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Abstract
We prove the local smoothing estimate for general Fourier integral operators with
phase function of the form φ(x, t, ξ) = x · ξ + t q(ξ), with q ∈ C∞(R2 \ {0}),
homogeneous of degree one, and amplitude functions in the symbol class of order
m ≤ 0. The result is global in the space variable, and also improves our previous
work in this direction (Manna et al (in: Georgiev et al., Advances in harmonic analysis
and partial differential equations, Trends in Mathematics. Birkhäuser, Cham, pp. 1–
35, 2020)). The approach involves a reduction to operators with amplitude function
depending only on the covariable, and a new estimate for square function based on
angular decomposition.
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1 Introduction

We consider Fourier integral operators of the form

F f (x, t) =
∫
R2

ei(x ·ξ+t q(ξ)) a(x, t, ξ) f̂ (ξ) dξ, f ∈ S(R2), (1.1)

where q ∈ C∞(R2 \ {0}) is non vanishing and homogeneous of degree 1, and the
amplitude functiona ∈ Sm(R2 × R × R

2), m ≤ 0, i.e.,a(x, t, ξ) is a smooth function
satisfying the estimate |∂β

x,t∂
α
ξ a(x, t, ξ)| ≤ Cα,β (1 + |ξ |)m−|α| for all multi-indices

α, β.
The general theory of Fourier integral operators was developed by Hörmander in

[14] in 1971, soon after the work of Eskin [12] who studied such operators as degener-
ate elliptic pseudo differential operators.Hörmander established the local L2 regularity
estimate for operators as above with a ∈ S0, under certain geometric conditions on the
phase function. The local L p regularity estimates has been proved by Seeger, Sogge
and Stein [20] for Fourier integral operators of the form (1.1), but with more general
phase functions, and amplitude function a ∈ Sm,− n−1

2 < m ≤ 0, for the range
m ≤ −(n − 1)|1/p − 1/2|, 1 < p < ∞. It is well known that the condition a ∈ Sm

with − n−1
2 < m ≤ 0, is necessary for the local L p boundedness for 1 < p < ∞, see

[24].
The above range of p is also optimal in view of the result of Peral [18] and Miyachi

[16] on wave equation, which corresponds to the phase function φ(x, t, ξ) = x · ξ +
t |ξ |, x, ξ ∈ R

n, t > 0 and a ≡ 1.
A global L2 regularity estimate has been obtained by Asada and Fujiwara in 1978

[1], under certain assumptions on amplitude and phase functions. This result has been
extended to a larger class of Fourier integral operators by Ruzhansky and Sugimoto
in [19]. A global L p estimate has been obtained by Coriasco and Ruzhansky, under
additional assumptions, see [7, 8]. In particular they use a decay assumption on all
derivatives of the amplitude function. See also [4, 10] for some recent development in
this direction. In connection with the study of wave equation, Sogge observed certain
gain in regularity for the associated Fourier integral operators in [21, 22], the so called
local smoothing estimate.

The aim of this article is to establish a local smoothing estimate for operators of
the form (1.1), global with respect to the space variable, and with very mild decay
assumption on the amplitude function and a few of its derivatives with respect to the
space time variables. In fact we only assume that a(x, t, ξ) ∈ Sm,m ≤ 0 satisfies the
estimate

∣∣∣∂β
x,t∂

α
ξ a(x, t, ξ)

∣∣∣ ≤ Cα,β

(1 + |ξ |)m−|α|

1 + |(x, t)|4 (1.2)

for some constant Cα,β for all multi indices α, β with |β| ≤ 4. We also show that
the above space time decay assumption can be completely dispensed with, for an
interesting subclass of symbols a ∈ Sm .
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In [15], we have extended the local smoothing estimate of Mockenhaupt et al.
[17], to more general amplitude functions assuming a decay condition as in (1.2)
involving derivatives with respect to the (x, t) variables upto order 8. The present
work generalises the result obtained in [15] to more general phase functions of the
form φ(x, t, ξ) = x · ξ + t q(ξ) and also extend it to a much larger class of symbols.

Recall that the fractional Sobolev space L p
α of order α > 0 is defined by L p

α :=
(−� + I )− α

2 L p(Rn), which is the Sobolev space of L p functions on R
n with α

derivatives in L p, see [23]. L p
α is a Banach space with norm ‖ f ‖L p

α
:= ‖(−� +

I )α/2 f ‖L p . Note that L p
α is also defined for complex α, and are spaces of tempered

distributions when Re(α) < 0. Our main result is the following.

Theorem 1.1 Let F be the Fourier integral operator given by (1.1) with amplitude
function a ∈ Sm, m ≤ 0 satisfying (1.2). Then for any compact t-interval I , the
following estimate holds true

‖F f ‖L p(R2×I ) ≤ Cσ ‖ f ‖L p
−σ+m (R2),

for all f ∈ L p(R2), with a constant Cσ depending on the length of I , where

{
Re(σ ) < 1

2

(
1
p − 1

2

)
, for 2 < p ≤ 4,

Re(σ ) < 3
2p − 1

2 , for 4 ≤ p < ∞.

As an interesting byproduct of our approach, we also obtain the local smoothing
estimate associated with a class of symbols in Sm , without any decay assumption in
space time variables, see Theorem 6.3.

Theorem 1.1 gives the local smoothing of order up to ε(p) = 1
2p for 4 ≤ p < ∞.

Since the above estimate for F f is local in the t variable, it is enough to work with
Fourier integral operators of the form

F f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) a(x, t, ξ) f̂ (ξ) dξ, f ∈ S(R2), (1.3)

where ρ1 ∈ C∞
c (R).

A crucial step in our approach is the use of a duality argument, which requires the
introduction of a three dimensional square function, based on angular decomposition
in the plane, as in [15]. Namely,

S(g)(x, t) =
(
N−1∑
ν=0

∣∣∣T δ
ν, j g

∣∣∣2
) 1

2

, (1.4)

where T δ
ν, j , j ∈ N, δ > 0 and ν = 0, 1, . . . , N − 1 are Fourier multiplier operators

on R
3 given by

̂T δ
ν, j g (ξ, τ ) = ρ(2− j |ξ |) χ̃ν(ξ) ψ

(
q(ξ) − τ

δ

)
ĝ(ξ, τ ), g ∈ S(R3), (1.5)
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with ρ ∈ C∞
c [1/2, 2], as in (3.1) and χ̃ν is a homogeneous function (smooth and

compactly supported as a function on S
1).

Notice that the employment of refined decompositions, after a first dyadic one,
to obtain estimates for Fourier integral operators, dates back to the celebrated paper
[20]. Compared to the techniques adopted there, here we follow a different approach
(see [15] and Sects. 2 and 3 below for the details). In particular, our duality argument
requires the boundedness of S(g) on L4/3(R3). In fact, we prove the following

Theorem 1.2 Let Sg be defined by (1.4). Then, there exists constants C and b such
that the inequality

‖Sg‖L p(R3) ≤ C 2 j/8 jb δ1/4 ‖g‖L p(R3)

holds true for all g ∈ S (R3), for p ∈ [4/3, 4].
The above square function estimate is new for the range 4/3 ≤ p ≤ 2 and extends the
one obtained in [15] to a larger class of T δ

ν, j , corresponding to general homogeneous
function q.

Remark 1.3 As in the case of wave equation, the Fourier intergral operators with phase
function φ(x, t, ξ) = x · ξ + tq(ξ) arises in the solution of initial value problem for
strictly hyperbolic partial differential equations. The result of Beals in [2] (Theorem
5.4) gives the fixed time estimates, and Theorem 1.1 of the present article gives the
local smoothing for the solutions of such Cauchy problems.

2 Decomposition of the Fourier Integral Operator

The proof of Theorem 1.1 involves several decompositions of the operator F , which
we discuss in detail in this section. The first decomposition is to express F as a sum
of operators with symbols independent of the space time variables. In fact, we reduce
the analysis to a family of Fourier integral operators {Fn,k}n,k∈Z3 of the form

Fn,k f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) akn(ξ) f̂ (ξ) dξ, f ∈ S(R2), (2.1)

with amplitude function akn ∈ S0(R2) independent of (x, t). In [15], we have employed
Hermite expansion to get the estimate, that is global in x variable. Here we show that
we can actually use Fourier series expansion in (x, t) variables and improve that result.
In fact, if (x, t) → a(·, ·, ξ) is supported in a cube Qk of side length 2 and centered at
the integer lattice point k ∈ Z

2×Z, then clearly we can expand the amplitude function
a(x, t, ξ) as a Fourier series in (x, t) variables, to write the Fourier integral operator
(1.3) as an infinite sum of Fourier integral operators of the form (2.1). Interestingly, the
general case can also be reduced to this case by a partition of unity argument, leading
to a family of operators Fn,k with amplitude functions akn , the Fourier coefficients of
a(·, ·, ξ). For notational simplicity, we will obtain basic L p estimates working with
operator of the form (2.1) with amplitude function a independent of (x, t), suppressing
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the indices n and k. The Fourier series approach enables us to allow more general
amplitude functions, requiring less decay conditions thereby improving our previous
work [15] based on Hermite expansion.

