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Abstract
This paper shows that for p ∈ (1,∞), a measurable function u : R → R and a
generalized plane curve γ with certain curvature constraints, not only the Carleson
transform

Cu,γ f (x) := p.v.
∫ ∞

−∞
eiu(x)γ (t) f (x − t)

dt

t
∀ x ∈ R

is bounded on L p(R), but also the Hilbert transform

Hu,γ f (x1, x2) := p.v.
∫ ∞

−∞
f (x1 − t, x2 − u(x1)γ (t))

dt

t
∀ (x1, x2) ∈ R

2

is bounded on L p(R2), and especially L2(R)-boundedness of Cu,γ induces indeed
L2(R2)-boundedness of Hu,γ .

Keywords Carleson transform · Hilbert transform · Shifted maximal operator · Plane
curve
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1 Introduction

1.1 Principal Result and Remark

Let u : R → R be a measurable function and γ be a generalized plane curve,
the Carleson transform Cu,γ along the general curve γ is defined by setting, for any
function f in the Schwartz class S(R),

Cu,γ f (x) := p.v.
∫ ∞

−∞
eiu(x)γ (t) f (x − t)

dt

t
∀ x ∈ R. (1.1)

Here and hereafter, p.v.
∫
denotes the principal-value integral. The Hilbert transform

Hu,γ along the variable plane curve u(x1)γ is defined by setting, for any f ∈ S(R2)

- the Schwarz class on R
2,

Hu,γ f (x1, x2) := p.v.
∫ ∞

−∞
f (x1 − t, x2 − u(x1)γ (t))

dt

t
∀ (x1, x2) ∈ R

2. (1.2)

Below we establish L1<p<∞-boundedness of (1.1) and (1.2) for some generalized
curves.

Theorem 1.1 Let u : R → R be a measurable function, γ ∈ C3(R) be either odd or
evenwith γ (0) = γ ′(0) = 0, and be convex on (0,∞)with the four curvature-oriented
properties that:

(i) γ ′(2t)
γ ′(t) is decreasing and bounded by a constant C1 from above on (0,∞);

(ii) ∃ a positive constant C2 such that tγ ′′(t)
γ ′(t) ≤ C2 on (0,∞);

(iii) ∃ a positive constant C3 such that |( γ ′′
γ ′ )′(t)| ≥ C3

t2
on (0,∞);

(iv) γ ′′′(t)
γ ′′(t) is strictly monotonic or equals to a constant on (0,∞).

Then, given p ∈ (1,∞) there exists a positive constant C independent of u such that

{
‖Cu,γ f ‖L p(R) ≤ C‖ f ‖L p(R) ∀ f ∈ L p(R);
‖Hu,γ f ‖L p(R2) ≤ C‖ f ‖L p(R2) ∀ f ∈ L p(R2).

Remark 1.2 Here, it is worth saying more words on the conditions on γ whose curva-
ture is determined by

κ(t) := γ ′′(t)(
1 + (

γ ′(t)
)2) 3

2

∀ t ∈ (0,∞).
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� From
⎧⎪⎨
⎪⎩

γ ∈ C3(R);
γ (0) = γ ′(0) = 0;
γ being convex on (0,∞),

it follows that

min
{
γ (t), γ ′(t), γ ′′(t)

} ≥ 0 ∀ t ∈ (0,∞)

and γ ′ is increasing. We also know that

γ ′(t) ≥ γ ′(1) ∀ t ∈ [1,∞),

which further implies

lim
t→∞ γ (t) = ∞.

Because γ ′ is increasing on (0,∞) and γ (0) = 0, it is easy to check

1 ≤ tγ ′(t)
γ (t)

∀ t ∈ (0,∞).

On the other hand, since γ (0) = 0, by Cauchy’s mean value theorem, for t ∈
(0,∞) there exists ξt ∈ (0, t) such that

tγ ′(t)
γ (t)

= tγ ′(t) − 0γ ′(0)
γ (t) − γ (0)

= γ ′(ξt ) + ξtγ
′′(ξt )

γ ′(ξt )
.

Thus, by Theorem 1.1(ii),

∃ C4 := C2 + 1 such that 1 ≤ tγ ′(t)
γ (t)

≤ C4 ∀ t ∈ (0,∞).

� Since γ ′ is increasing on (0,∞), Theorem 1.1(i) gives always

1 ≤ γ ′(2t)
γ ′(t)

≤ C1 ∀ t ∈ (0,∞).

� The following are some curves satisfying all the conditions of Theorem 1.1.
Here, we write only the part for any t ∈ [0,∞). For any t ∈ (−∞, 0], the curve
is given by its even or odd property - e.g. -

(i) for any t ∈ [0,∞), γ1(t) := tα under α ∈ (1,∞);
(ii) for any t ∈ [0,∞), γ2(t) := t2 log(1 + t);
(iii) for any t ∈ [0,∞), γ3(t) := ∫ t

0 τα log(1 + τ) dτ under α ∈ (1,∞).
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1.2 Some Historical Notes

From now on, the assumption p ∈ (1,∞) will be made.

Note 1.3 In [12,Theorem1.2],Guo–Hickman–Lie–Roosobtained L p(R2)-boundedness
of Hu,γ with the curve in Remark 1.2(i), but with 1 �= α ∈ (0,∞). Thus, as a special
case, Theorem 1.1 covers [12, Theorem 1.2] whenever α ∈ (1,∞). The work [12]
explains much more about the proof ideas, but we will still make several contributions
to the argument.

� For a homogeneous curve, it is easy to see

γ (ab) = γ (a)γ (b) ∀ a, b ∈ (0,∞).

Since we seek L p(R2)-boundedness of Hu,γ with a bound independent of u, it is
natural to absorb u(x) by γ for any fixed x , which can be easily obtained with
γ (t) := tα due to

|u(x)|γ (t) = γ (|u(x)| 1α t).

Furthermore, it is convenient to write

1 =
∑
l∈Z

ψl(|u(x)| 1α t)

for the homogeneous curve tα , which plays an important role in achieving [12,
Theorem 1.2], where ψ is a standard bump function supported on

{
t ∈ R : 1

2
≤ |t | ≤ 2

}
.

Of course, this property cannot hold for a general curve γ . Therefore, we have to
split our operator by a standard partition of unity; i.e.,

1 =
∑
l∈Z

ψl(t).

� Our demonstration originates from the classic L p(R2)-theory for the Hilbert
transform along a curve; it is usually assumed that γ is convex on (0,∞). For the
low-frequency part, we need to assume that γ (t)

t is increasing on (0,∞), which
leads to the case in which γ (t) := tα , where α ∈ (0, 1), which cannot be covered
in this paper. For a further decomposition, motivated by [13], we introduce the
map n : R → Z such that

1

γ (2n(x)+1)
≤ |u(x)| ≤ 1

γ (2n(x))
∀ x ∈ R.
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One difficulty appears in L p(R)-boundedness of Cu,γ and L2(R2)-boundedness
of Hu,γ . It is crucial to establish a decay estimate of an oscillatory integral as that
in Proposition 2.4. If we have a homogeneous curve as in Remark 1.2(i), it is easy
to calculate the derivatives of the phase functions, and the decay estimation will
be easier to obtain. However, for a general curve γ , we need a more complicated
analysis, and the assumptions (i), (ii), (iii) and (iv) of Theorem 1.1 for the curve
appear naturally during the estimation.
Another difficulty appearing in L p(R2)-boundedness of Hu,γ for p ∈ (1, 2) ∪
(2,∞) is as follows.By theLittlewood-Paley theory and the commutative property

Hu,γ Pl = Pl Hu,γ ∀ l ∈ Z,

we need to establish a refined estimate for Hu,γ,k+nl (x1)Pl by the shifted maximal
operator. Here, Pl denotes the Littlewood-Paley decomposition operator according
to the secondvariable and l ∈ Z. Guo–Hickman–Lie–Roos,who in [12] considered
the homogeneous curve as in Remark 1.2(i), did not need nl(x1), where the map
nl : R → Z for l ∈ Z is defined by

1

γ (2nl (x1)+1)
≤ 2l |u(x1)| ≤ 1

γ (2nl (x1))
∀ x1 ∈ R.

This new observation allows us to obtain the refined estimate for Hu,γ,k+nl (x1)Pl
with a great effort to control the dyadic pieces by the shifted maximal operator.

