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Abstract
Form ∈ Rwe consider the symbol classes Sm ,m ∈ R, consisting of smooth functions
σ on R

2d such that |∂ασ (z)| ≤ Cα(1 + |z|2)m/2, z ∈ R
2d , and we show that can be

characterized by an intersection of different types of modulation spaces. In the case
m = 0 we recapture the Hörmander class S00,0 that can be obtained by intersection of
suitable Besov spaces as well. Such spaces contain the Shubin classes �m

ρ , 0 < ρ ≤ 1,
and can be viewed as their limit case ρ = 0. We exhibit almost diagonalization
properties for the Gabor matrix of τ -pseudodifferential operators with symbols in
such classes, extending the characterization proved by Gröchenig and Rzeszotnik
(Ann Inst Fourier 58(7):2279–2314, 2008). Finally, we compute the Gabor matrix
of a Born–Jordan operator, which allows to prove new boundedness results for such
operators.
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1 Introduction and Results

Modulation spaces were originally introduced by Feichtinger [17] in 1983 and have
revealed to be very useful in many different frameworks, which include harmonic
analysis, quantummechanics, pseudodifferential andFourier integral operators, partial
differential equations (we refer the reader to Sect. 2 for their definitions and main
properties).

Several authors have studied inclusion relations of such spaces with other classical
function spaces such asBesov, Triebel–LizorkinGelfand–Shilov spaces [25,35,39,44].
In particular, when they are considered as symbol classes for pseudodifferential or
Fourier integral operators, their relationship with classical symbol spaces such as
the Hörmander classes or the Shubin–Sobolev spaces has been investigated in many
contributions (see e.g., [4,11,29,40] and the references therein).

In 1994 Sjöstrand [33] introduced the first symbol class via time-frequency
concentration on the phase-space, the Sjöstrand class, which later revealed to be
a type of modulation space. This rough symbol class have been inspired many
works on pseudodifferential operators with symbols in modulation spaces (see, e.g.,
[2,3,11,22,23,30,36–39] and the book [11]). The contributions are so many that it is
not possible to cite them all.

In [34] Sjöstrand continued his study on pseudodifferential operators with rough
symbols and he also considered the symbol class object of our study. Namely, for
m ∈ R, let us define

Sm(R2d) =
{
σ ∈ C∞(R2d) : |∂ασ (z)| ≤ Cα〈z〉m, α ∈ N

2d , z ∈ R
2d

}
, (1)

for the definition of 〈z〉m see (12). Notice that this is a special instance of the class
S(w) introduced in [34, Formula (3.2)].

There were several papers/books in the seventies and eighties where this symbol
class were considered. For example, the whole theory of the Weyl calculus, e.g. in [6]
can be applied on this class.

Another work on pseudodifferential operators with symbols of the type above is
due to Rochberg and Tachizawa [31]. Later, these classes were considered as spaces
for symbols of Fourier integral operators [12, Remark 3.2].

For m = 0 we recapture the standard Hörmander class S00,0(R
2d): pseudodifferen-

tial operators with these symbols are an algebra which is closed under inversion. This
claim was originally proved by Beals [1] and later recaptured by Gröchenig and Rzes-
zotnik [24], using time-frequency analysis; key tool was the almost diagonalization
property of the related Gabor matrix.

We continue this spirit of investigation and present a characterization of pseudod-
ifferential operators with symbols in Sm(R2d) in terms of the decay properties of the
related Gabor matrix. Let us introduce the main features of this work.

For τ ∈ [0, 1], the (cross-)τ -Wigner distribution is the time-frequency representa-
tion defined by
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Wτ ( f , g)(x, ω) =
∫

Rd
e−2π iyω f (x + τ y)g(x − (1 − τ)y) dy, f , g ∈ S(Rd),

(2)

cf. [27]. Given any tempered distribution σ ∈ S ′(R2d), the τ -pseudodifferential oper-
ator Opτ (σ ) can be introduced weakly as

〈Opτ (σ ) f , g〉 = 〈σ,Wτ (g, f )〉, f , g ∈ S(Rd). (3)

The Weyl form OpW(σ ) of a pseudodifferential operator can be recaptured when
τ = 1/2, the Kohn–Nirenberg case OpKN(σ ) corresponds to τ = 0.

Given z = (x, ω) ∈ R
2d , we define the related time-frequency shift acting on a

function or distribution f on R
d as

π(z) f (t) = e2π iωt f (t − x), t ∈ R
d . (4)

Let us recall the definition of a Gabor frame. Given a lattice 
 = AZ2d , with A ∈
GL(2d,R), and a non-zero window function g ∈ L2(Rd), we define the Gabor
system:

G(g,
) = {π(λ)g : λ ∈ 
}.

The Gabor system G(g,
) is called a Gabor frame, if there exist constants A, B > 0
such that

A‖ f ‖22 ≤
∑
λ∈


|〈 f , π(λ)g〉|2 ≤ B‖ f ‖22, ∀ f ∈ L2(Rd). (5)

Fix g ∈ S(Rd)\ {0}. TheGabor matrix of a linear continuous operator T from S(Rd)

to S ′(Rd) is defined to be

〈Tπ(z)g, π(u)g〉, z, u ∈ R
2d . (6)

This Gabor matrix can be viewed as the kernel of an integral operator, cf. Sect. 2 for
details.

For τ ∈ [0, 1], define the change of variables

Tτ (z, u) = ((1 − τ)z1 + τu1, τ z2 + (1 − τ)u2), z = (z1, z2), u = (u1, u2) ∈ R
2d .

