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Abstract

In super-resolution it is necessary to locate with high precision point sources from
noisy observations of the spectrum of the signal at low frequencies capped by fio.
In the case when the point sources are positive and are located on a grid, it has
been recently established that the super-resolution problem can be solved via linear
programming in a stable manner and that the method is nearly optimal in the minimax
sense. The quality of the reconstruction critically depends on the Rayleigh regularity
of the support of the signal; that is, on the maximum number of sources that can occur
within an interval of side length about 1/ fi,. This work extends the earlier result and
shows that the conclusion continues to hold when the locations of the point sources
are arbitrary, i.e., the grid is arbitrarily fine. The proof relies on new interpolation
constructions in Fourier analysis.
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1 Introduction

The super-resolution problem of positive sources (see Fig. 1) consists of recovering a
high-frequency signal

x(w) =) xid(w —wy) M

consisting of positive point sources (spikes, for short) located at unknown positions
w; € [0, 1) and of unknown intensity x; > 0; §(-) is the Dirac delta function. The
signal is observed through a convolution measurement of the form

s(v) = / Ko (v — w)x (w)dw + 2(v), ®)

where kjo(-) is a low-frequency kernel that erases the high-frequency components of
the signal and z(-) is noise.

This problem arises in single-molecule super-resolution microscopy [7,22,33]. In
this application, w; ’s encode the unknown locations of fluorescent molecules, x; is pro-
portional to the number of photons emitted by the ith molecule during the observation
time. Crucially, the number of photons is a nonnegative number, leading to the assump-
tion x; > 0, which makes the problem much simpler. Assume that light of wavelength
Ao 1s emitted by the molecules. Due to diffraction of light, the high-frequency spatial
details of the signal are destroyed, no matter how perfect or large the microscope is.
At the detector we record a blurred version of the signal, no details smaller than about
Mo are visible. To restate this mathematically: the function ko (-) models the (PSF) of
the microscope; due to diffraction of light the PSF is band-limited to fi, = 1/Ao. The
noise z(v) represents all sources of noise in the system. For example, the thermal noise
at the detector, the Poisson quantum mechanical noise due to photon quantization in
low-intensity imaging, and the noise originating from the imperfect knowledge of the
PSF in the optical system. We refer the interested reader to [43], where the connection
to super-resolution microscopy is worked out in details.

(a) (b)

Alo = 1/f10
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Fig.1 Microscope as a low-pass filter: signal in a and convolution measurement in b (Color figure online)
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1.1 Discrete Model

In the earlier work [43] a discrete analog of the model in (1) and (2) has been con-
sidered. The signal is modeled by a discrete vector X = [xg...xy—1]" € RY, where
N is the number of elements in the grid, corresponding to partitioning the interval
w; € [0, 1) into N equispaced segments. Each nonzero element in x corresponds to
one spike in (1). The PSF is modeled by matrix Q that implements an ideal low-pass
filter in the sense that it has a flat spectrum with a sharp cut-off at fi,. Formally,

Q = F'QF, 3)
where F is the N x N discrete Fourier transform matrix

1.
[F]k,l — _67]2711(1/1\/

VN

and Q = diag([Q_n/241 ... On2l") with

A 1, k=—fio,---» flo,
Qk={’ flovoo ] @)

0, otherwise.
The wavelength Aj, = 1/ fi, gives the width of the convolution kernel represented
by Q. This kernel is called the Dirichlet kernel. We assume throughout the paper that
N is even for simplicity.
Translated to discrete setting the model in (2) becomes

s=0Qx+z 5

1.2 Recovery Algorithm
Our recovery method from the observations s in (5) is extremely simple: solve

X = arg ming ||s — QX||; subjectto X > 0. (CVX)
In other words, we are looking for a set of positive spikes such that the mismatch
in received intensities is minimum. Note that this method does not make use of any
knowledge other than the observations s and the PSF Q. Furthermore, (CVX) is a

simple convex optimization program, which can be recast as a linear program since
both x and Q are real valued.

1.3 Rayleigh Regularity

Consider the discrete signal x € R" as samples on the grid {0, 1/N,...,1—1/N} C
T, where T is the circle in 1D, i.e., the interval [0, 1) with O and 1 identified. Fora, b €
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T, the wrap-around distance between a and b is |b — a| £ min(b—a mod 1, a—>b
mod 1); for an interval [a, b] C T, its wrap-around length is |b — a!.

We introduce a definition of Rayleigh regularity inspired by [23, Def. 1]. Let
supp(x) £ {I/N : x; > 0} denote the support of the discrete signal. As we shall
see, our ability to super-resolve the signal x, will be fundamentally determined by
how regular supp(x) is in the following sense.

Definition 1 (Rayleigh regularity) We say that the set of points V C T is Rayleigh-
regular with parameters (d, r) and write ¥V € R(d, r) if it may be partitioned as
YV =V U---UYV,, where the V;’s are disjoint, and each obeys a separation constraint:

I.foralll <i<j=<r,V;NV;=a;
2. for all intervals D C T of wrap-around length ]D} =dandall i,

[V;ND| <1,

where |Vi N D| denotes the cardinality of the set V; N D.

In this paper we are interested in super-resolving signals with Rayleigh-regular sup-
port: supp(x) € R(d, r). Such signals are illustrated in Fig. 2.

As we will discuss, in the special case when supp(x) € R(cAp, 1) [i.e., when
r = 1] with ¢ a bit larger than one (as in Fig. 2a), the super-resolution problem is
particularly easy. In this case we will say that the spikes in x are well-separated.

1.4 Discrete Stability Estimates

The main result of the earlier work [43] is the following proposition.

Proposition 1 Assume x > 0 and supp(x) € R(krior, r) with £ 1.87 and fio =
128r. Assume that the observations s are given by (5). Then the solution X to (CVX)
obeys

. N 2r i
X —x[l; < Ca(r) - (—) llzlly = Ca(r) - DSRF* - |z, (6)
—— f

lo
Error

where C4(r) only depends on r (if DSRF > 3.03/r, it can be taken to be Cy(r) =
2r r
ret-4.17").

The ratio DSRF £ N/ fi, is called the discrete super-resolution factor; this is the
ratio between the scale at which we observe the data, 1/ fi,, and the scale of the finest
details in the data, 1/N.

1.5 Breakdown of Discrete Stability Estimates
In practice, signals do not belong to a discrete grid. In order to accurately approximate
the continuous model in (1) we might need to make the grid very fine, i.e., take N

large.
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> 6o > 610

Fig. 2 Examples of discrete N dimensional signals whose support belongs to the Rayleigh classes
R(2A10, 1) ina, R(4A1, 2) in b and in ¢, R(6A]¢, 3) in d depicted on the grid {0, 1/N, ..., 1—-1/N} C T.
Note that the signals in b and in ¢ both have support in R (414, 2). In general, Rayleigh regularity does not
require that all spikes in the signal are arranged into separated clusters as is the case in b and in d. The sine
wave sin(27 fiot) at the highest visible frequency is shown by the dotted line for reference. Here, N = 120
and fij, = 14, so that A1, = 1/14. By periodicity, the endpoints are identified (Color figure online)

The problem is that the theoretical result in (6) becomes meaningless when fj, and
llz]|1 remain fixed, and N — oo. Indeed, observe that (6) guarantees accurate signal
recovery when the right-hand side of (6) is much smaller than ||x||;. When N — oo
with fi, fixed, then DSRF? — oo very quickly, so that the right-hand side of (6)
becomes larger than ||x||1, even for very small noise.

This is expected. Consider the hypothetical situation illustrated in Fig. 3. The true
signal x consists of three spikes as depicted in Fig. 3a in solid purple. The grid is very
fine (N is large); the PSF is wide as shown in Fig. 3b (the solid purple curve, with
characteristic width XAj,, represents s = Qx + z with x from Fig. 3a); and the data is
noisy. Imagine an algorithm produced an estimate Xgo04 as depicted in Fig. 3¢ by the
dashed blue spikes. The estimate X¢00d is excellent: the dashed blue spikes are located
in the neighboring discrete bins to the corresponding solid purple ground truth spikes,
the magnitudes are estimated perfectly. In the presence of noise we cannot hope for
infinite resolution, so for large N, we should be happy if we were able to obtain Xgood
as in Fig. 3c. Yet,

”ﬁgood — x|l = 2|x]l1,
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(€) error = ||kn; *x(x — Kgooa) |1 (f) error = |[kp; *(x — Xpaa)ll1

Fig.3 Measuring the estimation error when the grid is very fine (N is large) (Color figure online)

i.e., the estimation error is about as large as it can possibly be. We conclude that the
reason why the result in (6) becomes meaningless when fj, and ||z||; remain fixed
and N — oo is that the error metric ||X — x||; becomes inadequate. We need a more
Jforgiving error metric that should penalize small localization errors on the fine grid
mildly.

We will explain in Sect. 2 how to construct the more forgiving error metric and
how to change the definition of super-resolution factor accordingly. With these mod-
ifications we can generalize Proposition 1 and formulate the stability estimates in
Theorem 1 that remain meaningful even when N — oo and fj, and ||z||; are fixed.
With the appropriate new definitions, the result in Theorem 1 is nearly identical to that
in Proposition 1. Surprisingly, the proof technique necessary to obtain Theorem 1 is
much harder than the trick that was sufficient to prove Proposition 1. The proof relies on
new trigonometric interpolation constructions that constitute the main mathematical
contribution of this paper.
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2 Main Results

2.1 Measuring the Reconstruction Error

To avoid penalizing the estimators that produce spikes very close to the original spikes
on the fine grid, a natural approach is to convolve the difference X —x with a nonnegative

kernel kpi(-) of width Ay (represented by the dotted green line in Fig. 3b) before
computing the ¢; norm:

error = [[kpi*x(X — x)||1,

where

N—1
[ir G = %], £ 3 ki (” N’") o
m=0

and h = [ho, hy, ..., hy—1]" £ % — x is the difference vector. The new error metric
is illustrated in Fig. 3c—f. When the estimated spikes are closer than Ap; to the original
spikes, as is the case for X = X004 in Fig. 3c, the error, represented by the area of
the shaded region in Fig. 3e, is very small. Conversely, when the estimated spikes
are further than Ap; from the original spikes, as is the case for X = Xpaq in Fig. 3d,
we have, error = |kpi*(X — X)||1 ~ 2||x||1, so that the error is large, as illustrated
in Fig. 3f.

The width, Ap;, of the kernel kp;i(+) is a parameter of the theory. This parameter will
be chosen to be (i) larger (or equal to) the finest scale of the data, Ap; > 1/N, and,
simultaneously, (ii) smaller than the native resolution of the observations, Ap; < Alo-
Having chosen Ay, we define the super-resolution factor as:

SRF £ Mo

hi

The SRF will play the same role in our theory as the DSRF played in Proposition 1.
In Fig. 3b, the SRF is the ratio between Aj,, the width of the kernel Q, and Ap;, the
width of the kernel kp;(-).

To be concrete, a reasonable situation might be: Aj, = 1/10, 1/N = 1/1000 so
that DSRF = 100. This makes the right-hand side of (6) huge so that the stability
estimate is useless. Now, choose Api = 1/100 so that SRF = 10, which is much
smaller than DSRF. The main result of this paper, Theorem 1 below, shows that we
can upper-bound the error ||kpj*(X — X)||; in terms of SRF?, which is much smaller
than DSRF?", keeping the bound tight for realistic values of the noise.

For kpi(+), in this paper we use the Fejér kernel:

.l sin(r (foi + Do)\ 2 o .
khl(t) - thi"'l ( sin(rrt) ) s fhl = 1/)\h1~ (7)
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The normalization is such that
N-1 "
> i (57) = 1. ®)
n=0

which ensures that the “energy” in the error is preserved in the sense that error =
lkni*(X — x)||1 =~ 2||x||; whenever the estimated spikes in X are far away from the
true spikes in x. The concrete form of the kernel kp;(-) is not important. Our results
hold for any other periodic nonnegative high-resolution kernel as long as it satisfies
conditions (106) and (107) below.

When N — o0, the error metric defined here becomes the one used in [12] in
the analysis of the continuous super-resolution problem. Compared to [12], the key
novelty of this paper is that the results in [12] apply only when the spikes in the signal
are well-separated [supp(x) € R(1.87X0, 1)] as in Fig. 2a, a stringent assumption.
In this paper we don’t assume that the spikes are well-separated and our results also
hold for signals with supp(x) € R(1.87Ajor, r) and r > 1 as in Fig. 2b—d. The price
we pay is that our results are only valid for nonnegative signals, whereas the results
in [12] are valid for complex-valued signals.

2.2 Stability Estimate on an Arbitrarily Fine Grid

In this paper we prove the following theorem.

Theorem 1 Assume x > 0 and supp(x) € R(kAior, r) withk = 1.87 and fi, > 128r.
Assume hpi < Mo, Ahi > 1/N, and SRF > 12. Assume, in addition, that the elements
of supp(X) are separated by at least 2\pi: if t, 1" € supp(X) witht # t', then |t — t’} >
2Ani, where || is the wrap-around distance on T. Assume that the observations s are
given by (5). Then the solution X to (CVX) obeys

[ knix(X —%)||1 < C(r)SRF* |z]1, )

where C(r) £ r¥+4¢"+1 and the positive numerical constant ¢ is defined in (128)
below.

The theorem is proven in Sects. 5, 6, 7 and in the appendices. Before we embark on
the proof, we discuss the significance and the accuracy of the result.

2.2.1 Significance of the Result

Theorem 1 gives essentially the same stability estimate for an arbitrarily fine grid
as Proposition 1 does for a discrete grid. With the new definition for error met-
ric, Ap; in Theorem 1 plays the same role as the grid segment size, 1/N, played in
Proposition 1. In turn, the grid segment size, 1/N, in Theorem 1 may be arbitrarily
small without affecting the stability estimate at all. The only thing that changes when
N grows is that it becomes numerically harder to solve (CVX).
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2.2.2 Tightness

The result is information-theoretically tight in the following sense. It is possible to
prove a converse theorem (see [43, Sec. 2.3]) that says that the best possible algorithm
in the worst case (the minimax setting) cannot achieve stability estimate in (9) with
super-resolution factor dependence better than SRE> ~!. In other words, the exponent
of SRF in (9) is near-optimal.

We have made no attempt to optimize C (r). Finding the tightest possible C(r) is
an important open problem, which seems to be hard to address with the mathematical
techniques developed in this paper.

2.2.3 Mathematical Novelty

The reader might expect that since Theorem 1 is so similar to Proposition 1, the proof
of Theorem 1 is a minor modification of the work done in [43]. Perhaps surprisingly,
this is not the case.

The proof technique in [43] relied on a simple and elegant trigonometric inter-
polation construction reviewed in Sect. 6.2. In this paper, in addition, we had to
develop a flexible set of techniques that allowed us to build trigonometric polyno-
mials with specific interpolation properties. These techniques—that constitute the
main mathematical contribution of this paper—are presented in Sects. 6.3, 6.4, and in
Appendix 2 “Proof of Lemma 5. We believe that the new techniques are interesting
in their own right and may be useful in other projects.

2.2.4 Separation by 2Ay;

Theorem 1 requires the assumption that no two spikes in x are closer than 2Xy;. It is
important to contrast this assumption with the separation assumption in [12,13]. The
results in [13] hold only when no two spikes in x are closer than 1.874), (the spikes
are well-separated). Our separation requirement is much weaker than the one needed
in [12,13]: we require the separation at the scale of Ap; whereas the results in [12,13]
need separation on the scale of Aj,. Since the whole point of super-resolution is to
reconstruct the original signal with accuracy about Ap; < Ajo, Our assumption is mild,
whereas the assumption in [12,13] is restrictive.

Further, it follows from the proof of Theorem 1 that the 2X; separation requirement
may be relaxed to, for example, Api/2, or, more generally, to Ap; /S forany 8 > 1. The
result in Theorem 1 will not change, except that the constant C(r) will now depend
on f. Specifically, the result will read:

lknix(X — x)[l1 < r2+4e+1 B2 SRF ||z ;.

To keep the proof of Theorem 1 as clean as possible, we decided to stick with the 2Ay;
separation assumption in the theorem.

