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Abstract
We consider the Dirac operators with singular potentials

DA,�,m,�δ�
= DA,�,m + �δ� (1)

where

DA,�,m =
n∑

j=1

α j
(−i∂x j + A j

)+ αn+1m + �IN (2)

is a Dirac operator on R
n with variable magnetic and electrostatic potentials A =

(A1, . . . , An) ∈ L∞(Rn, C
n) and� ∈ L∞(Rn), and the variable massm ∈ L∞(Rn).

In formula (2) α j are the N × N Dirac matrices, that is α jαk + αkα j = 2δ jk IN , IN
is the unit N × N matrix, N = 2[(n+1)/2]. In formula (1) �δ� is a singular delta-type
potential supported by a C2-hypersurface � ⊂ R

n which is the common boundary
of the open sets �±. Let H1(�±, C

N ) be the Sobolev spaces of N -dimensional
vector-valued distributions u on �±, and

H1(Rn
��, C

N ) = H1(�+, C
N ) ⊕ H1(�−, C

N ).

Weassociatewith the formalDirac operator DA,�,m,�δ�
an unbounded in L2(Rn, C

N )

operator DA,�,m,B�
defined by the Dirac operator DA,�,m with domain

domDA,�,m,B�
⊂ H1(Rn

��, C
N ) defined by an interaction conditions. The main
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aims of the paper are the study of self-adjointmess of the operators DA,�,m,B�
for

uniformly regular C2-hypersurfaces � ⊂ R
n and the essential spectra of DA,�,m,B�

for closed C2-hypersurfaces � ⊂ R
n .
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1 Introduction

This paper is devoted to the study of n-dimensional Dirac operators (n ≥ 2) with
singular potentials of δ-type supported on both bounded and unbounded hypersur-
faces � in R

n . Such Dirac operators arise as approximations of the Hamiltonians of
interactions of relativistic quantum particles with potentials localized in thin tubu-
lar neighborhoods of � (see, for instance, [14, 26, 30]). In physical formulations,
such problems describe the transitions of relativistic particles with spin(1/2) through
the obstacles created by the potentials supported on the mentioned regions in R

3.
Moreover, these problems are associated with the MIT BAG models of the particle
confinement in domains of R

3 (see [6, 9, 13, 15, 16, 21, 22]).
The formal Dirac operators with singular potentials are realized as unbounded

operators in Hilbert spaces with domains described by interaction conditions on the
sets carrying the singular potentials. In the last time appeared many papers devoted to
their spectral properties for the dimensions n = 2, 3, see for instance, [4, 7, 8, 10–
12, 14, 20, 29–31, 36, 37]. We also note that the paper [28] establishes a connection
between the Dirac operators on bounded domains in R

n and their complements to the
Dirac operators on their boundaries.

We consider the formal Dirac operators on R
n with singular potentials

DA,�,m,�δ�
= DA,�,m + �δ� (3)

where

DA,�,m = α·(D + A) + mαn+1 + �IN

=
n∑

j=1

α j (Dj + A j ) + mαn+1 + �IN , Dj = −i∂x j , j = 1, . . . , n (4)

is the Dirac operator on R
n with regular magnetic potentials A = (A1, . . . , An),

electrostatic potentials �, and the "variable mass" m = m(x) = m0 + L(x) where
m0 ∈ R is the mass of the particle, L is the scalar Lorentz potential. In formula (4)
α j , j = 1, . . . , n + 1 are the N × N Dirac matrices, that is the Hermitian matrices
satisfying the relations

α jαk + αkα j = 2δ jk IN , (5)
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IN is the N × N unit matrix, N = N (n) = 2[(n+1)/2], �δ� is the singular potential,
� = (

�i, j
)N
i, j=1 is the N × N strength matrix and δ� is the delta-function with

the support on C2-hypersurface � ⊂ R
n being the common boundary of open sets

�± ⊂ R
n .

We assume that A j ,�,m ∈ L∞(Rn), and elements �i, j of � belong to the space
C1
b(�) of bounded on � functions with their first derivatives, � is a C2-uniformly

regular hypersurface (see, Definition 3 of this paper, and the papers [3, 19]). It should
be noted that the class of C2-uniformly regular hypersurfaces contains all closed C2-
hypersurfaces and awide set of unboundedC2-hypersurfaceswith cylindrical, conical,
and oscillating exits to infinity.

Let H1(�±, C
N ) be the Sobolev spaces of distributions on �± with values in

C
N and H1(Rn

��, C
N ) = H1(�+, C

N ) ⊕ H1(�−, C
N ). We associate with the

formalDirac operator DA,�,m,�δ�
the unbounded in L2(Rn, C

N ) operatorDA,�,m,B�

defined by the Dirac operator DA,�,m with domain

dom DA,�,m,B�

=
{
u ∈ H1(Rn

��, C
N ) : B�u(s) = a+(s)γ +

� u(s) + a−(s)γ −
� u(s) = 0, s ∈ �

}
(6)

where γ ±
� : H1(�±, C

N ) → H1/2(�, C
N ) are the trace operators, and

a± = 1

2
� ∓ iα · ν on �, (7)

α · ν = ∑n
j=1 α jν j , ν = (ν1, . . . , νn) is the field of unit normal vectors to � directed

into �−.

We also associate with the formal Dirac operator DA,�,m,�δ�
the bounded operator

of the interaction (transmission) problem

DA,�,m,B�
u =

{
DA,�,mu on R

n
��

B�u on �

acting from H1(Rn
��, C

N ) into L2(Rn, C
N ) ⊕ H1/2(�, C

n).

We study the self-adjointness in L2(Rn, C
N ) of unbounded operators DA,�,m,B�

.

Our approach is based on the study of the parameter-dependent operators

DA,�,m,B�
(iμ) = DA,�,m,B�

− iμIN , μ ∈ R.

We introduce the local Lopatinsky–Shapiro condition for DA,�,m,B�
(iμ) at the point

x ∈ � as follows

det(α · ξx + �(x)

2
− iμIN ) 	= 0,

for every (ξx .μ) ∈ T
∗
x (�) × R : |ξx |2 + μ2 = 1, (8)
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where α · ξx =
n∑

j=1

α jξ
j
x and T

∗
x (�) is the cotangent space to the hypersurface � at

the point x .
If the matrix �(x) is Hermitian condition (8) holds if and only if the parameter-

independent Lopatinsky–Shapiro condition

det(α · ξx + �(x)

2
) 	= 0 for every ξx ∈ T

∗
x (�) : |ξx | = 1 (9)

holds.

Remark 1 Another forms of the Lopatinsky–Shapiro conditions for the dimensions
n = 2, 3 were obtained in [36, 37]. However, the Lopatinsky–Shapiro conditions
(8),(9) serve for every n ≥ 2 and easily checked in important examples of singular
potentials.

The following results are obtained in the paper.

• The operator

DA,�,m,B�
(iμ) : H1(Rn

��, C
N ) → L2(Rn, C

N ) ⊕ H1/2(�, C
N )

is invertible for a large enough |μ| if A j ,�,m ∈ L∞(Rn), �i, j ∈ C1
b(�),�

is a uniformly regular C2-hypersurface and the local parameter-dependent
Lopatinsky–Shapiro condition (8) is satisfied uniformly on �.