We perform a further dyadic decomposition in the ξ variable, to reduce the anal-
ysis to the simpler case of operators with compactly supported kernels, as follows.
Choose ρ0 ∈ C∞

c ([ 12 , 2]) such that 1 = ∑
j∈Z ρ0(2− j |ξ |), (see [11], page 162 for

the construction of such a ρ0 ≥ 0). For technical reasons, we take ρ0 to be of the
form ρ0 = ρ2 with ρ ∈ C∞

c ([ 12 , 2]). Setting ϕ0 = ∑
j≤0 ρ0(2− j |ξ |), we can write

1 = ϕ0 + ∑
j∈N ρ0(2− j |ξ |), where ϕ0 is a smooth function supported in the ball

|ξ | ≤ 2. Then for each j ∈ N, we define the operators F j , such that

F j f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) ρ0(2
− j |ξ |) a(ξ) f̂ (ξ) dξ, f ∈ S(R2), (2.2)

so that

F f (x, t) = F0 f (x, t) +
∑
j∈N

F j f (x, t) (2.3)

as a tempered distribution. Note that F0 is a Fourier integral operator with amplitude
function b(ξ) := a(ξ)ϕ0(ξ) supported in |ξ | ≤ 2. It turns out that f → F0 f (·, t) is
an infinitely smoothing operator, see Proposition 5.7.

We use the wave front set analysis as in [17] to isolate the region where the Fourier
transform of F j f has rapid decay. In fact, by Proposition 2.5.7, in [14], p. 123, the
wave front set of each of the distributions F j f , j ∈ N, given by (2.2) is actually
contained in the conic set

C = {(x, t, ξ, τ ) : τ = q(ξ), x + t∇q(ξ) = 0, ξ ∈ R
2

� 0}.

Choose an even function ψ ∈ C∞
c (−2, 2) such that 0 ≤ ψ ≤ 1, ψ = 1 on [−1, 1].

For δ > 0 this gives a cut off function ψδ supported near the cone τ = q(ξ) in R
3

defined by

ψδ(ξ, τ ) = ψ

(
q(ξ) − τ

δ

)
, (ξ, τ ) ∈ R

2 × R. (2.4)

This leads to two Fourier multiplier operators Qδ and Rδ on R
3:

̂Qδ(F j f )(ξ, τ ) = ψδ(ξ, τ ) F̂ j f (ξ, τ ),

̂Rδ(F j f )(ξ, τ ) = [1 − ψδ(ξ, τ )] F̂ j f (ξ, τ ). (2.5)

Since F j f = Qδ(F j f ) + Rδ(F j f ), the L p estimate for F j f follows from the
corresponding estimates for Qδ(F j f ) and Rδ(F j f ).

RδF j turns out to be a smoothing operator, and the estimate follows by standard
kernel estimates, see Proposition 5.3. The operator QδF j ismore delicate. To deal with
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Qδ(F j f ) we do a further decomposition of the operators F j in terms of the angular
variable, as in [17, 20]. For fixed j ≥ 1 let N = N ( j) be the largest integer less than
or equal to 2 j/2, so that 2 j/2 − 1 < N ≤ 2 j/2. We now choose N equally spaced
points ξ0, ξ1, . . . , ξN−1 on the unit circle S

1 = {ξ ∈ R
2 : |ξ | = 1} with ξ0 = e1. In

fact, we take ξν = Oξ0 for 1 ≤ ν ≤ N − 1, where O is the counterclockwise rotation
by an angle 2πν/N .

With N = N ( j) as above, let {χν}N−1
ν=0 be a partition of unity onR

2\{0}with respect
to the angular variable, see [15, 24]. Note that the functions χν are homogeneous
functions of degree zero on R

2 \ {0} with the following properties:

χν(ξ) = χ0(O
−1ξ), 1 ≤ ν ≤ N − 1 (2.6)

where ξ/|ξ | = (cos θ, sin θ) and O is the counterclockwise rotation by an angle
2πν/N , and

|∂kξ1χ0(ξ)| ≤ Ck, |∂kξ2χ0(ξ)| ≤ CkN
k ≈ Ck 2

jk
2 for |ξ | = 1, (2.7)

for all k ∈ N, with a constant Ck independent of ν (hence independent of j).
Using the homogeneous partitions of unity {χν}ν , we define the operators F j,ν by

F j,ν f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) ρ0(2
− j |ξ |) a(ξ) χν(ξ) f̂ (ξ) dξ (2.8)

for j ≥ 1, 0 ≤ ν ≤ N − 1, so that QδF j f = ∑N−1
ν=0 QδF j,ν f .

Remark 2.1 Note that in [17] the local smoothing estimates for operators of the form
(2.1) has been established for q(ξ) = |ξ |. Unfortunately, we cannot appeal to the
estimate in [17] even in this case, as we need more refined estimate with precise
dependence of a on the constants involved. Our basic decompositions are similar, but
we do a slightly different approach to estimate QδF j f using duality as in [15] and an
estimate for the square function associated with q, based on angular decomposition,
proved in Theorem 1.2.

3 Auxiliary Estimates

For 0 ≤ ρ1, ρ ∈ C
∞
c (R), ρ ≥ 0, and symbol a ∈ S0(R2), consider the Fourier

integral operator F̃ j,ν given by

F̃ j,ν f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) ρ(2− j |ξ |) a(ξ) χν(ξ) f̂ (ξ) dξ, (3.1)

with χν as in (2.6). Then we have

F̃ j,ν f (x, t) =
∫
y∈R2

K̃ j,ν(x − y, t) f (y) dy,
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where

K̃ j,ν(x, t) = K̃ a,q
j,ν (x, t) = ρ1(t)

∫
ξ

ei(x ·ξ+tq(ξ)) ρ(2− j |ξ |) a(ξ) χν(ξ) dξ. (3.2)

The following kernel estimate is a refinement of the one obtained in [20], and is crucial
in our argument for dealing with general amplitude functions depending on (x, t).

Proposition 3.1 Let K̃ j,ν be as in (3.2), with ρ1 ∈ C∞
c (R), 0 ≤ ρ ∈ C

∞
c ([ 12 , 2]) and

a ∈ S0(R2), j ∈ N, 0 ≤ ν ≤ N ≈ 2 j/2. Then, ‖K̃ j,ν‖L1(R2×R) is uniformly bounded
in j . More precisely, there exists a constant C = Cρ1 such that

‖K̃ j,ν‖L1(R2×R) ≤ C sup
|α|≤l

‖∂αa‖L∞(R2).

The proof relies on appropriate pointwise estimate for the kernel, which requires
the following technical result.

Lemma 3.2 Let q ∈ C∞
c (R2 \ {0}) be homogeneous of degree 1. Then the function

h(ξ) = q(ξ) − ξ · ∇q(e1) satisfies

|∂kξ1h(ξ)| ≤ Ak 2
−k j , |∂kξ2h(ξ)| ≤ Bk 2

− k j
2 , for k ≥ 1,

on the set E = {ξ ∈ R
2 : 2 j−1 ≤ |ξ | ≤ 2 j+1, 0 ≤ arg(ξ) < 2π

N } with N = [2 j/2].
Remark 3.3 Note that the above estimates have been obtained in [24] for more general
h depending also on x . In our special case, we give a proof using a geometric argument
as in [15], where we considered the case q(ξ) = |ξ |.
Proof of Lemma 3.2 We first consider the case k = 1. Since q is homogeneous of
degree 1, writing ξ = r(cos θ, sin θ), we see that

q(ξ) = rq(cos θ, sin θ) := r q̃(θ). (3.3)

Differentiating (3.3) with respect to r and θ , we get

q̃(θ) = cos θ ∂1q(ξ) + sin θ ∂2q(ξ),

∂θ q̃(θ) = − sin θ ∂1q(ξ) + cos θ ∂2q(ξ) (3.4)

where ∂i = ∂ξi , i = 1, 2. From this we see that

∂1q(cos θ, sin θ) = cos θ q̃(θ) − sin θ ∂θ q̃(θ), (3.5)

∂2q(cos θ, sin θ) = sin θ q̃(θ) + cos θ ∂θ q̃(θ). (3.6)

For future reference, we also note that the same argument leads to the identity

∂1g = − sin θ ∂θ g̃ (3.7)



25 Page 8 of 28 Journal of Fourier Analysis and Applications (2022) 28 :25

on ‖ξ‖ = 1, when g(ξ) is a homogeneous function of degree zero.
Writing

h(ξ) = q(ξ) − α1ξ1 − α2ξ2, ξ = (ξ1, ξ2) (3.8)

with α1 = ∂1q(e1), α2 = ∂2q(e1) and using (3.5), we see that

∂1h(ξ) = ∂1q(ξ) − α1 = cos θ q̃(θ) − sin θ ∂θ q̃(θ) − ∂1q(e1)

= cos θ q̃(θ) − sin θ ∂θ q̃(θ) − q̃(0),

as ∂1q(e1) = q(e1) = q̃(0) in view of the Euler identity ξ · ∇q(ξ) = q(ξ) for
homogeneous function of degree 1, choosing ξ = e1. By the mean value theorem
applied to Q1(θ) = cos θ q̃(θ) − sin θ ∂θ q̃(θ), we get

∂1h(ξ) = θ · Q′
1(θ1) = θ · [− sin θ1 q̃(θ1) − sin θ1 ∂2θ q̃(θ1)],

for some θ1 ∈ (0, θ). Thus,

|∂ξ1h(ξ)| ≤ |θ || sin θ1||q̃(θ1) + ∂2θ q̃(θ1)| ≤ |θ |2 · M, (3.9)

since | sin θ1| ≤ |θ1| ≤ |θ |, where M = sup
θ1∈[0,2π ]

|q̃(θ1) + ∂2θ q̃(θ1)| < ∞ as q ∈
C∞(S1).

