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Abstract
In light of recent work on particles fluctuating in linear viscoelastic fluids, we study
a linear stochastic partial-integro-differential equation with memory that is driven by
a stationary noise on a bounded, smooth domain. Using the framework of general-
ized stationary solutions introduced in McKinley and Nguyen (SIAM J Math Anal
50(5):5119–5160, 2018), we provide conditions on the differential operator and the
noise to obtain the existence as well as Hölder regularity of the stationary solutions
for the concerned equation. As an application of the regularity results, we compare
to analogous classical results for the stochastic heat equation. When the 1d stochas-
tic heat equation is driven by white noise, solutions are continuous with space and
time regularity that is Hölder (1/2 − ε) and (1/4 − ε) respectively. When driven by
colored-in-space noise, solutions can have a range of regularity properties depending
on the structure of the noise. Here, we show that the particular form of colored-in-time
memory that arises in viscoelastic diffusion applications, satisfying what is called the
Fluctuation–Dissipation relationship, yields sample paths that are Hölder (1/2 − ε)

and (1/2 − ε) in space and time.

Keywords Hölder regularity · Stationary processes · Completely monotone functions

1 Introduction

Let O be a bounded domain in R
d , d ≥ 1 and denote by H = L2(O), the Hilbert

space of square-integrable functions on O. Given a self-adjoint negative operator
A : D(A) ⊂ H → H and a memory function K : R → [0,∞), we are interested in
the following equation for u(t, x) : R × O → R

d
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u̇(t, x) =
∫ t

−∞
K (t − s)Au(s, x)ds + F(t, x), (1.1)

where F(t, x) has the representation

F(t, x) =
∑
k≥1

λk Fk(t)ek(x). (1.2)

Here, {λk}k≥1 is a sequence of positive constants, {ek}k≥1 is an orthonomal basis for
H , and {Fk(t)}k≥1 is a sequence of i.i.d. stationary Gaussian processes with autoco-
variance

E[Fk(t)Fk(s)] = K (|t − s|). (1.3)

The goal of this note is to give an analysis on the well-posedness and regularity of (1.1)
under appropriate assumptions on A and K . Our motivation for (1.1)–(1.2)–(1.3) is
as follows. Suppose that the orthonormal basis {ek}, as in (1.2), diagonalizes A in the
sense that for each k ∈ N, there exists an αk > 0 such that Aek = −αkek . By writing
u(t, x) = ∑

k≥1 uk(t)ek(x), formally, uk(t) satisfies the following equation

u̇k(t) = −αk

∫ t

−∞
K (t − s)uk(s)ds + λk Fk(t). (1.4)

Equation (1.4) is a simpler version of the so-called generalized Langevin equation
(GLE) that is used to model single-particle movements in viscoelastic fluids. The full
1d GLE has the following form [22, 23, 29]

{
mv̇(t) = −γ v(t) − β

∫ t
−∞ K (t − s)v(s)ds + λF(t) + √

2γ Ḃ(t),

E(F(t)F(s)) = K (t − s),
(1.5)

where m is the mass, γ is the drag due to viscosity, F(t) is a stationary Gaussian
process and B(t) is a standard Brownian motion. Here the covariance of the stationary
force F is the same as the memory kernel K , which is a force-balance condition
resulting from the Fluctuation–Dissipation relationship [31].. Historically, the GLE
was first proposed and studied in the work of [27, 31] and later popularized in [28].
The GLE has been given renewed attention in the last two decades due to its ability
to produce what is known as anomalous diffusion [30]. Namely, let x(t) := ∫ t

0 v(s)ds
where v(t) satisfies (1.5). If the memory kernel K is integrable, it has been shown that
the Mean-Squared Displacement E[x(t)2] grows linearly in time. On the other hand,
if there exists an α ∈ (0, 1] such that K (t) ∼ t−α as t → ∞, then for α ∈ (0, 1),
E[x(t)2] ∼ tα [26, 29] and for α = 1, E[x(t)2] ∼ t/ log(t) as t → ∞ [16]. Here
f (t) ∼ g(t), t → ∞ means limt→∞ f (t)/g(t) = c ∈ (0,∞). While the GLE
is useful when modeling single-particle movements, it fails to capture multi-particle
interactions through fluctuating hydrodynamics. Recently, a first step in this direction
was a model proposed and studied numerically in [23] that generalized the fluctuating
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Landau–Lifschitz Navier–Stokes equations from viscous to viscoelastic fluids. The
model that we consider (1.1) is the linearized version of the system, which appears
in [23], without fluid specific terms like the Navier–Stokes non-linear term or time-
dependent pressure. Inspired by [16, 23, 29], wewould like to investigate the regularity
of the stationary solutions for (1.1) whenever they make sense.

Stochastic partial-integro-differential equations with infinite delay have been stud-
ied in literature [3, 7, 10, 25, 34–37]. Recently, in [3], when A is the usual Laplace
operator, the author considered a stochastic heat equation with memory that has the
form

u̇(t, x) = k0A u(t, x) −
∫ t

−∞
K (t − s)A u(s, x)ds + Ẇ (t, x), (t, x) ∈ R × O,

(1.6)

where k0 > 0 is a constant satisfying k0 >
∫ ∞
0 K (s)ds and W is a Wiener process.

Equation (1.6) arises from theory of thermal viscoelasticity, in which k0 and K respec-
tively represent the instantaneous conductivity and the heat flux memory kernel. See
also [4, 5, 8–10] for related work on stochastic systems similar to (1.6). It is interesting
to study how and whether the Hölder regularity of solutions to (1.6) differ from the
analogous stochastic heat equation that does not feature memory:

u̇(t, x) = A u(t, x) + Ẇ (t, x), (t, x) ∈ R × O. (1.7)

In fact, under suitable assumptions on W and A, Hölder regularity of solutions (1.6)
does not differ from that of (1.7) [15, 21]. The proofs of these arguments rely on
Kolmogorov’s criterion and estimates on the differences in space and time within a
solution. Motivated by these results, we would like to investigate how the memory
structure intrinsic in (1.1) affects regularity of its solutions when compared to the
analogous versions of (1.6) and (1.7).

Our problem differs from those considered previously as follows: first, in preceding
works, the random part is usually aWiener process that is white-in-time and is defined
on an auxiliary Hilbert space that does not depend on the memory. By contrast, our
noise F has the decomposition (1.2) and each mode Fk is related with the memory K
via relation (1.3), which follows from the Fluctuation–Dissipation relationship. Thus,
one can regard F in (1.1) as being colored-in-time. In addition, the memory kernels
in previous works [3, 7, 10] are required to be integrable on the positive real line.
This condition excludes those that have a slow power-law decay, namely K (t) ∼ t−α

as t → ∞ for α ∈ (0, 1]. As already mentioned, the Mean-Squared Displacement
E[x(t)2] associated with these kernels in (1.5) obeys a sub-linear growth, i.e., tα or
t/ log t as t → ∞, respectively when α ∈ (0, 1) [29] or α = 1 [16]. In our work, the
memory kernels need not be integrable and moreover, the conditions that we impose
allow them to have a slow power-law decay, cf. Assumption 2.4. To be more precise,
throughout the rest of this work, we will restrict our memory kernel to the class of
completely monotone functions, which have been studied in great detail elsewhere [3,
8, 10]. The important feature these functions possess is that their Fourier transforms
admit clean expressions, which allows us to perform analysis on the regularity of (1.1)
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in Sect. 4. As a result of these assumptions, the system (1.1) admits better regularity
compared to (1.6)–(1.7). In particular, the one-dimensional versions of (1.6)–(1.7)
with white noise are both γ -Hölder continuous in time for γ ∈ (0, 1/4) [3, 15]. In
contrast, as a corollary of Theorem 2.10 below, our 1D heat equation with colored
noise F is γ -Hölder continuous in time for γ ∈ (0, 1/2).

Finally, we mention that on the deterministic side, there are many related works on
partial differential equations with memeory kernels. For a few examples, we refer the
reader to [1, 2, 6, 11, 12, 18].