(7)

We possess all the instruments for the characterization of Sm(R2d):

Theorem 1.1 Consider g ∈ S(Rd) \ {0} and a lattice 
 such that G (g,
) is a Gabor
frame for L2

(
R
d
)
. Fix m ∈ R. For any τ ∈ [0, 1], the following properties are

equivalent:
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(i) σ ∈ Sm
(
R
2d

)
.

(i i) σ ∈ S ′ (
R
2d

)
and for every s ≥ 0, 0 < q ≤ ∞, there exists a function Hτ ∈

Lq
〈·〉s (R2d), with

‖Hτ‖Lq
〈·〉s

≤ C, ∀τ ∈ [0, 1], (8)

such that

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ ≤ Hτ (u − z)〈Tτ (z, u)〉m, ∀u, z ∈ R

2d . (9)

(i i i) σ ∈ S ′ (
R
2d

)
and for every s ≥ 0 there exists a sequence hτ ∈ �

q
〈·〉s (
) with

‖hτ‖�
q
〈·〉s

≤ C for every τ ∈ [0, 1], such that

∣∣〈Opτ (σ ) π (μ) g, π (λ) g
〉∣∣ ≤ hτ (λ − μ)〈Tτ (μ, λ)〉m, ∀λ,μ ∈ 
. (10)

For the Hörmander class S0(R2d) = S00,0(R
2d), the Gabor matrix characterization

for Weyl operators was shown by Gröchenig and Rzeszotnik in [24, Theorem 6.2]
(see also [31]) in the case q = ∞. So this result can be viewed as an extension to any
0 < q ≤ ∞ and τ ∈ [0, 1].

The central role in the proof of the result above is the characterization of the class
Sm(R2d) by an intersection of weighted modulation spaces (in particular, weighted
Sjöstrand classes): for 0 < q ≤ ∞,

Sm(R2d) =
⋂
s≥0

M∞,q
〈·〉−m⊗〈·〉s (R

2d),

cf. Lemma 2.2.
For the special case m = 0, the Hörmander class S0(R2d) = S00,0(R

2d) can also be
represented as the intersection of Besov spaces and Hölder–Zygmund classes:

S00,0(R
2d) =

⋂
s≥0

Cs(R2d) =
⋂
s≥0

B∞,q
s (R2d) =

⋂
s≥0

M∞,q
1⊗〈·〉s (R

2d),

cf. Lemma 2.3, which extends the characterization in [24].
Observe that Sm contains the Shubin classes �m

ρ , 0 < ρ ≤ 1, defined as [32]

�m
ρ (R2d) = {σ ∈ C∞(R2d) : |∂ασ (z)| ≤ Cα〈z〉m−ρ|α|, α ∈ N

2d , z ∈ R
2d},

and can be viewed as their limit case ρ = 0. The Shubin classes enjoy a symbolic
calculus very useful when dealing with the corresponding pseudodifferential oper-
ators. This is not the case of Sm(R2d). Hence, the characterization in Theorem 1.1
might be an instrument to infer boundedness, composition, inversion properties of the
corresponding operators in suitable function spaces, such as the modulation ones.
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As a byproduct, Theorem 1.1 allows to compute the Gabor matrix decay of a
Born–Jordan operator.We present some continuity properties of the latter on weighted
modulation spaces, extending the work [8].

This study paves the way to other possible investigations. For instance, when the
symbol σ on R

2d satisfies a Geverey-type regularity of order s > 0:

|∂ασ (z)| � M(z)C |α|(α!)s, α ∈ N
2d , z ∈ R

2d , (11)

with M any possible v-moderate weight (see Sect. 2 for its definition). These symbols
were applied in [13] to investigate the sparsity of the Gabor-matrix representation of
Fourier integral operators. In this case we conjecture that the right modulation spaces
to be considered are of the type M∞,q

M⊗e−ε|·|1/s (R
2d).

Eventually, one might extend the characterization exhibited in Theorem 1.1 to
Fourier integral operators of Schrödinger-type with symbols in Sm and suitable phases
as in [10]. This will be the object of a further work.

The paper is organized as follows. In Sect. 2 we present the function spaces object
of our study. In particular, we focus on modulation spaces and present the properties
needed for our results. We then prove the characterization of the classes Sm(R2d) and
in particular of the Hörmander classes S00,0(R

2d). Section 2.1 is devoted to the study
of the Gabor matrix for τ -operators and Born–Jordan operators. As an application,
boundedness results on modulation spaces are exhibited.

2 Function Spaces and Preliminaries

In this manuscript ↪→ denotes the continuous embeddings of function spaces. Recall
that the conjugate exponent p′ of p ∈ [1,∞] is defined by 1/p + 1/p′ = 1.

The notation yω means the inner product y · ω, |x | stands for the Euclidean norm
of x and x2 means |x |2.

We denote by v a continuous, positive, submultiplicative weight function on R
d ,

i.e., v(z1 + z2) ≤ v(z1)v(z2), for all z1, z2 ∈ R
d . We say that w ∈ Mv(R

d) if w is a
positive, continuous weight function on R

d v-moderate: w(z1 + z2) ≤ Cv(z1)w(z2)
for all z1, z2 ∈ R

d (or for all z1, z2 ∈ Z
d ). We will mainly work with polynomial

weights of the type

vs(z) = 〈z〉s = (1 + |z|2)s/2, s ∈ R, z ∈ R
d (orZd). (12)

Moreover, we limit to weights w with at most polynomial growth, that is there exist
C > 0 and s > 0 such that

w(z) ≤ C〈z〉s, z ∈ R
d . (13)

