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Abstract
We prove a pointwise estimate for the decreasing rearrangement of T f , where T is
any sublinear operator satisfying the weak-type boundedness

T : L p,1(μ) → L p,∞(ν), ∀p : 1 < p0 < p ≤ p1 < ∞,

with norm controlled by Cϕ

([
p−1
0 − p−1

]−1
)

and ϕ satisfies some admissibility

conditions. The pointwise estimate is:

(T f )∗ν(t) � 1

p0 − 1

(
1

t
1
p0

∫ t

0
ϕ
(
1 − log

r

t

)
f ∗
μ(r)

dr

r
1− 1

p0

+ 1

t
1
p1

∫ ∞
t

f ∗
μ(r)

dr

r
1− 1

p1

)
.

In particular, this estimate allows to obtain extensions of Yano’s extrapolation results.
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1 Introduction

In 1951, Yano (see [10, 11]) using the ideas of Titchmarsh in [9], proved that for every
sublinear operator T satisfying that, for some α > 0 and for every 1 < p ≤ p1,

T : L p(μ) −→ L p(ν),
C

(p − 1)α
,

where (M, μ) and (N , ν) are two finite measure spaces, it holds that

T : L(log L)α(μ) −→ L1(ν).

Here and all over the paper, given two function spaces E and F ,

T : E −→ F, C,

means that, for every function f ∈ E ,

||T f ||F ≤ C || f ||E .

Also, let us recall that the space L(log L)α(μ) is defined as the set of μ-measurable
functions such that

|| f ||L(log L)α(μ) =
∫ ∞

0
f ∗
μ(t)

(
1 + log+ 1

t

)α

dt < ∞,

where a+ = max(a, 0), for every a ∈ R, f ∗
μ is the decreasing rearrangement of f

with respect to the measure μ defined as

f ∗
μ(t) = inf

{
y > 0 : λ

μ
f (y) ≤ t

}
, t > 0,

and

λ
μ
f (y) = μ

({
x ∈ R

n : | f (x)| > y
})

, y > 0,

is the distribution function of f with respect to μ. (Here we are using the standard
notation μ(E) = ∫

E dμ(x) for every μ-measurable set E ⊆ X . If dμ = dx , we shall
write f ∗, λ f (y) and |E |. See [4] for more details about this topic).

If the measures involved are not finite, but they are σ -finite, it was proved in [5]
and [6] that under a weaker condition on the operator T , namely

(∫
N

|TχA(x)|p dν(x)

)1/p

≤ C

p − 1
μ(A)1/p,
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for every μ-measurable set A ⊂ M and every 1 < p ≤ p0, with C independent of A
and p, then

T : L(log L)α(μ) −→ M(φ),

where M(φ) is the maximal Lorentz space associated to the function φ(t) = t
1+log+ t

,
t > 0; that is,

‖ f ‖M(φ) = sup
t>0

φ(t) f ∗∗
ν (t) = sup

t>1

t f ∗∗
ν (t)

1 + log t
,

where f ∗∗
ν (t) = 1

t

∫ t
0 f ∗

ν (s) ds, t > 0. These results belong towhat is known asYano’s
extrapolation theory.

On the other hand, in [11,p. 119] it was seen that if T is a sublinear operator
satisfying

‖T f ‖L p(ν) ≤ Cp‖ f ‖L p(μ), (1.1)

for every p near ∞ and for μ and ν being finite measures, then

T : L∞(μ) −→ Lexp(ν),

where Lexp(ν) is the set of ν-measurable functions satisfying that

|| f ||Lexp(ν) = sup
0<t<1

f ∗∗
ν (t)

1 + log 1
t

,

and this result was also extended to the case of general measures (see [6]) proving
that, if T is a sublinear operator satisfying (1.1), then

sup
0<t<1

(T f )∗∗
ν (t)

1 + log 1
t

� || f ||L∞(μ) +
∫ ∞

1
f ∗∗
μ (s)

ds

s
, (1.2)

where, as usual, we write A � B if there exists a positive constantC > 0, independent
of A and B, such that A ≤ CB. If A � B and B � A, then we write A ≈ B.
These results belong to what is known as Zygmund’s extrapolation theory.