The rest of the paper is organized as follows. In Sect. 2, we introduce our definition
of a stationary solution for (1.1), state our assumptions, and summarize our main
results, particularly on the Hölder regularity of (1.1), cf. Theorem 2.10. In Sect. 3, we
present the preliminaries needed for our analysis, e.g., weak formulations of (1.4) and
a Fourier analysis on the class of completely monotone functions. We then detail the
proofs of main results in Sect. 4. We finish with Sect. 5 discussing related problems
as well as applications to stochastic heat equations with memory.

2 Assumptions andMain Results

Concerning the linear operator A, we assume the following standard condition (see
also [15, Sect. 5.5.1]).

Assumption 2.1 The orthonormal basis {ek}k≥1 in (1.2) belongs to D(A) and diag-
onalizes A, i.e., there exists an increasing sequence 0 < α1 ≤ α2 ≤ · · · such that
{αk} ↑ ∞ and that

Aek = −αkek, k ≥ 1.

We further assume that

|ek(ξ)| ≤ Mck, |∇ek(ξ)| ≤ Mα
1/2
k ck, ∀ξ ∈ O, k ≥ 1,

for some positive constant M and a sequence of (increasing) positive numbers {ck}k≥1.

One can think of A as the usual Laplacian operator, but it need not be. Up to this
point, we have not defined what we mean by a stationary solution of (1.4). We shall
postpone introducing the formulation of these solutions, cf. Definition 3.6, as well as
the required elements to construct them in Sect. 3.1, based on the work of [16, 24, 29].
We now state the following important definition of a stationary solution of (1.1).

Definition 2.2 A random field u(t, x) = ∑
k≥1 uk(t)ek(x) is called a stationary solu-

tion of (1.1) if

(a) for all t ∈ R, u(t, ·) ∈ L2(�; H), i.e., E‖u(t, ·)‖2H < ∞; and
(b) the process uk(t) satisfies uk(t) = 〈Vk, δt 〉 where {Vk}k≥1 are mutually inde-

pendently weak stationary solutions of (1.4) in the sense of distribution given by
Definition 3.6, δt is the Dirac function centered at t , and 〈Vk, δt 〉 denotes the action
of Vk when applied to δt .
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With regard to the memory kernel K , we first state the definition of the class of
completely monotone functions, of which we will assume that K is a member.

Definition 2.3 A function K : (0,∞) → [0,∞) is completely monotone if K is of
class C∞(0,∞) and (−1)n K (n)(t) ≥ 0 for all n ≥ 0, t > 0.

Throughout this note, unless stated otherwise, we require that the memory kernel
K satisfy the following assumption.

Assumption 2.4 We assume that K : R → [0,∞) is symmetric and eventually
decreasing to zero as t → ∞. Furthermore, K (t) is completely monotone on
t ∈ (0,∞).

The class of completely monotone functions includes a special case of memory
kernels for which K can be be expressed as a sum of exponentials [19, 20, 23, 30].
In addition, Assumption 2.4 allows us to include power-law decay functions, e.g.,
(1+|t |)−α , α > 0 [29]. The advantage of completely monotone functions is that their
Fourier transform can be explicitly computed (cf. Lemma 3.9) and thus is helpful for
our analysis. We will see later in Sect. 4 that their Fourier structures play an important
role when we investigate the well-posedness and regularity of (1.1).

With regards to the parameters λk and αk , we first assume that they satisfy the
following condition. See also [3, Hypothesis 2.10] and [15, Condition (5.40)].

Assumption 2.5 Let {αk}k≥1 be as in Assumption 2.1 and {λk}k≥1 be as in (1.2). We
assume that

∑
k≥1

λ2k

αk
< ∞.

In Theorem 2.8 below, we will see not only that Assumption 2.5 be necessary, but
it is also sufficient to guarantee the existence of weak stationary solutions of (1.1).
Moreover, we note that Assumption 2.5 is only about the pairs {(αk, λk)}k≥1 and
does not require information on {ck}k≥1 as in Assumption 2.1. Concerning Hölder
continuity, we assume the following further condition on the triples {(ck, αk, λk)}k≥1.

Assumption 2.6 Let {αk}k≥1, {ck}k≥1 be as in Assumption 2.1 and {λk}k≥1 be as
in (1.2). There exists a constant η ∈ (0, 1) such that

∑
k≥1

λ2kc2k
α

η
k

< ∞.

Remark 2.7 Since ck > 0 and αk are non-decreasing by Assumption 2.1, it is clear
that Assumption 2.6 implies Assumption 2.5. We note however that Assumption 2.6
is also standard and can be found in the literature of linear SPDEs, see for instance [3,
Lemma 3.27] and [15, Lemma 5.21].

We now state our first important result, giving the existence of stationary solutions
for (1.1).
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Theorem 2.8 (Well-posedness) Suppose that Assumptions 2.1 and 2.4 hold. Then,
Eq. (1.1) admits stationary solutions u(t, x) in the sense of Definition 2.2 if and only
if Assumption 2.5 is satisfied.

Remark 2.9 We note that in Theorem 2.8, we do not address the pathwise uniqueness
as commonly found in SPDEs. Since stationary processes are characterized by their
autocovariance function and spectral densities [13, 24], later on in Sect. 4, we will see
that stationary solutions u(t, x) of (1.1) admit the unique covariance representation

E[u(t, x)u(s, y)] =
∑
k≥1

∫
R

ei(t−s)ωρk(ω)dω ek(x)ek(y),

where ρk(ω) given by (4.1) is the spectral density of uk(t) as in Proposition 4.2 below.
See also Proposition 4.1.

The proof of Theorem 2.8 makes use of a Fourier analysis on the memory kernels
and will be carried out in Sect. 4. In particular, we will generalize results in [22, 23],
where K has the form as a sum of exponentials, to calculate explicitly the second
moment of uk(t) as in the decomposition u(t, x) = ∑

k≥1 uk(t)ek(x).
We now state the main result of the paper on the regularity of (1.1).

Theorem 2.10 (Time and space regularity) Suppose that Assumptions 2.1, 2.4 and 2.6
are satisfied. Let u(t, x) be the solution of (1.1) as in Theorem 2.8 and η be the constant
from Assumption 2.6. Then there exists a modification U (t, x) of u(t, x) such that U
is γ -Hölder continuous in time and space for any γ ∈ (0, 1 − η).

The proof of Theorem 2.10 carried out in Sect. 4 will employ the classical Kolmogorov
criterion on space-time regularity of random fields, which in turn relies heavily on del-
icate estimates on difference of solutions of (1.1). In Sect. 5, we will detail application
of Theorem 2.10 to stochastic heat equations. In particular, one will see that while
space regularity remains the same, time regularity of (1.1) is smoother than those
of (1.6) and (1.7).

3 Mathematical Preliminaries

Throughout the rest of the paper, we will use C and c to denote generic positive
constants, whose values may change from one line to the next. When the dependence
on parameters is important, this will be indicated in parenthesis, e.g., c(α, q) depends
on parameters α and q.

3.1 Weak solutions of the GLE

In order to define weak solutions of (1.4), for the reader’s convenience, we briefly
review the framework in [29]. For given λ, β > 0, we consider a stochastic process
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v : R → R governed by the formal stochastic integro-differential equation

v̇(t) = −β

∫ t

−∞
K (t − s)v(s)ds + λF(t), (3.1)

where F(t) is a stationary Gaussian process whose autocovariance function is K (t).
Ourmethods rely heavily onFourier analysis for spectral functions and so for a function
f : R → C, we define the Fourier transform of f in the sense of improper integrals as

f̂ (ω) =
∫
R

f (t)e−i tωdt .

If a function K (t) ∈ L1
loc(R) is symmetric and eventually decreasing to zero as t → ∞,

then the above integral is well-defined for every ω �= 0 [32]. Let S be the class of
Schwarz functions defined on R and S ′ be the space of tempered distributions on S.
The action of f ∈ S ′ on ϕ ∈ S is denoted by 〈 f , ϕ〉. Also, the Fourier transform
F [ f ] of f ∈ S ′ in the sense of distributions is defined as follows:

∀ϕ ∈ S, 〈F [ f ] , ϕ〉 := 〈 f , ϕ̂〉.

It is well known that the Fourier map F : S ′ → S ′ is a one-to-one relation. We begin
with the definition of a (weak) stationary process [13].

