in detail.

Keywords Modulation spaces · Cohen’s class · Weyl transform · Localization
operators · Nuclear operators

Mathematics Subject Classification 47B10 · 47B34 · 42B35

1 Introduction

Themodulation spaces introduced byHans Feichtinger [17] have long been recognized
as suitable function spaces for various problems in time-frequency analysis [19,
23], PDEs [5, 42], pseudodifferential operators [4, 11, 24, 41] and others areas –
comprehensive lists of references can be found in [18] and the recent monograph
[6]. Perhaps the most common definition of the modulation spaces nowadays uses
the language of time-frequency analysis. To motivate the definition, we consider a
function ψ on Rd and its Fourier transform
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ψ̂(ω) =
∫
Rd

ψ(t)e−2π iω·t dt for ω ∈ R
d .

Together, ψ and ψ̂ describe the behaviour of ψ as a function of time and frequency,
respectively, and give us different approaches to study properties of ψ . For instance,
smoothness of ψ is related to decay of ψ̂ . But although ψ̂ shows which frequencies
ω contribute to ψ – those such that |ψ̂(ω)| is large – it does not indicate when, i.e.
for which t ∈ R

d , the frequency contributes to ψ . In time-frequency analysis one
therefore looks for time-frequency distributions Q(ψ), which should be a function on
R
2d such that the size of Q(ψ)(x, ω) describes the contribution of frequencyω at time

x in ψ .
The existence of an ideal time-frequency distribution Q is prohibited by various

uncertainty principles, but a common choice in time-frequency analysis is the short-
time Fourier transform (STFT)

Vϕψ(z) = 〈ψ,π(z)ϕ〉L2 for z ∈ R
2d ,

where the window ϕ is a function on R
d well-localized in time and frequency, and

π(z) denotes the time-frequency shift for z = (x, ω) given by

π(z)ϕ(t) = e2π iω·tϕ(t − x).

Themodulation spaces M p,q
m (Rd) are then defined, for 1 ≤ p, q ≤ ∞ and a weight

function m on R
2d , by the norm

‖ψ‖M p,q
m

=
(∫

Rd

(∫
Rd

|Vϕ0ψ(x, ω)|pm(x, ω)p dx

)q/p

dω

) 1
q

, (1)

where ϕ0(t) = 2d/4e−π |t |2 and the integrals are replaced by supremums for p, q = ∞.
By our interpretation of Vϕ0ψ(x, ω) as a time-frequency distribution, we see that
‖ψ‖M p,q

m
measures how localized ψ is in the time-frequency plane. More precisely,

L p measures the decay of ψ in time, and Lq the decay of ψ in frequency – i.e. the
decay of ψ̂ , or the smoothness of ψ . The fact that ‖ψ‖M p,q

m
is finite is therefore a

statement on the decay and smoothness of ψ .
A useful result onmodulation spaces from [17] is that replacing thewindowϕ0 in (1)

by another window ϕ with good time-frequency localization, we obtain an equivalent
norm on M p,q

m (Rd):

‖ψ‖M p,q
m

�
(∫

Rd

(∫
Rd

|Vϕψ(x, ω)|pm(x, ω)p dx

)q/p

dω

) 1
q

. (2)

The main result of this contribution is an extension of this fact: we show that the
window can even be replaced by a Hilbert–Schmidt operator S on L2(Rd). To explain
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this transition from function-windows to operator-windows, we fix an arbitrary ξ ∈
L2(Rd) with ‖ξ‖L2 = 1 and consider the rank-one operator S = ξ ⊗ ϕ defined by

S(ψ) = ξ ⊗ ϕ(ψ) = 〈ψ, ϕ〉L2 ξ. (3)

It is easy to see that ‖Sπ(z)∗ψ‖L2 = |Vϕψ(z)|, hence we may reformulate (2) as

‖ψ‖M p,q
m

�
(∫

Rd

(∫
Rd

‖Sπ(z)∗ψ‖p
L2m(x, ω)p dx

)q/p

dω

) 1
q

. (4)

Our main result in Theorem 5.1 states that this holds not only for rank-one S as in (3),
but for all Hilbert–Schmidt operators S having good time-frequency localization—a
statement that itself will need elaboration. By choosing different S we will see that
we obtain equivalent norms for the modulation spaces that express quite different
properties from those expressed in (1), hence giving new insights into the structure of
modulation spaces.

Comparing (1) and (4), we see that the STFT |Vϕψ(z)| is replaced by ‖Sπ(z)∗ψ‖L2 .
This suggests that we replace the STFT by the function VS : R2d → L2(Rd) given
by

VS(ψ)(z) = Sπ(z)∗ψ.

In Sect. 4 we show thatVS actually behaves like the usual STFT Vϕ , by showing that
it satisfies an isometry property and an inversion formula. This insight allows us to
prove (4) in Sect. 5 using methods similar to those used to prove that the modulation
spaces are independent of the window function in [23].

Sections 6, 7 and 8 are then devoted to examples and reinterpretations of the main
result. Firstwe considerWeyl operators in Sect. 6. The reformulation of (4) in Theorem
6.1 generalizes a result by Gröchenig and Toft [26] that identifies certain modulation
spaces with function spaces introduced by Bony and Chemin [9].

In Sect. 7 we turn our attention to Cohen’s class of time-frequency distributions. As
there is no ideal time-frequency distribution, Cohen’s class was introduced by Cohen
in [10] as the time-frequency distributions Qa given by

Qa(ψ)(z) = a ∗ W (ψ) for z ∈ R
2d ,

where a is some function (or distribution) onR2d andW (ψ) is theWigner-distribution,
see (26) for its definition. By varying a one obtains time-frequency distributions with
different properties. An important example of a Cohen’s class distribution is the spec-
trogram Q(ψ)(z) = |Vϕ0ψ(z)|2. Then (1) shows that the modulation space norm of
ψ is given by the L p,q

m -norm of (the square root of) Q(ψ). We might therefore ask
whether this is true if we replace the spectrogram by another Cohen’s class distribu-
tions Qa . Using a description of Cohen’s class in terms of bounded operators given
in [34] together with (4), we are able to give in Theorem 7.1 a set of Cohen’s class
distributions whose L p,q

m norms define the modulation space norms. The question of
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characterizing these Cohen class distributions Qa in terms of a seems to be a diffi-
cult problem in general. However, using a result from [31] we are able to prove the
following in Theorem 7.4:

Let 1 ≤ p, q ≤ ∞ and assume that the weight m grows at most polynomially.
If a is a Schwartz function on R

2d and Qa(ψ) is a positive function for each
ψ ∈ L2(Rd), then

‖ψ‖M p,q
m

�
∥∥∥√Qa(ψ)

∥∥∥
L p,q

m (R2d )
.

Finally, we let S in (4) be a localization operator in Sect. 8. This leads to a
characterization of modulation spaces as time-frequency Wiener amalgam spaces
in Theorem 8.1, which is a continuous version of results by Dörfler, Feichtinger
and Gröchenig [14, 15], see also [16, 36], much like the fact that the standard
Wiener amalgam spaces have both a continuous and discrete description. We men-
tion that [1, 8, 26, 27] also use localization operators to get equivalent norms for
modulation spaces, but their approach and results are different from those we con-
sider.

Before ending this introduction, we wish to point out that sufficient conditions on
S for (4) to hold will be a recurring theme throughout the paper. The most gen-
eral sufficient condition on S is that its Hilbert space adjoint must be a nuclear
operator from L2(Rd) to M1

v (Rd). In some ways this is a very natural condition:
if applied to the rank-one operator in (3) it means that ϕ ∈ M1

v (Rd), which is the
standard condition for windows for modulation spaces. As we see in Sect. 3, this
nuclearity condition is also easy to handle when working with localization operators.
From other perspectives, such as the Weyl calculus, the condition is more mysteri-
ous, and we will therefore also study stronger sufficient conditions on S for (4) to
hold.

Notation and Conventions

If X is a Banach space, we denote by X ′ its dual space and the action of y ∈ X ′
on x ∈ X is denoted by the bracket 〈y, x〉X ′,X , where the bracket is antilinear
in the second coordinate to be compatible with the notation for inner products in
Hilbert spaces. This means that we are identifying the dual space X ′ with antilinear
functionals on X . For two Banach spaces X , Y we denote by L(X , Y ) the Banach
space of bounded linear operators S : X → Y , and if X = Y we simply write
L(X). For brevity we often write L(L2) for L(L2(Rd)). For topological spaces
X , Y we write X ↪→ Y to denote that there is a continuous inclusion of X into
Y .

For p ∈ [1,∞], p′ denotes the conjugate exponent, i.e. 1
p + 1

p′ = 1. The notation
P � Q means that there is some C > 0 such that P ≤ C · Q, and P � Q means that
Q � P and P � Q. For � ⊂ R

2d , χ� is the characteristic function of �. S (Rd)

denotes the Schwartz space, and S ′(Rd) its dual space of tempered distributions.
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2 Time–Frequency Analysis

As we have seen in the introduction, our main results are phrased in terms of the
time-frequency shifts π(z) ∈ L(L2) for z = (x, ω) ∈ R

2d , defined by

π(z)ψ(t) = e2π iω·tψ(t − x) for ψ ∈ L2(Rd).

The time-frequency shifts are unitary on L2(Rd), and they satisfy

π(x, ω)π(x ′, ω′) = e−2π iω′·xπ(x + x ′, ω + ω′) (5)

π(x, ω)∗ = e−2π i x ·ωπ(−x,−ω) (6)

for x, x ′, ω, ω′ ∈ R
d . Closely related to the time-frequency shifts is the short-time

Fourier transform (STFT) Vϕψ ∈ L2(R2d), given by

Vϕψ(z) = 〈ψ,π(z)ϕ〉L2 for ψ, φ ∈ L2(Rd), z ∈ R
2d . (7)

The function ϕ is often referred to as the window of the STFT Vϕψ . An important
property of the STFT is Moyal’s identity [23,Thm. 3.2.1].

Lemma 2.1 (Moyal’s identity) If ψ1, ψ2, φ1, φ2 ∈ L2(Rd), then Vφi ψ j ∈ L2(R2d)

for i, j ∈ {1, 2} and

∫
R2d

Vφ1ψ1(z)Vφ2ψ2(z) dz = 〈ψ1, ψ2〉L2 〈φ1, φ2〉L2 .

In particular, we see that for fixed window ϕ with ‖ϕ‖2 = 1 the map ψ �→ Vϕψ is an
isometry from L2(Rd) to L2(R2d).