• Applying this result we obtained that the operator DA,�,m,B�
is self-adjoint in

L2(Rn, C
N ) if A j ,�,m are the real-valued functions, �(x) is the Hermitian

matrix for every x ∈ �, and the Lopatinsky–Shapiro condition (9) is satisfied
uniformly on �.

• As an example, we consider the Dirac operator on R
n with singular potentials

describing by the electrostatic and scalar Lorentz δ-shell interaction on the uni-
formly regular C2-hypersurfaces � ⊂ R

n with the strength matrices

�(s) = η(s)IN + τ(s)αn+1, s ∈ �

where η, τ ∈ C1
b(�) are real-valued functions. We proved that the condition

inf
s∈�

∣∣∣η2(s) − τ 2(s) − 4
∣∣∣ > 0 (10)

yields the uniform Lopatinsky–Shapiro condition (9) which insures the self-
adjointness of DA,�,m,B�

in L2(Rn, C
N ), n ≥ 2 under above given conditions

for A,�,m, �.

• It should be noted that the condition (10) of self-adjointnes was obtained earlier
for n = 3 in the paper [11], see also the paper [10] for the electrostatic shell
interactions inR

3. The generalization of condition (10) for the electrostatic, scalar
Lorentz, and magnetic δ-shell interaction was obtained in [12] for the dimension
2.
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• We also study the essential spectrum of the operator DA,�,m,B�
for closed C2-

hypersurfaces � under conditions: A j ,�,m ∈ C1
b(R

n) (C1
b(R

n) is the space of
differentiable functions on R

n bounded with their first partial derivatives), �i, j ∈
C1(�), and local Lopatinsky–Shapiro condition (9) is satisfied at every point
x ∈ �. In this case the essential spectrum of DA,�,m,B�

depends on the behavior
of the potentials A,�, m at infinity, and is given by the formula

spessDA,�,m,B�
=
⋃

h

sp Dh (11)

where Dh = DAh ,�h ,mh are the so-called limit operators for DA,�,m which are

the Dirac operators with the potentials Ah,�h,mh defined by the sequences Z
n �

hk → ∞ as follows

Ah(x) = lim
k→∞ Ah(x + hk),�

h(x ) = lim
k→∞ �h(x + hk), (12)

mh(x) = lim
k→∞mh(x + hk).

The limits in (12) are understood in the sense of the uniform convergence on
compact sets in R

n (see, for instance, [32, 33]).
• Let A j ,�,m ∈ C1

b(R
n) be the slowly oscillating at infinity functions, that is their

partial derivatives tend to zero at infinity. Then Dh = DAh,�h ,mh are the Dirac
operators onR

n with constant coefficients.Assuming that A j ,�,m are real-valued
functions and applying formula (11) we obtained the explicit description of the
essential spectrum of the operator DA,�,m,B�

spessDA,�,m,B�
(13)

=
(

−∞, lim sup
x→∞

(�(x) − |m(x)|)
]⋃[

lim inf
x→∞ (�(x) + |m(x)|),+∞

)
.

Remark 2 The approaches described above to the investigation of self-adjointness and
essential spectra of Schrödinger operators on R

n and Dirac operators on R
2, R

3 with
singular potentials were previously used in the papers [34–37].

2 Notations and Auxiliary Material

2.1 Notations

• If X,Y are Banach spaces then we denote by B(X,Y) the space of bounded
linear operators acting from X into Y with the uniform operator topology, and by
K(X,Y) the subspace of B(X,Y) of all compact operators. In the case X = Y
we write shortly B(X) and K(X).

• An operator A ∈ B(X,Y) is called a Fredholm operator if kerA, and
cokerA=Y/ Im A are finite dimensional spaces. Let A be a closed unbounded
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operator in a Hilbert space H with a dense in H domain domA. Then A is
called a Fredholm operator if kerA = {u ∈ domA : Au = 0} and cokerA =
H/ ImA where ImA= {w ∈ H : w = Au, u ∈ DA} are the finite-dimensional
spaces. Note that A is a Fredholm operator as the unbounded operator in H if and
only if A : domA → H is a Fredholm operator as the bounded operator where
domA is equipped by the graph norm

‖u‖domA =
(
‖u‖2H + ‖Au‖2H

)1/2
, u ∈ domA

(see for instance [1]).
• The essential spectrum spessA of an unbounded operator A is a set of λ ∈ C

such that A − λI is not the Fredholm operator as the unbounded operator, and the
discrete spectrum spdisA ofA is a set of isolated eigenvalues of finite multiplicity.
It is well known that if A is a self-adjoint operator then spdisA=spA�spessA.

• Wedenote by L2(Rn, C
N ) theHilbert space of N -dimensional vector-valued func-

tions u(x) = (u1(x), . . . , uN (x)), x ∈ R
n with the scalar product

〈u, v〉L2(Rn ,CN ) =
∫

Rn
u(x) · v(x)dx,

and by L2(�, C
N ) the Hilbert space with the scalar product

〈u, v〉L2(�,CN ) =
∫

�

u(s) · v(s)ds

where ds is the Lebesgue measure on �, and u · v = ∑n
j=1 u j v̄ j .

• We denote by Hs(Rn, C
N ) the Sobolev space of vector-valued distributions u ∈

D′(Rn, C
N ) such that

‖u‖Hs (Rn ,CN ) =
(∫

Rn
(1 + |ξ |2)s ∥∥û(ξ)

∥∥2
CN dξ

)1/2

< ∞, s ∈ R

where û is the Fourier transform of u. If � is a domain in R
n then Hs(�, C

N ) is
the space of restrictions of u ∈ Hs(Rn, C

N ) on � with the norm

‖u‖Hs (�,CN ) = inf
lu∈Hs (Rn ,CN )

‖lu‖Hs (Rn ,CN )

where lu is an extension of u on R
n . If � is an enough smooth hypersurface in

R
n we denote by Hs−1/2(�, C

N ) the space of restrictions on � the distributions
in Hs(Rn, C

N ), s > 1/2.
• We denote by Cb(R

n) the class of bounded continuous functions on R
n, Cm

b (Rn)

the class of functions a on R
n such that ∂αa ∈ Cb(R

n) for all multi-indeces
α : |α| ≤ m. We denote by C1

b(�) the class of differentiable on � functions that
are bounded with their first derivatives.
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Definition 3 Let a C2-hypersurface � ⊂ R
n, n ≥ 2 be the common boundary of

the domains �±. We say that � is uniformly regular (see for instance [3, 19]) if :
(i) there exists r > 0 such that for every point x0 ∈ � there exists a ball Br (x0) =
{x ∈ R

n : |x − x0| < r} and the diffeomorphism ϕx0 : Br (x0) → B1(0) such that

ϕx0 (Br (x0) ∩ �±) = B1(0) ∩ R
n±, R

n± =
{
y = (y′, yn) ∈ R

n−1
y′ × Ryn : yn ≷ 0

}
,

ϕx0 (Br (x0) ∩ �) = B1(0) ∩ R
n−1
y′ ;

(ii) let ϕi
x0 , ψ

i
x0 , i = 1, . . . , n be the coordinate functions of the mappings ϕx0 , ϕ

−1
x0 .