Definition 3.1 A stochastic process {F(t)}t∈R is mean-square continuous and station-
ary if for all t, s ∈ R,

(a) E|F(t)|2 < ∞ and limh→0 E|F(t + h) − F(t)|2 = 0;
(b) E[F(t)] = a, for some constant a (we may assume a = 0); and
(c) the covariance function E[F(t)F(s)] depends only on the difference (t − s).

ByBochner’s Theorem, a stationary process F is characterized by a positive definite
function r and a finite Borel measure ν such that the following holds for all t, s ∈ R

[13]:

E
[
F(t)F(s)

] = r(t − s) =
∫
R

ei(t−s)yν(dy). (3.2)

In the above, r is called the covariance and ν is called the spectral measure of F .
Furthermore, there always exists a modified version F̃ of F such that F̃ is Gaussian
[13]. A generalization of stationary processes is the class of stationary random distri-
butions, introduced by Itô’s seminal work [24]. Denote by τh , the shift transform on
S, τhϕ(x) := ϕ(x + h).

Definition 3.2 A linear functional F : S → L2(�), the space of all complex-valued
random variables with finite variance, is called a stationary random distribution on S
if for all h ∈ R, ϕ1, ϕ2 ∈ S,

E
[〈F, τhϕ1〉〈F, τhϕ2〉

] = E
[〈F, ϕ1〉〈F, ϕ2〉

]
.
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Next, we recall the definition of a positive definite tempered distribution f [24],
which is analogous to the positive definiteness of real-valued functions.

Definition 3.3 A tempered distribution f ∈ S ′ is called positive definite if for any
ϕ ∈ S,

〈 f , ϕ ∗ ϕ̃〉 ≥ 0,

where ϕ̃(x) = ϕ(−x).

A stationary random distribution F is characterized by its associated positive def-
inite tempered distribution r and a non-negative measure ν in the following sense:
[24]

∀ϕ1, ϕ2 ∈ S, E

[
〈F, ϕ1〉〈F, ϕ2〉

]
= 〈r , ϕ1 ∗ ϕ̃2〉 =

∫
R

ϕ̂1(y)ϕ̂2(y)ν(dy), (3.3)

where ν satisfies

∫
R

ν(dx)

(1 + x2)k
< ∞, (3.4)

for some integer k. Furthermore, if ν is absolutely continuous with respect to Lebesgue
measure on R, then we are able to extend the above stationary random distribution
F to a generalized random distribution � : Dom(�) ⊂ S ′ → L2(�) such that the
following holds

E

[
〈�, f1〉〈�, f2〉

]
=

∫
R

F [ f1] (y)F [ f2] (y)ν(dy). (3.5)

Here, the domain of � consists of those tempered distributions f such that F [ f ] ∈
L2(ν) where

L2(ν) = {
g : R → C,

∫
R

|g(y)|2ν(dy) < ∞}
.

Comparing (3.5) with (3.3), we readily see that � is an extension of F since S ⊂
Dom(�), see [29] for a more detailed discussion. We now can define the function-
valued version of � as follows.

Definition 3.4 Let � be a random operator associated with a measure ν as in (3.5).
Let δt be the Dirac δ−distribution centered at t . If δt and 1[0,t] are in Dom(�), then
we define

v(t) := 〈�, δt 〉, and x(t) := 〈�, 1[0,t]〉.

We note that x(t) can be defined without v(t).
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In view of [29, Lemma 2.17], δt ∈ Dom(�) if and only if the representation
measure ν is finite. Moreover v(t) is a stationary Gaussian process, which is consistent
with (3.2). We now turn our attention to weak solutions of (3.1). Formally, we can
multiply both sides of (3.1) by a Schwarz function ϕ, then perform an integration by
parts on the left-hand side and a change of variable on the convolution term on the
right-hand side to arrive at

−
∫
R

v(t)ϕ′(t)dt = −β

∫
R

v(t)
∫
R

K +(y)ϕ(t + y)dydt + λ

∫
R

F(t)ϕ(t)dt,

where K +(t) := K (t)1{t≥0}. Bringing the convolution to the left-hand side now yields

∫
R

v(t)
[ − ϕ′(t) + β K̃ + ∗ ϕ̃(t)dt

]
dt = λ

∫
R

F(t)ϕ(t)dt .

Having introduced the notion of generalized random distributions, we rewrite the
above equation in the following weak form

〈V ,−ϕ′ + β K̃ + ∗ ϕ̃〉 = λ〈F, ϕ〉, (3.6)

where f̃ (x) := f (−x). In the above, the LHS is understood as an action of a general-
ized random distribution V applied to an element in its domain, whereas the RHS is the
usual action of the stationary random distribution F applied to ϕ ∈ S. Furthermore,
the random distribution F is characterized by its covariance structure

∀ϕ1, ϕ2 ∈ S, E

[
〈F, ϕ1〉〈F, ϕ2〉

]
=

∫
R

K (t)(ϕ1 ∗ ϕ̃2)(t)dt . (3.7)

Remark 3.5 In general, a real-valued function K can be regarded as a tempered distri-
bution by setting

〈K , ϕ〉 :=
∫
R

K (t)ϕ(t)dt,

for any ϕ ∈ S. The above integral always converges as long as K belongs to L1
loc(R)

and does not grow exponentially fast [33]. In addition, if K satisfies Assumption 2.4,
then K is indeed a positive definite tempered distribution [29], which in turn implies
that F as in (3.7) is a stationary random distribution.

With the above observation, we have the following definition of a weak solution
of (3.1).

Definition 3.6 [29] Let ν be a non-negative measure satisfying condition (3.4) and V
be the operator associated with ν via the relation (3.5). Then V is a weak stationary
solution for Eq. (3.1) if V satisfies the following conditions.
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(a) For all ϕ ∈ S, K + ∗ ϕ belongs to Dom(V ).
(b) For any ϕ,ψ ∈ S, it holds that

E

[
〈V ,−ϕ′ + β K̃ + ∗ ϕ̃〉〈V ,−ψ ′ + β ˜K + ∗ ψ̃〉

]
= λ2E

[〈F, ϕ〉〈F, ψ〉].

Using this definition, we will address the well-posedness of (1.4) in Sect. 4.

3.2 Completely Monotone Functions

In this subsection, we collect several properties of the class of completely monotone
functions that are needed for the analysis of the regularity of stationary solutions
of (1.1). It is known that such a function K can be characterized in terms of the
Laplace transform of Radon measures.

Theorem 3.7 (Hausdorff–Bernstein–Widder Theorem) A function K is completely
monotone if and only if K admits the formula

K (t) =
∫ ∞

0
e−t xμ(dx), (3.8)

where μ is a positive measure on [0,∞).

It is convenient to denote

(a) CM, the class of all completely monotone functions; and
(b) CMb, the class of all K ∈ CM such that the measure μ in (3.8) is finite.

Remark 3.8 Notice that if K ∈ CMb, by setting K (0) := ∫ ∞
0 μ(dx) = μ([0,∞)),

K can be extended to be continuous on [0,∞). Hence, CMb = C[0,∞) ∩ CM. In
view of Assumption 2.4, the class of kernels that we consider is a subset of CMb.

We now turn to Fourier transforms of CMb functions.

Lemma 3.9 Suppose that K ∈ CMb and that K is decreasing to 0 as t → ∞. Let μ

be the representation measure as in (3.8). Then for every ω �= 0, it holds that

∫ ∞

0
K (t)e−i tωdt =

∫ ∞

0

x

x2 + ω2μ(dx) − i
∫ ∞

0

ω

x2 + ω2μ(dx). (3.9)

Proof We first note that since μ is a finite measure, this implies that

∫ ∞

0

x

x2 + ω2μ(dx) ≤ 1

2|ω|
∫
R

μ(dx) < ∞,

and that
∫ ∞

0

|ω|
x2 + ω2μ(dx) ≤ 1

|ω|
∫
R

μ(dx) < ∞.
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In addition, K (t) decreasing to 0 as t → ∞ implies that

μ({0}) = lim
t→∞

∫ ∞

0
e−t xμ(dx) = lim

t→∞ K (t) = 0.