2.1 AdmissibleWeight Functions andWeighted, Mixed Lp Spaces

A submultiplicative weight function v on R
2d is a non-negative function v : R2d →

R such that v(z1 + z2) ≤ v(z1)v(z2) for z1, z2 ∈ R
2d . Whenever we refer to a

submultiplicative weight function v we will assume that v is continuous and satisfies
v(x, ω) = v(−x, ω) = v(x,−ω) = v(−x,−ω); these assumptions do not lead
to a loss of generality as any submultiplicative weight function is equivalent in a
natural sense to a weight satisfying these assumptions, see [23, 25]. Furthermore,
these assumptions imply that if v is not identically 0, then v(z) ≥ 1 for all z ∈ R

2d .
The assumptions above are satisfied by standard examples such as the polynomial
weights

vs(z) = (1 + |z|2)s/2 s ≥ 0,

but also by the exponential weights va(z) = ea|z| for a ≥ 0. A non-negative weight
function m on R2d is said to be v-moderate if v is a submultiplicative weight function
and there exists some constant Cm

v > 0 such that
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m(z1 + z2) ≤ Cm
v v(z1)m(z2).

We refer the reader to the survey [25] for more examples and motivation for these
assumptions. For any v-moderate weight m and 1 ≤ p, q ≤ ∞ we may define
the Banach space L p,q

m (R2d) to be the equivalence classes of Lebesgue measurable
functions F : R2d → C such that

‖F‖L p,q
m

:=
(∫

Rd

(∫
Rd

|F(x, ω)|pm(x, ω)p dx

)q/p

dω

) 1
q

< ∞.

If p = ∞ or q = ∞, the corresponding integral is replaced by an essential supremum.

2.2 Modulation Spaces

Throughout the rest of the paper, we will let ϕ0 ∈ L2(Rd) denote the normalized
Gaussian, i.e.

ϕ0(t) = 2d/4e−π |t |2 for t ∈ R
d .

For a submultiplicative weight v, we define the space M1
v (Rd) to be the Banach space

of those ψ ∈ L2(Rd) such that

‖ψ‖M1
v

:=
∫
R2d

|Vϕ0ψ(z)|v(z) dz < ∞.

This will serve as our space of test functions. Since v is submultiplicative, M1
v (Rd) is

non-empty as it contains ϕ0 [25, Lem. 4.4], and for weights v of polynomial growth it
contains the Schwartz functionsS (Rd) [23, Prop. 11.3.4]. For more general weights
M1

v (Rd) will not necessarily contain S (Rd) and might be quite small. The time-
frequency shifts π(z) are bounded on M1

v (Rd) [23, Thm. 11.3.5] with

‖π(z)ψ‖M1
v

≤ v(z)‖ψ‖M1
v
, (8)

and hence the STFT Vφψ(z) for φ ∈ M1
v (Rd) and ψ ∈ (M1

v (Rd))′ can be defined
by modifying the inner product in the definition (7) to a duality bracket: Vφψ(z) =
〈ψ,π(z)φ〉(M1

v )′,M1
v
.

For any v-moderate weight m and 1 ≤ p, q ≤ ∞, we then define the modulation
space M p,q

m (Rd) to consist of those ψ ∈ (M1
v (Rd))′ such that

‖ψ‖M p,q
m

:= ‖Vϕ0ψ‖L p,q
m

< ∞.

When p = q we will write M p
m(Rd) for M p,p

m (Rd), and when m ≡ 1 we write
M p,q(Rd). Some properties of the modulation spaces are summarized below, proofs
may be found in the monograph [23].
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Proposition 2.2 Let m be a v-moderate weight and 1 ≤ p, q ≤ ∞.

(a) M p,q
m (Rd) is a Banach space with the norm ‖ · ‖M p,q

m
.

(b) If 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞ and m2 � m1, then M p1,q1
m1 (Rd) ↪→

M p2,q2
m2 (Rd).

(c) If p, q < ∞, then M p′,q ′
1/m (Rd) is the dual space of M p,q

m (Rd) with

〈ψ, φ〉
M p′,q′

1/m ,M p,q
m

=
∫
R2d

Vϕ0ψ(z)Vϕ0φ(z) dz.

(d) L2(Rd) = M2(Rd).

Remark 1 (a) As a particular case of part c), we may identify (M1
v (Rd))′ with

M∞
1/v(R

d), which we will do for the rest of the paper. The reader should also

note that the duality extends the inner product on L2(Rd), since if ψ ∈ L2(Rd) ∩
M∞

1/v(R
d) and φ ∈ M1

v (Rd), we find by Moyal’s identity that

〈ψ, φ〉M∞
1/v,M1

v
=
∫
R2d

Vϕ0ψ(z)Vϕ0φ(z) dz = 〈ψ, φ〉L2 .

(b) A simple calculation using our assumption that v(−z) = v(z) gives that if m is
v-moderate, then so is 1/m.

(c) As mentioned,S (Rd) embeds continuously into M1
v (Rd)when v grows polyno-

mially, so in this case we may identify M∞
1/v(R

d)with a subspace of the tempered
distributions. This is not true for more general weights, hence we need to work
with the abstract space M∞

1/v(R
d) defined as the dual space of our test functions

M1
v (Rd).

The property of modulation spaces that is our main focus is the fact that changing
the window for the STFT leads to an equivalent norm[23, Prop. 11.3.2].

Theorem 2.3 Let m be a v-moderate weight function and let 0 �= φ ∈ M1
v (Rd). Then

‖Vφψ‖L p,q
m

defines an equivalent norm on M p,q
m (Rd): for ψ ∈ M p,q

m (Rd) we have

‖Vφψ‖L p,q
m

� ‖ψ‖M p,q
m

.

Our main result is that we also obtain equivalent norms for M p,q
m (Rd) when φ is

replaced by an operator S satisfying certain conditions, after modifying the definition
of the STFT correspondingly. To prove this, we will use the precise statement of the
upper bound ‖Vφψ‖L p,q

m
� ‖ψ‖M p,q

m
; it follows from equation (11.33) in [23]. Recall

that Cm
v is the constant from m(z1 + z2) ≤ Cm

v v(z1)m(z2).

Proposition 2.4 Let m be a v-moderate weight function and let φ ∈ M1
v (Rd). The

map ψ �→ Vφψ is bounded from M p,q
m (Rd) to L p,q

m (R2d) with ‖Vφψ‖L p,q
m

≤
Cm

v ‖φ‖M1
v
‖ψ‖M p,q

m
.
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3 Classes of Operators for Time–frequency Analysis

Our main result rests upon properties of certain classes of operators, all of which may
be described as integral operators.

3.1 Hilbert–Schmidt Operators

Given a function k ∈ L2(R2d), we define the (necessarily bounded) integral operator
Tk : L2(Rd) → L2(Rd) by

Tk(ψ)(x) =
∫
Rd

k(x, y)ψ(y) dy for ψ ∈ L2(Rd).

We call k the integral kernel of the operator Tk . When equipped with the inner product

〈
Tk1 , Tk2

〉
HS := 〈k1, k2〉L2 ,

the set of integral operators Tk with integral kernels k ∈ L2(R2d) forms aHilbert space
of compact operators called the Hilbert–Schmidt operators, which we will denote by
HS. Given T ∈ HS, we will sometimes denote its integral kernel by kT , which means
that T = TkT . An important subspace of HS is the space S of trace class operators,
consisting of those T ∈ HS such that

∞∑
n=1

〈|T |en, en〉L2 < ∞,

where {en}∞n=1 is any orthonormal basis of L2(Rd) and |T | is the positive part in the
polar decomposition of T . If T is a trace class operator, we may therefore define its
trace tr(T ) by

tr(T ) =
∞∑

n=1

〈T en, en〉L2 ,

which can be shown to be independent of the orthonormal basis. For our part, we will
need that if S, T ∈ HS, then ST is a trace class operator. In particular, this allows
us to express the inner product on HS without reference to their kernels as integral
operators, as one may show (see [13, Thm. 269]) that

〈S, T 〉HS = tr(ST ∗).

3.2 A Space of Nuclear Operators

Both Hilbert–Schmidt and trace class operators will often be too large spaces for
our purposes. We therefore introduce a Banach subspace of HS more adapted to
the needs of time-frequency analysis. Let v be a submultiplicative weight function.
The space we will need is the space N (L2; M1

v ) consisting of all nuclear operators
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T : L2(Rd) → M1
v (Rd). An operator T : L2(Rd) → M1

v (Rd) is said to be nuclear
[37] if it has an expansion of the form

T =
∞∑

n=1

φn ⊗ ξn, (9)

where φ ⊗ ψ denotes the rank-one operator

φ ⊗ ψ(ξ) = 〈ξ, ψ〉L2 φ

and
∑∞

n=1 ‖φn‖M1
v
‖ξn‖L2 < ∞. The spaceN (L2; M1

v ) becomes a Banach space with
norm given by

‖T ‖N := inf

{ ∞∑
n=1

‖φn‖M1
v
‖ξn‖L2

}
, (10)

where the infimum is taken over all decompositions as in (9). It can be shown that if
φ ∈ M1

v (Rd) and ψ ∈ L2(Rd), then

‖φ ⊗ ψ‖N = ‖φ‖M1
v
‖ψ‖L2 , (11)

hence the expansion in (9) converges absolutely in N (L2, M1
v ). Using the expansion

in (9) it is straightforward to check that the inclusion of N (L2, M1
v ) into L(L2; M1

v )

is continuous, i.e.
‖T ‖L(L2;M1

v ) ≤ ‖T ‖N , (12)

and that if S ∈ N (L2, M1
v ), T ∈ L(L2) and R ∈ L(M1

v ), then RST ∈ N (L2, M1
v ).

We will need the following simple property.

Lemma 3.1 Let T ∈ N (L2, M1
v ) for a submultiplicative weight function v and let

z ∈ R
2d . Then π(z)T π(z)∗ ∈ N (L2, M1

v ) with ‖π(z)T π(z)∗‖N ≤ v(z)‖T ‖N .