Then

sup
x0∈�

sup
|α|≤2,x∈Br (x0)

∣∣∣∂αϕi
x0(x)

∣∣∣ < ∞, i = 1, . . . , n;

sup
x0∈�

sup
|α|≤2,x∈B1(0)

∣∣∣∂αψ i
x0(x)

∣∣∣ < ∞, i = 1, . . . , n.

Note that each closed C2-hypersurfaces are uniformly regular.

2.2 Free Dirac Operator

Let

Dα,m = α · Dx + αn+1m =
n∑

j=1

α j Dx j + αn+1m, Dx j = −i∂x j (14)

be the free n-dimensional Dirac operator (n ≥ 2) where α j , j = 1, . . . , n + 1 are the
Dirac matrices, that is α j are Hermitian N × N matrices satisfying the relations

α jαk + αkα j = 2δ jk IN ; j, k = 1, . . . , n + 1, (15)

IN is the unit N × N matrix, N = 2[(n+1)/2],m ∈ C. (see for instance [17, 24]).
Note that the Dirac matrices can be obtained by the induction starting from the Pauli
matrices in the dimension 2 (see [24], Appendix).

Property (15) implies that

D2
α,m = (−�n + m2)IN (16)

where�n is the n-dimensional Laplacian. Moreover, ifm ∈ R the operatorDα,m with
domain H1(Rn .CN ) is self-adjoint in L2(Rn .CN ) and

spDα,m = (−∞,− |m|] ∪ [|m| ,+∞)
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Proposition 4 (see, [23], p. 150) Let T : R
n → R

n be a linear mapping given by the
orthogonal matrix T = (Tkl)nk,l=1 . Then the change of variables: y = T x transforms
the Dirac operator Dα,m into the Dirac operator

Dα̃,m = α̃ · Dy + αn+1m

with the Dirac matrices α̃ = (α̃1, . . . , α̃n) defined as

α̃k =
n∑

k=1

Tjkα j , k = 1, . . . , n.

3 Dirac Operators with Singular Potentials as Unbounded Operators

Let

DA,�,m,�δu(x) = (
DA,�,m + �δ�

)
u(x), x ∈ R

n

be the formal Dirac operator defined by formulas (3),(4). We assume that � is the
C2-hypersurface in R

n, A j ,�,m ∈ L∞(Rn), � = (
�i, j

)N
i, j=1 , �i, j ∈ C1

b(�).

We define the product �δ�u where u ∈ H1(Rn
��, C

N ) as a distribution in
D′(Rn, C

N ) = D′(Rn) ⊗ C
N acting on the test functions ϕ ∈ C∞

0 (Rn, C
N ) as

(�δ�u) (ϕ) = 1

2

∫

�

�(s)
(
γ +
� u(s) + γ −

� u(s)
) · ϕ(s)ds. (17)

Integrating by parts and taking into account (17) we obtain that

〈
DA,�,m,�δu,ϕ

〉
L2(Rn ,CN )

=
∫

�+∪�−
DA,�,mu(x) · ϕ(x)dx (18)

−
∫

�

iα · ν(s)(γ +
� u(s) − γ −

� u(s)) · ϕ(s))ds

+ 1

2

∫

�

(
�(s)

(
γ +
� u(s) + γ −

� u(s)
) · ϕ(s)

)
ds,

ϕ ∈ C∞
0 (Rn, C

N )

where γ ±
� : H1(�±, C

N ) → H1/2(�±, C
N ) are the trace operators, ν(s) =

(ν1(s), . . . , νn(s)) is the field of unit normal vectors directed to �−. Formula (18)
yields that in the distribution sense

DA,�,m,�δ�
u = DA,�,mu

[
−iα · ν

(
γ +
� u − γ −

� u
)+ 1

2
�
(
γ +
� u + γ −

� u
)]

δ�,

(19)

where DA,�,mu is the regular distribution given by the function DA,�,mu ∈
L2(Rn, C

N ). Formula (19) yields that DA,�,m,�δ�
u ∈ L2(Rn, C

N ) if and only if
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− iα · ν
(
γ +
� u − γ −

� u
)+ 1

2
�
(
γ +
� u + γ −

� u
) = 0 on �. (20)

Condition (20) can be written of the form

B�u = a+γ +
� u + a−γ −

� u = 0 on � (21)

where a± are N × N matrices:

a± = 1

2
� ∓ iα · ν on �. (22)

We associate with the formal Dirac operator DA,�,m,�δ�
the unbounded in

L2(Rn, C
N ) operator DA,�,m,B�

defined by the Dirac operator DA,�,m with the
domain

domDA,�,m,B�
= H1

B�
(Rn

��, C
N ) (23)

=
{
u ∈ H1(Rn

��, C
N ) : B�u = 0 on �

}
,

and the bounded operator of interaction (transmission) problem

DA,�,m,B�
u =

{
DA,�,mu on R

n
��,

B�u = a+γ +
� u + a−γ −

� u on �
(24)

acting from H1(Rn
��, C

N ) into L2(Rn, C
N ) ⊕ H1/2(�, C

N ).

4 Parameter-Dependent Interaction Problems

We consider the parameter-dependent operator

DA,�,m,B�
(iμ)u = (

DA,�,m,B�
− iμIN

)
u (25)

=
{
DA,�,m(iμ)u = (DA,�,m − iμIN )u on R

n
��,

B�u = a+γ +
� u + a−γ −

� u on �
,μ ∈ R

acting from H1(Rn
��, C

N ) into L2(Rn, C
N ) ⊕ H1/2(�, C

N ).
We assume as above that A j , j = 1, . . . , n,�,m ∈ L∞(Rn), �i j ∈ C1

b(�), i, j =
1, . . . , N , where � ⊂ R

n is a uniformly regular C2-hypersurface being the common
boundary of domains�±.Weconsider the invertibility of the operatorDA,�,m,B�

(iμ)

for large values of |μ| . We follows the seminal paper [2] where the parameter-
dependent boundary value problems for bounded domains inR

n have been considered
(see also [1]). It is convenient to consider the operator DA,�,m,B�

(iμ) as acting
from the spaces X |μ| = H1|μ|(Rn

��, C
N ) into the space Y |μ| = L2(Rn, C

N ) ⊕
H1/2

|μ| (�, C
N ) depending on the parameter |μ| , where the parameter-dependent
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Sobolev spaces H1|μ|(Rn
��, C

N ), H1/2
|μ| (�, C

N ) are provided by the norms induced
by

‖u‖Hs|μ|(Rn ,CN ) =
(∫

Rn
(1 + μ2 + |ξ |2)s ∥∥û(ξ)

∥∥2
CN dξ

)1/2

.

Let ϕ ∈ C∞
0 (Rn), and u = ( f , ψ) ∈ Y |μ|.Then we set ϕ ( f ,ψ) = ( f ,ψ) ϕ =

(ϕ f , ϕψ).