We shall work mostly with weights on R
2d or Z2d ; we define (w1 ⊗ w2)(x, ω) :=

w1(x)w2(ω), for w1, w2 weights on R
d .
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Spaces of Sequences For 0 < p ≤ ∞, w ∈ Mv(Z
d), the space �

p
w(Zd) consists

of all sequences a = (ak)k∈Zd for which the (quasi-)norm

‖a‖�
p
w

=
⎛
⎝ ∑

k∈Zd

|ak |pw(k)p

⎞
⎠

1
p

(with obvious modification for p = ∞) is finite.
We are going to use the following inclusion relations for w(k) = 〈k〉s , s ≥ 0: If

0 < p1, p2 ≤ ∞, with

s2 ≤ s1,
1

p2
+ s2

d
<

1

p1
+ s1

d
,

then

�
p2
〈k〉s2 (Z

d) ↪→ �
p1
〈k〉s1 (Z

d). (14)

The so-called translation and modulation operators are defined by Txg(y) = g(y−
x) and Mωg(y) = e2π iωyg(y), respectively. Let S(Rd) be the Schwartz class and
consider g ∈ S(Rd) a non-zerowindow function. The the short-time Fourier transform
(STFT) Vg f of a function/tempered distribution f in S ′(Rd) with respect to the the
window g is defined by

Vg f (x, ω) = 〈 f , MωTxg〉 =
∫

e−2π iωy f (y)g(y − x) dy,

(i.e., the Fourier transform F applied to f Tx g).

Modulation Spaces For 1 ≤ p, q ≤ ∞ such spaces were introduced by H.
Feichtinger in [17], then extended to 0 < p, q ≤ ∞ by Y.V. Galperin and S. Samarah
in [20]. Their main properties and applications are now available in several textbooks,
see for instance [11].

Definition 2.1 Fix a non-zero window g ∈ S(Rd), a weight w ∈ Mv(R
2d) and

0 < p, q ≤ ∞. Themodulation spaceMp,q
w (Rd) consists of all tempered distributions

f ∈ S ′(Rd) such that the (quasi-)norm

‖ f ‖Mp,q
w

= ‖Vg f ‖L p,q
w

=
(∫

Rd

(∫

Rd
|Vg f (x, ω)|pw(x, ω)pdx

) q
p

dω

) 1
q

(15)

(obvious changes with p = ∞ or q = ∞) is finite.

They are quasi-Banach spaces (Banach spaces whenever 1 ≤ p, q ≤ ∞), whose
(quasi-)norm does not depend on the window g, in the sense that different non-
zero window functions in S(Rd) yield equivalent (quasi-)norms. Moreover, if
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1 ≤ p, q ≤ ∞, the window class S(Rd) can be extended to the modulation space
M1,1

v (Rd) (so-called Feichtinger algebra).
To be short, we write Mp

w(Rd) in place of Mp,p
w (Rd) and Mp,q(Rd) if w ≡ 1.

We recall the inversion formula for the STFT: assume g ∈ M1
v (Rd) \ {0}, f ∈

Mp,q
w (Rd), with w ∈ Mv(R

2d), then

f = 1

‖g‖22

∫

R2d
Vg f (z)π(z)g dz , (16)

and the equality holds in Mp,q
w (Rd). The adjoint operator of Vg , defined by

V ∗
g F(t) =

∫

R2d
F(z)π(z)gdz ,

maps the mixed-norm space L p,q
w (R2d) into Mp,q

w (Rd). In particular, if F = Vg f the
inversion formula (16) can be rephrased as

IdMp,q
w

= 1

‖g‖22
V ∗
g Vg. (17)

We need to introduce an alternative definition of modulation spaces we shall use
in the sequel. For k ∈ Z

d , we denote by Qk the unit closed cube centred at k. The
family {Qk}k∈Zd is a covering ofRd . We define |ω|∞ := maxi=1,...,d |ωi |, forω ∈ R

d .
Consider now a smooth function ρ : Rd → [0, 1] satisfying ρ(ω) = 1 for |ω|∞ ≤ 1/2
and ρ(ω) = 0 for |ω|∞ ≥ 3/4. Define

ρk(ω) = Tkρ(ω) = ρ(ω − k), k ∈ Z
d , (18)

that is, ρk is the translation of ρ at k. By the assumption on ρ, we infer that ρk(ω) = 1
for ω ∈ Qk and

∑

k∈Zd

ρk(ω) ≥ 1, ∀ω ∈ R
d .

Denote by

σk(ω) = ρk(ω)∑
l∈Zd ρl(ω)

, ω ∈ R
d , k ∈ Z

d . (19)

Observe that σk(ω) = σ0(ω − k) ∈ D(Rd) and the sequence {σk}k∈Zd is a smooth
partition of unity

∑

k∈Zd

σk(ω) = 1, ∀ω ∈ R
d .
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For k ∈ Z
d , we define the frequency-uniform decomposition operator by

�k := F−1σkF . (20)

The previous operators allow to introduce an alternative (quasi-)norm on the weighted
modulation spaces Mp,q

h⊗w(Rd) inspired by [43] as follows.

Proposition 2.2 For 0 < p, q ≤ ∞, h, w ∈ Mv(R
d) have

‖ f ‖Mp,q
h⊗w(Rd ) �

⎛
⎝ ∑

k∈Zd

‖�k f ‖qL p
h
w(k)q

⎞
⎠

1
q

, f ∈ S ′(Rd), (21)

with obvious modification for q = ∞.