Now by the definition of improper integrals,

∫ ∞

0
K (t)e−i tωdt = lim

A→∞

∫ A

0
K (t)e−i tωdt .

Substituting K (t) = ∫ ∞
0 e−t xμ(dx)on the aboveRHS,wehave a chain of implications

∫ A

0
K (t)e−i tωdt =

∫ A

0

∫ ∞

0
e−t xμ(dx)e−i tωdt

=
∫ ∞

0

∫ A

0
e−(x+iω)tdtμ(dx)

=
∫ ∞

0

1 − e−(x+iω)A

x + iω
μ(dx)

=
∫ ∞

0

(
1 − e−(x+iω)A

)
x

x2 + ω2 μ(dx) − i
∫ ∞

0

(
1 − e−(x+iω)A

)
ω

x2 + ω2 μ(dx).

Considering the first integral term, it is clear that for all x ≥ 0 and ω �= 0,

∣∣1 − e−(x+iω)A
∣∣ x

x2 + ω2 ≤ 2x

x2 + ω2 , A → ∞,

and that
(
1 − e−(x+iω)A

)
x

x2 + ω2 → x

x2 + ω2 , A → ∞.

By the Dominated Convergence Theorem, we obtain

∫ ∞

0

(
1 − e−(x+iω)A

)
x

x2 + ω2 μ(dx) →
∫ ∞

0

x

x2 + ω2μ(dx), A → ∞.

With regard to the second term, we note that μ({0}) = 0 as reasoned above. It follows
that for μ−almost every x ∈ [0,∞), we have

(
1 − e−(x+iω)A

)
ω

x2 + ω2 → ω

x2 + ω2 .

Also, for all x ≥ 0 and ω �= 0,

∣∣(1 − e−(x+iω)A)ω
∣∣

x2 + ω2 ≤ 2x

x2 + ω2 ,
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which implies

∫ ∞

0

(
1 − e−(x+iω)A

)
ω

x2 + ω2 μ(dx) →
∫ ∞

0

ω

x2 + ω2μ(dx), A → ∞,

by the Dominated Convergence Theorem. The proof is thus complete. ��
Wefinish this subsection by the following important observations on the class of CMb

that will be the main ingredients for our analysis on the regularity of the solutions
of (1.1) in Sect. 4.

Lemma 3.10 Suppose that K ∈ CMb and that K (t) ↓ 0 as t → ∞. Define for ω �= 0,

Kcos(ω) :=
∫ ∞

0
K (t) cos(tω)dt, and Ksin(ω) :=

∫ ∞

0
K (t) sin(tω)dt . (3.10)

Then, the following properties hold.

(a) Kcos(ω) is decreasing, ωKcos(ω) is bounded and ω2Kcos(ω) is increasing on
ω ∈ [0,∞).

(b) ωKsin(ω) is increasing on ω ∈ [0,∞) and limω→∞ ωKsin(ω) = K (0).
(c) The ratio Ksin(ω)

ω
is decreasing to 0 as ω → ∞. Consequently, for k sufficiently

large, the equation

1 − αk
Ksin(ω)

ω
= 0, (3.11)

has a unique solution ωk on (0,∞) where αk is as in Assumption 2.1. Moreover,

limk→∞
ω2

k
αk

= K (0).
(d) There exists a constant c > 0 such that for any sufficiently large k, we have that

ωk > 1 and, for any q ∈ (0, 1), we have

∣∣∣∣αk
Ksin(ω)

ω
− 1

∣∣∣∣ ≥ c

ωk
|ω − ωk | , (3.12)

for all ω ∈ [ωk − ω
q
k , ωk + ω

q
k ].

Remark 3.11 We will see later in the proof of Lemma 3.10 (d) that the assump-
tion K (0) < ∞ is crucial for our analysis, which explains why we are restricted
to memory kernels that belong to CMb, not those belonging to CM \ CMb, e.g.,
|t |−α , α > 0.

Proof of Lemma 3.10 (a) In view of Lemma 3.9, the first assertion is evident since

Kcos(ω) =
∫ ∞

0

x

x2 + ω2μ(dx).
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To see the second claim, we employ Young’s inequality to find that

ωKcos(ω) =
∫ ∞

0

xω

x2 + ω2μ(dx) ≤ 1

2

∫ ∞

0
μ(dx) < ∞.

Also,

ω2Kcos(ω) =
∫ ∞

0

xω2

x2 + ω2μ(dx),

which is clearly increasing on ω ∈ (0,∞).
(b) We note that

ωKsin(ω) =
∫ ∞

0

ω2

x2 + ω2μ(dx).

The Monotone Convergence Theorem then implies that

lim
ω→∞ ωKsin(ω) =

∫ ∞

0
μ(dx) = K (0).

(c) The first assertion is evident since Ksin(ω)/ω admits the formula

Ksin(ω)

ω
=

∫ ∞

0

1

x2 + ω2μ(dx).

By the Monotone Convergence Theorem, we see thatKsin(ω)/ω ↓ 0 as ω → ∞.
Now to verify that 1−αkKsin(ω)/ω = 0must have a unique solutionωk ∈ (0,∞)

for k sufficiently large, we have the following observations

lim
ω→0+ 1 − αk

Ksin(ω)

ω
= 1 − αk

∫ ∞

0

1

x2
μ(dx), and lim

ω→∞ 1 − αk
Ksin(ω)

ω
= 1,

where the left-hand side limit may be positive. If
∫ ∞
0

1
x2

μ(dx) diverges, then it is
clear that

lim
ω→0+ 1 − αk

Ksin(ω)

ω
= 1 − αk

∫ ∞

0

1

x2
μ(dx) = −∞.

Otherwise, since {αk}k≥1 ↑ ∞ by Assumption 2.1, there must exist an index k∗
sufficiently large such that for all k ≥ k∗, the above left-hand side limit must
be negative. Together with monotonic property, we can infer the existence and
uniqueness of ωk ∈ (0,∞) solving 1 − αk

Ksin(ω)
ω

= 0. Finally, we note that

ω2
k

αk
= ωkKsin(ωk) → K (0), k → ∞,

by virtue of part (b).
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(d) Since {αk}k≥1 ↑ ∞ and ω2
k/αk → K (0) from part (c), it is clear that for k

large enough, ωk > 1. To prove (3.12), we assume that ω �= ωk (it is trivial
when ω = ωk). Using the identity ωk = αkKsin(ωk), we recast the left-hand side
of (3.12) as

αk
Ksin(ω)

ω
− 1 = αk

Ksin(ω)

ω
− αk

Ksin(ωk)

ωk

= αk

∫ ∞

0

1

x2 + ω2 − 1

x2 + ω2
k

μ(dx)

= αk

∫ ∞

0

(ωk − ω)(ωk + ω)

(x2 + ω2)(x2 + ω2
k )

μ(dx).

It follows that (3.12) is equivalent to

αk

∫ ∞

0

|ωk − ω|(ωk + ω)

(x2 + ω2)(x2 + ω2
k )

μ(dx) ≥ c

ωk
|ωk − ω|,

which is the same as

∫ ∞

0

ωk(ωk + ω)

(x2 + ω2)(x2 + ω2
k )

μ(dx) ≥ c

αk
= cKsin(ωk)

ωk
= c

∫ ∞

0

1

x2 + ω2
k

μ(dx).

It therefore suffices to show that

∫ ∞

0

ωk(ωk + ω)

(x2 + ω2)(x2 + ω2
k )

μ(dx) ≥ c
∫ ∞

0

1

x2 + ω2
k

μ(dx).

For ω ∈ [ωk − ω
q
k , ωk + ω

q
k ], it is clear that x2 + ω2 ≤ 4(x2 + ω2

k ). We then find
a lower estimate as follows:

∫ ∞

0

ωk(ωk + ω)

(x2 + ω2)(x2 + ω2
k )

μ(dx) ≥ 1

4

∫ ∞

0

ω2
k

(x2 + ω2
k )

2
μ(dx)

= ω2
k

4K (0)

∫ ∞

0
μ(dx)

∫ ∞

0

1

(x2 + ω2
k )

2
μ(dx).

