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Abstract
This paper shows that for p € (1, 00), a measurable function # : R — R and a
generalized plane curve y with certain curvature constraints, not only the Carleson
transform

® @y dt
Cuy f(x) == p.v. ety f(x—t)TVxeR

—00

is bounded on L?(RR), but also the Hilbert transform
o dr 2
Hy .y f(x1,x2) :=p.v. fOr—t,x0—ulx)y@)) " Y (x1,x) eR
—00

is bounded on L”(R?), and especially L?(R)-boundedness of Cyu,y induces indeed
L2(R?)-boundedness of Hy,,.
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1 Introduction
1.1 Principal Result and Remark

Let u : R — R be a measurable function and y be a generalized plane curve,
the Carleson transform C, ,, along the general curve y is defined by setting, for any
function f in the Schwartz class S(R),

> oy dr
Cuy f(x) :=p.v. et f(x—t)T Y x e R. (1.1)

—00

Here and hereafter, p.v. [  denotes the principal-value integral. The Hilbert transform
H, , along the variable plane curve u(x)y is defined by setting, for any f € S (R?)
- the Schwarz class on R2,

© d
Hy ., f(x1,x2) == P~V-/ Sl —t,x0— u(Xl)J/(l))Tt V (x1,x) e R% (1.2)

Below we establish L!<?<*-boundedness of (1.1) and (1.2) for some generalized
curves.

Theorem 1.1 Letu : R — R be a measurable function, y € C3(R) be either odd or
evenwith y (0) = y’(0) = 0, and be convex on (0, 00) with the four curvature-oriented
properties that:

(i) 7;,%)) is decreasing and bounded by a constant C1 from above on (0, 00);

(ii) 3 a positive constant Cy such that t;,ﬂ(gt)) < Cz on (0, 00);

"
(iii) 3 a positive constant C3 such that |(%)/(t)| > % on (0, 00);

"
(iv) 7;,,((;)) is strictly monotonic or equals to a constant on (0, 00).

Then, given p € (1, 00) there exists a positive constant C independent of u such that

ICuy fllLrwy < Clifllr@wy ¥ f € LP(R);
1 Huy fllr@wey < Clfllrwey ¥V F € LP(R?).

Remark 1.2 Here, it is worth saying more words on the conditions on y whose curva-
ture is determined by

(t) = Y (1)

(1 + (V’(l‘))2>

vV t € (0, 00).

[SI[%)
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> From

y € C(R);
y(0) =y’ (0) = 0;
y being convex on (0, 00),

it follows that
min {y (1), y'(t),y" (1)} =0 V¥ 1 € (0, 00)
and y’ is increasing. We also know that
Y@ =y'(1) ¥ 1 ell, 00,
which further implies
Jim () = oo
Because y' is increasing on (0, 0o) and y (0) = 0, it is easy to check

- ty'(t)
- y@®

VY t € (0, 00).

On the other hand, since y(0) = 0, by Cauchy’s mean value theorem, for ¢t €
(0, 00) there exists & € (0, t) such that

ty'(t) _ ty'(t) — 0y’ (0) _ Y'(E) +E&y"(E)
y(@) y(@) —y(0) v/ (&) ’

Thus, by Theorem 1.1(ii),

ty'(t)
140

3C4:=Cy+ 1suchthat1 < < Cy4 V t €(0,00).

> Since y’ is increasing on (0, 00), Theorem 1.1(i) gives always

- Y’ (21)
oy

1

<C; V te(0,00).

> The following are some curves satisfying all the conditions of Theorem 1.1.
Here, we write only the part for any ¢ € [0, c0). For any ¢t € (—o0, 0], the curve
is given by its even or odd property - e.g. -

(1) forany ¢ € [0, 00), y1(t) := t* under @ € (1, 00);
(i) forany t € [0, 00), y2(¢) := 12 log(1 +1);
(iii) for any ¢ € [0, 00), y3(t) := f(; % log(l 4 7)dr under @ € (1, 00).

Birkhauser



11 Page4of33 Journal of Fourier Analysis and Applications (2022) 28:11

1.2 Some Historical Notes

From now on, the assumption p € (1, co) will be made.

Note 1.3 In[12, Theorem 1.2], Guo—Hickman-Lie—Roos obtained L” (Rz)-boundedness
of H, , with the curve in Remark 1.2(i), but with 1 # « € (0, 0o). Thus, as a special
case, Theorem 1.1 covers [12, Theorem 1.2] whenever a € (1, o0). The work [12]
explains much more about the proof ideas, but we will still make several contributions
to the argument.

> For a homogeneous curve, it is easy to see
y(ab) = y(a)y(b) ¥ a,b € (0, 00).

Since we seek L” (R?)-boundedness of H, , with a bound independent of u, it is
natural to absorb u(x) by y for any fixed x, which can be easily obtained with
y(t) :=t¥ due to

)y (1) = y (u)|an).

Furthermore, it is convenient to write

1= yaluolen)

leZ

for the homogeneous curve t*, which plays an important role in achieving [12,
Theorem 1.2], where ¢ is a standard bump function supported on

{teR: §|t|§2}.

1
2
Of course, this property cannot hold for a general curve y. Therefore, we have to
split our operator by a standard partition of unity; i.e.,

1=) .

leZ

> Our demonstration originates from the classic L? (R?)-theory for the Hilbert
transform along a curve; it is usually assumed that y is convex on (0, 0o). For the
low-frequency part, we need to assume that @ is increasing on (0, co), which
leads to the case in which y () := t%, where @ € (0, 1), which cannot be covered
in this paper. For a further decomposition, motivated by [13], we introduce the
map n : R — Z such that

) <|ux)| < x eR.

y (@i y @)
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One difficulty appears in L (R)-boundedness of C, ,, and L?*(R?)-boundedness
of H, . Itis crucial to establish a decay estimate of an oscillatory integral as that
in Proposition 2.4. If we have a homogeneous curve as in Remark 1.2(i), it is easy
to calculate the derivatives of the phase functions, and the decay estimation will
be easier to obtain. However, for a general curve y, we need a more complicated
analysis, and the assumptions (i), (ii), (iii) and (iv) of Theorem 1.1 for the curve
appear naturally during the estimation.