Note 1.4 If u : R → R is a real number λ, then the operator in (1.2) is equivalent to
the following directional Hilbert transform Hλ,γ along a general curve γ defined for
a fixed direction (1, λ) by

Hλ,γ f (x1, x2) := p.v.
∫ ∞

−∞
f (x1 − t, x2 − λγ (t))

dt

t
∀ (x1, x2) ∈ R

2,

whose L p(R2)-boundedness can obviously be obtained by the Hilbert transform Hγ

along a general curve γ :

Hγ f (x1, x2) := p.v.
∫ ∞

−∞
f (x1 − t, x2 − γ (t))

dt

t
∀ (x1, x2) ∈ R

2.

This operator is of independent interest, and actually one of our major motivations.
There are many works on this problem; see, for example, [4,5,8,18,24,25]. On the
other hand, it is not hard to find

sup
λ∈R

∥∥Hλ,γ f
∥∥
L p(R2)

≤ C‖ f ‖L p(R2).

However, L p(R2)-boundedness of the corresponding maximal operator

sup
λ∈R

|Hλ,γ f (x1, x2)|
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cannot be obtained readily. In fact, by linearization, this uniform estimate is equivalent
to L p(R2)-estimate for

HU ,γ f (x1, x2) := p.v.
∫ ∞

−∞
f (x1 − t, x2 −U (x1, x2)γ (t))

dt

t
∀ (x1, x2) ∈ R

2,

where the bound must be independent of the measurable function U . However, it is
well known that HU ,γ might not be bounded on any L p(R2) if we merely assume that
U is a measurable function (cf. [12]). Therefore, we cannot assume

∥∥∥∥sup
λ∈R

|Hλ,γ f |
∥∥∥∥
L p(R2)

≤ C ‖ f ‖L p(R2) .

Instead, Theorem 1.1 shows

∥∥∥∥sup
λ∈R

∥∥Hλ,γ f (·1, ·2)
∥∥
L p(R1

x2
)

∥∥∥∥
L p(R1

x1
)

≤ C ‖ f ‖L p(R2) ,

which inserts the supremum between the two L p-norms on the left-hand side of the
equation. Here and hereafter, let ·1 and ·2 denote the first variable x1 and the second
variable x2, respectively. As Stein-Wainger mentioned in [22], the curvature of the
considered curve plays a crucial role in this problem, and the four conditions (i), (ii),
(iii) and (iv) of Theorem 1.1 are used to describe the curvature κ of the considered
curve γ .

Note 1.5 Bateman in [1] proved that if

γ (t) := t ∀ t ∈ R,

then Hu,γ Pk is bounded on L p(R2) uniformly for k ∈ Z, where Pk denotes the
Littlewood-Paley projection operator in the second variable. Later, Bateman-Thiele in
[2] proved L p(R2)-boundedness of Hu,γ for all p ∈ ( 32 ,∞). Moreover, let γ be |t |α
or sgn(t)|t |α for any t ∈ R, where 1 �= α ∈ (0,∞) ; in [12] Guo–Hickman–Lie–Roos
obtained L p(R2)-boundedness of Hu,γ . Furthermore, Carbery-Wainger-Wright in [6]
obtained L p(R2)-boundedness of Hu,γ , but with the restriction that u(x1) := x1 for
any x1 ∈ R, where γ ∈ C3(R) is either an odd or even convex curve on (0,∞)

satisfying γ (0) = γ ′(0) = 0 and the quantity tγ ′′(t)
γ ′(t) is decreasing and bounded below

on (0,∞). Under the same conditions, Bennett in [3] obtained L2(R2)-boundedness
of

HP,γ f (x1, x2) :=p.v.
∫ ∞

−∞
f (x1−t, x2−P(x1)γ (t))

dt

t
∀ (x1, x2) ∈ R

2, (1.3)
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for any general polynomial P . More recently, Chen-Zhu in [9] obtained L2(R2)-
boundedness of HP,γ in (1.3) by defining the curvature condition as

(γ ′′

γ ′
)′
(t) ≤ −λ1

t2
for any t ∈ [0,∞) and some positive constant λ1.

In [17], Li-Yu also obtained L2(R2)-boundedness of HP,γ in (1.3) if the curvature
condition for γ ∈ C2(R) is replaced with that:

(i) γ ′′(t)
γ ′(t) is decreasing on (0,∞);

(ii) ∃ a positive constant λ2 such that
tγ ′′(t)
γ ′(t) ≥ λ2 ∀ t ∈ (0,∞);

(iii) γ ′′(t) is monotonic on (0,∞).

Note 1.6 Interestingly, all of these results for HP,γ are based on the iteration of the
degree of polynomial P and hence cannot extend to a general measurable function
u. Accordingly, Theorem 1.1 is the first result for Hu,γ with the generalized plane
curve γ . Even more interestingly, L2(R)-boundedness of (1.1) appears in the study of
L2(R2)-boundedness of (1.2). Indeed, from [19] it follows that

‖Hu,γ ‖L2(R2)→L2(R2) ≤ sup
λ∈R

‖Sλ‖L2(R)→L2(R),

where

Sλ f (x) := p.v.
∫ ∞

−∞
e−iλu(x)γ (t) f (x − t)

dt

t
∀ x ∈ R.

Since L2(R2)-boundedness of Hu,γ will not depend on u, we need to establish only
L2(R)-estimate for

Cu,γ f (x) = p.v.
∫ ∞

−∞
eiu(x)γ (t) f (x − t)

dt

t
∀ x ∈ R,

with a bound independent of u. This operator Cu,γ itself is also interesting. The original
Carleson transform C is defined by setting

C f (x) := sup
N∈R

∣∣∣∣p.v.
∫ ∞

−∞
eiNt f (x − t)

dt

t

∣∣∣∣ ∀ ( f , x) ∈ S(R) × R.

By linearization,

‖C f ‖L p(R) � ‖ f ‖L p(R) ⇐⇒ ‖Cu f ‖L p(R) � ‖ f ‖L p(R),

where u : R → R is a measurable function and

Cu f (x) := p.v.
∫ ∞

−∞
eiu(x)t f (x − t)

dt

t
∀ x ∈ R,
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and the constant in the last inequality is independent of u. In [7], Carleson obtained
L2(R)-boundedness of C, which plays an important role in obtaining almost every-
where convergence of a Fourier series of L2(R)-functions and also confirmed the
famous Luzin’s conjecture. Hunt later obtained L p(R)-boundedness in [14]. For
further results about C, we refer the reader to [10,15,16,20]. Stein-Wainger in [23]
considered the Carleson transform Cu,d along a homogeneous curve td with integer
d > 1, namely,

Cu,d f (x) := p.v.
∫ ∞

−∞
eiu(x)td f (x − t)

dt

t
∀ ( f , x) ∈ S(R) × R,

and showed that L p(R)-boundedness is independent of u. Guo in [11] extended Cu,d

further to a homogeneous curve |t |ε1 or sgn(t)|t |ε2 , where ε1, ε2 ∈ R, ε1 �= 1 and
ε2 �= 0. Thus, it is natural to consider Cu,γ along a more general curve as presented in
Theorem 1.1.

1.3 Organization and Notation

The rest of this paper is organized as follows. Section 2.1 is used to collect three
lemmas for (1.1). In Sect. 2.2, we prove Theorem 1.1 for Carleson transform. Section
3.1 is devoted to obtaining the single annulus L p(R2)-estimate for (1.2). In Sect. 3.2
we verify Theorem 1.1 for Hilbert transform.

Throughout this paper, we useC to denote a positive constant that is independent of
the main parameters involved but whose value may vary from line to line. The positive
constants with subscripts, such as C1 and C2, are the same in different occurrences.
For two real functions f and g, we use f � g or g � f to denote f ≤ Cg and, if
f � g � f , we then write f ≈ g.

2 Verification of Theorem 1.1 for Carleson Transform

2.1 Three Lemmas

Before providing the proof of Theorem 1.1(i), we state three lemmas. Van der Corput’s
lemma is a useful tool to bound an oscillatory integral, but for the case of k = 1, a
simple lower bound on |φ′| is not sufficient. We need to add a condition that φ′ is
monotonic such that

∫ b

a

∣∣∣∣ ddt
(

1

φ′(t)

)∣∣∣∣ dt

is dominated by a constant. Lemma 2.1 is a slight variant of Van der Corput’s lemma
that replaces the additional condition with the condition that φ′′ is bounded from
above. Lemma 2.2 is used to obtain an interesting fact: for the phase function φ of the
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considered oscillatory integral, we must have

either |φ′| � 1 or |φ′′| � 1.

However, it is not sufficient to complete our estimate even if we obtained the surprising
lower bound on |φ′| or |φ′′|, since we can take an infinite number of intervals such
that the lower bound is established on each of these intervals. Lemma 2.3 is used to
ensure that such a case does not occur.