For the purpose of this work, it is also interesting to mention that results analogous
to the ones mentioned above are known in the case that, for some 1 < p0 < p1 < ∞
and every p0 < p < p1,

T : L p(μ) −→ L p(ν)

with

||T ||L p(μ)−→L p(ν) � 1

(p − p0)α
or ||T ||L p(μ)−→L p(ν) � 1

(p1 − p)α
, α > 0.
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The exact statements are the following:

Theorem 1.1 [7] Let T be a sublinear operator satisfying that for every p0 < p ≤ p1,

T : L p(μ) −→ L p(ν),
C

p − p0
.

Then,

sup
t>1

( ∫ t

0
(T f )∗ν(s)p0 ds

)1/p0
1 + log t

� ‖ f ‖L p0 (μ) +
∫ 1

0

( ∫ r

0
f ∗
μ(s)p0 ds

)1/p0
r

dr .

Theorem 1.2 [7] Let T be a sublinear operator satisfying that for every p0 ≤ p < p1,

T : L p(μ) −→ L p(ν),
C

p1 − p
.

Then,

sup
0<t<1

( ∫ ∞

t
(T f )∗ν(s)p1 ds

)1/p1
1 + log 1

t

� ‖ f ‖L p1 (μ) +
∫ ∞

1

( ∫ ∞

r
f ∗
μ(s)p1 ds

)1/p1
r

dr .

There is also aYano’s extrapolation theorem concerningweak-type spaces. In 1996,
Antonov [2] proved that there is almost everywhere convergence for the Fourier series
of every function in L log L log3 L(T), where T represents the unit circle and, for an
arbitrary σ -finite measure μ,

|| f ||L log L log3 L(μ) =
∫ ∞

0
f ∗
μ(t) log1

1

t
log3

1

t
dt < ∞,

with

log1 t = 1 + log+ t and logk t = log1 logk−1 t for k > 1, t > 0.

(1.3)

Indeed, even though he did not write it explicitly, behind his ideas there is an extrap-
olation argument (see [3, 5] for more details). Before we make its statement precise,
let us recall that, given 1 ≤ p < ∞ and 0 < q < ∞, the Lorentz spaces L p,q(μ) are
defined as the set of μ-measurable functions f such that

‖ f ‖L p,q (μ) =
(∫ ∞

0
t
q
p −1 f ∗

μ(t)q dt

)1/q

=
(
p
∫ ∞

0
tq−1λ

μ
f (y)

q
p dy

)1/q

< ∞,
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and

‖ f ‖L p,∞(μ) = sup
t>0

t
1
p f ∗

μ(t) = sup
y>0

yλμ
f (y)

1
p < ∞.

Theorem 1.3 If T is a sublinear operator such that for some α > 0 and for every
1 < p ≤ p0,

T : L p,1(μ) → L p,∞(ν),
C

(p − 1)α
,

then

T : L(log L)α log3 L(μ) → L1,∞(ν).

Since all the spaces mentioned above are rearrangement invariant, all the results
could be also obtained if we find a good estimate for the function (T f )∗ and, moreover,
in this case, we can deduce boundedness of T in other rearrangement invariant spaces
as well. At this point, we should recall the following well-known pointwise estimate:

Theorem 1.4 [4,Ch. 4.4 Theorem 4.11] Let 1 ≤ p0 < p1 < ∞. A sublinear operator
T satisfies that

T : L p0,1(μ) → L p0,∞(ν) and T : L p1,1(μ) → L p1,∞(ν),

if and only if, for every t > 0 and every μ-measurable function f ,

(T f )∗ν(t) � 1

t
1
p0

∫ t

0
f ∗
μ(s)

ds

s
1− 1

p0

+ 1

t
1
p1

∫ ∞

t
f ∗
μ(s)

ds

s
1− 1

p1

.

Moreover, with the goal of finding interesting pointwise estimates for the function
(T f )∗ under weaker conditions on T , the following results have been recently proved
in [1] (see Definition 2.1 for the notion of admissible function):

Theorem 1.5 Let T be a sublinear operator and ϕ some admissible function. For every
1 ≤ p < ∞,

T : L p,1(μ) → L p,∞(ν), Cϕ(p),

if and only if, for every t > 0 and every μ-measurable function f ,

(T f )∗ν(t) � 1

t

∫ t

0
f ∗
μ(s) ds +

∫ ∞

t

(
1 + log

s

t

)−1
ϕ
(
1 + log

s

t

)
f ∗
μ(s)

ds

s
.