Another difficulty appearing in L?(R?)-boundedness of Hy, for p € (1,2) U
(2, 0o) is as follows. By the Littlewood-Paley theory and the commutative property

Hy,P =PH,, ¥YIclZ,

we need to establish a refined estimate for H, , x4n,(x;) P by the shifted maximal
operator. Here, P; denotes the Littlewood-Paley decomposition operator according
to the second variable and/ € Z. Guo—Hickman—-Lie—Roos, whoin [12] considered
the homogeneous curve as in Remark 1.2(i), did not need 7n;(x1), where the map
n;: R — Zforl € Z is defined by

<2ux))| < v x; € R.
Y

1 1
y(znt()ﬂ)-H) - (2m (1))

This new observation allows us to obtain the refined estimate for Hy. y k+n;x) P
with a great effort to control the dyadic pieces by the shifted maximal operator.

Note 1.4 If u : R — R s areal number A, then the operator in (1.2) is equivalent to
the following directional Hilbert transform H, ,, along a general curve y defined for
a fixed direction (1, A) by

o0 dr
Hj.y f(x1, x2) i= p.V-f fx1 —t,x2 = Ay () " Y (x1, x2) € R?,
—0Q

whose L? (R?)-boundedness can obviously be obtained by the Hilbert transform H,
along a general curve y:

e d
Hy f(x1, x2) I=P-V~/ f(xl—t,xz—y(t))?t Y (x1, x2) € R

This operator is of independent interest, and actually one of our major motivations.
There are many works on this problem; see, for example, [4,5,8,18,24,25]. On the
other hand, it is not hard to find

sup || By f || a2y < €Il eoy-
AeR

However, L? (R?)-boundedness of the corresponding maximal operator

sup |Hy y f(x1, x2)
AeR

Birkhauser
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cannot be obtained readily. In fact, by linearization, this uniform estimate is equivalent
to L? (R?)-estimate for

o0 dr
Hy .,y f(x1, x2) := P-V-/ fxr—t,x— U1, x2)y (1) - Y (x1, x2) € R?,
—00

where the bound must be independent of the measurable function U. However, it is
well known that Hy ,, might not be bounded on any L” (R?) if we merely assume that
U is a measurable function (cf. [12]). Therefore, we cannot assume

sup |Hy y f1 <CIflliLrme) -
reR LP(R?)
Instead, Theorem 1.1 shows
sup ” H .y f(1,2) ||L17(Rl )H <Clfllirwe) s
reR "2 LP(R})

which inserts the supremum between the two L”-norms on the left-hand side of the
equation. Here and hereafter, let -1 and -, denote the first variable x| and the second
variable x,, respectively. As Stein-Wainger mentioned in [22], the curvature of the
considered curve plays a crucial role in this problem, and the four conditions (i), (ii),
(iii) and (iv) of Theorem 1.1 are used to describe the curvature x of the considered
curve y.

Note 1.5 Bateman in [1] proved that if
y():=t VteR,

then H, , Py is bounded on L” (R?) uniformly for k € Z, where Py denotes the
Littlewood-Paley projection operator in the second variable. Later, Bateman-Thiele in
[2] proved L? (R?)-boundedness of H, , forall p € (%, 00). Moreover, let y be |£]|*
or sgn(t)|t|* for any t € R, where 1 # o € (0, 00) ; in [12] Guo—Hickman—Lie—Roos
obtained L? (R?)-boundedness of Hy., . Furthermore, Carbery-Wainger-Wright in [6]
obtained L? (R?)-boundedness of H,.,, but with the restriction that u(x;) := x; for

any x; € R, where y € C3(R) is either an odd or even convex curve on (0, 00)
ty//(t)
y'(1)
on (0, 00). Under the same conditions, Bennett in [3] obtained LZ(RZ)—boundedness
of

satisfying y (0) = y'(0) = 0 and the quantity is decreasing and bounded below

o d
Hp,yf(m,xz)::P-V-/ f(X1—t,X2—P(X1)J/(t))Tt V(x1,x) € R (13)
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for any general polynomial P. More recently, Chen-Zhu in [9] obtained L*(R?)-
boundedness of Hp , in (1.3) by defining the curvature condition as

"

A
(7)/0) < —t—zl for any ¢ € [0, co) and some positive constant Aj.

In [17], Li-Yu also obtained L?(R?)-boundedness of H p,y in (1.3) if the curvature
condition for y € C2(R) is replaced with that:

@) J;///’/((rl)) is decreasing on (0, 00);

(i1) 3 a positive constant A, such that ’;/,U(Y)) > MVt e (0,00);
(iii) p”(¢) is monotonic on (0, 00).

Note 1.6 Interestingly, all of these results for Hp , are based on the iteration of the
degree of polynomial P and hence cannot extend to a general measurable function
u. Accordingly, Theorem 1.1 is the first result for H, , with the generalized plane

curve y. Even more interestingly, L?(R)-boundedness of (1.1) appears in the study of
LZ(RQ)—boundedness of (1.2). Indeed, from [19] it follows that

1 Huy ll2@®2)— r2®2) < Sup 1Sall L2my— L2(R)
reR
where

® i)y dr
Sy f(x) :=p.v. e Y f(x—t)? Vx eR.

—00

Since L?(R?)-boundedness of H,,, will not depend on u, we need to establish only
L2 (R)-estimate for

® @y ) dr
Cu,yf(x) = p.v. e Y f(x —1) T Vx eRR,

—00

with a bound independent of u. This operator C,,, itself is also interesting. The original
Carleson transform C is defined by setting

Cf(x):= sup %' YV (f,x) e S(R) x R.

NeR

p.v./oo N F(x — 1)

—0Q0
By linearization,
ICflLrR)y SN fllerwy <= ICufllLrawy S I fllzr®).

where u : R — R is a measurable function and

® e dr
Cuf(x) :==p.v. e f(x —1) " Vx eR,

—00

Birkhauser



11 Page8of33 Journal of Fourier Analysis and Applications (2022) 28:11

and the constant in the last inequality is independent of u. In [7], Carleson obtained
L?(R)-boundedness of C, which plays an important role in obtaining almost every-
where convergence of a Fourier series of L?(R)-functions and also confirmed the
famous Luzin’s conjecture. Hunt later obtained L”(R)-boundedness in [14]. For
further results about C, we refer the reader to [10,15,16,20]. Stein-Wainger in [23]
considered the Carleson transform C, 4 along a homogeneous curve ¢ with integer
d > 1, namely,

Cuaf(x):= p.v./ O e g % Vv (f,x) e SR) xR,

—00

and showed that L? (R)-boundedness is independent of u. Guo in [11] extended C,, 4
further to a homogeneous curve |¢|¢! or sgn(t)|7|%2, where €1, € R, &1 # 1 and
g2 # 0. Thus, it is natural to consider C,.,, along a more general curve as presented in
Theorem 1.1.

