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Abstract
We show some non-standard Poincaré type estimates in the biparametric setting with
appropriateweights.Wewill derive these results usingvariants fromclassical estimates
exploiting the interplay between maximal functions and fractional integrals. We also
provide a sharper result by using extrapolation techniques.
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1 Introduction andMain Results

In the present article we will study non-standard variations of the very well known
Poincaré–Sobolev inequalities. More precisely, we are interested in biparametric
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extensions of the classical Poincaré–Sobolev inequality of the form

(
1

|Q|
∫
Q

| f − fQ |p∗
)1/p∗

≤ c�(Q)

(
1

|Q|
∫
Q

|∇ f |p
)1/p

, (1.1)

where Q is any cube in R
n (from now on we will only consider cubes with sides

parallel to the coordinate axes) or euclidean ball, p is a parameter p > 1 and p∗ is the
so called Sobolev exponent given by the condition 1

p − 1
n = 1

p∗ , defined for p < n.
�(Q) will denote the side length of the cube Q or the radius of the ball in case Q is a
euclidean ball.

The classical way of proving Poincaré–Sobolev inequalities is by exploiting the
interplay between averaged oscillations and fractional integral operators. Recall that
I1 is the standard notation for the fractional integral or Riesz potential of order 1
defined by

I1( f )(x) =
∫
Rn

f (y)

|x − y|n−1 dy. (1.2)

The key estimate is the following pointwise estimate, allowing the control of the
oscillation by the fractional integral

| f (x) − fQ | ≤ cn I1(|∇ f |χQ)(x). (1.3)

It is an interesting fact that the previous estimate is equivalent to the following averaged
result,

1

|Q|
∫
Q

| f − fQ | ≤ cn
�(Q)

|Q|
∫
Q

|∇ f |, (1.4)

as shown first in [5] (see an extension in [8], Theorem 11.3). Then, estimate (1.1)
will follow from the appropriate L p → Lq boundedness properties of the classical
fractional integral operators Iα . We remit to [1] for an extensive overview of this
material. The key ideas go back to Sobolev about 100 years ago.

In the late 90’s, in [6] a new method to derive these estimates which avoids the use
of potential operators was introduced. This method was considered very recently by
the authors in [3], using ideas from [8], in the context of rectangles, or more generally
in the context of multiparameter analysis. We include below Theorem 1.1 as a sample
of this kind of results which do not use any pointwise estimate as (1.3) requiring the
use of fractional operators. This result provides an inequality holding for the family
R, defined by rectangles of the form R = I1 × I2 where I1 ⊂ R

n1 and I2 ⊂ R
n2 are

cubes with sides parallel to the coordinate axes and n := n1 + n2. Ap,R will denote
the natural class of weights attached to the basis R with constants given by [w]Ap,R ,
1 ≤ p < ∞ and defined in (1.11).

Theorem 1.1 Let w ∈ A1,R in Rn and let p ≥ 1. Let also

1

p
− 1

p∗ = 1

n

1

(1 + log[w]A1,R)
.
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Then, there exists a constant c = c(n, p) > 0 such that for every Lipschitz function f
and any R = I1 × I2 ∈ R,

‖ f − fR‖L p∗ (R, wdx
w(R)

)
≤ c [w]

1
p
Ap,R

(a1(R) + a2(R)) , (1.5)

where

a1(R) = �(I1) ‖∇1 f ‖L p(R, wdx
w(R)

)
and a2(R) = �(I2) ‖∇2 f ‖L p(R, wdx

w(R)
)
.

We are using here the following notation: for a given function f : U → R defined
on the open set U ⊂ R

n1 × R
n2 , we will write f (x) = f (x1, x2) where x1 stands for

the first n1 variables and x2 stands for the remaining n2 variables. ∇1 f will denote
the partial gradient of f containing the x1-derivatives and similarly ∇2 f will denote
the partial gradient of f containing the x2-derivatives.