Lemma 2.1 Suppose that φ is real-valued and smooth on (a, b) with two positive
constants σ1 & σ2 obeying

|φ′(x)| ≥ σ1 & |φ′′(x)| ≤ σ2 ∀ x ∈ (a, b).

Then

∣∣∣∣
∫ b

a
eiφ(t) dt

∣∣∣∣ ≤ 2

σ1
+ (b − a)

σ2

σ 2
1

.

Proof From the proof of van der Corput’s lemma, see, for example, ( [21], P. 332,
Proposition 2), which bounds the integral

∫ b
a eiφ(t) dt by

∣∣∣∣∣
eiφ(b)

iφ′(b)
− eiφ(a)

iφ′(a)

∣∣∣∣∣ +
∫ b

a

∣∣∣∣ ddt
(

1

φ′(t)

)∣∣∣∣ dt � 2

σ1
+

∫ b

a

∣∣∣∣ φ′′(t)
φ′(t)2

∣∣∣∣ dt � 2

σ1
+ (b − a)

σ2

σ 2
1

.

It is easy to deduce the desired conclusion of Lemma 2.1. ��
Lemma 2.2 [13, Lemma 4.5] Let A be an invertible n × n matrix and x ∈ R

n. Then,

|Ax | ≥ |detA||x |
‖A‖n−1 ,

where ‖A‖ denotes the matrix norm sup|x |=1 |Ax |.
Lemma 2.3 Let γ be the same as in Theorem 1.1. For any a, b, c, d ∈ R and d > 0,
there are at most a finite number of intervals such that

|aγ ′(t) − bγ ′(t − c)| > d (2.1)

holds on each of these intervals, where t ∈ R and the number of intervals is indepen-
dent of a, b, c, and d.

Proof Since (2.1) is equivalent to

aγ ′(t) − bγ ′(t − c) − d > 0
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or

aγ ′(t) − bγ ′(t − c) + d < 0.

Notice that γ ∈ C3(R), it is enough to show that

aγ ′′(t) − bγ ′′(t − c) = 0 (2.2)

has a finite number of solutions including there is no solution, or there are at most a
finite number of intervals such that (2.2) is established on each of these intervals, or
both, where the number is independent of a, b, and c. There are some cases:

If b = 0 and a = 0, then (2.1) does not exist; in other words, (2.1) has no solution.
If b = 0 and a �= 0, and since γ is either odd or even and γ ′ is increasing on

(0,∞), then Lemma 2.3 is easily obtained.
If b �= 0, c = 0 and a = b, then (2.1) does not exist.
If b �= 0, c = 0 and a �= b, then (2.1) is equivalent to |(a − b)γ ′(t)| > d; as stated

above, it is easy to see that Lemma 2.3 is established.
If b �= 0 and c �= 0, then Theorem 1.1(iv) gives

γ ′′(t) �= 0 ∀ t ∈ (0,∞).

Notice that γ is either odd or even. So

γ ′′(t) �= 0 ∀ t ∈ (−∞, 0) ∪ (0,∞).

It is easy to see that we should only consider t �= 0 and t �= c for (2.2). Then, (2.2) is
equivalent to

a

b
= γ ′′(t − c)

γ ′′(t)
∀ t ∈ R \ {0, c}. (2.3)

Let

Fc(t) := γ ′′(t − c)

γ ′′(t)
∀ t ∈ R \ {0, c}.

We see that if t ∈ R \ {0, c} then

F ′
c(t) = γ ′′′(t − c)γ ′′(t) − γ ′′(t − c)γ ′′′(t)

(γ ′′(t))2
=

γ ′′(t − c)
[

γ ′′′(t−c)
γ ′′(t−c) − γ ′′′(t)

γ ′′(t)

]

γ ′′(t)
.

(2.4)
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From Theorem 1.1(iv) it follows that γ ′′′(t)
γ ′′(t) is strictly monotonic or equal to a constant

on (0,∞). Since γ is either odd or even, the equation

γ ′′′(t − c)

γ ′′(t − c)
= γ ′′′(t)

γ ′′(t)
∀ t ∈ R \ {0, c}, (2.5)

has a finite number of solutions including the situation that there is no solution, or
∃ at most a finite number of intervals such that (2.5) is established on each of these
intervals, or both, where the number is independent of c. Therefore, F ′

c(t) in (2.4)
has the same character as (2.5), and (2.3) also has the same character as (2.5). This
completes the proof of Lemma 2.3. ��

2.2 Lp(R)-Estimate for Cu,�

We now prove Theorem 1.1 for Cu,γ . The main strategy of our proof is to decompose
our operator into a low-frequency part and a high-frequency part.Wewant to bound the
low frequency part by some classical operators, such as theHardy-Littlewoodmaximal
operator and the maximal truncated Hilbert transform. For the high-frequency part,
which is further divided into a series of operators {Sk}∞k=0, we want to obtain a decay
estimate for each of Sk . The main tools are the T T ∗-argument, the stationary phase
method, and the lemmas introduced in §2.1.

Proof of Theorem 1.1 forCu,γ Suppose thatψ : R → R is a smooth function supported
on

{
t ∈ R : 1

2
≤ |t | ≤ 2

}

and obeys

⎧⎪⎨
⎪⎩
0 ≤ ψ(t) ≤ 1 ∀ t ∈ R;
�l∈Zψl(t) = 1 ∀ t ∈ R \ {0};
ψl(t) := ψ(2−l t) ∀ t ∈ R.

From Remark 1.2, we have that γ is increasing on (0,∞), and

lim
t→∞ γ (t) = ∞.

We can define n : R → Z such that

1

γ (2n(x)+1)
≤ |u(x)| ≤ 1

γ (2n(x))
∀ x ∈ R. (2.6)

For any x ∈ R, let

Cu,γ,k f (x) :=
∫ ∞

−∞
eiu(x)γ (t) f (x − t)ψk(t)

dt

t
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and decompose

Cu,γ f (x) =
∑

k≤n(x)−1

Cu,γ,k f (x) +
∑

k≥n(x)

Cu,γ,k f (x) =: C(1)
u,γ f (x) + C(2)

u,γ f (x).

� For the low-frequency part C(1)
u,γ f (x) set

∑
k≤n(x)−1

ψk(t) =: φ(t).

Then

C(1)
u,γ f (x) = p.v.

∫
|t |≤2n(x)

[
eiu(x)γ (t) − 1

]
f (x − t)φ(t)

dt

t

+p.v.
∫

|t |≤2n(x)
f (x − t)φ(t)

dt

t

=: T1 f (x) + T2 f (x).

For T1 f , since γ ′ is increasing on (0,∞) and γ (0) = 0, we have that γ (t)
t is

increasing on (0,∞). These properties, combined with the fact that γ is either odd
or even and (2.6) is true, further implies that

T1 f (x) ≤
∫

|t |≤2n(x)
| f (x − t)| |u(x)| γ (2n(x))

2n(x)
φ(t) dt

≤ 1

2n(x)

∫
|t |≤2n(x)

| f (x − t)| dt
� M f (x). (2.7)

Here and hereafter, M denotes the Hardy-Littlewood maximal operator defined
by setting

M f (x) := sup
r>0

1

2r

∫ r

−r
| f (x − t)| dt ∀ x ∈ R.

For T2 f , we have

|T2 f (x)| =
∣∣∣∣
∫

|t |≤2n(x)
f (x − t)

φ(t) − 1

t
dt + p.v.

∫
|t |≤2n(x)

f (x − t)
dt

t

∣∣∣∣
≤

∫
2n(x)−1≤|t |≤2n(x)

| f (x − t)|
∣∣∣∣φ(t) − 1

t

∣∣∣∣ dt + H∗ f (x)

≤ 1

2n(x)−1

∫
|t |≤2n(x)

| f (x − t)| dt + H∗ f (x)

� M f (x) + H∗ f (x), (2.8)
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whereH∗ is themaximal truncated Hilbert transform, which is defined by setting

H∗ f (x) := sup
ε,R>0

∣∣∣∣
∫

ε<|t |<R
f (x − t)

dt

t

∣∣∣∣ ∀ x ∈ R.

Therefore, from (2.7) and (2.8) it follows that

C(1)
u,γ f (x) � M f (x) + H∗ f (x).

It iswell known that bothM andH∗ are boundedon L p(R); therefore,we conclude

‖C(1)
u,γ f ‖L p(R) � ‖ f ‖L p(R).

� For the high-frequency part C(2)
u,γ f (x), we can then write

C(2)
u,γ f (x) =

∑
k≥0

∫ ∞

−∞
eiu(x)γ (t) f (x − t)ψk+n(x)(t)

dt

t
=:

∑
k≥0

Sk f (x).