1.3 Organization and Notation

The rest of this paper is organized as follows. Section 2.1 is used to collect three
lemmas for (1.1). In Sect. 2.2, we prove Theorem 1.1 for Carleson transform. Section
3.1 is devoted to obtaining the single annulus L” (R?)-estimate for (1.2). In Sect. 3.2
we verify Theorem 1.1 for Hilbert transform.

Throughout this paper, we use C to denote a positive constant that is independent of
the main parameters involved but whose value may vary from line to line. The positive
constants with subscripts, such as C1 and C», are the same in different occurrences.
For two real functions f and g, we use f < gor g 2 f todenote f < Cg and, if
f < g < f,wethen write f ~ g.

2 Verification of Theorem 1.1 for Carleson Transform
2.1 Three Lemmas
Before providing the proof of Theorem 1.1(i), we state three lemmas. Van der Corput’s

lemma is a useful tool to bound an oscillatory integral, but for the case of k = 1, a
simple lower bound on |¢'| is not sufficient. We need to add a condition that ¢’ is

monotonic such that
bla /1
—| == )|
a 1A\ @' (1)

is dominated by a constant. Lemma 2.1 is a slight variant of Van der Corput’s lemma
that replaces the additional condition with the condition that ¢” is bounded from
above. Lemma 2.2 is used to obtain an interesting fact: for the phase function ¢ of the

Birkhauser
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considered oscillatory integral, we must have

either |¢'| > 1 or |¢”]| > 1.
However, it is not sufficient to complete our estimate even if we obtained the surprising
lower bound on |¢’| or |¢”|, since we can take an infinite number of intervals such

that the lower bound is established on each of these intervals. Lemma 2.3 is used to
ensure that such a case does not occur.

Lemma 2.1 Suppose that ¢ is real-valued and smooth on (a, b) with two positive
constants o1 & o, obeying

¢ ()] = 01 & [¢"(x)| <02 V x € (a,b).

Then

b
/ it gy
a

Proof From the proof of van der Corput’s lemma, see, for example, ( [21], P.332,
Proposition 2), which bounds the integral fab €90 dr by

hg 1 ‘dl<£ b
+/Q ar <¢/(,>> ~ o */a

It is easy to deduce the desired conclusion of Lemma 2.1. O

2 o)
(oa] 0’1

(B Lid@
i¢(b) i¢'(a)

¢" (1)
@' (1)?

2
IS+ -a%.
(o] UI

Lemma 2.2 [13, Lemma 4.5] Let A be an invertible n x n matrix and x € R". Then,

|detAl|x]|

|Ax| = S
BE

where || Al| denotes the matrix norm sup|, . |Ax|.

Lemma 2.3 Let y be the same as in Theorem 1.1. For any a,b,c,d € Randd > 0,
there are at most a finite number of intervals such that

lay'(t) —=by'(t —c)| > d Q2.1

holds on each of these intervals, where t € R and the number of intervals is indepen-
dent of a, b, ¢, and d.

Proof Since (2.1) is equivalent to
ay't) —by'(t —c)—d >0

Birkhauser
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or
ay'(t) —by'(t —c)+d < 0.
Notice that y € C3(R), it is enough to show that
ay”" ) —by"(t —c) =0 (2.2)

has a finite number of solutions including there is no solution, or there are at most a
finite number of intervals such that (2.2) is established on each of these intervals, or
both, where the number is independent of a, b, and c. There are some cases:

If b = 0 and a = 0, then (2.1) does not exist; in other words, (2.1) has no solution.

If » = 0 and a # 0, and since y is either odd or even and y’ is increasing on
(0, 00), then Lemma 2.3 is easily obtained.

Ifb #0,c =0anda = b, then (2.1) does not exist.

Ifb #0,c =0and a # b, then (2.1) is equivalent to |(a — b)y’(¢)| > d; as stated
above, it is easy to see that Lemma 2.3 is established.

If b # 0 and ¢ # 0O, then Theorem 1.1(iv) gives

y"'(t) #0 VY t € (0, 00).
Notice that y is either odd or even. So
y'(@) #0 VY t € (—o0,0) U (0, 00).

It is easy to see that we should only consider ¢ # 0 and ¢ # c for (2.2). Then, (2.2) is
equivalent to

a y't-o
= Y eEV0.e) 2.3)
Let
F="""9 v R\ 0.0).
y" (1)

We see that if r € R \ {0, ¢} then

y'a=e) _ y"®
Yt — )y (1) =yt — oy ) VO L=y - 48]

(" (1)) y"(1)

Fl(t) =
(2.4)

Birkhauser
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7
From Theorem 1.1(iv) it follows that );//’ ((tl)) is strictly monotonic or equal to a constant

on (0, 00). Since y is either odd or even, the equation

y"(t — ) _ Y (1)
y't—co  y"@)

V1 eR\ {0, cl, 2.5)

has a finite number of solutions including the situation that there is no solution, or
3 at most a finite number of intervals such that (2.5) is established on each of these
intervals, or both, where the number is independent of c. Therefore, F/(¢) in (2.4)
has the same character as (2.5), and (2.3) also has the same character as (2.5). This
completes the proof of Lemma 2.3. O

2.2 LP(R)-Estimate for C,

We now prove Theorem 1.1 for C, , . The main strategy of our proof is to decompose
our operator into a low-frequency part and a high-frequency part. We want to bound the
low frequency part by some classical operators, such as the Hardy-Littlewood maximal
operator and the maximal truncated Hilbert transform. For the high-frequency part,
which is further divided into a series of operators {Sy}72 ), we want to obtain a decay
estimate for each of Sx. The main tools are the 7T *-argument, the stationary phase
method, and the lemmas introduced in §2.1.

Proof of Theorem 1.1 forC, ,, Supposethaty : R — Risasmooth function supported
on

and obeys

O<y@)<1VteR;
Tiezi(t) =1 YV t e R\ {0};
vit) =y Q7)) ¥V teR.