To the extent of our knowledge, these type of results were proved for the first time
in [9], but this theorem is a particular case of many others results that can be found in
[3]. The latter approach provides much more precise inequalities.

The present work is an outgrowth of [3]. Indeed, it is quite surprising that a result
like (1.5) cannot be derived using a version of the pointwise estimate (1.3) based
on a multiparameter potential operator version of I1 from (1.2). There is though a
multiparametric counterpart of the fractional integral operator introduced in [4] which
leads to a special pointwise inequality and hence to a non-standard Poincaré inequality
(1.9) and (1.10). The main point of this paper is to improve the (1, 1) non-standard
Poincaré inequality (1.10) to the (p, p) case. We stress the fact that unfortunately
we cannot use the method in [3] since it is not clear how to handle the non-standard
oscillation πR( f ) appearing in (1.9).

1.1 Biparameter Poincaré Inequalities

We include in this section the main contributions of this article, concerning results on
(p, p)-Poincaré type inequalities obtained by means of classical arguments involving
the interplay between fractional integrals and maximal functions. This approach is
known for the case of cubes, but requires some extra work to adapt it to the bi-
parametric geometry of rectangles given by products of cubes. Recall that I1 will
always denote a cube in R

n1 while I2 will be a cube in R
n2 . Let δ1 = �(I1) and

δ2 = �(I2).
Let us consider the multiparametric fractional operator

T f (x, y) =
∫
R
n1

∫
R
n2

f (x̄, ȳ)

|x − x̄ |n1−1|y − ȳ|n2−1 dx̄ d ȳ. (1.6)

Consider the following notations:

f yI1 = 1

|I1|
∫
I1

f (x, y) dx , f xI2 = 1

|I2|
∫
I2

f (x, y) dy
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and

f I1×I2 = 1

|I1||I2|
∫
I1×I2

f (x, y) dydx .

We denote I(1)
1 the n1−dimensional fractional integral of order 1 and I(2)

1 the
n2−dimensional fractional integral of order 1. That is, for a function f : Rn1 ×R

n2 →
R, we have that

I(1)
1 ( f )(x, y) =

∫
R
n1

f y(x̄)

|x − x̄ |n1−1 dx̄ (1.7)

and

I(2)
1 ( f )(x, y) =

∫
R
n2

f x (ȳ)

|y − ȳ|n2−1 d ȳ, (1.8)

where f x (y) = f (x, y) denotes the slice of the function f for a fixed x ∈ I1 (similarly
for f y). Then T can be expressed as the composition

T = I(1)
1 ◦ I(2)

1 .

The main relevance for us to consider this multilinear operator is due to its connec-
tion with a special non-standard oscillation introduced, as far as we know, in [4] with
respect to non-constant average defined by the quantity

πI1×I2( f ) := f yI1 + f xI2 − f I1×I2

whichwill play the role of the average over the cube as in the one parameter case. To be
more precise we have in the following lemma a substitute of the model example (1.3)
in the setting of product spaces where the usual gradient is replaced by the following
mixed derivatives matrix f �→ ∇x∇y f , where

∇x∇y f =
(

∂2 f

∂xi ∂ y j

)
i, j

and |∇x∇y f | =
( ∑

i, j

∣∣∣ ∂2 f

∂xi ∂ y j

∣∣∣2
) 1

2

.

We don’t know where this object was first introduced but it was considered by J.
M. Wilson in [10, 11] when studying spectral type properties of the two-parameters
Schrödinger operators �n1 ◦ �n2 − V , where V ∈ L1

loc(R
n1 × R

n2) and where �ni
is the Laplace operator in R

ni where the multiparameter Harmonic Analysis theory
played a central role like in the present work.