Finally, itis not clear if the separation assumption of the form Ap; / 8 is fundamentally
necessary. Certainly, it is necessary for the proof technique developed in this paper.
It is an open problem to either find a proof of Theorem 1 that does not rely on this
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assumption, or to prove a converse result showing that this assumption is unavoidable.
Note that there is no explicit separation assumption in Proposition 1; however, since
the spikes are on the grid, the separation assumption at the scale of 1/N is made
implicitly.

2.2.5 Density Constant

We next discuss the following question: can the constant ¥ = 1.87 in Theorem 1 be
made smaller without changing the result? The answer is “probably yes”. Specifically,
our proof builds upon Lemmas 1 and 2 below. The lemmas generalize [12, Lm. 2.4,
Lm. 2.5, Sec. 2.5] and their proof exploits a construction developed in [13]. The
specific value for k = 1.87 comes from the construction borrowed from [13]. An
improved construction has recently been reported in [28] leading to a smaller value
k = 1.26. To keep this paper as simple as possible, we decided not to accommodate
this improvement. To do so, one would need to change Lemmas 1 and 2 below and
the proof of Lemma 2 in Appendix 1 all other derivations in this paper will remain
unchanged. The constant C(r) in Theorem 1 would need to be updated accordingly.

We expect that there is a trade-off: the larger « is, the smaller the constant C(r)
can be made. However, our estimates do not provide the smallest possible constant.
Hence, we cannot analyze the trade-off.

Finally, as explained in [43, Sec. 2.3.1], « > 1 is a fundamental limit, so our result
is within the factor 1.87 from the optimum.

2.2.6 Gridless Super-Resolution

It has been shown in [8,12,13] that under the assumption that spikes are separated by
at least 1.871), (well-separated spikes), one can solve the gridless super-resolution
problem in which the spikes have completely arbitrary locations on T (no need for
the 1/N discretization). It turns out that in the gridless setup one needs to solve
an infinite-dimensional, but convex, total-variation-minimization problem (see [13,
eq. (1.4)]). Surprisingly, if one works in the dual domain and uses the idea of lifting,
the equivalent problem becomes finite-dimensional and, therefore, may be solved on
the computer. The solution to the original problem may then be reconstructed by
duality. This approach is explained in [13, Sec. 4].

The approach, by now standard, may be carried over to the problem considered
in this paper, where we work with a nonnegative signal x and the spikes need not be
well-separated. The same trigonometric polynomials that certify optimality of (CVX)
and lead to Theorem 1 may also be used to prove stability of the corresponding gridless
algorithm.

The reason why we chose to focus on the arbitrarily fine grid and not to discuss the
gridless problem in details is the following practical consideration. In applications, for
example in super-resolution microscopy, there is no real difference between the grid-
less problem and the problem with a very fine grid. The real sources have some finite
nonzero size, perhaps small. Therefore, in practice, one has a choice between solving
(CVX) on a sufficiently fine grid or solving the infinite-dimensional total-variation-
minimization problem via lifting. To solve (CVX) with N variables efficiently, one
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would use a first-order solver whose complexity is dominated by repeated multiplica-
tions by Q, Q'. Using (3) one would implement Q via the fast Fourier transform so
that each matrix multiplication takes O(N log N + fi,) multiplications. The gridless
approach via lifting, in its standard implementation, requires one to solve a semidef-
inite convex optimization problem (see [13, eq. (4.3)]) with O( fl%)) variables. The
complexity of the gridless approach does not depend on N at all, a very nice prop-
erty. However, the necessity to deal with a semidefinite problem with O( flg) variables
make it more costly than solving (CVX) on a sufficiently fine grid, for example, in
the important applications in super-resolution microscopy. Having said this, recently
very interesting new approaches to solve the gridless problem much faster have been
developed. One idea is to construct a solver for the semidefinite problem that directly
leverages the structure of the problem [15], another idea is to construct primal Frank-
Wolfe based solvers with heuristics [ 10,20,29]. It would be interesting to see a rigorous
study comparing the fine grid methods with the gridless methods in applied super-
resolution microscopy problems. We refer to [20, Sec. 5] for fascinating work in this
direction.

2.2.7 General PSFs

The sharp rectangular frequency cut-off of Q in (4) corresponds to the Dirichlet PSF
kio(+) in (2). The Dirichlet kernel takes negative values (as shown in Fig. 3b in solid
purple), whereas all PSFs in microscopy take nonnegative values (as shown in Fig. 1).
The simplest PSF that takes nonnegative values is the Fejer kernel. The spectrum of
Q that corresponds to the Fejer kernel has a triangular decay of g in (4) as in [43,
eq. 13] and in (196). The results for the rectangular spectrum can be translated into the
results for the triangular spectrum (in fact for the spectrum of any reasonable shape)
using the idea of spectrum equalization. We refer the reader to [43] for a detailed
explanation on how this can be done. In this paper we focus on the basic case in (4)
only.

2.2.8 The Use of £1-norm in Stability Estimates

A careful reader may ask why do we use the £;-norm in (9) and not the more usual
£>-norm. Interestingly, as explained in [43, Sect. 1.1], in super-resolution microscopy
Ix|l1, and not ||x||2, has the meaning of cumulative emitted intensity or the total
energy of light emitted per second. Therefore, |kpj*(X — X)||; is a natural choice as it
corresponds to the error (at high resolution) in cumulative emitted intensity, exactly
the quantity one would like to minimize in microscopy.

The other reason for the choice of the £1-norm is mathematical feasibility. It would
be interesting to obtain similar bounds for the £>-norm as this might be relevant for
some applications. However, the dual certificates (see below) required to obtain such
bounds need to have completely different properties, and, hence, new mathematical
constructions seem to be necessary for such an extension.
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3 Literature Review and Innovations
3.1 Prior Art

Prony’s method Prony’s method [46] is an algebraic approach for solving the gridless
super-resolution problem from noiseless data when the number of spikes is known a
priori. The observations s are used to form a trigonometric polynomial, whose roots
coincide with the spike locations. The trigonometric polynomial is then factored,
thus revealing those locations, and the amplitudes estimated by solving a system of
linear equations. In the noiseless case, Prony’s method recovers x perfectly provided
that ||x]lo < fio. Here and below, ||-||o is the pseudo-norm that denotes the number
of nonzero elements in a vector. No further Rayleigh regularity assumption on the
signal support is needed. With noise, however, the performance of Prony’s method
degrades sharply. The difficulty comes from the fact that the roots of a trigonometric
polynomial constructed by an algebraic method can shift dramatically even with small
changes in the data. See [6] for quantitative analysis showing that Prony’s method is
very sensitive to noise. Therefore, a crucial problem is to find a method for solving
the super-resolution problem in the presence of noise whose performance decays
gracefully with the amount of noise.

Fundamental limits In the pioneering work [23], Donoho studied limits of perfor-
mance for the super-resolution problem and recognized the importance of Rayleigh
regularity as the fundamental property that determines how easy it is to super-resolve
the signal. He analyzed an intractable exhaustive search algorithm and demonstrated
that assuming supp(x) € R(2Aj0r, 1), the estimator, X, produced by this algorithm
satisfies:

I% — x|l2 < C(r)SRF ! |z]. (10)

The algorithm proposed by Donoho may only be applied to vectors x with very
few dimensions. Therefore, the fundamental problem posed by Donoho is to find
an efficient algorithm that is stable in the sense of (10). Donoho has also proven a
converse to (10): the SRF dependence in (10) cannot be better than SRFZ ! even
for the best possible algorithm in the worst-case scenario (the minimax setting). The
results of Donoho have been recently (partially) improved in [4,17] where for the same
intractable algorithm the following stability estimate was derived:

I% — x[l2 < C(r, Ix[lo))SRE* |z (11)

The result is sharp in the sense that the SRF dependence matches Donoho’s converse.
The weakness is that C (r, |Ix]lo) depends on the total number of spikes in the sig-
nal, which may be very large. This weakness has recently been (partially) removed
in [5], where a model with clustered spikes is considered that is somewhat simi-
lar, but distinct from Rayleigh regularity; stability estimates for the spike locations
and (complex-valued) spike magnitudes are derived and the estimate for the magni-
tudes scales as SRF? ~!||z||». Note further that the stability estimates in (10), (11) are
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expressed in terms of £, norms, whereas our stability estimates in (9) are expressed
in terms of ¢; norms.

Other works [6,53,54] study the stability of the super-resolution problem in the

presence of noise, but likewise do not provide a tractable algorithm to perform recovery.
Work in [31,50,51] analyzes the detection and separation of two closely-spaced spikes,
but does not generalize to the case when there are more than two spikes in the signal.
Recent papers [39,40] analyze the problem of accurately recovering the number of
spikes from the low-pass measurements.
Super-resolution of well-separated spikes Progress towards resolving the question
posed in [23] in the general situation where x € C¥—in this paper we consider the
case X > 0 only—has been made in [12,13,28]. The sharpest from this series of
results [28] implies the following. Assume supp(x) € R(1.26Aj,, 1), then the solution
to £1-minimization problem

% = arg ming||%[|; subjectto ||s — QK[| <8 (L)
with § chosen so that ||z||; < & satisfies
Ix — %[l < &- SRF?,

where ¢ is a numerical constant. The requirement supp(x) € R(1.2610, 1) (well-
separated spikes in our terminology) is restrictive because it means that the signal x
cannot contain spikes that are at a distance less than 1.261,. This is a limitation for
many applications including single-molecule microscopy, as it is usually understood
that the goal of super-resolution is to distinguish spikes that are (significantly) closer
than the Rayleigh diffraction limit, i.e., at a fraction of Aj, apart. Unfortunately, if there
are spikes at a distance smaller than 1o, £; minimization does not, in general, return
the correct solution even if there is no noise. The central question therefore is: which
algorithms and under which assumptions are able to super-resolve signals robustly
when the distance between some of the spikes may be substantially smaller than Ao?

On a similar line of research, see [56] and [57] for related results on the denoising
of line spectra and on the recovery of sparse signals from a random subset of their
low-pass Fourier coefficients. The accuracy of support detection for well-separated
spikes is analyzed in [2,27].
Noise-aware algebraic methods Many noise-aware versions of Prony’s method are
used frequently in engineering applications, for example in radar (see [52, Ch. 6]).
The most popular methods are MUSIC and its numerous variations [3,9,11,45,49,58],
matrix-pencil [32], and ESPRIT [44,47]. For more details on algebraic methods we
refer the reader to the excellent book [52, Ch. 4]. It is important to point out that
unlike convex optimization based methods like (L1), algebraic methods do not need
the spikes to be well-separated (x may contain spikes closer than Aj,) even when the
signal is complex-valued, at least in the noiseless case.

The stability of noise-aware algebraic methods is an active area of research. Asymp-
totic results (at high signal-to-noise ratio) on the stability of MUSIC in the presence
of Gaussian noise are derived in [16,55]. More recently, some steps towards analyzing
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MUSIC and matrix-pencil in a non-asymptotic regime have been taken in [38] and in
[42], respectively.

Especially important is the question of stability of algebraic methods when the

spikes are not well-separated. Substantial progress in understanding this for MUSIC
and ESPRIT algorithms has been made by Li and Liao in the last two years [35—
37]. See also [34] for a simplified exposition of ideas in [36] and some extensions.
The authors considered a separated cluster model for spike locations; the model is
similar to Rayleigh regularity in spirit, but is more restrictive. For example, the signals
depicted in Fig. 2b and c are both Rayleigh-regular with r = 2 and d = 4X),. At the
same time, the signal in Fig. 2b has spike clusters that are separated by about 34,
but the signal in Fig. 2¢ has spike clusters that are separated by only about 21,. The
separation between clusters determines the stability guarantee of the reconstruction in
the presence of noise. Hence, the theory based on the separated cluster model predicts
that the signal in Fig. 2b is easier to super-resolve than the signal in Fig. 2c. Intuitively,
it is not clear why this should be the case. The theory based on Rayleigh regularity
provides identical stability guarantees for the signals in Fig. 2b and c. Continuing this
argument, it is possible to construct examples when the guarantees based on separated
cluster model will be weak, yet the guarantees based on Rayleigh-regularity will be
strong; the examples where the reverse is true do not exist. For MUSIC in [35,36]
and for ESPRIT in [37], assuming Gaussian noise and making a further (restrictive)
assumption fi, 2> ||X||%, the authors derived bounds on signal-to-noise ratio in terms
of SRF? =2 and a factor that depend on fj, so that the correct signal support recovery
is guaranteed. There is still a large gap between these stability estimates and the
minimax converse results. For example, for ESPRIT, the gap is a factor proportional
to fio, which may be very large for high-dimensional signals [37]. Hence, the problem
of finding a super-resolution method for complex-valued signals that performs well
empirically and has sharp theoretical stability estimates in the case when the spikes
are not well-separated is still open.
Super-resolution of nonnegative signals The case of nonnegative signal, x > 0, was
analyzed in [24], see also [30] for a shorter exposition of the same idea. It is proven
in [24] that as long as ||X|lo < fio, One can recover X by solving a simple convex
feasibility problem in the noiseless setting. In the presence of noise, [24] does not
provide sharp estimates: it does not reveal the correct SRF dependence in the stability
estimate.

More recently, the authors of [48] generalized [24] to the case of more general
point spread functions and sampling patterns in the noiseless case; further refinements
have been obtained in [25]. The corresponding noisy case has been studied in [26].
Being very general, the results of [26] do not appear to be sharp enough to reveal the
fundamental dependence between the stability of the algorithm, the regularity of the
signal, and the super-resolution factor.

Most relevant to this work is the earlier paper [43] where Proposition 1 has been
proven. The key question remained: what happens if the grid becomes arbitrarily fine
or when there is no grid at all (the gridless setting). Some progress towards answering
this question has since been made in [19] where stability estimates for the detection
of signal support have been expressed in terms of SRF?IXl0—! Note that ||x||o may
be arbitrarily large for high-dimensional signals, and so the bounds in [19] become
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highly suboptimal for the practically relevant case in which the spikes are distributed
in a regular way in the signal. It was shown in [18, Sect. 2.4] that the results of [19]
may be generalized to a separated cluster model, in which case the ||x||¢ in the estimate
above is substituted with r, the number of spikes in one cluster. However, the result
in [18, Sect. 2.4, Theorem 4] requires the clusters to be far enough, and there is no
quantification of how far the clusters need to be. In other words, the clusters need to
be arbitrarily far away from one another. In contrast, the Rayleigh regularity concept
in this paper specifies exactly how far the clusters need to be for stability estimates
to hold and, further, this distance is tight to within a factor of 1.87 [43, Sect. 2.3.1].
Also see the discussion above explaining that Rayleigh regularity is generally a more
forgiving requirement than the separated cluster model.

3.2 Innovations

The innovations in this paper may be summarized as follows:

— Generalization of the results of [43] to the case when the grid is arbitrarily fine.

— Seamless connection between the super-resolution results for the discrete grid and
the results for the gridless (continuous) setting. This has theoretical as well as
practical implications.

— Mathematically the paper builds on the ideas from [12] and [43] and develops
these methods further. The interpolation constructions in Lemmas 4 and 5 are
new. These constructions may be of independent interest and may be useful for
other problems.

4 Notation

Sets are denoted by calligraphic letters A, 13, and so on. Boldface letters A, B, . .. and
a, b, ... denote matrices and vectors, respectively. The element in the ith row and jth
column of a matrix A is a;; or [A]; ;, and the ith element of a vector a is a; or [a];. For
a vector a, diag(a) stands for the diagonal matrix that has the entries of a on its main
diagonal. The vector of all zeros is denoted 0. The superscript " stands for transposition.
For a,b € T, the wrap-around distance between a and b is |b — a} £ min(b — a
mod 1, a — b mod 1); for an interval [a, b] C T, its wrap-around length is ’b — a’.
For afinite set Z, we write |Z | for the cardinality. Note that the notation | . | is overloaded.
For x € R, [x] £ min{m € Z | m > x}. We use [ : k] to designate the set of natural
numbers {/,/ + 1, ..., k}. For a vector a € C", |a||; = Z'};(l) |aj| denotes the ¢,

_ 172
norm; ||a], = (Z?:(l) a?) /% denotes the £7 norm; ||a]joo = max; |aj| denotes the

£oo norm; and |ja|lo denotes the number of nonzero elements in a. For a function
f) R = R, | f()lloo = max;er | f(t)]. The indicator function is denoted as 7[-],
itis equal to one if the condition in the brackets is satisfied and zero otherwise. We use
¢ with various subindexes and superindexes to denote positive numerical constants;
to track things simpler, we use the convention that the numerical constants with the
subscript u, like c,1, satisfy ¢,1 > 1, and the numerical constants with subscript /,
like ¢;1, satisfy O < ¢;1 < 1. Throughout the paper we use the convention: fi, denotes
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the frequency cut-off of the measured data [see (4)], Ljo = 1/ fio is the corresponding
wavelength; f. denotes an abstract frequency cut-off (this value changes in different
places in the paper) and A, = 1/ f, is the corresponding wavelength. To simplify
writing, we follow the conventions: ]_[f:1 a; =1land{ay,...,a,} = @ whenr = 0.