From Remark 1.2, we have that y is increasing on (0, co), and
lim y(t) = oc.
11— 00

We can define n : R — Z such that

MGTIGERNY < u()] < @) Y xeR. (2.6)

For any x € R, let

Coyi [ () = / @y pix r)x/w)%

—00

Birkhauser
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and decompose

Cuy fX) = D Cuyaf @)+ D Cuyrf @) =CL) f(x) +C3) f(x).

k<n(x)—1 k>n(x)

> For the low-frequency part Cf,lf, f(x) set
D ) = 6).
k<n(x)—1

Then

Ch fx) = pov. f

. dr
[gzu(x)y(t) _ 1] f&x—=0De) —
lr]<2n® t

dr

+p.v. fla—ne® +

[t]<2n ™) f

=T f(x)+ T2 f(x).
For T f, since y’ is increasing on (0, 00) and y(0) = 0, we have that @ o

increasing on (0, co). These properties, combined with the fact that y is either odd
or even and (2.6) is true, further implies that

nfws [ el K YD)
|#]<27(0) 2"
1
< s / el
< MFG). @7

Here and hereafter, M denotes the Hardy-Littlewood maximal operator defined
by setting
1 r
Mf(x) :=sup — |f(x—t)|dt Vx eR.
r>0 2r

For T, f, we have

-1 d
|T2f(x)|:‘/ f(x—t)&dt+p.v./ fae-nZ
[¢]<2n() t t

It <27
Lo e 2 o
2”(’“)“5\t|52"<x)
1 *
= W/ngzn(x) | f(x —1)| dt + H* f(x)
S Mf(x)+H" fx), 28)

) Birkhduser
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where H* is the maximal truncated Hilbert transform, which is defined by setting

H* f(x) := sup

&,R>0

dr
f f(x—1t)—| VxeR.
e<|t|<R t

Therefore, from (2.7) and (2.8) it follows that
CM f(x) S Mf(x) +H* f(x).
Itis well known that both M and H* are bounded on L? (R); therefore, we conclude

e fllr@ S I lLrm-

> For the high-frequency part Cb(,zi, f(x), we can then write

C'f;f(x) — Z/ elu(X)V(f)f(x — t)¢k+n(x)(t) Tt = Z Skf(X)

k>0 " k>0

For any given k > 0 we estimate

t
sireol = [ oy [P0 O]
2k+n(x)—15|,|52k+n(x)+1 |t|
1
= Smo—T — )| dt
T 2kt /t|<2k+n<x)+1 [fx =D
S Mf(x).

From this and the well-known L” (R)-boundedness of M it follows that

ISk fllrary SN FllLrw)s (2.9)

and the bound depends only on p. To summarize all k > 0, we need a decay
estimate for || Sk f|| L (). For this aim, we claim:

3 a constant wy > O such that || S fll 2wy S 2_w0k||f||Lz(R) VY k>0. (2.10)

Then, by interpolating between (2.9) and (2.10), we obtain a positive constant @,
such that

ISk fllze®y S 27K fllLe ),

which allows us to summarize all k > 0 and to obtain

IC2) fller@ S I lLr®-

Birkhauser
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Therefore, it remains to verify (2.10). We use a TT*-argument - the Stein-
Wainger’s approach in [23]. The dual operator of Sy is given by

o0
Si*e(y) = FW-/ e AV Em g 7O (g — M= 8 dz VyeR.

—00

Thus

eo]

SkSkt f(x) = P-V-/

—00

—n()—k¢, _ —n(x)—k
(p.v. /oo e—iu(z)V(z—x+t) YTz —x +1)) eiu(x)V(t) A G dt)
—00 Z— X+t t

f(2)dz. @2.11)

In the following calculation, without loss of generality we may assume that 2" <
21 Let & := x — z. Then, the kernel of S;S;™ can be written as

O —n(x)—k
p-v./OO iy e YT OHCE D) sy QYT
o —§+1 p

Upon replacing 27kt with ¢, the last quantity is equivalent to

_gp—n(@—k . 2"
p.v % i@y gy V(52 3@ ) iy YO
o oo —&+ on(x)+ky t

Now, we further set

zn(x) g
0<h:W§1&S=W
Then, the kernel becomes
1 p.v. /OO eiu(x)y(Z"(Xka)*iu(Z)V(2"(2)+k[ht*SJ) w (ht - S) w([) d
2n@)+k oo ht —s t

To evaluate the above integral we use an estimate from the forthcoming Propo-
sition 2.4. In fact, because W = s, by (2.12) of Proposition 2.4, we therefore
have

1SkSK* f ()] = V A T(zlm p.v. f 7 iy @iy (1O i)
’ —00
Y (ht —s) S) tlf(t)
i —s  W@dz

o0 1 _
5/ 2K [X[fszrl,szrl](s)ﬂ erX[—4,4](S)} |f(2)]dz
—00

) Birkhiuser
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- 2—kr1 —kra
S FoT / ity @I S / L @l

n(z)+k on(z)+ TES
S22 M) +27F M f ()
S 2OMEF (),

where yp := min {r, rp}. Since M is bounded on L?(R), we obtain the desired
estimate

,,
S22

1
”Sk”LZ(R)—)LZ(R) = ”SkSk*”lzlz(]R)*)LZ(R)

thereby completing the proof of Theorem 1.1 for C,, ,,.
Proposition 2.4 There exist positive constants ry and ry such that

p.v'/oo T )y QO 1) —iu(e)y (27O [ — A])Iﬁ(ht s) gb(t)
—o0 ht — s t

< C(X[,z_krl,z_krl](s) 40k X[_4,4](s)) VkeN & (x,z,5) € R3, (2.12)

where C is a positive constant independent of k, x, z, s, and u.

Proof Since ¥ : R — R is smooth and supported on

1
{teR: —§|t|§2},

\S)

it follows from 0 < & < 1 that

[t] <25
|ht — 5] < 2;

Is| < 4.
Let
0(1) := u(x)y 2"y — u(2)y Q"9 K[ hr —s]) Vi eR. (2.13)

It is clear that

Q'(1) = u(x)2"hy ! @nThyy — y(2)2n@Fhy QMO Bt — sDh Vi e R;
Q”(l‘) — u(x)22(n(x)+k)y//(zn(x)+kt) _ u(Z)ZZ(rl(z)+k)y//(zn(zH—k [ht — s])h2 VieR.

To use Lemmas 2.1-2.2-2.3, we need some estimates for Q" and Q. For this purpose,
we consider two cases. We want to remind the reader that the constants C; through
C4 are the same constants as in Theorem 1.1 and Remark 1.2.