A similar mean value theorem argument using the identity (3.6) yields

|∂ξ2h(ξ)| ≤ |∂ξ2q(ξ) − α2| = | sin θ q̃(θ) + cos θ ∂θ q̃(θ) − ∂θ q̃(0)|
≤ |θ | · M1, (3.10)

where M1 = sup
θ1∈[0,2π ]

| cos θ1 q̃(θ1) + cos θ1 ∂2θ q̃(θ1)| < ∞.

From (3.9) and (3.10), the result follows for the case k = 1 as |θ | ≤ 2π
N ≤ 8π2− j/2

since N = [2 j/2] ≥ 2 j/2 − 1, j ≥ 1.
To deal with the case k > 1, we write ∂kξ1h(ξ) = ∂k−1

ξ1
g(ξ), where g = ∂ξ1h, which

is a function homogeneous of degree zero on R
2, hence ∂k−1

ξ1
g is homogeneous of

degree 1 − k. It follows that

∂kξ1h(ξ) = |ξ |1−k(∂k−1
ξ1

g)(ξ/|ξ |). (3.11)

Recall that g(ξ) = cos θ q̃(θ) − sin θ ∂θ q̃(θ) − q̃(0) := g̃(θ) as computed above
and also ∂ξ1 = − sin θ ∂θ on homogeneous functions, on |ξ | = 1. An easy induction
argument shows that

(− sin θ ∂θ )
k−1g̃(θ) = Fk(cos θ, q̃(θ), . . . , ∂kθ q̃(θ)) sin2 θ,



Journal of Fourier Analysis and Applications (2022) 28 :25 Page 9 of 28 25

where Fk is a smooth function. Now for ξ = (r cos θ, r sin θ) ∈ E , we have |θ | ≤
2π/N , and hence |Fk(cos θ, q̃(θ), . . . , ∂k q̃(θ)) sin2 θ | ≤ ck | sin2 θ | ≤ ck4π2N−2 ≈
Ck2− j for some constant Ck independent of j . It follows from (3.11) that, for k > 1

∣∣∣∂kξ1h(ξ)

∣∣∣ ≤ Ck2
−k j

as |ξ | ≈ 2 j on E .
For k ≥ 2, note that ∂kξ2h(ξ) = ∂kξ2(q(ξ) − α2ξ2). Since the function g1(ξ) =

q(ξ)−α2ξ2 is homogeneous of degree 1, these derivatives are homogeneous functions
of degree 1 − k. It follows that |∂kξ2h(ξ)| ≤ Ck |ξ |1−k ≤ Ck |ξ |−k/2 on E , for k ≥ 2
and hence the required inequality holds true on E . �

Lemma 3.4 Let K̃ j,ν be as in (3.2) with a ∈ Sm(R2),m ≤ 0. Then for each l ∈ N,
the kernel K̃ j,ν satisfies the estimates

|K̃ j,ν(x, t)| ≤ Cl2
3 j/2|ρ1(t)| sup

|α|≤l
‖∂αa‖∞ � j (T x + t∇qν(e1)), (3.12)

with constants Cl independent of j and ν, and

� j (x) = � j,l(x) =
[
1 + 22 j |x1|2

]−l [
1 + 2 j |x2|2

]−l
, l ∈ N

T ∈ SO(2) is such that T ξν = e1, 0 ≤ ν ≤ N − 1 and qν = q ◦ T−1.

Proof The proof follows by arguments similar to the ones in [15]. We first consider
the case ξν = ξ0 = e1 and estimate K̃ j,0(x, t) by oscillatory integral techniques as in
[15, 20]. From (3.2) we have

K̃ j,0(x, t) = ρ1(t)
∫

ξ

ei(x ·ξ+tq(ξ)) ρ(2− j |ξ |) a(ξ) χ0(ξ) dξ. (3.13)

Let L j =
(
I − 22 j∂2ξ1

) (
I − 2 j∂2ξ2

)
, so that for each l ∈ N

Ll
j e

i(x+t∇q(e1))·ξ

=
[
1 + 22 j |x1 + t(∂ξ1q)(e1)|2

]l [
1 + 2 j |x2 + t(∂ξ2q)(e1)|2

]l
ei(x+t∇q(e1))·ξ .

Rewriting ei(x ·ξ+tq(ξ)) as eit(q(ξ)−∇q(e1)·ξ) ei(x+t∇q(e1))·ξ and using the above formula,
we get

ei(x ·ξ+tq(ξ)) =
[
1 + 22 j |x1 + t(∂ξ1q)(e1)|2

]−l [
1 + 2 j |x2 + t(∂ξ2q)(e1)|2

]−l

× eit(q(ξ)−∇q(e1)·ξ) Ll
j e

i(x+t∇q(e1))·ξ .
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Using this formula in (3.13), an integration by parts argument shows that

K̃ j,0(x, t) = Aa
j,0(x, t) ρ1(t)� j (x + t∇q(e1)), (3.14)

where � j (x) = [
1 + 22 j |x1|2

]−l [
1 + 2 j |x2|2

]−l
and

Aa
j,0(x, t) =

∫
ξ

ei[x+t∇q(e1)]·ξ Ll
j

[
eit(q(ξ)−∇q(e1)·ξ) ρ(2− j |ξ |) a(ξ) χ0(ξ)

]
dξ.

(3.15)

Note that the integrand in (3.15) is supported in the set

E = suppχ0 ∩ {ξ : 2 j−1 ≤ |ξ | ≤ 2 j+1}.

We need to show that |Aa
j,0(x, t)| ≤ Ck sup|α|≤l ‖∂αa‖∞ 23 j/2, to complete the proof

for ν = 0. For this it is enough to verify the following;

• The measure of E is bounded by a constant times 23 j/2,
• Lk

j

[
eit(q(ξ)−∇q(e1)·ξ) ρ(2− j |ξ |) a(ξ) χ0(ξ)

] ≤ Ck sup|α|≤l ‖∂αa‖∞ for some con-
stant Ck independent of j .

Since |ξ2| ≤ ξ1 sin(2π/N ) � 2 j/2 and 2 j−1 ≤ ξ1 ≤ 2 j+1 on E , the first statement
is clear.

For the second, we observe that Lm
j is a linear combination of various derivatives

(22 j∂2ξ1)
k1(2 j∂2ξ2)

k2 with k1 + k2 ≤ 2m. In view of (2.7) and the fact that χ0(ξ)

is homogeneous of degree zero, the above derivatives of [χ0(ξ) ρ(2− j |ξ |)] are uni-
formly bounded in j ∈ N. Also each of these 2m derivatives of a are bounded by
sup|α|≤m ‖∂αa‖L∞(R2), which is independent of j . All the above derivatives applied
to eit(q(ξ)−∇q(e1)·ξ) also give functions bounded uniformly in j on E , in view of
Lemma 3.2.

To estimate Aa
j,ν for general ν, first note that χν(ξ) = χ0(O−1ξ) by (2.6) where

O ∈ SO(2) is such that ξν = Oe1. Thus, using the change of variable ξ → Oξ in
(3.2), we see that

K̃ j,ν(x, t) = ρ1(t)
∫

ξ

ei(O
−1x ·ξ+t[q◦O](ξ)) ρ(2− j |ξ |) [a ◦ O](ξ) χ0(ξ) dξ.

It follows that, K̃ j,ν(x, t) := K̃ a,q
j,ν (x, t) = Kaν ,qν

j,0 (O−1x, t) where aν(ξ) =
a(Oξ) and qν(ξ) = q(Oξ). Notice that the estimate for |Aaν ,qν

j,0 (x, t)| depends on
the derivatives of aν = a ◦ O and qν = q ◦ O , which have the same bounds as a and
q respectively. Hence, the proof follows with T = O−1. �

Proof of Proposition 3.1 The proof is an immediate consequence of the pointwise esti-
mate for the kernel K̃ j,ν given by Lemma 3.4. Since ‖� j‖L1(R2) = 2−3 j/2‖�1‖L1(R2)

and �1 = �1,l ∈ L1(R2) for the choice of l = 2 in Lemma 3.4. �
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4 Square Function Estimate

In this section we will prove Theorem 1.2. The proof essentially follows the same
argument as in Theorem 5.1, in [15], with appropriate modification for general homo-
geneous function q(ξ). We first establish the case p = 4, which will be used to
establish the case 4/3 ≤ p < 4. We start with the following auxiliary estimate.