Proof If T has an expansion

T =
∞∑

n=1

φn ⊗ ξn

where
∑∞

n=1 ‖φn‖M1
v
‖ξn‖L2 < ∞, then

π(z)T π(z)∗ =
∞∑

n=1

π(z)φn ⊗ π(z)ξn,

and

∞∑
n=1

‖π(z)φn‖M1
v
‖π(z)ξn‖L2 ≤ v(z)

∞∑
n=1

‖φn‖M1
v
‖ξn‖L2

by (8) and the fact that π(z) is unitary on L2(Rd). The norm inequality then follows
from the definition (10) of the nuclear norm.
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To be more precise, the class of operators we will be interested in are those
S ∈ HS such that S∗ ∈ N (L2, M1

v ), where S∗ is the Hilbert space adjoint of S.
We can give a much more concrete description of this condition by noting that if∑∞

n=1 ‖ξn‖L2‖φn‖M1
v

< ∞, then S∗ =∑∞
n=1 φn⊗ξn if and only if S =∑∞

n=1 ξn⊗φn .

Hence (9) gives that S∗ ∈ N (L2, M1
v ) if and only if

S =
∞∑

n=1

ξn ⊗ φn (13)

with
∑∞

n=1 ‖ξn‖L2‖φn‖M1
v

< ∞. Abusing notation slightly, we will write S∗ ∈
N (L2, M1

v ) to denote that S ∈ L(L2) and S∗ ∈ N (L2, M1
v ).

Lemma 3.2 Let S∗ ∈ N (L2, M1
v ) for a submultiplicative weight function v. Then

S extends to a bounded operator S̃ : M∞
1/v(R

d) → L2(Rd) with ‖S̃‖L(M∞
1/v,L2) ≤

‖S∗‖N (L2,M1
v ) by defining

〈
S̃ψ, φ

〉
L2

:= 〈ψ, S∗φ
〉
M∞

1/v,M1
v

for ψ ∈ M∞
1/v(R

d), φ ∈ L2(Rd). (14)

Furthermore, given an expansion of S of the form (13), this extension satisfies

S̃(ψ) =
∞∑

n=1

〈ψ, φn〉M∞
1/v,M1

v
ξn, (15)

where the sum converges absolutely in L2(Rd).

Proof The definition (14) simply means that S̃ is the Banach space adjoint of S∗ :
L2(Rd) → M1

v (Rd), hence S̃ is well-defined. Since for ψ ∈ L2(Rd) we have

〈Sψ, φ〉L2 = 〈ψ, S∗φ
〉
L2 = 〈ψ, S∗φ

〉
M∞

1/v,M1
v
,

we see that S̃ extends S. The absolute convergence of the sum in (15) follows directly
from (13). To show that the decomposition into rank-one operators still holds for S̃,
we need to show that for ψ ∈ M∞

1/v(R
d) and φ ∈ L2(Rd) we have

〈 ∞∑
n=1

〈ψ, φn〉M∞
1/v,M1

v
ξn, φ

〉

L2

= 〈ψ, S∗φ
〉
M∞

1/v,M1
v
,

which is a straightforward calculation using the expansion of S∗ in (9) and the fact
that all expansions converge absolutely in an appropriate Banach space, so that we
may take the duality brackets inside the sum. The details are left for the reader.

In what follows we will simply denote the extension S̃ by S. Note that if S∗ ∈
N (L2, M1

v ), R ∈ L(L2) and T ∈ L(M1
v ), then (RST ∗)∗ ∈ N (L2, M1

v ), as follows
from using (13).
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The fact that we use the Hilbert space L2(Rd) is not strictly necessary. We could
have considered any separable Hilbert spaceH, and required that S ∈ L(L2,H) with
S∗ ∈ N (H, M1

v ). The result above would still hold, as would the main result of this
paper. Our reason for consideringH = L2(Rd) is that it gives us easier access to non-
trivial examples, as it allows us to formulate our results in terms of integral operators
as we explain in detail in the next subsection.

3.2.1 The Projective Tensor Product

The theory of nuclear operators is closely related to the projective tensor product of
Banach spaces, as explained for instance in [37], which leads to a useful connection
to integral operators. Abstractly, the projective tensor product X⊗̂Y of two Banach
spaces X , Y is the completion of the algebraic tensor product X ⊗ Y with respect to
the norm

‖u‖X⊗̂Y = inf

{
N∑

n=1

‖xn‖X‖yn‖Y : u =
N∑

k=n

xn ⊗ yn, xn ∈ X , yn ∈ Y

}
.

One can show (see [37, Prop. 2.8]) that X⊗̂Y consists precisely of elements
∑∞

n=1 xn⊗
yn such that

∑∞
n=1 ‖xn‖X‖yn‖Y < ∞.

When X and Y are function spaces on R
d , which is the case we will consider,

we identify the elementary tensors x ⊗ y for x ∈ X and y ∈ Y with the function
x ⊗ y(s, t) = x(s)y(t). For instance, we identify L2(Rd)⊗̂L2(Rd) with all functions
� ∈ L2(R2d) such that�(s, t) =∑∞

n=1 ξn(s)ψn(t)with
∑∞

n=1 ‖ξn‖L2‖ψn‖L2 < ∞.
Now assume that the integral kernel kT of T ∈ HS belongs to X⊗̂Y for Banach

function spaces X , Y ⊂ L2(Rd). By definition, this means that we have a decompo-
sition

kT (s, t) =
∞∑

n=1

xn(s)yn(t)

with
∑∞

n=1 ‖xn‖X‖yn‖Y < ∞. A simple calculation then shows that

T =
∞∑

n=1

xn ⊗ yn,

where xn⊗yn nowdenotes a rank-one operator. Hence ifwe apply this to X = M1
v (Rd)

and Y = L2(Rd) (since all function spaces we consider are invariant under complex
conjugation, we need not pay any attention to the fact that yn appears in place of yn),
we see that kT ∈ M1

v (Rd)⊗̂L2(Rd) is equivalent to T having an expansion of the
form (9) – i.e. kT ∈ M1

v (Rd)⊗̂L2(Rd) if and only if T ∈ N (L2, M1
v ).

Remark 2 The map kT �→ T is in fact a Banach space isomorphism from
M1

v (Rd)⊗̂L2(Rd) to N (L2, M1
v ). Surjectivity and boundedness follow from above.

Injectivity is not too difficult to show in this case, but for more general Banach spaces
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X and Y the injectivity of the natural map from X⊗̂Y ∗ onto N (Y , X) boils down to
the approximation property for Banach spaces [37, Cor. 4.8].

The slightly awkward condition T ∗ ∈ N (L2, M1
v ) may similarly be reformulated

as requiring kT ∈ L2(Rd)⊗̂M1
v (Rd), this is essentially the content of (15). This

condition cannot be reformulated as nuclearity of T , which is why we have opted for
phrasing it as T ∗ ∈ N (L2, M1

v ). We also mention that there is a natural isomorphism
L2(Rd)⊗̂M1

v (Rd) ∼= M1
v (Rd)⊗̂L2(Rd) extending the map ξ ⊗ φ �→ φ ⊗ ξ for

ξ ∈ L2(Rd), φ ∈ M1
v (Rd).

Formulating our assumption on T by requiring kT to belong to some projective ten-
sor product makes it possible to relate T ∗ ∈ N (L2, M1

v ) to other spaces of operators.
For instance, we may identify the trace class operators S1 as the operators S ∈ HS
such that kS belongs to the projective tensor product L2(Rd)⊗̂L2(Rd), which clearly
contains M1

v (Rd)⊗̂L2(Rd) as a subset since M1
v (Rd) ↪→ L2(Rd).

Finally, the operators T ∈ HS with kernel kT in the subspace M1
v (Rd)⊗̂M1

v (Rd)

of M1(Rd)⊗̂L2(Rd) have also been studied recently in [38], where this space of
operators is denoted by Bv⊗v . It follows by [2, Thm. 5] that

M1
v (Rd)⊗̂M1

v (Rd) = M1
v⊗̃v

(R2d), (16)

with equivalent norms, where v⊗̃v(x1, x2, ω1, ω2) = v(x1, ω1) · v(x2, ω2). The par-
ticular case B := B1⊗1 corresponding to v ≡ 1 has been studied in several other
sources, see for instance [20, 21].

We summarize this discussion, which essentially amounts to prodding the defini-
tions in various ways, in a proposition.

Proposition 3.3 Given T ∈ HS and a submultiplicative weight function v, then

T ∈ N (L2, M1
v ) ⇐⇒ kT ∈ M1

v (Rd)⊗̂L2(Rd),

T ∗ ∈ N (L2, M1
v ) ⇐⇒ kT ∈ L2(Rd)⊗̂M1

v (Rd).

At the level of kT we have the inclusions

which at the operator level leads to the inclusions

Bv⊗v ⊂ N (L2, M1
v ) ⊂ S1 ⊂ HS.

The same inclusion holds when N (L2, M1
v ) is replaced by the set of operators T such

that T ∗ ∈ N (L2, M1
v ).
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3.3 Examples of Nuclear Operators

The connection to the projective tensor product allows us towrite down some examples
of S∗ ∈ N (L2, M1

v ).

Example 3.4 The Schwartz operators S are those integral operator Tk on L2(Rd) such
that k ∈ S (R2d) [31]. If the submultiplicative weight v grows at most polynomially,
then so does the weight function v⊗̃v(x1, x2, ω1, ω2) = v(x1, ω1) ·v(x2, ω2) onR4d ,
hence we know that S (R2d) ↪→ M1

v⊗̃v
(R2d) ∼= M1

v (Rd)⊗̂M1
v (Rd). It follows that

S ⊂ Bv⊗v ⊂ N (L2, M1
v ). It is also straightforward to check that S ∈ S ⇐⇒ S∗ ∈

S.

Example 3.5 (The Feichtinger algebra and the inner kernel theorem) By Proposition
3.3 we know that Bv⊗v ⊂ N (L2, M1

v ), where T ∈ Bv⊗v if kT ∈ M1
v⊗̃v

(R2d) ∼=
M1

v (Rd)⊗̂M1
v (Rd). This class of operators was recently studied in [38], where the

reader may find a proof that T belongs to this space if and only if its Hilbert space
adjoint T ∗ does.

The unweighted case kT ∈ M1(Rd)⊗̂M1(Rd) = M1(R2d) has been studied
by several sources [20, 21, 32, 39]. We mention in particular that [20, 21] give a
characterization of such operators that is independent of their kernel as an integral
operator: Given T ∈ HS, kT ∈ M1(R2d) if and only if T extends to a bounded
map M∞(Rd) → M1(Rd) sending weak* convergent sequences to norm-convergent
sequences.

We now consider finite rank operators. By choosing S of the form in this example,
we will be able to recover Theorem 2.3 from our main result, see also Example 4.2.

