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Abstract
Coorbit theory is a powerful machinery that constructs a family of Banach spaces,
the so-called coorbit spaces, from well-behaved unitary representations of locally
compact groups. A core feature of coorbit spaces is that they can be discretized in away
that reflects the geometry of the underlying locally compact group. Many established
function spaces such asmodulation spaces,Besov spaces, Sobolev–Shubin spaces, and
shearlet spaces are examples of coorbit spaces. The goal of this survey is to give an
overview of coorbit theory with the aim of presenting the main ideas in an accessible
manner. Coorbit theory is generally seen as a complicated theory, filled with both
technicalities and conceptual difficulties. Faced with this obstacle, we feel obliged to
convince the reader of the theory’s elegance. As such, this survey is a showcase of
coorbit theory and should be treated as a stepping stone to more complete sources.

Keywords Coorbit spaces · Integrable representations · Atomic decompositions ·
Large scale geometry · Modulation spaces · Shearlet spaces

1 Introduction

Whenever a newmathematical theory is developed, one of two things usually happens:
On the one hand, the theory might not be sufficiently interesting. Together with the
failure to generate non-trivial results in well-established special cases, this signals a
premature end. On the other hand, a newly developed theory might succeed in these
endeavours. What follows is a period of flourishing, where researchers from related
fields develop the theory to its fullest potential. However, there is a third and more
disheartening possibility as well; the theory is wonderful in all regards but is largely
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left unnoticed by the mathematical community. This was the case for the theory of
coorbit spaces, developed in the late 80s in a series of papers [33–35] by Hans Georg
Feichtinger and Karlheinz Gröchenig. However, with the turn of the century, interest
in coorbit spaces has been growing rapidly. This is due to a plethora of reasons, the
most obvious one being the emergence of time-frequency analysis as a central topic
in modern harmonic analysis. Many results in time-frequency analysis can be either
proven or illuminated by the constructions in coorbit theory.

The goal of this survey is to provide an introduction to coorbit theory aimed at
non-experts. We have tried to strike a balance between providing sufficient details,
while at the same time prioritizing concepts over technicalities. The original papers
on coorbit theory are, although insightful, admittedly difficult for novices to digest.
More recent sources, e.g. [16,58,68], are either not fully devoted to coorbit theory
or include technicalities that distract most beginners from the core ideas. This is not
intended as critique of the above sources as their main aim is to derive new results. In
fact, we have the privilege of dwelling on pedagogical points precisely because we do
not aim for novelty. We hope this survey can establish a natural starting point to learn
coorbit theory for both students and researchers in neighboring fields.
Overview Before embarking, we give a brief overview of what coorbit theory is all
about. This requires the usage of terminology that might be unfamiliar to the reader;
if this causes bewilderment, then skip this part for now and return to it once you have
finished reading Chapter 2. We begin with a unitary representation π : G → Hπ of a
locally compact group G on a Hilbert space Hπ . Consider the wavelet transform

Wg : Hπ → L∞(G), Wg f (x) := 〈 f , π(x)g〉Hπ
,

where f , g ∈ Hπ and x ∈ G. Under some assumptions on the representation π and
the element g ∈ Hπ , the transformation Wg is actually an isometry from Hπ to the
Hilbert space L2(G). The inner mechanics of coorbit theory deal with the following
two points:

• We construct a collection Coπ
p of Banach spaces for each 1 ≤ p ≤ ∞ called

coorbit spaces. Each space Coπ
p contains the elements f ∈ Hπ such that Wg f

has a certain decay (depending on p) as a function on the group G. To make the
definition of the coorbit spacesCoπ

p precise, wewill first need to extend thewavelet
transform to the distributional setting.

• By picking a suitable atom g ∈ Hπ we can generate any f ∈ Coπ
p through the

formula

f =
∑

i∈I

ci ( f )π(xi )g, (1.1)

where {xi }i∈I ⊂ G is a collection of carefully chosen points and (ci )i∈I are
coefficients that depend linearly on f . This systematic decomposition is known as
an atomic decomposition. Intuitively, we decompose each element f ∈ Coπ

p into
its atomic parts relative to the chosen atom g ∈ Hπ . The selection of the points
{xi }i∈I ⊂ G depends heavily on the structure of G, giving the theory a geometric
flavor.
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Two classes of coorbit spaces that have appeared prominently in the literature are
the homogeneous Besov spaces in classical harmonic analysis and the modulation
spaces in time-frequency analysis. One can obtain a deeper appreciation for these
seemingly different spaces by realizing that they are both special cases of the coorbit
theory machinery. These two examples will be returned to time and time again to
illustrate the concepts presented.

Existing Literature There are sources in the literature that deal with coorbit spaces
from a somewhat expository viewpoint. We emphasize three of them as they deserve
a special mention:

• The Ph.D. thesis [68] of Felix Voigtlaender is very helpful, especially for technical
aspects. Although the first chapters of [68] are more advanced than this survey,
they nevertheless introduces all the main ideas in a clear manner.

• Thebook [16] is a collection of surveypaperswritten byvarious authors. Especially
Chapter 2 (written by Filippo DeMari and Ernesto DeVito) and Chapter 3 (written
by Stephan Dahlke, Sören Häuser, Gabriele Steidl, and Gerd Teschke) is useful
for comprehending the basics of coorbit theory.

• The paper [9] is mostly an expository account of different aspects of coorbit theory.
It is bothwell-written and useful, although it assumesmore background knowledge
from the reader than we do. A drawback is that [9] has, due to its publication date,
no modern examples and directions in coorbit theory.

As coorbit theory is a popular topic nowadays, there have been several advances
of the theory in the last five years. Most of these topics are not discussed outside
of their respective research papers. It is our belief that the community would benefit
from having these results more easily available. We will go through some of the recent
developments in Sect. 3.8 and Chapter 4. In Sect. 4.4 we give references to many
recent works on coorbit theory.

Unconventional Topics

• Reproducing Kernel Hilbert Spaces This is included in Sect. 2.4 since the wavelet
transform automatically produces reproducing kernel Hilbert spaces, see Proposi-
tion 2.30. These reproducing kernel Hilbert spaces have received interest recently
in [3,45,61,66]. The reproducing kernel approach also illuminates the reproducing
formula in Theorem 2.32, which is central to the theory. It should be noted that
reproducing kernel Hilbert spaces are often implicitly present in works on coorbit
theory.

• Large Scale GeometryWehave included certain definitions from large scale geom-
etry inSect. 3.6.Large scale geometry has had little intersectionwith coorbit theory,
except for in [58] where it is utilized successfully. Both [58] and the papers [2,4]
uses large scale geometry to analyze decomposition spaces, which is a family of
spaces that are related to coorbit spaces. We hope that large scale geometry can
provide a conceptual framework that might bring new ideas to the table.

We have chosen to omit Wiener amalgam spaces from the survey. This choice is
a difficult one; although Wiener amalgam spaces are a useful tool, they are also a
conceptional hurdle for some and not always needed in practical applications of coorbit
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theory. We refer the reader to [27] and the survey [53] for more details on Wiener
amalgam spaces.
Outline:

• Chapter 2 We introduce locally compact groups and unitary representations in
Sects. 2.1 and 2.2, respectively. In addition to fixing notation, this allows us to
require few prerequisites from the reader. The wavelet transform is a central player
in coorbit theory and is introduced in Sect. 2.2. We go through the orthogonality
relation for the wavelet transform in Sect. 2.3. In Sect. 2.4 we review reproducing
kernel Hilbert spaces and show that such spaces naturally arise when consider-
ing the wavelet transform. Finally, we derive the reproducing and reconstruction
formulas for the wavelet transform in Sect. 2.5.

• Chapter 3 We introduce the integrable setting in Sect. 3.1 and extend the wavelet
transform to the distributional level in Sect. 3.2. This allows us to define the
coorbit spaces in Sect. 3.3 in a rigorous manner. Basic properties of coorbit spaces
are derived in Sect. 3.4 with the help of the correspondence principle given in
Theorem 3.20. In Sect. 3.5 we discuss weighted coorbit spaces. We show that
the coorbit spaces have extraordinary sampling properties in Sect. 3.6 through
a general procedure called atomic decompositions. Terminology borrowed from
large scale geometry will be used to make the main result in Theorem 3.40 more
transparent. Finally, we discuss Banach frames and a recent kernel theorem for
coorbit spaces in respectively Sects. 3.7 and 3.8.

• Chapter 4 We solidify the results presented in previous chapters by giving non-
trivial examples of the theory. This includes shearlet spaces in signal analysis in
Sect. 4.1, Bergman spaces in complex analysis in Sect. 4.2, and coorbit spaces
built on nilpotent Lie groups in Sect. 4.3. We end in Sect. 4.4 by giving refer-
ences to recent developments related to embeddings between coorbit spaces and
generalizations of coorbit theory.

2 Starting Out

We start by giving an overview of preliminary topics, namely locally compact groups,
unitary representations, and basic properties of the (generalized) wavelet transform.
Most of this material is fairly standard, and is mainly collected from the books [16,
23,39,41,47]. We aim for a suitable generality and present concrete examples as we
go along.

2.1 Prelude on Locally Compact Groups

The first order of business is to get acquainted with locally compact groups.

Definition 2.1 A locally compact group is a locally compact Hausdorff topological
space G that is simultaneously a group such that the multiplication and inversion
maps

(x, y) 	−→ xy, x 	−→ x−1, x, y ∈ G,

are continuous.
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Recall that a Radon measure is a Borel measure that is finite on compact sets, inner
regular on open sets, and outer regular on all Borel sets. Do not worry if you are
rusty on the measure-theoretic nonsense; we will never use these technical conditions
explicitly. The important point is that each locally compact group G can be equipped
with a unique (up to a positive constant) left-invariant Radon measure μL , that is,
μL satisfies μL(x E) = μL(E) for all x ∈ G and every Borel set E ⊂ G. We call
the measure μL the left Haar measure on the group G. The existence of the left
Haar measure implies that any locally compact group is canonically equipped with a
measure-theoretic setting.

As the terminology indicates, there is also a right Haar measure μR on any locally
compact group. How much the two measures μL and μR deviate is captured by the
modular function � : G → (0,∞) defined as follows: For x ∈ G the measure
μx (E) := μL(Ex) is again a left-invariant Radon measure. Therefore, the uniqueness
of the left Haar measure implies the existence of a number �(x) ∈ (0,∞) such that

μx (E) = �(x)μL(E),

for every Borel set E ⊂ G. It is straightforward to see that μL = μR precisely when
� ≡ 1. Motivated by this observation, groups whereμL = μR are called unimodular.
When this is the case, we use the abbreviation μ := μL = μR and refer to μ as the
Haar measure on the group G. It is clear that commutative locally compact groups
are unimodular. Moreover, locally compact groups that are either compact or discrete
are also unimodular, see [39, Chapter 2.4].

Example 2.2 The reader has surely seen plenty of locally compact groups previously.
Two elementary ones are Rn with the usual vector sum and R

∗ := R \ {0} with the
usual product. On R

n , the Haar measure is the Lebesgue measure dx , while on R
∗

the Haar measure is dx/|x |. To exemplify the last claim, we see for E = (r , s) with
s > r > 0 and x > 0 that

μ(x E) =
∫ xs

xr

dt

t
= log(xs) − log(xr) = log

( s

r

)
= μ(E).

Example 2.3 There are many locally compact groups of interest that are not unimod-
ular. As an example, we consider the (full) Affine group Aff = R×R

∗ with the group
multiplication

(b, a) · (b′, a′) := (ab′ + b, aa′), (b, a), (b′, a′) ∈ Aff.

The group operation models the composition of affine maps, and can equivalently be
realized as 2 × 2 matrices of the form

(
a b
0 1

)
, (b, a) ∈ Aff,

where the group operation is matrix multiplication. Notice that the group operation is
not commutative. Moreover, the affine group is not unimodular: The reader can verify
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that the left and right Haar measures on Aff are respectively given by

μL(b, a) = db da

a2 , μR(b, a) = db da

|a| .

Remark If you find yourself in the situation where you have a locally compact group
G but no obvious candidate for a Haar measure, then do not despair; there are several
ways of constructing the Haar measure on many locally compact groups. We refer the
reader to [39, Proposition 2.21] for a concrete example.

For a locally compact group G, we can form the spaces L p(G) for 1 ≤ p < ∞
consisting of equivalence classes of measurable functions f : G → C such that

‖ f ‖L p(G) :=
(∫

G
| f (x)|p dμL(x)

) 1
p

< ∞.

The case p = ∞ also has the obvious extension from the familiar Euclidean case.
For locally compact groups that are not unimodular, some authors use the notation
L p(G, μL) for clarity. However, we will always consider the left Haar measure, and
thus boldly use the abbreviated notation L p(G). The spaces L p(G) are Banach spaces
for all 1 ≤ p ≤ ∞. Moreover, when p = 2 we even have a Hilbert space structure
given by the inner product

〈 f , g〉L2(G) :=
∫

G
f (x)g(x) dμL(x).

We have for each y ∈ G the left-translation operator L y given by L y f (x) :=
f (y−1x) for x ∈ G. The reason for the inverse is so that we have L y ◦ Lz = L yz for
y, z ∈ G. This detail is important when we study unitary representations in Sect. 2.2.
We define for each y ∈ G the right-translation operator Ry by the formula Ry f (x) :=
�(y−1) f (xy−1) for x ∈ G.

Definition 2.4 For f , g ∈ L1(G) we can form the convolution between f and g given
by

f ∗G g(x) :=
∫

G
f (y)g(y−1x) dμL(y).

Notice that, in contrast with the usual convolution of functions onRn , the convolution
is generally not commutative. In fact, the convolution is commutative precisely when
the group operation on G is commutative [23, Theorem 1.6.4]. Moreover, it follows
from [39, Proposition 2.40] that the convolution inequality

‖ f ∗G g‖L p(G) ≤ ‖ f ‖L1(G)‖g‖L p(G)

is valid for all f ∈ L1(G) and g ∈ L p(G) with 1 ≤ p ≤ ∞.
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Example 2.5 A group that will be of central importance for us is the (full) Heisenberg
group H

n . As a set we have Hn = R
n × R

n × R, while the group multiplication is
given by

(
x, ω, t

) · (x ′, ω′, t ′
) :=

(
x + x ′, ω + ω′, t + t ′ + 1

2
(x ′ω − xω′)

)
.

Although what we have described is strictly speaking one group for each dimension
n, we collectively refer to these groups as the Heisenberg group for simplicity. In
Sect. 2.3 wewill use a different realization of the Heisenberg group due to integrability
issues. The Heisenberg group is unimodular and the Haar measure on Hn is the usual
Lebesgue measure on R

2n+1. We refer the reader to [54] for an excellent exposition
on the ubiquity of the Heisenberg group in harmonic analysis.

Example 2.6 When working with locally compact groups, it is advantageous to have
both continuous and discrete examples in mind. Most discrete examples arise from
letting G be any countable group with the discrete topology. Let us briefly consider
G = Z to see what the convolution looks like in this case: The Haar measure on Z

is the counting measure. It is common to use the notation l p(Z) := L p(Z) for all
1 ≤ p ≤ ∞. Per convention, we use sequence notation a = (an)n∈Z with an := a(n)

for functions a : Z → C. The convolution between a, b ∈ l1(Z) is precisely the
well-known Cauchy product given by

(a ∗Z b)n :=
∞∑

m=−∞
ambn−m .

2.2 Unitary Representations and theWavelet Transform

Wewill now consider unitary representations of locally compact groups. This will give
rise to the (generalized) wavelet transform that we will examine closely. Ultimately,
we use the wavelet transform to construct the coorbit spaces in Chapter 3. Given a
Hilbert spaceHwe let U(H) denote the group of all unitary operators fromH to itself.

Definition 2.7 Let G be a locally compact group and let Hπ be a Hilbert space. A
unitary representation of G onHπ is a group homomorphism π : G → U(Hπ ) such
that the transformation

G � x 	−→ π(x)g ∈ Hπ (2.1)

is continuous for all g ∈ Hπ .

It turns out that the continuity requirement (2.1) is equivalent to the seemingly
weaker requirement that

G � x 	−→ Wg f (x) := 〈 f , π(x)g〉 (2.2)
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is a continuous function on G for all f , g ∈ Hπ . The function Wg f is called the
(generalized) wavelet transform of f with respect to g. Hence Wg f : G → C

is a continuous function by assumption whenever we have a unitary representation.
Moreover, we have that Wg f is a bounded function on G since

|Wg f (x)| = |〈 f , π(x)g〉| ≤ ‖ f ‖‖π(x)g‖ = ‖ f ‖‖g‖, x ∈ G.

We often take the view that g ∈ Hπ is fixed and consider the map Wg : Hπ →
Cb(G) sending f toWg f , whereCb(G) denotes the set of complex valued continuous
functions on G that are bounded. The wavelet transform has a central place in coorbit
theory, and much of the theory revolves around understanding subtle properties of this
transformation.

Example 2.8 An example of a unitary representation on any locally compact group G
is the left regular representation L : G → U(L2(G)) given by

L(y) f (x) := L y f (x) = f (y−1x),

for x, y ∈ G and f ∈ L2(G). The fact that L y is unitary follows from the computation

‖L y f ‖2L2(G)
=
∫

G
|L y f (x)|2 dμL(x) =

∫

G
| f (y−1x)|2 dμL(x)

=
∫

G
| f (x)|2 dμL(x) = ‖ f ‖2L2(G)

.