5 Structure of the Proof

Previous results in the field [12,13,43] suggest that Theorem 1 may be proven by con-
structing an appropriate dual certificate. Specifically, consider a compressed sensing
type problem in which an unknown signal is being recovered from an incomplete set
of noiseless linear measurements using a convex optimization procedure with prior
constraints on the signal (such as nonnegativity) and regularization (such as £; norm
minimization); see, for example, [14] for a short exposition of the classical ideas.
Then the dual certificate is a vector from the range of the adjoint of the measurement
matrix that satisfies specific interpolation conditions determined by the properties of
the true unknown signal (such as sparsity) and by the type of prior constraints and
regularization used. Geometrically, the existence of the dual certificate guarantees that
the null space of the measurement matrix is oriented in a favorable way: starting from
the true unknown signal it is not possible to move along the null space of the mea-
surement matrix while satisfying the prior constraints and making the solution more
regularized. Therefore, the true unknown signal is the optimal solution of the convex
optimization problem. In other words, the existence of the dual certificate guarantees
that the convex optimization problem recovers the correct solution. In the presence of
noise a similar approach allows one to prove stability of the reconstruction, but the
dual certificate often must satisfy additional properties [43].

In our problem, since the measurement operator is a low-pass kernel, the dual certifi-
cate is areal-valued trigonometric polynomial frequency-limited to fj, with additional
properties. In fact, since we work on an arbitrarily fine grid, similar to [12], we will
need three trigonometric polynomials instead of one, each with its own properties;
they will be called go(-), q1(-), and g2(-). These dual trigonometric polynomials are
constructed in Lemmas 3, 4, and 5 in Sect. 6; go(-) is borrowed from [43], g1 (-) and
q2(-) are new—they are the main mathematical contribution of this paper. In Sect. 7
we use ¢qo(+), g1(+), and g2 (+) to derive the stability estimates and prove Theorem 1.

We invite the reader unfamiliar with the concept of dual certificates in convex opti-
mization or the use of dual certificates in super-resolution problems to study the short
proof of [43, Lm. 1, pp. 426—427] before reading this paper further. The derivations
in Sect. 7 generalize [43, Lm. 1] to the arbitrarily fine grid setting, but they are much
more involved.

Some calculations in this paper are complicated, but we tried to present the key new
ideas in a simple way. At the first pass through the paper we suggest that the reader
studies Sects. 6.1-6.2; then focuses on the formulations of Lemmas 4 and 5 and the
new constructions in Sects. 6.3.1 and in Appendix “Proof of Lemma 5-construction”
skips the details in Sects. 6.3.2—6.3.6 and in the remainder of Appendix ‘“Proof of
Lemma 5” and finally studies the stability estimates in Sect. 7. After this, return to the
technical details in Sects. 6.3.2—6.3.6 and in Appendix “Proof of Lemma 5”.
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6 Dual Certificates
Throughout the paper we will use the following definitions. Define the error vector
h=1[ho,....,hy-1]" 2% —x
and the set of points where the error vector takes on negative values
T={n,...,.ts} = {m/N : h,, <0}. (12)

The points are ordered accordingto#; < --- < tg. Recall, X > 0 and x > 0. Therefore,
h,, can only take on negative values on supp(x), which implies 7 C supp(x). Since
supp(x) € R(kAjor, r) and since the elements of supp(x) are separated by at least
2\ni, it follows 7 € R(kAor, r) and the elements of 7 are also separated by at least
2Xpi- As we will see below, the dual trigonometric polynomials go(-), 1 (-), and g2 (+)
need to satisfy specific interpolation constraints on 7 .

Throughout the paper we will use the following neighborhood notations.

Definition2 Fort € T, § > 0,
NG )2 {teT:|t—r1| <8},

where H denotes the wrap-around distance on T. Above, A(-, -) stands for “near”
(i.e., the points near 7).
ForasetV C Tand$ > 0,

NG, V) £ UrepN (8, 1),
FG,V)ET\NG, V).

Above, F (-, -) stands for “far” (i.e., the points far from V).

6.1 Building Blocks

The following two lemmas serve as common building blocks for the construction of
trigonometric polynomials go(-), g1(-), and g2 (-).

Lemma 1 allows us to construct a trigonometric polynomial frequency-limited to
fe that interpolates zeros at well-separated points as illustrated in Fig. 4a.

Lemma 1 Let A. € (0, 1/128), set f. 2 1/A.. Consider a collection of points vy <
vy < --- < vy, define V = {v1,va,..., vy} and assume V € R(kie, 1). Then,
there exists a real-valued trigonometric polynomial q(-) = g,y () that satisfied the
following properties.

1. Frequency limitation to f.: q(t) = Z,{‘:_ ‘. Gre 27k for some gy, € C.
2. Zero values and zero derivatives on V: forallv € V, g(v) = q'(v) = 0.
3. Uniform confinement between zero and one: forallt € R, 0 < g(r) < 1.

Birkhauser



4 Page 18 0f 80 Journal of Fourier Analysis and Applications (2022) 28:4

(b)
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Uy Vo 1 \/ U1 Vg \1

Fig. 4 a Illustration of Lemma 1. Trigonometric polynomial frequency-limited to f. = 6 interpolates
zeros at well-separated points {vy, v2} € R(2.5A¢, 1). Specifically, g, . y(v;) = q;bv(vj) = 0 and the
curvature in the neighborhoods of v| and v is controlled (indicated in red) according to (13). b Illustration
of Lemma 2. Trigonometric polynomial frequency-limited to f. = 6 interpolates values f1 and f> at well-
separated points {v, va} € R(2.5A¢, 1). Specifically, D VAL [dj}(vj) = [} and the derivatives at v}

and vy are constrained (indicated in red) according to q)’L( Vifi) {d-}(vj) = dj (Color figure online)
> Vot jindj

4. Quadratic behavior near V: for all v € V and for all t € N'(A), v)

(v —1)? cu(v—1)2
_— < T < —
2 q(t) = 2

(13)
5. Boundedness away from zero far from V: for all t € F(Ar:, V), q(t) = c;1 > 0.
6. Uniform confinement of the derivative: ||q'(:)|lco < 27/ Ac.

7. Uniform confinement of the second derivative: ||g" (-)|loo < 472 /A%.

Above, all the constants are positive numerical constants. Specifically,

A 20.17, ¢; £ 0.029 14)
cu 2272, e 2 A?; =83 x 1074, (
Proof This lemma is a direct consequence of the technique developed in [13]. Let
qc rc(+) be the trigonometric polynomial constructed as in [13, eq. (2.4)] to interpolate
—1on V. Then, according to [13, Lm. 2.4, Lm. 2.5, Sec. 2.5],¢(-) = 0.5(gcrg(:)+1)
satisfies Properties 1, 2, 3, 5 of the lemma, and the lower bound in (13). Since, by
Property 3, ||lg(-)llco < 1, Properties 6 and 7 follow by applying (129) [Bernstein
theorem]. Finally, the upper bound in (13) follows from Property 2 and Property 7
by (195) [Mean Value theorem]. O

Lemma 2 allows us to construct a trigonometric polynomial frequency-limited to f.
that interpolates arbitrary values and has constrained derivatives at well-separated
points as illustrated in Fig. 4b.

Lemma?2 Let A. € (0,1/128), set f. & 1/x.. Consider a collection of points v| <
vy < --- < vy, define V £ {vi,v2,..., vy} and assume V € R(khic, 1). Consider
two sets of real numbers { f1, fa, ..., fv}and {di, da, ..., dv} that satisfy

|fil <1 and |d;| < (15)

1
e

) Birkhduser



Journal of Fourier Analysis and Applications (2022) 28:4 Page 190f80 4

90

0

t1 12 ty 14 1

Fig.5 Tllustration of Lemma 3. Trigonometric polynomial frequency-limited to fi, = 12 interpolates zeros
on Rayleigh-regular set 7 = {11, 13, 13,14} € R(5A10, 2) and bounces away from zeros “quickly”: the
curvature in the neighborhoods of each point #; is “high” in the sense of (17). In the figure, |t3 -1 { >
5Mo = 5/12, |ta — 12| = Shio = 5/12, |t2 — 11| ~ 2pi, |13 — ta] ~ 2Ani (Color figure online)

forall j =1, ..., V. Then, there exists a real-valued trigonometric polynomial ¢ (-) =
93V, 1fj),1d;} (+) that satisfies the following properties.

1. Frequency limitation to f.: q(t) = ,{;_ ‘. Gre 27kt for some gy, € C.
2. Constrained values and derivatives on V: forall j =1,...,V,

q;) = f; and q/(vj)zdj.

3. Uniform confinement: ||q(-)|lco < Cu0-
4. Uniform confinement of the derivative: ||q' ()|l oo < Cu1/Ac-

5. Uniform confinement of the second derivative: ||q" (*)|lco < cuz/kg.

Above, ¢, c,1, and ¢, are positive numerical constants that are defined in the proof
of the lemma in Appendix 1 “Proof of Lemma 2.

The proof of the lemma generalizes the results in [13, Lm. 2.4, Lm. 2.5, Sec. 2.5]
slightly in several technical aspects; it is given in Appendix 1 “Proof of Lemma 2.

6.2 Dual Certificate go(-)

We are now ready to construct the trigonometric polynomial gq(-). This trigonometric
polynomial, illustrated in Fig. 5, is frequency-limited to fj,, interpolates zeros on a
Rayleigh-regular set, is confined between zero and one, and quickly grows around its
Zeros.

The key difference between the trigonometric polynomial go(-) and the building
block g, y(-) constructed in Lemma 1 is that the points where go(-) must take zero
values may belong to a Rayleigh-regular set from a class R(d, r) with r > 1. Zeros
of go(-) may be close, whereas zeros of g, 1 (-) are well-separated (compare Figs. 4a
to 5). This is the reason why the technique of [13] and [12] that was used to prove
Lemma 1 cannot be applied directly to construct go(-).
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Lemma 3 There exists a real-valued trigonometric polynomial qo(-) that satisfies the
following properties.

1.

5.

Frequency limitation to fio: qo(t) = Z,{’i fio Go.xe 2K for some Gox € C.

2. Zero values and zero derivatives on T : forallt € T, qo(t) = q(’) (1) =0.
3.
4. Controlled behavior near T : Take T € N (r Ak, T), where A = 0.17 as before.

Uniform confinement between zero and one: forallt € R, 0 < go(r) < 1.

Let{v{, ..., v} £ N(r Ak, T)NT. [Note: since T € R(rkhio, r) and A < «, it
v — t|. Then, the following

follows that 1 <7 <r.] Set v* = arg Myt oty
estimates hold.

(a) Lower bound.:

P 2
r H;:l(vlr — 1)

q0(t) = cp ) (16)
= cﬁ% (17)
(b) Upper bound:
40(7) < cnlz(lr(;’l—’);”z (18)
Boundedness away from zero far from T : for all t € F(r A, T),
qo(t) = ¢;; > 0. (19)

6. Fast growth immediately away from T : for all T € F(hni, T),

2r
hi

(r)‘lo)zr ’

qo(t) = ¢

Above, cp» is a positive numerical constant, defined in the proof below.

The trick to prove this lemma is the main contribution of the earlier paper [43]. The

key observation is the following. It is possible to construct the nonnegative trigono-
metric polynomial go(-) frequency-limited to fj, that is zero on all the points of the set
T € R(rk\o, r) as a product of r trigonometric polynomials. Each of these trigono-
metric polynomials is zero on a set that belongs to R(k Ajor, 1) and is constructed via
Lemma 1. We reproduce the proof below because it motivates the new construction in
Sect. 6.3.

Proof Set

T2 ftrnsjeto:ls -/}, k=11 (20)
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Fig.6 Illustration of the proof of Lemma 3. The set 7 = {1, 13, 13, 14} is Rayleigh-regular: 7 € R (51|, 2),
with 7 = 2 and A, = 1/12. The idea is to split this set as 7 = 77 U7, with 77 = {t1, 13} and 75 = {15, 14}
and observe 7; € R(54]o, 1). The trigonometric polynomials are frequency-limited to fi,/2 = 6 and satisfy
the interpolation constraints g, 7; (t) = q;}blo»TI (r) = Oforall? € Ty and g,y 75 (1) = q’/'}LIOv'TZ =0
for all + € 75. Then, go(-) = Grag, 77 X Griy,,T5) () satisfies go(r) = q(/J(t) =O0forallr € 7 and is
frequency-limited to 2 x fio/2 = 12. The trigonometric polynomial gg(-) is displayed in Fig. 5. In the
figure, |t2 -1 ! ~ 2\hi, |13 — t4‘ ~ 2Xpi (Color figure online)

Observe that 7 =7; U--- U7, and 7; € R(kAor, 1). Set

qo(t) = @ragg. 7 (1) X -+ X Gy T (1), 1)

where g5, 7. (-), k =1, ..., r, are the trigonometric polynomials constructed! via
Lemma 1 with A, = rAjo and V = T € R(kAior, 1). The idea of this construction
for r = 2 is illustrated in Fig. 6.

It remains to verify that Properties 1-6 are satisfied. Broadly, this follows from (21)
and Lemma 1; the details are given below.

Property 1 is satisfied because each of trigonometric polynomials g,;,, 7, (), k =
1, ..., risfrequency-limited to fi,/r. Hence, the productin (21) is frequency-limited
tor(fio/r) = flo

Properties 2 and 3 follow from (21) and from Lemma 1, Properties 2 and 3, respec-
tively.

To prove (16) we lower-bound the terms in (21) separately as follows. Assume that
k e {l,...,r}issuchthat N'(r A\, T) N7} # &, i.e., there exist/ € {1, ..., 7} that
satisfies vf € 7. In this case, we use the left-hand side of (13) to write

(v —1)°

(ri0)? @2

Grie, T (T) = €1

1 Strictly speaking this requires that the frequency limitation of g, 7; (1), fio/r is an integer. In the rest
of the paper, for simplicity, we will make this additional assumption. If this assumption is not satisfied, we
can simply substitute fj, with | fio/r|r and repeat all the arguments in the paper, leading only to a small
increase in the density constant 1.87 in Theorem 1.
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Note that there are exactly 7 such terms in (21). Assume that k € {1, ..., r} is such
that A (r ALy, T) N T = &. In this case, use Lemma 1, Property 5, to write

Grio, T (T) = <t (23)

Note that there are exactly » — 7 such terms in (21). The desired bound (16) is obtained
by plugging (22) and (23) into (21) and setting ¢;; 2 min(cy, ¢;1).

Bound (17) follows because the elements of 7 are separated by at least 2Ap; and
because Api/Alp < 1.

To prove (18) we upper-bound the terms in (21) separately as follows. Assume that
ke {l,...,r}issuchthat N(rArj, T) N T} # &, i.e., thereexist] € {1, ..., rA} that
satisfies vf € 7. In this case, we use the right-hand side of (13) to write

PP ki (24)
Grre,i(T) = Cu——5—
o Y (ko)
Assume that k € {1, ..., r} is such that N'(r AAjo, T) N T = &. In this case, we use
Lemma 1, Property 3, to write

Grie 7 (T) < 1. (25)

The desired bound (18) is obtained by plugging (24) and (25) into (21).
Property 5 follows by (21) and Lemma 1, Property 5.
Finally, Property 6 follows from (21), (13), Lemma 1, Property 5, and (14). O

6.3 Dual Certificate g1 (-)

We are now ready to construct the trigonometric polynomial ¢ (-). This construction
and its analysis is the main mathematical contribution of this paper. Trigonometric
polynomial g (-), illustrated in Fig. 7, is frequency-limited to fi, and, on the points
tj € T, q1(-) interpolates the set of signs

s; 2 sign Yo hm|.i=1....58. (26)
m/NEN(}»hi,tj)

ata(low)level p/2, p = (Ahi/klo)zr <« 1. The behavior of g (-) is controlled by go(+)
as explained in Lemma 4 below.