We will rely on the following pointwise inequality, analogous to (1.3)

Lemma 1.2 [4, Proposition 6.1] Let R ∈ R of the form R = I1 × I2, as before. Then
we have the following pointwise estimate for any f ∈ C2(R)

| f (x, y) − πR( f )(x, y)| ≤ T (|∇x∇y f χR |)(x, y), (1.9)

for every (x, y) ∈ I1 × I2.
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As a consequence of this we have

∫
R

| f − πR( f )| dx dy � �(I1)�(I2)
∫
R

|∇x∇y f | dx dy, (1.10)

although there is a more stronger and hence more useful version in (1.13). A natural
question arising here is whether these two estimates are equivalent or not, as it happens
in the classical setting of cubes mentioned before.

Here and in the reminder of this article we will use the following notation for
(weighted) local L p norms over a rectangle R:

‖ f ‖L p(R,w) :=
(∫

R
| f |pwdx

) 1
p

.

Similarly, we will use the standard notation for the weak (r ,∞) (quasi)-norm: for
any 0 < r < ∞, measurable R and weight w, we define

‖ f ‖
Lr ,∞

(
R,w

) := sup
t>0

t (w({x ∈ R : | f (x)| > t}))1/r .

As usual, when dealing with the constant weight w ≡ 1, we will simply omit to
mention it.

In our context, the natural scenario for the study of weighted inequalities is the
Lebesgue space L p(w), where w is a weight in the class Ap,R associated to the
familyR. Let us first introduce its obvious definition adapted to the geometry of such
basis of rectangles. For a weight w in R

n1 × R
n2 , n = n1 + n2, we will say that

w ∈ Ap,R if

[w]Ap,R := sup
R∈R

(
1

|R|
∫
R

w(x) dx

) (
1

|R|
∫
R

w(x)−
1

p−1 dx

)p−1

< ∞, (1.11)

and in the case p = 1, for a finite constant c

1

|R|
∫
R

w(x) dx ≤ c inf
R

w R ∈ R (1.12)

and the smallest of the constants c is denoted by [w]A1,R .
Our first result is about a quantitative weighted Poincaré inequality for the Ap,R

class.

Theorem 1.3 Let w be a weight in Ap,R for p > 1. Define R = I1 × I2. Then the
following local weak type Poincaré inequality holds for any f ∈ C2(R),

‖ f − πR( f )‖L p,∞(R,w) � [w]
1
p + 1

p−1
Ap,R

�(I1)�(I2) ‖∇x∇y f ‖L p(R,w).
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Note that we only obtain here the weak norm, since the maximal operator is not
bounded in L1. This is also reflected in the exponent in the Ap constant, as a sum of
1
p from the weak bound used in the first step and 1

p−1 from the strong bound that we
are forced to use as a last step.

We remark here that in the classical setting of cubes, a sort of “weak implies
strong”argument (often called the “truncation” method) can be applied to obtain the
(p, p)-Poincaré inequality from the weak estimate. Here, since we are not in position
to claim that such an argument works for mixed gradients ∇x∇y , we can only propose
the following result as a conjecture

Conjecture 1.4 Let w be a weight in Ap,R for p > 1. Then for any rectangle of the
form R = I1 × I2 and any f ∈ C2(R), we have

‖ f − πR( f )‖L p(R,w) � [w]
1

p−1+ 1
p

Ap,R
�(I1)�(I2) ‖∇x∇y f ‖L p(R,w).

Another natural question is to find a Sobolev-Poincaré type inequality like (1.1).
Naturally, T , as defined in (1.6), should play the role of I1 in the one-parameter case.
However we failed doing this. Further, the method developed in [3], which avoids the
use of fractional operators, cannot be applied here since the initial Poincaré (1.10) is
not, as alreadymentioned, the standard one and hence a new theorymust be developed.

As we mentioned above the ideas presented in the proof of Theorem 1.3 can not be
extended to the case p = 1. We can, however, prove the following result.

Proposition 1.5 Letw be aweight in A1,R. Then the following (1, 1)Poincaré inequal-
ity holds uniformly in R = I1 × I2 ∈ R for f ∈ C2(R).

∫
R

| f − πR( f )| w dx dy � �(I1)�(I2)[w]2A1,R

∫
R

|∇x∇y f | w dx dy. (1.13)

As a consequence, the following theorem shows that the (p, p)-Poincaré inequality
can be obtained directly but with larger bounds.