) Birkhduser
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1
. <
Case A:0 < h < e

Since );/,((21’)) is decreasing on (0, 00), it follows that

y' Q' Y@y @l v

Y Y@y Q2 )

is decreasing on (0, oo) for any k € N. By Remark 1.2, we know

_ '@

1<
y (1)

< Cy4 ¥V t (0, 00).

Noting that y is either odd or even, y’ is increasing on (0, 00), (2.6) and

lt] <2;

lht —s| <2; V¥V te(0,00),

Y@ .
O Ci;

we obtain

10/(0)] = [u(@)2" 0 hy @m0 | — |u(@)2" @ hy @M+ e — 5| h

1 n(x)+k.,’ n(x)—i—k1
> —y(2"(x)+1)2 y' (2 5=

‘ y(2"®)

2n(x)+ly/(2n(x)+1) on(x)+k y/(zn(x)-i'k%) 7//(211()«7)4-1{) y/(zn(x))

2n(z)y/(2n(z)) 2n(z)+k y/(zn(z)+k2) 7//(Zn(z)—Hc)
y@@) 20 @R Ty @)

1 / 2n(x)+k i 2n(x)+k
( >2ky< ) (creay e,

203) 7 Y@ y'(210)
- L 2k y/(zn(x)+k)
—\4c? y/(n@)y

Using (2.14) and

ty”(t
PO Ve 000 & h=1,
y'(@®)

we find

|Q”([)| < M(x)22(n(x)+k)y//(zn(x)+kl)‘ + ‘M(Z)zz(fl(z)Jrk)y//(zn(z)ﬂc[ht _ S])h2

) Birkhiuser
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2n(x)+kt)y//(2n(x)+kt) y/(zn(xH—kt)
yr(zn(x)Jrkt) (2n(x)+kt)

u(x)zz(ll(x)+k) (

20O+ pe — sy (MO [ht — 51) ' (2" OFk Rt — 5]y,

- Y @@ — 51) @ Okt — )

u(z)22@+0 ¢

SZCZ ’u(x)z(n(x)+k)y/(zn(x)Jrkz) ‘ + 2C2 ’M(Z)z(i’l(z)+k)y/(211(2)+k2) ‘

<2C,C, 2(/1(x)+k)y/(2n(x)+k) +2C,Cy 2("(z)+k)y’(2n(z)+k)

y (270 y (2'@)
2n(X)y'(2n(X)) 2(n(x)+k) y/(zn(X)Jrk)

:2C1 C2 y(zn(x)) on(x) y/(zn(x))

2n(z)y/(2n(z)) 2(n(2)+k) y/(zn(sz)
y (21@) 1@y (2n@)

7(pn(x)+k 7 (Qn(2)+k
HVET) e E )
y/(zn(x)) y/(zn(z))

/(2n ()c)+k)

+2C1Cy

<2C1C2Cy

<4C,C,C2K Y

o) (2.15)

Combining (2.14) and (2.15), and using Lemma 2.1 and [21, p.334, Corollary] and
the fact that ¢’ is increasing on (0, 00), we get

‘p.v'/oo AUV QMO —iu(2yy (27O H (hi—s1) Y (ht —s) (1) dt‘
—0o0

ht —s t
1 yn(x)+k
| 4C1CHC 2 LB
< 4 y/(2)) =
~ e k J//(211(,\')+k) 1 r yl(2n(x)+k)
(4(:12) 2y it ) ¥ Sy
1
S % (2.16)

Thus, in this case, (2.12) holds with 7, = 1 and arbitrary positive constant rj.

1
C— <
Case B: 4C]3C4 <h 1.

If |s] < 2_§, and since ¢ : R — R is supported on

{teR: §|t|§2},

N =

it follows that the integral in (2.12) is bounded by C. Thus, in this case, (2.12) holds
withr; = % and arbitrary positive constant r;. In the remainder, we only consider the

k .
case |s| > 27 8. We write

(g((?)) — M7, 2.17)

) Birkhduser
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where M, s is a2 x 2 matrix and Y is the vector:

1 h
Mt,s = <2n(x)+ky//(2n(x)+kl) 2"(7)+ky”(2"(z)+k[hl—s]) h2 5
y! (2n(0)+k) y!(2n@+k[ht—s])

u(x)zn(x)-i-kyl(zn(x)-i-kt)
T =
_M(Z)zn(z)+ky/(2n(z)+k[ht —5))

We may compute immediately as in (2.14) that
|T| > ‘u(x)zn(x)-l—ky/(zn(x)-i-kt)‘ > Lz
2C
Moreover, let
_ 2n(x)+kty//(2n(x)+kt) .

bo = on(z)+k (hlfs)y"(Z”(Z)H‘ [ht—s])
0 Y @O hi=s)

v 1 h
ts = 1 h? .
aoy bo ht—s

We can rewrite

From

it follows that
lagl <= C2 & |bo| < C2,
and

M5l = sup [M; x| S 1.

|x]=1
From (2.18) and Theorem 1.1(iv), together with

n(x)

sl<4 & h="r

) Birkhiuser
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and the generalized mean value theorem, we have a positive constant 6 € [0, 1] such
that

J///(211(,\1)+kt _ 2n(z)+ks) y//(zn(x)+kt)

__ g an(x)+k _
|detM; 5| =h2 y/(Z”(x)+kt _ 2n(z)+ks) y/(zn(x)+kt)

AN
—pon(+k (V_/> (2n(x)+kt _ 2n(z)+kse) @)tk
14

> C3h 20k [Zn(x)+kt _ 2n(z)+kse]’2 An(0)+k g

Cshls|
(t — 4s6)’

>07%, (2.21)

Combining (2.19), (2.20), (2.21), and Lemma 2.2 with n = 2, we therefore have

B Tk 7//(2;1()c)+k)
My s > |detMy || My || 71T 228 ——— =,
y'(2n)

and consequently,

/ 2 Vi 2 Tk y/(zn(x)+k)
VIeOP 10" 224 L

By the pigeonhole principle, there are two cases.

> If

Q) 2 2E VA
~ y/(2r)
2n(x)

then h = 557

follows by Lemma 2.3. Let

a = u(x)2"0+k.
b= u(z)2"Otkp;
¢ = 2"tk

Tk .7 (Hn(x)+k
Ry (2 ).
d =25 Lo

f o= 2n+ky

We see that this case only happens in at most a finite number of intervals, and the
number of these intervals is independent of x, z, s, k and u. Using (2.15), from
Lemma 2.1, [21, p.334, Corollary], and (2.16), we find that the integral in (2.12)
on this portion is established with r, = % and an arbitrary positive constant ry.