Lemma4 Setp £ Aﬁf / )»120’ . Then, there exists a real-valued trigonometric polynomial
q1(-) that satisfies the following properties.

1. Frequency limitation to fio: q1(t) = I{Zfﬁo c}l,ke_iznk’ Sfor some ¢ ; € C.

2. Constrained sign pattern (at level p) on T and controlled behavior near T : for
all j=1,...,8and all t € N (A, 1),

ps;
10 = &2 | <t oo, )
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o2
0
a1
Fig. 7 Illustration of Lemma 4. Trigonometric polynomial frequency-limited to fj, = 12 interpolates

the sign pattern {s1, 52, 53,54} = {+1,+1, 41, —1} at a (low) level p/2. Specifically, q| (t;) = s;jp/2
and q{(t,-) = 0. The set 7 = {11, 12, 13, 14} is Rayleigh-regular: 7 € R (51, 2) with A1y = 1/ fj, and
|t2 -1 | ~ 2hi, |13 — t4\ ~ 2Xpi (Color figure online)

where s; are deﬁned2 in (26). Since qo(t) = 0 for t € T, (27) implies, in
particular, that q1(-) interpolates the sign pattern in (26) at level p/2 on T.

3. Uniform confinement: ||q1(-) oo < r2r+lc;55.
4. Boundedness far from T : for all t € F(Ani, T),

lg1 ()] < 122l 50q0(1), (28)

The positive numerical constants c,27, cys5, and c,29 are defined in the proof below.

Discussion Let’s compare ¢ (-) illustrated in Fig. 7 to g, v (f,},(4;)(-) constructed
in Lemma 2 and illustrated in Fig. 4b. In ¢,y (f,},14;)(-), the behavior at a well-
separated set of points is independently controlled: the trigonometric polynomial can
take arbitrary values (between —1 and 1). Reminder: we say that the points are well-
separated if the distances between the points are no smaller than ~ ¢/ f., where
fe is the frequency limitation of the trigonometric polynomial under consideration
and ¢ is a bit larger than 1. In the case of g;(-), the points where the behavior is
controlled are not well-separated as illustrated on Fig. 7: |t2 — t1| ~ 2tni < 1/ fio,
|t3 — 14| ~ 2Ani < 1/ fio. Therefore, by Bernstein theorem (see Theorem 2), the
behavior of g1 (-) at nearby points cannot be controlled independently. To be concrete:
suppose we require that g1(11) = —1 and ¢1(#s) = +1. Since the points #; and
are separated by about 2Ap; < Ajo (not well-separated), Bernstein theorem says that
these two requirements cannot be satisfied simultaneously. Indeed, since ||g1(-)]co <
C(r) = r¥+le,ss, by (129), lg1 () lleo < ZNC'(r)ﬁO. If the two requirement had been
satisfied simultaneously, the derivative of g1 (-) between the points n and t, would
have been about (g1 (f2) — q1(11))/(2Ani) = 2/2ni) = fhi > 270 C(r) fio (We are
assuming that SRF is large). However, if we require that g1 (11) = —p and g1 (2) = +p
and p is small enough, the two requirements may be satisfied simultaneously. This is
the reason why p is set to )»ﬁlr / )»for <« 1 in the formulation of Lemma 4.

2 The lemma is valid for an arbitrary sign pattern, we formulate it for the sign pattern defined in (26) for
concreteness.
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Let’s compare g (-) to the trigonometric polynomial go(-) constructed in Lemma 3
andillustrated in Fig. 5. In both trigonometric polynomials the behavior is controlled on
a Rayleigh-regular set, whose points are not well-separated in general. The difference
is that go(-) takes the same value (zero) on all the points of the Rayleigh-regular set.
This allows us to use the multiplication trick illustrated in Fig. 6 to prove Lemma 3. In
the case of g (-) this does not work because we need to interpolate an arbitrary sign
pattern on the Rayleigh-regular set. A method to resolve this problem, presented next,
is the main mathematical contribution of this paper.

Proof Lemma 4 is proven in Sects. 6.3.1-6.3.6 below. O
6.3.1 Construction

We first describe how the trigonometric polynomial g () is constructed. In Sects. 6.3.2—
6.3.6 we prove that the construction is valid and that it satisfies the required Properties
1-4.

Recall, 7 = {t1, ..., ts}isdefinedin (12) and, as before, define 7;,k = 1, ..., r,as
in (20); remember that 7 = 71U --U7; and 7y € R(kAjor, 1). Setn; = p(s;+1)/2
forj=1,...,8.

We will construct the trigonometric polynomial g (-) as a (shifted) sum of r trigono-
metric polynomials {¢(-)};_, (see Fig. 8):

r
q1() =) $(t) = p/2. (29)
k=1
Each of the trigonometric polynomials {¢ (-)};_, is frequency-limited to fj,,

fio
Ge() = > drie ! forsome ¢ €C (30)
I==fio

and is constructed separately to satisfy the following interpolation constraints on 7

m, ify €7y,
1) = 31
B =10" T 2T\ (31)
¢ (1) =0forallt € T. (32)
Constraints (31), (32), and definition (29) guarantee that forall/ =1, ..., S
q1(t1) = psi/2, (33)
q,(t) = 0. (34)

To develop intuition, observe that (30) and (29) guarantee that Property 1 is satisfied.
Further, observe that the interpolation constraints (33) and (34) are needed for (27) to
hold because go(t) = g, (t) =0 forallt € 7.
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p.,.,.,.;;.;”

Fig. 8 Construction of the trigonometric polynomial ¢ (-) (displayed in Fig. 7) with target sign pattern
{s1,82,53,84} = {+1,+1, +1, —1}. a trigonometric polynomials ¢1(-) and ¢, (-) satisfy interpolation
constraints (31) and (32) as indicated by the points highlighted in bold. Specifically, ¢1(t1) = ¢1(13) = p,
$1(12) = p1(14) = 0, $2(11) = $2(13) = ¢2(t4) = 0 and ¢2(13) = p; and further ¢(z;) = 0. b the sum
of ¢1(-) and ¢;(-) that, after shifting down by p/2, is equal to g1 (-). In this figure, ¢ (-) and ¢>(-) are
frequency-limited to fi, = 12; 7 € R(5A10, 2) with X1 = 1/ fjo is represented as 7 = 77 U 7, with
Ti = {t1, 13} € R(5Mio, 1), T2 = {12, t4} € R(Shio, 1); |12 — 11| ~ 2Ani, |13 — ta| ~ 22p; (Color figure
online)

For r = 2 the construction is illustrated in Fig. 8. The trigonometric polynomials
¢1(-) and ¢, (-) are displayed in Fig. 8a; they satisfy the interpolation constraints (31)
and (32) as indicated by the points highlighted in bold. When we compute (¢1 +¢2)(-)
we obtain the trigonometric polynomial displayed in Fig. 8b, which, when shifted down
by p/2, is equal to the desired ¢ (-) displayed in Fig. 7.

The difficulty remains: how to construct trigonometric polynomials ¢ (-)? Set

702 {tjrsi: j €10:1(S = D/r T and 1,45 =0}
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and ’Z;f 27\ ’Z;(O fork =1, ..., r. The idea now is to construct ¢ (-) as a product
of two trigonometric polynomials (see Fig. 9):

P (1) = do k(1) X Py k(1). (35)

The first term in the product is defined as

o2 ] arunzm®, (36)
1<i<r, l#k
where ¢, 7,(:), [ = 1,...,r, are the trigonometric polynomials constructed via

Lemma 1 with A, = riAjp and V = 7; € R(kAjr, 1). Observe similarity to the
trigonometric polynomial in (21); the difference is that the kth term is missing from
the product.

The second term in the product,

G k(1) 2 1Y gy T f 14} (D) 37)

is a (rescaled) trigonometric polynomial g1, 7;,(;},{4;} () constructed via Lemma 2
with A = rAp, and V = 7 € R(kAor, 1) and ¢,g is a positive numerical constant
defined in (62) below. Further, the function-values and derivatives of g,;, 7 Fintdn )

are constrained on 7; = 77(0 U ’Z;f so that ¢4 x(-) satisfies the following:

by k() {0’ re T, (38)
+k ) = 1 +
’0¢o,k(l)’ te Zc ’
/ 0, teT?,
L (1) = P04 (1) + (39)
_qu&k(t), teT’.

We will prove in Sect. 6.3.3 below, that this specification is valid, in the sense that
the corresponding function values and derivatives of g, 0. Ti (141 () on Ty, satisfy
requirements (15) of Lemma 2.

Itfollows from (35), (36), (38), Lemma 1, Properties 2, 4, and 5 that the interpolation
constraint (31) is satisfied:

(1) = ok (1) ¢4k (t) =0 forallr € T,
N’
0
Gk (t) = do k(1) b4 1 (1) = O forall t € T,
———
0
G (t) = o k()P4 i (t) = p forallt € T,

Next, by (35),
G1(1) = ¢ 1 (D1 k(1) + G0k (DD 1 (1).
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N ®)

(0 (d)
P P e o

LR}

LR}

[l

O1 = o1 X Py ;o
Fay ," I‘. P2 = o2 X Py 2
0- 0= N S
tl t2 “I / t3 t4 1

\

Fig.9 Left column: constructing ¢1 (-) as a product of ¢ 1 (-) and ¢ 1 (-). The trigonometric polynomial
¢0,1(-) is constrained to take zero values (bold blue points) on 7 = {f2, 14} and it is strictly positive
everywhere else. The function values of ¢ 1(-) on 7] = {f1, 13} are unconstrained. The trigonometric
polynomial ¢ 1(-), in turn, is only constrained on 77 (bold green points). In this case 7 = ’Tlo U ’Tl+
with ’Tl+ = {1, 13} and ’Tlo = @. The function values and derivatives of ¢ | (-) are constrained on 7]
to “compensate” for the function values and derivatives of ¢g 1(-) on 7; in the sense of (38) and (39).
The compensation is such that once the two polynomials are multiplied we obtain ¢ (-) with the local
maxima at level p on 77 as shown in (¢) (bold green points). The local minima of ¢ (-) on 73 are produced
“automatically”, because ¢, 1(-) has zeros on 7;. Note that the function values and the derivatives of
¢4.1(-) can be controlled at 71 and #3 independently, because these two points are well-separated and this
would have been impossible if these points where not well-separated. Right column: constructing ¢ (-)
as a product of ¢ 2(-) and ¢4 > (-). The construction is similar, with the roles of 77 and 7; reversed. The
difference is that in this case 7o = ’2'20 u Tz+ with ’2'2"' = {tn} and Tzo = {t4}. Since ’720 is nonempty,
we set ¢4 7(14) = ¢f~_.2(t4) = 0. Finally: observe that the scale in a and b is different from the scale in
¢ and d; the level p is marked for reference in a and b by a dotted line just above the zero line. The fact

that p = 1/SRF 7« 1is responsible for the noise amplification. The setup is the same as in Figs. 7 and 8
(Color figure online)

Therefore, by (38), (39), Lemma 1, Properties 2, 4, and 5, the interpolation con-
straint (32) is satisfied:

B (D) = B4 (1) k(1) + Do (1) ¢y 1 (1) = 0, forall 1 € T,
————

0
0
DL(1) = ¢ 1 (1) bk (1) + ok (1) ¢ (1) = 0, forallt € T,
N — ——
0

0

DL (1) = ) 1 (DD k(1) + Pox (P 1 (1)

4/ 1 ¢(/),k(t) _ +
= ¢o,k(l),0m - ¢O’k(l)p¢§,k(t) =0, forallr € 7,".
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Finally, (30) follows from (35) because ¢g «(-) in (36) is frequency-limited to
(r — 1)/(Mor) [Lemma 1, Property 1] and ¢4 x(-) in (37) is frequency-limited to
1/(Aor) [Lemma 2, Property 1] so that ¢ (-) is frequency-limited to (r — 1) /(Ajor) +
1/(Aor) = 1/A10 = fio. Therefore, by (29), ¢g1(-) is also frequency-limited to fio,
which proves Property 1.

For r = 2 the construction is illustrated in Fig. 9. In Fig. 9a trigonometric poly-
nomials ¢o 1(-) and ¢4 1(-) are displayed; ¢o.1(¢) = O for r € 7 as indicated by the
bold blue points; ¢ 1(-) satisfies the interpolation constraints (38) and (39) on 7; as
indicated by the bold green points. When we compute ¢1(-) = (¢o,1 X ¢+ 1)(-) we
obtain the trigonometric polynomial in Fig. 9c. The same process is displayed in Fig.
9b and d for ¢ 2(-) and ¢4 2(-). The trigonometric polynomials ¢;(-) and ¢»(-) in
Fig. 9c and d are the same ones as in Fig. 8a.

6.3.2 Properties of ¢ x (-)

We will now record useful properties of ¢g x(-) that are needed in the proof below.
For r = 1, according to (36), ¢o x(t) = 1 for all ¢. For r > 1, the following properties
hold.

1. Controlled behavior near 7,°: Take t € N(rAhp, 7). Let
(v, ..., v}} £ N (r Ao, T) NTE.

Note that since 7, € R(kAor,r — 1) and A < «, it follows that 1 <7 <r — L.
Then, the following estimates hold.

(a) Lower bound:

7 2
r [ of — o)

Boi(0) = | (40)
(b) Upper bound:
P,k (7) < cnlj(;l—’);”z (41)
(c) Upper bound on modulus of the first derivative:
7 [Ti<i<if — 0|}, — 7|
-1 ;ﬁ)cfgl—l_[’f:l("lr mk2i (42)

(r)»lo)%"'l

where ¢,3 is a positive numerical constant defined in the proof below.
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(d) Upper bound on modulus of the second derivative:

‘¢(/)/,k(77)|
M ™™ s el g~
A P m, m ’

Z Z 117 = 2]ey3 2-2) -
1<m<rF l<m’'<? (r&1o) (10)
T A

nlflgf(v]r _T)z |l) 'L'|

l;ﬁm m -

+20r—1-7) Y f _

l<m<r
2 r+21_[l (f -1 1
(rio)? (rio)?
[Ti<i<(vf =) {
A l#m
+ c -
1§<; a0 D (o)

1 r+11_[l (0 —0? 1
P T T GheR

+@r—-1-

+ (
2. Boundedness away from zero far from 7,°: for all T € F(rAkyo, 7).

pox(t) = ¢! > 0.
3. Uniform confinement of the derivative:
0.4 (oo < 27/ Ao.

4. Uniform confinement of the second derivative:

16 4 (Voo < cus/Af
5. Fast growth immediately away from 7, : for all T € F (Api, 7)),

20r—1)

Ty >t
¢0,k( )_ l (r)qo)z(’_l)

Next, we give the proofs of the properties.

(r)\]o)z(r_l) ("')\10)2 Ao

(43)

(44)

(45)

(46)

(47)

Proof of properties 1a—1b These properties are derived in the same way as Properties

4a and 4b in Lemma 3.
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Proof of property 1c To prove (42), observe

/

60Ol = || T] ¢mem@|]= D | [l @mz®

1<m<r I<m<r| 1<j<r

m#k m#k | j#k. j#m

!
9o 1, (D)

(48)

Above, we applied the chain rule for derivative to (36) and used the triangle inequality.