If the boundedness information is only for p ≥ p0 > 1, we also have the following
result (see [1]).
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Theorem 1.6 Take 1 ≤ p0 < p1 ≤ ∞ and let T be a sublinear operator and ϕ some
admissible function. Assume that for every p0 ≤ p < p1,

T : L p,1(μ) → L p,∞(ν), Cϕ

([
1

p
− 1

p1

]−1
)

.

Then, for every t > 0 and every μ-measurable function f :

(i) If p1 < ∞,

(T f )∗ν(t) � 1

t
1
p0

∫ t

0
f ∗
μ(s)

ds

s
1− 1

p0

+ 1

t
1
p1

∫ ∞

t
ϕ
(
1 + log

s

t

)
f ∗
μ(s)

ds

s
1− 1

p1

.

(1.4)

(ii) If p1 = ∞,

(T f )∗ν(t) � 1

t
1
p0

∫ t

0
f ∗
μ(s)

ds

s
1− 1

p0

+
∫ ∞
t

(
1 + log

s

t

)−1
ϕ
(
1 + log

s

t

)
f ∗
μ(s)

ds

s
.

(1.5)

Conversely, if (1.4) holds then, for every p0 ≤ p < p1,

||T ||L p,1(μ)→L p,∞(ν) �
[
1

p
− 1

p1

]−1

ϕ

([
1

p
− 1

p1

]−1
)

,

while if (1.5) holds, ||T ||L p,1(μ)→L p,∞(ν) � ϕ(p).

We observe that, if ϕ(p) = p (which is an admissible function) and p1 = ∞, then

(T f )∗∗
ν (t) � 1

t
1
p0

∫ t

0
f ∗∗
μ (s)

ds

s
1− 1

p0

+
∫ ∞

t
f ∗
μ(s)

ds

s
,

and hence

sup
0<t<1

(T f )∗∗
ν (t)

1 + log 1
t

� ‖ f ‖∞ +
∫ ∞

1
f ∗
μ(s)

ds

s
+ sup

0<t<1

1

1 + log 1
t

∫ 1

t
f ∗
μ(s)

ds

s

� ‖ f ‖∞ +
∫ ∞

1
f ∗
μ(s)

ds

s
 ‖ f ‖∞ +

∫ ∞

1
f ∗∗
μ (s)

ds

s
,

and we recover (1.2).
Our goal in this note is to prove results similar to those in Theorems 1.5 and 1.6,

to obtain extensions of Yano’s extrapolation results. Moreover, we want to emphasize
here that we obtain stronger results with a simpler proof because contrary to what
happens in the proof of the above results of Yano and Zygmund, where the function
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f is decomposed in an infinite sum of functions fn , our proof follows the idea of
Theorem 1.4 where the function f is decomposed as the sum of just two functions.

The paper is organized as follows. In Sect. 2, we present previous results, the
necessary definitions and some technical lemmas which shall be used later on, and
Sect. 3 contains our main results.

2 Definitions, Previous Results and Lemmas

2.1 Admissible Functions

Definition 2.1 [1] A function ϕ : [1,∞] → [1,∞] is said to be admissible if it
satisfies the following conditions:

(a) ϕ(1) = 1 and ϕ is log-concave, that is

θ logϕ(x) + (1 − θ) logϕ(y) ≤ logϕ(θx + (1 − θ)y), ∀x, y ≥ 1, 0 ≤ θ ≤ 1.

(b) There exist γ, β > 0 such that for every x ≥ 1,

γ

x
≤ ϕ′(x)

ϕ(x)
≤ β

x
. (2.1)

Observe that (2.1) implies that ϕ is increasing, as well as that

xγ ≤ ϕ(x) ≤ xβ.

Besides, since for every x, y ≥ 1,

logϕ(xy) =
∫ y

1
(logϕ)′(s) ds +

∫ xy

y
(logϕ)′(s)ds ≤ logϕ(y) + β log x,

it also holds that

ϕ(xy) ≤ xβϕ(y). (2.2)

Example 2.2 Given m ∈ N and using the notation in (1.3), if γ > 0 and β1, . . . , βm ≥
0, the function

ϕ(x) = xγ
m∏

k=1

(
logk x

)βk , x ≥ 1,

is admissible.