For the continuity assertion (2.1), we refer the reader to [39, Proposition 2.42].

Definition 2.9 Let π : G → U(Hπ ) be a unitary representation of a locally compact
group G.

• We say that a closed subspace M ⊂ Hπ is an invariant subspace if π(x)g ∈ M
for all g ∈ M and x ∈ G. When this happens, the restriction π |M is a unitary
representation of G on M and we call π |M : G → U(M) a subrepresentation
of π .

• If there are no non-trivial (other than {0} andHπ ) invariant subspaces ofHπ , then
π is called irreducible. Otherwise, we say that π is reducible.

For any unitary representation π : G → U(Hπ ) we have for f , g ∈ Hπ and
x, y ∈ G that

Wg(π(y) f )(x) = 〈π(y) f, π(x)g〉 = Wg( f )(y−1x) = L y
[Wg( f )

]
(x). (2.3)

The simple calculation (2.3) should not be underestimated; it shows that the wavelet
transform gives us a way to relate the representation π and the left regular represen-
tation L in Example 2.8. This notion is formalized in the following definition.
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Definition 2.10 Let G be a locally compact group and consider two unitary repre-
sentations π : G → U(Hπ ) and τ : G → U(Hτ ). We say that a unitary operator
T : Hπ → Hτ is a (unitary) intertwiner between π and τ if T ◦ π(x) = τ(x) ◦ T
for every x ∈ G. If an intertwiner exists between π and τ , then π and τ are called
equivalent.

If we are only considering one unitary representation π : G → U(Hπ ), then a
unitary operator T : Hπ → Hπ satisfying T ◦ π(x) = π(x) ◦ T is simply referred
to as a (unitary) intertwiner of π . We leave it to the reader to verify that if π is
an irreducible unitary representation and T is an intertwiner between π and another
unitary representation τ , then τ is also irreducible.

It is tempting, but slightly premature, to reformulate (2.3) in the following way:
The wavelet transformWg is, for any choice of g ∈ Hπ , an intertwiner between π and
the left regular representation L given in Example 2.8. The problem is that in general
the wavelet transformWg f is not in L2(G) as the following example shows.

Example 2.11 Consider the left regular representation L : R → U(L2(R)) on G = R.
Then for f , g ∈ L2(R) and x ∈ R the wavelet transform has the form

Wg f (x) =
∫ ∞

−∞
f (y)g(y − x) dy = f ∗ ǧ(x),

where ǧ(x) := g(−x). Let us now pick

f (x) = g(x) = F
(

e−ω2 |ω|− 1
3

)
(x),

where F denotes the Fourier transform. Then one can check that f , g ∈ L2(R) and
Wg f /∈ L2(R).

We will in Sect. 2.3 work with additional assumptions on the representation π and
the fixed vector g ∈ Hπ so thatWg f ∈ L2(G) for all f ∈ Hπ . In that case, a natural
question emerges that we will answer in Sect. 2.3:

Q Is Wg an intertwiner between π and some subrepresentation of the left regular
representation L?

Example 2.12 Let us revisit the Heisenberg group Hn in Example 2.5 and describe its
irreducible unitary representations. First of all, we have the family of one-dimensional
representations of Hn given by

χα,β(x, ω, t) := e2π i(αx+βω) ∈ U(C), α, β ∈ R
n, (x, ω, t) ∈ H

n .

The central characters χα,β are obviously irreducible, unitary, and non-equivalent.
We refer the reader to [47, Chapter 9.2] for an explanation of why χα,β are called the
central characters of Hn .
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Let Tx and Mω be respectively the translation operator and modulation operator
on L2(Rn) given by

Tx f (y) := f (y − x), Mω f (y) := e2π iyω f (y), x, y, ω ∈ R
n . (2.4)

These operators can be combined to form the Schrödinger representation ρ : Hn →
U(L2(Rn)) given by

ρ(x, ω, t) f (y) := e2π i t eπ i xωTx Mω f (y). (2.5)

It can be verified that the Schrödinger representation is an irreducible unitary represen-
tation ofHn , see [47, Theorem 9.2.1]. Moreover, one can generate new non-equivalent
irreducible unitary representations by dilating the Schrödinger representation

ρλ(x, ω, t) := ρ(λx, ω, λt), λ ∈ R \ {0}.

And that’s it! The Stone–von Neumann Theorem [47, Theorem 9.3.1] states that any
irreducible unitary representation ofHn is equivalent to eitherχα,β for someα, β ∈ R

n

or ρλ for some λ ∈ R \ {0}.
The following result shows a fundamental relationship between irreducible unitary

representations and (not necessarily unitary) intertwiners.

Lemma 2.13 (Schur’s Lemma)Let π : G → U(Hπ ) be a unitary representation. Then
π is irreducible if and only if every bounded linear map T : Hπ → Hπ satisfying
T ◦ π(x) = π(x) ◦ T for all x ∈ G is a constant multiple of the identity IdHπ

.

We refer the reader to [39, Theorem 3.5] for a proof of Schur’s Lemma. One of the
main uses of Schur’s Lemma is showing that certain irreducible representations are
impossible. The following result illustrates this.

Corollary 2.14 Let π : G → U(Hπ ) be a unitary representation of a commutative
locally compact group G. If π is irreducible, then dim(Hπ ) = 1.

Proof Notice that for all x, y ∈ G we have

π(x)π(y) = π(xy) = π(yx) = π(y)π(x).

Thus π(x) ∈ U(Hπ ) is in fact an intertwiner of π . Hence Schur’s Lemma implies that
π(x) = Cx · IdHπ

for all x ∈ G, where Cx is a constant dependent on x . However, it
is now clear that any closed subspace of Hπ is invariant. This can only be the case,
under the assumption of irreducibility, when Hπ does not have any closed subspaces
other than {0} and Hπ . ��

Let us try to construct an invariant subspace of a unitary representation π : G →
U(Hπ ). Fix a non-zero vector g ∈ Hπ and form the subspace

Mg := span {π(x)g : x ∈ G} ⊂ Hπ .
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Notice thatMg is a closed subspace ofHπ that is non-trivial since g = π(e)g ∈ Mg ,
where e ∈ G is the identity element of G. Moreover, Mg is clearly invariant under
the action of π . We callMg the cyclic subspace generated by g ∈ Hπ . IfMg = Hπ ,
then the vector g is said to be cyclic. If this is not the case, then the representation π is
reducible as Mg would be a non-trivial invariant subspace. Conversely, assume that
every non-zero vector g ∈ Hπ is cyclic and let M ⊂ Hπ be a non-trivial invariant
subspace. Fix a non-zero g ∈ M and notice that Mg ⊂ M. Since g is cyclic this
forces M = Hπ so that π is irreducible. We summarize this discussion for later
reference in the following proposition.

Proposition 2.15 A unitary representation π : G → U(Hπ ) is irreducible if and only
if every non-zero vector g ∈ Hπ is cyclic.

The following result shows that cyclic vectors are of central importance for the
wavelet transform.

Lemma 2.16 Consider a unitary representation π : G → U(Hπ ) and fix a non-zero
vector g ∈ Hπ . The wavelet transform Wg : Hπ → Cb(G) is injective if and only if
g is a cyclic vector.

Proof Assume by contradiction that g is a cyclic vector andWg is not injective. Pick
f ∈ Hπ \ {0} such that Wg f is the zero function on G, that is,

Wg f (x) = 〈 f , π(x)g〉 = 0,

for all x ∈ G. This implies that f is orthogonal to the cyclic subspaceMg . In particular,
Mg �= Hπ and we have a contradiction. Conversely, assume that g is not cyclic so
that Mg �= Hπ . By picking f ∈ M⊥

g \ {0} we have that 〈 f , π(x)g〉 = 0 for all
x ∈ G. Hence Wg : Hπ → Cb(G) is not injective. ��

2.3 Square Integrability and Orthogonality

We want to examine the wavelet transform W given in (2.2) in more detail. It is
instructive to look at a concrete example first to see what we might expect.

Example 2.17 Let us consider the Schrödinger representation ρ of the Heisenberg
group H

n given in (2.5). The wavelet transform corresponding to this representation
is given by

Wg f (x, ω, t) = 〈 f , ρ(x, ω, t)g〉 = e−2π i t eπ i xω〈 f , MωTx g〉, (2.6)

for f , g ∈ L2(Rn). We can recognize the term 〈 f , MωTx g〉 as the short-time Fourier
transform (STFT), which is usually denoted by

Vg f (x, ω) := 〈 f , MωTx g〉 =
∫

Rn
f (t)g(t − x)e−2π i tω dt .
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Hence thewavelet transform for the Schrödinger representation is, up to a phase factor,
the short-time Fourier transform. The STFT satisfies two important properties:

Orthogonality For f1, f2, g1, g2 ∈ L2(Rn) we have the orthogonality relation

〈Vg1 f1, Vg2 f2〉L2(R2n) = 〈 f1, f2〉L2(Rn)〈g1, g2〉L2(Rn). (2.7)

Reconstruction Fix g ∈ L2(Rn) with ‖g‖L2(Rn) = 1. Given any f ∈ L2(Rn), we
can reconstruct f from Vg f through the formula

〈 f , h〉L2(Rn) =
∫

R2n
Vg f (x, ω)Vgh(x, ω) dx dω, (2.8)

for any h ∈ L2(Rn).

The proofs can be found in [47, Theorem 3.2.1] and [47, Corollary 3.2.3], respectively.

We postpone discussing the reconstruction property (2.8) to Sect. 2.5. It turns out
that the STFT is a best case scenario; not all generalized wavelet transforms exhibit
such a simple orthogonality relation. From (2.7) we see that Vg : L2(Rn) → L2(R2n)

is an isometry for any normalized g ∈ L2(Rn). Generalizing this observation, we
would like to answer the following question in this section:

Q Under which conditions on a general unitary representation π : G → U(Hπ )

and a non-zero vector g ∈ Hπ can we ensure that the generalized wavelet transform
Wg : Hπ → L2(G) is an isometry?

Notice that this question is precisely the same as the question we asked in Sect. 2.2
regarding whetherWg is an intertwiner between π and a subrepresentation of the left
regular representation L . Given a unitary representation π : G → U(Hπ ) we first
of all need that Wg is injective. By Proposition 2.15 and Lemma 2.16 this will be
satisfied for all non-zero vectors g ∈ Hπ whenever π is irreducible. Henceforth we
will require that π is irreducible. Secondly, we need a condition on g to ensure that
Wg f ∈ L2(G) for all f ∈ Hπ .

Definition 2.18 Let π : G → U(Hπ ) be an irreducible unitary representation. We say
that a non-zero vector g ∈ Hπ is square integrable if Wgg ∈ L2(G). Explicitly, we
require that

∫

G
|〈g, π(x)g〉|2 dμL(x) < ∞.

The representation π is said to be square integrable if there exists at least one square
integrable vector for π .

Remark Pay attention to the fact that a square integrable representation π of a locally
compact group G is both unitary and irreducible by definition. These assumptions are
implicit whenever we say that a representation π : G → U(Hπ ) is square integrable.
A stronger requirement one could impose is for a non-zero vector g to be integrable in
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the sense thatWgg ∈ L1(G). It follows from the inclusion L1(G)∩ L∞(G) ⊂ L2(G)

that every integrable vector is square integrable. We will return to this more stringent
condition in Chapter 3.

Example 2.19 An irreducible unitary representation is not automatically square inte-
grable: Consider the trivial representation π : G → U(C) given by π(x) = IdC for
all x ∈ G. Then for z ∈ C \ {0} we have

∫

G
|〈z, π(x)z〉|2 dμL(x) =

∫

G
|〈z, z〉|2 dμL(x) = |z|4μL(G).

Hence the trivial representation of G is square integrable if and only if μL(G) < ∞.

This in turn happens if and only if G is compact by [23, Proposition 1.4.5]. Since the
wavelet transform is continuous, it is clear that any irreducible unitary representation
of a compact group is automatically square integrable. In fact, it is not terribly difficult
to show that a locally compact group G has a square integrable representation on a
finite dimensional vector space if and only if G is compact, see [65, Proposition 16.4].

Example 2.20 The wavelet transform (2.6) for the Schrödinger representation is not
square integrable. This is due to the last component {0} × {0} ×R being only present
in the phase factors. Notice that ρ(x, ω, t) = IdL2(Rn) precisely whenever (x, ω, t) =
(0, 0, n) for n ∈ Z. Hence we can consider the quotient group H

n
r := H

n/ ker(ρ) �
R

n × R
n × T with the Haar measure dx dω dτ and the product

(
x, ω, e2π iτ

)
·
(

x ′, ω′, e2π iτ ′) :=
(

x + x ′, ω + ω′, e2π i(τ+τ ′)eπ i(x ′ω−xω′)
)

,

for x, x ′, ω, ω′ ∈ R
n and τ, τ ′ ∈ R. The group H

n
r is called the reduced Heisenberg

group.
The Schrödinger representation ρ : Hn → U(L2(Rn)) descends to an irreducible

unitary representation ρr : Hn
r → U(L2(Rn)) given by

ρr

(
x, ω, e2π iτ

)
f (y) = e2π iτ eπ i xωTx Mω f (y),

(
x, ω, e2π iτ

)
∈ H

n
r ,

where Tx and Mω are given in (2.4). Although sloppy, it is common to refer to ρr

as the Schrödinger representation as well. In contrast with ρ, the representation ρr is
square integrable: For any non-zero g ∈ L2(Rn) we have

‖Wgg‖2L2(Hn
r )

=
∫ 1

0

∫

Rn

∫

Rn
|Vgg(x, ω)|2 dx dω dτ = ‖g‖4L2(Rn)

, (2.9)

where we used the orthogonality relation (2.7) of the STFT. Hence the mapWg is an
isometry from L2(Rn) to L2(Hn

r ) when ‖g‖L2(Rn) = 1.

At first glance, the condition that g ∈ Hπ is square integrable seems slightly weaker
than the requirement desired, namely that Wg f ∈ L2(G) for all f ∈ Hπ . However,
it turns out that they are in fact equivalent.
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Proposition 2.21 Let π : G → U(Hπ ) be a square integrable representation with a
square integrable vector g ∈ Hπ . Then Wg f ∈ L2(G) for all f ∈ Hπ .

Proof Consider the subspaceHg ⊂ Hπ consisting of those f ∈ Hπ such thatWg f ∈
L2(G). Then Hg is a non-trivial subspace since g ∈ Hg . The fact that Hg is closed
in Hπ is rather tricky, and we refer the reader to [72, Lemma 6.3] for the argument.
Notice that Hg is an invariant subspace since (2.3) shows that

Wgπ(y) f = L yWg f , f ∈ Hg, y ∈ G.

By irreducibility, we have Hg = Hπ and the result follows. ��
Remark There are several ways of characterizing square integrable representations
that we will not emphasize. One of the more elegant formulations [24, Theorem 2]
states that an irreducible unitary representation is square integrable precisely when it is
equivalent to a subrepresentation of the left regular representation. In the literature, e.g.
[41], such representations are sometimes referred to as discrete series representations.

The next result gives a complete answer to how the orthogonality relation (2.7)
generalizes to arbitrary square integrable representations.

Theorem 2.22 (Duflo–Moore Theorem) Let π : G → U(Hπ ) be a square integrable
representation. There exists a unique self-adjoint, positive, densely defined operator
Cπ : D(Cπ ) ⊂ Hπ → Hπ with a densely defined inverse such that:

• A non-zero element g ∈ Hπ is square integrable if and only if g ∈ D(Cπ ).
• For g1, g2 ∈ D(Cπ ) and f1, f2 ∈ Hπ we have the orthogonality relation

〈Wg1 f1,Wg2 f2〉L2(G) = 〈 f1, f2〉Hπ
〈Cπ g1, Cπ g2〉Hπ

. (2.10)

• The operator Cπ is injective and satisfies the invariance relation

π(x)Cπ = √�(x)Cππ(x), (2.11)

for all x ∈ G where � denotes the modular function on G.

For readers interested in the details of this remarkable result, we recommend reading
the appendix in [51, Chapter 2.4] as well as the original paper [24]. We will refer to
the operator Cπ in Theorem 2.22 as the Duflo–Moore operator corresponding to the
square integrable representation π : G → U(Hπ ). For our purposes, we record the
following consequence: The map Wg : Hπ → L2(G) is an isometry if and only if
g ∈ Hπ is in the domain of theDuflo–Moore operatorCπ and satisfies the admissibility
condition

‖Cπ g‖Hπ
= 1.

An element g ∈ Hπ that satisfies these conditions is said to be admissible. Notice that
any square integrable vector can be normalized to become admissible.
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Corollary 2.23 Let π : G → U(Hπ ) be a square integrable representation of a uni-
modular group G. Then the Duflo–Moore operator Cπ is defined on the whole Hπ

and satisfies Cπ = cπ · IdHπ
for some cπ > 0. In particular, every non-zero vector

g ∈ Hπ is square integrable.