We invoke Hölder’s inequality (assuming k is large enough) to find

ω2
k

4K (0)

∫ ∞

0
μ(dx)

∫ ∞

0

1

(x2 + ω2
k )

2
μ(dx) ≥ ω2

k

4K (0)

( ∫ ∞

0

1

x2 + ω2
k

μ(dx)
)2

= ωkKsin(ωk)

4K (0)

∫ ∞

0

1

x2 + ω2
k

μ(dx)

≥ Ksin(1)

4K (0)

∫ ∞

0

1

x2 + ω2
k

μ(dx).
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where in the last implication, we have employed the fact that ωKsin(ω) is increas-
ing from part (b). Finally, setting c = Ksin(1)/4K (0) and collecting everything,
we obtain (3.12), which completes the proof.

��

4 Proof of Main Results

4.1 Proof of Theorem 2.8

We begin this section by recalling some results on the well-posedness of the GLE
(1.4). The proof of these results can be found in [29].

Proposition 4.1 Suppose that the memory kernel K satisfies Assumption 2.4. For each
k, Vk is a weak solution for (1.4) in the sense of Definition 3.6 if and only if the spectral
measure νk satisfies νk(dω) = ρk(ω)dω where ρk is given by

ρk(ω) := λ2k K̂ (ω)

2π
∣∣∣iω + αk K̂ +(ω)

∣∣∣2
. (4.1)

Proof See [29, Theorem 4.3]. ��
The function ρk is called the spectral density of Vk . Having obtained weak solutions

of (1.4), in the following proposition we assert that uk(t) is a stationary Gaussian
process.

Proposition 4.2 Under the hypotheses of Proposition 4.1, let Vk be the weak solution
of (1.4) and ρk be the corresponding spectral density as in (4.1). Then,

(a) ρk ∈ L1(R);
(b) δt belongs to Dom(Vk) and the process uk(t) := 〈Vk, δt 〉 is a real valued Gaus-

sian stationary process with zero mean in the sense of Definition 3.1, which is
a.s. continuous; and

(c) the autocovariance of uk(t) admits the representation

E[uk(t)uk(s)] =
∫
R

ei(t−s)ωρk(ω)dω. (4.2)

Proof See [29, Theorem 5.4]. ��
With regard to the existence of stationary solutions for (1.1), we remark that Propo-

sition 4.2 only guarantees the second condition of Definition 2.2. In order to fulfill the
first requirement, using the decomposition u(t, x) = ∑

k≥1 uk(t)ek(x) and the fact
that the processes uk(t) are all independent, we observe that

E‖u(t, ·)‖2H =
∑
k≥1

E|uk(t)|2.
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It is thus necessary to obtain useful bounds on the second moment of uk , which by
virtue of Proposition 4.2 (c), cf. (4.2), is equivalent to calculating

∫
R

ρk(ω)dω. To
be more precise, we have the following lemma, which will be employed to prove
Theorem 2.8.

Lemma 4.3 Suppose that the memory kernel K satisfies Assumption 2.4. Let ρk be the
spectral density as in (4.1). Then,

∫
R

ρk(ω)dω = λ2k

αk
. (4.3)

We note that Lemma 4.3 may be considered as an extension of previous results
on the second moment of the solutions of 1D GLE, e.g., [22, Equation (2.7)] and
[23, Proposition 2.1], in which the kernels considered have a special finite-sum-of-
exponentials form. By employing a contour integral method similar to what is used in
[22, 26],we are able to generalize these results to any kernel satisfyingAssumption 2.4.
The proof of Lemma 4.3 will be presented in detail at the end of the section. With
Lemma 4.3 in hand, we are ready to assert the existence of weak stationary solutions
of (1.1). Since the argument is short, we include it here for the sake of completeness.

Proof of Theorem 2.8 Let uk be the stationary Gaussian process defined in Proposi-
tion 4.2. Verifying the existence of u(t, x) = ∑

k≥1 uk(t)ek(x) essentially amounts to
checking the first condition of Definition 2.2. To this end, in view of (4.2) together
with (4.3), we have

E‖u(t, ·)‖2H =
∑
k≥1

E|uk(t)|2 =
∑
k≥1

∫ ∞

0
ρk(ω)dω =

∑
k≥1

λ2k

αk
.

This implies that Definition 2.2 (a) (E‖u(t, ·)‖2H being finite) is equivalent to Assump-
tion 2.5 being satisfied. The proof is thus complete. ��

We now discuss the proof of Lemma 4.3. As mentioned earlier, we will follow
closely the strategy in [17] and make use of contour integrals on the complex plane
C to evaluate

∫
R

ρk(ω)dω. We note that in previous results [22, 23] for memory
kernels having a sum-of-exponentials form, the typical approach [22, 26] is to employ
functions similar to fk(z) as in (4.4) below and their contour integrals on the upper
half complex plane. The arguments for these results rely on a careful analysis on the
locations of the poles for the functions therein. In our method, instead of working with
the upper half complex plane, we shift the analysis to the lower half plane. The novelty
in this approach is that the function that we study, Eq. (4.4), is actually analytic, which
allows us to include more general kernels, such as those described in Assumption 2.4.
To be precise, we have the following lemma that will be employed to prove Lemma 4.3.

Lemma 4.4 Suppose that the memory kernel K satisfies Assumption 2.4. Let fk(z) be
a complex-valued function given by

fk(z) = 1

i
(
z − αkKsin(z)

) + αkKcos(z)
, (4.4)
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where αk is as defined in Assumption 2.1. Then, fk(z) is analytic on the lower half
complex plane C

− \ {0} where

C
− = {z ∈ C : Im(z) ≤ 0}.

Proof First of all, in view of (3.9) and (3.10), we recast fk(z) as

fk(z) = 1

αk(Kcos(z) − iKsin(z)) + i z
= 1

αk
∫ ∞
0

1
i z+x μ(dx) + i z

. (4.5)

We now proceed to prove that ( fk(z))−1 given by

( fk(z))
−1 = αk

∫ ∞

0

1

i z + x
μ(dx) + i z,

is analytic and does not admit any root in C
− \ {0}, which in turn implies that fk(z)

is analytic in C
− \ {0}.

To verify the analyticity of ( fk(z))−1, it suffices to show
∫ ∞
0

1
i z+x μ(dx) is analytic

inC
−\{0}. To this end, for any z0 ∈ C

−\{0}, consider z ∈ C such that |z−z0| < |z0|/2
and observe that

∫ ∞

0

1

i z + x
μ(dx) =

∫ ∞

0

1

(i z0 + x)
( i z−i z0

i z0+x + 1
)μ(dx)

=
∑
n≥0

∫ ∞

0

(−i)n

(i z0 + x)n+1μ(dx)(z − z0)
n .

We note that the last implication above is still formal. We now claim that for any
z such that |z − z0| < |z0|/2, the right hand side series above actually converges
absolutely. Indeed, by using the fact that z0 = u − iv ∈ C

− \ {0} with u ∈ R, v ≥ 0
and u2 + v2 �= 0, we have the estimate

∑
n≥0

∫ ∞

0

1

|i z0 + x |n+1μ(dx)|z − z0|n ≤
∑
n≥0

∫ ∞

0

|z0|n
2n|i z0 + x |n+1μ(dx)

=
∑
n≥0

∫ ∞

0

(u2 + v2)n/2

2n|u2 + (x + v)2|(n+1)/2
μ(dx)

≤
∑
n≥0

∫ ∞

0

1

2n|u2 + v2|1/2μ(dx)

= 1

|z0|μ([0,∞)) < ∞,

where the last implication follows from the fact thatμ is a finitemeasure as K ∈ CMb,
cf. Remark 3.8. This proves the analyticity of ( fk(z))−1.
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To verify that ( fk(z))−1 does not have any roots in C
− \ {0}, similar to the above

estimates, we rewrite z = u − iv where u ∈ R, v ≥ 0, u2 + v2 �= 0, and observe that
after a tedious but routine calculation

Re
(
( fk(z))

−1) = αk

∫ ∞

0

x + v

(x + v)2 + u2μ(dx) + v > 0,

since μ is not null on [0,∞). The proof is thus complete. ��
We now give the proof of Lemma 4.3, which is a slightly rework of the proof of

[17, Lemma 4.4] tailored to our setting. See also [26, Theorem 4.2].

Proof of Lemma 4.3 We first note that the spectral density ρk in (4.1) can be written as

ρk(ω) = 1

π
· λ2kKcos(ω)

α2
kKcos(ω)2 + (

ω − αkKsin(ω)
)2 , (4.6)

since K is assumed to be even, and thus, K̂ (ω) = 2Kcos(ω). It follows that

∫
R

ρk(ω)dω = 1

π

∫ ∞

0

2λ2kKcos(ω)

α2
kKcos(ω)2 + (

ω − αkKsin(ω)
)2 dω.