Proposition 5 (Local principle)Assume that there exist numbers:μ0 > 0, r > 0, M >

0 such that for every x ∈ R
n, μ ∈ R : |μ| ≥ μ0, and every ball Br (x), x ∈ R

n there
exist operators Lx (μ), Rx (μ) ∈ B(Y |μ|, X |μ|) such that for every ϕx ∈ C∞

0 (Br (x))

Lx (μ)DA,�,m,B�
(iμ)ϕx I = ϕx I , ϕxDA,�,m,B�

(iμ)Rx (μ) = ϕx I , (26)

and

sup
x∈Rn ,|μ|≥μ0

‖Lx (μ)‖B(Y |μ|,X |μ|) ≤ M, sup
x∈Rn ,|μ|≥μ0

‖Rx (μ)‖B(Y |μ|,X |μ|) ≤ M . (27)

Then there exists μ1 ≥ μ0 such that the operator DA,�,m,B�
(iμ) : X |μ| → Y |μ| is

invertible for every μ : |μ| ≥ μ1.

Proof It follows from conditions of Proposition 5 that there exist r > 0, μ0 > 0, M >

0, and a countable subsystem
{
Br (x j )

}
j∈N

of the finite multiplicity d ∈ N of the

system {Br (x)}x∈Rn such that R
n =

⋃

j∈N

Br (x j ). We introduce a partition of unity

∑

j∈N

θ j (x) = 1, x ∈ R
n (28)

subordinated to the system
{
Br (x j )

}
j∈N

with θ j ∈ C∞
0 (Br (x j )), 0 ≤ θ j (x) ≤ 1,

such that the sum
∑

j∈N
θ j (x) contains for every x ∈ R

n not more than d nonzero
terms. Let ϕ j ∈ C∞

0 (Br (x j )), 0 ≤ ϕ j (x) ≤ 1, and θ jϕ j = θ j . We set

L(μ) f =
∑

j∈N

θ j Lx j (μ)ϕ j f , R(μ) f =
∑

j∈N

ϕ j Rx j (μ)θ j f , f ∈ C∞
0 (Rn, C

N ).

(29)

Taking into account that the coverage
{
Br (x j )

}
j∈N

has the finite multiplicity d we
obtain the estimates

‖L(μ) f ‖X |μ| ≤ Md ‖ f ‖
Y |μ| , ‖R(μ) f ‖X |μ| ≤ Md ‖ f ‖Y |μ| (30)

for every μ : |μ| ≥ μ0 > 0, f ∈ C∞
0 (Rn, C

N ) and the constants M, d independent
of μ and f . Estimates (30) yield that the operators L(μ), R(μ) can be extended
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to bounded operators from Yμ into Xμ for every μ : |μ| ≥ μ0 > 0. Let ψ j ∈
C∞
0 (Br (x j )), 0 ≤ ψ j (x) ≤ 1, ϕ j ∈ C∞

0 (Br (x j )), and ϕ jψ j = ϕ j . Then

L(μ)DA,�,m,B�
(iμ) =

∑

j∈N

θ j Lx j (μ)ϕ jDA,�,m,B�
(iμ)ψ j (31)

=
∑

j∈N

θ j Lx j (μ)DA,�,m,B�
(iμ)ϕ j + T1(μ)

where

T1(μ) =
∑

j∈N

θ j Lx j (μ)
[
ϕ j I , DA,�,m,B�

(iμ)
]
ψ j I ,

[
ϕ j , DA,�,m,B�

] = ϕ jDA,�,m,B�
− DA,�,m,B�

ϕ j I .

Note that

∑

j∈N

θ j Lx j (μ)DA,�,m,B�
ϕ j IX |μ| = IX |μ| , (32)

and

‖T1(μ)‖B(X |μ|) ≤
∑

j∈N

∥∥θ j Lx j (μ)
[
DA,�,m,B�

, ϕ j
]
ψ j I

∥∥B(X |μ|) (33)

≤ d sup
j∈N

∥∥Lx j (μ)
∥∥B(Y |μ|,X |μ|)

∥∥[DA,�,m,B�
, ϕ j I

]∥∥B(X |μ|,Y |μ|) .

Taking into account the inequality

∥∥[DA,�,m,B�
, ϕ j I

]∥∥B(X |μ|,Y |μ|) ≤ C

|μ| , |μ| > μ0 (34)

with the constant C > 0 independent of j and μ we obtain that

‖T1(μ)‖B(X |μ|) ≤ CdM

|μ| , |μ| ≥ μ0. (35)

Estimate (35) yields that the operator DA,�,m,B�
has the left inverse operator

L(�) = (I + T1(μ))−1 L(μ)

for everyμ ∈ R : |μ| ≥ μ1 > μ0 whereμ1 is large enough. In the samewaywe prove
that there exists a right inverse operator R(�) of DA,�,m,B�

(iμ) for |μ| ≥ μ1 > μ0.

��
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Since the norms in Hs|μ|(Rn, C
N ) and Hs(Rn, C

N ) are equivalent, the operator

DA,�,m,B�
(iμ) is invertible from H1(Rn

��, C
N ) into L2(Rn, C

N )⊕H1/2(�, C
N )

for large enough |μ| .
Proposition5 reduces the invertibility of operatorDA,�,m,B�

(iμ) to the local invert-
ibility of DA,�,m,B�

(iμ) at every point x ∈ R
n .

10. Local invertibility at the points x ∈ R
n
��. For x0 ∈ R

n
�� there exists a ball

Br (x0) such that

DA,�,m,B�
(iμ)ϕ I = DA�,m(iμ)ϕ I

ϕDA,�,m,B�
(iμ) = ϕDA�,m(iμ)

for every functionϕ ∈ C∞
0 (Br (x)). Themain part of the parameter-dependent operator

DA,�,m(iμ) isD0
α(iμ) = α · D− iμIN . SinceD0

α(iμ)D0
α(−iμ) = (−�n + μ2

)
IN

the operatorD0
α(iμ) : H1(Rn, C

N ) → L2(Rn, C
n) is invertible for every realμ 	= 0.

Moreover,

∥∥∥DA,�,m(iμ) − D0
α(iμ)

∥∥∥B(H1
μ(Rn ,CN ),L2(Rn ,CN ))

(36)

≤ ‖α · A + αn+1m + �IN‖B(H1|μ|(Rn ,CN ),L2(Rn ,CN )) ≤ C

1 + |μ| ,

with a constant C > 0 independent of μ ∈ R. Estimate (36) implies that the operator
DA,�,m(iμ) is invertible for |μ| large enough. Hence, for every x ∈ R

n
�� there exist

the locally inverses operators Lx (μ), Rx (μ) for DA,�,m,B�
(iμ) satisfying conditions

of Proposition 5.
20. Local invertibility at the points x ∈ �. Passing to the local coordinates at the

point x0 ∈ � we obtain in the standard way (see [2]) that the operator DA,�,m,B�
(iμ)

is locally invertible at the point x0 ∈ � if the interaction operator for the half-spaces

D
x0
BTx0 (�)

(iμ)u =
{
D(iμ)u = (α · Dx − iμIN ) u on R

n
�Tx0(�)

B�(x0)u = a+(x0)γ
+
Tx0 (�)

u + a−(x0)γ −
Tx0 (�)

u on Tx0(�)

a±(x0) = 1

2
�(x0) ∓ iα · ν(x0)

is invertible from H1(Rn
�Tx0(�), C

N ) into L2(Rn, C
N ) ⊕ H1/2(Tx0(�), C

N ) for
every μ ∈ R�0 where Tx0(�) is the tangent space to � at the point x0.