Proof By looking at the invariance relation (2.11) when �(x) = 1 for all x ∈ G, we
see that Cπ is something akin to a densely defined intertwiner of the representation
π . This is only possible when Cπ = cπ · IdHπ

for some constant cπ ∈ C due to
a generalization of Schur’s Lemma, see [23, Proposition 12.2.2]. The constant cπ

necessarily has to be positive since Cπ is a positive operator. ��
Remark We would like to point out that a converse to Corollary 2.23 is also valid:
If π : G → U(Hπ ) is a square integrable representation such that the Duflo–Moore
operatorCπ is defined on thewhole ofHπ , then the groupG is necessarily unimodular.
To see this, one uses the invariance relation (2.11) together with the general fact
that the modular function � is either identically one or unbounded, see e.g. [39,
Proposition 2.24].

Example 2.24 Let us quickly verify that the Schrödinger representation ρr does indeed
fit within this framework. We have previously mentioned that the reduced Heisenberg
groupHn

r is unimodular. Hence Corollary 2.23 implies that the Duflo–Moore operator
Cρr corresponding to ρr is simply a constant multiple of the identity. We can gauge
from (2.9) that Cρr = IdL2(Rn). Hence a function g ∈ L2(Rn) is admissible for the
Schrödinger representation precisely when ‖g‖L2(Rn) = 1.

Example 2.25 Let π : G → U(Hπ ) be an irreducible unitary representation of a
compact group G. From Peter-Weyl theory, see e.g. [23, Theorem 7.3.2], it follows
that Hπ has to be finite dimensional. Moreover, any non-zero vector g ∈ Hπ is
square integrable since Wgg is a continuous function on the compact space G. Thus
the Duflo–Moore operator satisfies Cπ = cπ · IdHπ

for some cπ > 0. What is the
constant cπ? It follows from [23, Example 12.2.7] that we have the elegant formula

cπ = 1√
dim(Hπ )

.

Example 2.26 Let us demonstrate how Theorem 2.22 can simplify concrete settings:
Consider two normalized vectors x, y ∈ R

n and a rotation R ∈ SO(n). The quantity
|〈y, Rx〉|2 measures the square deviation from Rx and y being orthogonal. What is
the average of such orthogonality deviations when the normalized vectors x, y ∈ R

n

are fixed and R ∈ SO(n) is allowed to vary? Unwinding the question, we are asking
for the value

∫

SO(n)

|〈y, Rx〉|2 dμ(R), x, y ∈ R
n, ‖x‖ = ‖y‖ = 1.

When n = 2 the answer should be 1/2 based on geometric considerations. This can be
verified by brute force since any R ∈ SO(2) can be written as R = Rθ for θ ∈ [0, 2π)
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with

Rθ :=
(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
.

Is there a more satisfactory approach that works for all n ≥ 2? Look closely, there
is nothing up my sleeve: Consider the obvious representation π : SO(n) → U(Rn)

given by π(R)x := R · x for R ∈ SO(n) and x ∈ R
n . Then π is easily seen to be

square integrable. We can by Theorem 2.22 and Example 2.25 write

∫

SO(n)

|〈y, Rx〉|2 dμ(R) = 〈y, y〉〈Cπ x, Cπ x〉 = 1

n
. (2.12)

In words, the formula above expresses the fact that in higher dimensions, two random
normalized vectors are more likely to be orthogonal to each other; there are simply
more ways to be orthogonal in higher dimensions.

We would like to end this section with an example of a square integrable repre-
sentation of a non-unimodular group. Although somewhat lengthy, we encourage the
fatigued reader to soldier on through the next example as most of the theory we have
developed is present in some way.

Example 2.27 In this example we examine a unitary representation of the affine group
Aff given in Example 2.3. We have a family of dilation operators Da on L2(R) for
a ∈ R

∗ given by

Da f (x) := 1√|a| f
( x

a

)
, f ∈ L2(R). (2.13)

Together with the translation operator Tb in (2.4) we obtain a unitary representation
of the affine group π : Aff → U(L2(R)) given by

π(b, a) f (x) := Tb Da f (x) = 1√|a| f

(
x − b

a

)
, (b, a) ∈ Aff. (2.14)

It is common to refer to π as the wavelet representation. To see that a unitary represen-
tation is irreducible, it can often be a good strategy to jump straight to checking when
it is square integrable. For the wavelet representation, a formal computation using the
Fourier transform shows that

∫

Aff
|〈 f, π(b, a)g〉|2 db da

a2 =
∫

R

|F( f )(b)|2 db
∫

R∗
|F(g)(a)|2

|a| da, (2.15)

for any f, g ∈ L2(R). We refer the reader to [16, Example 2.48] for details of the
computation above. The right-hand side of (2.15) is always non-zero as long as we
choose f , g to be non-zero elements in L2(R). Hence g is a cyclic vector for all
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non-zero g ∈ L2(R). This implies that the wavelet representation π is irreducible by
Proposition 2.15.

Which non-zero vectors g ∈ L2(R) are square integrable? From (2.15), we see that
we need g to satisfy the condition

∫

R∗
|F(g)(a)|2

|a| da < ∞. (2.16)

The condition (2.16) is sometimes called the Calderón condition or the wavelet con-
dition. It is clear from (2.15) and the uniqueness statement of Theorem 2.22 that the
Duflo–Moore operator Cπ is the Fourier multiplier given by

Cπ g = F−1
(

1√|a|F(g)(a)

)
, g ∈ D(Cπ ).

We know that g ∈ D (Cπ ) is admissible if and only if ‖Cπ g‖L2(R) = 1. Hence
g ∈ L2(R) is admissible for the wavelet representation if and only if

∫

R∗
|F(g)(a)|2

|a| da = 1. (2.17)

Elements in L2(R) that satisfy (2.17) are sometimes called admissible wavelets in the
literature.

The wavelet transform for the wavelet representation is given explicitly by

Wg f (b, a) = 〈 f , Tb Dag〉 = 1√|a|
∫

R

f (x)g

(
x − b

a

)
dx, (2.18)

where (b, a) ∈ Aff and f , g ∈ L2(R). This is precisely the continuous wavelet
transform in wavelet analysis, see e.g. [21, Chapter 2]. In fact, this example is the
motivation for the terminology (generalized) wavelet transform. If g ∈ L2(R) is an
admissible wavelet and f1, f2 ∈ L2(R) are arbitrary, then Theorem 2.22 implies that
we have the orthogonality relation

∫

Aff
Wg f1(b, a)Wg f2(b, a)

db da

a2 =
∫

R

f1(x) f2(x) dx .

This example was popularized by I. Daubechies, A. Grossmann, and Y. Meyer in [22].

2.4 Reproducing Kernel Hilbert Spaces

In this sectionwe define reproducing kernelHilbert spaces and show that they naturally
occur in the setting of generalized wavelet transforms. We believe that reproducing
kernel Hilbert spaces can illuminate the theory and make results such as Theorem 2.32
in Sect. 2.5more transparent. Although the theory of reproducing kernel Hilbert spaces
is often implicit in works on coorbit theory, it is seldom written out in detail.
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Definition 2.28 Let X be a set and let H be a Hilbert space consisting of functions
f : X → C. We say that H is a reproducing kernel Hilbert space if the evaluation
functionals {Ex }x∈X are bounded, where

Ex ( f ) := f (x), f ∈ H.

If the evaluation functionals {Ex }x∈X are uniformly bounded, then we refer toH as a
uniform reproducing kernel Hilbert space.

Given a reproducing kernel Hilbert space H, we have by the Riesz representation
theorem that for each x ∈ X there is a unique element kx ∈ H such that

f (x) = 〈 f , kx 〉, f ∈ H.

We refer to kx as the reproducing kernel for the point x ∈ X . Since kx is again a
function on X , we can evaluate kx (y) for y ∈ X and obtain kx (y) = 〈kx , ky〉 = ky(x).
The function K : X × X → C given by

K (x, y) = 〈ky, kx 〉

is called the reproducing kernel for H.

Example 2.29 Consider the Paley–Wiener space PWA for a fixed A > 0 consisting
of functions f ∈ L2(R) such that supp(F( f )) ⊂ [−A, A], where F denotes the
Fourier transform. This space plays a major role in sampling theory and classical
harmonic analysis. The elements in PWA are actually smooth functions since their
Fourier transforms have compact support. Moreover, the space PWA is a Hilbert space
under the inner-product

〈 f , g〉PWA := 〈 f , g〉L2(R) = 〈F( f ),F(g)〉L2[−A,A] .

To see that the evaluation functionals {Ex }x∈R are bounded, we compute for f ∈ PWA

that

|Ex ( f )| = | f (x)| =
∣∣∣F−1 (F( f )) (x)

∣∣∣

=
∣∣∣∣
∫ A

−A
F( f )(ω)e2π i xω dω

∣∣∣∣

≤
(∫ A

−A
|F( f )(ω)|2 dω

) 1
2
(∫ A

−A
dω

) 1
2

= √
2A · ‖ f ‖PWA .

Since A > 0 is fixed, we conclude that PWA is a uniform reproducing kernel Hilbert
space. To find the reproducing kernel K A : R × R → C, notice that

f (x) = 〈 f , kx 〉PWA =
∫ A

−A
F( f )(ω)F(kx )(ω) dω.
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In view of the Fourier inversion f = F−1 (F( f )) it follows thatF(kx )(ω) = e−2π i xω.
Hence

K A(x, y) = kx (y) = F−1(e−2π i x ·)(y) =
{

1
π

sin(2π A(x−y))
x−y , if x �= y

2A, if x = y
.

A useful feature of reproducing kernel Hilbert spaces is that convergence in norm
implies pointwise convergence. To see this, let fn, f ∈ H and assume ‖ fn − f ‖ → 0.
Then

| fn(x) − f (x)| = |〈 fn − f , kx 〉| ≤ ‖ fn − f ‖ ‖kx‖ → 0. (2.19)

IfH in addition is a uniform reproducing kernel Hilbert space, then (2.19) shows that
convergence in norm implies uniform convergence. The reader can consult [63] for
more examples and properties of general reproducing kernel Hilbert spaces.

We now return to the setting of square integrable representations π : G → U(Hπ )

to illustrate how they naturally give rise to reproducing kernel Hilbert spaces. Pick
an admissible vector g ∈ Hπ so that Wg : Hπ → L2(G) is an isometry. We will
consider the image space

Wg(Hπ ) ⊂ L2(G).

Notice that, since Wg is an isometry, we have

W∗
g ◦ Wg = IdHπ

and Wg ◦ W∗
g

∣∣∣Wg(Hπ )
= IdWg(Hπ ). (2.20)

Proposition 2.30 Let π : G → U(Hπ ) be a square integrable representation with
an admissible vector g ∈ Hπ . The space Wg(Hπ ) is a uniform reproducing kernel
Hilbert space with reproducing kernel

Kg(x, y) = Wgg(y−1x), x, y ∈ G.

Proof The admissibility of g ∈ Hπ ensures that Wg(Hπ ) is a closed subspace of
L2(G). Thus Wg(Hπ ) is a Hilbert space with the norm

‖Wg f ‖Wg(Hπ ) := ‖Wg f ‖L2(G) = ‖ f ‖Hπ
, f ∈ Hπ .

For F ∈ Wg(Hπ ) and x ∈ G we can thus write

F(x) = Wg

(
W∗

g F
)

(x) =
〈
W∗

g F, π(x)g
〉
= 〈F,Wg (π(x)g)

〉
.
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SinceWg (π(x)g) ∈ Wg(Hπ ) we have thatWg(Hπ ) is a reproducing kernel Hilbert
space. The reproducing kernel Kg : G × G → C is given by

Kg(x, y) = 〈Wg (π(y)g) ,Wg (π(x)g)
〉 = 〈π(y)g, π(x)g〉

= Wg(π(y)g)(x) = Wgg(y−1x).

If Ex is the evaluation functional for the point x ∈ G then

‖Ex‖Wg(Hπ )∗ = ‖kx‖Wg(Hπ ) = ‖Wg (π(x)g) ‖Wg(Hπ ) = ‖π(x)g‖Hπ
= ‖g‖Hπ

.

It follows that Wg(Hπ ) is a uniform reproducing kernel Hilbert space since we have
fixed g. ��

For a locally compact group G, we say that an element S ∈ L2(G) is self-adjoint
convolution idempotent if S(x) = S(x−1) for all x ∈ G and S ∗G S = S. It will
follow fromTheorem2.32 that the elementWgg is self-adjoint convolution idempotent
whenever g ∈ Hπ is admissible. A converse to this statement can be found in [41,
Proposition 2.38]. In [41, Theorem 2.45] the following generalization of a classical
result of Elke Wilczok [71] is derived.

Proposition 2.31 Let G be a locally compact group that is connected and non-compact.
Consider a square integrable representation π : G → U(Hπ ) and fix an admissible
vector g ∈ Hπ . If F ∈ Wg(Hπ ) is supported on a set of finite Haar measure, then
F ≡ 0.

Remark The reader can consult [41, Chapter 2.5] for more interesting results regard-
ing self-adjoint convolution idempotents. We refer the reader to [3,45] for further
properties of the spaces Wg(Hπ ).

2.5 The Reproducing and Reconstruction Formulas

Weend this chapter by providing two important results that tie up loose ends. Firstly,we
prove the reproducing formula in Theorem 2.32. This result has a simple interpretation
in the language of reproducing kernel Hilbert spaces. Secondly, we generalize the
reconstruction formula for the STFT in (2.8) to square integrable representations in
Corollary 2.34. Both of these results have short and elegant proofs that build on the
theory developed so far.

Theorem 2.32 (Reproducing Formula) Let π : G → U(Hπ ) be a square integrable
representation and fix an admissible vector g ∈ Hπ . Then Wg ◦W∗

g is the projection

from L2(G) to Wg(Hπ ) and has the explicit form

Wg

(
W∗

g F
)

= F ∗G Wgg, F ∈ L2(G).

In particular, for F ∈ Wg(Hπ ) we have

F = F ∗G Wgg. (2.21)
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Proof ThemapWg : Hπ → L2(G) is an isometry since g ∈ Hπ is admissible. Hence
Wg ◦ W∗

g is the projection from L2(G) to Wg(Hπ ). For x ∈ G and F ∈ L2(G), an
initial computation using (2.3) shows that

Wg

(
W∗

g F
)

(x) = 〈W∗
g F, π(x)g〉 = 〈F,Wg(π(x)g)〉 = 〈F, LxWgg〉.

Since Wgg(x) = Wgg(x−1) we end up with

〈F, LxWgg〉 =
∫

G
F(y)Wgg(y−1x) dμL(y) = (F ∗G Wgg)(x).

��
Remark The special case (2.21) motivates the name reproducing formula, as we can
reproduce the values of F ∈ Wg(Hπ ) by convolving F withWgg ∈ Wg(Hπ ). Notice
thatWgg is precisely the reproducing kernel ke for the identity element e ∈ G. Hence
(2.21) shows that the reproducing kernel Wgg is a (right) identity for Wg(Hπ ) with
respect to the convolution product. The fact that the wavelet transform Wg for any
admissible g ∈ Hπ is an isomorphism

Wg : Hπ
∼−→ Wg(Hπ ) =

{
F ∈ L2(G) : F = F ∗G Wgg

}

is a special case of the correspondence principle in Theorem 3.20.

We now take a brief detour to weak integrals so that uninitiated readers will be less
squeamish when encountering expressions on the form (2.24). Let � : G → H be a
continuous function from a locally compact group G to a Hilbert space H. We need
to make sense of

∫

G
�(x) dμL(x) (2.22)

as an element inH. This can be done under amild additional requirement. Specifically,
we require that the linear functional on H given by

f 	−→
∫

G
〈�(x), f 〉 dμL(x) (2.23)

is well-defined. The boundedness of the functional (2.23) is immediate. Hence the
Riesz representation theorem implies the existence of an element in H denoted by
(2.22) such that

〈∫

G
�(x) dμL(x), f

〉
=
∫

G
〈�(x), f 〉 dμL(x),

for every f ∈ H. We refer to the element (2.22) as the weak integral of the function
�.
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Proposition 2.33 Let π : G → U(Hπ ) be a square integrable representation and fix
an admissible vector g ∈ Hπ . Then for F ∈ L2(G) we can represent W∗

g (F) as the
weak integral

W∗
g (F) =

∫

G
F(x)π(x)g dμL(x). (2.24)

Proof Consider�F : G → Hπ given by�F (x) := F(x)π(x)g for F ∈ L2(G). Then
�F satisfies the required properties for a weak integral due to the assumed continuity
of π and the estimate

∣∣∣∣
∫

G
〈F(x)π(x)g, f 〉 dμL(x)

∣∣∣∣ ≤
∫

G
|〈F(x)π(x)g, f 〉| dμL(x)

=
∫

G
|F(x)| · |Wg f (x)| dμL(x)

≤ ‖F‖L2(G)‖Wg f ‖L2(G)

= ‖F‖L2(G)‖ f ‖Hπ
,

for f ∈ Hπ . The claim hence follows from the computation

〈W∗
g F, f 〉Hπ

=
∫

G
F(x)Wg f (x) dμL(x) =

∫

G
〈F(x)π(x)g, f 〉 dμL(x).

��
By combining Proposition 2.33 with (2.20) we obtain the following generalization

of the reconstruction formula for the STFT given in (2.8).

Corollary 2.34 (Reconstruction Formula) Let π : G → U(Hπ ) be a square integrable
representation and fix an admissible vector g ∈ Hπ . We can represent any f ∈ Hπ

as the weak integral

f = W∗
g

(Wg f
) =

∫

G
Wg f (x)π(x)g dμL(x). (2.25)

Hence we have for any h ∈ Hπ that

〈 f , h〉 =
∫

G
Wg f (x)Wgh(x) dμL(x).