The next lemma is a simple computation for admissible functions which shall be
fundamental in the proof of our main results.
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Lemma 2.3 Let ϕ be an admissible function. For x ∈ R and 1 ≤ q0 < ∞,

inf
q∈[q0,∞)

ϕ(q)e− x
q ≤

{
ϕ(q0)e

− x
q0 , if x ≥ 0,

qβ
0 e

1
q0 ϕ (1 − x) , if x < 0.

Proof If x ≥ 0, the infimum is attained at q = q0, and if x < 0, we take q = q0(1− x)
and make use of (2.2). ��

2.2 Calderón Type Operators

Definition 2.4 Let 1 ≤ p0, p1 ≤ ∞ and let ϕ be an admissible function. Then, for
every positive and real valued measurable function f and t > 0, we define

Pp0,ϕ f (t) := 1

t
1
p0

∫ t

0
ϕ
(
1 − log

s

t

)
f (s)

ds

s
1− 1

p0

,

Qp1 f (t) := 1

t
1
p1

∫ ∞

t
f (s)

ds

s
1− 1

p1

,

and

Rp0,p1,ϕ f (t) := Pp0,ϕ f (t) + Qp1 f (t).

In particular, if p0 = 1, p1 = ∞, and ϕ(x) = 1, we recover the Calderón operator
[4]

R f (t) := P f (t) + Q f (t), t > 0,

where P and Q are respectively the Hardy operator and its conjugate

P f (t) = 1

t

∫ t

0
f (s) ds, Q f (t) =

∫ ∞

t
f (s)

ds

s
, t > 0.

We observe that, in general,

Rp0,p1,ϕ f (t) =
∫ 1

0
ϕ (1 − log s) f (st)

ds

s
1− 1

p0

+
∫ ∞

1
f (st)

ds

s
1− 1

p1

, t > 0.

(2.3)

Lemma 2.5 Let1 ≤ p0, p1 ≤ ∞. For anarbitrarymeasureμand everyμ-measurable
function f ,

Rp0,p1,ϕ( f ∗
μ)∗∗(t) = Rp0,p1,ϕ( f ∗∗

μ )(t), t > 0.
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Proof By (2.3), clearly, Rp0,p1,ϕ( f ∗
μ) is a decreasing function. Then, it holds that

Rp0,p1,ϕ( f ∗
μ)∗∗(t) = P

(
Rp0,p1,ϕ( f ∗

μ))(t), t > 0,

and the result follows immediately by Fubini’s theorem. ��

3 Main Results

Throughout this section, if not specified, (M, μ) and (N , ν) are two arbitrarymeasure
spaces.

Theorem 3.1 Take 1 < p0 < p1 < ∞ and let T be a sublinear operator and ϕ some
admissible function. If for every p0 < p ≤ p1,

T : L p,1(μ) −→ L p,∞(ν), Cϕ

([
1

p0
− 1

p

]−1
)

, (3.1)

then, for every t > 0 and every μ-measurable function f ,

(T f )∗ν(t) � 1

p0 − 1

(
1

t
1
p0

∫ t

0
ϕ
(
1 − log

r

t

)
f ∗
μ(r)

dr

r
1− 1

p0

+ 1

t
1
p1

∫ ∞
t

f ∗
μ(r)

dr

r
1− 1

p1

)

= 1

p0 − 1
Rp0,p1,ϕ( f ∗

μ)(t). (3.2)

Conversely, if (T f )∗ν(t) � Rp0,p1,ϕ( f ∗
μ)(t) for every t > 0, then, for each p0 < p ≤

p1, (3.1) holds.