For any given k ≥ 0 we estimate

|Sk f (x)| ≤
∫
2k+n(x)−1≤|t |≤2k+n(x)+1

| f (x − t)|
∣∣ψk+n(x)(t)

∣∣
|t | dt

≤ 1

2k+n(x)−1

∫
|t |≤2k+n(x)+1

| f (x − t)| dt
� M f (x).

From this and the well-known L p(R)-boundedness of M it follows that

‖Sk f ‖L p(R) � ‖ f ‖L p(R), (2.9)

and the bound depends only on p. To summarize all k ≥ 0, we need a decay
estimate for ‖Sk f ‖L p(R). For this aim, we claim:

∃ a constant ω0 > 0 such that ‖Sk f ‖L2(R) � 2−ω0k‖ f ‖L2(R) ∀ k ≥ 0. (2.10)

Then, by interpolating between (2.9) and (2.10), we obtain a positive constant ωp

such that

‖Sk f ‖L p(R) � 2−ωpk‖ f ‖L p(R),

which allows us to summarize all k ≥ 0 and to obtain

‖C(2)
u,γ f ‖L p(R) � ‖ f ‖L p(R).
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Therefore, it remains to verify (2.10). We use a T T ∗-argument - the Stein-
Wainger’s approach in [23]. The dual operator of Sk is given by

Sk
∗g(y) = p.v.

∫ ∞

−∞
e−iu(z)γ (z−y)ψ(2−n(z)−k(z − y))

g(z)

z − y
dz ∀ y ∈ R.

Thus

Sk Sk
∗ f (x) = p.v.

∫ ∞

−∞(
p.v.

∫ ∞

−∞
e−iu(z)γ (z−x+t) ψ(2−n(z)−k(z − x + t))

z − x + t
eiu(x)γ (t) ψ(2−n(x)−k t)

t
dt

)

f (z) dz. (2.11)

In the following calculation, without loss of generality wemay assume that 2n(x) ≤
2n(z). Let ξ := x − z. Then, the kernel of Sk Sk∗ can be written as

p.v.
∫ ∞

−∞
e−iu(z)γ (−ξ+t) ψ(2−n(z)−k(−ξ + t))

−ξ + t
eiu(x)γ (t) ψ(2−n(x)−k t)

t
dt .

Upon replacing 2−n(x)−k t with t , the last quantity is equivalent to

p.v.
∫ ∞

−∞
e−iu(z)γ (−ξ+2n(x)+k t)

ψ(−ξ2−n(z)−k + 2n(x)

2n(z) t)

−ξ + 2n(x)+k t
eiu(x)γ (2n(x)+k t) ψ(t)

t
dt .

Now, we further set

0 < h := 2n(x)

2n(z)
≤ 1 & s := ξ

2n(z)+k
.

Then, the kernel becomes

1

2n(z)+k
p.v.

∫ ∞

−∞
eiu(x)γ (2n(x)+k t)−iu(z)γ

(
2n(z)+k [ht−s]) ψ (ht − s)

ht − s

ψ(t)

t
dt .

To evaluate the above integral, we use an estimate from the forthcoming Propo-
sition 2.4. In fact, because x−z

2n(z)+k = s, by (2.12) of Proposition 2.4, we therefore
have

|Sk Sk∗ f (x)| =
∣∣∣∣
∫ ∞

−∞
1

2n(z)+k
p.v.

∫ ∞

−∞
eiu(x)γ (2n(x)+k t)−iu(z)γ

(
2n(z)+k [ht−s])

ψ (ht − s)

ht − s

ψ(t)

t
dt f (z) dz

∣∣∣∣
�

∫ ∞

−∞
1

2n(z)+k

{
χ[−2−kr1 ,2−kr1 ](s) + 2−kr2χ[−4,4](s)

}
| f (z)| dz
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� 2−kr1

2n(z)+k2−kr1

∫
|x−z|

2n(z)+k ≤2−kr1
| f (z)| dz + 2−kr2

2n(z)+k

∫
|x−z|

2n(z)+k ≤4
| f (z)| dz

� 2−kr1M f (x) + 2−kr2M f (x)

� 2−kr0M f (x),

where γ0 := min {r1, r2}. Since M is bounded on L2(R), we obtain the desired
estimate

‖Sk‖L2(R)→L2(R) = ‖Sk Sk∗‖
1
2
L2(R)→L2(R)

� 2− r0
2 k,

thereby completing the proof of Theorem 1.1 for Cu,γ .

��
Proposition 2.4 There exist positive constants r1 and r2 such that

∣∣∣∣p.v.
∫ ∞

−∞
eiu(x)γ (2n(x)+k t)−iu(z)γ

(
2n(z)+k [ht−s]) ψ (ht − s)

ht − s

ψ(t)

t
dt

∣∣∣∣
≤ C

(
χ[−2−kr1 ,2−kr1 ](s) + 2−kr2χ[−4,4](s)

)
∀ k ∈ N & (x, z, s) ∈ R

3, (2.12)

where C is a positive constant independent of k, x, z, s, and u.

Proof Since ψ : R → R is smooth and supported on

{
t ∈ R : 1

2
≤ |t | ≤ 2

}
,

it follows from 0 < h ≤ 1 that

⎧⎪⎨
⎪⎩

|t | ≤ 2;
|ht − s| ≤ 2;
|s| ≤ 4.

Let

Q(t) := u(x)γ (2n(x)+k t) − u(z)γ (2n(z)+k[ht − s]) ∀ t ∈ R. (2.13)

It is clear that

{
Q′(t) = u(x)2n(x)+kγ ′(2n(x)+k t) − u(z)2n(z)+kγ ′(2n(z)+k[ht − s])h ∀ t ∈ R;
Q′′(t) = u(x)22(n(x)+k)γ ′′(2n(x)+k t) − u(z)22(n(z)+k)γ ′′(2n(z)+k [ht − s])h2 ∀ t ∈ R.

To use Lemmas 2.1-2.2-2.3, we need some estimates for Q′ and Q′′. For this purpose,
we consider two cases. We want to remind the reader that the constants C1 through
C4 are the same constants as in Theorem 1.1 and Remark 1.2.
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Case A: 0 < h ≤ 1
4C3

1C4
.

Since γ ′(2t)
γ ′(t) is decreasing on (0,∞), it follows that

γ ′(2k t)
γ ′(t)

= γ ′(2k t)
γ ′(2k−1t)

γ ′(2k−1t)

γ ′(2k−2t)
· · · γ ′(2t)

γ ′(t)

is decreasing on (0,∞) for any k ∈ N. By Remark 1.2, we know

1 ≤ tγ ′(t)
γ (t)

≤ C4 ∀ t ∈ (0,∞).

Noting that γ is either odd or even, γ ′ is increasing on (0,∞), (2.6) and

⎧⎪⎨
⎪⎩

|t | ≤ 2;
|ht − s| ≤ 2;
γ ′(2t)
γ ′(t) ≤ C1;

∀ t ∈ (0,∞),

we obtain

|Q′(t)| ≥
∣∣∣u(x)2n(x)+kγ ′(2n(x)+k t)

∣∣∣ −
∣∣∣u(z)2n(z)+kγ ′(2n(z)+k[ht − s])

∣∣∣ h
≥

∣∣∣∣ 1

γ (2n(x)+1)
2n(x)+kγ ′

(
2n(x)+k 1

2

)∣∣∣∣ −
∣∣∣∣ 1

γ (2n(z))
2n(z)+kγ ′(2n(z)+k2)

∣∣∣∣ h

=
∣∣∣∣∣
2n(x)+1γ ′(2n(x)+1)

γ (2n(x)+1)

2n(x)+k

2n(x)+1

γ ′(2n(x)+k 1
2 )

γ ′(2n(x)+k)

γ ′(2n(x)+k)

γ ′(2n(x))

γ ′(2n(x))

γ ′(2n(x)+1)

∣∣∣∣∣
−

∣∣∣∣∣
2n(z)γ ′(2n(z))

γ (2n(z))

2n(z)+k

2n(z)

γ ′(2n(z)+k2)

γ ′(2n(x)+k)

γ ′(2n(z)+k)

γ ′(2n(z))

∣∣∣∣∣ h

≥
(

1

2C2
1

)
2k

γ ′(2n(x)+k)

γ ′(2n(x))
− (

C1C42
k)γ ′(2n(x)+k)

γ ′(2n(x))
h

≥
(

1

4C2
1

)
2k

γ ′(2n(x)+k)

γ ′(2n(x))
. (2.14)

Using (2.14) and

tγ ′′(t)
γ ′(t)