Let U : R
n → R

n be the orthogonal transformation such that U(Tx0(�)) = R
n−1

and U(ν(x0)) = (0, . . . , 1). We set

w(y) = (
U∗u

)
(y) = u(U−1y), u(x) = (U∗w) (x) = w(Ux).
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After the linear change of the variables y = Ux to the operatorD
x0
BTx0 (�)

(iμ)we obtain

the operator

D
x0
B

Rn−1
(iμ)w( y) =

(
U∗

D
x0
BTx0 (�)

(iμ)U∗
)

w(y) (37)

=
{
Dα̃,μw(y) = (

α̃ · Dy − iμIN
)
w(y) on R

n
�R

n−1

BRn−1(x0)w = ã+(x0)γ
+
R
n−1
y′

w(y′) + ã−(x0)γ −
R
n−1
y′

w(y′) on R
n−1 ,

ã±(x0) = �(x0)

2
∓ i α̃n

for the half-spaces

R
n± =

{
y = (y′, yn) ∈ R

n : y′ = (y1, . . . , yn−1) ∈ R
n−1, yn ≷ 0

}

where α̃i = ∑n
j=1 U(j.i)α j , i = 1, . . . , n. Note that α̃ = {α̃i }ni=1 is a system of Dirac

matrices since U is the orthogonal matrix (see Proposition 4).
30.We study the invertibility of the operator D

x0
B

Rn−1
(iμ) for μ ∈ R� {0} . The

general solution of the equation

Dα̃,μw = f ∈ L2(Rn, C
N )

in the space H1(Rn
�R

n−1, C
N ) = H1(Rn+, C

N ) ⊕ H1(Rn−, C
N ) is

w(y) = w0(y) + D−1
α̃,μ

f (y) (38)

(see for instance [18], p. 268) where

w0(y) = D−1
α̃,μ

(ϕ(y′) ⊗ δ(yn)),ϕ ∈ H1/2(Rn−1, C
N ) (39)

is the general solution of the equationDα̃,μw = 0 in H1(Rn
�R

n−1, C
N ). Note that

D−1
α̃,μ

= Dα̃,−μ(−� + μ2)−1 IN (40)

is the pseudodifferential operator with the matrix symbol

̂D−1
α̃,μ

(ξ) = α̃ · ξ + iμIN
|ξ |2 + μ2

, ξ ∈ R
n . (41)

Let

kα̃,μ(y) = F−1
ξ→y

(
α̃ · ξ + iμIN

|ξ |2 + μ2

)
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where F−1
ξ→y is the inverse Fourier transform. Then

D−1
α̃,μ

ψ(y) =
∫

Rn
kα̃,μ(y − z)ψ(z)dz, y ∈ R

n,ψ ∈ C∞
0 (Rn, C

N ). (42)

We introduce the potential operator Kα̃,μ as follows

(
Kα̃,μϕ

)
(y′, yn) = D−1

α̃,μ
(ϕ(y′) ⊗ δ(yn)) (43)

=
∫

Rn−1
kα̃,μ(y′ − z′, yn)’(z′)dz′, y′ ∈ R

n−1, yn ≷ 0

bounded from H1/2(Rn−1, C
N ) into H1(Rn

�R
n−1, C

N ) (see, for instance, [18],
Chap.3). Note that u0 = Kα̃,μϕ ∈ kerDα̃,μ ⊂ H1(Rn

�R
n−1, C

N ).
The Fourier transform of kα̃,μ(y′, yn) with respect to y′ ∈ R

n−1 is

k̂α̃,μ(ξ ′, yn) = 1
2π

∫

R

̂D−1
α̃,μ

(ξ ′, ξn)eiynξn dξn, yn ≷ 0 (44)

where the integral in (44) exists for every yn 	= 0. Applying the residua theorem we
obtain that for every yn 	= 0

k̂α̃,μ(ξ ′, yn) = 1
2π

∫

R

eiynξn
α̃′ · ξ ′ + iμIN + α̃nξn

|ξ |2 + μ2
dξn (45)

=
e−

√
|ξ ′|2+μ2|yn |

(
α̃′ · ξ ′ + iμIN + sign(yn)i α̃n

√
|ξ ′|2 + μ2

)

2
√

|ξ ′|2 + μ2

= e−
√

|ξ ′|2+μ2|yn |
⎛

⎝sign(yn)
i α̃n

2
+ α̃′ · ξ ′ + iμIN

2
√

|ξ ′|2 + μ2

⎞

⎠ , yn ≷ 0.

Formula (45) yields that there exist limits

K±
α̃,μ

ϕ(y′) = lim
yn→±0

(
Kα̃,μϕ

)
(y′, yn) (46)

= ± i α̃n

2
ϕ(y′) + Kα̃,μϕ(y′), ϕ ∈ C∞

0 (Rn−1, C
N ),

where

Kα̃,μϕ(y′) =
∫

Rn
kα̃,μ(y′ − z′, 0)ϕ(z′)dz′
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is a pseudodifferential operator with the symbol

K̂α̃,μ(ξ ′) = α̃′ · ξ ′ + iμIN

2
√

|ξ ′|2 + μ2
.

Hence K±
α̃,μ

are the pseudodifferential operators on R
n−1 of zero order with the sym-

bols

K̂±
α̃,μ

(ξ ′) = ± i α̃n

2
+ α̃′ · ξ ′ + iμIN

2
√

|ξ ′|2 + μ2
(47)

and with the main symbols

K̂±
α̃,0(ξ

′) = ±1

2
i α̃n + α̃′ · ξ ′

2 |ξ ′| , ξ ′ ∈ R
n−1. (48)

Remark 6 For μ = 0 the integral operators K±
α̃,0 have to understand as a singular

integral operators on R
n−1.

Note that the operators: Kα̃,μ : H1/2(Rn−1, C
N ) → H1(Rn

�R
n−1, C

N ), and
K±

α̃,μ
: H1/2(Rn−1, C

N ) → H1/2(Rn−1, C
N ) are bounded (see, for instance, [18],

Chap.3).
Substituting w given by formula (38) into the interaction condition

ã+(x0)γ
+
R
n−1
y′

w(y′) + ã−(x0)γ −
R
n−1
y′

w(y′) = ψ(y′), y′ ∈ R
n−1

and applying formula (46) we obtain a pseudodifferential equation on R
n−1 with

respect to ϕ ∈ H1/2(Rn−1, C
N )

�α̃,μ(x0, Dx ′)ϕ(y′) (49)

= i α̃n

2
(ã+(x0) − ã−(x0))ϕ(y′) + (ã+(x0) + ã−(x0))

(Kα̃,μϕ
)
(y′)

= ψ(y′) − BRn−1D−1
α̃,μ

f (y′), y′ ∈ R
n−1.