Proof First assume that (3.1) applies for every p0 < p ≤ p1. Then, if f = χE for
some μ-measurable set E ⊆ R

n such that μ(E) < ∞, for every t > 0,

Rp0,p1,ϕ( f ∗
μ)(t) = 1

t
1
p0

∫ t

0
ϕ
(
1 − log

r

t

)
χ(0,μ(E))(r)

dr

r
1− 1

p0

+ 1

t
1
p1

∫ ∞

t
χ(0,μ(E))(r)

dr

r
1− 1

p1

=
(

1

t
1
p0

∫ t

0
ϕ
(
1 − log

r

t

) dr

r
1− 1

p0

+ 1

t
1
p1

∫ μ(E)

t

dr

r
1− 1

p1

)
χ(0,μ(E))(t)

+
(

1

t
1
p0

∫ μ(E)

0
ϕ
(
1 − log

r

t

) dr

r
1− 1

p0

)
χ(μ(E),∞)(t)

≥ p0

[(
μ(E)

t

) 1
p1

χ(0,μ(E))(t) + ϕ

(
1 − log

μ(E)

t

)(
μ(E)

t

) 1
p0

χ(μ(E),∞)(t)

]
,

where in the last estimate we have used that p1 > p0, ϕ(1) = 1 and that ϕ
(
1 − log s

t

)
is a decreasing function on s ∈ (0, t).
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Hence, since by hypothesis, for every p0 < p ≤ p1 we have that

(TχE )∗ν(t) ≤ Cϕ

([
1

p0
− 1

p

]−1
)(

μ(E)

t

) 1
p = C

[
ϕ (q)

(
μ(E)

t

)− 1
q
](

μ(E)

t

) 1
p0

, t > 0,

with 1
q = 1

p0
− 1

p , the result for characteristic functions plainly follows by taking the

infimum for q ∈
[

p1 p0
p1−p0

,∞
)
(see Lemma 2.3) since then, for every t > 0,

(TχE )∗ν (t) �
(

μ(E)

t

) 1
p1

χ(0,μ(E))(t) + ϕ

(
1 − log

μ(E)

t

)(
μ(E)

t

) 1
p0

χ(μ(E),∞)(t)

� Rp0,p1,ϕ((χE )∗μ)(t).

The extension to simple functions with sets of finite measure with respect to μ

follows the same lines as the proof of Theorem III.4.7 of [4]. We include the compu-
tations adapted to our case for the convenience of the reader. First of all, consider a
positive simple function

f =
n∑
j=1

a jχFj ,

where F1 ⊆ F2 ⊆ · · · ⊆ Fn have finite measure with respect to μ. Then

f ∗
μ =

n∑
j=1

a jχ[0,μ(Fj )).

Using what we have already proved for characteristic functions we get that for every
t > 0,

(T f )∗∗
ν (t) �

n∑
j=1

a j
(
T (χFj )

)∗∗
ν

(t) �
n∑
j=1

a j
(
Rp0,p1,ϕ(χ[0,μ(Fj )))

)∗∗
(t)

=
⎛
⎝Rp0,p1,ϕ

⎛
⎝ n∑

j=1

a jχ[0,μ(Fj ))

⎞
⎠
⎞
⎠

∗∗
(t) = Rp0,p1,ϕ( f ∗

μ)∗∗(t).

Further, since Rp0,p1,ϕ( f ∗
μ)∗∗ = Rp0,p1,ϕ( f ∗∗

μ ) (see Lemma 2.5) we obtain that

(T f )∗∗
ν (t) � Rp0,p1,ϕ( f ∗∗

μ )(t), t > 0. (3.3)

Now fix t > 0 and consider the set E = {x : f (x) > f ∗
μ(t)}. Using this set define

g = ( f − f ∗
μ(t))χE and h = f ∗

μ(t)χE + f χEc ,
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so that f = g + h and

g∗
μ(s) = ( f ∗

μ(s) − f ∗
μ(t))χ(0,t)(s) and h∗

μ(s) = min{ f ∗
μ(s), f ∗

μ(t)}, s > 0.

Since (3.1) holds with p = p1, the corresponding weak inequality leads to

(Th)∗ν(t/2) � 1

t
1
p1

∫ ∞

0
h∗

μ(s)
ds

s
1− 1

p1

� f ∗
μ(t) + 1

t
1
p1

∫ ∞

t
f ∗
μ(s)

ds

s
1− 1

p1

≤ Pp0,ϕ( f ∗
μ)(t) + Qp1( f

∗
μ)(t),

where we have used that f ∗
μ(t) ≤ Pp0,ϕ( f ∗

μ)(t).
On the other hand, on account of (3.3) we get

(Tg)∗∗
ν (t) � Rp0,p1,ϕ(g∗∗

μ )(t) = Pp0,ϕ(g∗∗
μ )(t) + Qp1(g

∗∗
μ )(t), (3.4)