Proposition 4.1 Let T δ
ν, j be as in (1.5). Then the square function estimate

‖Sg‖L4(R3) =

∥∥∥∥∥∥∥

(
N−1∑
ν=0

|T δ
ν, j g|2

) 1
2

∥∥∥∥∥∥∥
L4(R3)

≤ C δ1/4 jb ‖g‖L4(R3) (4.1)

holds true for all g ∈ S(R3), with constants C and b independent of j .

Note that,

T δ
ν, j g =

∫
R3

k̃δ
j,ν(x − y, t − s) g(y, s) dy ds,

where

k̃δ
j,ν(x, t) =

∫
R3

ei(x ·ξ+tτ)

[
χ̃ν(ξ) ρ(2− j |ξ |) ψ

(
q(ξ) − τ

δ

)]
dξ dτ

= δψ∨(δt) K j,ν(x, t),

with K j,ν(x, t) = ∫
R2 ei(x ·ξ+tq(ξ))

[
χ̃ν(ξ) ρ(2− j |ξ |) ] dξ and χ̃ν is a homogeneous

function (smooth and compactly supported as a function on S
1), such that χ̃νχν = χν .

Note that ρ1(t)K j,ν is same as K̃ j,ν in (3.2) with a ≡ 1. Thus, by the argument as in
Lemma 3.4, we see that k̃δ

j,ν(x, t) also satisfies the estimate (3.12), but with δψ∨(δt)
instead of ρ1(t) and a ≡ 1, on the right hand side. Hence the proof of the above
proposition follows from the same argument as in Proposition 5.1 in [15], where the
special case q(ξ) = |ξ | is considered.
Proof of Theorem 1.2 We use the Rademacher function argument as in Stein [23], p.
106, to reduce the proof of the square function estimate (4.1) to a multiplier problem.
Recall that the Rademacher functions {rk}k≥0 are functions on R defined as follows.
First, let r0 be the periodic function on R with period 1 defined by

r0(s) = χ[0,1/2](s) − χ
(1/2,1) (s), for 0 ≤ s < 1.

Recall that here χA denotes the characteristic function of the set A ⊂ [0, 1]. Then, for
k ∈ N, define rk(s) = r0(2ks), k ≥ 1.

The Rademacher functions have the following interesting property: if F(s) =∑
ν aνrν(s) ∈ L2([0, 1]), there exist positive constants c1, c2, depending only on
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p (and not on the particular function F), such that

c1‖F‖L2([0,1]) ≤ ‖F‖L p([0,1]) ≤ c2‖F‖L2([0,1]), (4.2)

for all p ∈ (1,∞), see [23], p. 277.
For each s ∈ [0, 1), setting P(s, x, t) = ∑N−1

ν=0 rν(s) T δ
ν, j g(x, t), where T

δ
ν, j is as

in (1.5), we see that |Sg(x, t)| =
(∫ 1

0 |P(s, x, t)|2ds
)1/2

, by the orthonormality of

the collection {rν}. Thus, in view of (4.2), we see that

|Sg(x, t)| =
(∫ 1

0
|P(s, x, t)|2ds

)1/2

≤ Cp ‖P(·, x, t)‖L p([0,1]),

for 1 < p < ∞, for each (x, t) ∈ R
3, with a constant Cp independent of (x, t). It

follows that

∫
R3

|Sg(x, t)|pdx dt ≤ C p
p

∫
R3

∫ 1

0
|P(s, x, t)|pds dxdt . (4.3)

Note that P(s, x, t) = Tsg(x, t), where Ts is the multiplier operator on R
3, defined

by

T̂sg(ξ, τ ) = m̃δ,s
j (ξ, τ )ĝ(ξ, τ ) (4.4)

where m̃δ,s
j (ξ, τ ) = ∑N−1

ν=0 rν(s) χ̃ν(ξ) ρ(2− j |ξ |) ψ
(
q(ξ)−τ

δ

)
, for given j and δ.

It follows that (4.3) can be re written as

∫
R3

|Sg(x, t)|pdx dt ≤ cp2

∫ 1

0

∫
R3

|Tsg(x, t)|pdx dt ds. (4.5)

Thus, the L p-boundedness of S for 4/3 ≤ p ≤ 4 follows once we prove the estimate

‖Tsg‖L p(R3) ≤ C 2 j/8δ1/4 jb‖g‖L p(R3), 4/3 ≤ p ≤ 4.

Recall that Tsg = ∑N−1
ν=0 rν(s)T δ

ν, j g. By considering the operator T̃s : L2(R3 :
R

N ) → L2(R3) given by

T̃s(h) =
N−1∑
ν=0

rν(s) T
δ
ν, j (hν), h = (h0, h1, . . . , hN−1) (4.6)

we can see, as in Proposition 5.2 of [15], that the following inequalities hold true.

‖T̃sh‖L2(R3) ≤ √
5

∥∥∥∥∥∥
(∑

ν

|T δ
ν, j hν |2

)1/2
∥∥∥∥∥∥
L2(R3)

, (4.7)
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‖T̃sh‖L∞(R3) ≤ C2 j/4

∥∥∥∥∥∥
(∑

ν

|T δ
ν, j hν |2

)1/2
∥∥∥∥∥∥
L∞(R3)

. (4.8)

Relying on vector-valued interpolation (see [9], Theorem 1.19), (4.7) and (4.8) yield
the estimate

‖T̃sh‖L p(R3) ≤ 51/p 2
j
2

(
1
2− 1

p

) ∥∥∥∥∥∥
(∑

ν

|T δ
ν, j hν |2

)1/2
∥∥∥∥∥∥
L p(R3)

, 2 ≤ p ≤ ∞. (4.9)

Note that for g ∈ S(R3), we have Ts(g) = T̃s(h) with h = (g, g, . . . , g), in view of
(4.4) and (4.6). Hence the inequality (4.9) with p = 4 gives

‖Tsg‖L4(R3) ≤ C2 j/8

∥∥∥∥∥∥
(∑

ν

|T δ
ν, j g|2

)1/2
∥∥∥∥∥∥
L4(R3)

≤ C2 j/8δ1/4 jb‖g‖L4(R3)

by Proposition 4.1. Since Ts , given by (4.4) is a multiplier operator, the above estimate
holds true for the dual index p = 4/3 as well. Hence the required estimate follows by
Riesz-Thorin interpolation theorem between these two estimates. This completes the
proof. �


5 Lp Estimates forFj f

In this section we prove the L p regularity estimate for F j f , for 4 ≤ p ≤ ∞. This
follows by interpolation, once we prove the L4 and L∞ estimates. We start with the
L∞ estimate.

Proposition 5.1 Let F j be the operator given by (2.2) for j ∈ N. Then F j satisfies
the inequality

‖F j f ‖L∞(R3) ≤ C 2 j/2 sup
|α|≤2

‖∂αa‖L∞(R2)‖ f ‖L∞(R2)

with a constant C independent of j .

Proof We have F j = ∑N−1
ν=0 F j,ν where F j,ν is the operator given by (2.8), which is

convolution in x-variable, with kernel

K j,ν(x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) ρ0(2
− j |ξ |) a(ξ) χν(ξ) dξ.

Since ρ0 = ρ2 by assumption, by Proposition 3.1 we have the uniform bound

‖K j,ν‖L1(R2×R) ≤ C sup
|α|≤2

‖∂αa‖L∞(R2).
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It follows that for each 0 ≤ ν ≤ N − 1, the estimate

‖F j,ν f ‖L∞(R2×R) ≤ C sup
|α|≤2

‖∂αa‖L∞(R2)‖ f ‖L∞(R2)

holds true with a constantC independent of j . Summing over ν, this gives the required
estimate as there are N = N ( j) ≈ 2 j/2 terms in the sum. �


We next prove the L4 estimate. For this, we write F j f = Qδ(F j f ) + Rδ(F j f )
and estimate the norm of each of these terms separately. We start with Rδ(F j f ),
which is easier and follows via standard kernel estimate, once we make the following
observation:

Lemma 5.2 Let q be as in (1.1). For j ∈ N and 0 < δ < 2 j , consider the set

Aδ
j = {(ξ, τ ) ∈ R

2 × R : 2 j−1 < |ξ | ≤ 2 j+1, |τ − q(ξ)| > δ}.

Then, for each 0 < ε ≤ 1
2 , there exists a constant Cε independent of j and δ such that

the estimate

|τ − q(ξ)| > C j,ε,δ(|τ | + |q(ξ)|)ε (5.1)

holds true for all (ξ, τ ) ∈ Aδ
j with C j,ε,δ = Cε

δ
2 jε .