Example 3.6 (Finite rank operators) For N ∈ N, consider {φn}N
n=1 ⊂ M1

v (Rd). Let

{ξn}N
n=1 be an orthonormal set in L2(Rd). If we define S =∑N

n=1 ξn ⊗ φn , we clearly
have S∗ ∈ N (L2, M1

v ). This S is just a convenient way of storing the functions φn in
an operator – by applying S to ξm for 1 ≤ m ≤ N we recover φm .

3.3.1 Localization Operators

We also have some methods for producing new examples of operators inN (L2, M1
v )

from known examples. As N (L2, M1
v ) is a normed space we may of course take

linear combinations, but a more interesting method is to use the quantum convolutions
introduced by Werner [43]. Given f ∈ L1(R2d) and a trace class operator S ∈ S,
the convolution of f with S is defined to be the trace class operator f �S given by the
Bochner integral

f �S :=
∫
R2d

f (z)π(z)Sπ(z)∗ dz. (17)

In particular, if we pick S to be a rank-one operator ϕ2 ⊗ ϕ1 for ϕ1, ϕ2 ∈ L2(Rd), we
find that
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f �(ϕ2 ⊗ ϕ1) = Aϕ1,ϕ2
f ,

where Aϕ1,ϕ2
f is the time-frequency localization operator [11, 12] given by

Aϕ1,ϕ2
f (ψ) =

∫
R2d

f (z)Vϕ1ψ(z)π(z)ϕ2 dz for ψ ∈ L2(Rd).

Proposition 3.7 If S ∈ N (L2, M1
v ) and f ∈ L1

v(R
2d), then f �S ∈ N (L2, M1

v ) with
‖ f �S‖N ≤ ‖ f ‖L1

v
‖S‖N . In particular, if ϕ1 ∈ L2(Rd) and ϕ2 ∈ M1

v (Rd), then

Aϕ1,ϕ2
f ∈ N (L2, M1

v ), with ‖Aϕ1,ϕ2
f ‖N ≤ ‖ f ‖L1

v
‖ϕ1‖L2‖ϕ2‖M1

v
.

Proof By definition,

f �S =
∫
R2d

f (z)π(z)Sπ(z)∗ dz.

This integral converges as a Bochner integral in N (L2, M1
v ), as Lemma 3.1 gives

∫
R2d

‖ f (z)π(z)Sπ(z)∗‖N dz ≤
∫
R2d

| f (z)|v(z)‖S‖N dz = ‖S‖N ‖ f ‖L1
v
.

The result for Aϕ1,ϕ2
f follows by Aϕ1,ϕ2

f = f �(ϕ2 ⊗ ϕ1) and (11).

It is easy to check that theHilbert space adjoint of f �S is f �S∗. Hencewe immediately
obtain the following.

Corollary 3.8 If S∗ ∈ N (L2, M1
v ) and f ∈ L1

v(R
2d), then ( f �S)∗ ∈ N (L2, M1

v ) with
‖( f �S)∗‖N ≤ ‖ f ‖L1

v
‖S∗‖N . In particular, if ϕ1 ∈ M1

v (Rd) and ϕ2 ∈ L2(Rd), then(
Aϕ1,ϕ2

f

)∗ ∈ N (L2, M1
v ), with

∥∥∥
(
Aϕ1,ϕ2

f

)∗∥∥∥N ≤ ‖ f ‖L1
v
‖ϕ1‖M1

v
‖ϕ2‖L2 .

3.3.2 Underspread Operators

When operators between function spaces are used to model communication channels,
the resulting operators will typically be (at least approximately) underspread [40]. An
underspread operator T ∈ HS is of the form

T =
∫
R2d

F(x, ω)e−iπx ·ωπ(x, ω) dxdω, (18)

where the support of F is contained in [−τ, τ ]d ×[−ν, ν]d for 4τν < 1. The function
F(x, ω)e−iπx ·ω is called the spreading function of T , and one can show that any T ∈
HS has a spreading function in L2(R2d), as long as the integral in (18) is interpreted
appropriately [21]. In quantum harmonic analysis the spreading function is considered
a Fourier transform of the operator [43]. The next lemma shows that underspread trace
class operators belong to B, i.e. have integral kernel in M1(R2d) ⊂ N (L2; M1). This
is an operator-version of the well-known fact that band-limited integrable functions
belong to M1(Rd) [22, Cor. 3.2.7]. The proof is moved to an appendix, as it requires
the introduction of several results from quantum harmonic analysis that will not be
needed later in the paper.
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Proposition 3.9 If the spreading function of T ∈ S has compact support, then T ∈
B ⊂ N (L2; M1).

4 Time–Frequency Analysis with Operators as Windows

A fundamental object in time-frequency analysis is the short-time Fourier transform
(STFT) Vφψ with window φ. The goal of this section is to define an STFT where the
window φ is replaced by an operator S, and to show that the basic properties of the
STFT remain true for this generalized STFT.

As a first step, we will need the Hilbert space L2(R2d; L2) of equivalence classes
of strongly Lebesgue measurable � : R2d → L2(Rd) such that

‖�‖L2(R2d ;L2) :=
(∫

R2d
‖�(z)‖2L2 dz

)1/2

< ∞,

with inner product

〈�,�〉L2(R2d ;L2) =
∫
R2d

〈�(z),�(z)〉L2 dz.

The equivalence relation on L2(R2d ; L2) is that � ∼ � if �(z) = �(z) as elements
of L2(Rd) for a.e. z ∈ R

2d .

We then define a version of the short-time Fourier transform with operators as
windows. For S ∈ HS and ψ ∈ L2(Rd) we let

VS(ψ)(z) = Sπ(z)∗ψ for z ∈ R
2d .

Remark 3 When S is a localization operator Aϕ,ϕ
f , the short-time Fourier transform

above is closely related to the vector-valued analysis operator introduced by Romero
in [36] to obtain equivalent norms for modulation spaces (and several other spaces)
from certain discrete expressions. See (36) for the precise expression.

We obtain a generalization ofMoyal’s identity. It shows thatVS is a linear isometry
from L2(Rd) to L2(R2d; L2).

Lemma 4.1 Let S ∈ HS and ψ ∈ L2(Rd). Then VS(ψ) ∈ L2(R2d ; L2) and

‖VS(ψ)‖2L2(R2d ,L2)
=
∫
R2d

‖Sπ(z)∗ψ‖2L2 dz = ‖S‖2HS‖ψ‖2L2 .

Proof We may rewrite

‖Sπ(z)∗ψ‖2L2 = 〈π(z)S∗Sπ(z)∗ψ,ψ
〉
L2 = tr(π(z)S∗Sπ(z)∗(ψ ⊗ ψ)).
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The result therefore follows by [33, Lem. 4.1], which states that∫
R2d

tr(π(z)Rπ(z)∗T ) dz = tr(R)tr(T )

for trace class operators R, T on L2(Rd); pick R = S∗S and T = ψ ⊗ ψ and note
that tr(S∗S) = ‖S‖2HS and tr(ψ ⊗ ψ) = ‖ψ‖2

L2

Example 4.2 To see thatVS actually generalizes the usual STFT, consider φ ∈ L2(Rd)

and let ξ ∈ L2(Rd) be any function satisfying ‖ξ‖L2 = 1. Then let S = ξ ⊗ φ. For
any ψ ∈ L2(Rd) we then have

VS(ψ)(z) = Sπ(z)∗ψ = 〈π(z)∗ψ, φ
〉
L2 ξ = Vφψ(z) · ξ,

which contains precisely the same information as Vφψ(z) given that we know ξ.

In particular, it is easy to show that ‖S‖2HS = ‖φ‖2
L2 and ‖VS(ψ)‖L2(R2d ;L2) =

‖Vφψ‖L2(R2d ), so Lemma 4.1 reduces to Moyal’s identity in this case.

Remark 4 Strong measurability of VS(ψ) is always satisfied: since L2(Rd) is sep-
arable, the Pettis measurability theorem [30, Thm. 1.1.20] ensures that strong
measurability follows from weak measurability. Weak measurability means that for
each φ ∈ L2(Rd), the map

z �→ 〈VS(ψ)(z), φ〉L2

is Lebesgue measurable. We may rewrite 〈VS(ψ)(z), φ〉L2 = 〈Sπ(z)∗ψ, φ〉L2 =
VS∗φψ(z). It is well-known that the STFT z �→ Vξψ(z) is continuous for any ξ ∈
L2(Rd), in particular for ξ = S∗φ, hence the map is Lebesgue measurable.

We then define for � ∈ L2(R2d; L2) a functionV∗
S(�) on Rd by the L2(Rd)-valued

integral

V∗
S(�) =

∫
R2d

π(z)S∗�(z) dz. (19)

The integral (19) is interpreted in a weak sense: we will see that∣∣∣∣
∫
R2d

〈
π(z)S∗�(z), φ

〉
L2 dz

∣∣∣∣ � ‖φ‖L2 for any φ ∈ L2(Rd), (20)

so it follows from the Riesz representation theorem for Hilbert spaces that there must
exist an element in L2(Rd), which we denote by

∫
R2d π(z)S∗�(z) dz, such that for

any φ ∈ L2(Rd)〈∫
R2d

π(z)S∗�(z) dz, φ

〉
L2

=
∫
R2d

〈
π(z)S∗�(z), φ

〉
L2 dz. (21)

The next lemma shows that the integral in (19) is well-defined in this sense.

Lemma 4.3 Let S ∈ HS.

(a) Equation (21) defines V∗
S(ψ) = ∫

R2d π(z)S∗�(z) dz as an element of L2(Rd),
and V∗

S : L2(R2d; L2) → L2(Rd) defines a bounded operator that is the Hilbert
space adjoint of VS.

(b) The composition V∗
SVS is ‖S‖2HS times the identity operator on L2(Rd).
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Proof Let� ∈ L2(R2d ; L2) and let φ ∈ L2(Rd). We need to show (20), as mentioned
(21) then defines an element

∫
R2d π(z)S∗�(z) dz of L2(Rd) by Riesz’ representation

theorem. We find that

∣∣∣∣
∫
R2d

〈
π(z)S∗�(z), φ

〉
L2 dz

∣∣∣∣ =
∣∣∣∣
∫
R2d

〈
�(z), Sπ(z)∗φ

〉
L2 dz

∣∣∣∣
= | 〈�,VS(φ)〉L2(Rd ;L2) |
≤ ‖�‖L2(R2d ;L2)‖VS(φ)‖L2(R2d ;L2)

= ‖�‖L2(R2d ;L2)‖S‖HS‖φ‖L2

by Lemma 4.1. It is clear that V∗
S is linear, and the estimate also shows that it is

bounded from L2(Rd ; L2(Rd)) to L2(Rd). A simple calculation shows that it is the
adjoint of VS . The second part states that

∫
R2d

π(z)S∗Sπ(z)∗ψ dz = ‖S‖2HSψ for any ψ ∈ L2(Rd),

which is part (c) of [43, Prop. 3.3].