) Birkhduser
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> If

ryn(x)+k
0" > 2% E )
~T e

then the argument for the first case shows that this second case also only happens
in at most a finite number of intervals. By van der Corput’s lemma, similarly to
(2.16), we conclude that the integral in (2.12) on this portion is established with
ry = 17_6 and an arbitrary positive constant rj.

Altogether, we now show that the integral in (2.12) is established with r, = % and
an arbitrary positive constant r1, whence completing the proof of Proposition 2.4. O

3 Verification of Theorem 1.1 for Hilbert Transform
3.1 Annulus LP (R?)-estimate for H, ,,

Recall that ¥ : R — R is a smooth function supported on
telR: ! <|t| <2
P =l s

and enjoys

0<vy@)<1Vr¢iekR;
Tiezi(t) =1 YV 1 e R\ {0};
(1) ;== Q7't) YVt eR.

For any [ € Z, let P; denote the Littlewood-Paley projection in the second variable
corresponding to 1;, namely,

Pif(x1,x2) = / Fx1,x — 2¥i(z)dz ¥V (x1, x2) € R2

Theorem 3.1 Let u and y be the same as in Theorem 1.1. Then

I Huy Prflle@wey < CIPLS o w2y
holds uniformly in | € Z, and the bound C is a positive constant independent of u.

Proof By the anisotropic scaling:
x1 = x1 & xa3 — 27y,

Birkhauser
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we consider only the case I = 0. Set

o0

d
Hy .y Pof(x1,x2) 1=/ Pof(x1 —t,x2 —ux)y @)y (t) Tt

—00

Letn : R — Z be such that

1
W < |M()C])| < m Y X1 € R. (31)

We make the following decomposition:

HyyPof(x1,x2) = Y HuyiPofix)+ Y HuyiPof(x1,x2)
k<n(x1)—1 k>n(xp)

=t H{Y) Py f (x1.x2) + HE) Po f (x1, x2). 32)
For H;‘; Py f, let p be a non-negative smooth function with

suppp C{§ e R: } < [&] <4);
p=1on{§ecR: J <[§] <2},

and
oo
Po f (x1, x2) :=/ Jx1,x2 —$)p(s) ds.
—00
By a Fourier transform, it is easy to check
PoPof = Pof. (3.3)

e > We first consider H;})),]P’Of. If

PR ACEION

k<n(x;)—1

then

d
H{UPo f (x1,x2) = p.v. f Po f(x1 — 1, x2 — u(x1)y (1) (1) 7[

jr] <200

Let us consider an approximate operator

- d
HPg f(x1,x2) := p-V-/ Po f(x1 —t, x2)¢ (1) 7t

NECY

Birkhauser
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As shown in (2.8), we have
HRPo f (x1,x2) S MiPof (x1, x2) + H{Po f (x1, x2). (34)

Here and hereafter, 7:{’1" denotes the maximal truncated Hilbert transform applied
in the first variable, M and M; denote the Hardy-Littlewood maximal operators
applied in the first variable and the second variable, respectively. Since both M
and 7%*1‘ are bounded on L?(R?), from (3.4) we may conclude

||[:1P0f||Lp(R2) S ”]POfHLP(RZ) 5 ||f||LP(R2)~ (3.5)

e > Now we turn to the difference between HLE}}),IP’O f and HP, f, which can be
written as

00 d
p.v. /II e / fOr—t,x0—2) [pz —ulx)y (1)) — p(2)] dzep (¢) —:-
1]<2"YD) J —o0

Since y is increasing on (0, 00) and || < 2"V, we have

lu(x)y (O] < lux)]y ") < 1.

Then, apply the mean value theorem to obtain
|,0V( —u(x))y () —,5( NS g —1 1@ ux)y @)
ux ux .
< 1 DI (| 1| 1)2 Xlm,m+1](Z 1

Because

DR
(Im—=1]+ 12

mez

it suffices to dominate the operator defined by setting for any fixed m € Z,

m+1
Ko f(x1, %) :=/ /| o —Lm—@l%d)(ﬂdrdx
m 1| <2nx

with a bound independent of m and u. By Minkowski’s inequality, (3.1) and notic-
ing that @ is increasing on (0, 00), we have thatif 1| < p < oo then

1K f DY

0 m—+1 »
5/ (f / If e =2, 2o )be(t) d dz) dxy
—00 \Jm [t]<2m1) X I]

(0.¢] nx P
lu(x)y "))
< —t,- T T (r)dr ] dx
= / </|152"(X1> I1f (x1 Dlerel,) 2G| ¢ (1) 1

—00

Birkhauser
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00 1 P
< — x| —t,- dr ) dx
= /_OO (211()61) ~/|t|§2”(‘1> I (x1 2)||LP(R)1(2) ) 1

< [ (Mare D lm o) an

—00

ST @ (3.6)

and hence
IHD PofllLrgey S 1 F ez
follows from (3.5) and (3.6). Accordingly, (3.3) implies
IHD PofllLeaezy S WPOf o re)-

e > For Hu(z}), Pof let f := Py f. Then we can write

o d
H? flxi,x) =) / =t = a0y 0)ne () {

k>0""

By Minkowski’s inequality and (3.6), we have

SIfllewey (37
LP(R2)

o d
H/ FCr—=t,2—=uCDyO)¥nc)+i() TI
and then use (2.10) to get

.S 27K £l 2wy
L2(R)

% Oy dr
e FC =DV (@) —
o t

which ensures

R dt onk
/ SCr—=1t, 2= uC)yE)Yuc)+£ @) I’ S 27N fll 2wy (3-8)

L2(R?)
By interpolating between (3.7) and (3.8) and making a sum over k > 0, we obtain
IHZ) i@y S IfIlLr@e) under p € (1,00),

thereby completing the proof of Theorem 3.1.

O

) Birkhduser
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3.2 LP(R?)-estimate for H, ,

As explained in Note (1.6), the case p = 2 can be obtained by the L?(R)-boundedness
of (1.1). So, it remains to handle the case p € (1, 2) U (2, co). Our argument (actually
for any case p € (1, 00)) crucially relies on the commutative property between H, ,
and P;. Accordingly, we can turn our attention to a square function. As before, we
also decompose our operator into a low-frequency part and a high-frequency part. The
low-frequency part is controlled by the Hardy-Littlewood maximal operator and the
maximal truncated Hilbert transform. The high-frequency part is also represented by a
series of operators. Building on the already proved L?(R?)-estimate with bound 20k
and the interpolation strategy, it suffices to obtain an L” (R?)-estimate with bound k2.
This unusual L” (R?)-boundedness can be achieved by the shifted maximal operator,
which forms a pointwise estimate for taking the average along the variable plane curve

u(xy)y.