Proof The case p, q ≥ 1 is well known, see for example [11, Proposition 2.3.25]. The
cases 0 < p < 1 or 0 < q < 1 are an easy modification of that proof. Namely, let us
point out the main changes. If 0 < p ≤ 1, we consider

�k f = F−1σkF f = F−1σkTω
¯̂
φF f , for ω ∈ Qk,

since Tω
¯̂
φ = 1 in supp σk for ω ∈ Qk . Using Young’s inequality for distributions

compactly supported in the frequencies (see [28, Lemma 2.6], which holds also for
L p
h , 0 < p ≤ 1, with h being v-moderate), for ω ∈ Qk , we obtain

‖�k f ‖L p
h

� ‖F−1σk‖L p
v
‖F−1Tω

¯̂
φF f ‖L p

h
� ‖F−1Tω

¯̂
φF f ‖L p

h
.

The rest of the proof is analogous to the Banach case and we leave the details to the
interested reader. ��

An useful embedding is contained in what follows.

Proposition 2.3 Given 0 < p1, p2, q1, q2 ≤ ∞, with m, s1, s2 in R, one has

M p1,q1
〈·〉m⊗〈·〉s1 (R

d) ↪→ Mp2,q2
〈·〉m⊗〈·〉s2 (R

d) (22)

if and only if

p1 ≤ p2 (23)

and

q1 ≤ q2, s1 ≥ s2 or q1 > q2,
s1
d

+ 1

q1
>

s2
d

+ 1

q2
. (24)
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Proof The Banach case when m = 0 was originally shown by H. Feichtinger in [17].
We use similar arguments as in that proof. The discrete modulation norm defined in
(21) is given by

‖ f ‖Mp,q
〈·〉m⊗〈·〉s

�
⎛
⎝ ∑

k∈Zd

‖�k f ‖qL p
〈·〉m

〈k〉sq
⎞
⎠

1
q

.

The necessity of (23) follows from the fact that FL p1 is locally contained in FL p2

if and only if p1 ≤ p2 (with strict inclusion if p1 < p2), cf. [5,18,28,42]. The set
of conditions in (24) in turn describes the inclusions between weighted �q spaces:
�
q1
〈·〉s1 ⊂ �

q2
〈·〉s2 if and only if the indices’ relations in (24) are satisfied, cf. for instance

[25, Lemma 2.10]. This concludes the proof. ��
We also recall the following inclusion relations, see e.g. [11, Theorem 2.4.17] or

[20, Theorem 3.4]: If p1 ≤ p2, q1 ≤ q2 and w2 � w1, then

Mp1,q1
w1

(Rd) ↪→ Mp2,q2
w2

(Rd). (25)

Corollary 2.4 For 0 < q1 ≤ q2 ≤ ∞, d ∈ N+, m, s, r ∈ R, r > s + d(1/q1 − 1/q2),
we have the following continuous embeddings:

M∞,q1
〈·〉m⊗〈·〉r (R

d) ↪→ M∞,q2
〈·〉m⊗〈·〉r (R

d) ↪→ M∞,q1
〈·〉m⊗〈·〉s (R

d). (26)

Proof The first embedding is a straightforward application of the inclusion relations
in (25). The second one follows by the embedding in Proposition 2.3. ��

Besov Spaces The Besov spaces are denoted by B p,q
s (Rd), 0 < p, q ≤ ∞, s ∈ R,

and defined as follows. Suppose that ψ0, ψ ∈ S(Rd) satisfy supp ψ0 ⊂ {ω ∈ R
d :

|ω| ≤ 2}, supp ψ ⊂ {ω ∈ R
d : 1/2 ≤ |ω| ≤ 2} and ψ0(ω) + ∑∞

j=1 ψ(2− jω) = 1

for every ω ∈ R
d . Set ψ j (ω) := ψ(2− jω), ω ∈ R

d . Then the Besov space B p,q
s (Rd)

consists of all tempered distributions f ∈ S ′(Rd) such that the (quasi-)norm

‖ f ‖B p,q
s

=
⎛
⎝

∞∑
j=0

2 jsq‖F−1(ψ jF f )‖qp
⎞
⎠

1/q

< ∞ (27)

(with usual modifications when q = ∞). Besov spaces are generalizations of both
Hölder–Zygmund and Sobolev spaces, see e.g. [42]. Precisely, we recapture the
Sobolev spaces when p = q = 2, s ∈ R: B2,2

s (Rd) = Hs(Rd). For s > 0,
B∞,∞
s (Rd) = Cs(Rd), the Hölder–Zygmund classes, whose definition is as follows.

For s > 0, we can write s = n + ε, with n ∈ N and ε < 1. Then Cs(Rd) is the space
of functions f ∈ Cn(Rd) such that for each multi-index α ∈ N

d , with |α| = n, the
derivative ∂α f satisfies the Hölder condition |∂α f (x) − ∂α f (y)| ≤ K |x − y|ε , for a
suitable K > 0.
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Inclusion relations between modulation and Besov spaces B∞,q
s were first obtained

for 1 ≤ q ≤ ∞ (the Banach setting) in [39, Theorem 2.10] and then for 0 < q ≤ ∞
in [43]: for 0 < q ≤ ∞, set θ(q) = min{0, 1/q − 1}, then

B∞,q
s+d/q(R

d) ↪→ M∞,q
1⊗〈·〉s (R

d) ↪→ B∞,q
s+dθ(q)(R

d), s ∈ R. (28)

2.1 Gabor Analysis of �-Pseudodifferential Operators

For any fixed m ∈ R, the class Sm(R2d) in (1) is a Fréchet space when endowed with
the sequence of norms {| · |N ,m}N∈N,

|σ |N ,m := sup
|α|≤N

sup
z∈R2d

|∂ασ (z)|〈z〉−m, N ∈ N. (29)

For n ∈ N, m ∈ R \ {0}, we define by Cnm(R2d) the space of functions having n
derivatives and satisfying (29) for N = n, whereas Cn(R2d) is the space of functions
with n bounded derivatives. Clearly we have the equalities

Sm(R2d) =
⋂
n≥0

Cnm(R2d), m ∈ R \ {0}, S0(R2d) =
⋂
n≥0

Cn(R2d).