5 Equivalent Norms for Modulation Spaces

The generalized Moyal identity in Lemma 4.1 shows that the norm of VS(ψ) in
L2(R2d; L2) is equivalent to the norm of ψ in L2(Rd). We will now generalize The-
orem 2.3 by showing that if S satisfies some extra assumptions, the same is true if
L2(Rd) is replaced by M p,q

m (Rd) and L2(R2d; L2) is replaced by L p,q
m (R2d ; L2),

where 1 ≤ p, q ≤ ∞ and m is some v-moderate weight. As before, v always denotes
a submultiplicative weight function on R2d .

We start by defining L p,q
m (R2d; L2). For 1 ≤ p, q ≤ ∞ and any v-moderate weight

m, the Banach space L p,q
m (R2d; L2) consists of the equivalence classes of strongly

Lebesgue measurable functions � : R2d → L2(Rd) such that

‖�‖L p,q
m (R2d ;L2) :=

(∫
Rd

(∫
Rd

‖�(x, ω)‖p
L2m(x, ω)p dx

)q/p

dω

) 1
q

< ∞,

where� ∼ � if�(z) = �(z) for a.e. z ∈ R
2d . When p = ∞ or q = ∞ the definition

is modified in the usual way by replacing integrals by essential supremums.
With this definition in place, we are ready to state our main result.

Theorem 5.1 Let 0 �= S ∈ HS such that S∗ ∈ N (L2, M1
v ). For any 1 ≤ p, q ≤ ∞

and v-moderate weight m, we have

Clower · ‖ψ‖M p,q
m

≤ ‖VS(ψ)‖L p,q
m (R2d ;L2) ≤ Cupper · ‖ψ‖M p,q

m
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with

Clower = ‖S‖2HS ·
(

Cm
v · ‖S∗‖N · ‖ϕ0‖M1

v

)−1
,

Cupper = Cm
v · ‖S∗‖N .

Our proof will follow the same structure as the usual proof that M p,q
m is independent

of the window function [23]: we will show that VS is bounded from M p,q
m (Rd) to

L p,q
m (R2d ; L2) and that V∗

S is bounded from L p,q
m (R2d; L2) to M p,q

m (Rd).
Before we start, we make sure that there is no ambiguity in interpreting

VS(ψ)(z) = Sπ(z)∗ψ

even when ψ ∈ M∞
1/v(R

2d). First note that as π(z) is bounded on M1
v (Rd) by (8), we

may extend π(z) to a bounded operator on M∞
1/v(R

d) by defining

〈π(z)ψ, φ〉M∞
1/v,M1

v
:= 〈ψ,π(z)∗φ

〉
M∞

1/v,M1
v

for ψ ∈ M∞
1/v(R

d), φ ∈ M1
v (Rd).

(22)
As π(x, ω)∗ = e−2π i x ·ωπ(−x, ω), π(z)∗ is also bounded on M∞

1/v(R
d). Therefore

VS(ψ)(z) = Sπ(z)∗ψ

makes sense by Lemma 3.2, as S extends to a bounded operator from M∞
1/v(R

d) to

L2(Rd) – hence Sπ(z)∗ψ is a well-defined element of L2(Rd).

Lemma 5.2 Let m be a v-moderate weight. For any 1 ≤ p, q ≤ ∞, VS is a
bounded, linear map from M p,q

m (Rd) to L p,q
m (R2d; L2) with ‖VS(ψ)‖L p,q

m (R2d ;L2) ≤
Cm

v · ‖S∗‖N · ‖ψ‖M p,q
m

.

Proof Throughout the proof we will use the expansion in (15) to write

S =
∞∑

n=1

ξn ⊗ φn

with
∑∞

n=1 ‖ξn‖L2‖φn‖M1
v

< ∞. Assume that ψ ∈ M p,q
m (Rd). Then

Sπ(z)∗ψ =
∞∑

n=1

〈
π(z)∗ψ, φ

〉
M∞

1/v,M1
v
ξn =

∞∑
n=1

Vφn ψ(z)ξn .

This implies that

‖Sπ(z)∗ψ‖L2 ≤
∞∑

n=1

|Vφn ψ(z)| · ‖ξn‖L2 ,
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hence the triangle inequality for L p,q
m (R2d) gives

‖VS(ψ)‖L p,q
m (R2d ;L2) ≤

∥∥∥∥∥
∞∑

n=1

|Vφn ψ(−)| · ‖ξn‖L2

∥∥∥∥∥
L p,q

m (R2d )

≤
∞∑

n=1

‖ξn‖L2

∥∥Vφn ψ
∥∥

L p,q
m (R2d )

We then apply Proposition 2.4 to get

‖VS(ψ)‖L p,q
m (R2d ;L2) ≤ Cm

v ‖ψ‖M p,q
m

∞∑
n=1

‖ξn‖L2‖φn‖M1
v
.

Using the definition of ‖S∗‖N from (10) we get that

‖VS(ψ)‖L p,q
m (R2d ;L2) ≤ Cm

v ‖S∗‖N ‖ψ‖M p,q
m

.

In order to give a sensible definition of V∗
S(�) for � ∈ L p,q

m (R2d; L2), we will
need Hölder’s inequality for the mixed-norm spaces L p,q

m (R2d) [3, 23]: given F ∈
L p,q

m (R2d) and G ∈ L p′,q ′
1/m (R2d) for 1 ≤ p, q ≤ ∞, then F · G ∈ L1(R2d) with

∫
R2d

|F(z)G(z)| dz ≤ ‖F‖L p,q
m

‖G‖
L p′,q′
1/m

. (23)

For any � ∈ L p,q
m (R2d; L2) we then defineV∗

S(�) as an element of M∞
1/v(R

d) by
duality:

〈
V∗

S(�), φ
〉
M∞

1/v,M1
v

:=
∫
R2d

〈�(z),VS(φ)(z)〉L2 dz for all φ ∈ M1
v (Rd).

To see that this actually defines a bounded linear functional on M1
v (Rd), note that

∫
R2d

| 〈�(z),VS(φ)(z)〉L2 | dz ≤
∫
R2d

‖�(z)‖L2‖VS(φ)(z)‖L2 dz

≤ ‖�‖L p,q
m (R2d ;L2)‖VS(φ)‖

L p′,q′
1/m (R2d ;L2)

by (23)

≤ ‖�‖L p,q
m (R2d ;L2)C

m
v ‖S∗‖N ‖φ‖

M p′,q′
1/m

by Lemma 5.2

� ‖�‖L p,q
m (R2d ;L2)C

m
v ‖S∗‖N ‖φ‖M1

v
,

where the last inequality uses that M1
v (Rd) ↪→ M p,q

m (Rd) for all 1 ≤ p, q ≤ ∞ and
all v-moderate weights m. The reader should observe that this definition agrees with
our original definition (19) when � ∈ L2(R2d; L2).
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Lemma 5.3 Let m be a v-moderate weight. For any 1 ≤ p, q ≤ ∞, the map V∗
S is a

bounded, linear map from L p,q
m (R2d ; L2) to M p,q

m (Rd), with

‖V∗
S(�)‖M p,q

m
≤ ‖�‖L p,q

m (R2d ;L2) · Cm
v · ‖S∗‖N · ‖ϕ0‖M1

v
.

Proof As a short preparation, we considerVS(π(z)φ) for φ ∈ L2(Rd). By definition

VS(π(z)φ)(z′) = Sπ(z′)∗π(z)φ = S[π(z)∗π(z′)]∗φ.

With z = (x, ω) and z′ = (x ′, ω′), we find using (5) and (6) that

VS(π(z)φ)(z′) = S[e2π i x ·(ω′−ω)π(z′ − z)]∗φ = e2π i x ·(ω−ω′)VS(φ)(z′ − z). (24)

Recall thatϕ0 is the L2-normalizedGaussian onRd , and that the normon M p,q
m (Rd)

is given by ‖ψ‖M p,q
m

= ‖Vϕ0ψ‖L p,q
m

. We therefore calculate that

|Vϕ0(V
∗
S(�))(z)| = | 〈V∗

S(�), π(z)ϕ0
〉
M∞

1/v,M1
v
|

=
∣∣∣∣
∫
R2d

〈
�(z′),VS(π(z)ϕ0)(z

′)
〉
L2 dz′

∣∣∣∣
≤
∫
R2d

| 〈�(z′),VS(π(z)ϕ0)(z
′)
〉
L2 | dz′

≤
∫
R2d

‖�(z′)‖L2‖VS(π(z)ϕ0)(z
′)‖L2 dz′

=
∫
R2d

‖�(z′)‖L2‖VS(ϕ0)(z
′ − z)‖L2 dz′ by (24).

By [23, Prop. 11.1.3] the space L p,q
m (R2d) satisfies the convolution relation

‖F ∗ G‖L p,q
m

≤ ‖F‖L p,q
m

‖G‖L1
v

(25)

for F ∈ L p,q
m (R2d) and G ∈ L1

v(R
2d). With F(z) = ‖�(z)‖L2 and G(z) =

‖VS(ϕ0)(−z)‖L2 the calculation above states that

|Vϕ0(V
∗
S(�))(z)| ≤ F ∗ G(z),

which in light of (25) gives

‖Vϕ0(V
∗
S�)‖L p,q

m
≤ ‖F‖L p,q

m
‖G‖L1

v

= ‖�‖L p,q
m (R2d ;L2)‖VS(ϕ0)‖L1

v(R2d ;L2)

≤ ‖�‖L p,q
m (R2d ;L2)C

m
v ‖S∗‖N ‖ϕ0‖M1

v
,

where we have used Lemma 5.2 in the last step. The reader should also note that
‖VS(ϕ0)‖L1

v(R2d ;L2) = ‖G‖L1
v
is a straightforward computation, but relies on our

assumption that v(−z) = v(z).
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Finally, we also need that the inversion formulaV∗
SVSψ = ‖S‖2HSψ from Lemma

4.3 remains valid on the other modulation spaces.