≤ C2 ∀ t ∈ (0,∞) & h ≤ 1,

we find

|Q′′(t)| ≤
∣∣∣u(x)22(n(x)+k)γ ′′(2n(x)+k t)

∣∣∣ +
∣∣∣u(z)22(n(z)+k)γ ′′(2n(z)+k[ht − s])h2

∣∣∣
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=
∣∣∣∣∣u(x)22(n(x)+k) (2

n(x)+k t)γ ′′(2n(x)+k t)

γ ′(2n(x)+k t)

γ ′(2n(x)+k t)

(2n(x)+k t)

∣∣∣∣∣

+
∣∣∣∣∣u(z)22(n(z)+k) (2

n(z)+k[ht − s])γ ′′(2n(z)+k[ht − s])
γ ′(2n(z)+k[ht − s])

γ ′(2n(z)+k [ht − s])
(2n(z)+k[ht − s]) h2

∣∣∣∣∣
≤2C2

∣∣∣u(x)2(n(x)+k)γ ′(2n(x)+k2)
∣∣∣ + 2C2

∣∣∣u(z)2(n(z)+k)γ ′(2n(z)+k2)
∣∣∣

≤2C1C2

∣∣∣∣ 1

γ (2n(x))
2(n(x)+k)γ ′(2n(x)+k)

∣∣∣∣ + 2C1C2

∣∣∣∣ 1

γ (2n(z))
2(n(z)+k)γ ′(2n(z)+k)

∣∣∣∣

=2C1C2

∣∣∣∣∣
2n(x)γ ′(2n(x))

γ (2n(x))

2(n(x)+k)

2n(x)

γ ′(2n(x)+k)

γ ′(2n(x))

∣∣∣∣∣

+ 2C1C2

∣∣∣∣∣
2n(z)γ ′(2n(z))

γ (2n(z))

2(n(z)+k)

2n(z)

γ ′(2n(z)+k)

γ ′(2n(z))

∣∣∣∣∣
≤2C1C2C42

k γ ′(2n(x)+k)

γ ′(2n(x))
+ 2C1C2C42

k γ ′(2n(z)+k)

γ ′(2n(z))

≤4C1C2C42
k γ ′(2n(x)+k)

γ ′(2n(x))
. (2.15)

Combining (2.14) and (2.15), and using Lemma 2.1 and [21, p. 334, Corollary] and
the fact that γ ′ is increasing on (0,∞), we get

∣∣∣∣p.v.
∫ ∞

−∞
eiu(x)γ (2n(x)+k t)−iu(z)γ

(
2n(z)+k [ht−s]) ψ (ht − s)

ht − s

ψ(t)

t
dt

∣∣∣∣

� 1(
1

4C2
1

)
2k γ ′(2n(x)+k)

γ ′(2n(x))

+
4C1C2C42k

γ ′(2n(x)+k)

γ ′(2n(x))[(
1

4C2
1

)
2k γ ′(2n(x)+k)

γ ′(2n(x))

]2

� 1

2k
. (2.16)

Thus, in this case, (2.12) holds with r2 = 1 and arbitrary positive constant r1.
Case B: 1

4C3
1C4

< h ≤ 1.

If |s| ≤ 2− k
8 , and since ψ : R → R is supported on

{
t ∈ R : 1

2
≤ |t | ≤ 2

}
,

it follows that the integral in (2.12) is bounded by C . Thus, in this case, (2.12) holds
with r1 = 1

8 and arbitrary positive constant r2. In the remainder, we only consider the

case |s| ≥ 2− k
8 . We write

(
Q′(t)
Q′′(t)

)
= Mt,sϒ, (2.17)
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where Mt,s is a 2 × 2 matrix and ϒ is the vector:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mt,s :=
(

1 h
2n(x)+kγ ′′(2n(x)+k t)

γ ′(2n(x)+k t)
2n(z)+kγ ′′(2n(z)+k [ht−s])

γ ′(2n(z)+k [ht−s]) h2

)
;

ϒ :=
(

u(x)2n(x)+kγ ′(2n(x)+k t)

−u(z)2n(z)+kγ ′(2n(z)+k[ht − s])

)
.

(2.18)

We may compute immediately as in (2.14) that

|ϒ | ≥
∣∣∣u(x)2n(x)+kγ ′(2n(x)+k t)

∣∣∣ ≥ 1

2C2
1

2k
γ ′(2n(x)+k)

γ ′(2n(x))
. (2.19)

Moreover, let

⎧⎨
⎩
a0 := 2n(x)+k tγ ′′(2n(x)+k t)

γ ′(2n(x)+k t)
;

b0 := 2n(z)+k (ht−s)γ ′′(2n(z)+k [ht−s])
γ ′(2n(z)+k [ht−s]) .

We can rewrite

Mt,s =
(

1 h

a0
1
t b0

h2
ht−s

)
.

From

tγ ′′(t)
γ ′(t)

≤ C2 ∀ t ∈ (0,∞),

it follows that

|a0| ≤ C2 & |b0| ≤ C2,

and

‖Mt,s‖ = sup
|x |=1

|Mt,s x | � 1. (2.20)

From (2.18) and Theorem 1.1(iv), together with

|s| ≤ 4 & h = 2n(x)

2n(z)



Journal of Fourier Analysis and Applications (2022) 28 :11 Page 19 of 33 11

and the generalized mean value theorem, we have a positive constant θ ∈ [0, 1] such
that

|detMt,s | =h2n(x)+k

∣∣∣∣∣
γ ′′(2n(x)+k t − 2n(z)+ks)

γ ′(2n(x)+k t − 2n(z)+ks)
− γ ′′(2n(x)+k t)

γ ′(2n(x)+k t)

∣∣∣∣∣
=h2n(x)+k

∣∣∣∣∣
(

γ ′′

γ ′

)′ (
2n(x)+k t − 2n(z)+ksθ

)
2n(z)+ks

∣∣∣∣∣
≥C3h2

n(x)+k
[
2n(x)+k t − 2n(z)+ksθ

]−2 ∣∣∣2n(x)+ks
∣∣∣

= C3h|s|(
t − 1

h sθ
)2

�2− k
8 . (2.21)

Combining (2.19), (2.20), (2.21), and Lemma 2.2 with n = 2, we therefore have

Mt,sϒ ≥ |detMt,s |‖Mt,s‖−1|ϒ | � 2
7k
8

γ ′(2n(x)+k)

γ ′(2n(x))
,

and consequently,

√
[Q′(t)]2 + [Q′′(t)]2 � 2

7k
8

γ ′(2n(x)+k)

γ ′(2n(x))
.

By the pigeonhole principle, there are two cases.

� If

|Q′(t)| � 2
7k
8

γ ′(2n(x)+k)

γ ′(2n(x))
,

then h = 2n(x)

2n(z) follows by Lemma 2.3. Let

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

a := u(x)2n(x)+k;
b := u(z)2n(z)+kh;
c := 2n(z)+ks;
d := 2

7k
8

γ ′(2n(x)+k )

γ ′(2n(x))
;

t := 2n(x)+k t .

We see that this case only happens in at most a finite number of intervals, and the
number of these intervals is independent of x, z, s, k and u. Using (2.15), from
Lemma 2.1, [21, p. 334, Corollary], and (2.16), we find that the integral in (2.12)
on this portion is established with r2 = 3

4 and an arbitrary positive constant r1.
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� If

|Q′′(t)| � 2
7k
8

γ ′(2n(x)+k)

γ ′(2n(x))
,

then the argument for the first case shows that this second case also only happens
in at most a finite number of intervals. By van der Corput’s lemma, similarly to
(2.16), we conclude that the integral in (2.12) on this portion is established with
r2 = 7

16 and an arbitrary positive constant r1.

Altogether, we now show that the integral in (2.12) is established with r2 = 7
16 and

an arbitrary positive constant r1, whence completing the proof of Proposition 2.4. ��

3 Verification of Theorem 1.1 for Hilbert Transform

3.1 Annulus Lp(R2)-estimate for Hu,�

Recall that ψ : R → R is a smooth function supported on

{
t ∈ R : 1

2
≤ |t | ≤ 2

}

and enjoys

⎧⎪⎨
⎪⎩
0 ≤ ψ(t) ≤ 1 ∀ t ∈ R;
�l∈Zψl(t) = 1 ∀ t ∈ R \ {0};
ψl(t) := ψ(2−l t) ∀ t ∈ R.

For any l ∈ Z, let Pl denote the Littlewood-Paley projection in the second variable
corresponding to ψl , namely,

Pl f (x1, x2) :=
∫ ∞

−∞
f (x1, x2 − z)ψ̌l(z) dz ∀ (x1, x2) ∈ R

2.