Proof of Theorem 1.1 for H, ,, We note that the commutative property
Hu,y P[ = PlHu,y

holds for any / € Z. By the Littlewood-Paley theory, it is enough to show

1
2
[Z |Hu,szf|2] S f o) (3.9)

leZ LP(]RZ)

Regarding (3.1), forany / € Z, let n; : R — Z be such that

<2 u(xy)| < V x; e R. (3.10)

1
yuen+ly = y (2m(1))

In a similar way to handle (3.2), we decompose H,, , P; as

Hy .y P f(x1, x2) = Z / Prf(xy —t,x2— M(M)V(l))l/fk(t) —

k<nj(x;)—1
=S / Pkt = 1,60 = W)Y Wik O -
k>0
= H{)Pf(x1.x2) + ) Huyksmen PLf (1. x2). (3.11)

k>0

Using the triangle inequality, the left term of (3.9) can be controlled by

1

2
|: ‘H(I)Plf’ :| —|—Z |:Z|HM»V,k+nl('l)Plf|2:| (312)
leZ

Loy k=0 Liez Lo ®?)

Birkhauser
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> For the low-frequency part in (3.12), let

D k<n () —1 YE () =2 @(1);

H f(x1,%2) = pV. [l cmee f &1 = 1,02)(0) G-
As done in (2.8), we may obtain
HP f(x1,x2) S MiPif(x1,x2) + HPLf(x1, x2), (3.13)

The vector-valued estimate for M follows from the corresponding estimate for
the one-dimensional Hardy-Littlewood maximal function. Similarly, the vector-
valued estimate for 7:[]" follows from Cotlar’s inequality and the vector-valued
estimate for the Hilbert transform and the maximal function. Then, from (3.13)
and the Littlewood-Paley theory it follows that

1

o]

leZ

1
< [Z |sz|2} Sl (3.14)

LP(R2) leZ LP(R?)

> Concerning the difference between HM(I; P f and HP, f, we recall that p is a
non-negative smooth function obeying

51 = 4}

suppp C {s e R: 1 <
eR: L <s|<2).

1
pt)=1VY te{s 3

Let
pi(s) :=pQ7ls) ¥V 1€
{sz(xl,xz> = [ F X1, x2 = $)p(s) ds.
Then, taking Fourier transform gives
PPf=Pf. (3.15)
The difference between HLSI; P; f and H P, f can be written as

o0 d
p.v./| » )f F@r = t.x0 =) [Bils — uGen)y () — ()] ds¢<t)7t.
t< ny(xg —00
(3.16)

By the mean value theorem, we have
161(s —w) — f(9)] S (w2227 ¥ jw| <27

Birkhauser
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if s is in the annulus
27Tl <5 <27t v jeN.

Meanwhile, for j = 0, the estimate holds for all |s| < 2~ Because y isincreasing
on (0, 0co) and y is either odd or even, from (3.10) it follows that

2Hue)y @] < 2 u) |y @O0y <1 ¥ i < 2mCD,

Thus, the absolute value of (3.16) can be estimated by a positive constant multiplied
by

Z/ / |F (1 — 1, 30 — 5)[22272 u (x1)|‘y() dsdr. (3.17)
|r|<2m @D J|s|<2—1+i

Notice that @ is increasing on (0, 0o0), and y is either odd or even. So we can
use (3.10) to control (3.17) via

)3 7651 = 11z — 91222 2t | L2 gy
|r|<2m &) Jys|<2-1+i ’ ony(xr)
Yo f : / (1 — 1, x2 — )] ds dr
X1 —t,x2—s)|ds
~ = ony(x1) It <2 G 2— —I+] s <2+ 1 2
S MM f(xq, x2). (3.18)

Therefore, the vector-valued estimates for M and M», the Littlewood-Paley theory,
(3.15), the triangle inequality and (3.18) yield

> >
[Z‘Hé,lﬁsz—ﬁsz.Z} = [Z)Hs,’;mw—ﬁwﬁ\z}
leZ LP(R2) leZ LP(R2)
>
S [Z |M1M2P1f|2}
leZ LP(R2)
S llerwey - (3.19)

From (3.14) and (3.19) it follows that

|: ‘H(I)Plf‘ :| S lLr w2y -
1eZ

LP(R2)

) Birkhduser
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> For the high-frequency part in (3.12), it is enough to show that there exists a
convergent series {Ck},fio such that for any k£ > 0,

1

2
2
[Z | Huty ketm (1) P | } SClflre - (3.20)

leZ LP(RZ)

If p = 2, then noting that the bound in (2.10) is independent of u, we can replace
u with 2'u in (2.10). By the Littlewood-Paley theory we have

2
2 _
[Z |Huy keemi (1) P | ] S 27 fll 2 e (321

1eZ 12 (Rz)
for some positive constant wg. So, it remains to verify that

1

2
2
[Z | Huty ety P | } SKNS e (322)

leZ LP(RZ)

holds for all 2 £ p € (1, 00), since (3.20) follows from the interpolation between
(3.21) and (3.22). Notice that

Hu,y,k+nl(x1)Plf(xls x2)
=f / Fr—tx —u(x)y () — )Mvmdtds

00
5/ / [f(x1 —t,x
%zk-%—nl(xl)§|t‘52.2k+”1(x1) —00

—u(x)y (@) — )| M‘m(sndsdt

1 o
S sees |fxr —1,x2
~ 2k+nl(X1) \/%‘ZkJrnl(xl)fI|S2'2k+n[('¥1) v/;OO ’

—u(x)y () —27'5)||p(s)| ds dr
7+1
/ G =3

<Z(1+|r|)“

2k+n/(x1) A2k+n1(x1)S|[|§2‘2k+n[(x|)

— u(xl)y(t) - 27 s)| ds dt

(1+Jzh~* / /1
< (x1 —1,x2
Z 2k+ny(x1) %2k+n1(x1)S|[|§2,2k+n,(x,> 0 I

—u(xl)y(t) —27Ms + 1))| ds dr. (3.23)