We aim to make use of contour integrals of fk(z) as in (4.4) to calculate the above
integral. For R > 0, we introduce the outer and inner half circles in C

− \ {0} given by

CR = {Reiθ : −π ≤ θ ≤ 0} and C1/R = {eiθ /R : −π ≤ θ ≤ 0}. (4.7)

Also, let C(R) denote the closed curve in C
− \ {0} oriented clockwise as follows:

C(R) = [−R,−1/R] ∪ C1/R ∪ [1/R, R] ∪ CR . (4.8)

Recall fk(z) from (4.4). In light of Lemma 4.4, fk is analytic in C
− \ {0}, implying

that for all R > 0
∫

C(R)

fk(z)dz = 0.

On the other hand, we can decompose the above contour integral as follows:

∫
C(R)

fk(z)dz =
{ ∫ −1/R

−R
+

∫
C1/R

+
∫ R

1/R
+

∫
CR

}
fk(z)dz

= I1(R) + I2(R) + I3(R) + I4(R).

In view of the expression for fk in (4.4), we have

I3(R) =
∫ R

1/R

dω

αkKcos(ω) + i(ω − αkKsin(ω))
.
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Concerning I1(R), we recall thatKcos(ω) is even whereasKsin(ω) is odd. Thus, by
a change of variable z := −ω, we obtain

I1(R) =
∫ R

1/R

dω

αkKcos(ω) − i(ω − αkKsin(ω))
.

It follows immediately that

I1(R) + I3(R) =
∫ R

1/R

2αkKcos(ω)

α2
kKcos(ω)2 + (

ω − αkKsin(ω)
)2 dω.

Since Kcos(ω) > 0, cf. (3.9), by the Monotone Convergence Theorem, we obtain

I1(R) + I3(R) → π
αk

λ2k

∫ ∞

0
ρk(ω)dω as R → ∞,

where ρk is as in (4.6).
Concerning I2(R) on the inner half circle C1/R , we aim to show that its limit

is zero as R tends to infinity. Indeed, recall the form of fk(z) given in (4.5). For
z = u − iv ∈ C

− \ {0} such that |z| is small, namely

|z| < min
{
1,

αk

8
√
2

∫ ∞

0

1

x + 1
μ(dx)

}
,

observe that

| fk(z)
−1| =

∣∣∣αk

∫ ∞

0

x + v

(x + v)2 + u2 μ(dx) + v + i
(

u − αk

∫ ∞

0

u

(x + v)2 + u2 μ(dx)
)∣∣∣

≥ αk

∣∣∣
∫ ∞

0

x + v

(x + v)2 + u2 μ(dx) − i
∫ ∞

0

u

(x + v)2 + u2 μ(dx)
)∣∣∣ − |v + iu|

≥ αk√
2

∫ ∞

0

x + v + |u|
(x + v)2 + u2 μ(dx) − |z|.

To obtain the last inequality, we employed the lower bound
√
2|a − ib| ≥ |a| + |b|

for a, b ∈ R. To further bound fk(z)−1 from below, we use the elementary inequality
for x, v ≥ 0 and |v|, |u| ≤ 1

x + v + |u|
(x + v)2 + u2 ≥ 1

2(x + 1)
,

to estimate

αk√
2

∫ ∞

0

x + v + |u|
(x + v)2 + u2μ(dx) − |z| ≥ αk

2
√
2

∫ ∞

0

1

x + 1
μ(dx) − |z|

≥ αk

4
√
2

∫ ∞

0

1

x + 1
μ(dx) > 0,
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since μ is not null on [0,∞). As a consequence, we obtain

| fk(z)
−1| ≥ αk

4
√
2

∫ ∞

0

1

x + 1
μ(dx).

Thus, by making the change of variable z := R−1eiθ for all R sufficiently large, we
have

|I2(R)| =
∣∣∣
∫ 0

−π

R−1eiθ idθ

αkKcos(R−1eiθ ) + i(R−1eiθ − αkKsin(R−1eiθ ))

∣∣∣

≤ 4
√
2R−1

αk
∫ ∞
0

1
x+1μ(dx)

∫ 0

−π

dθ,

which clearly converges to zero as R tends to infinity.
Likewise, for I4(R), we note that for z = u − iv ∈ C

− \ {0} such that |z| > 1,

|Kcos(z) − iKsin(z)| =
∣∣∣
∫ ∞

0

x + v − iu

(x + v)2 + u2μ(dx)

∣∣∣
≤

∫ ∞

0

x + v + |u|
(x + v)2 + u2μ(dx)

≤
∫ ∞

0

2

x + v + |u|μ(dx)

≤ 2
∫ ∞

0
μ(dx) = 2μ([0,∞)),

since μ is assumed to be finite measure on [0,∞), cf. Remark 3.8. It follows that by
making the change of variable z := Reiθ , it holds that

I4(R) =
∫ −π

0

Reiθ idθ

αkKcos(Reiθ ) + i(Reiθ − αkKsin(Reiθ ))

=
∫ −π

0

dθ
αk

i Reiθ

(Kcos(Reiθ ) − iKsin(Reiθ )
) + 1

,

which converges to−π as R tends to infinity by virtue of the Dominated Convergence
Theorem.

We collect the above limits to arrive at the the following

0 = lim
R→∞

∫
C(R)

fk(z)dz = π
αk

λ2k

∫ ∞

0
ρk(ω)dω − π,

which in turn implies (4.3). This finishes the proof. ��
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4.2 Proof of Theorem 2.10

We now turn our attention to themain theorem of paper, namely, the regularity of weak
stationary solutions u(t, x). As discussed in Sect. 2, in order to prove Theorem 2.10,
we will employ the classical Kolmogorov’s criterion to establish Hölder continuity.
To this end, we must obtain useful estimates on differences in time, uk(t) − uk(s)
(t, s ∈ R), as well as their second moments under Assumption 2.4. In Proposition 4.5
below, we assert a bound on the difference uk(t) − uk(s), which will be employed
later to prove Hölder regularities in time of u(t, x).

Proposition 4.5 Suppose that the memory kernel K satisfies Assumption 2.4. For k ≥
1, let uk(t) be the stationary process as in Proposition 4.2. Then there exists an index k∗
large enough such that for any α, q ∈ (0, 1), there exists a constant c = c(α, q, k∗) >

0 independent of all k such that for all t, s ∈ R, 1 ≤ k ≤ k∗,

E|uk(t) − uk(s)|2 < c|t − s|α, (4.9)

and for all k > k∗,

E|uk(t) − uk(s)|2 < c
λ2k

α
q−α/2
k

|t − s|α. (4.10)

As a consequence of Proposition 4.5, we have the following corollary asserting a
useful bound on the second moment of uk(t), which will be employed to prove the
spatial Hölder regularity of u(t, x).

Corollary 4.6 Suppose that the memory kernel K satisfies Assumption 2.4. For k ≥ 1,
let uk(t) be the stationary process as in Proposition 4.2. Let k∗ be the same index as
in Proposition 4.5. Then for any q ∈ (0, 1), there exists a constant c = c(q, k∗) > 0
such that for all t ∈ R, 1 ≤ k ≤ k∗,

E|uk(t)|2 < c, (4.11)

and for all k > k∗,

E|uk(t)|2 < c
λ2k

α
q
k

. (4.12)

The proofs of Proposition 4.5 and Corollary 4.6 will be deferred to the end of this
section. We are now in a position to prove Theorem 2.10.

Proof of Theorem 2.10 Let η be the constant fromAssumption 2.6. Since the processes
uk(·) are mutually independent with zero mean, in view of Proposition 4.5, cf. (4.9)
and (4.10), we have the following estimates for any t, s ∈ R and x ∈ O
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E|u(t, x) − u(s, x)|2 =
∑
k≥1

E|uk(t) − uk(s)|2|ek(x)|2

≤ c|t − s|α
∑
k≥1

λ2kc2k
α

q−α/2
k

< c|t − s|α
∑
k≥1

λ2kc2k
α

η
k

,

where the last implication follows from the choice of q, α ∈ (0, 1) satisfying η <

q−α/2,which in turn is always possible for anyα/2 ∈ (0, 1−η). Sinceu(t, x)−u(s, x)
is Gaussian, we infer a constant C(m) > 0 for m > 0 such that

E|u(t, x) − u(s, x)|2m ≤ C(m)|t − s|mα.