Theorem 1.6 Let w be a weight in Ap,R for p > 1. Then, for any R = I1 × I2 in R
any f ∈ C2(R) we have that

‖ f − πR( f )‖L p(R,w) � [w]
2

p−1
Ap,R

�(I1)�(I2) ‖∇x∇y f ‖L p(R,w).

Observe that the behaviour of the exponent as p → 1 is not the expected one in view
of (1.13). We remedy the situation by including here a variation of both Theorem 1.3
and Theorem 1.6 by means of an extrapolation type argument.

Theorem 1.7 Let w be a weight in Ap,R for p > 1. Then, for any R = I1 × I2 in R
and any f ∈ C2(R) we have that

‖ f − πR( f )‖L p(R,w) � [w]min{4, 2
p−1 }

Ap,R
�(I1)�(I2) ‖∇x∇y f ‖L p(R,w). (1.14)



Journal of Fourier Analysis and Applications            (2022) 28:52 Page 7 of 12    52 

This theorem will be a consequence of a more precise result from Theorem 3.1
below involving a “dual maximal operator” presented in Sect. 3.

1.2 Fractional Integrals

We include here the needed definitions about fractional integrals and Ap classes of
weights. For 0 < α < n, the fractional integral operator or Riesz potential Iα is
defined by

Iα f (x) =
∫
Rn

f (y)

|x − y|n−α
dy.

A key ingredient in our proofs is the pointwise estimate in Lemma 1.8 involving the
fractional integral and the Hardy–Littlewood maximal function M defined by

M f (x) = sup
Q�x

−
∫
Q

| f (y)| dy,

where the supremum is taken over all cubes Q ⊂ R
n with sides parallel to the coor-

dinate axes containing the point x .

Lemma 1.8 For every cube Q ⊂ R
n we have

I1(gχQ)(x) ≤ Cn�(Q)M(χQg)(x), x ∈ Q.

In addition, we need to recall the following very well know result about the sharp
weighted bound for the Hardy–Littlewood maximal function. To that end, we recall
here the definition of Muckenhoupt weights Ap for cubes in Rn .

Definition 1.9 For a given p ∈ (1,∞), the Muckenhoupt Ap of weights is defined by
the condition

[w]Ap := sup
Q

(
1

|Q|
∫
Q

w(y) dy

) (
1

|Q|
∫
Q

w(y)1−p′
dy

)p−1

< ∞, (1.15)

where the supremum is taken over all the cubes Q in R
n . The limiting case of (1.15)

when p = 1, defines the class A1; that is, the set of weights w such that

[w]A1 := sup
Q

(
−
∫
Q

w dx

)
ess sup

Q
(w−1) < +∞.

This is equivalent to w having the property

Mw(x) ≤ [w]A1w(x) a.e. x ∈ R
n .

We need to consider, in our bi-parametric setting, the Ap property for the slices
wx and wy . We remark here that according to [7, Lemma 6.2] we have that wx ∈
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Ap(R
n2) and moreover [wx ]Ap(R

n2 ) ≤ [w]Ap,R . The same holds for wy = w(x, y)
with y ∈ R

n2 .
We recall now Buckley’s result on sharp weighted L p norms.

Theorem 1.10 [2] If 1 < p < ∞ and w ∈ Ap then

‖M f ‖L p,∞(w) � [w]1/pAp
‖ f ‖L p(w) (1.16)

‖M f ‖L p(w) � [w]
1

p−1
Ap

‖ f ‖L p(w) (1.17)

where in each case the exponents are best possible.

2 Proofs for Biparameter Poincaré Inequalities

We include here the proofs of the main results.
Proof of Theorem 1.3

According to inequality (1.9) and using Lemma 1.8 twice on each direction ni , we
have

‖ f − πR( f )‖L p,∞(R,w) ≤ cn‖T (|∇x∇y f χR |)‖L p,∞(R,w)

≤ cn�(I1)�(I2)‖Mn2 ◦ Mn1(|∇x∇y f χR |)‖L p,∞(R,w)

where we denote Mn1 and Mn2 the n1-dimensional and n2-dimensional Hardy–
Littlewood maximal operator respectively.