) Birkhduser



11 Page28o0f33 Journal of Fourier Analysis and Applications (2022) 28:11

So, we are led to control the last term in (3.23) by
Nk

1
1 (o )
_— mn -1, dl
2 A T I |/ fa=t.x0)
TEL m=|

@)
where {I,,, }N" ! and the shifted maximal operator Még’" ) will be given below. By

a scaling argument, it suffices to prove

ZM/ /1|f(x1—tx2
2k+n1(xl) %2k+"/(xl)§\t|§2~2k+”l()‘1) 0 ’

T€l
—2lu(x)y () —s — 7)|ds dt
< Z—l 3 / MO Fxy = 1, x) dr. (3.24)
~ = TS = 1] '

We cover the region

{t ceR: 12k+n1(X1) <t <2- 2k+nl(X1)}
) ==

by intervals {7, } where

mO’

1 m
I, =1t e R: —2ktm@x) <t
" { 2 * 2 u(xy) |y @kHmb0y = d

< Lokmen) m+ 1
=32 2y @)

and N € N enjoys

3. pktmG—1 _ Ni <. okt (3.25)
2llu(x1)|)/ (2k+mGny = '
Therefore,
[In| = :
T 2y |y @Ky
which implies
1 1 1

2 1+k+n;(x1) = Ny - |Im| = 3. Qk+ni(x)—1° (326)

) Birkhiuser
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Thus, the first term in (3.24) can be controlled by
Ni—1 1

Z—l Z—/ /llf( £ x2 — 2uCen)y () o)|ds di
X1 —t,x2—2'u(x -5 — s dr.
A+ ITD N = Ul Sy, Jo 707072 vy

T€Z

(3.27)

Without loss of generality, we may denote

R, = {(t,2[u(x1)y(t) fs+1)eR:tel,.se 0, 1)} C 1y X Iy,

where
Jn = 1[Ja, Jb];
.ol Inktny(x)) o _ m :
Ja =2 u(x)|y (22 n(x) 4 2’|u(x1)|y’/ﬂ(2"+”l("1))) +1;
.l 15k +1
Jb = 2ur)ly ($2H00 4 ) 1 e
We can show
[Jm| =~ 1. (3.28)
In fact, the mean value theorem implies
_ 1 / 1 k+n;(x1) m + 0
9l =1+ Sy (32 + Ty oy
for some 0 € [0, 1].
It is easy to see
[Jm| = 1. (3.29)

Also, from 6 € [0, 1] and (3.25) it follows that
m+60<Np—1460 <N <2 280020, x|y kHmO)y,

Since y’ is increasing on (0, 0o) and

YD) v e (0. 00).
1)
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we obtain

(4 . pk+ni(x1) (4 . pktnmi(x1)y 4,7 (0 . pk+ni(x1)
y'( ) y'( ) Y ( )<1+C12'

Il =14 y/(2k+n](x1)) - Y- 2k+n1(x1)) y/(2k+n1(x1)) =
(3.30)

Now, both (3.29) and (3.30) yield (3.28). Furthermore, (3.27) is bounded by

Nie—

1
1
Tezzmm A |/ |Jm|-/ | f(x1 —t,xp —s)|dsde.  (3.31)

Given a non-negative parameter o, the shifted maximal operator is defined by

1
M@ F) = sup — / ()] de.
] Jie

zelCR
where /(@) denotes a shift of the interval I := [a, b] given by
19 :=la—0-|I,b—o-|I[]lUla+0c|I|,b+0o |l
Upon observing

1

2)
A |f 1 — 1, x0 — s)|ds < M) f(xy — 1, x2), (3.32)
m

@)
where Mé”’" ) is a shifted maximal operator applied to the second variable and

2Hu(x))| (1 m T
@ ._ k- (x1)

oy) = ———y (=2 + +—,
" Il 7 (2 2Hu (xy) |y’ (2kFm0) [T

and a combination of (3.31) and (3.32) derives (3.24). Altogether, we obtain

Nkl

1
| Huy bemen PLf e x) S

(Um )
4 f f(xl -1, XZ) dr
2 TN 2 Tl sy

(3.33)

for any [ € Z, thereby using (3.15) to reach

|H, P E ! M("'" p - d
oy oy PLE (01, x2) | S (1+Ifl)4Nk IIm 1 f(x1 —t, x2)dt
(3.34)

forany !/ € Z.
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Since y (0) = 0, Remark 1.2 and Cauchy’s mean value theorem imply

YCD el ¥ 1 e (0. 00).
y(@)

Notice that y is increasing on (0, 00). So combining

m<Ny—1=<N;

and (3.10), (3.25), (3.28), we obtain

1 1 m T
@ (1 N\ (Lyermen n
Im = <|Jm|y<2"'<x'>)>y (2 21|u<x1)|y/<2k+"1<m)> T

<( ! ) (12k+ﬂz(m)+2 28X Yy (xq) |y (25T ))_’_r

y(znl(Xl)) Y 2 21|u(x1)|y’(2k+’”("1))
ny(x1)+k+2
AN )
~ oy ui)
QCHM? 4 1. (3.35)

+7T

AN

From [12, Theorem 3.1], (3.35) and the Littlewood-Paley theory, we obtain the fol-
lowing vector-valued estimate for the one-dimensional shifted maximal operator:

>

leZ

o) 272
My™ “Pf(1—t,2)
LP(RL)
1

2 2
< [log + 10,21 [Z PLf 1 =1, ~2>|2}

leZ LP(R/{.Z)

2
< [log@ + @2+ 1Tn [ 1f 1= 1 Dl
SEA+ DI Cr =1 D) -

Combining (3.34), the triangle inequality and Minkowski’s inequality yields that the
left-hand side of (3.22) is controlled by

1

I 1S 02 712
Om
2 TR | 2 T [Z MRSt ) } @
T€Z m=0 " In leZ (Rl
Lr®y) ey
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Consequently, the above expression is bounded by

1 1 Ni—1

1
ey L L —/ 1 Cr— £ D)l g dr
2 Ty Nk,;)um W L Ry)

T€Z LP(R;I)

With the help of (3.25) and (3.26), we can control the above term by

: /
2k4ni (1) kg (D=1 < || <50k (1)1

lfC1—t, '2)||LP(R{,2) dr

1
2y

2

(1 +]))

LPRL)

ey m o1 (176 2 eoary) )
T€Z

LP(RL)

1
Y e Dl
% (1+[e)? )

SENf L@ -

LPRL)

Accordingly, we obtain (3.22), thereby completing the proof of Theorem 1.1 for H,, ,, .

m}
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