Lemma 5.4 Let ψ ∈ M∞
1/v(R

2d). Then ‖S‖2HS · ψ = V∗
SVS(ψ).

Proof We need to show that for φ ∈ M1
v (Rd) we have〈

V∗
SVSψ, φ

〉
M∞

1/v,M1
v

= ‖S‖2HS 〈ψ, φ〉M∞
1/v,M1

v
.

As a preliminary step, we rewrite the left hand side of this expression in a way that
involves explictly the action of ψ as a functional:

〈
V∗

SVS(ψ), φ
〉
M∞

1/v,M1
v

=
∫
R2d

〈VS(ψ)(z),VS(φ)(z)〉L2 dz

=
∫
R2d

〈
Sπ(z)∗ψ, Sπ(z)∗φ

〉
L2 dz

=
∫
R2d

〈
π(z)∗ψ, S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz by (14)

=
∫
R2d

〈
ψ,π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz by (22).

Hence it suffices to show that∫
R2d

〈
ψ,π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz = ‖S‖2HS 〈ψ, φ〉M∞
1/v,M1

v
.

When ψ ∈ L2(Rd) ⊂ M∞
1/v(R

d), this holds by Lemma 4.3. To proceed, we will

use that for any ψ ∈ M∞
1/v(R

d) there exists a sequence {ψn}∞n=1 in L2(Rd) with

‖ψn‖M∞
1/v

� ‖ψ‖M∞
1/v

such thatψn converges toψ in the weak* topology of M∞
1/v(R

d)

as n → ∞; a construction of such a sequencemay be found in the proof of [15, Cor. 7].
Let us define

�n := ‖S‖2HS 〈ψn, φ〉M∞
1/v,M1

v

=
∫
R2d

〈
ψn, π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz.

Using the upper expression for �n above, we have that �n → ‖S‖2HS 〈ψ, φ〉M∞
1/v,M1

v

as n → ∞ by the weak* convergence of ψn to ψ . Using the lower expression, we
find – assuming for now that the limit may be taken inside the integral – that

lim
n→∞ �n = lim

n→∞

∫
R2d

〈
ψn, π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz

=
∫
R2d

lim
n→∞

〈
ψn, π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz

=
∫
R2d

〈
ψ,π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz.
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Hence we have shown that
∫
R2d

〈
ψ,π(z)S∗Sπ(z)∗φ

〉
M∞

1/v,M1
v

dz = lim
n→∞ �n = ‖S‖2HS 〈ψ, φ〉M∞

1/v,M1
v
,

which means that we are done once the interchange of the limit and integral has been
justified. For each n we may bound the integrand by

| 〈ψn , π(z)S∗Sπ(z)∗φ
〉
M∞
1/v,M1

v
| ≤ ‖ψn‖M∞

1/v
· ‖π(z)S∗Sπ(z)∗φ‖M1

v

� ‖ψ‖M∞
1/v

· v(z) · ‖S∗‖N · ‖Sπ(z)∗φ‖L2

= ‖ψ‖M∞
1/v

· ‖S∗‖N · v(z) · ‖VS(φ)(z)‖L2 ,

where we use (8) and (12) to move to the second line. Since φ ∈ M1
v (Rd), it follows

by Lemma 5.2 that z �→ v(z) · ‖VS(φ)(z)‖L2 is an integrable function. Hence we may
apply the dominated convergence theorem.

The proof of Theorem 5.1 is now straightforward.

Proof of Theorem 5.1 The upper bound

‖VS(ψ)‖L p,q
m (R2d ;L2) ≤ Cm

v ‖S∗‖N · ‖ψ‖M p,q
m

is the content of Lemma 5.2. By using the inversion formula and Lemma 5.3 we obtain

‖ψ‖M p,q
m

= 1

‖S‖2HS
‖V∗

SVSψ‖M p,q
m

≤ Cm
v ‖S∗‖N · ‖ϕ0‖M1

v

‖S‖2HS
‖VS(ψ)‖L p,q

m (R2d ;L2),

which implies the lower bound.

Remark 5 A different proof of a lower bound, more in line with the arguments in the
proof of [26, Prop. 2.2] (see Sect. 6 for more on this result), is to use that S has a
singular value decomposition

S =
∞∑

n=1

λnηn ⊗ ξn,

where λn is a summable sequence of non-negative numbers and {ηn}∞n=1, {ξn}∞n=1 are
orthonormal sequences in L2(Rd). It is easy to check that since S∗ is bounded from
L2(Rd) to M1

v (Rd), we must have ξn ∈ M1
v (Rd) for all n ∈ N. Then we find that

‖Sπ(z)∗ψ‖2L2 =
∥∥∥∥∥

∞∑
n=1

λn Vξn ψ(z)ηn

∥∥∥∥∥
2

L2

=
∞∑

n=1

λ2n|Vξn ψ(z)|2.
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Hence ‖Sπ(z)∗ψ‖L2 ≥ λ1|Vξ1ψ(z)|, which leads to a lower bound by Theorem 2.3.
Wehave chosen to prove the lower bound in termsofV∗

S to emphasize the interpretation
of our results as an STFT with operators as windows.

As a first example we make sure that our result includes the well-known window
independence from Theorem 2.3 as a special case.

Example 5.5 As in Example 3.6, we consider {φn}N
n=1 ⊂ M1

v (Rd), let {ξn}N
n=1 be an

orthonormal set in L2(Rd) and define S = ∑N
n=1 ξn ⊗ φn . For ψ ∈ M∞

1/v(R
d) we

then have

VS(ψ)(z) =
N∑

n=1

Vφn ψ(z)ξn .

By the orthonormality of the ξn’s we therefore have

‖VS(ψ)(z)‖2L2 =
N∑

n=1

|Vφn ψ(z)|2.

It follows by Theorem 5.1 that

Clower · ‖ψ‖M p,q
m

≤
∥∥∥∥∥∥

√√√√ N∑
n=1

|Vφn ψ |2
∥∥∥∥∥∥

L p,q
m

≤ Cupper · ‖ψ‖M p,q
m

.

In particular, if N = 1 we recover Theorem 2.3 in the form

Clower · ‖ψ‖M p,q
m

≤ ∥∥Vφ1ψ
∥∥

L p,q
m

≤ Cupper · ‖ψ‖M p,q
m

,

and it is easy to show that in this case

Cupper = Cm
v · ‖φ1‖M1

v

Clower = ‖φ1‖2L2 · (Cm
v · ‖φ1‖M1

v
· ‖ϕ0‖M1

v
)−1.

6 TheWeyl Calculus and Bony–Chemin Spaces

In Sect. 3.1 we defined Hilbert–Schmidt operators as integral operators, but any
Hilbert–Schmidt operator can also be described as a Weyl operator. To define Weyl
operators, we first introduce the cross-Wigner distribution of φ,ψ ∈ L2(Rd), which
is the function

W (ψ, φ)(x, ω) =
∫
Rd

ψ(x + t/2)φ(x − t/2)e−2π iω·t dt for x, ω ∈ R
d . (26)
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When ψ = φ we write W (ψ) = W (ψ,ψ). Given a ∈ L2(R2d), we can define the
Weyl operator La ∈ HS by requiring that

〈Laφ,ψ〉L2 = 〈a, W (ψ, φ)〉L2 for all ψ, φ ∈ L2(Rd).

The operator La is called the Weyl transform of a, and a is the Weyl symbol of La . It
is well-known that the Weyl transform a �→ La is unitary from L2(R2d) to HS. In
particular, every T ∈ HS has a unique Weyl symbol a ∈ L2(R2d) such that T = La .

An interesting property of theWeyl symbol is its interactionwith the time-frequency
shifts. In fact, we have by [33, Lem. 3.2] that

π(z)Laπ(z)∗ = LTz(a),

where Tz f (z′) = f (z′ − z) for functions f on R2d . Since π(z) is unitary on L2(Rd),
this means that for a ∈ L2(R2d) we have

‖VLa ψ(z)‖L2 = ‖π(z)Laπ(z)∗ψ‖L2 = ‖LTz(a)ψ‖L2 .

We may therefore reformulate Theorem 5.1 in terms of the Weyl transform.

Theorem 6.1 Let 0 �= a ∈ L2(R2d) such that (La)∗ ∈ N (L2, M1
v ). For any 1 ≤

p, q ≤ ∞ and v-moderate weight m, we have

‖ψ‖M p,q
m

�
(∫

Rd

(∫
Rd

‖LT(x,ω)(a)ψ‖p
L2m(x, ω)p dx

)q/p

dω

) 1
q

.

The above theorem generalizes a result by Gröchenig and Toft in [26, Prop. 2.2],
who showed that the the middle expression above defines an equivalent norm on
M2

m(Rd), i.e.

‖ψ‖2M2
m

�
∫
Rd

∫
Rd

‖LT(x,ω)(a)ψ‖2L2m(x, ω)2 dxdω, (27)

under the assumptions that m is of polynomial growth and a is a Schwartz function
(stronger conditions are stated in [26], but their proof uses only that a ∈ S (Rd)).
In fact, it is shown in [26] that the space of ψ ∈ S ′(Rd) such that the right hand
side of (27) is finite coincides with a space H(m, g) introduced by Bony and Chemin
[9, Def. 5.1] when g is the standard Euclidean metric on R

2d . Hence (27) states that
H(m, g) = M2

m(Rd) with equivalent norms.
Theorem 6.1 extends (27) in several directions. It extends from p = q = 2 to

any 1 ≤ p, q ≤ ∞ and from polynomial weights to general v-moderate weights.
Our requirements on the Weyl symbol a are also weaker, although this is slightly
obscured by the mysterious requirement that (La)∗ ∈ N (L2, M1

v ). By Proposition
3.3 the condition S∗ ∈ N (L2, M1

v ) means that the integral kernel kS belongs to the
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projective tensor product L2(Rd)⊗̂M1
v (Rd), and theWeyl symbol a and kS are related

by [29]

kS(x, y) =
∫
Rd

a

(
x + y

2
, ω

)
e2π iω·(x−y) dω. (28)

Understanding the condition (La)∗ ∈ N (L2, M1
v ) thus boils down to understand-

ing what assumptions we need on a to ensure that the kernel kS in (28) belongs to
L2(Rd)⊗̂M1

v (Rd).

6.1 PolynomialWeights

By restricting our attention to polynomial weights vs(z) = (1 + |z|2)s/2 for s ≥ 0,
we obtain some sufficient conditions for (La)∗ ∈ N (L2, M1

vs
), so that Theorem 6.1

holds.