ByKolmogorov’s test for stochastic processes [15, Theorem3.3], there exists a version
ofu that isHölder continuous in t for everyγ ∈ (

0, α
2− 1

2m

)
. By choosingm sufficiently

large and α/2 as close to 1 − η as possible, we obtain Hölder continuity in time t for
every γ ∈ (0, 1 − η).

With regard to spatial regularity, we note that Assumption 2.1 on ∇ek implies the
following bound for x, y ∈ O and α ∈ (0, 1) (see [15, Lemma 5.21])

|ek(x) − ek(y)| ≤ c(α)α
α/2
k ck |x − y|α.

We then apply Corollary 4.6, cf. (4.11) and (4.12), for q, α ∈ (0, 1) to find

E|u(t, x) − u(t, y)|2 ≤
∑
k≥1

E|uk(t)|2|ek(x) − ek(y)|2

≤ c|x − y|2α
∑
k≥1

λ2kc2k
α

q−α
k

< c|x − y|2α
∑
k≥1

λ2kc2k
α

η
k

,

which again is always possible for α ∈ (0, 1 − η). We then arrive at the estimate

E|u(t, x) − u(t, y)|2m ≤ C(m)|x − y|2mα.

By the Kolmogorov test for random fields [15, Theorem 3.5], u is Hölder continuous
in space for any γ > 0 up to 2mα−d

2m = α − d
2m where d is the spatial dimension.

We finally choose m sufficiently large and α as close to 1 − η as possible to obtain
γ -Hölder continuity in space for any γ ∈ (0, 1 − η). This finises the proof. ��

We now turn to the proof of Proposition 4.5. In order to establish Proposition 4.5,
wewill make use of the following elementary inequality: for any α ∈ (0, 1) and x ∈ R,
we have
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1 − cos(x) ≤ 2

α
|x |α. (4.13)

Indeed, observe that if |x | ≥ 1, then since α ∈ (0, 1)

2

α
|x |α ≥ 2 ≥ 1 − cos(x).

On the other hand, if |x | < 1, then we have

1 − cos(x) ≤ x2

2
≤ 2

α
|x |α.

We are now in a position to prove Proposition 4.5.

Proof of Proposition 4.5 In view of (4.2) and (4.6), a straightforward calculation shows
that

E|uk(t) − uk(s)|2 =
∫
R

(
2 − ei(t−s)ω − ei(s−t)ω)

ρk(ω)dω

= 2

π

∫ ∞

0
(1 − cos(ω(t − s)))

λ2kKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

≤ 4λ2k
πα

|t − s|α
∫ ∞

0

ωαKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω,

where in the last implication, for α ∈ (0, 1), we have invoked Inequality (4.13).
To verify (4.9), it suffices to prove that for any k, the above integral is finite. In view

of Lemma 3.9, we see that

lim
ω→∞Kcos(ω) = lim

ω→∞Ksin(ω) = 0,

implying the integrand is dominated by ωα−2, which is integrable at infinity. On the
other hand, when ω → 0, by Fatou’s Lemma, it holds that

lim inf
ω→0

Kcos(ω) ≥
∫ ∞

0

1

x
μ(dx) > 0,

implying the integrand is dominated by ωα(αk
∫ ∞
0

1
x μ(dx))−1 which is integrable

around the origin. We thus combine two cases to infer the existence of a positive
constant c(k) such that

∫ ∞

0

ωαKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω ≤ c(k),

which proves (4.9).
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Now, let k∗ be a large constant such that for k > k∗, ωk > 1 is the unique solution
on (0,∞) of Eq. (3.11) from Lemma 3.10 (c) and (d). We now decompose the last
integral as follows:

∫ ∞

0

ωαKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

=
{ ∫ ωk−ω

q
k

0
+

∫ ωk−1

ωk−ω
q
k

+
∫ ωk+1

ωk−1
+

∫ ωk+ω
q
k

ωk+1
+

∫ ∞

ωk+ω
q
k

}

× ωαKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω = I1 + · · · + I5.

To estimate I1, we recall from Lemma 3.10 (b) that Ksin(ω)/ω is decreasing on
ω ∈ (0,∞). Thus, for any ω ∈ (0, ωk − ω

q
k ], it follows that

αk
Ksin(ω)

ω
− 1 ≥ αk

Ksin(ωk − ω
q
k )

ωk − ω
q
k

− 1.

We then substitute ω := ωk − ω
q
k in Inequality (3.12) to obtain

αk
Ksin(ωk − ω

q
k )

ωk − ω
q
k

− 1 ≥ c

ω
1−q
k

.

It follows that

I1 =
∫ ωk−ω

q
k

0

ωαKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

=
∫ ωk−ω

q
k

0

ωαKcos(ω)

α2
kK2

cos(ω) + ω2
(
αk

Ksin(ω)
ω

− 1
)2 dω

≤
∫ ωk−ω

q
k

0

ωαKcos(ω)

α2
kK2

cos(ω) + cω2/ω
2−2q
k

dω.

We apply Young’s product inequality to the above denominator to infer

∫ ωk−ω
q
k

0

ωαKcos(ω)

α2
kK2

cos(ω) + cω2/ω
2−2q
k

dω ≤ c
∫ ωk−ω

q
k

0

ω
1−q
k ωα−1

αk
dω ≤ c

ω
1−q+α
k

αk

≤ c

α
(1+q−α)/2
k

,

where in the last implication we have employed the fact that ω2
k/αk is bounded uni-

formlywith respect to k sinceω2
k/αk → K (0) as k → ∞, by virtue of Lemma3.10 (c).
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Similar to the argument on I1, to estimate I5, we note that if ω ∈ [ωk + ω
q
k ,∞)

then

1 − αk
Ksin(ω)

ω
≥ 1 − αk

Ksin(ωk + ω
q
k )

ωk + ω
q
k

,

and that substituting ω := ωk + ω
q
k in (3.12) yields

1 − αk
Ksin(ωk + ω

q
k )

ωk + ω
q
k

≥ c

ω
1−q
k

.

We then have a chain of implications

I5 =
∫ ∞

ωk+ω
q
k

ωαKcos(ω)

α2
kK2

cos(ω) + ω2
(
αk

Ksin(ω)
ω

− 1
)2 dω

≤
∫ ∞

ωk+ω
q
k

ωαKcos(ω)

ω2

(
1 − αk

Ksin(ωk+ω
q
k )

ωk+ω
q
k

)2 dω

≤ c
∫ ∞

ωk+ω
q
k

ωαKcos(ω)ω
2−2q
k

ω2 dω

= c
∫ ∞

ωk+ω
q
k

ωKcos(ω)ω
2−2q
k

cω3−α
dω

≤ c
∫ ∞

ωk+ω
q
k

ω
2−2q
k

ω3−α
dω,

where the last inequality follows from the fact that ωKcos(ω) is bounded, by virtue of
Lemma 3.10 (a). We now integrate the above integral with respect to ω to find

c
∫ ∞

ωk+ω
q
k

ω
2−2q
k

ω3−α

dω ≤ c
ω
2−2q
k

ω2−α
k

≤ c

α
q−α/2
k

,

which implies that

I5 ≤ c

α
q−α/2
k

.
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Regarding I2, we invoke Inequality (3.12) again to find

I2 =
∫ ωk−1

ωk−ω
q
k

ωαKcos(ω)

α2
kK2

cos(ω) + ω2
(
αk

Ksin(ω)
ω

− 1
)2 dω

≤
∫ ωk−1

ωk−ω
q
k

ωαKcos(ω)

α2
kK2

cos(ω) + c ω2

ω2
k
(ωk − ω)2

dω.