Example 2.35 Consider the wavelet representation π : Aff → U(L2(R)) given in
Example 2.27 and let f , g ∈ L2(R) with g admissible. Then the reconstruction for-
mula (2.25) takes the form

f =
∫

Aff
Wg f (b, a)Tb Dag

db da

a2 .
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3 In theMidst of Coorbit Spaces

In this chapter we will define the coorbit spaces and derive their basic properties. The
coorbit spaces consist of elements η such that the wavelet transformWgη has suitable
decay as a function on the group G. However, the elements η will not be picked from
Hπ , but rather from a larger distributional space. The aim of the first two sections in
this chapter is to make this notion precise. Once this is ready, we will define coorbit
spaces without weights in Sect. 3.3. The weighted versions will be introduced in
Sect. 3.5 so that we can initially introduce coorbit spaces with minimal technicalities.
Although this is an uncommon approach in the literature, we believe that what this
approach lacks in efficiency is made up for by increased clarity. In Sect. 3.6 we show
that the coorbit spaces can be discretized in a way that reflects the geometry of the
underlying group. Finally, we discuss Banach frames and kernel theorems for coorbit
spaces respectively in Sects. 3.7 and 3.8.

Restriction to σ -compact groups For some results in this chapter, we will need
that the locally compact group G is σ -compact, that is, there exists a sequence of
compact sets (Kn)n∈N with Kn ⊂ G such that ∪n∈NKn = G. Rather than explicitly
requiring this at individual points in the exposition, we henceforth restrict our attention
to σ -compact groups. Whenever we refer to a representation π : G → U(Hπ ), it is
from now on implicitly assumed that G is a σ -compact locally compact group. We
remark that σ -compactness for locally compact groups is amild condition:Any second
countable or connected locally compact group is σ -compact.Moreover, we can always
find a subgroup of a locally compact group that is open, closed, and σ -compact by
[39, Proposition 2.4].

3.1 Integrable Representations and Test Vectors

In this section we restrict our attention to the case of integrable representations. An
irreducible unitary representation π : G → U(Hπ ) is said to be integrable if there
exists an integrable vector, that is, if there is a non-zero vector g ∈ Hπ such that
Wgg ∈ L1(G). Then π is automatically square integrable since Wgg ∈ L1(G) ∩
L∞(G) ⊂ L2(G). We use the notation

A :=
{

g ∈ Hπ : Wgg ∈ L1(G)
}

.

The set A is sometimes called the analyzing vectors in the literature [33]. Notice that
A contains all the integrable vectors as well as the zero vector. From now on, we will
require thatA is non-trivial, that is, we require that the representation π is integrable.

Given an integrable vector g ∈ A \ {0}, we can define the corresponding space of
test vectors

H1
g :=

{
f ∈ Hπ : Wg f ∈ L1(G)

}
.
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The terminology “test vectors” is not standard, although it has been used in [1,68].
We will explain in Sect. 3.2 why this terminology is suitable. The space H1

g can be
equipped with the norm

‖ f ‖H1
g

:= ‖Wg f ‖L1(G), f ∈ H1
g.

To see that this is a norm and not just a seminorm we assume that ‖Wg f ‖L1(G) = 0
for some f ∈ H1

g . Then Wg f is zero almost everywhere as a function on G. This
implies that Wg f represents the zero equivalence class in L2(G). The injectivity of
Wg : Hπ → L2(G) ensured by Proposition 2.15 and Lemma 2.16 gives that f = 0
as an element inHπ , and hence also as an element inH1

g .

Proposition 3.1 Let π : G → U(Hπ ) be an integrable representation and fix an
integrable vector g ∈ A \ {0}. The restriction π |H1

g
acts by isometries on the test

vectors H1
g. Furthermore, the test vectors H1

g is dense in Hπ .

Proof It is clear thatH1
g is a linear subspace ofHπ . Moreover, for f ∈ H1

g and x ∈ G
we have that

‖π(x) f ‖H1
g

= ‖Wgπ(x) f ‖L1(G) = ‖LxWg f ‖L1(G) = ‖Wg f ‖L1(G) = ‖ f ‖H1
g
.

Hence the closure of H1
g in the norm on Hπ is a non-trivial closed subspace of Hπ

where π acts by isometries. The irreducibility of π implies thatH1
g is a dense subspace

of Hπ . ��
Remark It is tempting, in light of Proposition 2.21, to attempt to show thatH1

g is closed
in Hπ . Then Proposition 3.1 would imply that H1

g = Hπ . However, this is generally
false and we will give a concrete counterexample in Example 3.7. In fact, it will be
clear from Sect. 3.3 that coorbit theory is not very interesting whenever H1

g = Hπ .

Proposition 3.2 Let π : G → U(Hπ ) be an integrable representation. Then for
any integrable vector g ∈ A \ {0} the test vectors H1

g form a Banach space that is
continuously embedded into Hπ .

Proof We begin by showing that the spaceH1
g is continuously embedded intoHπ . For

f ∈ H1
g we have by the orthogonality relation in (2.10) that

‖Cπ g‖2Hπ
‖ f ‖2Hπ

= ‖Wg f ‖2L2(G)
=
∫

G
|〈 f , π(x)g〉||Wg f (x)| dμL(x)

≤
∫

G
‖ f ‖Hπ

‖π(x)g‖Hπ
|Wg f (x)| dμL(x)

= ‖ f ‖Hπ
‖g‖Hπ

‖Wg f ‖L1(G).

Since Cπ g �= 0 due to the injectivity of Cπ we obtain

‖ f ‖Hπ
≤ ‖g‖Hπ

‖Cπ g‖2Hπ

‖Wg f ‖L1(G) = ‖g‖Hπ

‖Cπ g‖2Hπ

‖ f ‖H1
g
. (3.1)
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Let us now show thatH1
g is complete. Assume that { fn}n∈N is a Cauchy-sequence

in H1
g . By completeness of L1(G) the sequence Wg fn converges to an element F ∈

L1(G). Moreover, we see from (3.1) that there exists f ∈ Hπ such that fn converges
to f inHπ . Hence by the continuity ofWg as a transformation fromHπ to L2(G), the
sequence Wg fn converges to Wg f in L2(G). Since any norm-convergent sequence
in L2(G) has a subsequence which is almost everywhere convergent, this forces F =
Wg f . Hence f ∈ H1

g and fn converges to f inH1
g . ��

The main goal of this section is to show in Theorem 3.5 thatH1
g does not depend on

the choice of integrable vector g ∈ A \ {0}. To do this, we first need two preliminary
results given in Lemmas 3.3 and 3.4 regarding the Duflo–Moore operator Cπ and
integrable vectors. These technicalities are somewhat neglected in the original sources
[33–35] on coorbit theory. To our knowledge, this was first put on rigorous footing in
[68, Lemma 2.4.5].

Lemma 3.3 Let π : G → U(Hπ ) be an integrable representation and let D(Cπ )

denote the domain of the Duflo–Moore operator. Then

Cπ (A) ⊂ D(Cπ ).

Proof Due to the self-adjointness of Cπ it suffices to show that Cπ (g) ∈ D(C∗
π ) for

all g ∈ A. To show this, we prove that the linear functional on D(Cπ ) given by

f 	−→ 〈Cπ f , Cπ g〉Hπ
= 〈 f , C∗

πCπ g〉Hπ

is bounded. For g = 0 the boundedness clearly holds. For g �= 0 the claim follows
from the orthogonality relation (2.10) since

|〈Cπ f , Cπ g〉Hπ
| = ‖g‖−2

Hπ
|〈Wgg,W f g〉L2(G)|

≤ ‖g‖−2
Hπ

‖Wgg‖L1(G)‖W f g‖L∞(G)

≤
(
‖g‖−1

Hπ
‖g‖H1

g

)
· ‖ f ‖Hπ

.

��

Lemma 3.4 Let π : G → U(Hπ ) be an integrable representation and fix two inte-
grable vectors g1, g2 ∈ A \ {0}. Then there exists an integrable vector g ∈ A \ {0}
such that

〈Cπ g, Cπ gi 〉 �= 0, i = 1, 2.

Proof If 〈Cπ g1, Cπ g2〉 �= 0, then we can simply take g = g1. The injectivity of the
Duflo–Moore operator Cπ ensures that 〈Cπ g1, Cπ g1〉 �= 0. Hence we are left with the
case 〈Cπ g1, Cπ g2〉 = 0.
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We point out that Lemma 3.3 allows us to considerCπ (Cπ (g2)). Notice that neither
Cπ g2 nor Cπ (Cπ (g2)) can be zero due to the injectivity of Cπ . Since the collection
{π(x)g1}x∈G is dense inHπ , there exists some fixed x0 ∈ G such that

0 �= 〈π(x0)g1, Cπ (Cπ (g2))〉 = 〈Cπ (π(x0)g1), Cπ g2〉.

The desired element we need will be of the form

g := g1 + ε · π(x0)g1

for some ε > 0 that is yet to be determined. First of all, we need to check that
g ∈ A \ {0} for every ε > 0. This follows from the calculation

Wgg = Wg1g1 + ε · (Wg1π(x0)g1 + Wπ(x0)g1g1
)+ ε2 · Wπ(x0)g1π(x0)g1

=Wg1g1+ε ·
(

Lx0Wg1g1+�(x−1
0 )Rx−1

0
Wg1g1

)
+ε2 · �(x−1

0 )Rx−1
0

Lx0Wg1g1,

together with the fact that L1(G) is both left-invariant and right-invariant. To see that
g satisfies the required properties, we first have that

〈Cπ g, Cπ g2〉 = ε · 〈Cπ (π(x0)g1), Cπ g2〉 �= 0.

Secondly, by choosing ε sufficiently small we also have that

〈Cπ g, Cπ g1〉 = ‖Cπ g1‖2 + ε · 〈Cπ (π(x0)g1), Cπ g1〉 �= 0.

��
We can now state the main result of this section regarding the independence of the

test vectors H1
g of the chosen integrable vector g ∈ A \ {0}.

Theorem 3.5 Let π : G → U(Hπ ) be an integrable representation. Given two inte-
grable vectors g1, g2 ∈ A \ {0} the spaces H1

g1 and H1
g2 coincide with equivalent

norms.

Proof Assume first that the two integrable vectors g1, g2 ∈ A \ {0} satisfy
〈Cπ g1, Cπ g2〉 �= 0. We pick f ∈ H1

g1 and want to show that f ∈ H1
g2 , that is,

we need to check that Wg2 f ∈ L1(G). A short calculation reveals that

(Wg1 f ∗G Wg2g2
)
(x) =

∫

G
〈 f , π(y)g1〉〈g2, π(y−1x)g2〉 dμL(y)

=
∫

G
〈 f , π(y)g1〉〈π(x)g2, π(y)g2〉 dμL(y)

= 〈Wg1 f ,Wg2(π(x)g2)
〉
L2(G)

= 〈Cπ g1, Cπ g2〉Wg2 f (x).
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Since 〈Cπ g1, Cπ g2〉 �= 0 we can rearrange and integrate so that

‖Wg2 f ‖L1(G) = ‖Wg1 f ∗G Wg2g2‖L1(G)

|〈Cπ g1, Cπ g2〉| ≤ ‖Wg2g2‖L1(G)

|〈Cπ g1, Cπ g2〉|‖Wg1 f ‖L1(G).

Let us now tackle the case where g1, g2 ∈ A \ {0} satisfy 〈Cπ g1, Cπ g2〉 = 0.
Again, we assume that f ∈ H1

g1 and we want to show that f ∈ H1
g2 . We can by

Lemma 3.4 pick an integrable vector g ∈ A \ {0} such that 〈Cπ g, Cπ gi 〉 �= 0 for
i = 1, 2. Performing similar calculations as previously, we obtain

(Wg1 f ∗G Wgg
) ∗G Wg2g2 = 〈Cπ g1, Cπ g〉Wg f ∗G Wg2g2

= 〈Cπ g1, Cπ g〉〈Cπ g, Cπ g2〉Wg2 f .

We have conceptually used g as a stepping stone between g1 and g2. After a rear-
rangement, we can integrate and obtain

‖Wg2 f ‖L1(G) = ‖Wg1 f ∗G Wgg ∗G Wg2g2‖L1(G)

|〈Cπ g1, Cπ g〉||〈Cπ g, Cπ g2〉|
≤ ‖Wgg‖L1(G)‖Wg2g2‖L1(G)

|〈Cπ g1, Cπ g〉||〈Cπ g, Cπ g2〉|‖Wg1 f ‖L1(G).

It clear from the arguments above that the norms onH1
g1 and H1

g2 are equivalent. ��
Due to the independence of the integrable vector g ∈ A \ {0} we will use the

notation

H1 := H1
g.

It follows from Theorem 3.5 that A ⊂ H1 since g ∈ A is in H1
g by definition. For

unimodular groups, the following result shows that we do not need to keep track of
both H1 and A.

Proposition 3.6 We have the equalityA = H1 when π : G → U(Hπ ) is an integrable
representation of a unimodular group G.

Proof We fix f ∈ H1 and want to show that f ∈ A. The orthogonality relation in
(2.10) for x ∈ G gives that

〈Cπ g, Cπ g〉Hπ
〈 f , π(x) f 〉Hπ

= 〈Wg f ,Wg(π(x) f )
〉
L2(G)

.

We take the absolute value and use the intertwining property (2.3) to get

‖Cπ g‖2Hπ
|〈 f , π(x) f 〉Hπ

| ≤
∫

G
|Wg f (y)||Wg f (x−1y)| dμ(y).
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Notice that ‖Cπ g‖2 �= 0 since Cπ is injective. Hence we can use Fubini’s theorem
and the right-invariance of the measure μ to obtain

‖W f f ‖L1(G) ≤ 1

‖Cπ g‖2
∫

G

∫

G
|Wg f (y)||Wg f (x−1y)| dμ(y) dμ(x)

= 1

‖Cπ g‖2
∫

G
|Wg f (y)|

(∫

G
|Wg f (x−1y)| dμ(x)

)
dμ(y)

= 1

‖Cπ g‖2
∫

G
|Wg f (x−1)| dμ(x)

∫

G

∣∣Wg f (y)
∣∣ dμ(y).

The substitution x 	→ x−1, which is valid since G is unimodular, shows that f ∈ A
since

‖W f f ‖L1(G) ≤ 1

‖Cπ g‖2
∫

G

∣∣Wg f (x)
∣∣ dμ(x)

∫

G

∣∣Wg f (y)
∣∣ dμ(y) ≤ 1

‖Cπ g‖2 ‖Wg f ‖2L1(G)
.

��
Example 3.7 Let us consider the Schrödinger representation ρr of the reduced Heisen-
berg groupHn

r . It follows from (2.6) that for any g ∈ L2(Rn)we haveWgg ∈ L1(Hn
r )

precisely whenever Vgg ∈ L1(R2n), where V denotes the STFT and W denotes the
wavelet transform corresponding to ρr . Motivated by this observation, we will work
with the STFT instead of the wavelet transform.

It is straightforward to check that Vgg ∈ S(R2n) ⊂ L1(R2n) whenever g ∈ S(Rn)

is a smooth and rapidly decaying function, for details see [47, Theorem 11.2.5]. Hence
ρr is an integrable representation. We can by Theorem 3.5 and Proposition 3.6 unam-
biguously define the Feichtinger algebra

M1(Rn) := H1 = A =
{

f ∈ L2(Rn) : V f f ∈ L1(R2n)
}

.

We obtain from Proposition 3.2 that M1(Rn) is a Banach space. The Feichtinger
algebra M1(Rn) was first introduced in [28] and gained more widespread attention
after its appearance in [47].We refer the reader to [55] for a detailed andmodern expo-
sition on the Feichtinger algebra. In particular, functions in M1(R) are automatically
continuous by [55, Corollary 4.2]. Since there are plenty of non-continuous1 elements
in L2(Rn), this gives an example where H1 �= Hπ .

3.2 Reservoirs and the ExtendedWavelet Transform

Let π : G → U(Hπ ) be an integrable representation and fix an integrable vector
g ∈ A \ {0}. In light of the previous section, we might prematurely define the coorbit
space Coπ

p for 1 ≤ p ≤ ∞ to be all f ∈ Hπ such thatWg f ∈ L p(G). However, this
naive definition suffers from the following problem: We will obtain Coπ

p = Hπ for

1 More precisely, there is a dense subset D ⊂ L2(Rn) of equivalence classes of functions that does not
have a continuous representative.
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every p ≥ 2. Only having interesting coorbit spaces in the range 1 ≤ p ≤ 2 shatters
any dream of good duality results; see Proposition 3.23 for what we aremissing out on.
The problem is that the spaceHπ is too small to accommodate a full range 1 ≤ p ≤ ∞
of interesting spaces. In this section, we will fix this problem by introducing a larger
reference spaceR and ensuring that everything works the way it should. After this is
done, we can confidently define the coorbit spaces properly in Sect. 3.3.

Definition 3.8 Let π : G → U(Hπ ) be an integrable representation. The space of
bounded anti-linear functionals onH1 is denoted byR and called the reservoir space.