Proof Since q is nonvanishing, we have either q(ξ) > 0 or q(ξ) < 0 for all ξ . We
first prove the estimate for q(ξ) > 0. In this case, it clearly follows if τ ≤ 0. In fact,

|τ−q(ξ)|
||τ |+q(ξ)|ε ≥ (|τ | + q(ξ))1−ε = (−τ + q(ξ))1−ε > δ1−ε and the claim is proved,

since δ < 2 j .
Now, assume τ > 0 and q(ξ) > 0. We write Aδ

j = B1 ∪ B2 where

B1 = {(ξ, τ ) ∈ Aδ
j : τ > 2q(ξ)}, B2 = {(ξ, τ ) ∈ Aδ

j : τ ≤ 2q(ξ)}

We show that inf(ξ,τ )∈Bi
|τ−q(ξ)|

(τ+|q(ξ)|)ε ≥ C j,ε,δ for i = 1, 2. Since τ > 2q(ξ) on B1, we
have

|τ − q(ξ)|
(τ + |q(ξ)|)ε = τ − q(ξ)

(τ + |q(ξ)|)ε > τ 1−ε 1 − θ

(1 + θ)ε
>

(
2

3

)ε
τ 1−ε

2
.

as θ = q(ξ/τ) < 1/2 on B1. Writing τ = τ −q(ξ)+q(ξ), we see that |τ |1−ε > δ1−ε

as q(ξ) > 0, hence the required estimate holds true on B1, as δ < 2 j .
On the other hand on B2, we have

|τ − q(ξ)|
(τ + |q(ξ)|)ε >

δ

[3q(ξ)]ε ≥ δ

[3|ξ |q(ξ/|ξ |)]ε

as q is homogeneous of degree 1. Setting C2 = sup|ξ |=1 |q(ξ)|, we see that the last
term above is bounded from below by δ

(6C2)ε2 jε as |ξ | ≤ 2 j+1 on B2. This completes
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the proof in the case q > 0. For q < 0, one can work with −q as in the previous case,
since the right hand side of (5.1) is given in terms of |q|. Hence the proof. �


5.1 L4 Estimates forRı(Fjf)

The operatorRδ was defined as a multiplier operator. Thus in view of (2.5) and (2.2),
we have

̂Rδ(F j f )(ξ, τ ) = [1 − ψδ(ξ, τ )] f̂ (ξ) a(ξ) ρ0(2
− j |ξ |) ρ̂1(τ − q(ξ)). (5.2)

Thus for f ∈ S(R2), by Fourier inversion formula

Rδ(F j f )(x, t)

=
∫

(ξ,τ )∈R2×R

ei(x ·ξ+tτ) [1 − ψδ(ξ, τ )] f̂ (ξ) a(ξ) ρ0(2
− j |ξ |) ρ̂1(τ − q(ξ))dξdτ.

(5.3)

Proposition 5.3 For j ∈ N and 0 < δ < 2 j/2, letRδ(F j f ) be as in (5.3)with a ∈ S0.
Then for each ε > 0 and N ∈ N, there exist a constant Cε,N independent of j , such
that the inequality

‖Rδ(F j f )‖L p(R2×R) ≤ Cε,N sup
|α|≤2N

‖∂αa‖L∞(R2)

(
2ε j

δ

)3/ε

‖ f ‖L p (5.4)

holds true for all f ∈ L p(R2), 1 ≤ p < ∞.

Proof Since RδF j is a linear map, by density of S(R2) in L p(R2), 1 ≤ p < ∞, it is
enough to estimate (5.4) for f ∈ S(R2). Expanding f̂ in (5.3), we see that

Rδ(F j f )(x, t) =
∫
R2

Kδ
j (x − y, t) f (y)dy

where, Kδ
j (x, t) =
∫
R2×R

ei(x ·ξ+tτ) [1 − ψδ(ξ, τ )]a(ξ)ρ0(2
− j |ξ |)ρ̂1(τ − q(ξ)) dξdτ. (5.5)

In view of Young’s inequality [13], it is enough to prove the estimate

‖Kδ
j‖L1(R2×R) � Cε sup

|α|≤2N
‖∂αa‖L∞(R2)

(
2ε j

δ

)3/ε

(5.6)
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for each t ∈ R, with Cε independent of j and t . The rest of the proof follows as in
Lemma 3.4, observing that for any N ∈ N,

(1 + |x |2)N (1 + |t |2)N ei(x ·ξ+tτ) = (I − �ξ)
N (I − ∂2τ )N ei(x ·ξ+t ·τ).

An integration by parts in (5.5) shows that

(1 + |x |2)N (1 + |t |2)N Kδ
j (x, t)

=
∫

ξ,τ

ei(x ·ξ+tτ) (I − �ξ)
N (I − ∂2τ )N b j (ξ, τ ) dξdτ, (5.7)

where b j (ξ, τ ) = [1 − ψδ(ξ, τ )]a(ξ)ρ0(2− j |ξ |)ρ̂1(τ − q(ξ)).

Note that (I − �ξ)
N (I − ∂2τ )N b j (ξ, τ ) is a sum of terms that involves vari-

ous partial derivatives ∂α
ξ ∂

β
τ , with |α| ≤ 2N and |β| ≤ 2N acting on functions

ψδ(ξ, τ ), a(ξ), ρ0(2− j |ξ |) and ρ̂1(τ − q(ξ)). Each derivative on ψδ brings in a nega-
tive power of δ and since δ = 2ε j , all these derivatives are uniformly bounded in ε and
j . Same is the case with ρ0. All partial derivatives of a upto order 2N are bounded by
sup|α|≤2N ‖∂αa‖L∞(R2). Since ρ̂1 is a Schwartz class function for each M ∈ N, there
is a constant CN ,M such that the inequality |∂αρ̂1(y)| ≤ CM,N (1+ |y|)−M holds true
for |α| ≤ N , for all y ∈ R. It follows that for each N , M ∈ N, there is a constant
CM,N independent of j such that

|(I − �ξ)
N (I − ∂2τ )Nb j (ξ, τ )|

≤ CM,N sup
|α|≤2N

‖∂αa‖L∞(R2)(1 + |τ − q(ξ)|)−M

≤ CM,N sup
|α|≤2N

‖∂αa‖L∞(R2)(1 + C j,ε,δ(|τ | + |q(ξ)|)ε)−M

for |τ − q(ξ)| > δ, by Lemma 5.2. Note that the integral in (5.5) and hence in
(5.7) is actually over the set |τ − q(ξ)| > δ, as ψδ(ξ, τ ) = 1 on |τ − q(ξ)| ≤ δ.
Hence, Lemma 5.2 can be applied. Since q is homogeneous of degree 1, we have

|q(ξ)| ≥ C1|ξ | where C1 = inf |ξ |=1 |q
(

ξ
|ξ |
)

| > 0, as q is non vanishing. Thus the

above inequality reads as

|(I − �ξ)
N (I − ∂2τ )N b j (ξ, τ )|

≤ CM,N sup
|α|≤2N

‖∂αa‖L∞(R2)(1 + C j,ε,δ(|τ | + C1|ξ |)ε)−M . (5.8)

Using (5.8), the right hand side of (5.7) is bounded by CM,N times

sup
|α|≤2N

‖∂αa‖L∞(R2)

∫
R2×R

(
1 + C j,ε,δ(|τ | + C1|ξ |)ε)−M

dξdτ

= sup
|α|≤2N

‖∂αa‖L∞(R2) C
2
1 (C j,ε,δ)

−3/ε
∫
R2×R

(1 + (|τ | + |ξ |)ε)−M dξdτ
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by a change of scale in the variables ξ and τ . Choosing M > 3/ε, the last integral is
finite and (5.7) translates to the inequality

|Kδ
j (x, t)| ≤ CM(ε),N sup

|α|≤2N
‖∂αa‖L∞(R2)

(C j,ε,δ)
−3/ε

(1 + |x |2)N (1 + |t |2)N . (5.9)

Choosing N = 2, we see thatK j (·, ·) ∈ L1(R2 ×R) and the estimate (5.6) holds true.
The proof is complete. �


5.2 L4 Estimates forQı(Fjf)

We prove the L4 estimate of Qδ(F j f ). The estimate we obtain here is a refinement
of the one proved in [17], in terms of the precise dependence on a of the constants in
the estimate, which is crucial in our argument. Using Theorem 1.2, we first obtain the
following estimate.

Proposition 5.4 Let Qδ(F j f ) and F̃ j,ν f be as in (2.5) and (3.1), respectively. Then
the inequality

‖Qδ(F j f )‖L4(R3) ≤ C δ1/4 jb 2 j/8

∥∥∥∥∥∥∥

(
N−1∑
ν=0

|F̃ j,ν f |2
) 1

2

∥∥∥∥∥∥∥
L4(R3)

,

holds true for all f ∈ S(R2), with constants C and b independent of j .