To upper-bound the sum in (48), we upper-bound quantities |‘1rA10,Tj (t)| and
|q;Mo,Tm (t)} separately. To upper-bound |‘1rklo,7}-(f)| we use the same bounds as
in (24) and (25). To upper-bound |q;)\10»7;n (r)’ we use a similar strategy as follows.
Assume that m is such that N'(r Ary, T)NT, # @,i.e., thereexist! € {1, ..., 7} that
satisfies v/ € 7,,. In this case, according to Lemma 1, Property 2, q;Mme (v)=0
and according to Lemma 1, Property 7, Q;/Alo.,Tm (t)| < 472 /(rhio)? for all ¢. This,
by (194) [Mean Value theorem], gives the following bound:

|vf — 1]
(7A10)2 )

Do T, (r)( <cn (49)

Assume that m is such that N'(r AAjo, T) N 7,, = &. In this case, we use Lemma 1,
Property 6, to write

1
q;xlo,fm(f)\ = (50)

Plugging the estimates for |‘1r/\10,7j (1) | [(24) and (25)], (49), and (50) into (48), setting
cu3 2 max(2r, 472, ¢,) we obtain (42).
Proof of property 1d To prove (43), observe

"

}¢gk(t)| = 1_[ qulo,’l},(f)

1<m<r
m#k
=Y ¥ [T 450 .5®|dm,1,@)
1<m<r 1<m'<r I<j=r
mEk m ke, m’ #m | jFEk, jFEm, jFm
+ 3| T an®||ahs o) (51)
I<m<r| 1<j<r
m#k | j#k. jm
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To upper-bound the sum in (51), we upper-bound the quantities |q,xlo,7j(r)
|q;Mo,Tm (t)}, and M/Mo,Tm (r)| separately. To upper-bound |‘1rklo,7}(f)| and
‘q; o T (r)’ we use estimates (24), (25) and (49), (50), respectively. To upper-bound

|q;/)»10,77n (t)\ we use Lemma 1, Property 7, to write

4 T ’ < 47-[2 .
Qo T, (D[ = (rhio)?

Plugging these estimates into (51), we obtain (43).
Proof of properties 2-5 Property 2 follows by (36) and Lemma 1, Property 5. Property 3
follow from (48) and from Lemma 1, Property 6:

Property 4 follow from (51) and from Lemma 1, Properties 6 and 7:

472 1) 472 87?2
r—1)—— < —,
(rhi0)? (ran)? A3

90 (D)] < (r = D(r —2)

where we defined ¢,5 £ 872 Finally, Property 5 follows from (36), (13), Lemma 1,
Property 5, and (14).

6.3.3 Existence of ¢ (-)

In this subsection, we check that trigonometric polynomial ¢ i (-) that satisfies (38)
and (39) can indeed be defined according to (37) with gy, 7; ¢ f;}.4d;) constructed via
Lemma 2 with A, = rijp and V = 7 € R(kAjor, 1). To this end, we need to show
that the constraints on the function values {f;} and on the derivatives {d;} that are
implied by the constraints (38) and (39) satisfy requirements (15) of Lemma 2.

First consider the case r = 1. As already discussed, in this case ¢ x(#) = 1 for all
t, and, therefore, qb(/)) « (1) = O for all ¢. Plugging these values into (38) and (39) we see
from (37) that the requirements (15) of Lemma 2 are satisfied.

Next, consider the case r > 1.

For t € T, by (37), (38), 39), ¢ra,. i (1) = ¢
ments (15) of Lemma 2, are satisfied.

To check that requirements (15) are also satisfied for ¢ € ’];f, we need to find upper
bounds on |¢+,k(')| and |¢;,k(')|'

Take t € Tk+ and observe:

;Ma,Tk (t) = 0 so that require-

2r i )
|¢+*k(t)| & o : (%) %% : 1 (LS) r2<r—1>i,L‘§ (52)
®o.x (1) A a2
(rie)2r="
1
< r2r_r. (53)
<
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Above, (a) follows by (38); (b) follows by (47) which is valid because # € 77:’ implies
t € F(hni, 7)0); (c) follows because ¢; < 1.
Next, take t € ’Z}f and observe, according to (39),

¢>0 K )
¢, (D) = (54)
Consider two cases.
Case 1:1 € F(r Ao, TE). Then, by (44), ¢o k(1) = ¢];!
27 /Alo. Plugging these estimates into (54) we obtain
27‘[ 1| @ 2m Ap ) o 27 )\hi
¢l (0] < < <r’ = (55)
440 lrl ko el 2)‘2 6121 Mo

Above, in (a) we used p = (Ay; /AlO)Z’ < Anhi/Alo; (b) is a crude inequality where we
used ¢;; < 1.

Case 2: 1 € N (rAkio, TE). In this case set {v1, ..., v;} = TE NN (r A, 1) and
note 1 <7 <r — 1. Hence, by (40):

. l_[ 10 —1)?
$0.k (1) = cpy IW (56)
By (42):
i e =02 |om — 1] 5
/ P F#m _ r+1 Hl 1(1)[ —1)
|¢O,k(t)| = Z Cu3 (V)Llo)y + 0 —1- ) (r)hlo)2r+1 :
(57)
Plugging (56) and (57) into (54):
|¢0 (0] (rho)?
Z 2(r 1)

¢0k(t) m=1<n l_[1<]<r(U] t)2|Um—l“3
7&

o Cr+1 (r)\,lo)Zf_l
_ 2(, ) ]_[ 0 — 1
j=1 vj

F+1 2F 2F—1
(a) 2r+1 Cu3 ( )“lo )‘10 )

= 201 \ 527+ 27
n M M

2r—2 2r—3
(i) r2r—1 Cu3 )”lo + )”lo
= 2=1) \ ;2r=1 " 52r=2
Sb) hi hi

+(r =
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T 2r—2 2r—2
(c) c A (d) A
< 2r7! <L23> lzor—l < e lzor—l' (58)
€n) rhi A
Above, in (a) we used that ]vj — t| >2xpiforall j=1,...,7,r —1—F <r,and

cy3 > 1;in (b) we used that 7 < r — 1, Ao/Ani > 1, and ¢u3 > 1; in (¢) we used
Mo/Ani > land ¢pp < 1;in (d) we defined ¢, £ 2¢u3 /C122' Plugging the estimate (58)
into (54),

2r—1 g‘r ’\12r_2 2r—1 - Ahi
I — —
’¢+,k(t)| <r czﬁﬁ)\z‘i_l =r c;6k—2. (59)
lo “hi lo
Combining (55) and (59) we find that for all # ’Z;{"’,
1 Mni
64 0] = el Ty (60)
lo
1
<r¥ e, —, (61)
Ao

where we defined ¢,7 £ max(cu6, Cul / clz1 ).
It follows from (53) and (61) that the function values and derivatives of g, 7, (t) =
¢4k (1)/(r cyg) with

cug = max(cy7, 1/cr) (62)
satisfy requirements (15) of Lemma 2 on ']?. We conclude that ¢4 ¢ () can indeed be

defined according to (37). According to Properties 3, 4, and 5 of Lemma 2, and (37),
¢+« () satisfies the following properties:

k() lloo < 7 chgcuo, (63)

1
19/ 4 lloo < rz’*‘c:,gcuw, (64)

(8]

_ 1
167 oo < 7" 2c:,gcuzk—z. (65)

lo

6.3.4 Proof of Property 2

Take j € {1, ..., S} and consider ¢; € 7. There exists a unique / € {1, ..., r} such

that 7; € 7;. We will show that for all T € N (An;, 77)

lgr(0) — ;| < r? 3Tl qo() (66)
and
gD < r¥ P33l go(0), fork e {1,...,r), k #1, (67)
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where the positive numerical constants c,24 and c,2¢ are defined below.
From this we will conclude that

10 - 22 ‘Zm(r)

—nj

<Y @I+ ¢ (x) = nj| < e (o)
k£l

with c,07 £ 2 max(c,4, Cuze), as desired.
To prove (66) and (67), recall, by (31) and (32):

ldi(tj) — nj| = 0= qo(t)), (68)
di(t)) =0=qo(t)), fork e {1,....r}, k #1, (69)
¢ (tj)) =0 =qy(t)), fork e {1,...,r}. (70)

Hence, in order to prove the bounds in (67) and (66), we will derive upper bounds on
the second derivatives .,r}, valid for all T € N (O, tj) and use
the Mean Value theorem (see Theorem 3).

Taking the second derivative of (35) and applying the triangle inequality we find:

0D < |00 1 O] d+k (D] +2 004 O £ (D] + [ox (D] |dL (D] 7D

Ei(r) Ea(7) E3(1)

In the derivation below we upper-bound the terms separately.

We will need the following notations. Set {v7, ..., v;} 2 N@FA, T) N 7, and
set {vg, ..., vi} = N(rArio — Ani, tj) N T,°. Note that the set {vy, ..., v;} does not
depend on 7 and also {vy, ..., v;} C {v], ..., vrf} sothat 7 < 7.

The remainder of the proof of Property 2 is organized as follows. First, consider
the case 7; € Ty and prove (66), next consider the case t; € 7,C and prove (67).
Proof of (606): case t; € Ti. Bounding Ei(t): By (195) [Mean Value theorem] and
the triangle inequality we can write

1
| k(D] < |dratD] + ¢ E)||T — ;] + 5|¢1,k<rm)|(r —1))?

with 7, € (¢, 7). Next, we use (38) and (52) to upper-bound ‘¢+,k(tj)| by the right-
hand side of (52); use (39) and (60) to upper bound \qb; k(tj)| by the right-hand side
of (60); use (65) to upper-bound }qbl k(rm)|. With these estimates we can further
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upper-bound |¢+,k(t)| as follows:
2r—1_r [ *hi Ahi 1 2 2r—1 .r %i
k(O] < r¥ ey + = r—t,~|+/\—2(r—t,-) <r el 0= (72)

Above, we defined c,9 = max(1/cy, cu7, Cugcu2), Cu1o £ 3¢,9, and used
|7 — 1] < 2

Assume 7 > 1 (the case 7 = 0 will be treated separately below) so that 7 > 1 and
T € N(rAxio, T), which implies that we can use (43) to upper-bound |¢(’)’ @) |:

H 1<l<? (UIT—T)Z

ol XY s iyt e o=
s B 2D (M) (o)’
m#m'

2
nglgf(vlt -1) . —‘r| 1

v
+2(r—1 =7 cH'1 Igm |m
( ) Z (r)hlo)z(ril) (”)\10)2 rAlo

1<m<r
2
Fr—1—7)2 r+21_[l 10 — 1) 1
¥ (o)’
]_[1515;(11; —1)?
7 I#£m
t 2 T B

1<m<r

r+1 Hz 1 (vf -0 1

+(r—1-=7)c, R IR

(73)

Multiplying (72) and (73) and simplifying we obtain the following upper bound
on E:

(a) I—[1<1<”(U]T _7)2 1
E (1) = o/ (T )| < r2r+lcr+1__r—A_
1(0) = [, (O ||¢+ k()] < A v )

® 2t it << — )% 1

—. (74)
ull (r)q )2r )‘120

, which is true for

Above, in (a) we used (multiple times) the bound Ap; < |vlr

alll € {1, ..., 7} (follows because the elements of 7 are separated by at least 2Ap;),
used Api/Alo < 1, and defined ¢, 11 £ max(6¢c,3¢u10, CugCuoCys); in (b) we used the
fact that [v] — 7|/(Mor) < A < 1foralll € {1,..., 7).

For the case 7 = 0, the upper-bound (74) also holds by (46) and (63).
Bounding E>(t): By (194) [Mean Value theorem] we can write

|01 @| = [ k@D + [0 k@[T —15]
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with 7, € (¢, 7). Next, we use (39) and (60) to upper-bound |¢jr « j)| by the right-
hand side of (60); use (65) to upper-bound \qbl «(Tm) | With these estimates we can
further upper-bound |¢>jr k(r)] as follows:

B Mhi 1 _ Ahi
¢/ (O <r* ey, (x_; + A—2|r - t,-|> < ‘c;m/\—z‘. (75)
lo lo lo

Above, we defined ¢, 12 £ max(c,7, cu2cus), Cu13 = 2¢u12, and used |t — tj| < Ahi.
Assume 7 > 1 (the case 7 = 0 will be treated separately below) so that 7 > 1 and
T € N(rAxio, T), which implies that we can use (42) to upper-bound |¢(’)’ @ |:

[Tiz<r@f =), — 1 ;
g~ ] o T 0 = 0

;
, 7 I#m 7
|¢0,k(1’)} = ,; 623 (r)nlo)Zf tr=1- V)Cu3 (’")Llo)ﬁ+1
(76)

Multiplying (75) and (76) and simplifying we obtain the following upper bound
on Ej:

(@) [li<<ivf -0)% 1
E>(1) = A T ! T <r2rcr J—A—
2(0) = |04 (D[P} k(D] < r¥elyy IR

® 5, ez -0 1

-_— . 77
= S 7n

Above, in (a) we used the bound Ap; < |vlT — 1|, which is true for all [ € {1, ..., F}
(follows because the elements of 7 are separated by at least 2Ap;), used Api/Alp <
1, and defined c,14 £ max(2c,13¢u3, 2meygcey1); in (b) we used the fact that
|vlr — 1:|/()»10r) <A< Ilforalle{l,..., r}L

For the case 7 = 0, the upper bound (77) also holds by (45) and (64).
Bounding E3(t): By (65),

_ 1
¢ (O] = r 2c:,gcuzk—z. (78)
lo

Assume 7 > 1 (the case 7 = 0 will be treated separately below) so that 7 > 1 and
7 € N(r Ak, T$), which implies that we can use (41) to upper-bound |¢07k(r) |:

7 lezl(vf - T)2

[pox (D) < ¢ NG (79)
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Multiplying (78) and (79) and simplifying we obtain the following upper bound
on E3:

(@) — 21
E3(v) = |gox(®|[¢] (0] = r* 7 ;151_[11(”—1’)

(ri )2r )L2

® A —1)% 1

< P 262151_[1515r—2~_2. (80)
(riio)™” Mo

Above, (a) we defined ¢, 15 £ cugcuacy; in (b) we use the fact that
|vof —1|/(nor) < A < 1foralll € {1,..., 7}
For the case 7 = 0, the upper-bound (80) also holds by (78) because by (36) and
) < 1 and because ¢, > 1 and ¢;p > 1.
From (71), (74), (77), and (80) we conclude that

2
2r+1 ] [Tias—0)7 1

P <r? e - (81)
| ‘ 16 (r)‘«lo)zr )»120

where we defined ¢, 16 = 4 max(cui1, Culd, Culs)-
Putting pieces together: On the one hand, by (195) [Mean Value theorem], using (68),
(70), (81) and we can write for all T € N (Ap;, tj):

|1 () — n;j

‘(a) ! J2r+l o iz — ) (¢ — 1)
=2l e T A

2
(b) 1 p2r+lrtl rl_[1<l<r(vl )7 (T —l‘j)2

~ 2 uté (rh0)? A2
(C) 2r+3cr+] l_[l<l<r (v — 'L')2 (r — tj)z (82)
= u23 (r)"lo)zr (r)\'l())2

Above, in (a) 7, € (¢, T); in (b) we used that ‘vz — rm] < ]vl — r]+khi < 2|v1
which is true because T € N (Ap;, ¢ 7) and because the elements of T are separated by

at least 2Ap;; in (c) we defined c,03 2 2cu16.
On the other hand, let {u], ..., ul} 2 N(rAhp, T) N T. Then, by (16),

)2
q0(t) = sznl(l(;—l)z,r)
 Miag@ =0 1) (<rmlo — 2Ahi)2);rl
12 (rhio)? (rAio)? (rho)?
Py

n1<l<r(vl 7)? (t — l‘j)z

‘i3 (rho) (rh0)? (83)
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Above, in (a) we use the fact that {vy, ..., v} U {t;} C {u], ..., u’} and the fact that
by construction of the set {vy, . .., v;} it follows thatif, for some k, u; ¢ {v1, ..., vF}U
{t;}, then ‘u,ﬁ — ‘L’| > rAAlp — 2Xpi; in (b) we used the assumption SRF > 12 so that
Ahi < Alo/12 and therefore r Adjo—2Api > r(A—1/6)A10, usedthat0) < A—1/6 < 1,
which implies that P; > (A — 1 /6)%", and defined ¢;3 £ ¢;p(A — 1/6)? that satisfies
0<c3 <.

The bound (66) follows from (82) and (83) by defining c;24 £ cu23/Cr3.

Proof of (67): case tj € T,°. We only need to consider this case when r > 1. Indeed,
when r = 1, the sum in (29) only contains one element, ¢ (-), and, necessarily, t; € 7;
because 7, is empty.