Theorem 3.1 Let u and γ be the same as in Theorem 1.1. Then

‖Hu,γ Pl f ‖L p(R2) ≤ C‖Pl f ‖L p(R2)

holds uniformly in l ∈ Z, and the bound C is a positive constant independent of u.

Proof By the anisotropic scaling:

x1 → x1 & x2 → 2−l x2,



Journal of Fourier Analysis and Applications (2022) 28 :11 Page 21 of 33 11

we consider only the case l = 0. Set

Hu,γ,k P0 f (x1, x2) :=
∫ ∞

−∞
P0 f (x1 − t, x2 − u(x1)γ (t))ψk(t)

dt

t
.

Let n : R → Z be such that

1

γ (2n(x1)+1)
≤ |u(x1)| ≤ 1

γ (2n(x1))
∀ x1 ∈ R. (3.1)

We make the following decomposition:

Hu,γ P0 f (x1, x2) =
∑

k≤n(x1)−1

Hu,γ,k P0 f (x1, x2) +
∑

k≥n(x1)

Hu,γ,k P0 f (x1, x2)

=: H (1)
u,γ P0 f (x1, x2) + H (2)

u,γ P0 f (x1, x2). (3.2)

For H (1)
u,γ P0 f , let ρ be a non-negative smooth function with

{
suppρ ⊆ {ξ ∈ R : 1

4 ≤ |ξ | ≤ 4};
ρ = 1 on {ξ ∈ R : 1

2 ≤ |ξ | ≤ 2},

and

P0 f (x1, x2) :=
∫ ∞

−∞
f (x1, x2 − s)ρ̌(s) ds.

By a Fourier transform, it is easy to check

P0P0 f = P0 f . (3.3)

• � We first consider H (1)
u,γP0 f . If

∑
k≤n(x1)−1

ψk(t) =: φ(t),

then

H (1)
u,γP0 f (x1, x2) = p.v.

∫
|t |≤2n(x1)

P0 f (x1 − t, x2 − u(x1)γ (t))φ(t)
dt

t
.

Let us consider an approximate operator

H̃P0 f (x1, x2) := p.v.
∫

|t |≤2n(x1)
P0 f (x1 − t, x2)φ(t)

dt

t
.
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As shown in (2.8), we have

H̃P0 f (x1, x2) � M1P0 f (x1, x2) + H̃∗
1P0 f (x1, x2). (3.4)

Here and hereafter, H̃∗
1 denotes the maximal truncated Hilbert transform applied

in the first variable, M1 and M2 denote the Hardy-Littlewood maximal operators
applied in the first variable and the second variable, respectively. Since both M1
and H̃∗

1 are bounded on L p(R2), from (3.4) we may conclude

‖H̃P0 f ‖L p(R2) � ‖P0 f ‖L p(R2) � ‖ f ‖L p(R2). (3.5)

• � Now we turn to the difference between H (1)
u,γP0 f and H̃P0 f , which can be

written as

p.v.
∫

|t |≤2n(x1)

∫ ∞

−∞
f (x1 − t, x2 − z)

[
ρ̌(z − u(x1)γ (t)) − ρ̌(z)

]
dzφ(t)

dt

t
.

Since γ is increasing on (0,∞) and |t | ≤ 2n(x1), we have

|u(x1)γ (t)| ≤ |u(x1)|γ (2n(x1)) ≤ 1.

Then, apply the mean value theorem to obtain

|ρ̌(z − u(x1)γ (t)) − ρ̌(z)| �
∑
m∈Z

1

(|m − 1| + 1)2
χ[m,m+1](z)|u(x1)γ (t)|.

Because

∑
m∈Z

1

(|m − 1| + 1)2
� 1,

it suffices to dominate the operator defined by setting for any fixed m ∈ Z,

Km f (x1, x2) :=
∫ m+1

m

∫
|t |≤2n(x1)

| f (x1 − t, x2 − z)| |u(x1)γ (t)|
|t | φ(t) dt dz

with a bound independent ofm and u. ByMinkowski’s inequality, (3.1) and notic-
ing that γ (t)

t is increasing on (0,∞), we have that if 1 < p < ∞ then

‖Km f (·1, ·2)‖p
L p(R2)

≤
∫ ∞

−∞

(∫ m+1

m

∫
|t |≤2n(x1)

‖ f (x1 − t, ·2)‖L p(R1
x2

)

|u(x1)γ (t)|
|t | φ(t) dt dz

)p

dx1

≤
∫ ∞

−∞

(∫
|t |≤2n(x1)

‖ f (x1 − t, ·2)‖L p(R1
x2

)

|u(x1)γ (2n(x1))|
|2n(x1)| φ(t) dt

)p

dx1
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≤
∫ ∞

−∞

(
1

2n(x1)

∫
|t |≤2n(x1)

‖ f (x1 − t, ·2)‖L p(R1
x2

) dt

)p

dx1

�
∫ ∞

−∞

(
M(‖ f (·, ·2)‖L p(R1

x2
))(x1)

)p
dx1

� ‖ f ‖p
L p(R2)

(3.6)

and hence

‖H (1)
u,γP0 f ‖L p(R2) � ‖ f ‖L p(R2)

follows from (3.5) and (3.6). Accordingly, (3.3) implies

‖H (1)
u,γ P0 f ‖L p(R2) � ‖P0 f ‖L p(R2).

• � For H (2)
u,γ P0 f let f := P0 f . Then we can write

H (2)
u,γ f (x1, x2) =

∑
k≥0

∫ ∞

−∞
f (x1 − t, x2 − u(x1)γ (t))ψn(x1)+k(t)

dt

t
.

By Minkowski’s inequality and (3.6), we have

∥∥∥∥
∫ ∞

−∞
f (·1 − t, ·2 − u(·1)γ (t))ψn(·1)+k(t)

dt

t

∥∥∥∥
L p(R2)

� ‖ f ‖L p(R2) (3.7)

and then use (2.10) to get

∥∥∥∥
∫ ∞

−∞
eiu(·)γ (t) f (· − t)ψk+n(·)(t)

dt

t

∥∥∥∥
L2(R)

� 2−ω0k‖ f ‖L2(R),

which ensures

∥∥∥∥
∫ ∞

−∞
f (·1 − t, ·2 − u(·1)γ (t))ψn(·1)+k(t)

dt

t

∥∥∥∥
L2(R2)

� 2−ω0k‖ f ‖L2(R2). (3.8)

By interpolating between (3.7) and (3.8) and making a sum over k ≥ 0, we obtain

‖H (2)
u,γ f ‖L p(R2) � ‖ f ‖L p(R2) under p ∈ (1,∞),

thereby completing the proof of Theorem 3.1.

��
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3.2 Lp(R2)-estimate for Hu,�

As explained in Note (1.6), the case p = 2 can be obtained by the L2(R)-boundedness
of (1.1). So, it remains to handle the case p ∈ (1, 2)∪ (2,∞). Our argument (actually
for any case p ∈ (1,∞)) crucially relies on the commutative property between Hu,γ

and Pl . Accordingly, we can turn our attention to a square function. As before, we
also decompose our operator into a low-frequency part and a high-frequency part. The
low-frequency part is controlled by the Hardy-Littlewood maximal operator and the
maximal truncated Hilbert transform. The high-frequency part is also represented by a
series of operators. Building on the already proved L2(R2)-estimate with bound 2−ω0k

and the interpolation strategy, it suffices to obtain an L p(R2)-estimate with bound k2.
This unusual L p(R2)-boundedness can be achieved by the shifted maximal operator,
which forms a pointwise estimate for taking the average along the variable plane curve
u(x1)γ .

Proof of Theorem 1.1 for Hu,γ We note that the commutative property

Hu,γ Pl = Pl Hu,γ

holds for any l ∈ Z. By the Littlewood-Paley theory, it is enough to show

∥∥∥∥∥∥
[∑
l∈Z

∣∣Hu,γ Pl f
∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

� ‖ f ‖L p(R2). (3.9)

Regarding (3.1), for any l ∈ Z, let nl : R → Z be such that

1

γ (2nl (x1)+1)
≤ 2l |u(x1)| ≤ 1

γ (2nl (x1))
∀ x1 ∈ R. (3.10)

In a similar way to handle (3.2), we decompose Hu,γ Pl as

Hu,γ Pl f (x1, x2) =
∑

k≤nl (x1)−1

∫ ∞

−∞
Pl f (x1 − t, x2 − u(x1)γ (t))ψk(t)

dt

t

+
∑
k≥0

∫ ∞

−∞
Pl f (x1 − t, x2 − u(x1)γ (t))ψk+nl (x1)(t)

dt

t

=: H (I )
u,γ Pl f (x1, x2) +

∑
k≥0

Hu,γ,k+nl (x1)Pl f (x1, x2). (3.11)

Using the triangle inequality, the left term of (3.9) can be controlled by

∥∥∥∥∥∥
[∑
l∈Z

∣∣∣H (I )
u,γ Pl f

∣∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

+
∑
k≥0

∥∥∥∥∥∥
[∑
l∈Z

∣∣Hu,γ,k+nl (·1)Pl f
∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

.(3.12)
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� For the low-frequency part in (3.12), let

{∑
k≤nl (x1)−1 ψk(t) =: φ(t);

H̃ f (x1, x2) := p.v.
∫
|t |≤2nl (x1) f (x1 − t, x2)φ(t) dt

t .