Remark Implicitly,wehave chosen an integrable vector g ∈ A\{0} and are considering
H1

g and the space Rg of bounded anti-linear functionals on H1
g . However, due to

Theorem 3.5 we omit g from the notation as it is of minor importance. The reservoir
space R will seldomly consist of functions in any reasonable sense. If we want to
understand when two elements φ,ψ ∈ R are equal, we need to test them on all the
elements inH1. This is the motivation for callingH1 the space of test vectors.

Lemma 3.9 There are natural continuous embeddings

H1 ↪−→ Hπ ↪−→ R.

Proof If φ ∈ R and g ∈ H1, we denote the dual pairing φ(g) by 〈φ, g〉. We can embed
Hπ intoR by letting f ∈ Hπ act on g ∈ H1 by

f (g) := 〈 f , g〉Hπ
.

To see that the inclusion Hπ ↪−→ R is continuous we compute for f ∈ Hπ that

‖ f ‖R = sup
g∈H1\{0}

|〈 f , g〉|
‖g‖H1

≤
(

sup
g∈H1\{0}

‖g‖Hπ

‖g‖H1

)
‖ f ‖Hπ

.

The claim follows from the continuity of the inclusionH1 ↪−→ Hπ in Proposition 3.2.
��

Given an integrable representation π : G → U(Hπ ) we can let π act on the
reservoir space R through duality. More precisely, for x ∈ G and φ ∈ R we define
π(x)φ to be the element inR that acts on g ∈ H1 by

(π(x)φ)(g) = 〈π(x)φ, g〉 := 〈φ, π(x−1)g〉.

This gives an isometric action onR since

‖π(x)φ‖R = sup
g∈H1\{0}

|〈π(x)φ, g〉|
‖g‖H1

= sup
g∈H1\{0}

|〈φ, π(x−1)g〉|
‖π(x−1)g‖H1

= ‖φ‖R,

where we used that π acts by isometries on H1, see Proposition 3.1. We can now
extend the wavelet transform to a duality pairing between H1 and R as follows:
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Definition 3.10 Let π : G → U(Hπ ) be an integrable representation. For φ ∈ R and
g ∈ H1 we define the (extended) wavelet transform to be the function on G given by

Wgφ(x) := 〈φ, π(x)g〉 = φ (π(x)g) = (π(x−1)φ)(g), x ∈ G.

Notice that the definition of the extended wavelet transform is well-defined since
H1 is invariant under π . Some authors, e.g. [16], change the notation for the extended
wavelet transform to emphasize its domain, while other authors [68] do not change the
notation. We have opted for the latter and will strive to make it clear what the wavelet
transform acts on.

Proposition 3.11 Letπ : G → U(Hπ )be an integrable representation and fix g ∈ H1.
Then Wg(R) ⊂ Cb(G) and we have the intertwining property

Wg(π(x)φ) = Lx
[Wgφ

]
, (3.2)

for x ∈ G and φ ∈ R.

Proof Consider the map �g : G → H1 given by �g(x) := π(x)g for x ∈ G. The map
�g is continuous by Proposition 3.1 and the continuity of the left regular representation
on L1(G) since

‖π(x)g − π(y)g‖H1 = ‖LxWgg − L yWgg‖L1(G), x, y ∈ G.

HenceWgφ = φ ◦ �g is also continuous. The boundedness ofWgφ follows from the
straightforward computation

Wg

(
W∗

g F
)

(x) = 〈W∗
g F, π(x)g〉R,H1 = (F ∗G Wgg)(x).

Finally, the intertwining property is verified by the computation

(Wg(π(x)φ)
)
(y) = 〈π(x)φ, π(y)g〉 = 〈φ, π(x−1y)g〉 = LxWgφ(y), x, y ∈ G.

��
Remark Although the (extended)wavelet transformWg iswell-defined for all g ∈ H1,
we will for the most part work with the setting where g ∈ A ⊂ H1 for convenience.
Hence we will primarily state results for Wg when g ∈ A, even though they are
sometimes valid for g ∈ H1 as well.

Example 3.12 We defined in Example 3.7 the Feichtinger algebra M1(Rn) as the test
vectors corresponding to the STFT. The reservoir space R in this setting will be
denoted by M∞(Rn).

Let us do a concrete calculation in the case n = 1: The Dirac Comb distribution
δZ is defined formally as acting on functions f : R → C by

δZ( f ) :=
∞∑

n=−∞
f (n). (3.3)
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The expression (3.3) is obviously not always well defined. It follows from [55, Corol-
lary 5.9] that δZ ∈ M∞(R). For g(t) := e−t2 ∈ S(R) ⊂ M1(R) and (x, ω) ∈ R

2 we
have the explicit computation

VgδZ(x, ω) = δZ (M−ωT−x g) = δZ

(
e−2π iωt e−(t−x)2

)
=

∞∑

n=−∞
e−2π iωne−(n−x)2 .

An interesting observation is that

VgδZ(0, ω) = ϑ(z, τ ),

where τ = i/π , z = −ω, and ϑ is the Jacobi theta function omnipresent in complex
analysis.

Lemma 3.13 Let π : G → U(Hπ ) be an integrable representation and fix g ∈ A\{0}.
Then linear combinations of elements of the form π(x)g for x ∈ G constitute a dense
subspace of H1 with respect to the norm on H1. Moreover, if g is admissible then we
have the reproducing formula

Wgφ = Wgφ ∗G Wgg,

for any φ ∈ R.

Remark Originally the density statement in Lemma 3.13 was proved by showing a
minimality statement regarding the space H1. More precisely, it was shown in [33,
Corollary 4.8] that H1 is the minimal π -invariant Banach space inside Hπ where
π acts isometrically and such that A ∩ H1 �= {0}. A different proof of the density
statement in Lemma 3.13 was given in [68, Lemma 2.4.7] using Bochner integration.
The reader can also find a proof of the convolution statement in [68, Lemma 2.4.8],
again using Bochner integration. We have opted to not present a proof of Lemma 3.13
as it is mostly a technical tool.

Corollary 3.14 Let π : G → U(Hπ ) be an integrable representation and fix an inte-
grable vector g ∈ A \ {0}. Then Wg : R → L∞(G) is injective.

Proof Assume thatWgφ(x) = φ(π(x)g) = 0 for almost every x ∈ G. The continuity
ofWgφ implies thatWgφ(x) = 0 for all x ∈ G. Then Lemma 3.13 shows that φ = 0
since the span of the elements π(x)g for x ∈ G is a dense subspace of H1. ��

Notice that for an integrable vector g ∈ A \ {0} we have by definition that Wg :
H1 → L1(G). Hence we can consider the adjoint map W∗

g : L∞(G) → R defined
by the relation

〈W∗
g F, f 〉R,H1 = 〈F,Wg f 〉L∞(G),L1(G)

=
∫

G
F(x)Wg f (x) dμL(x) =

∫

G
F(x)〈π(x)g, f 〉 dμL(x),
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for F ∈ L∞(G) and f ∈ H1. The adjoint map W∗
g : L∞(G) → R can hence be

written weakly as

W∗
g F =

∫

G
F(x)π(x)g dμL(x), F ∈ L∞(G).

Proposition 3.15 Let π : G → U(Hπ ) be an integrable representation and fix an
integrable vector g ∈ A \ {0}. The adjoint map W∗

g : L∞(G) → R satisfies

Wg

(
W∗

g F
)

= F ∗G Wgg, W∗
g (Wgφ) = φ,

for F ∈ L∞(G) and φ ∈ R.

Proof For x ∈ G a straightforward computation shows that

Wg

(
W∗

g F
)

(x) = 〈W∗
g F, π(x)g〉R,H1 = (F ∗G Wgg)(x). (3.4)

Finally, we need to show that the mapW∗
g ◦Wg : R → R is in fact the identity map.

For φ ∈ R we have from (3.4) and Lemma 3.13 that

Wg(W∗
g (Wgφ)) = Wgφ ∗G Wgg = Wgφ.

The injectivity of Wg : R → L∞(G) ensured by Corollary 3.14 shows that
W∗

g (Wgφ) = φ. ��

The following result reveals a deep connection between the extended wavelet trans-
form and convolutions on the group G.

Theorem 3.16 Let π : G → U(Hπ ) be an integrable representation and fix an inte-
grable vector g ∈ A \ {0}. A function F ∈ L∞(G) satisfies the convolution relation
F = F ∗G Wgg precisely when it can be written uniquely as F = Wgφ for some
φ ∈ R.

Proof If F ∈ L∞(G) is such that F = F ∗G Wgg, then Proposition 3.15 shows that
F = Wgφ where φ := W∗

g F . Moreover, the description F = Wgφ is necessarily
unique due to the injectivity of Wg : R → L∞(G). Conversely, assume that F ∈
L∞(G) satisfies F = Wgφ for some φ ∈ R. Then we have from Proposition 3.15
that

W∗
g F = W∗

g

(Wgφ
) = φ.

Thus Wg(W∗
g F) = Wgφ = F . The claim follows from a final application of Propo-

sition 3.15. ��
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Remark We mentioned in Example 3.7 that the space S(Rn) is included in the
Feichtinger algebra M1(Rn). Hence we have by Lemma 3.9 the inclusions

S(Rn) ⊂ M1(Rn) ⊂ L2(Rn) ⊂ M∞(Rn) ⊂ S ′(Rn),

where the set of tempered distributions S ′(Rn) is the dual space of S(Rn). We can
view the pair

(
M1(Rn), M∞(Rn)

)
as a refinement of the pair

(S(Rn),S ′(Rn)
)
. A

time-frequency analysis enthusiast might even use the word “improvement since the
Feichtinger algebra M1(Rn) is, in contrast with S(Rn), a Banach space.

3.3 Coorbit Spaces and the Correspondence Principle

Now that all the pieces are in place we will define the coorbit spaces. These are the
main objects of study for this survey, and we spend a decent amount of time deriving
their basic properties.

Definition 3.17 Let π : G → U(Hπ ) be an integrable representation and fix an
integrable vector g ∈ A \ {0}. The coorbit space Coπ

p consists of all elements in the
reservoir space φ ∈ R such that Wgφ decays fast enough to be in L p(G). Precisely,
we define for each 1 ≤ p ≤ ∞ the space

Coπ
p := {φ ∈ R : Wgφ ∈ L p(G)

}
,

with the norm

‖φ‖Coπ
p

:= ‖Wgφ‖L p(G).

Notice that the group G is implicitly present in the notation Coπ
p through the rep-

resentation π . The observant reader will have noticed that we did not mention the
integrable vector g ∈ A \ {0} in the notation Coπ

p . This is because, as probably sus-
pected, the coorbit spaces Coπ

p do not depend on the choice of integrable vector, see
[33, Sect. 5.2] for details.

Example 3.18 Let G be a compact group and let π : G → U(Hπ ) be an irreducible
representation. Then π is automatically integrable since any g ∈ Hπ satisfies

∫

G
|Wgg(x)| dμL(x) ≤ ‖Wgg‖L∞(G) · μL(G) < ∞.

Here we used that the Haar measure on a compact group is finite, see [23, Propo-
sition 1.4.5]. Moreover, it is clear that every g ∈ Hπ satisfies Wgg ∈ L p(G) for
all 1 ≤ p ≤ ∞. Thus all the coorbit spaces coincide, that is, Coπ

p = Hπ for all
1 ≤ p ≤ ∞. Moreover, we mentioned in Example 2.25 that Hπ is necessarily
finite-dimensional whenever G is compact. Hence coorbit spaces are rather dull when
considering compact groups.
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Coorbit spaces associated with a commutative group G are even more boring: In
this case Corollary 2.14 ensures that Hπ is one-dimensional. From this, it is easy to
check that an integrable representation π : G → U(Hπ ) can only exist whenever G
is compact. Henceforth we will only be interested in coorbit spaces corresponding to
locally compact groups that are both non-compact and not commutative.

Remark Before we proceed, it is instructive to consider how the definition of coorbit
spaces can be generalized.

• One could allow p to take values in the interval (0, 1) as well. This would make
the spaces Coπ

p for p ∈ (0, 1) quasi-normed spaces instead of normed spaces. We
will not consider this extension, and refer the reader to [68] for basic results in this
direction.

• We can consider weighted coorbit spaces Coπ
p,w where w : G → (0,∞) is a

weight function. To do this, one must first incorporate weights into the definition
of analyzing vectors Aw and test vectors H1

w. We will briefly go through this
extension in Sect. 3.5. The weighted extension offer mostly technical challenges
rather than conceptual ones. As such, we feel content with supplying the proofs
only in the unweighted setting. We will however provide the reader the proper
references whenever we leave out details.

• The coorbit spacesCoπ
p wehave defined could be given themore extensive notation

Coπ (L p(G)) to emphasize the role of the space L p(G). This suggest the gener-
alization Coπ (Y ), where Y is a suitable space of functions on G. For Coπ (Y )

to obtain nice properties, one needs to require that Y is a solid and translation
invariant Banach space of functions on G. We omit the precise definitions here
and refer the reader to the original papers [33–35] as well as Felix Voigtlaender’s
Ph.D. thesis [68] for more on the theory in this level of generality.

Example 3.19 Let us again consider the STFT. In this case, we have the notation
H1 = M1(Rn) and R = M∞(Rn). The coorbit spaces in this setting are called the
modulation spaces. More explicitly, for a non-zero g ∈ M1(Rn) and 1 ≤ p ≤ ∞ the
space M p(Rn) consists of elements f ∈ M∞(Rn) such that

‖ f ‖M p(Rn) :=
(∫

R2n
|Vg f (x, ω)|p dx dω

) 1
p

< ∞.

It will be clear from Proposition 3.22 that M2(Rn) = L2(Rn).
We can generalize themodulation spaces slightly by usingmixed-norm L p,q spaces.

More precisely, we define the mixed-norm modulation spaces M p,q(Rn) for 1 ≤
p, q ≤ ∞ as the elements f ∈ M∞(Rn) such that

‖ f ‖M p,q (Rn) :=
(∫

Rn

(∫

Rn
|Vg f (x, ω)|p dx

) q
p

dω

) 1
q

< ∞.

Notice that M p,p(Rn) = M p(Rn). This extension allows us to consider different
levels of integrability in time and frequency. We remark that the space M∞,1(Rn)
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has appeared in the theory of pseudodifferential operators under the name Sjöstrand’s
class. We refer the reader to [48] for more on Sjöstrand’s class in the context of time-
frequency analysis. More information on M p,q(Rn) can be found in the papers [30,31]
and the recent book [11, Chapter 2].

Most of the basic properties of coorbit spaces will be derived in Sect. 3.4. Before
this, we will establish a powerful result known as the correspondence principle. In
essence, the correspondence principle states that one can identify the abstract coorbit
space Coπ

p with the space

Mp(G) := {F ∈ L p(G) : F = F ∗G Wgg}.

Notice thatMp(G) is more concrete that Coπ
p , in the sense that it consists of functions

on the group G in question. The fact that the wavelet transform Wg for g ∈ A \ {0}
provides the isomorphism between Coπ

p and Mp(G) makes the result even more
conceptually pleasing.

Theorem 3.20 (Correspondence Principle) Let π : G → U(Hπ ) be an integrable
representation and fix an integrable vector g ∈ A \ {0}. Then for every 1 ≤ p ≤ ∞
the wavelet transform Wg is an isomorphism

Wg : Coπ
p

∼−→ Mp(G).

Proof It follows immediately from Theorem 3.16 thatWg(Coπ
p ) ⊂ Mp(G). Hence it

only remains to show that any F ∈ Mp(G) is in fact of the form F = Wg f for some
f ∈ Coπ

p . Notice that Wgg ∈ Lq(G) for all 1 ≤ q ≤ ∞ since

Wgg ∈ L1(G) ∩ L∞(G) ⊂ Lq(G).

We choose q such that p−1+q−1 = 1 with the obvious caveats for p ∈ {1,∞}. Then

F = F ∗ Wgg ∈ L∞(G).

Hence the machinery in Theorem 3.16 implies that F = Wg f for some f ∈ R. We
have that f ∈ Coπ

p by definition since F ∈ L p(G). ��

3.4 Basic Properties of Coorbit Spaces

In this section we derive the basic properties of coorbit spaces. The reader should pay
special attention to how the correspondence principle we proved in Theorem 3.20 is
utilized in several of the proofs in this section.

Theorem 3.21 Let π : G → U(Hπ ) be an integrable representation. Then the coorbit
spaces Coπ

p are π -invariant Banach spaces on which π acts by isometries.
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Proof We fix an integrable vector g ∈ A \ {0}. Let us first show that ‖ · ‖Coπ
p
is

in fact a norm. The only non-trivial point is the positive-definiteness. Assume that
‖Wg f ‖L p(G) = 0 for some f ∈ Coπ

p . Then Wg f is zero almost everywhere as a
function on G. Since Wg f is a continuous function on G by Proposition 3.11, we
have that Wg f is identically zero. The injectivity ofWg : R → L∞(G) implies that
f = 0.
To show completeness, we assume that { fn}n∈N is a Cauchy sequence in Coπ

p . Then
{Wg fn}n∈N is a Cauchy sequence in L p(G). By completeness of L p(G), there exists
F ∈ L p(G) such that Wg fn → F in L p(G). It follows that

F ∗ Wgg =
(
lim

n→∞Wg fn

)
∗G Wgg = lim

n→∞
(Wg fn ∗G Wgg

) = lim
n→∞Wg fn = F .