In this case ¢; is one of the elements among {v1, ..., vz} C {v7, ..., v;}; in other
words, 7 = vy = v’ forsomel <m < 7,1 <m <7. ThesetﬁﬁN(rAAlo—khi, 1j)
is either empty or contains exactly one element. Let b £ ]77( NN (Ao — Ani, t i) ]
In the case when b = 1, let {7/} £ Tx "N (r Ario — Ani, 1j).

Bounding E(t): Consider the case b = 1. By (195) [Mean Value theorem] we can
write

|01k (D)] < P4k D] + |0} |7 — 7| + l|</>i_k(rm>|<r —1?
2

witht,, € (, 7). Next, we use (38) and (52) to upper-bound |qb+ (D) | by the right-hand
side of (52); use (39) and (60) to upper-bound |¢ Yk (t)| by the right-hand side of (60);

use (65) to upper-bound |¢ ok (Tm) | With these estimates we can further upper-bound
|¢4.k(1)] as follows:

A 1
x| < el <—+—|r t|+/\—2(t—t~)2>
lo

2
A lo
~ 1[b=1
2r+1 r ([ _ T) — r2r+1 r (t - r)z [ ] (84)
R NE R NOTE ’

where we used that Ap; < |f - r| because the elements of 7 are separated by at least
2pi and T € N (Api, ;) with 7 # t;. According to (63) the upper bound (84) also
holds for b = 0.

Since t; € 7, and © € N (Api, 1)), it follows © € N (rAhy, 7)) so that 7 > 1,
which implies that we can use (43) to upper-bound |¢(’)/’ (D |:

M ias @f =77 vr, — 7| o7, — 7|
7 ; l#m, l#m’' m m
$ox(0)] = Z Z r=2 (rho)27=2) (rhi0)?  (riio)?

1<m<# l<m’'<?
m#m'

nlglff(v[r - T)2

v —Ti
N il
2 ) Z (rh0)2F=D (rdio)? rip

1<m<r
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P2t r+21_[l [ =) 1
(V)\Io)zr (”)\10)2
Hﬁg;(vl —1)? |
+ c A
Z “3 (r)\lo)z(r_l) (”)\10)2

1<m<r

+@r—-1-

2
v — 1T 1
(Mlo) P (ko)
@ 5 4 [[i<i< l;érh(vlr —-1)?

= ey __(’Mlo)zp . (85)

Above, in (a) we used (multiple times) the fact that vA — r| |U1 — r| for all
1€ {1,...,F}, the fact that |[v] — t|/(Aor) < A < | forall [ € {1,..., 7}, the fact
F<r— 1, and defined ¢, 17 = 6¢,3.

Multiplying (84) and (85) and simplifying we obtain the following upper bound
on E:

E1(7) = |44 ()| ¢+.4(D]

e 1 b:] 2
@ 2t G [li<i<rizn @] —0) s
- ul8 (riio)? (F )2 =D )Lz

I[b=1 2
(b) 2r+lcr+1 (t - 7:)2 [ : 1_[1<l<r l;ém(vl -7 L
= ul8 (rio)? (Mo )2(r 1) )“20'

(86)

Above, in (a) we defined ¢, 13 2 cu10¢417; in (b) we used that ’vl’ — t|/(klor) <A<l
foralll e {1,...,7}.

Bounding E,(t): Consider the case b = 1. By (194) [Mean Value theorem] we can
write

8% @] < [0} D] + |07 1 (@) ||T 1]

with 7,, € (7, 7). Next, we use (39) and (60) to upper-bound |/, , (7)| by the right-
hand side of (60); use (65) to upper-bound \qbl k(rm)‘. With these estimates we can
further upper-bound |¢>jr k(r)| as follows:

<r-c
ul3 TAlo Ao

-7
= zrcﬁn[ } —, (&7)

Ao Ao

6, (0] < ¥, (“‘i Lk —f|) e 720 1

where we used that Ap; < |f -1 | According to (64) the upper bound (87) also holds
forb = 0.
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Since 1; € T,¢ and © € N (Ayi, 1)), it follows T € N (rAi, T,°) so that 7 > 1,
which implies that we can use (42) to upper-bound |¢(’)’ (T |:

o Hlaif(vf—f)2|%—f| ; 1]—[; ] —1)?
I IR - +r—1=Pey ==
| , i mXZ:l u (r)»lo)Z’ u3 (V)»lo)2r+l
. Ih=1]
@ , [i<i<pan 0 — 25 r—7| 1 (88)
I ~ b
= ul? (rhio)2F=D Ao Ao

Above, in (a) we used the fact that vr’h — r| < |vl’ — ‘L’| foralll € {1,...,r}, the
fact that [vf — 7|/(Aor) < A < Lforalll € {1,..., 7}, and the fact that
| — 7|, and defined c,19 = 2¢y3.

Multiplying (87) and (88) and simplifying we obtain the following upper bound
on Ej:

v}%—r}f

Ex(t) = |04 (O||¢/ i (D]

~ 1[b=1
@ 5, , [(f—f)2:| [ ]nglfﬁl#rh(vlr _T)z 1

= TG0 | Ty

(rhp)2¢ =1 My

® 5, [(-0?]" [i<irizn =07 1
<r“cn 5 = - (89)
(rio) (riio)2=D Ao
Above, in (a) we defined c,20 = cu13¢u19; in (b) we used the fact that
|of —t|/(hor) < A < 1foralll e {l,...,7}.
Bounding E3(t): By (65),
" 2r=2 r 1
¢ (O] <r ClsCu T3 (90)

lo

Since t; € T,¢ and © € N (Ayi, 1)), it follows T € N (rAi, T,°) so that 7 > 1,
which implies that we can use (41) to upper-bound |¢o,k(r) |:

A 0f =0 @ TG =021 Thizigpams 0F =0
pox(o)] < =D @ p 10— T) szt (
(r)klo)zr (rAio) (i’)ulo)z(r_l)
©On
Above, in (a) we used the fact that vfﬁ — r| < |vl’ — ‘(| foralll € {1,...,r}, the
fact that Ivl’ — r|/(k10r) <A < 1foralll €{l,...,r}, and the fact that vfﬁ — r\ <

|f — ‘L’|. Multiplying (90) and (91) and simplifying we obtain the following upper
bound on Ej:

E3(1) = |dos(D)||¢] 1 (D]
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- Ib=1
@ 22 [(f —T)T P iz OF =07 1

c —_— A —
u2l (V)Vlo)z (r)\lo)Z(r—l) )“20

~ I[b=1
®) 5.5, (f—1)? =1 1_[1515;,175,;1(1)1 -1)? 1
=r Cu21 = .
(riio0)? (rige)20=1 )\120

92)

Above, in (a) we defined c,21 £ cygcuacy; in (b) we used that ]v[ — r‘/()qor) <A<
lforalll e {1,...,F}.
From (71), (86), (89), and (92) we conclude that

~ I1[b=1] 2
r— 2 <I<F rh(U —-7)° 1
() :| [Ti<i<r i (ui 93)

2r+1 r+1
bl (D) <r’c [ ~ >
| 22 L (o) (ra)*7=D g
where we defined c,20 £ 4 max(cy18, Cu20, Cu21)-

Putting pieces together: On the one hand, by (195) [Mean Value theorem], using (69),
(70), (93), and we can write for all T € N (Api, 7;):

~ I[b=1 2
ey D L [ G = )? 1" Thizizrign 0 — ) (0 = 1))
) u22

(r)‘IO)Z (rk10)2(;71) )‘120
~ 1[b=1
T e 021" haizrign 0 =0 (0 = 1))’
B NI (rhio)?"=D M
~ Ib=1
© P23l [(l — 1)2} =1 [l — 25 (94)
- 2 (rho)? (1)
Above, in (a) T,u € (¢j, 7); in (b) we used the fact that, for I # m, |v; — tm| <

|vl—r| + A < 2vl—r| and |f—tm| < |f—r| + A < 2|f—t , which is true
because 7 € N (A, ¢ ;) and because the elements of 7 are separated by at least 2Ap;;
in (c) we defined ¢,25 £ 2¢,27 and used the fact that ¢ = Vs.

On the other hand, let {uf, ..., u%} £ N(rAh, T) NT. Then by (16),

qo(T) = ¢py (r)tlo)y
@, [(f - r)z}’“"” Mi<izr v =) ((rmlo - 2xhi>2)f‘“[b‘”
(rio)? (rho)? (rii0)?
P
D [(f - r)z}’“’:” Mz —0° ©3)
(rio)? (rio)?
Above, in (a) we used the fact that {vy, ..., v;} C {uj, ..., u;}, the fact thatif b = 1,
thenf? € {uf, ..., u;},and the fact that by construction of the set {vy, . . ., v;} it follows
that if, for some k, uf ¢ {vi, ..., v;}anduj # 1, then ]u,ﬁ — r} > r Ao — 2Api; in (b)
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we used the assumption SRF > 12 so that A < A1o/12 and therefore r AAjo — 2Ap; >

r(A — 1/6)A, used that 0 < A — 1/6 < 1, which implies that P> > (A — 1/6)*".
The bound (67) follows from (94) and (95) by defining c,26 £ s /ci3.

6.3.5 Proof of Property 3
By (29) and the triangle inequality:
lg1(llce = p/2 41 max [l (oo
1<k<r

(@)
< p/2+r max [|¢4+ ()]l
1<k<r

) 2r+1 r
= p/2+r7 T el 11;1,?;(r||CIr)»10,77(.{fj},{dj}(')”oo

() (d)
< p/2+ " eyochs < rP s

Above, in (a) we used (35) and the fact that by (36) and Lemma 1, Property 3,
l¢o.x (oo < 1;in (b) we used (37); in (c) we used Lemma 2, Property 3; in (d)

we defined ¢,55 £ 2c¢,0c,g and used the fact that p/2 < 1 < c,0cus8.
6.3.6 Proof of Property 4

Take T € F(Ani, T). As above, let {u], ..., ul} £ N'(r Akio, ) N 7. Then by (16),

T) > u 96
qo(t) > ¢pp (r0)? (96)
By (19) this bound is also valid when 7 = 0.
Fix k. If T € N'(r Ak, 7)), then we can use (41) to upper-bound |¢0’k(r)|:
= (o — 7
|pox(D)] < ¢ =EL—— ©7)

(r)"lo)ﬁ

where, as before, {v], ..., v} 2 N (@A, T) N TS It ¢ N(rAho, TF), we will
use that by (36) and by Lemma 1, Property 3,

b (D] =< 1. (98)
The set 7 N N (r Ak, T) is either empty or contains exactly one element. Let b =

|7k N N (r Ahio, T)| denote the size of this set; when b = 1,let {f} £ TrNN (r Ahio, T).
Following the steps that lead to (84), we obtain

. . (ZT_ .L.)Z 1[b=1]
|¢+,k(‘5)| <r? +]Cu10 [m} 99)
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and the bound is valid for both cases b =0 and b = 1.
Case? > 1: Then, {uf, ..., ul} = {vf,...,v}}U{f}ifb =1, and
{ul, ... ul} ={vf,..., vrf} if b = 0. Therefore,

o (D = | b0,k (D) ||p+.1 (D)
@ oryi s [(f - r)z]’“”” [T o — 0

Cu10

(r0)? (i)
Ty~ 02 0
= FZHICZM)CZW < r*el5q0(0). (100)
0

Above, (a) follows by (97) and (99); (b) follows by (96) with ¢;23 £ CL10Cu /cin.
Case 7 = 0: Then, 7 = 1 and {u}} = {r} if b = 1 and 7 = 0 if b = 0. Therefore,

o (D) = | b0,k (D] |1 (D)|
@ , oy [G=2]"
<c 1Or2 + [ (r)\lo)z :|

— *u
]_[l;zl(ur —10)2
= r2r+16210T1)2; f I"2r+1C;28q0(T). (101)
0

Above, (a) follows by (98) and (99); (b) follows by (96) because ¢, > 1.
By Lemma 3, Property 6,

2r 2r
A r

0
L | . 102
2 Zklz()’ T oq 70() (102)

Therefore, by (29), (100), (101), (102),

,
(D] < D 1@+ p/2 < P p9q0(7),
k=1

where we defined ¢,09 £ ¢,08 + 1 /ci. O

6.4 Dual Certificate g2 (+)

Finally, we construct the trigonometric polynomial g>(-). This trigonometric poly-
nomial is conceptually similar to g1 (-). The difference is that in g;(-) we control
the function values on 7 and the derivatives on 7 are zero; in ¢g2(-) we control the
derivatives on 7 and the function values on 7 are zero.
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Specifically, on the point ¢; € 7, g2(-) is approximated by a linear function whose
derivative is controlled by the sign

. m .
s’ 2 sign 3 (N—t])hm L j=1,...,5, (103)
m/NEN(khi,I_/)
as explained in Lemma 5 below.

Lemma5 Sety £ p/ip = Xﬁirfl/)ulzor. Then, there exists a real-valued trigonometric
polynomial q>(-) that satisfies the following properties.

1. Frequency limitation to fio: q2(t) = ,{lj fio Grxe 7k for some §o i € C.
2. Constrained derivative on T and controlled behavior nearT : forall j =1, ..., S
and all T € N (Ani, 1)),
/ J2rd ot
@) —ys;(t —1j)| < €34 90(7), (104)

where s;- are deﬁned3 in (103). Since qo(tr) = 0 for v € T, (104) implies, in
particular, that the derivative of q2(-) interpolates the sign pattern in (103) scaled

byyonT.
3. Uniform confinement: ||q2() |co < r2’+1c;56

4. Boundedness far from T : for all T € F (Ani, T),

lg2(D) < r¥ 2l o q0(T). (105)

The positive numerical constants c,34, cys6, and c,sy are defined in the proof below.

The proof of the lemma parallels that of Lemma 4 but contains some important
differences; it is given in Appendix 2 “Proof of Lemma 5”.

7 Stability Estimates

In this section we use the dual trigonometric polynomials go(-), ¢1(-), and g2(:) to
prove Theorem 1.

We will use the fact that the high-resolution kernel kpi(-) satisfies the following
estimates:

N— /
Z ( )’ < Sk (106)
s Ahi

N—
! Z sup ki) < ‘—§ (107)
2 = ueN G/ N) M

3 The lemma is valid for arbitrary sign pattern, we formulate it for the sign pattern defined in (103) for
concreteness.
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where ¢, and ¢}/ are positive numerical constants. The bounds are proven in Appendix 4
“Properties of Fejér Kernel”.
We will use the following shorthand notations:

Mii £ UreN Quni, 1),
Fii = T\ M.

7.1 Basic Estimates

We begin by decomposing the error ||kpi*(X — x) || into a sum of simpler terms; each
of the terms will then be upper-bounded separately:

N-1
[[knix (X = x) [T =

N—1 n—m
Zkhi< N )hm
m=0

N—1
n—m
+ > ki v )hm (108)

The first term in (108) can be written as follows:

5] 5 a5 (B

n=0 |m/NeFn m/NeFn \n=0
® N—-1 n
Ly ( khi<ﬁ>)hm
m/NeFn \n=0
23 b (109)
m/N €Fni
—_———
Ao

Above, (a) follows because h,, > 0 for m/N € Fy;i and kpi(-) > 0; (b) follows by
periodicity of kpi(-); (c) follows by (8).
The second term in (108) can be upper-bounded as follows:

N—

NDIECOTAED o) oD s C-0 13

n=0 |m/NeNy n=0 |j=1m/NeN (rnit;)

—
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N-1

EXN T ().

n=0 j=1|m/NeN (ini,t;)

—
S

B
(110)

Above, (a) follows because the sets A (Ani, #;) do not intersect; (b) follows by the
triangle inequality. To upper-bound B in (110) we will use thatforall T € N (A, ;)NT
andallt € T,

kil )|t — o).