Proof Weuse duality to estimate the L4 norm. For H ∈ L4/3(R3), writing Qδ(F j f ) =∑N−1
ν=0 Qδ(F j,ν f ), we have

〈Qδ(F j f ), H〉 =
∫
R3

∑
ν

Qδ(F j,ν f )(x, t) H(x, t) dxdt . (5.10)

By Parseval’s theorem for the Fourier transform, in view of (2.5) we see that

∫
R3

Qδ(F j,ν f )(x, t) H(x, t) dxdt =
∫
R3

F̂ j,ν f (ξ, τ ) Q̂δ(H)(ξ, τ ) dξdτ

=
∫
R3

(F̃ j,ν f )(x, t) T δ
ν, j H(x, t) dxdt, (5.11)

where T δ
ν, j is the multiplier operator given by (1.5) with ρ2 = ρ0, and F̃ j,ν is as in

(3.1).
Now, summing over ν and using Cauchy-Schwarz inequality with respect to ν on

the right-hand side of (5.11), followed by an application of Hölder’s inequality, yields

|〈Qδ(F j f ), H〉| ≤
∥∥∥∥∥∥
(∑

ν

|(F̃ j,ν f )|2
) 1

2

∥∥∥∥∥∥
4

∥∥∥∥∥∥
(∑

ν

∣∣∣T δ
ν, j H

∣∣∣2
) 1

2

∥∥∥∥∥∥
4/3

. (5.12)
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By Theorem 1.2, the second term on the right hand side of (5.12) is bounded by
C δ1/4 jb 2 j/8 ‖H‖4/3. Taking the supremum over ‖H‖4/3 ≤ 1 yields the required
estimate. �


Next we estimate the L4 norm of the square function in Proposition 5.4, using
arguments very similar to those in [5].

Proposition 5.5 Let F̃ j,ν f be as in (3.1). Then, there exist constants b and C, inde-
pendent of j , such that the following square function estimate holds true

∥∥∥∥∥∥∥

(
N−1∑
ν=0

|F̃ j,ν f |2
) 1

2

∥∥∥∥∥∥∥
L4(R3)

≤ C jb+3/4 sup
|α|≤2

‖∂αa‖L∞(R2) ‖ f ‖L4(R2) , f ∈ S(R2).

Proof The proof follows as in [15]. For the sake of completeness, we sketch it here.
Let �ν denote the characteristic function of the support of χν defined in (2.7) so that
χν = �νχν . Setting f̂ν(ξ) = �ν(ξ) f̂ (ξ), we have F̃ j,ν f = F̃ j,ν fν . Thus we see
that

F̃ j,ν f =
∫
R2

K̃ j,ν(x − y, t) fν(y) dy, (5.13)

with K̃ j,ν as in (3.2). In view of Lemma 3.4 with l = 2, using Cauchy-Schwarz
inequality in (5.13) and summing over ν, we get

N−1∑
ν=0

|F̃ j,ν fν(x, t)|2

≤ C sup
|α|≤2

‖∂αa‖L∞(R2)

∫
R2

∑
ν

| fν(y)|2|K̃ j,ν(x − y, t)|dy (5.14)

for some constant C independent of t and j . Squaring, integrating and taking square
root in (5.14) leads to the inequality

∥∥∥∥∥∥∥

⎛
⎝N−1∑

ν=0

|F̃ j,ν fν |2
⎞
⎠

1
2
∥∥∥∥∥∥∥

2

L4(R3)

≤ C sup
|α|≤2

‖∂αa‖L∞(R2)

× sup
‖g‖L2=1

∣∣∣∣∣
∫
R2

∑
ν

| fν(y)|2
[∫

R3
|K̃ j,ν(x − y, t)| |g(x, t)| dxdt

]
dy

∣∣∣∣∣ (5.15)

where we used duality in the above inequality for the L2(R3) norm and Fubini’s
theorem. By Cauchy-Schwarz inequality in y variable, the term inside the modulus



Journal of Fourier Analysis and Applications (2022) 28 :25 Page 19 of 28 25

sign in the right-hand side is at most

⎡
⎣
∫
R2

(
N−1∑
ν=0

| fν(y)|2
)2

dy

⎤
⎦
1/2 [∫

R2
sup
ν

∣∣∣∣
∫
R3

|K̃ j,ν(x − y, t)| |g(x, t)| dxdt
∣∣∣∣
2

dy

] 1
2

.

Note that the first factor satisfies

∥∥∥∥∥∥
(
N−1∑
ν=0

| fν |2
)1/2

∥∥∥∥∥∥
2

L4(R2)

≤ C[log N ]2b ‖ f ‖2L4(R2)

for constants b > 0 and C independent of N , as shown by A. Cordoba in [6]. Since
N ≈ 2 j/2, we see that the first term above is at most C j2b ‖ f ‖2L4 , with C and b
independent of j .

In view of the pointwise estimate for K̃ j,ν given by (3.12), we have the maximal
inequality

[ ∫
R2

sup
ν

∣∣
∫
R3

|K̃ j,ν(x − y, t)g(x, t)| dxdt∣∣2dy
] 1

2

≤ C j3/2 sup
|α|≤2

‖∂αa‖∞‖g‖L2(R3)

with C independent of j . This is a restatement of the maximal inequality (1.11) in
[17], in view of Lemma 1.4 with δ = 2− j/2 in the quoted paper. Using these estimates
in (5.15) and taking the square root, the claim follows. �


Now, we proceed to estimate the L4 norm of F j f .

Proposition 5.6 Let F j f be as in (2.1), with amplitude function a depending only on
ξ . Then, for each 0 < ε ≤ 1/2, there exists a constant Cε , independent of j , such that
the estimate

‖F j f ‖4 ≤ Cε sup
|α|≤4

‖∂αa‖L∞(R2) 2
j(3ε+1/8) ‖ f ‖L4(R2),

holds true for all f ∈ L4(R2).

Proof We have F j f = Qδ(F j f ) + Rδ(F j f ) with δ = 2ε j , where QδF j f and
Rδ(F j f ) are as in (2.5). In view of Propositions 5.4 and 5.5, the estimate

‖QδF j f ‖4 ≤ Cε δ1/4 2 j/8 j2b+3/4 sup
|α|≤2

‖∂αa‖L∞(R2)‖ f ‖L4(R2), (5.16)

holds true for all f ∈ L4(R2), where b > 0 and Cε is independent of j . Since
j2b+3/4 ≤ Cb,ε211ε j/4, the required estimate follows from (5.16) and Proposition 5.3
with N = 2. The proof is complete. �
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Since the homogeneous function q has a singularity at the origin, our approach
for estimating F j f for j ≥ 1 will not work for the case j = 0. However, F0 is a
smoothing operator: For ρ1 ∈ C∞

c (I ) and a0 ∈ C∞
c (R2) set

F0 f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) a0(ξ) f̂ (ξ) dξ, f ∈ S(R2). (5.17)

Proposition 5.7 Let F0 f be as in (5.17), with supp a0 ⊂ {ξ ∈ R
2 : |ξ | ≤ 2}. Then

the operator f → F0 f (·, t) is a smoothing operator. In fact, for each σ ∈ C, the
estimate

‖(I − �x )
σF0 f ‖L p(R2×R) � Cσ,n ‖ f ‖L p(R2), 1 < p < ∞. (5.18)

holds true for all f ∈ L p(R2) with Cσ = sup
|α|≤2

‖∂αa0(ξ)‖∞.

Proof The proof follows as in [15], employing the Hörmander–Mihilin multiplier
theorem. In fact, for each t ∈ R and Re(σ ) < 0, the operator T σ

t : f (x) → (I −
�x )

σF0 f (·, t) is a multiplier operator on L2(R2) with multiplier function

Mσ
t (ξ) = ρ1(t) e

itq(ξ) (1 + |ξ |2)σ a0(ξ) ∈ L∞(R2).

Since q is homogeneous of degree 1, we have that |ξ ||α||∂αq(ξ)| is bounded for |ξ | ≤ 2
for each α. Thus, since a0 ∈ C∞

c , it follows that

|ξ ||α||∂α
ξ M

σ
t (ξ)| ≤ C ρ1(t) sup

|α|≤2
‖∂αa0(ξ)‖∞, |α| ≤ 2,

withC independent of t . Hence, in view of the Hörmander–Mihilin multiplier theorem
[3], followed by a t−integration yields the required estimate, for 1 < p < ∞. �

Remark 5.8 Note that F0 commutes with (I − �x )

σ , since b is independent of x .
Hence, the inequality (5.18) is equivalent to the Sobolev estimate

‖F0 f ‖L p(R2×R) � Cσ,n ‖(I − �x )
−σ f ‖L p(R2) := Cσ,n ‖ f ‖L p

σ (R2),

for 1 < p < ∞.

The regularity estimate for F j f given by (2.1) also follows from the L p estimates
for j ≥ 1, as the amplitude a is independent of (x, t) variables, using the following
Lemma.