We can now use the correspondence principle in Theorem 3.20 to conclude that F =
Wg f for some f ∈ Coπ

p . Hence the coorbit spaces Coπ
p are complete since

‖ fn − f ‖Coπ
p

= ‖Wg fn − Wg f ‖L p(G) → 0.

Finally, if f ∈ Coπ
p and x ∈ G then we use (3.2) to obtain

‖π(x) f ‖Coπ
p

= ‖Wg(π(x) f )‖L p(G) = ‖LxWg f ‖L p(G) = ‖Wg f ‖L p(G) = ‖ f ‖Coπ
p
.

��
The following proposition shows that the spaces H1, Hπ , and R all have descrip-

tions in terms of coorbit spaces.

Proposition 3.22 Let π : G → U(Hπ ) be an integrable representation. We have the
descriptions

Coπ
1 = H1, Coπ

2 = Hπ , Coπ∞ = R.

Proof As usual, we fix an integrable vector g ∈ A \ {0}. The statement Coπ∞ = R
is clear from the definition of Coπ∞ since every φ ∈ R satisfies Wgφ ∈ L∞(G) by
Proposition 3.11. We have that H1 ⊂ Coπ

1 and Hπ ⊂ Coπ
2 through the inclusions in

Lemma 3.9. Conversely, assume that f ∈ Coπ
2 . Then Wg f ∈ L2(G) satisfies by the

correspondence principle in Theorem 3.20 the convolution relation

Wg f = Wg f ∗G Wgg.

However, in Theorem 2.32 we showed that F 	→ F ∗G Wgg is the projection from
L2(G) to the spaceWg(Hπ ). Hencewe conclude thatWg f = Wgh for some h ∈ Hπ .
SinceWg : R → L∞(G) is injective we have that f = h as elements inR. Moreover,
the injectivity of the inclusionHπ ↪−→ R forces f ∈ Hπ , and thus the claimCoπ

2 = Hπ

follows. Since L1(G) ∩ L∞(G) ⊂ L2(G), we can repeat the same argument for
f ∈ Coπ

1 and find that f ∈ Hπ . As H1 is by definition the set of elements f ∈ Hπ

such that Wg f ∈ L1(G) we have that Coπ
1 = H1. ��
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Remark The proof of Proposition 3.22 shows that Coπ
p ⊂ Hπ for all p ∈ [1, 2] since

then we have L p(G) ∩ L∞(G) ⊂ L2(G).

The following result shows that the coorbit spaces Coπ
p inherit their duality prop-

erties from the spaces L p(G). For a proof of this result, we refer the reader to [34,
Theorem 4.9].

Proposition 3.23 Let π : G → U(Hπ ) be an integrable representation. The coorbit
spaces Coπ

p for 1 ≤ p < ∞ satisfy the duality

(
Coπ

p

)′ = Coπ
q ,

1

p
+ 1

q
= 1.

In particular, the coorbit spaces Coπ
p for 1 < p < ∞ are reflexive Banach spaces.

Example 3.24 Let us again consider the affine group Aff together with the wavelet
representation π : Aff → U(L2(R)) given by

π(b, a) f (x) := Tb Da f (x) = 1√|a| f

(
x − b

a

)
.

We showed in Example 2.27 that π is a square integrable representation. A straight-
forward computation shows that π is in fact integrable by considering a non-zero
function g ∈ S(R) such that F(g) is supported on [r , s] for r , s ∈ (0,∞). Hence for
any integrable vector g ∈ A \ {0} we obtain for each 1 ≤ p < ∞ the affine coorbit
space Coπ

p defined by

Coπ
p :=

{
f ∈ R : ‖ f ‖Coπ

p
:=
(∫

Aff
|Wg f (b, a)|p db da

a2

) 1
p

< ∞
}

.

As usual, the case p = ∞ is defined with the supremum. We immediately get from
Theorem 3.21 that Coπ

p is a Banach space for each 1 ≤ p ≤ ∞ on which the wavelet
representation π acts by isometries.

3.5 Extension to theWeighted Setting

In this section, we will discuss how coorbit spaces can be generalized to include
weights. This is usually done right from the beginning in the literature, see e.g. [16,33–
35,68].However,wehaveopted to introduce this separately so that coorbit spaces could
initially be introduced with minimal technicalities. A more comprehensive discussion
on weights can be found in [49] and [26].

Given any continuous function w : G → (0,∞) we can form the weighted L p-
space L p

w(G) for 1 ≤ p ≤ ∞ consisting of all equivalence classes of measurable
function f : G → C such that

‖ f ‖L p
w(G) := ‖ f · w‖L p(G) < ∞.
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We need extra conditions on the function w for L p
w(G) to be a well-behaved space.

Definition 3.25 A continuous function w : G → (0,∞) on a locally compact group
G is called a weight function if it is:

Bounded Below For some c > 0 we have c ≤ w(x) for all x ∈ G.
Sub-Multiplicative For all x, y ∈ G the functionw satisfiesw(xy) ≤ w(x)w(y).

Example 3.26 Consider the function w on G = (0,∞) given by

w(x) := e| log(x)| =
{

x if x ≥ 1
1
x , if x < 1

.

It is straightforward to verify that w is a weight function. Moreover, w is a symmetric
weight in the sense that w(x) = w(x−1) for all x ∈ G.

Remark The reader should be aware that the conditions that go into the term weight
function (or simply weight) differ quite a bit from author to author: A weight w in
[16, Chapter 3] is assumed to be symmetric. In [68] a sub-multiplicative weight is
not assumed to be continuous, only measurable. It turns out that a not necessarily
continuous sub-multiplicative weight is automatically bounded on compact sets by
[68, Theorem 2.2.22].

If w : G → (0,∞) is a weight function, then L p
w(G) ↪−→ L p(G) is a continuous

embedding since

‖ f ‖L p(G) =
(∫

G
| f (x)|p dμL (x)

) 1
p ≤ 1

c

(∫

G
| f (x)|pw(x)p dμL (x)

) 1
p = 1

c
‖ f ‖L p

w(G)
,

for all f ∈ L p
w(G). Moreover, by [49, Lemma 4.1] the space L1

w(G) is a Banach
algebra under the convolution product since for f , g ∈ L1

w(G) one has

‖ f ∗ g‖L1
w(G) ≤ ‖ f ‖L1

w(G)‖g‖L1
w(G).

Definition 3.27 Let π : G → U(Hπ ) be an irreducible unitary representation of the
locally compact group G and fix a weight function w : G → (0,∞). The represen-
tation π is called w-integrable if there exists a non-zero element g ∈ Hπ such that
Wgg ∈ L1

w(G). We use the notation

Aw :=
{

g ∈ Hπ : Wgg ∈ L1
w(G)

}
.

Similarly as before, we fix g ∈ Aw \ {0} and define the space of w-test vectors H1
w,g

as the elements f ∈ Hπ such that Wg f ∈ L1
w(G).

The proof of the following result illustrates the usefulness of the sub-multiplicative
condition.
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Lemma 3.28 Let π : G → U(Hπ ) be a w-integrable representation and fix g ∈
Aw \ {0}. Then π acts continuously and invariantly on H1

w,g.

Proof We fix f ∈ H1
w,g and compute for x ∈ G that

‖π(x) f ‖H1
w,g

=
∫

G
|Wg(π(x) f )(y)|w(y) dμL(y)

=
∫

G
|Wg( f )(x−1y)|w(y) dμL(y)

=
∫

G
|Wg( f )(y)|w(xy) dμL(y).

By using the sub-multiplicative condition we end up with

‖π(x) f ‖H1
w,g

≤ w(x)

∫

G
|Wg( f )(y)|w(y) dμL(y) = w(x) · ‖ f ‖H1

w,g
.

��
We can now use Lemma 3.28 to see that the space H1

w,g is dense in Hπ for all
g ∈ Aw\{0}. It is straightforward to check that the space L1

w(G) is invariant under both
the left-translation operator and the right-translation operator. This fact is sufficient
for Lemma 3.4 to go through in the weighted setting. Finally, only minor changes are
needed in Proposition 3.2, Theorem 3.5, and Proposition 3.6 to obtain the weighted
statements. HenceH1

w,g does not depend on the choice of g ∈ Aw \{0} and we simply
write

H1
w := H1

w,g.

The reader should be aware that the bounded below criterion in Definition 3.25 is
nessesary for the completeness ofH1

w, see [17, Theorem 5.5].

Example 3.29 A class of commonly used weight functions on R
2n is given by

vs(x, ω) := (1 + |x |2 + |ω|2) s
2 , (x, ω) ∈ R

2n, s ≥ 0.

The family vs is sometimes referred to as the polynomial weights. For the STFTwe can
use the polynomial weights to define the weighted Feichtinger algebra M1

vs
(Rn) :=

H1
vs
. The inequality

vs ≤ vt , 0 ≤ s ≤ t

implies the inclusion M1
vt

(Rn) ⊂ M1
vs

(Rn). In particular,wehave M1
vs

(Rn) ⊂ M1(Rn)

for all s ≥ 0. It is straightforward to check that M1
vs

(Rn) still contains the rapidly
decaying and smooth functions S(Rn) for all s ≥ 0. Is there anything more than
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S(Rn) contained in all of the weighted Feichtinger algebras M1
vs

(Rn) for s ≥ 0? By
[47, Proposition 11.3.1] the answer is negative and we can write

S(Rn) =
⋂

s≥0

M1
vs

(Rn).

Definition 3.30 Let π : G → U(Hπ ) be a w-integrable representation. We define the
w-reservoir space R1/w as the space of bounded anti-linear functionals onH1

w.

The duality betweenH1
w andR1/w is again denoted by φ(g) = 〈φ, g〉 for g ∈ H1

w

and φ ∈ R1/w. Lemma 3.9 goes through directly with the new notational changes and
we have the inclusions

H1
w ↪−→ Hπ ↪−→ R1/w.

The action of π on R1/w is defined in the same way as in Sect. 3.2. We can again
define the (extended) wavelet transform by the formula

Wgφ(x) := 〈φ, π(x)g〉, g ∈ H1
w, φ ∈ R1/w.

The proof of Lemma 3.13 in [68, Lemmas 2.4.7 and 2.4.8] is stated in the weighted
case. Finally, Corollary 3.14, Proposition 3.15, and Theorem 3.16 are almost verbatim
the same as previously. The only thing worth remarking is that the space of bounded
anti-linear functionals on L1

w(G) is L∞
1/w(G). This motivates the notation R1/w.

Example 3.31 For the STFT we use the notation M∞
1/vs

(Rn) := R1/vs , where vs for
s ≥ 0 are the polynomial weights introduced in Example 3.29. The discussion in
Example 3.29 regarding S(Rn) has the dual version

S ′(Rn) =
⋃

s≥0

M∞
1/vs

(Rn).

Hence the pair
(S(Rn),S ′(Rn)

)
works as limiting cases for respectively the weighted

Feichtinger algebras M1
vs

(Rn) and the weighted reservoir spaces M∞
1/vs

(Rn) for s ≥ 0.

Definition 3.32 Let π : G → U(Hπ ) be a w-integrable representation and fix a w-
integrable vector g ∈ Aw \ {0}. The (weighted) coorbit space Coπ

p,w for 1 ≤ p ≤ ∞
is given by the straightforward extension

Coπ
p,w := {φ ∈ R1/w : Wgφ ∈ L p

w(G)},

with the norm

‖φ‖Coπ
p,w

:= ‖Wgφ‖L p
w(G).
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As previously, the coorbit spacesCoπ
p,w do not depend on the choice ofw-integrable

vector g ∈ Aw \ {0}, see [33, Sect. 5.2] for details. It is clear that

Coπ∞,1/w = R1/w.

Example 3.33 Wedefine theweighted modulation spaces M p,q
vs (Rn) for 1 ≤ p, q ≤ ∞

and s ≥ 0 to be all elements f ∈ M∞
1/vs

(Rn) such that

‖ f ‖M p,q
vs (Rn) :=

(∫

Rn

(∫

Rn
|Vg f (x, ω)|p(1 + |x |2 + |ω|2) ps

2 dx

) q
p

dω

) 1
q

< ∞,

where g ∈ Avs \ {0} is fixed. Since the reduced Heisenberg group H
n
r is unimodular,

it follows from the weighted version of Proposition 3.6 that

Avs = H1
vs

= M1
vs

(Rn).

It is common in practice to choose g ∈ S(Rn) \ {0}, which is valid since S(Rn) ⊂
M1

vs
(Rn) for all s ≥ 0. Moreover, one can choose the reservoir to be S ′(Rn) without

changing the weighted modulation spaces. We refer the reader to [47, Sect. 11.4] for
weighted modulation spaces where the weights have exponential growth.

The completeness of L p
w(G) for a weight function w : G → (0,∞) allows us

to extend the first statement in Theorem 3.21 to the weighted setting. The second
statement in Theorem 3.21 has to be altered to say that π acts continuously on the
weighted coorbit spaces Coπ

p,w. This uses the same argument we gave in the proof
of Lemma 3.28. The statement in Proposition 3.22 is valid in the weighted setting
with the nessesary changes. More precisely, for g ∈ Aw \ {0} we let Hπ,w denote
the elements f ∈ Hπ such that Wg f ∈ L2

w(G). Then we can adapt the proof of
Proposition 3.22 to see that

Coπ
1,w = H1

w, Coπ
2,w = Hπ,w, Coπ∞,1/w = R1/w.

Finally, the duality statement in Proposition 3.23 still holds in the weighted setting
with the nessesary changes, see [34, Theorem 4.9] for details. Before moving on we
summarize the most important results regarding the weighted coorbit spaces.

Theorem 3.34 Let π : G → U(Hπ ) be a w-integrable representation where w :
G → (0,∞) is a weight function. Fix a w-integrable vector g ∈ Aw \ {0}. Then the
coorbit spaces Coπ

p,w for 1 ≤ p ≤ ∞ satisfy the following properties:

(a) The coorbit spaces Coπ
p,w are Banach spaces on which the representation π acts

invariantly and continuously.
(b) An element F ∈ L p

w(G) satisfies the convolution relation F = F ∗G Wgg if and
only if F = Wg f for some f ∈ Coπ

p,w.



2 Page 42 of 61 Journal of Fourier Analysis and Applications (2022) 28 :2

(c) We have the identifications

Coπ
1,w = H1

w, Coπ
2,w = Hπ,w, Coπ∞,1/w = R1/w.

(d) The coorbit spaces Coπ
p,w for 1 ≤ p < ∞ satisfy the duality relation

(
Coπ

p,w

)′ = Coπ
q,1/w,

1

p
+ 1

q
= 1,

where[(e)]

Coπ
p,1/w := {φ ∈ R1/w : Wgφ ∈ L p

1/w(G)}.

Example 3.35 Consider the function ws : Aff → (0,∞) for s ≥ 0 on the affine group
Aff given by

ws(b, a) := |a|s + |a|−s .

It is straightforward to verify that ws is a weight function for all s ≥ 0. The
argument in Example 3.24 can be extended to show that the wavelet representa-
tion π : Aff → U(L2(R)) is ws-integrable for any s ≥ 0. Thus we can consider
the weighted affine coorbit spaces Coπ

p,ws
. We refer the reader to [33] and [16,

Sect. 3.2.3.1] for a fascinating connection between the coorbit spaces Coπ
p,ws

and
the homogeneous Besov spaces in classical harmonic analysis.

3.6 Atomic Decompositions

We have so far introduced the coorbit spaces and derived their basic properties. The
message that should be drawn from Theorem 3.34 is that coorbit spaces form a well-
behaved class of Banach spaces. Nevertheless, the reader might find herself wondering
what the fuzz is all about. Constructing function spaces is commonplace in modern
mathematics, so it is maybe unclear why coorbit spaces offer something special. The
goal of this section is to convince the reader that the coorbit spaces are deeply connected
with the geometry of the underlying locally compact group.Moreover, this connection
is inherently practical as it furnishes us with a natural way to discretize elements in
coorbit spaces as wementioned in (1.1). This makes coorbit spaces novel because they
form a bridge between geometry, representation theory, and approximation theory.

Let us start by precisely stating the continuous reconstruction formula for coorbit
spaces. Fix a weight function w : G → (0,∞) and a w-integrable representation π :
G → U(Hπ ). Then for f ∈ Coπ

p,w wecanuse theweightedversionofProposition3.15
to write

f = W∗
g

(Wg f
) =

∫

G
Wg f (x)π(x)g dμL(x), (3.5)

for g ∈ Aw \{0}.We refer to (3.5) as the continuous reconstruction formula forCoπ
p,w.



Journal of Fourier Analysis and Applications (2022) 28 :2 Page 43 of 61 2

What does a discretization of (3.5) look like? Replacing the integral with summa-
tion, we hope to express f ∈ Coπ

p,w as the discrete superposition

f =
∑

i∈I

ci ( f )π(xi )g, (3.6)

where (ci ( f ))i∈I are coefficients that depend on f and {xi }i∈I ⊂ G is a chosen
countable collection of points. We note that (3.6) should be interpreted as convergence
in the norm onCoπ

p,w for 1 ≤ p < ∞.When p = ∞we interpret (3.6) as convergence
in the weak∗-topology. In the literature, expansions on the form (3.6) are sometimes
called atomic decompositions as the element g is considered an atom from which all
other relevant functions are constructed. Three natural questions emerge:

• How can we chose the collection {xi }i∈I ⊂ G such that (3.6) converges appropri-
ately?

• How does the size of f ∈ Coπ
p,w affect the size of (ci ( f ))i∈I in a suitable norm?