Taking into account that

ã+(x0) − ã−(x0) = −2i α̃n and ã+(x0) + ã−(x0) = �(x0)

we obtain that �α̃,μ(x0, Dx ′) is the pseudodifferential operator on R
n−1 with the

matrix symbol

�α̃,μ(x0, ξ
′) = IN + �(x0)

α̃′ · ξ ′ + iμIN

2
√

|ξ ′|2 + μ2
, ξ ′ ∈ R

n−1. (50)
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The operator �α̃,μ(x0, Dx ′) is invertible in H1/2(Rn−1, C
N ) for every μ ∈ R if and

only if

det�α̃,μ(x0, ξ
′) 	= 0 for every (ξ ′, μ) ∈ Sn−1. (51)

Taking into account that

(
α̃′ · ξ ′ + iμIN

) (
α̃′ · ξ ′ − iμIN

) = ∣∣ξ ′∣∣2 + μ2

we write condidtin (51) as follows:

det�α̃,μ(x0, ξ
′) 	= 0 for every (ξ ′, μ) ∈ Sn−1

where

�α̃,μ(x0, ξ
′) = α̃′ · ξ ′ + �(x0)

2
− iμIN , (ξ ′, μ) ∈ Sn−1.

Proposition 7 The operator

D
x0
B

Rn−1
(iμ) : H1(Rn

�R
n−1, C

N ) → L2(Rn, C
N ) ⊕ H1/2(Rn−1, C

N )

is invertible for every R � μ 	= 0 if and only if

det�α̃,μ(x0, ξ
′) 	= 0 for every (ξ ′, μ) ∈ Sn−1. (52)

The inverse operator
(
D
x0
B

Rn−1
(iμ)

)−1
is

(
D
x0
B

Rn−1
(iμ)

)−1
( f ,ψ) = D−1

α̃,μ
f + Kα̃,μ

(
ψ − BRn−1D−1

α̃,μ
f
)

. (53)

Moreover,

‖u‖H1|μ|(Rn�Rn−1,CN ) ≤ C(‖ f ‖L2(Rn ,CN ) + ‖ψ‖
H1/2

|μ| (Rn−1,CN )
) (54)

with a constant C > 0 independent of μ.

Returning to the variables x = U−1y we obtain the following result.

Corollary 8 For every fix x ∈ � the operator

D
x
BTx (�)

(iμ) : H1(Rn
�Tx (�), C

N ) → L2(Rn, C
N ) ⊕ H1/2(Tx (�), C

N )

is invertible for every μ ∈ R�0 if and only if

det�α,μ(x, ξx ) 	= 0 for every (ξx , μ) ∈ T
∗
x (�) × R : |ξx |2 + μ2 = 1 (55)
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where T
∗
x (�) is the cotangent space to � at the point x ∈ �, and

�α,μ(x, ξx ) = α · ξx + �(x)

2
− iμIN .

Hence, if condition (55) holds the operator DA,�,m,B�
(iμ) is locally invertible at the

point x ∈ �.

Condition (55) is called the local parameter-dependent Lopatinsky–Shapiro
condition, and the condition

inf
x∈�,(ξx ,μ)∈Tx (�)×R:|ξx |2+μ2=1

∣∣det�α,μ(x, ξx )
∣∣ > 0 (56)

is called the uniform parameter-dependent Lopatinsky–Shapiro condition.
Therefore, Proposition 5 yields the following result.

Theorem 9 Let A j , j = 1, . . . , n,�,m ∈ L∞(Rn), �i j ∈ C1
b(�), i, j =

1, . . . , N , � be the uniformly regular C2-hypersurface, and the uniform parameter-
dependent Lopatinsky–Shapiro condition (56) holds. Then there exists μ1 > 0 such
that the operator

DA,�,m,B�
(iμ) : H1(Rn

��, C
N ) → L2(Rn, C

N ) ⊕ H1/2(�, C
N )

is invertible for all μ ∈ R : |μ| > μ1. If the conditions of theorem are satisfied, then
the a priory estimate

‖u‖H1(Rn��,CN ) ≤ C
(∥∥DA,�,mu

∥∥
L2(Rn ,CN )

+ ‖Bu‖H1/2(�,CN ) + ‖u‖L2(Rn ,CN )

)

(57)

holds for every function u ∈ H1(Rn
��, C

N ) with a constant C > 0 independent of
u.

Remark 10 If the matrix �(x) is Hermitian then condition (55) holds if μ ∈ R�0.
Hence for the Hermitian matrix �(x) condition (55) is equivalent to the condition

det

(
α · ξx + �(x)

2

)
	= 0 for each ξx ∈ T

∗
x (�) : |ξx | = 1. (58)

Condition (58) is the local Lopatinsky–Shapiro condition for the parameter-
independent interaction operator DA,�,m,B�

.

5 Self-adjointness of Unbounded OperatorsDA,8,m,B6

Now we consider the self-adjointness of the unbounded operator DA,�,m,B�
associ-

ated with the formal Dirac operators (3),(4) which defined by the Dirac operator

DA,�,m = α · (Dx + A) + αn+1m + �IN
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with the domain

dom
(DA,�,m,B�

) = H1
B�

(Rn
��, C

N )

=
{
u ∈ H1(Rn

��, C
N ) : B�u = a+γ +

� u + a−γ −
� u = 0 on �

}

where a± = 1
2� ∓ iν · α.

Theorem 11 Let

(a) A j , j = 1, . . . , n,�,m ∈ L∞(Rn), �i j ∈ C1
b(�), i, j = 1, . . . , N , � be the

uniformly regular C2-hypersurface;
(b) The vector potential A, scalar potentials �, and variable mass m be real-valued,

and � = (
�i j

)N
i, j=1 be an Hermitian matrix.

(c) The uniform Lopatinsky–Shapiro condition

inf
x∈�,ξx∈T ∗

x (�):|ξx |=1

∣∣∣∣det
(

α · ξx + �(x)

2

)∣∣∣∣ > 0 (59)

is satisfied.

Then the operator DA,�,m,B�
is self-adjoint in L2(Rn, C

N ).

Proof At first, we prove that the operator DA,�,m,B�
is symmetric. Indeed, let u, v ∈

dom
(DA,�,m,B�

) = H1
B�

(Rn
��, C

N ). Then, integrating by parts we obtain

〈
DA,�,mu, v

〉
L2(Rn ,CN )

− 〈
u,DA,�,mv

〉
L2(Rn ,CN )

= 〈
(−iα · ν) γ +

� u, γ +
� v

〉
L2(�,CN )

− 〈
(−iα · ν) γ −

� u, γ −
� v

〉
L2(�,CN )

= 1

2

〈−iα · ν
(
γ +
� u − γ −

� u
)
, γ +

� v + γ −
� v

〉
L2(�,CN )

− 1

2

〈
γ +
� u + γ −

� u,−iα · ν
(
γ +
� v − γ −

� v
)〉
L2(�,CN )

.

Taking into account the equality

−iα · ν
(
γ +
� u − γ −

� u
)+ 1

2
�
(
γ +
� u + γ −

� u
) = 0 on �

we obtain that

〈
DA,�,mu, v

〉
L2(Rn ,CN )

− 〈
u,DA,�,mv

〉
L2(Rn ,CN )

= −1

4

〈
�
(
γ +
� u + γ −

� u
)
, γ +

� v − γ −
� v

〉
L2(�,CN )

(60)

+ 1

4

〈
γ +
� u + γ −

� u, �(γ +
� v − γ −

� v
〉
L2(�,CN )

.
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Since the matrix� is Hermitian for every x ∈ � the right side part in (60) is 0. Hence,

〈
DA,�,mu, v

〉
L2(Rn ,CN )

= 〈
u,DA,�,mv

〉
L2(Rn ,CN )

for every u, v ∈ H1
B�

(Rn
��, C

N ).
The uniform Lopatinsky–Shapiro condition (59) yields the a priori estimate (57).