A characterization of the class S0(R2d) = S00,0(R
2d) with modulation spaces was

announced by Toft in [41, Remark 3.1] and proved in [24, Lemma 6.1].

Lemma 2.1 We have the equalities

⋂
n≥0

Cn(Rd) =
⋂
s≥0

M∞
1⊗〈·〉s (Rd) =

⋂
s≥0

M∞,1
1⊗〈·〉s (R

d). (30)

Hence S0(R2d) = ⋂
s≥0 M

∞
1⊗〈·〉s (R2d) = ⋂

s≥0 M
∞,1
1⊗〈·〉s (R2d).

In what follows we extend the previous outcome to all the classes Sm(R2d), m ∈ R.

Lemma 2.2 For m ∈ R, 0 < q ≤ ∞, n ∈ N, s ∈ (0,+∞), we have the equalities of
Fréchet spaces

Sm(R2d) =
⋂
n≥0

Cnm(R2d) =
⋂
n≥0

M∞,q
〈·〉−m⊗〈·〉n (R

2d) =
⋂
s≥0

M∞,q
〈·〉−m⊗〈·〉s (R

d) (31)

with equivalent families of (quasi-)norms

{| · |n,m}n∈N,

{
‖ · ‖M∞,q

〈·〉−m⊗〈·〉n

}

n∈N
,

{
‖ · ‖M∞,q

〈·〉−m⊗〈·〉s

}

s≥0
. (32)

In particular, for every n ∈ N,

‖ f ‖M∞
〈·〉−m⊗〈·〉n

≤ C(n,m)| f |n,m . (33)



Journal of Fourier Analysis and Applications (2022) 28 :3 Page 11 of 20 3

Proof The equality Sm(R2d) = ⋂
n≥0 M

∞,1
〈·〉−m⊗〈·〉n (R

2d) was proved in [26, Remark
2.18]. The embeddings in (26) then give the equalities in (31) with the equivalent
families of (quasi-)norms in (32). Let us show the estimate (33). For f ∈ Cnm(Rd)

(Cn(Rd) if m = 0) and any multi-index α ∈ N
d with |α| ≤ n, we consider the

function ∂α( f Tx ḡ). Taking its Fourier transform we get

F(∂α( f Tx ḡ))(ω) = (2π iω)αF( f Tx ḡ)(ω) = (2π iω)αVg f (x, ω). (34)

Inwhat followswe use the boundedness ofF : L1(Rd) → C0(Rd), Peetre’s inequality
〈x〉−m ≤ 2−m〈x − t〉|m|〈t〉−m , and Leibniz’ formula:

〈x〉−m‖F(∂α( f Tx ḡ))‖∞ ≤ 〈x〉−m‖∂α( f Tx ḡ)‖1

=
∥∥∥∥∥∥
〈x〉−m

∑
β≤α

(
α

β

)
∂β f Tx∂

α−β ḡ

∥∥∥∥∥∥
1

≤ 2−m
∑
β≤α

(
α

β

)
‖(∂β f )〈·〉−m‖∞‖(∂α−β ḡ)〈·〉|m|‖1

≤ 2−m sup
|β|≤n

‖(∂β f )〈·〉−m‖∞Mα max
β≤α

(
α

β

)
‖(∂α−β ḡ)〈·〉|m|‖1

= Cα,g,m | f |n,m,

where Cg,α,m = 2−mMα maxβ≤α

(
α
β

)‖(∂α−β ḡ)〈·〉|m|‖1 with Mα = #{β ∈ N
d , β ≤

α}. The estimate above and formula (34) yield

sup
x∈Rd

|Vg f (x, ω)|〈x〉−m ≤ Cg,α,m | f |n,m |ωα|−1, |ω| �= 0, ∀|α| ≤ n. (35)

Now if f ∈ ⋂
n≥0 Cnm(Rd) then for every α ∈ N

d there exists C = Cα > 0 such that
the estimate in (35) holds true. Since 〈ω〉n ≤ ∑

|α|≤n cα|ωα| for suitable cα ≥ 0, we
obtain

sup
x,ω∈Rd

|Vg f (x, ω)|〈x〉−m〈ω〉n ≤ C | f |n,m, ∀n ≥ 0

for a suitable C = C(n,m) > 0 that is (33). ��
In particular, for m = 0 we recapture the outcome of Lemma 2.1.
For the casem = 0 we can characterize the Hörmander class S0(R2d) = S00,0(R

2d)

by Hölder–Zygmund classes Cs(R2d) = B∞,∞
s (R2d) and by Besov spaces.

Lemma 2.3 For 0 < q ≤ ∞, we have the equalities

S00,0(R
2d) =

⋂
s≥0

Cs(R2d) =
⋂
s≥0

B∞,q
s (R2d) =

⋂
s≥0

M∞,q
1⊗〈·〉s (R

2d), (36)



3 Page 12 of 20 Journal of Fourier Analysis and Applications (2022) 28 :3

with equivalent families of (quasi-)norms

{‖ · ‖B∞,∞
s

}s≥0, {‖ · ‖B∞,q
s

}s≥0, {‖ · ‖M∞,q
1⊗〈·〉s

}s≥0. (37)

Proof It is a straightforward consequence of Lemma 2.2 and the inclusion relations in
(28). ��

3 Gabor Matrix Decay

Let us first represent the Gabor matrix as a kernel of an integral operator. Consider a
linear and bounded operator T from S(Rd) into S ′(Rd). The inversion formula (17)
for g ∈ M1

v (Rd), ‖g‖2 = 1 is simply V ∗
g Vg = Id. The operator T can be written as

T = V ∗
g VgT V

∗
g Vg. (38)

The linear transformation VgT V ∗
g is an integral operator with kernel KT given by the

Gabor matrix of T :

KT (u, z) = 〈Tπ(z)g, π(u)g〉, u, z ∈ R
2d .