Now, for a fixed λ > 0, we denote


λ := {(x, y) ∈ R : Mn2 ◦ Mn1(|∇x∇y f χR |)(x, y) > λ}.

Also, for each fixed x ∈ I1 we put


x
λ := {(x, y) : y ∈ I2, M

n2 ◦ Mn1(|∇x∇y f χR |)(x, y) > λ}.

Then

w(
λ) =
∫


λ

w(x, y) dx dy =
∫
I1

wx (
x
λ) dx .

Here, we use again the standard notation of wx (y) = w(x, y) to denote the slice of
the function w for a fixed x ∈ I1. Now we apply Theorem 1.10 as follows. The first
step is to use the sharp weak type bound for Mn2 with the weight wx (y). Then,

w(
λ) ≤ cn2
[w]pAp,R

λp

∫
I1
Mn1(|∇x∇y f χR |)(x, y)p dxdy

≤ cn,p

[w]pAp,R
[w]p′

Ap,R

λp

∫
I1

|∇x∇y f χR(x, y)|p dxdy
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by applying the sharp (p, p) strong bound for Mn1 considering now the weight
wy(x) ∈ Ap(R

n1). This concludes the proof immediately. ��

Remark 2.1 Note that, as we mentioned before, this argument can not be applied to
the case p = 1, given that the Hardy–Littlewood operator is not bounded in L1.

We include now the proof of the strong bound for p > 1 stated in Theorem 1.6.
Proof of Theorem 1.6 Let’s write I = ∫

R | f − πR( f )|pw dx dy and recall that wx is
a function on y. Then

I � �(I1)
p�(I2)

p
∫
R
[Mn1Mn2(|∇x∇y f χR |)(x, y)]pw(x, y) dxdy

≈ �(I1)
p�(I2)

p
∫
I1

∫
I2
Mn1(Mn2(|∇x∇y f χR |))(x, y)pwx (y) dy dx

� �(I1)
p�(I2)

p[wx ]
p

p−1

Ap(R
n1 )

∫
I1

∫
I2
[Mn2(|∇x∇y f χR |)(x, y)]pwy(x) dxdy

� �(I1)
p�(I2)

p[w]
p

p−1
Ap,R

[wy]
p

p−1

Ap(R
n2 )

∫
I2

∫
I1

|∇x∇y f (x, y)|pw(x, y) dy dx

≈ �(I1)
p�(I2)

p[w]
2p
p−1
Ap,R

∫
I2

∫
I1

|∇x∇y f (x, y)|pw(x, y) dy dx

where in first step we use estimate (1.9) and Lemma 1.8. Finally, we apply the sharp
boundof theHardy–Littlewoodoperator twice, first in L p

wx (R
n2) and then in L p

wy (R
n1).

��
Now we present the proof of the natural substitute valid for p = 1.

Proof of Proposition 1.5 Let’s call I to the LHS on (1.13). Then, by Lemma 1.2 and
recalling that

T f (x, y) =
∫
R
n1

∫
R
n1

f (x̄, ȳ)

|x − x̄ |n1−1|y − ȳ|n2−1 dx̄ d ȳ.

I �
∫
R
T (|∇x∇y f χR |)w dxdy

�
∫
R

∫
R

|∇x∇y f (x̄, ȳ)|
|x − x̄ |n−1|y − ȳ|m−1 dx̄d ȳ wdxdy

�
∫
R

|∇x∇y f (x̄, ȳ)|
[∫

I1

1

|x − x̄ |n−1

∫
I2

wx (y)

|y − ȳ|m−1 dy dx

]
dx̄d ȳ

� �(I2)[w]A1,R

∫
R

|∇x∇y f (x̄, ȳ)|
∫
I1

w ȳ(x)

|x − x̄ |n−1 dx dx̄ d ȳ

� [w]2A1,R
�(I1)�(I2)