For v ∈ dom
(DA,�,m,B�

)
this estimate accepts the form

‖v‖H1(Rn��,CN ) ≤ C
(∥∥DA,�,mv

∥∥
L2(Rn ,CN )

+ ‖v‖L2(Rn ,CN )

)
. (61)

The estimate (61) yields the closedness of the operator DA,�,m,B�
. Indeed, let

dom
(DA,�,m,B�

) � u j → u, and DA,�,mu j → f in L2(Rn, C
N ). Then (61)

yields that u ∈ H1(Rn
��, C

N ) and

∥∥u j − u
∥∥
H1(Rn��,CN )

→ 0. (62)

The estimate

∥∥B�u j
∥∥
H1/2(�,CN )

≤ C
∥∥u j

∥∥
H1(Rn��,CN )

(63)

and (62) yields that B�u = 0. Hence u ∈ dom
(DA,�,m,B�

)
. Moreover,

∥∥DA,�,mu − f
∥∥
L2(Rn ,CN )

≤ ∥∥DA,�,mu − DA,�,mu j
∥∥
L2(Rn ,CN )

+ ∥∥DA,�,mu j − f
∥∥
L2(Rn ,CN )

≤ C
∥∥u − u j

∥∥
H1(Rn��,CN )

+ ∥∥DA,�,mu j − f
∥∥
L2(Rn ,CN )

→ 0.

Hence, DA,�,mu = f and the operator DA,�,m,B�
is closed.

Theorem 9 yields that the operator

D
0
A,�,m,B�

(iμ) u =
{(

DA,�,m − iμIN
)
u on R

n
��

B�u = 0 on �

is invertible from H1(Rn
��, C

N ) into L2(Rn, C
N ) for |μ| large enough. Therefore,

Range
(
D
0
A,�,m,B�

(iμ)
)

= L2(Rn, C
N ) for |μ| large enough. Since

Range
(
D
0
A,�,m,B�

(iμ)
)

= Range(DA,�,m,B�
− iμI )

the deficiency indices of DA,�,m,B�
equal zero. Hence (see for instance [5], page

100) the operator DA,�,m,B�
is self-adjoint. ��
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6 Electrostatic and Lorentz Scalar ı-Shell Interactions in R
n

Let � = ηIN + ταn+1, where η, τ ∈ C1
b(�) be real-valued functions. The formal

Dirac operator DA,�,m,0�
is the Hamiltonian of relativistic particles in the field of the

regular potentials A,�,m and electrostatic and scalar Lorentz δ-shell potentials with
supports on the uniformly regular C2-hypersurface �.

Since

(
α · ξx + ηIN + ταn+1

2

)(
α · ξx + −ηIN + ταn+1

2

)

=
(

|ξx |2 − η2 − τ 2

4

)
IN ,

the condition

inf
s∈�

∣∣∣η2(s) − τ 2(s) − 4
∣∣∣ > 0 (64)

ensures the uniform Lopatinsky–Shapiro conditions

inf
x∈�

inf
ξx∈Tx (�):|ξx |=1

∣∣∣∣det
(

α · ξx + η(x)IN + τ(x)αn+1

2

)∣∣∣∣ > 0. (65)

By Theorem 11 the operator DA,�,m,B�
is self-adjoint if the potentials A,�,m are

real-valued and condition (64) holds.

7 Splitting of Interaction Conditions

We consider the interaction problem

DA,�,m,B�
u =

{
DA,�,mu = f , on R

n
��,

B�u = a+©+
�u + a−©−

�u = ϕ on �
(66)

where a± = 1
2� ∓ iα · ν. The interaction condition B�u = ϕ can be written as

P+©+
�u + P−©−

�u = i (α · ν)ϕ on � (67)

where

P± = 1

2
(IN ± M), M = i

2
(α · ν) � on �. (68)

Let

M2 = IN . (69)
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Then

(P±)2 = 1

4
(IN ± M)2 = 1

4

(
IN ± 2M + M2

)
= P±,

P+P− = 1

4
(IN − M2) = 0.

Hence the operators P± under condition (69) are the orthogonal projectors in C
N and

interaction condition (66) splits into two independent boundary conditions

P±γ ±u = P±i (α · ν)ϕ on �.

Hence, in this case the interaction problem (66) splits into two boundary problems for
the Dirac operator

Da,�,m,P±u± =
{
Da,�,mu± = f± on �±,

P±γ ±
� u± = P±i (α · ν)ϕ on �

. (70)

Example 12 Let � = ηIN + ταn+1, η, τ ∈ R. Then

M = i

2
(α · ν) � = i

2
(α · ν) (ηIN + ταn+1),

and

M2 = −1

4
(α · ν) (ηIN + ταn+1) (α · ν) (ηIN + ταn+1) (71)

= −1

4
(ηIN − ταn+1) (α · ν)2 (ηIN + ταn+1) = −1

4
(η2 − τ 2)IN .

Hence M2 = IN if η2 − τ 2 = −4. Under this condition the interaction problem (66)
splits into the orthogonal sum of the boundary problems

D±
A,�,m,B�

u =
{
DA,�,mu on �±,

P±γ ±
� u = P±i (α · ν) ϕ on �

. (72)

If η = 0 and τ 2 = 4 the boundary value problems (72) for n = 3, N = 4 are called the
MIT Bag problemswhich describes the confinement of the quarks in domains bounded
by the hypersurfaces � (see for instance [15, 16, 21, 22]).

8 Essential Spectrum of Interaction Operators on Closed
Hypersurfaces

In this chapter we consider the Fredholm property of the interaction operators
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DA,�,m,B�
u =

{
DA,�,mu on R

n
��,

B�u = a+γ +
� u + a−γ −

� u on �
(73)

acting from H1(Rn
��, C

N ) into L2(Rn, C
N )⊕H1/2(�, C

N ) and the essential spec-
trum of the unbounded operators DA,�,m,B�

.

Our approach is based on the local principle of elliptic theory (see for instance [1,
25]) and the limit operators method (see [32, 33]. In this regard, we need additional
smoothness conditions on the potentials. We assume that:

(a) � is a closed C2-hypersurface;
(b) The potentials A = (A1, . . . , An) ,�, and m are such that A j ,�,m ∈ C1

b(R
n),

and � = (
�k,l

)N
k,l=1 is such that �k,l ∈ C1

b(�);
(c) The Lopatinsky–Shapiro condition

det

(
α · ξx + �(x)

2

)
	= 0 for each ξx ∈ T

∗
x (�) : |ξx | = 1 (74)

is satisfied at every point x ∈ �.

First we consider the Fredholm property of the operator DA,�,m,B�
. For this aim

we need some notations and definitions.
Let ψ ∈ C∞

0 (B1(0)), and ψ(x) = 1 for x ∈ B1/2(0), 0 ≤ ψ(x) ≤ 1, χ(x) =
1 − ψ(x), ψR(x) = ψ(x/R), χR(x) = χ(x/R), R > 0.