Lemma 5.9 For σ ∈ C and ρ as in (3.1), define fσ, j by

f̂σ, j (ξ) = f̂ (ξ) ρ(2− j |ξ |) (1 + |ξ |2)σ/2, f ∈ S(R2).

Then the estimate

‖ fσ, j‖L p(R2) ≤ Cσ 2 jRe(σ ) ‖ f ‖L p(R2), 1 ≤ p ≤ ∞
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holds true for all f ∈ S(R2) with Re(σ ) ≤ 0, where Cσ is independent of j .

The operator f → fσ, j is a convolution operator, whose kernel is given by the inverse
Fourier transform of the function ρ(2− j |ξ |) (1 + |ξ |2)σ/2. A simple integration by
parts gives a favorable pointwise estimate for the kernel, which leads to the proof, see
[15].

6 Local Smoothing Estimates

Now we proceed to prove the local smoothing estimate for the Fourier integral oper-
ators of the form (1.1) with general amplitude function a(x, t, ξ) satisfying (1.2). We
work with operators of the form (1.3) with ρ1 ∈ C∞

c (R), and complete the proof in
three steps, discussed in the next three subsections:

6.1 Case of aNot Depending on (x, t)

For 0 < ρ ∈ C∞
c (R+), and a ∈ Sm(R2),m ≤ 0, consider the Fourier integral operator

F̃ j defined as

F̃ j f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) ρ(2− j |ξ |) a(ξ) f̂ (ξ) dξ, f ∈ S(Cn) (6.1)

which differs from F j given by (2.2) only in the power of ρ, namely ρ2 = ρ0. Note
that, F̃ j f also satisfies the same norm estimates as in Propositions 5.6 and 5.1:

‖F̃ j f ‖L4(R2×R) ≤ Cε 2
j(3ε+1/8) sup

|α|≤4
‖∂αa‖L∞(R2) ‖ f ‖L4(R2), (6.2)

valid for 0 < ε ≤ 1/2, and

‖F̃ j f ‖L∞(R2×R) ≤ C 2 j/2 sup
|α|≤2

‖∂αa‖L∞(R2) ‖ f ‖L∞(R2) (6.3)

with constants C,Cε independent of j ∈ N.
In fact, the L4 and L∞ estimates for Fn

j f involve the bound for ρ0 and its deriva-

tives, which in turn depend only on the bound for ρ and its derivatives, since ρ0 = ρ2,

as seen in the proofs of Lemma 3.4, and Propositions 5.3, 5.4 and 5.5.

Proposition 6.1 LetF j be the Fourier integral operator as in (2.2) with a ∈ Sm, m ≤
0, independent of (x, t). Then for each ε > 0, there exist constants θ and Cε > 0
independent of j ∈ N such that

‖F j f ‖L p(R2×R) ≤ Cε 2
jθ sup

|α|≤4
‖∂αa‖L∞(R2) ‖ f ‖L p

m−σ (R2), Re(σ ) ≤ 0,

for all f ∈ L p(R2), 4 ≤ p ≤ ∞, where θ = 12ε/p + (1/2 − 3/2p) + Re(σ ).
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Proof Since a is independent of (x, t), we have

(I − �x )
(σ−m)/2(F j f )(x, t) = F j [(I − �x )

(σ−m)/2 f ](x, t),
which can be seen by taking the Fourier transform of both sides with respect to x .
Hence, it is enough to prove the inequality

‖(I − �x )
(σ−m)/2(F j f )‖L p(R2×R)

≤ Cε2
jθ sup

|α|≤4
‖∂αa‖L∞(R2) ‖ f ‖L p(R2). (6.4)

To this end, we start with the case m = 0. Setting L = (I − �x )
1/2, we have

Lσ (F j f ) = F̃ j ( fσ, j ), (6.5)

where F̃ j and fσ, j are as in (6.1) and Lemma 5.9 respectively. This follows by taking
the Fourier transform in the x-variable and using the fact that ρ0 = ρ2.

By Riesz–Thorin interpolation, (6.2) and (6.3) yields

‖F̃ j f ‖L p(R2×R) ≤ Cε sup
|α|≤4

‖∂αa‖L∞(R2) 2
j(3ε+1/8)(1−t) 2t j/2 ‖ f ‖L p(R2), (6.6)

for 4 ≤ p ≤ ∞, where 1
p = 1−t

4 . This inequality with f replaced by fσ, j , for
Re(σ ) ≤ 0 reads as

‖Lσ (F j f )‖L p(R2×R) ≤ Cε sup
|α|≤4

‖∂αa‖L∞(R2) 2
jθ ‖ f ‖L p(R2), (6.7)

in view of 6.5 and Lemma 5.9, where θ = 12ε/p + (1/2 − 3/2p) + Re(σ ). This
completes the proof in the case m = 0.

Now if a ∈ Sm, m < 0, then L−mF j is a Fourier integral operator with amplitude
function (1 + |ξ |2)−m/2a(ξ) ∈ S0. Thus since Lσ−mF j = Lσ (L−mF j ), the proof
follows from the case m = 0. �


6.2 Case of a(·, ·, �) Compactly Supported in the Cube Qk

If for eachfixed ξ ,a(·, ·, ξ), is compactly supported in the open cubeQk = (−1, 1)3+k
centered at an integer lattice point k ∈ R

3, then for each fixed ξ , we have the Fourier
series expansion

a(x, t, ξ) =
∑
n∈Z3

akn(ξ) eiπ〈n,(x,t)〉, (6.8)

valid for (x, t) ∈ Qk , with

akn(ξ) = e−iπ〈n,k〉
∫
Qk

a (x, t, ξ) e−iπ〈n,(x,t)〉 dxdt . (6.9)
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Thus, the Fourier integral operator F in (1.3) becomes a sum of Fourier integral oper-
ators as in (2.1) with amplitude function an = akn independent of the (x, t) variables.
Writing

e−iπ〈n,(x,t)〉 = (1 + π2|n|2)−2(1 − �x,t )
2e−iπ〈n,(x,t)〉

an integration by parts shows that |akn(ξ)| � ‖(1−�x,t )
2a‖L∞(Qk )

1+|n|4 . Moreover, using the
above arguments on ∂α

ξ a give the estimate

|∂α
ξ a

k
n(ξ)| ≤ ‖(1 − �x,t )

2∂α
ξ a‖L∞(Qk )

1 + |n|4 ≤ Bα

(1 + |k|)4
(1 + |ξ |)m−|α|

(1 + |n|4) (6.10)

for all multi indices α = (α1, α2)with a constant Bα , in view of (1.2), and the fact that
|(x, t)| ≈ |k| on Qk . Thus it follows that each akn ∈ Sm . Also, from the decay estimate
(6.10) with α = 0, it follows that the series on the right hand side of (6.8) converges
absolutely and uniformly in (x, t, ξ), as a ∈ Sm,m ≤ 0. We use these observations
to prove Theorem 1.1.

Proposition 6.2 LetF f be as in (1.1)with a(·, ·, ξ) supported in the cube Qk centered
at the integer lattice point k ∈ R

3. Then there exists a constant Cσ independent of k
such that the inequality

‖F f ‖p ≤ Cσ (1 + |k|)−4 ‖ f ‖L p
m−σ

holds true for Re(σ ) < 3
2p − 1

2 if 4 ≤ p < ∞, and for Re(σ ) < 1/2(1/p − 1/2) if

2 < p ≤ 4, for any f ∈ S(R2).

Proof Since a(·, ·, ξ) is supported on the cube Qk centred at k, in view of (6.8) and
the decomposition (2.3) involving the dyadic one, we have for f ∈ S (R2),

F f (x, t) =
∞∑
j=0

∑
n∈Z3

ei〈n,(x,t)〉 Fn
j f (x, t), (6.11)

where Fn
j f := Fn,k

j f is as in (2.2), 2.3 for j ∈ N0, but with a replaced by akn
given by (6.9). The above step involves an interchange of integral and sum, which is
justified by the dominated convergence theorem whenever f ∈ S (R2) and the fact
that

∑
n, j |akn(ξ)| ρ(2− j |ξ |) is bounded uniformly in ξ , which follows from (6.10)

with α = 0. Since |ei〈n,(x,t)〉| = 1, taking the L p norm on both sides of (6.11) yields

‖F f ‖L p(R2×R) ≤
∑
n∈Z3

∞∑
j=0

‖Fn
j f ‖L p(R2×R).
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In view of Propositions 6.1, 5.7 and (6.10), there exist Cε = Cε(σ ) such that

‖Fn
j f (x, t)‖L p(R2×R) ≤ Cε

(1 + |k|)4
2 jθ

(1 + |n|)4 ‖ f ‖L p
m−σ (R2), (6.12)

for 4 ≤ p ≤ ∞, for n ∈ Z
3 and j ∈ N0, where θ = 12ε/p+ (1/2− 3/2p) +Re(σ ).