and for the first term of the right hand side of (3.4) we deduce that

Pp0,ϕ(g∗∗
μ )(t) = 1

t
1
p0

∫ t

0
ϕ
(
1 − log

s

t

) 1

s

∫ s

0
g∗
μ(r) dr

ds

s
1− 1

p0

≤ 1

t
1
p0

∫ t

0
ϕ
(
1 − log

s

t

) ∫ s

0
f ∗
μ(r) dr

ds

s
2− 1

p0

= 1

t
1
p0

∫ t

0
f ∗
μ(r)

∫ t

r
ϕ
(
1 − log

s

t

) ds

s
2− 1

p0

dr

≤ p0
p0 − 1

(
1

t
1
p0

∫ t

0
ϕ
(
1 − log

r

t

)
f ∗
μ(r)

dr

r
1− 1

p0

)

= p0
p0 − 1

Pp0,ϕ( f ∗
μ)(t),

(3.5)

while for the second term

Qp1 (g
∗∗
μ )(t) = 1

t
1
p1

∫ ∞

t

1

s

∫ s

0
g∗
μ(r) dr

ds

s
1− 1

p1

≤ p1
p1 − 1

f ∗∗
μ (t) ≤ p0

p0 − 1
Pp0,ϕ( f ∗

μ)(t).

Thus,

(T f )∗ν(t) ≤ 2(Tg)∗∗
ν (t) + (Th)∗ν(t/2) � 1

p0 − 1
Rp0,p1,ϕ( f ∗

μ)(t),

and the general case follows from the density of the simple functions in the μ-
measurable ones and dividing a μ-measurable function in its positive and negative
parts.
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Conversely, assume that (T f )∗ν(t) � Rp0,p1,ϕ( f ∗
μ)(t) for every t > 0 and fix some

p ∈ (p0, p1]. The operator Rp0,p1,ϕ is a kernel operator; that is

Rp0,p1,ϕ f (t) =
∫ ∞

0
k(t, r) f (r)dr , t > 0,

where the kernel is

k(t, r) = ϕ
(
1 − log

r

t

) (r
t

) 1
p0 χ[0,t)(r)

1

r
+
(r
t

) 1
p1 χ[t,∞)(r)

1

r
. (3.6)

By virtue of [8,Theorem 3.3], the norm
∥∥Rp0,p1,ϕ

∥∥
L p,1(μ)→L p,∞ can be estimated by

Ak := sup
t>0

(
sup
s>0

(
t

s

) 1
p
∫ s

0
k(t, r)dr

)
.

Now observe that for β0 = max(1, β) and for every 0 < α ≤ 1, by means of (2.2),

ϕ (1 − log x) ≤ ϕ

(
β0

α
x

− α
β0

)
≤ ϕ

(
β0

α

)
x

− αβ
β0 ≤ β

β0
0 ϕ

(
1

α

)
x−α, 0 < x ≤ 1.

Take α = 1
p0

− 1
p ∈ (0, 1). Hence, if 0 < s ≤ t ,

∫ s

0
k(t, r) dr = 1

t
1
p0

∫ s

0
ϕ
(
1 − log

r

t

) dr

r
1− 1

p0

≤ p1β
β0
0 ϕ

([
1

p0
− 1

p

]−1
)( s

t

) 1
p
,

while if s > t , we obtain

∫ s

0
k(t, r) dr = 1

t
1
p0

∫ t

0
ϕ
(
1 − log

r

t

) dr

r
1− 1

p0

+ 1

t
1
p1

∫ s

t

dr

r
1− 1

p1

≤ p1β
β0
0 ϕ

([
1

p0
− 1

p

]−1
)

+ p1
( s
t

) 1
p
.

In consequence, we have that

Ak ≤ p1β
β0
0 ϕ

([
1

p0
− 1

p

]−1
)
sup
t>0

(
sup
s>t

(
t

s

) 1
p
[
1 +

( s
t

) 1
p
])

= 2p1β
β0
0 ϕ

([
1

p0
− 1

p

]−1
)

.