Definition 13 Let X = H1(Rn
��, C

N ),Y = L2(Rn, C
N ) ⊕ H1/2(�, C

N ). (i) We
say that the operator DA,�,m,B�

: X → Y is locally Fredholm at the point x0 ∈ R
n if

there exist a ball Bε(x0), ε > 0 and operators Lx0 ,Rx0 ∈ B(Y , X) such that for every
function ϕ ∈ C∞

0 (Bε(x0))

Lx0DA,�,m,B�
ϕ IX = ϕ IX + K ′

x0 ,

ϕDA,�,m,B�
Rx0 = ϕ IY + K ′′

x0 ,

where K ′
x0 ∈ K(X), K ′′

x0 ∈ K(Y); (ii) We say that the operator DA,�,m,B�
: X → Y

is locally invertible at infinity if there exists R > 0 and operators LR,RR ∈ B(Y , X)

such that

LRDA,�,m,B�
χR IX = χR IX , (75)

χRDA,�,m,B�
RR = χR IY .

The next statements follow from the standard elliptic theory [1] , [25].

Proposition 14 (Local Principle) The operator DA,�,m,B�
is a Fredholm operator if

and only if DA,�,m,B�
is a locally Fredholm operator at every point x ∈ R

n and
DA,�,m,B�

is locally invertible at infinity.

Since the Dirac operator DA,�,m is elliptic, and we assume that the Lopatinsky–
Shapiro condition (74) is satisfied at each point x ∈ �, DA,�,m,B�

is a locally
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Fredholm operator at every point x ∈ R
n . Hence, the operator DA,�,m,B�

is a Fred-
holm operator if and only if DA,�,m,B�

is locally invertible at infinity. For R > 0
large enough the operators DA,�,m,B�

χR I , χRDA,�,m,B�
coincide with the opera-

tors DA,�,mχR I .χRDA,�,m , respectively. Hence DA,�,m,B�
is locally invertible at

infinity if and only if the Dirac operator DA,�,m is locally invertible at infinity.
Let the function a ∈ C1

b(R
n) and Z

n � hk → ∞. We consider the sequence
{a(· + hk)}k∈N . Applying the Arzelá-Ascoli Theorem one can find a subsequence{
a(x + hkl )

}
l∈N

converging to a limit function ah(x) ∈ Cb(R
n) uniformly on every

compact set K ⊂ R
n .

Thus every sequence Z
n � hk → ∞ has a subsequence hkl such that there are

limits

A(x + hkl ) → Ah(x),�(x + hkl ) → �h(x),m(x + hkl ) → mh(x)

in the sense of the uniformly convergence on the compact sets in R
n .

Wesay that theDirac operatorDh
A,�,m = DAh ,�h ,mh is the limit operator ofDA,�,m

defined by the sequence Z
n � hmk → ∞.

Proposition 15 (see [32, 33]) The operatorDA,�,m : H1(Rn, C
N ) → L2(Rn; C

N ) is
locally invertible at infinity if and only if all limit operatorsDh

A,�,m : H1(Rn; C
N ) →

L2(Rn; C
N ) are invertible.

This Proposition yields the following result.

Theorem 16 Let conditions (a), (b), (c) be satisfied. Then DA,�,m,B�
: H1(Rn; C

N )

→ L2(Rn; C
N ) ⊕ H1/2(�, C

N ) is a Fredholm operator if and only if all limit oper-
ators Dh

A,�,m : H1(Rn, C
N ) → L2(Rn, C

N ) are invertible.

Let DA,�,m,B�
be unbounded operator associated with the interaction operator

DA,�,m,B�
: H1(Rn

��, C
N ) → L2(Rn

��, C
N ) ⊕ H1/2(�, C

N ). Then Theorem
16 implies the following corollary.

Corollary 17 Let conditions (a), (b), (c) be satisfied. Then the unbounded operator
DA,�,m,B�

is closed, and

spessDA,�,m,B�
=
⋃

h

spDh
A,�,m (76)

where the union is taken with respect to all sequences h = (hm) defining the limit
operators DAh ,�h ,mh .

Proof Since the Dirac operator DA,�,m is uniformly elliptic on R
n, and the

Lopatinsky–Shapiro condition (74) is satisfied at every point x ∈ �, then in the spirite
of the proof of Theorem 9 we obtain the a priori estimate for every vector-function
u ∈ H1(Rn

��, C
N )

‖u‖H1(Rn��,CN )

≤ C
(∥∥DA,�,mu

∥∥
L2(Rn ,CN )

+ ‖B�u‖H1/2(�,CN ) + ‖u‖L2(Rn ,CN )

)
(77)
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with a constant C > 0 independent of u (see for instance [1]). This estimate implies
that the operator DA,�,m,B�

is closed. Formula (76) follows from Theorem 16. ��
Remark 18 There is another approach to studying the essential spectrumof self-adjoint
operators DA,�,m,B�

based on their resolvent property:

(DA,�,m,B�
− λI

)−1 − (
DA,�,m − λI

)−1 = Q(λ), λ ∈ C�R, (78)

where Q(λ) is a compact in L2(Rn, C
N ) operator (see for instance [11]). The equality

(78) yields that

spessDA,�,m,B�
= spessDA,�,m

(see for instance [38], Theorem XIII.14 ).

Definition 19 We say that a function a ∈ C1
b(R

n) is slowly oscillating at infinity and
belongs to the class SO1(Rn) if

lim
x→∞ ∂x j a(x) = 0, j = 1, . . . , n. (79)

Proposition 20 ([32], Chap. 2) If a ∈ SO1(Rn) and the sequence R
n � hk → ∞ is

such that

lim
k→∞ a(x + hk) = ah(x), x ∈ R

n

in the sense of uniformly convergence on compact sets, then the limit function ah is a
constant.

Assume that A j ,�, and m belong to SO1(Rn).Then the limit operators Dh
A,�,m

are of the form

Dh
A,�,m = α·(D + Ah) + mhαn+1 + �h IN (80)

where Ah ∈ C
n,mh ∈ C,�h ∈ C. Because Ah ∈ C

n the operatorDh
A,�,m is unitary

equivalent to the operator

Dh
�,m = α · D + mhαn+1 + �h IN .

Hence

spDh
A,�,m = spDh

0,�,m =
{
λ ∈ C : λ = �h ±

√
|ξ |2 + (

mh
)2

, ξ ∈ R
n
}

(81)

where the branch of the root
√

|ξ |2 + z2 is chosen such that
√

|ξ |2 + z2 ≥ 0 for z ∈ R.

If the potentials �,and m are real-valued functions, then
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spDh
A,�,m = spDh

0,�,m =
(
−∞,�h −

∣∣∣mh
∣∣∣
]⋃[

�h +
∣∣∣mh

∣∣∣ ,+∞
)

. (82)

Theorem 21 Let A j ,�,m ∈ SO1(Rn) be real-valued functions. Then

spessDA,�,m (83)

=
(

−∞, lim sup
x→∞

(�(x) − |m(x)|)
]⋃[

lim inf
x→∞ (�(x) + |m(x)|),+∞

)
.

Proof Formula (83) follows from formulas (76) and (82). ��
Remark 22 Let conditions of Theorem 21 hold, and the mass of the particle be a
constant m ∈ R. Then the operator DA,�,m,B�

can have the discrete spectrum if and
only if

lim sup
x→∞

�(x) − lim inf
x→∞ �(x) < 2 |m| .
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