Example 6.2 (Schwartz symbols) If v = vs for s ≥ 0, we know from Example 3.4
that the Schwartz operators S, i.e. operators T with kT ∈ S (R2d), form a subspace
of N (L2, M1

v ). Furthermore, the space S is closed under taking adjoints, and may
equivalently be described as the Weyl operators La with a ∈ S (R2d) [31]. Taken
together, this means that a ∈ S (R2d) implies (La)∗ ∈ S ⊂ N (L2, M1

vs
). Thus

Theorem 6.1 applies for all Schwartz functions a.

We then prove a slightly more refined result. Below we denote by v4d
s the weight

function on R
4d given by v4d

s (z, ζ ) = (1 + |z|2 + |ζ |2)s/2.

Proposition 6.3 If a ∈ M1
v4d
2s

(R2d) for s ≥ 0, then (La)∗ ∈ N (L2; M1
vs

). Hence

Theorem 6.1 applies with v = vs .

Proof Recall from (16) that with vs⊗̃vs(x1, x2, ω1, ω2) = vs(x1, ω1) · vs(x2, ω2),

we have the equality M1
vs⊗̃vs

(R2d) = M1
vs

(Rd)⊗̂M1
vs

(Rd). One easily checks that

vs⊗̃vs � v4d
2s , which implies by part b) of Propositions 2.2 and 3.3 that

M1
v4d
2s

(R2d) ↪→ M1
vs⊗̃vs

(R2d) = M1
vs

(Rd)⊗̂M1
vs

(Rd) ↪→ L2(Rd)⊗̂M1
vs

(Rd).

By [29, Prop. 7.4.1], if a ∈ M1
v4d
2s

(R2d) then the integral kernel kLa also sat-

isfies kLa ∈ M1
v4d
2s

(R2d). By the chain of inclusions above, it follows that kLa ∈
L2(Rd)⊗̂M1

vs
(Rd), which implies (La)∗ ∈ N (L2, M1

vs
) by Proposition 3.3.

When s = 0 the condition above is rather weak, as M1(R2d) even contains non-
differentiable functions.

7 Cohen’s Class

Another interesting interpretation of Theorem 5.1 is in terms of Cohen’s class of time-
frequency distributions introduced by Cohen in [10]. Typically the definition of the
Cohen’s class distribution Qa associated with a ∈ S ′(R2d) is that [23]
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Qa(ψ) = a ∗ W (ψ) for any ψ ∈ S (Rd). (29)

One can show that ψ ∈ S (Rd) implies that W (ψ) ∈ S (R2d), so (29) is well-
defined as the convolution of a tempered distribution with a Schwartz function. All our
examples will satisfy a ∈ L2(R2d), and in this case Qa(ψ) is defined by (29) for any
ψ ∈ L2(Rd), as a slight modification ofMoyal’s identity gives that W (ψ) ∈ L2(R2d),
so (29) is well-defined by Young’s inequality.

In [34] we have given an alternative description of Cohen’s class. Given a Hilbert–
Schmidt operator T ∈ HS, we define the Cohen’s class distribution QT associated
with T by

QT (ψ)(z) = 〈T π(z)∗ψ,π(z)∗ψ
〉
L2 . (30)

Any Cohen class distribution Qa for a ∈ L2(R2d) can equivalently be described
using (30), since it follows from [34, Prop. 7.1] that

Qa(ψ) = QLǎ (ψ),

where L denotes theWeyl transformand ǎ(z) = a(−z). Fromnowonwewill therefore
write Cohen’s class distributions in the form QT for T ∈ HS rather than using (29).

In light of (30) we clearly have the relation

‖VS(ψ)(z)‖2L2 = 〈Sπ(z)∗ψ, Sπ(z)∗ψ
〉
L2 = QS∗S(ψ)(z). (31)

Hence ‖VS(ψ)(z)‖L2 = √
QS∗S(ψ)(z), and we see that another reinterpretation

of Theorem 5.1 is the following.

Theorem 7.1 Let 0 �= S ∈ HS such that S∗ ∈ N (L2, M1
v ). For any 1 ≤ p, q ≤ ∞

and v-moderate weight m, we have

‖ψ‖M p,q
m

�
∥∥∥√QS∗S(ψ)

∥∥∥
L p,q

m (R2d )
.

Example 7.2 (Spectrograms) To see why the square root appears in Theorem 7.1, it
is worth recalling the simple case of S = ξ ⊗ φ for some 0 �= φ ∈ M1

v (Rd) and
‖ξ‖L2 = 1. Then S∗S = φ ⊗ φ, and one may check that

QS∗S(ψ)(z) = |Vφψ(z)|2.

This is the so-called spectrogram of ψ with window φ, and we know from Theorem
2.3 that ‖ψ‖M p,q

m
� ‖Vφψ‖L p,q

m
, hence we need the square root in Theorem 7.1.

Remark 6 Wehave skipped one technical detail in the Theorem 7.1 above, namely how
to interpret QT (ψ) for ψ ∈ M∞

1/v(R
2d). This is certainly not immediately covered by

(29) or (30). We solve this issue by rewriting QT (ψ) to

QT (ψ) = 〈π(z)∗ψ, T ∗π(z)∗ψ
〉
L2

and then replacing the bracket by duality:
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QT (ψ) := 〈π(z)∗ψ, T ∗π(z)∗ψ
〉
M∞

1/v,M1
v
. (32)

This defines QT (ψ) for ψ ∈ M∞
1/v(R

2d) whenever T ∗ maps M∞
1/v(R

d) into M1
v (Rd),

which is true if T = S∗S for S∗ ∈ N (L2, M1
v ) or if kT ∈ M1

v⊗̃v
(R2d), see [38,

Prop. 4.1] for a proof. It is straightforward to check that (30) and (32) agree when
ψ ∈ L2(Rd), and that QT (ψ)(z) = ‖VS(ψ)(z)‖2

L2 when T = S∗S.

7.1 On Positive Cohen Class Distributions

The reader will not fail to notice that the Cohen class distributions for which Theorem
7.1 applies are of a particular kind, namely of the form QT for T = S∗S with S∗ ∈
N (L2, M1

v ).
The condition S∗ ∈ N (L2, M1

v ) may be interpreted as requiring a certain time-
frequency localization for QS∗S , as one can show that S∗ ∈ N (L2, M1

v ) implies that
the integral kernel kS∗S belongs to M1

v (Rd)⊗̂M1
v (Rd). If S = ξ ⊗ φ for ‖ξ‖L2 = 1,

which we know from Example 7.2 corresponds to choosing the window φ for the
modulation spaces, then S∗S = φ⊗φ, which has integral kernel in M1

v (Rd)⊗̂M1
v (Rd)

precisely when φ ∈ M1
v (Rd). Hence requiring S∗ ∈ N (L2, M1

v ) seems like a natural
generalization of the assumption in Theorem2.3 thatwindowsφ formodulation spaces
need to satisfy φ ∈ M1

v (Rd).
In addition, the fact that T = S∗S means that T is a positive operator. By [34,

Prop. 7.3], this is equivalent to QT (ψ) being a non-negative function for each ψ ∈
L2(Rd). This assumption cannot simply be replaced by considering |QT (ψ)|, as the
following example shows.

Example 7.3 Let φ1 and φ2 be compactly supported functions inS (Rd) such that their
supports do not overlap. Define T = φ1⊗φ2. Then the integral kernel (or equivalently
the Weyl symbol) of T belongs toS (R2d), and has good time-frequency localization
in this sense. However, T is not a positive operator as φ1 �= φ2, and Theorem 7.1 fails
when replacing QS∗S by |QT |: for instance, one easily finds using that (32) that when
δ is the Dirac delta distribution

QT (δ)(z) = φ1(x)φ2(x) ≡ 0.

An obvious question is whether the positivity and good time-frequency properties
exhibited by QS∗S when S∗ ∈ N (L2, M1

v ) are sufficient for Theorem 7.1 to hold:

If T ∈ HS has integral kernel in M1
v (Rd)⊗̂M1

v (Rd) and is a positive operator
on L2(Rd), does a version of Theorem 7.1 hold with QS∗S replaced by QT ?

As a first step in this direction, we note that the statement is true if T ∈ S, i.e. if
kT ∈ S (R2d), as [31, Prop. 3.15] states that if T ∈ S is positive, then

√
T ∈ S.

Theorem 7.4 Let T ∈ S be a non-zero positive operator, and assume that v grows at
most polynomially. Then, for any 1 ≤ p, q ≤ ∞ and v-moderate weight m, we have

‖ψ‖M p,q
m

�
∥∥∥√QT (ψ)

∥∥∥
L p,q

m
.
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Proof As noted, S := √
T ∈ S. Then T = S∗S, and we saw in Example 3.4 that

S ∈ S implies that S ∈ N (L2, M1
v ) under the assumption that v grows at most

polynomially. The result therefore follows by Theorem 7.1.

This theorem can also be formulated using the classic definition (29) of Cohen’s
class. In this formulation it states that if a ∈ S (R2d) and Qa(ψ) is a non-negative
function for each ψ ∈ L2(Rd), then ‖ψ‖M p,q

m
� ‖√Qa(ψ)‖L p,q

m
.

A question for further research is then if the same holds for M1
v⊗̃v

(R2d): if T is a

positive operator with kT ∈ M1
v⊗̃v

(R2d), what can we say about k√
T ?

8 Examples: Localization Operators

We now return to the localization operators considered in Sect. 3.3.1 by choosing S =
Aϕ1,ϕ2

f with ϕ1 ∈ M1
v (Rd), ϕ2 ∈ L2(Rd) and f ∈ L1

v(R
2d). Then S∗ ∈ N (L2, M1

v )

by Corollary 3.8. To apply Theorem 5.1 to this example, we first note that a calculation
gives

π(z)Aϕ1,ϕ2
f π(z)∗ = Aϕ1,ϕ2

Tz( f ),

i.e. conjugating the localization operator by π(z) amounts to translating f by z. As
we saw in Sect. 6 we also have by the unitarity of π(z) that

‖VAϕ1,ϕ2
f

ψ(z)‖L2 = ‖π(z)Aϕ1,ϕ2
f π(z)∗ψ‖L2 = ‖Aϕ1,ϕ2

Tz( f )(ψ)‖L2 , (33)

hence we obtain the following from Theorem 5.1.