By definition and the inversion formula, Vg is bounded from Mp,q
w (Rd) to L p,q

w (R2d)

and V ∗
g from L p,q

w (R2d) to Mp,q
w (Rd). Hence the continuity properties of T on mod-

ulation spaces can be obtained by the corresponding ones of the operator VgT V ∗
g on

mixed-norm L p,q
w spaces. These issues will be studied in Proposition 3.5 and Corollary

3.10 and can be achieved by studying the Gabor matrix decay of T .
First, we focus on the characterization of the Gabor matrix of Opτ (σ ).

Proposition 3.1 Consider 0 < p, q ≤ ∞, τ ∈ [0, 1], w ∈ Mv(R
4d) satisfying (13),

G ∈ S(R2d) \ {0}, g ∈ S(Rd) \ {0} and define �τ := Wτ (g, g). Then there exist
A = A(v, g,G) > 0, B = B(v, g,G) > 0 such that

A‖VGσ‖L p,q
w

≤ ‖V�τ σ‖L p,q
w

≤ B‖VGσ‖L p,q
w

, (39)

for every τ ∈ [0, 1] and σ ∈ Mp,q
w (R2d).

Proof By Proposition 2.2 and Remark 2.3 in [16] the mapping

(τ, f , g) �→ Wτ ( f , g)

is continuous fromR×S(Rd)×S(Rd) toS(R2d) and locally uniformlybounded. Since
�τ for τ ∈ [0, 1] belongs to a bounded set in S(R2d), the result follows immediately
from [21, Theorem 11.3.7] for p, q ≥ 1 and [20, Theorem 3.1] for 0 < p, q ≤ ∞. ��

Finally, we need the following result for τ -pseudodifferential operators [14, Lemma
4.1].
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Lemma 3.1 Fix a window g ∈ S(Rd) \ {0} and define �τ = Wτ (g, g) for τ ∈ [0, 1].
Then, for σ ∈ S ′ (

R
2d

)
,

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ = ∣∣V�τ σ (Tτ (z, u) , J (u − z))

∣∣ . (40)

where z = (z1, z2), u = (u1, u2), the operator Tτ is defined in (7) and J is given by

J (z) = (z2,−z1).

We are ready to state the characterization of τ -operators with symbols in
M∞,q

〈·〉−m⊗〈·〉s (R
2d).

Theorem 3.2 Consider g ∈ S(Rd)\ {0} and a lattice 
 ⊂ R
2d such that G (g,
) is a

Gabor frame for L2
(
R
d
)
. For τ ∈ [0, 1], let Tτ be the linear transformation defined

in (7). For any s,m ∈ R, 0 < q ≤ ∞, the following properties are equivalent:

(i) σ ∈ M∞,q
〈·〉−m⊗〈·〉s

(
R
2d

)
.

(i i) σ ∈ S ′ (
R
2d

)
and there exists a function Hτ ∈ Lq

〈·〉s (R2d) satisfying (8) such that

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ ≤ Hτ (u − z)〈Tτ (z, u)〉m, ∀u, z ∈ R

2d . (41)

(i i i) σ ∈ S ′ (
R
2d

)
and there exists a sequence hτ ∈ �

q
〈·〉s (
) with ‖hτ‖�

q
〈·〉s

≤ C, for

every τ ∈ [0, 1] such that

∣∣〈Opτ (σ ) π (μ) g, π (λ) g
〉∣∣ ≤ Chτ (λ − μ)〈Tτ (μ, λ)〉m, ∀λ,μ ∈ 
. (42)

Proof The proof follows the pattern of the corresponding one for Weyl operators with
symbols in weighted Sjöstrand’s classes [22, Theorem 3.2].

(i) ⇒ (i i) This implication comes easily from the characterization (40). In details,
observing that 〈Ju〉 = 〈u〉,

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ = ∣∣V�τ σ (Tτ (z, u) , J (u − z))

∣∣
≤ sup

w∈R2d

(|V�τ σ |(w, J (u − z) |〈w〉−m) 〈Tτ (z, u)〉m

= Hτ (u − z)〈Tτ (z, u)〉m,

where

Hτ (u) := sup
w∈R2d

(|V�τ σ |(w, Ju)|〈w〉−m)
.