• Is it possible to choose the coefficients (ci ( f ))i∈I to depend linearly on f ?

Beforewe answer the questions above in Theorem 3.40wewill borrow some terminol-
ogy from large scale geometry. This will provide a conceptual language for discussing
discretizations.

Definition 3.36 Let X be a non-empty set. We will refer to a collection of non-empty
subsets Q = (Qi )i∈I as an admissible covering for X if X = ∪i∈I Qi and

sup
i∈I

∣∣∣
{

j ∈ I
∣∣∣ Qi ∩ Q j �= ∅

}∣∣∣ < ∞. (3.7)

Intuitively, the condition (3.7) states that each Qi ∈ Q can not have too many
neighbors. Given an admissible coveringQ = (Qi )i∈I for a non-empty set X , we call
a sequence Qi1 , . . . , Qik ∈ Q with x ∈ Qi1 and y ∈ Qik a Q-chain from x to y of
length k whenever Qil ∩ Qil+1 �= ∅ for every 1 ≤ l ≤ k − 1. The notation Q(k, x, y)

will be used to denote all Q-chains of length k from x to y. An admissible covering
Q on a set X will be called a concatenation if for every pair of points x, y ∈ X there
exists a positive number k ∈ N such that Q(k, x, y) �= ∅. The idea, originating from
[32], is to consider a metric dQ that incorporates closeness relative to the coveringQ.
This idea has more recently been further investigated in [4,58]. Formally, we have the
following definition.

Definition 3.37 Consider a concatenationQ = (Qi )i∈I for a non-empty set X . Define
the metric dQ on X by the rule dQ(x, x) = 0 for all x ∈ X and

dQ(x, y) = inf {k : Q(k, x, y) �= ∅} , x, y ∈ X , x �= y.

It is straightforward to check that dQ is indeed ametric on X . Notice that dQ(x, y) <

∞ for all x, y ∈ X precisely because we assume that Q is a concatenation. We will
refer to (X , dQ) as the associated metric space to the concatenation Q. A subset
N ⊂ X is called a net if there exists a fixed constant C > 0 such that for every x ∈ X
there is y ∈ N such that dQ(x, y) < C .
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Definition 3.38 Let (X , dX ) and (Y , dY ) be two metric spaces. We say that a map
f : X → Y is a quasi-isometry if f (X) is a net in (Y , dY ) and there exist fixed
constants C, L > 0 such that

1

L
dX (x, y) − C ≤ dY ( f (x), f (y)) ≤ LdX (x, y) + C,

for every x, y ∈ X .

Remark Notice that a quasi-isometry f : X → Y is a generalization of an isometry
where the map f does not need to be injective nor surjective. This is a suitable notion
for comparingmetric spaces of different sizes.As an example, the inclusion i : Z ↪→ R

is a quasi-isometry with the standard metrics.

Let us now focus on the setting we are interested in. Given a locally compact group
G we fix a compact set Q with non-empty interior that contains the identity element
e ∈ G. Then the collection

Qcont := (x · Q)x∈G

is a cover for G that is typically not admissible. However, it is always possible to
find a subfamily N = {xi }i∈I ⊂ G such that Q := (xi · Q)i∈I is admissible by [29,
Theorem 4.1 (A)]. This way of obtaining N is non-constructive and one usually relies
on an understanding of the geometry of G in practical situations to construct N . We
refer to Q as a uniform covering with reference set Q. When G is path-connected
the covering Q is actually a concatenation, see [4, Lemma 3.1]. Hence we obtain an
associated metric dQ on G. Maybe surprisingly, the resulting metric space (G, dQ)

does not depend (up to quasi-isometry) on the choice of N by [29, Theorem 4.1)(B)].
In light of this, we refer to the metric dQ as the uniform metric and the space (G, dQ)

as the uniform metric space corresponding to a path-connected locally compact group
G. Although the metric dQ is left-invariant, it is almost never compatible with the
underlying topology of G.

Example 3.39 Consider the group G = R with the reference set Q = [−1, 1]. Then

Qcont = (x + Q)x∈R = ([x − 1, x + 1])x∈R.

The subfamily N = Z makes

Q := (n + Q)n∈Z = ([n − 1, n + 1])n∈Z

into a concatenation. Due to the left invariance of the metric dQ, it is completely
determined by

dQ(0, x) = �x�, x > 0,

where �x� denotes the ceiling function of x ∈ R.
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Remark Points {xi }i∈I such thatQ = (xi · Q)i∈I is a uniform covering of G are only
candidates for points where the atomic discretization (3.6) is valid. As an extreme
example, consider when G is compact and we pick the reference set Q = G. Then
Q = {e · Q} = {Q} is a uniform covering. However, one does not generally have a
discretization

f = c( f ) · π(e)g = c( f ) · g,

for all f ∈ Coπ
p since Coπ

p is not necessarily one-dimensional. The problem here is
that the reference set Q is to large.

The following theorem is the main result regarding atomic decompositions.

Theorem 3.40 (Atomic Decomposition Theorem) Let π : G → U(Hπ ) be a w-
integrable representation, where w : G → (0,∞) is a weight function. Choose a
well-behaved g ∈ Aw \ {0} and a uniform covering (xi · Q)i∈I with sufficiently small
reference set Q. For any 1 ≤ p ≤ ∞ we have the following properties:

• Any f ∈ Coπ
p,w can be written as

f =
∑

i∈I

ci ( f )π(xi )g,

where the coefficients (ci ( f ))i∈I depend linearly on f . Moreover, there exists an
absolute constant CA > 0 such that

‖(ci ( f ))i∈I ‖l p
w(I ) ≤ CA‖ f ‖Coπ

p,w
.

• Given a sequence (ci )i∈I ∈ l p
w(I ) we can construct an element f ∈ Coπ

p,w by the
formula

f =
∑

i∈I

ciπ(xi )g.

Moreover, there exists an absolute constant CR > 0 such that

‖ f ‖Coπ
p,w

≤ CR‖(ci )i∈I ‖l p
w(I ).

Remark There are a few details regarding Theorem 3.40 that should be clarified:

• For a discrete index set I and a function w : I → (0,∞), the space l p
w(I ) for

1 ≤ p < ∞ denotes the sequences (ai )i∈I such that

(
∑

i∈I

|ai |pw(i)p

) 1
p

< ∞. (3.8)
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The case p = ∞ is given by replacing summation with supremum. It is straight-
forward to check that l p

w(I ) is a Banach space with the norm (3.8). In the setting of
Theorem 3.40 the function w : I → (0,∞) is obtained by w(i) := w(xi ), where
w(xi ) is the weight function w : G → (0,∞) evaluated at the point xi ∈ G. We
use the same notation for the weight function w : G → (0,∞) and the induced
map w : I → (0,∞) on the index set I .

• The requirement that g ∈ Aw\{0} should bewell-behaved is a technical condition.
A sufficient criterion in general is that Wgg belongs to certain Wiener amalgam
spaces [16, Theorem 3.15]. We refer the reader to [27] and the survey [53] for
more details on Wiener amalgam spaces. The requirement that the reference set
Q should be sufficiently small is nessesary to make the oscillation function

oscQ
(Wgg

)
(y) := sup

x∈Q

∣∣Wgg(xy) − Wgg(y)
∣∣ , y ∈ G,

well-behaved. For details of the oscillation function, we refer the reader to [16,
Sect. 3.2.2]. These requirements will be used again in Theorem 3.43.

• The idea for the proof of Theorem 3.40 is to approximate the convolution operator

F 	−→ F ∗G Wgg

with special operators involving the wavelet transform. As these ideas are further
elaborated on in [10, Proof of Theorem 24.2.4], we will not go more into this.
The full proof of Theorem 3.40 can be found in [34, Theorem 6.1] and in [16,
Theorem 3.15].

Let us use the language of large scale geometry to make Theorem 3.40 more con-
ceptual: Assume that G is path-connected and pick a sufficiently small reference set
Q ⊂ G and the associated family N = (xi )i∈I corresponding to a uniform covering
Q = (xi · Q)i∈I . Define the trivial map j : N → l p

w(I ) given by j(xi ) = δi . Fix a
well-behaved element g ∈ Aw \ {0} and define h : G → Coπ

p,w by h(x) = π(x)g.
Finally, we have a reconstruction map RI : l p

w(I ) → Coπ
p,w given by

RI ((ci )i∈I ) =
∑

i∈I

ciπ(xi )g.

Together, these maps form the commutative diagram

G Coπ
p,w

N l p
w(I )

h

j

RI
(3.9)

When G is equipped with the uniform metric dQ the inclusion N ↪−→ G in (3.9) is
a quasi-isometry. The conceptual gist of Theorem 3.40 is that this quasi-isometry is
mirrored by the norm-equivalence RI in (3.9).
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3.7 One Banach Frame to Discretize Them All

Looking back at Theorem 3.40, we see that it characterizes the elements in Coπ
p,w in

terms of discrete expansions. However, if we are given f ∈ R1/w then it might not be
obvious to check whether f ∈ Coπ

p,w with a set of discrete conditions. This leads us
to the following question:

Q Given the elements π(xi )g for i ∈ I in Theorem 3.40, is it possible to determine if
f ∈ Coπ

p,w based on the interaction between f and π(xi )g for all i ∈ I?

We show in this section that the answer to the question is affirmative. Before stating
the result, we briefly discuss Banach frames to put the result into context.

Definition 3.41 Let B be a separable Banach space. Consider a countable subset E =
{gi }i∈I of continuous anti-linear functionals on B togetherwith an associated sequence
space BE on the index set I . We say that the pair (E, BE ) is a Banach frame for B if
the following two properties are satisfied:

• The coefficient operator CE : B → BE defined by CE ( f ) := (〈gi , f 〉)i∈I for
f ∈ B satisfies the norm-equivalence

‖ f ‖B � ‖CE ( f )‖BE . (3.10)

• There exists a bounded linear map RE : BE → B called the reconstruction
operator that is a left inverse for CE .
Explicitly, a reconstruction operator RE : BE → B for the Banach frame (E, BE )

satisfies

RE ((〈gi , f 〉)i∈I ) = f , f ∈ B.

The notion of a Banach frame was first considered in [46]. In [7, Proposition 2.4] it
was shown that there exists a Banach frame for any separable Banach space. However,
the mere existence of a Banach frame is not necessarily useful as it might be difficult
to both understand and compute.

Example 3.42 The most well-studied example of a Banach frame is in the case where
H = B is a separable Hilbert space. Then, by identifying H with its anti-dual space,
we can consider the sequence E = {gi }i∈I ⊂ H. Moreover, in this case there is a
natural sequence space available, namely l2(I ). Hence the norm equivalence in (3.10)
requires that there exists A, B > 0 such that

A ‖ f ‖2H ≤
∑

i∈I

|〈 f , gi 〉|2 ≤ B ‖ f ‖2H.

In light of these simplifications, it makes sense to simply refer to the collection E as a
frame for the Hilbert spaceH. Frame theory has a prominent place in modern applied
harmonic analysis, and we refer the reader to [10] for more on this fascinating topic.
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The following result answers the question posed in the introduction of this section,
and we refer the reader to the original paper [46] for a proof.

Theorem 3.43 Consider a w-integrable representation π : G → U(Hπ ) where w :
G → (0,∞) is a weight function. Choose a well-behaved g ∈ Aw \{0} and a uniform
covering (xi · Q)i∈I with sufficiently small reference set Q. Then for any 1 ≤ p ≤ ∞
the pair

E = {π(xi )g}i∈I , BE = l p
w(I )

is a Banach frame for the coorbit space Coπ
p,w.

Remark

• Notice that, under the assumptions in Theorem 3.43, the elements in E =
{π(xi )g}i∈I belong to H1

w. Hence it makes sense for f ∈ Coπ
p,w ⊂ R1/w to

consider the duality pairing

Wg f (xi ) = 〈 f , π(xi )g〉R1/w,H1
w
.

As such, the coefficient operator CE in this case is simply given by sampling on
the points {xi }i∈I ⊂ G, that is,

CE ( f ) = (Wg f (xi )
)

i∈I .

• The reader should be aware that although the collection E = {π(xi )g}i∈I is fixed
for each 1 ≤ p ≤ ∞, the sequence space BE = l p

w(I ) does indeed depend on p.
Since we have defined a Banach frame as the pair (E, BE ), we are being slightly
imprecise when stating that Theorem 3.43 provides a single Banach frame for all
the coorbit spaces Coπ

p,w for 1 ≤ p ≤ ∞.
• A stronger version of Theorem 3.43 is the fact that f ∈ Coπ

p,w if and only if

(〈 f , π(xi )g〉)i∈I ∈ BE .

We refer the reader to [16, Theorem 3.19] for a readable proof of this general fact.

Example 3.44 Consider for α, β > 0 a uniform covering Qα,β of R2n given by

Qα,β := ((αk, βl) + Q)k,l∈Zn , Q := [−α, α]n × [−β, β]n .

Then for g ∈ S(Rn) and sufficiently small α, β we have that

E = {Mβl Tαk g}k,l∈Zn , BE = l p
vs

(Z2n),

is a Banach frame for the modulation space M p
vs (R

n), where vs for s ≥ 0 is the
polynomial weight given in Example 3.29. The collection E is often called a Gabor
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system in the literature. Hence we have the norm-equivalence

‖ f ‖M p
vs (Rn) �

⎛

⎝
∑

k,l∈Zn

∣∣Vg f (αk, βl)
∣∣p (1 + |αk|2 + |βl|2) sp

2

⎞

⎠

1
p

.

3.8 A Kernel Theorem for Coorbit Spaces

The Schwartz kernel theorem is one of themost influential results in distribution theory.
It states that any continuous linear operator A : S(Rn) → S ′(Rn) can be represented
by a unique distributional kernel K ∈ S ′(R2n) in the sense that

〈A f , g〉 = 〈K , f ⊗ g〉, f , g ∈ S(Rn).

If K is a locally integrable function, then we have that K is indeed an integral kernel
in the sense that

〈A f , g〉 =
∫

Rn
K (x, y) f (y)g(x) dy dx, f , g ∈ S(Rn).

Consider two integrable representationsπ1 : G1 → U(H1) andπ2 : G2 → U(H2).
From thiswe obtain the corresponding coorbit spacesCoπ1

p andCoπ2
q for all 1 ≤ p, q ≤

∞. The goal is to represent any continuous and linear operator A : Coπ1
1 → Coπ2∞

though a distributional kernel K in an appropriate sense. The first step is to identify
which space the distributional K should be taken from. To do this, we briefly review
tensor products of representations.

Definition 3.45 We can consider the tensor product representation π from G1 × G2
to unitary operators on the tensor productH2⊗H1 given on simple tensorsψ2⊗ψ1 ∈
H2 ⊗ H1 by

π(g1, g2)(ψ2 ⊗ ψ1) := π2(g2)ψ2 ⊗ π1(g1)ψ1, (g1, g2) ∈ G1 × G2.

It is straightforward to verify that if ψ1 ∈ H1 and ψ2 ∈ H2 are integrable vectors
for respectively π1 and π2, then ψ2 ⊗ ψ1 ∈ H2 ⊗ H1 is an integrable vector for
the tensor product representation π . As such, it makes sense to consider the coorbit
space Coπ

p for any 1 ≤ p ≤ ∞ associated to the tensor product representation π . The
following result from [1, Theorem 3] shows that a kernel theorem is valid for general
coorbit spaces.

Theorem 3.46 (Coorbit Kernel Theorem) Let πi : Gi → U(Hi ) for i = 1, 2 be two
integrable representations. There is a bijective norm-equivalence between bounded
linear operators

A : Coπ1
1 → Coπ2∞

and elements K ∈ Coπ∞ given by 〈A f , g〉 = 〈K , f ⊗ g〉 for f ∈ Coπ1
1 and g ∈ Coπ2

1 .
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The reader is referred to [1, Sect. 5] for concrete applications of Theorem 3.46
regarding mappings between Besov spaces and modulation spaces. In light of The-
orem 3.46, it makes sense to refer to K as the distributional kernel of the operator
A : Coπ1

1 → Coπ2∞ . The authors in [1] use Theorem 3.46 to deduce properties of
A based on knowledge of its distributional kernel K . In particular, they show the
following elegant result in [1, Theorem 9].

Corollary 3.47 In the notation of Theorem 3.46, the operator A defines a bounded
linear operator A : Coπ1∞ → Coπ2

1 when its distributional kernel K satisfies K ∈ Coπ
1 .

4 Examples and Recent Developments

Now that all the main features of coorbit spaces have been discussed, we will briefly
outline in Sects. 4.1–4.3 examples from different areas of modern analysis. The goal
here is not to give a comprehensive exposition on each topic, nor to give a comprehen-
sive account of all the applications of coorbit theory. We rather strive to convince the
reader that coorbit theory is an active research topic that unifies seemingly different
branches of modern analysis. We will in Sects. 4.1–4.3 provide references for further
reading so that the reader can look more into the most eye-caching example them-
selves. Finally, in Sect. 4.4 we give references to modern directions in coorbit theory,
as well as suggestions for where the reader can learn more about coorbit theory.