Theorem 8.1 Assume that ϕ1 ∈ M1
v (Rd), ϕ2 ∈ L2(Rd) and f ∈ L1

v(R
2d). For any

1 ≤ p, q ≤ ∞ and v-moderate weight m, we have

(∫
Rd

(∫
Rd

∥∥∥Aϕ1,ϕ2
T(x,ω)( f )(ψ)

∥∥∥p

L2
m(x, ω)p dx

)q/p

dω

)1/q

� ‖ψ‖M p,q
m

,

where the integrals are replaced by supremums if p = ∞ or q = ∞.

In light of (31) and (33), we know that

∥∥∥Aϕ1,ϕ2
T(x,ω)( f )(ψ)

∥∥∥2
L2

= QT (ψ)

where T =
(
Aϕ1,ϕ2

f

)∗ Aϕ1,ϕ2
f = Aϕ2,ϕ1

f
Aϕ1,ϕ2

f . In this sense Theorem 8.1 concerns

the study of a particular kind of Cohen’s class distribution.

Remark 7 We mention that there is another line of research that leads to equivalent
norms for modulation spaces in terms of localization operators, see [1, 8, 26, 27].
In this approach one considers weights function m, m0 and shows that under various
conditions on m the localization operator Aϕ,ϕ

m is an isomorphism from M p,q
m0 (Rd) to
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M p,q
m0/m(Rd). This implies a norm equivalence ‖ψ‖M p,q

m0
� ‖Aϕ,ϕ

m ψ‖M p,q
m0/m

, which is

of a different nature than the one we consider.

8.1 Modulation Spaces as Time–FrequencyWiener Amalgam Spaces

A consequence of Theorem 8.1 is that we may interpret modulation spaces as a time-
frequency version of the so-called Wiener amalgam spaces [17]; a class of function
function spaces that have been closely tied to the development of modulation spaces
since the inception of the latter in [17]. To explain this interpretation, we start by
considering for ϕ ∈ M1

v (Rd) and f ∈ L1
v(R

2d) the localization operator

Aϕ,ϕ
f (ψ) =

∫
R2d

f (z)Vϕψ(z)π(z)ϕ dz. (34)

In time-frequency analysis, when ϕ is well-localized in time and frequency such as
the Gaussian, the size of |Vϕψ(x, ω)| is interpreted as a measure of the contribution
of the frequency ω at time x of the signal ψ . By the reconstruction formula

ψ = 1

‖ϕ‖2
L2

∫
R2d

Vϕψ(z)π(z)ϕ dz (35)

we can recoverψ from Vϕψ , and (34) finds a natural interpretation as a multiplication
operator in the time-frequency plane: we represent ψ in the time-frequency plane
by forming Vϕψ , but before we reconstruct ψ from Vϕψ we multiply it by f (z). A
particular choice of f is to let f be the characteristic function χ� for some compact
subset �. Then

Aϕ,ϕ

Tz(χ�)(ψ) =
∫
R2d

χz+�(z′)Vϕψ(z′)π(z′)ψ dz′,

which in light of (35)maybe interpreted as saying thatAϕ,ϕ

Tz(χ�) picks out the component
of ψ localized in z + � := {z + z′ : z′ ∈ �} in the time-frequency plane. Theorem
8.1 says that an equivalent norm on M p,q

m (Rd) is given by first measuring the local
size of ψ near z in the time-frequency plane by ‖Aϕ,ϕ

Tz(χ�)ψ‖L2 , and then measuring

the global properties of ψ by taking the L p,q
m norm.

When p = q, this parallels the definition of theWiener amalgam space W (L2, L p
w)

with local component L2 and global component L p
w. For a fixed, compact domain

Q ⊂ R
d , the Wiener amalgam space W (L2, L p

w) for 1 ≤ p ≤ ∞ and a weight
function w on Rd consists of all functions ψ : Rd → C such that

‖ψ‖W (L2,L p
w) :=

(∫
Rd

∥∥χx+Q · ψ
∥∥p

L2 w(x)p dx

)1/p

.

Since we interpretAϕ,ϕ

Tz(χ�)(ψ) asψ localized to z +� in the time-frequency plane and
χx+Q · ψ is the localization of ψ to x + Q in time, Theorem 8.1 says that modulation
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spaces are the natural analogues ofWiener amalgam spaces when we localizeψ in the
time-frequency plane using Aϕ,ϕ

χ� , not just in time by multiplying with χQ . We have
merely scratched the surface of Wiener amalgam spaces, and the interested reader
should consult the survey [28]. However, it is worth noting that when the cutoff-
function χQ is replaced by a smooth cutoff-function φ satisfying

∑
�∈Zd T�(φ) ≡ 1,

then an equivalent norm on W (L2, L p
w) is given by

⎛
⎝∑

�∈Zd

‖T�(φ) · ψ‖p
L2w(�)p

⎞
⎠

1/p

.

The fact that modulation spaces have a similar discrete description has already been
shown by Dörfler, Feichtinger and Gröchenig in [14, 15] (also more generally by
Romero [36]): if f ∈ L1

v(R
2d) satisfies

∑
( j,k)∈Z2d

T( j,k)( f ) � 1,

then an equivalent norm on M p,q
m (Rd) is given by

⎛
⎜⎝∑

k∈Zd

⎛
⎝∑

j∈Zd

‖Aϕ,ϕ

T( j,k)( f )(ψ)‖p
L2m( j, k)p

⎞
⎠

q/p
⎞
⎟⎠

1/q

. (36)

The interpretation of modulation spaces as Wiener amalgam spaces in the time-
frequency plane does of course also follow from these earlier results, but we include
it here as the author was not able to locate an explicit formulation of this insight in
the literature. Finally, we remark that the local component L2 in W (L2, L p

w) can be
replaced by several other function spaces X to obtain new Wiener amalgam spaces
W (X , L p

m). One might therefore naturally replace the L2-norm in Theorem 8.1 or
Theorem 5.1 by another function space norm and investigate the resulting function
spaces, and Romero [36, Thm. 7] has shown that (36) still defines an equivalent norm
on M p,q

m (Rd) when the L2-norm is replaced by the norm of any unweighted modula-
tion space M p0,q0(Rd).

8.2 Smoothing Spectrograms

So far in this section we have picked S to be a localization operator Aϕ1,ϕ2
f , which

corresponds to studying the Cohen’s class distribution QT for T = Aϕ2,ϕ1

f
Aϕ1,ϕ2

f .

However, we may also proceed as in Sect. 7.1 and study the Cohen class distribution
QT for T = Aϕ,ϕ

f , where f ∈ L1
v(R

2d) is a non-negative function and ϕ ∈ M1
v (Rd).

The fact that f is non-negative implies that T is a positive operator, and it is not
difficult to show that

QAϕ,ϕ
f

(ψ)(z) = f̃ ∗ |Vϕψ(z)|2(z),
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i.e. the Cohen class of Aϕ,ϕ
f is a smoothed spectrogram. Theorem 7.1 says that if

Aϕ,ϕ
f = S∗S for some S∗ ∈ N (L2, M1

v ), then

‖ψ‖M p,q
m

�
∥∥∥∥
√

f ∗ |Vϕψ |2
∥∥∥∥

L p,q
m (R2d )

.

As we discussed in Sect. 7.1, the existence of such S is not clear in general, but if
Aϕ,ϕ

f ∈ S we can use Theorem 7.4 to deduce the following result.

Proposition 8.2 Let ϕ ∈ S (Rd) and let f ∈ L1(R2d) be a positive function of
compact support. If v grows at most polynomially and m is v-moderate, then

‖ψ‖M p,q
m

�
∥∥∥∥
√

f ∗ |Vϕψ |2
∥∥∥∥

L p,q
m (R2d )

.

Proof TheWeyl symbol ofAϕ,ϕ
f is the function f ∗W (ϕ), see for instance [7, Lem. 2.4].

As ϕ ∈ S (Rd) it follows by [23,Lem. 14.5.1] that W (ϕ) ∈ S (R2d). Hence the
assumptions on f imply that f ∗ W (ϕ) ∈ S (R2d), which means thatAϕ,ϕ

f ∈ S. The
result therefore follows by Theorem 7.4.
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Proof of Proposition 3.9

Proof of Proposition 3.9 First recall from Sect. 6 that B consists precisely of those
T ∈ HS such that the Weyl symbol aT belongs to M1(R2d). Then recall that we
assume

T =
∫
R2d

F(x, ω)e−iπx ·ωπ(x, ω) dxdω,

where F(x, ω) ∈ L2(R2d) has compact support, say supp(F) ⊂ K for K ⊂ R
2d

compact. As in [33], we denote the function F by FW (T ) – it plays the role of a
Fourier transform of the operator T in quantum harmonic analysis.

One can show that
FW (T ) = Fσ (aT ),

http://creativecommons.org/licenses/by/4.0/
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where Fσ ( f ) is the symplectic Fourier transform of f ∈ L1(R2d) given by

Fσ f (x, ω) =
∫
R2d

f (x ′, ω′)e−2π i(x ′·ω−x ·ω′) dx ′dω′ for x, x ′, ω, ω′ ∈ R
d .

Then fix some R ∈ B such that FW (R) has no zeros, an explicit example is
R = ϕ0 ⊗ ϕ0 [33, Ex. 6.1]. As R ∈ B, we have aR = FσFW (R) ∈ M1(R2d).

Since aR ∈ L1(R2d) and Fσ (aR) = FW (R) never vanishes, the Wiener-Lévy
theorem [35, Thm. 3.1] implies the existence of some h ∈ L1(R2d) such that

Fσ (h)(z) = 1

Fσ (aR)
= 1

FW (R)(z)
for z ∈ K .

Then define the operator
T ′ = (h ∗ aR)�T ,

where � is the operation from (17). The “Fourier transform” FW interacts with the
convolutions in the expected way [33, Prop. 6.4]; more precisely, we have that

FW (T ′) = Fσ (h)FW (R)FW (T ) = FW (T )

by construction of h. As FW is injective, see [21, Cor. 7.6.3], it follows that T = T ′.
On the other hand, the function b := h ∗ aR belongs to M1(R2d) since L1(R2d) ∗

M1(R2d) ⊂ M1(R2d) by [23, Prop. 12.1.7]. The Weyl symbol of T = T ′ = b�T is
given by aT = b ∗ aT [34, Prop. 5.2]. Since b ∈ M1(R2d) and T ∈ S, [33, Thm. 8.1]
implies1 that aT = b ∗ aT ∈ M1(R2d), hence T ∈ B.
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