(111)

, 1
lkni(t —7) — kni(t — t;) — kiy(t —t))(t; —D)| < sup |
ueN (hni,1—t;) 2

The inequality follows by expanding ky; (f — ) in Taylor series in 7 around T = ¢; up
to first order and writing the remainder in Lagrange form. We have:

m/NEN().hi,lj)

(@) n
=< Z kni (ﬁ - tj) hm

m/NE./\/’()»hi,tj)

T R l

m/NGN()\hi,tj)

+ Z kni <n ]—Vm> — knj (% - fj) — ky; (% - t./') (tj - %)‘VZM

m/NE./\/-()uhi,l‘j)

(b) n
< kni (ﬁ - tj> Z hm

m/NeN (i, 1))
n m
Gly-o)ll X (=)
m/NeN (hnit))

1 ma2
+ Z sup §|kﬁi(u)\ (tj - N) [ (112)
m/NEN Gt ) WEN Cisn/N—t))

Above, (a) follows by adding and subtracting the corresponding terms and applying
the triangle inequality; (b) follows by (111) with# = n/N and T = m/N and because
kni(-) = 0.
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Using (112) we can upper-bound B in (110) as follows:

m/NeN (hni,t})

S -nl)| T -

m/NE./\/()»hi,tj)

MZ@

sup |k ()| Z <t./ _ %)2 ||

j=1n=0 EN(}th n/N— T]) 2 m/NEN(Ahi,l]‘)

2 (T (@) SIS h

j=1|m/NeN (ui.t})

N—1 S
m
(ERG)EL T e
n—=0 j=1|m/NeN (Ani.t)
N-1 S A2
(X )T (=) e
=0 YEN (hni,n/N) J=1m/NeN (ii.1j)
(b) 5 ’ 1 d m
D I S e SO M D O L%
J=1 |m/NeN Gui.t}) J=1|m/NeN Giot))
A Az

S
f Y N (=) a1
1’1

j=1m/NeN Gui.t))

A3
Above, (a) follows by periodicity of kpi(-); (b) follows by (8), (106), (107).
To complete the proof of Theorem 1, it remains to upper-bound each of the terms

Ao, A1, Az, and A3 by ~ C(V)SRF2r||Z||1. To do this we will use extended duality
arguments that will rely on the trigonometric polynomials go(-), g1 (), and g2(-).

7.2 Upper Bound on Ap

In this section we use the trigonometric polynomial go(-) from Lemma 3 to upper-
bound Ap. Let

Q" =140.....qn 1" £ [qo/N): 1 €[0: N —1]]"
be the vector that consists of the samples of gq(-).
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On the one hand,

(a) (b)
(a°.b) € (Qq”. b} 2 (¢°. Q)
(c)
< 14’ oo QNI
d) .
< Qx —s+s — Qx|

(e . )
= 1Qx —sll1 +[Is — Qx[l1 = 2lz]:. (114)

Above, (a) follows because by Lemma 3, Property 1, go(-) is frequency-limited to fio,
and, therefore, the vector of its samples is also frequency limited (in discrete sense) so
that q° = Qq”; (b) follows because Q is self-adjoint; (c) follows by Cauchy-Schwartz
inequality; (d) follows by Lemma 3, Property 3; (e) follows by the triangle inequality;
() follows since (CVX) implies ||Qx — s||; < ||Qx — s||; and, by assumption, s =
Qx +z.

On the other hand,

@ = ®) © A
(. 0) S > ghinal = Y dolhnl 2 cf B 3Tl (119)
m=0 m/NeFni o m/NeFhi

Above, (a) follows because, by construction, go(¢) = O for all # € 7, which means
that &, < 0 implies g0 = go(m/N) = 0, so that g% h,, > 0form =0,...,N — 1;
(b) follows because all terms in the sum are nonnegative; (c) follows from Lemma 3,
Property 6. From (114) and (115), we conclude that

2r
.
Ag= ) Ihml = —-SRF¥ |z, (116)
m/N e€Fni l

where the equality follows because h,, > 0 form/N € Fy; and we remind the reader
that¢; < 1.

7.3 Upper Bound on A3

In this section we use q” to upper-bound A3. We have,

@ ® &
20zl = Y gl =Y >0 gl
m=0 Jj=1m/NeN (hi,tj)
S 2,2(r—1)
(© (tj —m/N)"Ay;
=) D o],
(riio)

Jj=1m/NeN (ui.t})
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Above, (a) follows from (114) because qo hy > 0form =0, . — 1; (b) follows
because the sets N (Ap;, ;) do not intersect since the elements of T are separated by
at least 2\Ap;; (c) follows from (17). Hence,

2 2r
Iy oy (1 =)Vl < S-SRE 22l (117)
N Cpy

hl Jj=1m/NeN (hi,tj)

and we remind the reader that ¢;p < 1.

7.4 Upper Bound on A

In this section we use trigonometric polynomial ¢;(-) constructed in Lemma 4 to
upper-bound A;. Set

=1q0, - an—11' 2 lg1@/N) 1€ [0: N — 11"
We now proceed as follows:

s
A=) > hnm
j=1

m/Ne./\/()»hi tj)

229 > o,

] Lm/NeN (ni,t})

) S
ZE SHID SR VRTINS S SRpers

j=1m/NeN (uit)) j=1m/NeN (uit))
© 2 PSj 1 - I
< —Z DD L= D DR B G
j Lm/NeN (ki) m/NeNi
An A2

Above, (a) follows by (26); (b) follows by adding and subtracting the corresponding

term and because the expression in (a) is nonnegative; (c) follows by the triangle

inequality and because the sets N (Api, ;) do not intersect since the elements of T are

separated by at least 2Ap;. Next, we upper-bound the terms A1 and A, separately.
The first term in (118), A1y, can be upper-bounded as follows:

(@)
Ay < r2r+4 ;—25—71 Z q,(y),lhm|
m/Ne./\fhi

(b) 2r+4 r+1
Cu27 Z fIm
m/NeNm
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N—1
(C) 1 (d) 1
< 2ty § gohm < r¥ 423zl (119)

m=0

Above, (a) follows by (27) and because the sets A/ (A, ;) do not intersect; (b) follows
because 4, < 0implies qg = 0; (c) follows because q,%hm > 0form =0,...,N—1;
(d) follows by (114).

Following exactly the same steps as in (114), changing q,% to q,ln, and using in step
(d) that by Lemma 4, Property 3, [lq' [loo < 2’Jrlcrss, we obtain:

2rF el Sz (120)

N—1
Z qunhm <2

m=0

Using this, the second term in (118), A2, can be upper-bounded as follows

(a)
Ap <

Z Gmhim

m=0

> anhm

m/Ne]-—hi

D orti 1
A T S P [
m/NeFpi

© 2041 2 0
< 2l sslizlh + 7 g Y gl
m/NeFp;

@) 5 2r+1 2 0
= 2t 255”1”1 +” r 229 Z thm
m /N eFpi

( )
< 4r¥ 2zl (121)

Above, (a) follow by the triangle inequality and because Jy; is complementary to
Nhi; (b) follow by (120) and by the triangle inequality; (c) follow by (28); (d) follows
because hy > 0form/N € Fyi; (e) follows by (114) because qoh > 0 form =
0,..., N — 1, because ¢,29 > 1, and by defining ¢,;57 = 2 max(cuss, Cu29)-
Substituting (119) and (121) into (118), using that 1 /p = SRF?", we finally obtain

S
Z D0 hw| <P ESRFY )1, (122)
J=1|m/NeN (uni,t})

where we defined ¢,53 = 12 max(c,27, Cus57).
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7.5 Upper Bound on A;

In this section we use trigonometric polynomial g2 (-) to upper-bound A. Set
@ =143, a1 £ 2/N) 1€ [0: N — 1T

We now proceed as follows:

[*5)

1
Az:)L—hi Z (%—tj)hm

j=1|m/NeN (i, 1)

S

@ 1 r(m

205 % ()
Jj=1m/NeN (ii.tj)

) m >

oly v CICRORTDLED VgD WRELE
J=lm/NeN (i t)) J=1m/NeN (i t))

(© 1 m

s—Z > i (5 1) —anfihm |+— > R (123)
j 1 m/NeN (. 1) m/NE./\[hl

Ao A

Above, (a) follows by (103) and because y = p/Api; (b) follows by adding and
subtracting the corresponding term and because the expression in (a) is nonnegative;
(c) follows by the triangle inequality and because the sets N (A, #;) do not intersect.
Next, we upper-bound the terms A»; and A, separately.

The first term in (123), A>1, can be upper-bounded as follows

@ o ®)
+4 r+1 0 2r+4 r+l 0
Ay < r Cu3a Z |h | = Cu34 Z thm
m/NE./\fl11 m/NeNpi

© orta rl 244 r4l
e qu w S 22 g (124)

Above, (a) follows by (104) and because the sets N (Ay;, ¢ ) donotintersect; (b) follows

because /1, < Oimplies q,?l = 0; (c) follows because q,?,hm >0form=0,...,N—1;
(d) follows by (114).
Following exactly the same steps as in (114), changing q,?, to q,%l, and using that by

Lemma 5, Property 3, ||q2lco < r2’+lc’56, we obtain:

2r e izl (125)

qu m| <
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Using this, the second term in (123), A2, can be upper-bounded as follows

N—-1
@
AZZS Zq;%;hm + Z Clihm
m=0 m /N eFni
®)
e LI S A
m/N e€Fnpi
©
<2 selzln +r7 sy Y gl
m/N e€Fpi
@) 5 2741 r 242 - 0, © 4 242 s
= 22 ellzlh + 1 sy D gmhm < 4P sglizli. (126)
m/NeFp;

Above, (a) follow by the triangle inequality and because F,; is complementary to Ny;;
(b) follow by (125) and by the triangle inequality; (c) follow by (105); (d) follows
because h,, > 0 for m/N € Fyi; (e) follows by (114) because q,%hm >0form =
0,..., N — 1, because c,5, > 1, and by defining c,s3 £ max(cus6, Cus2)-
Substituting (124) and (126) into (123), using that 1 /p = SRF?, we finally obtain:

A== "1 Y | <Y LISREY Ja)y, (127)
j=1 m/NEN(khi,t_/)
where we defined ¢,54 £ 6 max(c,34, Cus8)-

7.6 Putting Pieces Together

Substituting (116) into (109); substituting (117), (122), (127) into (113) and the result
into (110); then, substituting (109) and (110) into (108), and defining

¢ = dmax(1/cy, ¢ /2, cus3, ChCusa) (128)
we obtain the desired bound (9) and complete the proof of Theorem 1. O

8 Connection to Bernstein Theorem

The famous Bernstein theorem states the following [21, Ch. 4, eq. (1.1)].

Theorem 2 (Bernstein) Consider a trigonometric polynomial frequency-limited to f,:
q(t) = Z/{;—fc Gre 27K Then,

g oo < 27 fellg () lloo- (129)
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In other words, if a trigonometric polynomial is uniformly bounded, its derivative
cannot be too large anywhere.

Bernstein theorem helped us construct trigonometric polynomials go(-), g1 (+), and
¢2(-) with the required properties by telling us what may be achievable and what is
forbidden. We now describe these connections to provide more intuition about our
constructions.

Independent control Consider q(-) = g3, v,(;}{a;}() in Fig. 4. Since we require
lg(Dllooc < cuo, then, by Bernstein theorem, ||¢'(-)|lcoc < 27 cyo fe. Suppose, g(vi)

= 0. How large ¢(vz) may possibly be? Since ||¢'(:)]lco < 27cuo fe, We must have
q(v2) < 2mce,o(va — vy1) fe. Now, if the points vy and v, are well-separated, i.e., if
vy — v is order A., Bernstein theorem puts no restrictions on g(vy). However, if
vy — V] K A, then |g(vy) — q(v2)| < 2mc,p(va — v1) fe < 1. Generalizing: it may
be possible to independently control g (vy) and g (v2) only if the points vy and v, are
well-separated. This is the reason why ¢go(-), g1(-), and g2(-) are constructed in an
interlaced way. We control the building blocks on sets of interlaced points that are
well-separated, then we multiply the resulting trigonometric polynomials. See (21)
and Fig. 6 for an easy example of interlacing; see (35), (36), Figs. 8, and 9 for a more
sophisticated example of interlacing.

For readers familiar with using £1-minimization for super-resolution of real-valued
(spikes may be positive and negative) and complex-valued signals [13]: Bernstein
theorem is responsible for the fact that £1-minimization fails when the spikes are not
well-separated (closer than X, to one another). The dual certificate in the real-valued
case is a trigonometric polynomial g (-) with [|g(-)||co < 1 that interpolates the sign of
the spikes in the signal. If, say g(v;) = —1, and vy — v] K A, it is not possible that
q(v2) = +1 because ||¢'(-)|loo < 27 f. The required dual trigonometric polynomial
does not exist and the algorithm fails.

In contrast to the real-valued case, consider our trigonometric polynomial g (-),
displayed in Fig. 7. Here, we interpolate the sign of the sequence sy, 57, 53, 54 at a set
of points t1, 12, 13, 14 that are not well-separated. How is that possible? The difference
is that we interpolate the sign sequence at a low level p = (Ap; /A]O)zr <K 1,1e., we
interpolate the points s; p/2, and not the points s;. The transitions g (-) needs to make
between the points, are small; for example |q1 (13) — q1 (t4)| = p < 1 and this is not
disallowed by Bernstein theorem.

High curvature As should be clear by now, the curvature of the building block g, 1 (+)
in the vicinity of its zeros expressed by (13) (see also the sections marked in red in
Fig. 4a) determines the noise amplification in our bounds. How curvy can g;_(-)
possibly be? Since |lg;..1(-)looc < 1, applying Bernstein theorem twice, we conclude

that the second derivative must satisfy ||q/’{ YOl = 472 fcz. Therefore, for v € V,

it must hold that g, _y(v —7) < 2712(1) — r)z/kg. We conclude that the curvature of
¢,y () in (13) depends on A in an optimal way (up to a constant). This leads to the
near-optimal stability estimate in Theorem 1.
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9 Numerical Results

In this section we describe a simple numerical experiment that demonstrates how the
bounds developed in this paper reflect the true error accurately in the setting where
the error metric used in the previous work [43] leads to an unreasonably pessimistic
conclusion.

Set fio = 9. For DSRF € {8, 16, 32, 64, 128} set N = fj, - DSRF. For each N
we generate 50 signals from each of the classes R(2A10, 1) and R (4110, 2). To focus
on the worst-case setup described by the theorems, the signals from R (210, 1) were
generated so that pairs of spikes are forced to be close together. Specifically, for signals
from R(4\10, 2), each spike has a pair that is no further than 3/ N away (assuming the
signal is depicted on the (0, 1] interval as in Fig. 2). All spikes were chosen to have
equal magnitude set to one. The observations are generated according to s = Qx + z.
The noise is taken to be low-pass filtered Guassian: z = ¢ - Qzg, where zg has
independent identically distributed entries that are standard Gaussian with mean zero
and unit variance, the constant ¢ controls the signal-to-noise ratio (SNR) taken to be
SNR = ||x||1/]|z]|{ = 100000 in all simulations.

In Fig. 10a we depict log (% 0 lIxs — %11 /llsi — Qx| 1), ie., the log of
the noise amplification factor (NAF), averaged over the 50 trials, as a function of
log(DSRF). Observe that on the log-log scale the data are well approximated by
straight lines (displayed). We found the slopes of these lines to be 1.02 for R (24, 1)
data and 2.85 for R (410, 2) data. This matches the conclusions of Proposition 1 and
the corresponding converse [43, Sec. 2.3], which together predict (2r — 1) log(SRF) <
log(]lx — x|l1/1ls — Qx]|1) < (2r) log(SRF). Note that for r = 2, the exponent in the
NAF, 2.85, estimated in the simulation, happened to be a bit more optimistic than the
range between 2r — 1 = 3 and 2r = 4 predicted by theory, presumably because the
Gaussian noise is not the worst case. In Fig. 10b, for reference, we depict the average
relative error, % Zfﬂ 1IXi —X;111/11x; |l1 and observe that for all DSRF values and for
both ensembles, the average relative error is significantly below one, implying that the
reconstructed signals are high quality.

Next, consider a 20  times higher  super-resolution  factor
DSRF € {160, 320, 640, 1280, 2560} with Ny = fio - DSRF; = 20N (* f~ stands
for fine-scale) and repeat the above experiment with all other parameters kept the
same. We use the same random signals from the experiment above, when depicted on
the interval (0, 1]. Since the grid is now 20 times finer, in the vector representation the
index of each nonzero element of x has been multiplied by 20. To be sure: if before the
first and the second elements of x were equal to one, all others being zero, now the 20th
and the 40th elements of x are equal to one, all others being zero. This construction
guarantees that for signals from R (440, 2), each spike has a pair that is no further
than 3 -20/Ny = 3/N away (assuming the signal is depicted on the (0, 1] interval as
in Fig. 2), precisely as before.