For 0 < q < ∞,

‖Hτ‖Lq
〈·〉s

=
(∫

R2d

[
sup

w∈R2d

(|V�τ σ |(w, Ju)|〈w〉−m)]q

〈u〉qsdu
) 1

q

� ‖σ‖M∞,q
〈·〉−m⊗〈·〉s

,
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Hence by Proposition 3.1 we obtain the estimate (8). The case q = ∞ is analogous.
(i i) ⇒ (i) Consider the change of variables y = Tτ (z, u) and t = J (u − z), so that

{
z(y, t) = y −Uτ J−1t

u(y, t) = y + (I2d −Uτ )J−1t
, Uτ z :=

[
τ Id 0
0 (1 − τ)Id

]
z = Tτ (0, z)(43)

and u(y, t) − z(y, t) = J−1t . For 0 < q < ∞, using (40) and (41),

‖σ‖M∞,q
〈·〉−m⊗〈·〉s

�
(∫

R2d

(
sup
y∈R2d

∣∣V�τ σ (y, t)
∣∣ 〈y〉−m

)q

〈t〉qsdt
) 1

q

=
( ∫

R2d

(
sup
y∈R2d

∣∣〈Opτ (σ ) π (z(y, t)) g, π (u(y, t)) g
〉∣∣ 〈Tτ (z, u)〉−m

)q

× 〈t〉qsdt
) 1

q

≤
(∫

R2d

∣∣∣Hτ (J
−1t)

∣∣∣
q 〈t〉qsdt

) 1
q

≤ C,

where we used (8). The case q = ∞ is analogous.
(i i) ⇔ (i i i) The argument requires that G (g,
) is a Gabor frame for L2

(
R
d
)
. Then

the equivalence can be proved similarly to [10, Theorem 3.1] and [22, Theorem 3.2].
��

The proof of the characterization of the symbol classes Sm(R2d) claimed in Theo-
rem 1.1, can be inferred easily from the result above.

Proof of Theorem 1.1 The proof is a direct application of the characterization of the
classes Sm(R2d) presented in (31) and Theorem 3.2. ��

The following issue is an improvement of [7, Theorem 2.4] and relies on the new
characterization of Sm(R2d) proved in Lemma 2.2.

Proposition 3.3 Consider g ∈ S(Rd) \ {0}, m ∈ R and σ ∈ Sm
(
R
2d

)
. For any n ∈ N

there exists C = C(n) > 0, which does not depend on σ or τ , such that

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ ≤ C |σ |n,m

〈Tτ (z, u)〉m
〈u − z〉n , ∀τ ∈ [0, 1], ∀u, z ∈ R

2d .

(44)

Proof Using the characterization of the Hörmander classes Sm(R2d) in (31) we infer
that σ ∈ M∞

〈·〉−m⊗〈·〉n (R
2d) and, for any n ∈ N, the norm estimate in (33) says that

there exists C = C(n,m) such that

‖σ‖M∞
〈·〉−m⊗〈·〉n

≤ C(n,m)|σ |n,m, (45)
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where C(n,m) > 0 is independent of σ . For z, w ∈ R
2d we use Lemma 3.1 and the

norm estimate in (45) which yield

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ = ∣∣V�τ σ (Tτ (z, u) , J (u − z))

∣∣

≤ C |σ |n,m
〈Tτ (z, u)〉m
〈u − z〉n ,

that is the desired result. ��
For s ∈ [0,+∞) \ N, the estimate reads as follows.

Proposition 3.4 Consider g ∈ S(Rd) \ {0}, τ ∈ [0, 1], m ∈ R and σ ∈ Sm
(
R
2d

)
. For

any s ∈ [0,+∞) \ N there exists C = C(s,m) > 0, which does not depend on σ or
τ , such that

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ ≤ C |σ |n+1,m

〈Tτ (z, u)〉m
〈u − z〉s , ∀u, z ∈ R

2d , (46)

where n = [s] is the integer part of s.
Proof The result is attained by the the same argument as Proposition 3.3 and the
inclusion relations between modulation spaces in (25). ��

3.1 Boundedness Results

The characterization of the class Sm in Lemma 2.2 and Theorem 3.1 are the key tool
for boundedness properties of τ -operators on weighted modulation spaces.

Proposition 3.5 Consider τ ∈ [0, 1], m ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Then
Opτ (σ ), from S(Rd) to S ′(Rd), extends uniquely to a bounded operator

Opτ (σ ) : Mp,q
〈·〉r+m (Rd) → Mp,q

〈·〉r (Rd),

for every r ∈ R.

Proof Choose g ∈ S(Rd) and a lattice 
 such that G(g,
) is a Gabor frame for
L2(Rd). Define t := min{1, p, q} and choose s > (2d + |r |)/t . Using the equivalent
discrete (quasi-)norm for the modulation space, see e.g. [40, Proposition 1.5], the
estimate in (42) and Young’s convolution inequality in [19, Theorem 3.1], we obtain
the result. Namely,

‖Opτ (σ ) f ‖Mp,q
〈·〉r

� ‖Vg(Opτ (σ ) f )‖�
p,q
〈·〉r (
) ≤

∥∥∥hτ ∗ |Vg f |〈·〉|m|
∥∥∥

�
p,q
〈·〉r (
)

≤ ‖hτ‖�t〈·〉s (
)

∥∥Vg f 〈·〉m
∥∥

�
p,q
〈·〉r (
)

≤ C ‖ f ‖Mp,q
〈·〉r+m

.

Alternatively, since σ ∈ Sm = ⋂
s≥0 M

∞,q
〈·〉−m⊗〈·〉s (R

2d) by Lemma 2.2, one can use
[40, Theorem 3.1] with p = ∞ and q ≤ 1 small enough to yield the claim. ��
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Remark 3.6 (i) For σ ∈ S0(R2d) = S00,0(R
2d) and we recapture the continuity of

Opτ (σ ) : Mp,q
〈·〉r (Rd) → Mp,q

〈·〉r (Rd).

This was already shown in [39] for p, q ≥ 1, for the quasi-Banach cases see [40].
(ii) For p = q = 2 we have the continuity between the Shubin–Sobolev spaces
Qr+m(Rd) and Qr (R

d).