Also, since q ∈ (0, 1) and ωk → ∞ as k → ∞ (Lemma 3.10 (c)), for k sufficiently
large and anyω ∈ [ωk −ω

q
k , ωk −1], the ratioω/ωk is bounded from below uniformly

in k. We then infer that

∫ ωk−1

ωk−ω
q
k

ωαKcos(ω)

α2
kK2

cos(ω) + c ω2

ω2
k
(ωk − ω)2

dω ≤
∫ ωk−1

ωk−ω
q
k

ωα
k Kcos(ω)

α2
kK2

cos(ω) + c(ωk − ω)2
dω.

Young’s inequality now implies

∫ ωk−1

ωk−ω
q
k

ωα
k Kcos(ω)

α2
kK2

cos(ω) + c(ωk − ω)2
dω ≤ cωα

k

αk

∫ ωk−1

ωk−ω
q
k

1

ωk − ω
dω = c

ωα
k log(ωq

k )

αk

≤ c
logαk

α
1−α/2
k

,

since ω2
k/αk = O(1) as k → ∞, by Lemma 3.10 (c).

A similar argument (by writing ω − ωk instead of ωk − ω wherever is applicable)
yields the estimate

I4 =
∫ ωk+ω

q
k

ωk+1

ωαKcos(ω)

α2
kK2

cos(ω) + ω2
(
αk

Ksin(ω)
ω

− 1
)2 dω ≤ c

logαk

α
1−α/2
k

.

To estimate I3, we recall from Lemma 3.10 (b) that ω2Kcos(ω) is increasing on
ω ∈ (0,∞). It follows that

I3 =
∫ ωk+1

ωk−1

ωαKcos(ω)

α2
kK2

cos(ω) + ω2
(
αk

Ksin(ω)
ω

− 1
)2 dω ≤

∫ ωk+1

ωk−1

ωα

α2
kKcos(ω)

dω

≤
∫ ωk+1

ωk−1

ωα+2

α2
kKcos(1)

dω

≤ 2(ωk + 1)α+2

α2
kKcos(1)

≤ c

α
1−α/2
k

.
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We finally collect everything to arrive at

∫ ∞

0

ωαKcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

≤ c

(
1

α
1+q−α/2
k

+ 1

α
q−α/2
k

+ logαk

α
1−α/2
k

)
≤ c

α
q−α/2
k

, (4.14)

which holds for sufficiently large k, since αk ↑ ∞ as k → ∞ by Assumption 2.1. We
therefore conclude (4.10). The proof is thus complete. ��

Finally, we give the proof of Corollary 4.6.

Proof of Corollary 4.6 The argument for (4.11) is omitted as it is similar to that for (4.9)
as in the proof of Proposition 4.5.

With regard to (4.12), we have

E|uk(t)|2 = λ2k

π

∫ ∞

0

Kcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

= λ2k

π

{ ∫ 1

0
+

∫ ∞

1

} Kcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω.

To bound the first integral on the RHS we observe:

∫ 1

0

Kcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

≤
∫ 1

0

1

α2
kKcos(ω)

dω ≤
∫ 1

0

1

α2
kKcos(1)

dω = 1

α2
kKcos(1)

,

since Kcos(ω) is decreasing on ω ∈ (0,∞), by Lemma 3.10 (a). To estimate the
second integral, we pick r1, r2 ∈ (0, 1) such that r1 − r2/2 = q. We then invoke
Inequality (4.14) as follows:

∫ ∞

1

Kcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω ≤

∫ ∞

1

ωr2Kcos(ω)

α2
kK2

cos(ω) + (ω − αkKsin(ω))2
dω

≤ c

α
r1−r/2
k

= c

α
q
k

.

We combine these two estimates to obtain (4.12), which concludes the proof. ��

5 Discussion

We have rigorously analyzed a stochastic integro-partial-differential equation with
memory (1.1) satisfying the Fluctuation–Dissipation relationship that arises from sta-
tistical mechanical considerations in the study of thermally fluctuating viscoelastic
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media. Using the framework of generalized stationary processes from [24, 29], we
obtain stationary solutions of (1.1) when the memory belongs to a large subclass
CMb of the completely monotone functions. Furthermore, we establish space-time
Hölder regularity of the solutions. As we demonstrate below, when we compare the
stochastic heat equation with memory to the classical formulation, the noise structure
arising from the Fluctuation–Dissipation relationship yields greater regularity in time.

The form of the equations studied here was directly motivated by the work of
[23] on thermally fluctuating viscoelastic fluids. In that work, only a finite number of
Fourier modes were used to define the space-time noise, and it is natural to ask when
(1.1) is well-posed if infinitely many Fourier modes are used. The result we present
is quite general and requires only Assumption 2.5, which is commonly seen in the
linear SPDE literature [3, 14, 15]. It is worth noting though, that in [23], a particular
form of the memory kernel was used, namely, a finite sum of exponentials. As we
demonstrated, the well-posedness result that we obtain, Theorem 2.8, is applicable to
a subclass of completely monotone functions of which sum-of-exponentials functions
are members. We however remark that the sum-of-exponential form is not an artifi-
cial or highly restrictive one. Members of this family can approximate the class of
completely monotone functions in such a way that the GLE has what is sometimes
called transient anomalous diffusion, which is to say that the associated processes are
subdiffusive over arbitrarily large time intervals despite being diffusive in the large
time limit.

Beforemoving on to the application to stochastic heat equations, we remark that our
notion of solution, as well as the subsequent analysis, relies heavily on the linear struc-
ture of (1.1). It also uses explicit calculations that exploit the Fluctuation–Dissipation
form. It remains an open-ended question to explore well-posedness and (more inter-
estingly) Hölder regularity of solutions when Fluctuation–Dissipation is not assumed.
Well-posedness becomes evenmore of a questionwhen one considers non-linear terms
to encode, for example, external forces acting on the fluid. We consider this to be an
important open question.

We now discuss the regularity in the case that A is the usual Laplacian operator
in R

d with Dirichlet boundary condition on O. For the reader’s convenience, we first
recall the following stochastic heat equation for u(t, x) : [0,∞) × O → R

d

u̇(t, x) = A u(t, x) + Ẇ (t, x), (t, x) ∈ R × O. (5.1)

Here W (t, x) is a cylindrical Wiener process with the decomposition

W (t, x) =
∑
k≥1

λk Wk(t)ek(x),

where {Wk}k≥1 are i.i.d standard Brownian motions and {λk}k≥1 are as in Assump-
tion 2.5. It is known that [15, Example 5.24] there exists a modification U (t, x) of
u(t, x) the solution of (5.1) such that U (t, x) is γ -Hölder continuous in time for
γ ∈ (0, (1 − η)/2) and in space for γ ∈ (0, 1 − η) where η is as in Assumption 2.5.
Particularly, in the case of 1D heat equation with white noise (λk = 1 for every k), the
pair of Hölder constants is (1/4, 1/2) in (t, x) [21, P. 6].
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Alternatively, we consider (5.1) with memory as follows.

u̇(t, x) = k0A u(t, x) −
∫ t

−∞
K (t − s)A u(s, x)ds + Ẇ (t), (t, x) ∈ R × O, (5.2)

where k0 is a positive constant such that k0 >
∫ ∞
0 K (t)dt and K is a completely

monotone function. It was shown in [3, Lemma 3.7] that under Assumption 2.5, the
solution of (5.2) has the sameHölder regularity as the solution of (5.1). In other words,
with the same noise but adding a small memory effect, (5.2) does not differ from (5.1)
in terms of regularity. Intuitively, this invariance can be explained as thememory effect
being dominated by the dissipation because of the assumption k0 >

∫ ∞
0 K (t)dt . We

note that this condition also requires that K be integrable.
In contrast, recalling our system (1.1)

u̇(t, x) =
∫ t

−∞
K (t − s)A u(s, x)ds + F(t, x), (t, x) ∈ R × O,

F(t, x) =
∑
k≥1

λk Fk(t)ek(x), and E[F(t)F(s)] = K (|t − s|),

where K is not necessarily integrable, cf. Assumption 2.4. In view of Theorem 2.10,
while spatial regularity is the same as in the case of (5.1) and (5.2), (1.1) enjoys better
regularity in time, namely γ -Hölder continuity holds in time for γ ∈ (0, 1 − η).
Particularly, in 1D, when λk = 1, k = 1, 2, . . ., the pair of Hölder constants for (1.1)
is (1/2 − ε, 1/2 − ε) in (t, x) for every ε ∈ (0, 1/2).
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