4.1 Shearlet Spaces

For image analysis and image processing, the continuous wavelet transform given in
(2.18) has been extensively used. However, the continuous wavelet transform can fall
short if one wishes to extract directional information. Several approaches have been
developed to provide an alternative to the continuous wavelet transform, e.g. ridgelets
and curvelets [5,6,73]. The most examined alternative, namely shearlets, does have a
description that allows the theory of coorbit spaces to be applied.We refer the reader to
[52,60] for the origins of shearlets and to [59] for a general introduction to shearlets. In
this section, we will describe the shearlet transform and the underlying shearlet group
in two dimensions following [15]. The extension to higher dimensions was given in
[19].

To begin describing the shearlet group we first need two matrices: For a ∈ R
∗ :=

R \ {0} the parabolic scaling matrix Aa is given by

Aa :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
a 0

0
√

a

)
, when a > 0,

(
a 0

0 −√−a

)
, when a < 0.
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Hence Aa for a > 0 scales the first axis with the squared length of the scaling of the
second axis. For s ∈ R the shear matrix Ss is given by

Ss :=
(
1 s
0 1

)
.

Using these matrices, we can define the shearlet group as follows.

Definition 4.1 The (full) shearlet group S is defined to beR∗ ×R×R
2 with the group

operation

(a, s, t) ·S (a′, s′, t ′) := (aa′, s + s′√|a|, t + Ss Aat ′). (4.1)

It is straightforward to check that (4.1) is in fact a group operation with identity
element (1, 0, 0) ∈ S, see [14, Lemma 2.1] for details. Notice that S has two connected
components; the identity component S+ is called the connected shearlet group. The
left Haar measure μL on the shearlet group S is given by

μL(a, s, t) = da ds dt

|a|3 , (a, s, t) ∈ S.

Given an invertible matrix M ∈ GL(2,R)we can consider the generalized dilation
operator DM acting on f ∈ L2(R2) by the formula

DM f (x) := 1√|det(M)| f (M−1x), x ∈ R
2. (4.2)

Notice that (4.2) is a two-dimensional generalization of the dilation operator given in
(2.13).

Definition 4.2 The (continuous) shearlet representation π : S → U(L2(R2)) is given
by

π(a, s, t) f (x) := Tt DSs Aa f (x) = |a| 43 f
(

A−1
a S−1

s (x − t)
)

,

where f ∈ L2(R2) and (a, s, t) ∈ S.

One can view the unitary representation π as a two-dimensional version of the
continuous wavelet representation in (2.14). The representation π is irreducible since
we are considering the full shearlet group S instead of the connected group S+, see [15,
Theorem 2.2]. Moreover, [15, Theorem 2.2] also shows that π is square integrable.
More precisely, a function g ∈ L2(R2) is admissible if and only if

∫

R2

|F(g)(ω1, ω2)|2
ω2
1

dω1 dω2 = 1. (4.3)
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We refer to the elements g ∈ L2(R2) satisfying (4.3) as (continuous) shearlets.
Although it is common in the literature to denote the wavelet transform corresponding
to the shearlet representation by SH, we will stick with our predefined notation W
for consistency. Hence for a shearlet g ∈ L2(R2) and f ∈ L2(R2) the orthogonality
relation (2.10) shows that

∫

S

|Wg f (a, s, t)|2 μL(a, s, t) =
∫

S

|〈 f , π(a, s, t)g〉|2 da ds dt

|a|3 = ‖ f ‖2L2(R2)
.

Let us for simplicity consider the polynomial weights

vα(a, s, t) := (1 + a2 + s2)α/2

for (a, s, t) ∈ S and α ≥ 0. The existence of a vα-integrable vector is guaranteed by
[15, Theorem4.2]. Thusweobtain the space of vα-test vectorsH1

vα
and the vα-reservoir

space R1/vα , see Sect. 3.5 for details. The following definition is inevitable.

Definition 4.3 The shearlet coorbit spaces Coπ
p,vα

for 1 ≤ p ≤ ∞ are defined to be

Coπ
p,vα

:= { f ∈ R1/vα : Wg f ∈ L p
vα

(S)},

where g is any vα-integrable vector.

We invokeTheorem3.34 to deduce that the shearlet coorbit spacesCoπ
p,vα

constitute
awell-behaved class ofBanach spaces. In [15, Theorem4.7] it is shown that the shearlet
coorbit spaces contain many smooth functions of rapid decay. We refer the reader to
[15, Sect. 4.2] for results regarding atomic decompositions and Banach frames for the
shearlet coorbit spaces.

4.2 Bergman Spaces and the Blaschke Group

Wewill now describe an application of coorbit spaces to the realm of classical complex
analysis, namely the Bergman spaces. The connection with Bergman spaces was to
our knowledge initially pointed out in [33, Sect. 7.3]. To introduce this topic in a
brief and succinct manner, we will give an outline of the definitions and results given
in [62] and [36]. It should be noted that the Blaschke group is not the only locally
compact group that have square integrable representations on the Bergman spaces. We
encourage the reader to seek out the more recent and technical paper [8] for interesting
results regarding the semisimple Lie group SU (n, 1).

Let us first recall the Bergman spaces in classical complex analysis. We denote
the unit disk in the complex plane by D and consider for α > −1 the weighted area
measure

d Aα(z) = α + 1

π

(
1 − |z|2

)α

dz, z ∈ D.
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We let Ap
α := Ap

α(D) denote the (weighted) Bergman space consisting of analytic
functions f : D → C such that

∫

D

| f (z)|p d Aα(z) < ∞.

For p = 2 we have a natural Hilbert space structure on A2
α given by the inner product

〈 f , g〉α :=
∫

D

f (z)g(z) d Aα(z).

It is not difficult to verify that A2
α is a reproducingkernelHilbert spacewith reproducing

kernel

Kα(z, w) = 1

(1 − zw)α+2 , z, w ∈ D.

We will now describe a group that acts unitarily on A2
α . For B := D × T we say

that a function on the form

Ba(z) := ε
z − b

1 − zb
, z ∈ C, a := (b, ε) ∈ B, zb �= 1,

is called a Blaschke function. The Blaschke functions allow us to define a group
operation on B by the formula a1 ◦ a2 = a3 if and only if Ba1 ◦ Ba2 = Ba3 . The
locally compact group (B, ◦) is unimodular and called the Blaschke group. One finds
that the identity element of the Blaschke group is e = (0, 1) ∈ B, while the inverse of
a = (b, ε) ∈ B is explicitly given by a−1 = (−bε, ε̄).

Remark The terminology is motivated by the Blaschke product in complex analysis:
A sequence (an)n∈N in D satisfies the Blaschke condition when

∞∑

n=1

(1 − |an|) < ∞.

Given such a sequence, we define the Blaschke product as the infinite product

B(z) =
∞∏

n=1

B(an, z), B(a, z) = |a|
a

a − z

1 − az
,

with the convention that B(0, z) = z. Then B is an analytic function in D vanishing
precisely at the points (an)n∈N.

Introduce the functions

Fa(z) :=
√

ε(1 − |b|2)
1 − zb

, a = (b, ε) ∈ B, z ∈ D.
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We obtain for each α ≥ 0 a unitary representation Uα : B → U(A2
α) given by

Uα(a) f (z) = [Fa−1 (z)
]α+2

f
(
B−1

a (z)
) = [Fa−1 (z)

]α+2
f
(
Ba−1 (z)

)
, f ∈ A2

α, a ∈ B, z ∈ D.

The representation Uα is square integrable and any g ∈ A2
α satisfying ‖g‖α =

π−1
√

α + 1 is admissible. For the wavelet transformWα
g f (a) := 〈 f , Uα(a)g〉α with

f , g ∈ A2
α and g admissible we have by Theorem 2.32 that

Wα
g f = Wα

g f ∗B Wα
g g.

Moreover, we can use (2.25) to reconstruct any f ∈ A2
α through the weak integral

formula

f (z) =
∫

B

Wα
g f (a)(Uα(a)g)(z) dμL(a)

= 1

2π

∫ π

−π

∫

D

Wα
g f (b, eit )(Uα(b, eit )g)(z)

(1 − |b|2)2 db dt .

A straightforward computation shows that for g ≡ 1 ∈ A2
α we have ‖Wα

g g‖L1(B) =
2/α. Hence for α > 0 we can conclude that the representation Uα is integrable. More
generally, it is shown in [62, Theorem 3.2.2] that any non-zero analytic function g on
the unit disk that can be written as

g(z) =
∞∑

j=0

λ j
z − b j

1 − zb j

with |b j | ≤ 1 for all j ≥ 0 and

∞∑

j=0

|λ j | < ∞,

is an integrable vector for the representation Uα for α > 0. For α > 0 we define the
space of test vectors H1

α ⊂ A2
α and the reservoir space Rα as usual, see Sects. 3.1

and 3.2 respectively for details. As such, we can define coorbit spaces associated to
Uα .

Definition 4.4 The Blaschke coorbit spaces CoUα
p for 1 ≤ p ≤ ∞ and α > 0 are

defined to be

CoUα
p := { f ∈ Rα : Wα

g f ∈ L p(B)},

where g is any integrable vector for Uα .
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By the theorywe have developed,we can automatically deduce all the consequences
in Theorem 3.34 for the Blaschke coorbit spaces CoUα

p . For discretization results, the
reader can first consult [62, Sect. 3.3] and proceed to [8, Theorem 3.14] where the
classical atomic decomposition results for Bergman spaces by Coifman and Rochberg
are deduced through coorbit theory.

4.3 Coorbit Spaces on Nilpotent Groups

It is clear from Example 2.3 that the modulation spaces are intrinsically linked with
the Heisenberg group. The Heisenberg group fits in with a large class of well-behaved
locally compact groups known as nilpotent Lie groups. We refer the reader to [38] for
the definition of a nilpotent Lie group. It makes sense to try to define coorbit spaces
for general nilpotent groups. This is a recent idea that was first seriously considered
in [37] and recently expanded on in [50]. We will outline basic definitions and results
in this direction following [50]. The interested reader should consult [37,50] for more
details and interesting examples.

Let G be a simply connected nilpotent Lie group with center

Z := {x ∈ G : xy = yx for all y ∈ G}.

Wewill consider the quotient group G/Z with its Haar measureμG/Z . An irreducible
unitary representation π : G → U(Hπ ) is said to be square integrable modulo the
center if there exists a non-zero element g ∈ Hπ such that

∫

G/Z
|Wgg(x)|2 dμG/Z (x) < ∞. (4.4)

As usual, we have employed the notationWg f (x) := 〈 f , π(x)g〉 for f , g ∈ Hπ and
x ∈ G. Since π |Z (x) = χ(x) · IdHπ

where χ is a character of the commutative group
Z , it follows that the integrand in (4.4) is a well defined function on G/Z . We remind
the reader that the reduction from G to the quotient group G/Z is precisely what we
did in Example 2.20 to make the Schrödinger representation square integrable. Hence
we can say that the Schrödinger representation ρ : Hn → U(L2(Rn)) given in (2.5)
is square integrable modulo the center.

To proceed, we first need a good choice for a well-behaved “window function”
g ∈ Hπ . Since G is a Lie group it makes sense to ask for a fixed g ∈ Hπ whether the
function

G � x 	→ π(x)g ∈ Hπ (4.5)

is a smooth map from G toHπ . Details for this can be found in [38, Chapter 1.7]. We
refer to the elements g ∈ Hπ such that (4.5) is a smooth map as the smooth vectors
of the representation π and denote them byH∞

π . It is a general fact thatH∞
π is dense

inHπ , see [38, Proposition 1.7.7].



2 Page 56 of 61 Journal of Fourier Analysis and Applications (2022) 28 :2

Definition 4.5 LetG be a simply connected nilpotent Lie groupwith centerZ . Assume
we have a square integrable representation modulo the center π : G → U(Hπ ) and
let H∞

π denote the corresponding smooth vectors. We define the coorbit space Coπ
p

for 1 ≤ p < ∞ to be the completion of the subspace of elements f ∈ H∞
π such that

‖ f ‖Coπ
p

:=
(∫

G/Z
|Wg f (x)|p dμG/Z (x)

) 1
p

< ∞,

where g ∈ H∞
π is a fixed non-zero smooth vector.

Remark The case ofCoπ∞ can be handled by consideringweak closures, but we restrict
ourselves to 1 ≤ p < ∞ for simplicity. Moreover, we also refrain from considering
weighted version of Coπ

p so that we can focus on the essential features.

Although the representation space Hπ has an abstract flavor in general, it can be
shown that for nilpotent groups one can always realizeHπ as L2(Rs) in a natural way.
We point out that the parameter s generally satisfies s < dim(G). The identification
ofHπ with L2(Rs) uses Kirillov’s theory of coadjoint orbits (not to be confused with
coorbit theory). We refer the reader to the standard reference [57, Chapter 3] for a
more careful explanation of this phenomenon.

One important problem for coorbit spaces on nilpotent groups is whether the new
spaces are identical to the classical modulation spaces. If this was the case, then
coorbit spaces on nilpotent groups would just be a more complicated view of the usual
modulation spaces and offer little of value. The following example, taken from [50,
Example 3.2], illustrates that this can actually happen.

Example 4.6 We consider the nilpotent group G with the concrete realization G �
(R6, ·) where

x · y := (x1 + y1 + x5y3 + x6y4, x2 + y2 + x6y5, x3 + y3, x4 + y4, x5 + y5, x6 + y6).

A square integrable representation modulo the center is π : G → U(L2(R2)) given
by

π(x1, . . . , x6)g(s, t) = e2π i(x1−x3s−x4t)g(s − x5, t − x6)

= e2π i x1 M(−x3,−x4)T(x5,x6)g(s, t),

where T and M are the translation operator and modulation operator given in (2.4).
As our goal is to investigate the integrability of the corresponding wavelet transform,
we henceforth drop the phase factor e2π i x1 as this will be insignificant. We identify
G/Z � R

4 and write

x = (0, 0, x3, x4, x5, x6) ∈ G/Z.

The wavelet transform Wg f for f ∈ L2(R2) and a non-zero g ∈ H∞
π is given by

Wg f (x) = Vg f ((x5, x6), (−x3,−x4)),
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where Vg f is the STFT. From this it follows that for 1 ≤ p < ∞ we have Coπ
p =

M p(R2) since

‖ f ‖Coπ
p

� ‖ f ‖M p(R2).

In light of the previous example, one might fear that coorbit spaces associated with
nilpotent groups never produce anything other than the classical modulation spaces.
However, in [50] several examples are given of coorbit spaces on nilpotent groups
that are not equal to any of the classical modulation spaces. The first example of
this phenomenon was presented in [37, Theorem 7.6]. The group in question was the
Dynin–Folland group, and the techniques used to prove distinctness came from the
theory of decomposition spaces. Distinctness of a class of decomposition spaces on
two-step nilpotent groups was proved in [2, Theorem 5.6].

4.4 At the Finishing Line

Phew! You’re still here? Good. Hopefully you have been convinced that coorbit theory
is an exciting research topic. You now understand the main ideas of coorbit theory
along with several concrete examples. If you are satisfied, then congratulations; you
know the basics of coorbit theory. However, if you are interested in doing research in
coorbit theory, then the journey has just started.

A great way to get more familiar with the technical aspects of coorbit theory is
by reading the Ph.D. thesis of Felix Voigtlaender [68]. We also recommend seeking
out the original papers on coorbit theory [33–35]. A good idea is to find a problem
in coorbit theory that you want to solve. This forces you to work through details that
are tempting to skip when reading other peoples work. Below we have given some
references for two directions that have received much attention in recent years:

• Consider two integrable representations π1 : G1 → U(H1) and π2 : G2 →
U(H2) and two parameters 1 ≤ p, q ≤ ∞. A natural question to answer is
whether there exists a continuous embedding

φ : Coπ1
p → Coπ2

q

between different coorbit spaces corresponding to (possibly) different groups. This
question has been considered in many concrete settings, see e.g. [25,67] for the
modulation spaces and Besov spaces, and [20] for embeddings between shearlet
coorbit spaces. The embedding question is often more easily tackled if the coorbit
spaces in question can be given a decomposition space structure. Decomposition
spaces originate from [32] and many general embedding results between decom-
position spaces can be found in [70].We refer the authors to [44] where the authors
show that a large class of wavelet spaces can be given a decomposition space struc-
ture. In [69] several embedding results from decomposition spaces into Sobolev
spaces and BV spaces are given. Specific embeddings between decomposition
spaces with a geometric flavor have recently been investigated in [2,4]. Finally,
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recent results regarding embeddings of shearlet coorbit spaces into Sobolev spaces
can be found in [42].

• There are plenty of directions where coorbit theory can be generalized: As previ-
ously mentioned, one can instead of L p(G) for 1 ≤ p ≤ ∞ in the definition of
Coπ

p consider Coπ (Y ), where Y is a solid and translation invariant Banach space
of functions on G, see [33–35].We refer the reader to [56,64,68] for results regard-
ing coorbit spaces in the quasi-Banach setting. The paper [12] considers coorbit
spaces associated with representations that are not necessarily integrable, while
[43] considers certain representations that are not necessarily irreducible. In [9] it
is shown that atomic decompositions are valid even for projective representations.
Coorbit theory for homogeneous spaces has been investigated, and we suggest to
start with the papers [13,15,18]. In [40] a generalization of coorbit space theory
is used to derive atomic decompositions and Banach frames for a wide range of
Banach spaces. Finally, we highly recommend the recent work [66] where the
authors derive discretization improvements and, in their own words, “bridge a gap
between what is achievable with abstract and concrete methods”.
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