As done in (2.8), we may obtain

H̃ Pl f (x1, x2) � M1Pl f (x1, x2) + H̃∗
1Pl f (x1, x2), (3.13)

The vector-valued estimate for M1 follows from the corresponding estimate for
the one-dimensional Hardy-Littlewood maximal function. Similarly, the vector-
valued estimate for H̃∗

1 follows from Cotlar’s inequality and the vector-valued
estimate for the Hilbert transform and the maximal function. Then, from (3.13)
and the Littlewood-Paley theory it follows that

∥∥∥∥∥∥
[∑
l∈Z

∣∣∣H̃ Pl f
∣∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

�

∥∥∥∥∥∥
[∑
l∈Z

|Pl f |2
] 1

2

∥∥∥∥∥∥
L p(R2)

� ‖ f ‖L p(R2). (3.14)

� Concerning the difference between H (I )
u,γ Pl f and H̃ Pl f , we recall that ρ is a

non-negative smooth function obeying

{
suppρ ⊆ {s ∈ R : 1

4 ≤ |ξ | ≤ 4};
ρ(t) = 1 ∀ t ∈ {s ∈ R : 1

2 ≤ |s| ≤ 2}.

Let

{
ρl(s) := ρ(2−l s) ∀ l ∈ Z;
Pl f (x1, x2) := ∫ ∞

−∞ f (x1, x2 − s)ρ̌l(s) ds.

Then, taking Fourier transform gives

Pl Pl f = Pl f . (3.15)

The difference between H (I )
u,γPl f and H̃Pl f can be written as

p.v.
∫

|t |≤2nl (x1)

∫ ∞

−∞
f (x1 − t, x2 − s)

[
ρ̌l(s − u(x1)γ (t)) − ρ̌l(s)

]
dsφ(t)

dt

t
.

(3.16)

By the mean value theorem, we have

|ρ̌l(s − w) − ρ̌l(s)| � |w|22l2−2 j ∀ |w| ≤ 2−l
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if s is in the annulus

2−l+ j−1 ≤ |s| ≤ 2−l+ j ∀ j ∈ N.

Meanwhile, for j = 0, the estimate holds for all |s| ≤ 2−l . Because γ is increasing
on (0,∞) and γ is either odd or even, from (3.10) it follows that

2l |u(x1)γ (t)| ≤ 2l |u(x1)|γ (2nl (x1)) ≤ 1 ∀ |t | ≤ 2nl (x1).

Thus, the absolute value of (3.16) can be estimated by a positive constantmultiplied
by

∑
j∈N

∫
|t |≤2nl (x1)

∫
|s|≤2−l+ j

| f (x1 − t, x2 − s)|22l2−2 j |u(x1)|
∣∣∣∣γ (t)

t

∣∣∣∣ ds dt . (3.17)

Notice that γ (t)
t is increasing on (0,∞), and γ is either odd or even. So we can

use (3.10) to control (3.17) via

∑
j∈N

∫
|t |≤2nl (x1)

∫
|s|≤2−l+ j

| f (x1 − t, x2 − s)|22l2−2 j |u(x1)|
∣∣∣∣∣
γ (2nl (x1))

2nl (x1)

∣∣∣∣∣ ds dt

�
∑
j∈N

2− j

2nl (x1)

∫
|t |≤2nl (x1)

1

2−l+ j

∫
|s|≤2−l+ j

| f (x1 − t, x2 − s)| ds dt

� M1M2 f (x1, x2). (3.18)

Therefore, the vector-valued estimates forM1 andM2, theLittlewood-Paley theory,
(3.15), the triangle inequality and (3.18) yield

∥∥∥∥∥∥
[∑
l∈Z

∣∣∣H (I )
u,γ Pl f − H̃ Pl f

∣∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

=
∥∥∥∥∥∥
[∑
l∈Z

∣∣∣H (I )
u,γPl Pl f − H̃Pl Pl f

∣∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

�

∥∥∥∥∥∥
[∑
l∈Z

|M1M2Pl f |2
] 1

2

∥∥∥∥∥∥
L p(R2)

� ‖ f ‖L p(R2) . (3.19)

From (3.14) and (3.19) it follows that

∥∥∥∥∥∥
[∑
l∈Z

∣∣∣H (I )
u,γ Pl f

∣∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

� ‖ f ‖L p(R2) .
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� For the high-frequency part in (3.12), it is enough to show that there exists a
convergent series {Ck}∞k=0 such that for any k ≥ 0,

∥∥∥∥∥∥
[∑
l∈Z

∣∣Hu,γ,k+nl (·1)Pl f
∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

� Ck ‖ f ‖L p(R2) . (3.20)

If p = 2, then noting that the bound in (2.10) is independent of u, we can replace
u with 2lu in (2.10). By the Littlewood-Paley theory we have

∥∥∥∥∥∥
[∑
l∈Z

∣∣Hu,γ,k+nl (·1)Pl f
∣∣2
] 1

2

∥∥∥∥∥∥
L2(R2)

� 2−ω0k ‖ f ‖L2(R2) (3.21)

for some positive constant ω0. So, it remains to verify that

∥∥∥∥∥∥
[∑
l∈Z

∣∣Hu,γ,k+nl (·1)Pl f
∣∣2
] 1

2

∥∥∥∥∥∥
L p(R2)

� k2 ‖ f ‖L p(R2) (3.22)

holds for all 2 �= p ∈ (1,∞), since (3.20) follows from the interpolation between
(3.21) and (3.22). Notice that

Hu,γ,k+nl (x1)Pl f (x1, x2)

=
∫ ∞

−∞

∫ ∞

−∞
f (x1 − t, x2 − u(x1)γ (t) − s)

ψk+nl (x1)(t)

t
ρ̌l(s) dt ds

≤
∫

1
2 2

k+nl (x1)≤|t |≤2·2k+nl (x1)

∫ ∞

−∞
| f (x1 − t, x2

− u(x1)γ (t) − s)|
∣∣∣∣ψk+nl (x1)(t)

t

∣∣∣∣ |ρ̌l(s)| ds dt
� 1

2k+nl (x1)

∫
1
2 2

k+nl (x1)≤|t |≤2·2k+nl (x1)

∫ ∞

−∞
| f (x1 − t, x2

− u(x1)γ (t) − 2−l s)||ρ̌(s)| ds dt

�
∑
τ∈Z

(1 + |τ |)−4

2k+nl (x1)

∫
1
2 2

k+nl (x1)≤|t |≤2·2k+nl (x1)

∫ τ+1

τ

| f (x1 − t, x2

− u(x1)γ (t) − 2−l s)| ds dt

�
∑
τ∈Z

(1 + |τ |)−4

2k+nl (x1)

∫
1
2 2

k+nl (x1)≤|t |≤2·2k+nl (x1)

∫ 1

0
| f (x1 − t, x2

− u(x1)γ (t) − 2−l(s + τ))| ds dt . (3.23)
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So, we are led to control the last term in (3.23) by

∑
τ∈Z

1

(1 + |τ |)4Nk

Nk−1∑
m=0

1

|Im |
∫
Im

M (σ
(2)
m )

2 f (x1 − t, x2) dt,

where {Im}Nk−1
m=0 and the shifted maximal operator M (σ

(2)
m )

2 will be given below. By
a scaling argument, it suffices to prove

∑
τ∈Z

(1 + |τ |)−4

2k+nl (x1)

∫
1
2 2

k+nl (x1)≤|t |≤2·2k+nl (x1)

∫ 1

0
| f (x1 − t, x2

− 2lu(x1)γ (t) − s − τ)| ds dt

�
∑
τ∈Z

1

(1 + |τ |)4Nk

Nk−1∑
m=0

1

|Im |
∫
Im

M (σ
(2)
m )

2 f (x1 − t, x2) dt . (3.24)

We cover the region

{
t ∈ R : 1

2
2k+nl (x1) ≤ |t | ≤ 2 · 2k+nl (x1)

}

by intervals {Im}Nk−1
m=0 , where

Im :=
{
t ∈ R : 1

2
2k+nl (x1) + m

2l |u(x1)|γ ′(2k+nl (x1))
≤ |t |

≤ 1

2
2k+nl (x1) + m + 1

2l |u(x1)|γ ′(2k+nl (x1))

}

and Nk ∈ N enjoys

3 · 2k+nl (x1)−1 ≤ Nk

2l |u(x1)|γ ′(2k+nl (x1))
≤ 2 · 2k+nl (x1). (3.25)

Therefore,

|Im | = 1

2l |u(x1)|γ ′(2k+nl (x1))
,

which implies

1

21+k+nl (x1)
≤ 1

Nk · |Im | ≤ 1

3 · 2k+nl (x1)−1
. (3.26)
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Thus, the first term in (3.24) can be controlled by

∑
τ∈Z

1

(1 + |τ |)4Nk

Nk−1∑
m=0

1

|Im |
∫
Im

∫ 1

0
| f (x1 − t, x2 − 2lu(x1)γ (t) − s − τ)| ds dt .