Corollary 3.7 Consider τ ∈ [0, 1], m, r ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Let
‖Opτ (σ )‖ denote the normofOpτ (σ ) in B(Mp,q

〈·〉r+m (Rd), Mp,q
〈·〉r (Rd)). Then there exists

a constant C > 0 such that

‖Opτ (σ )‖ ≤ C, ∀τ ∈ [0, 1]. (47)

Proof The claim is evident from proof of Proposition 3.5. ��

3.2 Born–Jordan Operators

The Born–Jordan operator with symbol σ ∈ S ′(Rd) can be defined as

〈OpBJ (σ ) f , g〉 = 〈σ,WBJ (g, f )〉, f , g ∈ S(Rd),

where the Born–Jordan distribution WBJ (g, f ) is

WBJ (g, f ) =
∫ 1

0
Wτ (g, f ) dτ,

see, e.g., the textbook [15]. In what follows we study the Gabor matrix decay for
Born–Jordan operators.

Theorem 3.8 Consider g ∈ S(Rd) \ {0}. For m ∈ R consider σ ∈ Sm
(
R
2d

)
. Then

for every s ≥ 0, 0 < q ≤ ∞, τ ∈ [0, 1] there exists a function Hτ ∈ Lq
〈·〉s (R2d) which

satisfies (8) and such that

∣∣〈OpBJ (σ ) π (z) g, π (u) g
〉∣∣ ≤ 〈z〉m

∫ 1

0
Hτ (u − z) dτ, ∀u, z ∈ R

2d . (48)

Proof For σ ∈ S ′(R2d), OpBJ (σ ) is linear and continuous from S(Rd) into S ′(Rd),
see [16]. For z, u ∈ R

2d , σ ∈ Sm(R2d) and g ∈ S(Rd) we compute

〈OpBJ (σ )π(z)g, π(u)g〉 = 〈σ,WBJ (π(u)g, π(z)g)〉

=
∫

R2d
σ(y)

∫ 1

0
Wτ (π(u)g, π(z)g)(y) dτdy =: I .
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From [16, Proposition 2.2, Remark 2.3] we have that the mapping

R × S(Rd) × S(Rd) → S(R2d), (t, ϕ, ψ) �→ Wt (ϕ, ψ)

is continuous and locally uniformly bounded. Thus WBJ (ϕ, ψ) ∈ S(R2d) and the
integral I is absolutely convergent, so that

I =
∫ 1

0

∫

R2d
σ(y)Wτ (π(u)g, π(z)g)(y) dydτ =

∫ 1

0

〈
Opτ (σ ) π (z) g, π (u) g

〉
dτ.

By Peetre’s inequality:

〈Tτ (z, u)〉m = 〈z1 + τ(u1 − z1), z2 + (1 − τ)(u2 − z2)〉m
� 〈z〉m〈u − z〉|m|,

for every u = (u1, u2), z = (z1, z2) ∈ R
2d . Hence, using Theorem 1.1,

|I | ≤
∫ 1

0

∣∣〈Opτ (σ ) π (z) g, π (u) g
〉∣∣ dτ �

∫ 1

0
Hτ (u − z) 〈u − z〉|m| dτ 〈z〉m .

Then the function Hτ (z) 〈z〉|m| satisfies condition (8). ��

Remark 3.9 (i) For q ≥ 1, we can define H(z) := ∫ 1
0 Hτ (z)dτ . Using Minkowski’s

integral inequality we infer H ∈ Lq
〈·〉s (R2d) and the estimate (48) becomes

∣∣〈OpBJ (σ ) π (z) g, π (u) g
〉∣∣ ≤ H(u − z) 〈z〉m, ∀u, z ∈ R

2d .

Notice that for 0 < q < 1 Minkowski’s integral inequality is not true in general.
(ii) Arguing as in Theorem 3.8, we may discretize the Gabor matrix decay in (48) as
follows: consider g ∈ S(Rd)\ {0} and a lattice 
 inR2d such that G (g,
) is a Gabor
frame for L2

(
R
d
)
. If σ ∈ Sm

(
R
2d

)
then for every s ≥ 0, 0 < q ≤ ∞, there exists a

sequence hτ ∈ �
q
〈·〉s (
) with ‖hτ‖�

q
〈·〉s

≤ C for every τ ∈ [0, 1] such that

∣∣〈OpBJ (σ ) π (μ) g, π (λ) g
〉∣∣ ≤ 〈μ〉m

∫ 1

0
hτ (λ − μ)dτ, ∀λ,μ ∈ 
.

Corollary 3.10 Consider m ∈ R, σ ∈ Sm(R2d), 0 < p, q ≤ ∞. Then OpBJ (σ ), from
S(Rd) to S ′(Rd), extends uniquely to a bounded operator

OpBJ (σ ) : Mp,q
〈·〉r+m (Rd) → Mp,q

〈·〉r (Rd),

for every r ∈ R.
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Proof The proof is similar to the one of Proposition 3.5, using the decay for Gabor
matrix of OpBJ (σ ) found in Theorem 3.8, with hτ replaced by

∫ 1
0 hτ (·)dτ . Then, for

t ≥ 1 we use Minkowski’s inequality to write

∥∥∥∥
∫ 1

0
hτ (·)dτ

∥∥∥∥
�t〈·〉s

≤
∫ 1

0
‖hτ‖�t〈·〉s

dτ ≤ C .

For t < 1 we use the inclusion relations (14) and majorize

∥∥∥∥
∫ 1

0
hτ (·)dτ

∥∥∥∥
�t〈·〉s

�
∥∥∥∥
∫ 1

0
hτ (·)dτ

∥∥∥∥
�1〈·〉s̃

,

with s̃ ≥ 0 such that 1/t + s/(2d) < 1 + s̃/(2d), that is

s̃ >
2d

t
(1 − t),

and we proceed as above. ��
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