∫
R

|∇x∇y f (x̄, ȳ)|w(x̄, ȳ) dx̄ d ȳ,



   52 Page 10 of 12 Journal of Fourier Analysis and Applications            (2022) 28:52 

where we have used the following inequalities

∫
I2

wx (y)

|y − ȳ|m−1 dy � �(I2) [w]A1,R w(x, ȳ),

∫
I1

w ȳ(x)

|x − x̄ |n−1 dx � �(I1) [w]A1,R w(x̄, ȳ).

��

3 Non-standard Poincaré Inequalities and Extrapolation

In this section we will prove Theorem 1.7 using ideas from extrapolation.
Define, as usual, the maximal operator:

MR f (x) := sup
x∈R∈R

1

|R|
∫
R

| f (y)| dy. (3.1)

Using the know weighted estimate on each factor, we obtain the estimate for any
p ∈ (1,∞):

‖MR‖L p(w) � [w]
2

p−1
Ap,R

. (3.2)

We also need the “dual” operator

M ′
R f := MR( f w)

w
. (3.3)

Using that w1−p′ ∈ Ap′,R and also that M is bounded on L p′
(w1−p′

), we conclude
that M ′ is bounded on L p′

(w) and

‖M ′
R‖L p′ (w)

� [w]2Ap,R
. (3.4)

We have the following intermediate result:

Theorem 3.1 Let w be a weight in Ap,R for p > 1. Then, for any R = I1 × I2 in R
and any f ∈ C2(R) we have that

‖ f − πR( f )‖L p(R,w) � ‖M ′
R‖2

L p′ (w)
�(I1)�(I2) ‖∇x∇y f ‖L p(R,w) (3.5)

Proof Fix p > 1, and let w ∈ Ap,R.
Therefore, we can define the following Rubio de Francia type iteration algorithm:

R′h(x) =
∞∑
k=0

(M ′
R)kh(x)

2k‖M ′
R‖k

L p′ (w)

.
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where M ′
R is the “dual” operator (3.3) and (M ′

R)0 = Id . Then we have that:

(1) h ≤ R′(h)

(2) ‖R′(h)‖L p′ (w)
≤ 2 ‖h‖L p′ (w)

(3) [R′(h) w]A1,R ≤ 2 ‖M ′
R‖L p′ (w)

By duality there exists a non-negative function h ∈ L p′
(w), ‖h‖L p′ (w)

= 1, supported
in R, such that,

‖ f − πR( f )‖L p(R,w) =
∫
R

| f − πR( f )| hw dx ≤
∫
R

| f − πR( f )|R′h w dx

and sinceR′(h) w ∈ A1,R with [R′(h) w]A1,R ≤ 2 ‖M ′
R‖L p′ (w)

we can apply Propo-
sition 1.5 to obtain

‖ f − πR( f )‖L p(R,w) ≤ c �(I1)�(I2)‖M ′
R‖2

L p′ (w)

∫
R

|∇x∇y f |R′h w dx .

Let us focus now in the last integral and apply Hölder inequality and the properties of
R′:

∫
R

|∇x∇y f |R′h w dx ≤
(∫

R
|∇x∇y f |p w dx

) 1
p

(∫
Rn

(R′h)p
′
w dx

) 1
p′

≤
(∫

R
|∇x∇y f |p w dx

) 1
p

(∫
R
h p′

w dx

) 1
p′

=
(∫

R
|∇x∇y f |p w dx

) 1
p

.

��
We are now able to present the proof of Theorem 1.7 using, on one hand, the

estimate from (3.5) combined with inequality (3.4) to obtain

‖ f − πR( f )‖L p(R,w) � [w]4Ap,R
�(I1)�(I2) ‖∇x∇y f ‖L p(R,w).

On the other hand, we already had the estimate provided in Theorem 1.6. Combining
the two results, we get the desired result stated in (1.14).
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