(3.27)

Without loss of generality, we may denote

�m :=
{
(t, 2lu(x1)γ (t) + s + τ) ∈ R

2 : t ∈ Im, s ∈ (0, 1)
}

⊆ Im × Jm,

where

⎧⎪⎪⎨
⎪⎪⎩

Jm := [Ja, Jb] ;
Ja := 2l |u(x1)|γ

(
1
22

k+nl (x1) + m
2l |u(x1)|γ ′(2k+nl (x1))

)
+ τ ;

Jb := 2l |u(x1)|γ
(
1
22

k+nl (x1) + m+1
2l |u(x1)|γ ′(2k+nl (x1))

)
+ 1 + τ.

We can show

|Jm | ≈ 1. (3.28)

In fact, the mean value theorem implies

|Jm | = 1 + 1

γ ′(2k+nl (x1))
γ ′

(
1

2
2k+nl (x1) + m + θ

2l |u(x1)|γ ′(2k+nl (x1))

)

for some θ ∈ [0, 1].

It is easy to see

|Jm | ≥ 1. (3.29)

Also, from θ ∈ [0, 1] and (3.25) it follows that

m + θ ≤ Nk − 1 + θ ≤ Nk ≤ 2 · 2k+nl (x1)2l |u(x1)|γ ′(2k+nl (x1)).

Since γ ′ is increasing on (0,∞) and

γ ′(2t)
γ ′(t)

≤ C1 ∀ t ∈ (0,∞),
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we obtain

|Jm | ≤ 1 + γ ′(4 · 2k+nl (x1))

γ ′(2k+nl (x1))
= 1 + γ ′(4 · 2k+nl (x1))

γ ′(2 · 2k+nl (x1))

γ ′(2 · 2k+nl (x1))

γ ′(2k+nl (x1))
≤ 1 + C2

1 .

(3.30)

Now, both (3.29) and (3.30) yield (3.28). Furthermore, (3.27) is bounded by

∑
τ∈Z

1

(1 + |τ |)4Nk

Nk−1∑
m=0

1

|Im |
∫
Im

1

|Jm |
∫
Jm

| f (x1 − t, x2 − s)| ds dt . (3.31)

Given a non-negative parameter σ , the shifted maximal operator is defined by

M (σ ) f (z) := sup
z∈I⊂R

1

|I |
∫
I (σ )

| f (ζ )| dζ,

where I (σ ) denotes a shift of the interval I := [a, b] given by

I (σ ) := [a − σ · |I |, b − σ · |I |] ∪ [a + σ · |I |, b + σ · |I |].

Upon observing

1

|Jm |
∫
Jm

| f (x1 − t, x2 − s)|ds ≤ M (σ
(2)
m )

2 f (x1 − t, x2), (3.32)

where M (σ
(2)
m )

2 is a shifted maximal operator applied to the second variable and

σ (2)
m := 2l |u(x1)|

|Jm | γ

(
1

2
2k+nl (x1) + m

2l |u(x1)|γ ′(2k+nl (x1))

)
+ τ

|Jm | ,

and a combination of (3.31) and (3.32) derives (3.24). Altogether, we obtain

|Hu,γ,k+nl (x1)Pl f (x1, x2)| �
∑
τ∈Z

1

(1 + |τ |)4Nk

Nk−1∑
m=0

1

|Im |
∫
Im

M (σ
(2)
m )

2 f (x1 − t, x2) dt

(3.33)

for any l ∈ Z, thereby using (3.15) to reach

|Hu,γ,k+nl (x1)Pl f (x1, x2)| �
∑
τ∈Z

1

(1 + |τ |)4Nk

Nk−1∑
m=0

1

|Im |
∫
Im

M (σ
(2)
m )

2 Pl f (x1 − t, x2) dt

(3.34)

for any l ∈ Z.
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Since γ (0) = 0, Remark 1.2 and Cauchy’s mean value theorem imply

γ (2t)

γ (t)
≤ 2C1 ∀ t ∈ (0,∞).

Notice that γ is increasing on (0,∞). So combining

m ≤ Nk − 1 ≤ Nk

and (3.10), (3.25), (3.28), we obtain

σ (2)
m ≤

(
1

|Jm |γ (2nl (x1))

)
γ

(
1

2
2k+nl (x1) + m

2l |u(x1)|γ ′(2k+nl (x1))

)
+ τ

|Jm |

�
(

1

γ (2nl (x1))

)
γ

(
1

2
2k+nl (x1) + 2 · 2k+nl (x1)2l |u(x1)|γ ′(2k+nl (x1))

2l |u(x1)|γ ′(2k+nl (x1))

)
+ τ

� γ (2nl (x1)+k+2)

γ (2nl (x1))
+ τ

� (2C1)
k+2 + τ. (3.35)

From [12, Theorem 3.1], (3.35) and the Littlewood-Paley theory, we obtain the fol-
lowing vector-valued estimate for the one-dimensional shifted maximal operator:

∥∥∥∥∥∥
[∑
l∈Z

∣∣∣∣M (σ
(2)
m )

2 Pl f (·1 − t, ·2)
∣∣∣∣
2
] 1

2

∥∥∥∥∥∥
L p(R1

x2
)

�
[
log(2 + |σ (2)

m |)
]2

∥∥∥∥∥∥
[∑
l∈Z

|Pl f (·1 − t, ·2)|2
] 1

2

∥∥∥∥∥∥
L p(R1

x2
)

�
[
log(2 + (2C1)

k+2 + |τ |)
]2 ‖ f (·1 − t, ·2)‖L p(R1

x2
)

� k2(1 + |τ |)2 ‖ f (·1 − t, ·2)‖L p(R1
x2

) .

Combining (3.34), the triangle inequality and Minkowski’s inequality yields that the
left-hand side of (3.22) is controlled by

∑
τ∈Z

1

(1 + |τ |)4

∥∥∥∥∥∥∥
1

Nk

Nk−1∑
m=0

1

|Im |
∫
Im

∥∥∥∥∥∥
[∑
l∈Z

∣∣∣∣M (σ
(2)
m )

2 Pl f (·1 − t, ·2)
∣∣∣∣
2
] 1

2

∥∥∥∥∥∥
L p(R1

x2
)

dt

∥∥∥∥∥∥∥
L p(R1

x1
)
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Consequently, the above expression is bounded by

k2
∑
τ∈Z

1

(1 + |τ |)2

∥∥∥∥∥∥
1

Nk

Nk−1∑
m=0

1

|Im |
∫
Im

‖ f (·1 − t, ·2)‖L p(R1
x2

) dt

∥∥∥∥∥∥
L p(R1

x1
)

With the help of (3.25) and (3.26), we can control the above term by

k2
∑
τ∈Z

1

(1 + |τ |)2
∥∥∥∥ 1

2k+nl (·1)

∫
2k+nl (·1)−1≤|t |≤5·2k+nl (·1)−1

‖ f (·1 − t, ·2)‖L p(R1
x2

) dt

∥∥∥∥
L p(R1

x1
)

� k2
∑
τ∈Z

1

(1 + |τ |)2
∥∥∥M1

(
‖ f (·, ·2)‖L p(R1

x2
)

)
(·1)

∥∥∥
L p(R1

x1
)

� k2
∑
τ∈Z

1

(1 + |τ |)2
∥∥∥‖ f (·1, ·2)‖L p(R1

x2
)

∥∥∥
L p(R1

x1
)

� k2 ‖ f ‖L p(R2) .

Accordingly, we obtain (3.22), thereby completing the proof of Theorem 1.1 for Hu,γ .
��
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