Since
∑

n∈Z3
1

(1+|n|4) < ∞, and θ < 0 whenever Re(σ ) < 3
2p − 1

2 −12ε/p, it follows

that
∑

n, j Fn
j f is absolutely summable in L p(R3) and

‖F f ‖L p(R2×R) ≤
∑
n∈Z3

∞∑
j=0

‖Fn
j f ‖L p(R2×R) ≤ Cε(σ )

1 + |k|4 ‖ f ‖L p
m−σ (R2), (6.13)

for Re(σ ) < σε = 3
2p − 1

2 − 12ε/p with

Cε(σ ) = Cε

∑
n∈Z3

1

(1 + |n|)4
∞∑
j=0

2 jθ < ∞.

Note that ε > 0 is arbitrary, and σε → 3
2p − 1

2 as ε → 0. Thus for any given σ with

Re(σ ) < 3
2p − 1

2 , we have Re(σ ) < σε for some small ε > 0. It follows that the

estimate (6.13) holds true for Re(σ ) < 3
2p − 1

2 , and 4 ≤ p < ∞.
The case 2 < p ≤ 4 follows as in [15]. Writing F f = ∑

n∈Z3 Fn f where

Fn f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) akn(ξ) f̂ (ξ) dξ, (6.14)

with akn as in (6.9). Using Plancheral theorem and (6.10) with α = 0, we get for
Re(σ ) ≤ 0

‖Fn f (·, t)‖L2(R2) ≤ C

(1 + |n|)4
ρ1(t)

(1 + |k|)4 ‖ f ‖L2
m−σ (R2)

for f ∈ S(R2). A further t-integration gives

‖Fn f ‖L2(R2×R) ≤ C

(1 + |n|)4
C1

(1 + |k|)4 ‖ f ‖L2
m−σ (R2), Re(σ ) ≤ 0.

This is equivalent to

‖(I − �x )
(σ−m)/2Fn f ‖L2(R2×R) � C1

(1 + |n|)4
‖ f ‖L2(R2)

(1 + |k|)4 , (6.15)

valid for Re(σ ) ≤ 0.
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Also for p = 4, (6.12) is equivalent to

‖(I − �x )
(σ−m)/2Fn

j f ‖L4(R2×R)

≤ Cε

(1 + |k|)4
2 jθ

(1 + |n|)4 ‖ f ‖L4(R2),

for n ∈ Z
3 and j ∈ N0, Thus writing Fn f = ∑

j∈N0
Fn

j f , we see that

‖(I − �x )
(σ−m)/2Fn f ‖L4(R2×R)

� C2,ε

(1 + |k|)4(1 + |n|)4 ‖ f ‖L4(R2), (6.16)

for n ∈ Z
3 and j ∈ N0, as

∑
j 2

jθ < ∞ for Re(σ ) < 1
8 . Note that C2,ε = Cσ as

the choice of ε is determined by σ . Thus by analytic interpolation (see [25]), between
(6.15) and (6.16) we get

‖(I − �x )
(σ−m)/2Fn f ‖L p(R2×R)

� Cσ

(1 + |k|)4(1 + |n|)4 ‖ f ‖L p(R2), (6.17)

for Re(σ ) < 1
2 (

1
p − 1

2 ), 2 ≤ p ≤ 4, which is same as

‖Fn f ‖L p(R2×R) ≤ Cσ

(1 + |k|)4(1 + |n|)4 ‖ f ‖L p
m−σ (R2). (6.18)

for each n ∈ Z
3. From this we conclude:

‖F f ‖L p(R2×R) ≤ Cσ

(1 + |k|)4 ‖ f ‖L p
m−σ (R2), (6.19)

for 2 < p ≤ 4 and Re(σ ) < 1/2(1/p − 1/2), when a(·, ·, ξ) is supported in the cube
Qk . This completes the proof. �


6.3 The General Case

The local smoothing estimates in the case of general amplitude function can be deduced
from the above case, via a partition of unity argument. Let Ψ be a smooth function
on R

3 supported on the open cube Q = (−1, 1)3 such that
∑
k∈Z3

Ψ k = 1, where

Ψ k(y) = �(y− k), y = (x, t) ∈ R
3, k ∈ Z

3. Then ak(x, t, ξ) = a(x, t, ξ) Ψ k(x, t)
is compactly supported in Qk in (x, t) variable, for each ξ . Then for each k ∈ Z

3, we
define the operator

Fk f (x, t) = ρ1(t)
∫
R2

ei(x ·ξ+tq(ξ)) ak(x, t, ξ) f̂ (ξ) dξ. (6.20)
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Note that ak ∈ Sm as a ∈ Sm .

Proof of Theorem 1.1 Using the partition of unity {Ψ k}k∈Z3 discussed above, we have

F f (x, t) =
∑
k∈Z3

Fk f (x, t), (6.21)

as a tempered distribution, where Fk is the Fourier integral operator defined in (6.20)
with amplitude function ak(x, t, ξ) = a(x, t, ξ) Ψ k(x, t) ∈ Sm . In view of (6.10), the
n-th Fourier coefficient of ak satisfies the estimate

|∂α
ξ a

k
n(ξ)| ≤ Cα

(1 + |k|)4
(1 + |ξ |)m−|α|

(1 + |n|)4 (6.22)

for all α, with a constant Cα independent of k. Thus Proposition 6.2 yields

‖Fk f ‖L p(R2×R) ≤ Cσ

(1 + |k|)4 ‖ f ‖L p
m−σ (R2), (6.23)

for each k. Since
∑
k∈Z3

1
(1+|k|)4 < ∞, we see that

∑
k
Fk f is absolutely summable in

L p(R3) and

‖F f ‖L p(R2×R) ≤
∑
k∈Z3

‖Fk f ‖L p(R2×R) ≤ Cσ ‖ f ‖L p
m−σ (R2), (6.24)

for the same range of σ as in Proposition 6.2. This completes the proof. �

Note that Theorem 1.1 assumes some decay assumptions on amplitude functions a

and a few of its space-time derivatives. However, for local smoothing to hold, such a
decay assumptions is not necessary, as is clear from the case of amplitude functions
of the form a(x, t, ξ) = a(ξ). However, this is a trivial example in the sense that all
the space time derivatives for such a function are identically zero.

So it is natural to ask, if the local smoothing estimate holds for Fourier integral
operators with symbols having no decay in (x, t) variables, on any of its derivatives?
Interestingly, the answer to the above question is affirmative and is already contained
in the proof of Theorem 1.1. Since this fact does not follow as a corollary of the above
theorem, we state it as

Theorem 6.3 Let F be a Fourier integral operator as in (1.1) with amplitude function
a ∈ Sm(R2 × R × R

2),m ≤ 0, which is periodic in (x, t) variables. Then the local
smoothing estimate

‖F f ‖p ≤ Cσ ‖ f ‖L p
m−σ

holds true with a constant Cσ , for Re(σ ) < 3
2p − 1

2 if 4 ≤ p < ∞, and for Re(σ ) <

1/2(1/p − 1/2) if 2 < p ≤ 4.
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Recall that in Sect. 6.2, we deal with Fourier integral operators with amplitude
functions compactly supported in an open cube Qk in (x, t) variables, centered at
k ∈ Z

3. In fact, there we were actually using the Fourier series of a(x, t, ξ) for
(x, t) ∈ Qk . We can use the same idea for periodic functions. So we only sketch the
main points of the proof here.

Proof By a scaling, we can assume that a(x, t, ξ) has period 2 in each of the variables
x1, x2 and t . Thus for each fixed ξ , we have the Fourier series expansion

a(x, t, ξ) =
∑
n∈Z3

an(ξ) eiπ〈n,(x,t)〉, (6.25)

valid for (x, t) ∈ [−1, 1]3 = Q0. Hence we can write F f = ∑
n∈Z3

Fn f where Fn is

the Fourier integral operator as in (1.1) with amplitude function

an(ξ) =
∫

[−1,1]3
a (x, t, ξ) e−iπ〈n,(x,t)〉 dxdt . (6.26)

This is same as the formula given by (6.9) for k = 0, as [−1, 1]3 = Q0, Hence we get
by integration by parts (valid also in the periodic case)

|∂α
ξ an(ξ)| ≤ Bα

(1 + |ξ |)m−|α|

(1 + |n|4) (6.27)

as a special case of (6.10) with k = 0, valid for all multi indices α = (α1, α2). In
particular, this shows that an ∈ Sm , the same symbol class as a, for all n ∈ Z

3.
Hence the proof follows, using the special case k = 0 of Proposition 6.2, since∑

n∈Z3
1

(1+|n|4) < ∞. �

Remark 6.4 Note that the estimate of Theorem6.3 is also valid ifwe assumeperiodicity
only in the space variable. In fact, for local smoothing estimate, we can alwaysmultiply
the Fourier integral operator with ρ1 ∈ C∞

c (R), hence can assume by scaling, that the
t support of a is contained in (−1, 1), in which case we can periodize a in t-variable
and appeal to Theorem 6.3.
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