��
Remark 3.2 It is worth mentioning that in order to prove that (3.1) implies (3.2), the
only properties that we have used of ϕ are that ϕ is a nondecreasing function such that
ϕ(1) = 1 and that for every constant C ≥ 1, ϕ(Cx) ≈ ϕ(x).
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Aswementioned in the introduction, one application of these pointwise estimates is
to deduce extensions of Yano’s extrapolation results as the following corollary shows.
First, for an arbitrary measure μ, some exponent 1 ≤ p < ∞ and some admissible
function ϕ, we define the function space L p,1ϕ(log L)(μ) as the set of μ-measurable
functions f satisfying

‖ f ‖L p,1ϕ(log L)(μ) =
∫ ∞

0
ϕ

(
1 + log+ 1

r

)
f ∗
μ(r)

dr

r1−
1
p

< ∞.

Corollary 3.3 Take 1 < p0 < p1 < ∞, and let ϕ be some admissible function. If T is
a sublinear operator such that for every p0 < p ≤ p1

T : L p,1(μ) −→ L p,∞(ν), Cϕ

([
1

p0
− 1

p

]−1
)

,

and ν is a finite measure, then

T : L p0,1ϕ(log L)(μ) → L p0,∞(ν),
C

p0 − 1
.

Proof As a consequence of Theorem 3.1,

(T f )∗ν(t) � 1

p0 − 1
Rp0,p1,ϕ( f ∗

μ)(t), 0 < t < ν(N ).

Further, by means of [8,Theorem 3.3],

∥∥Rp0,p1,ϕ
∥∥
L p0 ,1ϕ(log L)(μ)→L p0 ,∞(0,ν(N ))

� sup
0<t<ν(N )

t
1
p0

⎡
⎢⎢⎢⎣sups>0

∫ s

0
k(t, r)dr

∫ s

0
ϕ

(
1 + log+ 1

r

)
dr

r
1− 1

p0

⎤
⎥⎥⎥⎦ ,

with k(t, r) as in (3.6). Hence, if 0 < s ≤ t ,

t
1
p0

⎡
⎢⎢⎢⎣

∫ s

0
k(t, r)dr

∫ s

0
ϕ

(
1 + log+ 1

r

)
dr

r
1− 1

p0

⎤
⎥⎥⎥⎦ =

∫ s

0
ϕ

(
1 + log

t

r

)
dr

r
1− 1

p0∫ s

0
ϕ

(
1 + log+ 1

r

)
dr

r
1− 1

p0

≤ max

(
1, ν(N )

1
p0

)
,
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while if s > t , we obtain

t
1
p0

⎡
⎢⎢⎢⎣

∫ s

0
k(t, r)dr

∫ s

0
ϕ

(
1 + log+ 1

r

)
dr

r
1− 1

p0

⎤
⎥⎥⎥⎦ =

t
1
p0

(
1

t
1
p0

∫ t

0
ϕ

(
1 + log

t

r

)
dr

r
1− 1

p0

+ p1

[( s
t

) 1
p1 − 1

])

∫ s

0
ϕ

(
1 + log+ 1

r

)
dr

r
1− 1

p0

≤
t

1
p0

(
Cϕ + p1

( s
t

) 1
p1

)

p0s
1
p0

≤ Cϕ + p1
p0

,

so that
∥∥Rp0,p1,ϕ

∥∥
L p0,1ϕ(log L)(μ)→L p0,∞((0,ν(N )), dx) < ∞. ��

Remark 3.4 For p0 = 1, we observe that following the lines of the sufficiency of the
proof of Theorem 3.1, the only place where we could have problems is in (3.5), since
this estimate blows up as p0 approximates 1+. Nevertheless, easy computations show
that then, for every t > 0 and every μ-measurable function f ,

(T f )∗ν(t) � 1

t

∫ t

0

(
1 − log

r

t

)
ϕ
(
1 − log

r

t

)
f ∗
μ(r) dr + 1

t
1
p1

∫ ∞

t
f ∗
μ(r)

dr

r
1− 1

p1

.

However, when ϕ(x) = xα , α > 0, it can be deduced that for an arbitrary measure μ

and a finite measure ν,

T : L(log L)α+1(μ) → L1,∞(ν),

which, as we have seen on the introduction, is far from the best results known up to
now (see, for instance, Theorem 1.3).

Open Question
Can we extend our result to the case p0 = 1 in an optimal way?
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