In Fig. 10c we depict log (5‘—0 S % — %1/ lIsi — Qxi ||1), i.e., the log of the
NAF, averaged over the 50 trials as a function of log(DSRF ) for the fine-scale exper-

iment. The curve for signals from R(2X)o, 1) [blue diamonds] looks very similar to
how it did for the coarse grid in Fig. 10a. In contrast, the curve for signals from
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Ix; —X;ll1/lIsi — Qx;ll1), as a function of log(DSRF) and log(DSRF ¢),

respectively. In e, log(% 2,521||khi*(x,» — ) /lIsi — Qx;ll1), as a function of log(SRF). In b
and d, % Z?glnxi — X;ll1/lx;ll1, as a function of log(DSRF) and log(DSRF y), respectively. In f,

% 2,521 [lknix(x; —X;) |11 /11X; |l1, as a function of log(DSRF). In all plots, blue diamonds represent signals
from class R(2X1y, 1) and green circles (and green stars) represent signals from class R (41, 2) (Color

figure online)
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R (4A10, 2) [green circles and stars] now looks different: it saturates for large values
of DSRF; (DSRF; € {1280, 2560}, as marked by the green stars). By looking at
Fig. 10d, where we depict the average relative error % ngl Ix; — X;ll1/lIx;ll1 as
a function of log(DSRF ), we see that for the large values of DSRF s, the norm
of the error, ||x; — X;||1, is comparable to the norm of the signal ||x;||;, so that
the error is nearly as large as it can possibly be (see the points marked by green
stars). Does this mean that the algorithm produced bad reconstructions? The point
of this paper is that the reconstructions are still good, even for the high values of
DSRF s € {1280, 2560}, if the error is measured at the appropriate scale. To see this,
in Fig. 10f we depict o5 Y50 [lkni*(x; — %)ll1/1%; [l with Ap; = 1/(DSRF - fio)
so that SRF = Ajo/Api = DSRF, matching the resolution of the first experiment, as
a function of log(SRF). We observe that ||kpi*(x; — X;)|l1 < [|x;[1 for all values
of SRF. In other words, if the error is measured at the scale Ap; the reconstruction
is good for all values of SRF. For example, for DSRF; = 1280 in Fig. 10d the
error on average is 1.5 times larger than the signal (in 11-norm), but for the corre-
sponding SRF = 64 in Fig. 10f, the 11-norm of the error on average is only 0.02
of the 11-norm of the signal—small. By comparing Fig. 10d and f, we infer that in
the fine-scale case and for high DSRF € {1280, 2560} the reconstruction algorithm
disperses the spikes, but the estimated dispersed spikes are still concentrated around
the correct locations with dispersion smaller than Ap; (recall illustration in Fig. 3).
Next, in Fig. 10e we depict log (% ngl lknix(x; — X)) 11/ 1Isi — Qx; ||1> as a func-
tion of log(SRF). We see that the saturation effect disappeared and, as in the first
experiment, on the log-log scale the data are well approximated by straight lines
(displayed). We found the slopes of these lines to be 1.25 for R(24;,, 1) data and
3.28 for R(4Xo, 2) data. This demonstrates that the bounds in Theorem 1 together
with the converse [43, Sec. 2.3] reflect the true error on the scale Ay accurately:
(2r — 1) 10g(SRF) < log(|lkni*(x —X)[|1/[Is —Qx||1) < (2r)log(SRF), i.e., the expo-
nents in the NAF are predicted to be between 1 and 2 for » = 1 and between 3 and 4
for r = 2, as observed in the experiment.

10 Conclusion

When a signal is positive and Rayleigh-regular, then linear programming solves the
super-resolution problem with near-optimal worst-case performance. This result holds
independently on how fine the discretization grid is, approximating the continuum
arbitrarily closely. The proof relies on new trigonometric interpolation constructions;
the underlying ideas might be useful for other problems.

Finding an efficient algorithm that solves the same problem with a near-optimal
worst-case performance for complex-valued signals is still an open problem. Despite
recent work that derives stability estimates for MUSIC and ESPRIT algorithms in cer-
tain cases, the question of how far are these algorithms from the optimal performance
is not yet answered completely.
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In a different direction, all results in this paper are valid for the 1D model. The
discrete results have been generalized to the 2D model in [43]. It would be interesting
to see if the techniques developed in this paper may also be extended to the 2D model.
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led to this work. The author is grateful to Emmanuel Candes for inspiring and useful discussions.

Proof of Lemma 2

Let

A [sin@(fe/24+ 107"
g) = [ - }
(fe/2 + 1) sin(rt)

and set

1%
q(0) £y gt —vy) + Bjg'(t = v)),
j=1
where {« j}}/ 1 and {B; }}/:1 are free coefficients that will be determined in the fol-
lowing. Because g(-) is frequency-limited to [— f;, fc] [cf. (7), (196)], g (-) satisfies
Property 1. Note,

|4
q' =) ajgt—vp)+pg (t —v).
j=1

Define matrices Do, D1, D, € RY>*V with the elements
Doljx = gj —wk), [Diljx =& (vj —w), [Maljx = &"(v; — ).

To satisfy the interpolation constraints in Property 2 we define
a=[ar,....av], B = [Br..... I £ = [fi..... fy] d = [di.....dv]",

demand
D() D1 x| f
D, D[R] |[d
——

D

and solve for « and (. It can be verified that Dy and D, are both invertible; the
corresponding Schur complements

E=D,-DD,'D,
F=D;—-DD;'D,
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are well defined and are also both invertible (see [13, Sec. 2.3.1, pp. 925-926], [12,
App. B, p. 1249] for the relevant results). Therefore, D is invertible and the inverse

can be written as [41, Sec. 9.11.3.(2)]

Dl — F~! -D,'DE"!
-D;'DyF! E7! '

We know (see [13, Sec. 2.3.1, pp. 925-926], [12, App. B, p. 1249]):

D[l < =
llloo = )\'C’
1
-1 -
IDG oo = =7 =0,
» 2felfetd . o1 N
IE e = (5= @+ 725 ) 7)) =l
IF e < EF,

-1 = 42
||D2 loo < CZ)LC-

Above, ||A] is the infinity norm of a matrix defined as

1Al = max [[Aylloo = max ) |aij]
llylloo=1 P

and

¢o <0.007, ¢ <0.08, ¢2 < 1.06,
co <1.008, cgp <047, c<043, cr <1.009.

Now we have

letloo = IF~'f — Dy 'DIE" |
< IF |l + ID; 'DIE~"d| o
< IF s liflloo + 1Dy 'DIE™ [l olld oo
@ o1 I -1 -1
= IF oo + =105 oo D1 flao I oo
C

b) _ N
< CF + CoCICE = Cq-

(130)

(131)

(132)

(133)

Above, (a) follows because |fj| < 1 and |dj| < I/rc forall j = 1,...V; (b)
follows by (130), (131), (132), and (133); and ¢, can be upper-bounded as ¢, < 1.05.

Similarly,
IBlloo = I-D; "D F~'f + E7'd| |00
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< I-D5'DiF ]l + IE"'dllso
< I-D5'DIF o lIflloo + IE™ oo lId]] o
_ _ 1
< ID5 s ID1 oo IF l||o<>+k—||E Moo
C
Scﬂ)\c

with cg £ £, ¢F + ¢ that can be upper-bounded as c¢g < 0.51.
The following lemma, proven in the end of this section, records bounds on

Zyzl |g

Lemma 6 The following estimates hold:
\%4
Z gt — Uj) = G50,

.
Z 8 "t — U])| < ¢s1/Aes

where cs50, cs1 are positive numerical constants defined in the proof of the lemma
below.

Using the bounds we obtain the required estimates as follows. Observe,

\%4
)] = |y ajglt —vj) + Bg (t —v))

j=1
\%4 \4
< ledlloo D 18 —v)| +IBlloo D |8t —v))]
j=1 j=1
=50 <cs1/Ae
< caCs0 + cpest = cuo. (134)

This proves Property 3. Property 4 in the lemma follows from (134) by (129) [Bernstein
theorem], using that ¢’ (¢) is also a trigonometric polynomial frequency-limited to f,:

|C[/(Z‘)| <culfe, Cul £ 27 cyo. (135)

In turn, Property 5 follows from (135) by (129) [Bernstein theorem], using that ¢” (r)
is also a trigonometric polynomial frequency-limited to f,:

|q//(t)| = Cqucza Cu2 =S 47'[26‘”().
This completes the proof of Lemma 2. O
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Proofof Lemma 6 For all t+ € [—1/2,1/2], we have the following bounds [13,
Sec. 2.3.2, p. 928]:

g =1, (136)

2
T
'O = 5 felfe + Dl (137)
For all ¢ with A./2 < |t| < 1/2and ! = 0, 1, by inspection it follows from [13,
Lm. 2.6] that the following bound holds:

7l

o) ‘ g 138
¢ O] = e (138)
with CO £, c1 £ 6. [To obtain this result from [13, Lm. 2.6], observe that, in the
termlnology 0f[13] for all # with A./2 < [t| < /2/m, b(t) < 2a(t) and a(t) < 1.]
Define u; £ vj, ordered in such a way that |u1| |uv| Since
{vi, v, ..., vy} € RkAe, 1), we have
|uzj| > Aek(j — 1) and |uzj—1| > Aek (j — 1), for j > 2, (139)
and also,
Ae . .
|uj| > 5 for j > 1. (140)
First,
Y1
t—vj)| = u; _

(b) 2 1

2

=t G ;(xcm‘)“
1 2 &

S22t ot 2

Above, in (a) we used (136) to bound the terms for j = 1, 2 and used (138) to bounds
the terms for j > 2 [(138) is applicable because u3 > A.k/2 > A./2 since k=1.87];
in (b) we used (139); in (¢) we used

21
2 7=3

/=1

S

El

OI:'
W&

and in (d) we defined ¢ = 2.22.
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Second,

\%4 Vv
dolg'a—vp| =g/ @]+ |g'w))
=1

j=2
(@ 72 Ac 1 67 4 ,
= e S Gt § 8"
®) 72 e 1 67 " 6x
L DT G e G s
© 72

\%
TR Z e/ DR )

2 6r 2 X1
E?(f +4)K+fz()\ K)4Z_4

j=1

d)
< —(fc—i-4)/<—i—35fC <12.4 +38.1f, §c$1ﬂ

Above, in (a) we used that if |u;| < Ack/2, then |g'(u1)| < (72/3) fe(fe + ek /2
by (137) and otherwise |g'(u1)| < 67/[(f. + 2)*((he/2)x)*] by (138); in (b) we
used (138), which is applicable because |u]‘ > Ack > Ac/2 by (140); in (c) we
used (140); in (d) we used Z,: 1/j* < 4/3; in (e) we used that f. > 128 and

defined ¢ £ 38.2. ]

Proof of Lemma 5
Construction

We first describe how the trigonometric polynomial g;(-) is constructed. In the fol-
lowing four subsections, we prove that the construction is valid and that it satisfies the
required Properties 1-4.

Recall, 7 = {1, ..., ts} is defined in (12) and, as before, define 7;, k=1, ...,r,
as in (20); remember that 7 = 7; U ... U7, and 7; € R(kAor, 1).

We will construct the trigonometric polynomial ¢> (-) as a (shifted) sum of r trigono-
metric polynomials {¢ (-)}}_;:

@ () =Y ¢r(t) — p. (141)
k=1

Note that we are overloading the notations here and ¢ (-) in this section are differ-
ent from ¢y (-) in Sect. 6.3.1. Each of the trigonometric polynomials {¢y(-)};_, is
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frequency-limited to fio,

fio
br(t) = Z dr e P for some ¢y € C (142)
== fio

and is constructed separately to satisfy the following interpolation constraints on 7 :

e, ify e,
1) = 143
Pe(t) {0, ifn e T2 T\ T (143)
oifyeTy
oy =7 ’ 144
(1) {o, ify e T¢. (144)

Constraints (143), (144), and definition (141) guarantee, forall/ =1, ..., S,

q2(t1) =0, (145)
g5(1) = ysj. (146)

To develop intuition about our construction, observe that (142) and (141) guaran-
tee that Property 1 is satisfied. Further, observe that interpolation constraints (145)
and (146) are needed for (104) to hold because go(r) = g{(t) =0 forallt € 7.

Next, we explain how to construct the trigonometric polynomials ¢ (-), k =
1,...,r. The idea is to construct ¢ (-) as a product of two trigonometric polyno-
mials:

D (1) = do k(1) X ¢y k(1) (147)

The first term in the product is defined as

G0k (1) 2 [ [ gran7:(0). (148)
I#k
where g5, 7;(-), I = 1,...,r are the trigonometric polynomials constructed via

Lemma 1 with A, = rAjp and V = 7; € R(kAor, 1). The second term,

G (t) 2 31 Grag T 1,1,y () (149)

is a (rescaled) trigonometric polynomial Grio, T L fi14d;} () constructed via Lemma
2 with A, = rAp, and V = Tx € R(kApr, 1) and ¢,3; is a positive numeri-
cal constant defined in (160) below. Further, the function-values and derivatives of
qrMn,Tk,{fj},{dj}(') are constrained on 7 so that ¢ (-) satisfies the following:

P+ k(1) =p for all t € 7g, (150)

1
G0,k (1)’
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B G0 (1) ys,
quak(ﬂ) box ()’

oy () = for all t; € 7. (151)

Note that ¢o «(-) in this section is identical to ¢o i (-) defined in Sect. 6.3.1 and,
therefore, satisfies all the properties derived in Sect. 6.3.2; ¢4 x(-) in this section is
different from ¢ () in Sect. 6.3.1 and the notation is overloaded.

We will prove in the next subsection, that this specification is valid, in the sense that
the corresponding function values and derivatives of g,,, 7; { £ty () on Ty satisfy
requirements (15) of Lemma 2.

It follows from (147), (148), (150), Lemma 1, Properties 2, 4, and 5, that the
interpolation constraint (143) is satisfied:

(1) = dok ()P4 k(1) = p, forallt € Ty,
(1) = pox(t) g4k (t) =0, forallt € Tf.
———
0

Next, by (147),
DL (1) = ¢4 1 (D1 k(1) + ok ()P 4 (1),
Therefore, by (150) and (151),
Or (1) = B0 1 WD+ k(1) + G0k )Py 4 (1)

o ; B ¢(/),k(fl) Ys; o
= ¢0,k(tl),0¢0,k(tl) + G0,k (t1) ( p¢§,k(lz) + dor) |~ YSps

for all t; € 7Ty. Further, by (148), Lemma 1, Property 2,

D (1) = 001 (1) 1 k(1) + Pk (1) Py 4 (1) =0,
—— N——
0 0

for all # € 7,F. We conclude that the interpolation constraint (144) is satisfied.

Finally, (142) follows from (147) because ¢g «(-) in (148) is frequency-limited to
(r = 1)/(Aor) [Lemma 1, Property 1] and ¢4 x(-) in (149) is frequency-limited to
1/(Aor) [Lemma 2, Property 1] so that ¢ (+) is frequency-limited to (r — 1)/ (Aor) +
1/(Mor) = 1/Ao = flo. Therefore, by (141), g2(-) is also frequency-limited to fi,,
which proves Property 1.

Existence of ¢, x(-)

In this subsection, we check that the trigonometric polynomial ¢ x(-) that sat-
isfies (150) and (151) can be defined according to (149) with Grio, T {14} )
constructed via Lemma 2 with A, = rAjp and V = 7, € R(kAjor, 1). To this end, we
need to show that the constraints on the function values { f;} and on the derivatives
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{d;} that are implied by the constraints (150) and (151) satisfy requirements (15) of
Lemma 2.

First consider the case r = 1. As already discussed, in this case ¢¢ x(#) = 1 for all
t, and, therefore, ¢(/),k(t) = 0 for all 7. Plugging these values into (150) and (151) we
see from (149) that the requirements (15) of Lemma 2 are satisfied.

Next, consider the case r > 1.

To check that requirements (15) are satisfied for ¢t € 7;, we need to find upper
bounds on }¢>+,k(t)| and on |¢jﬁk(t)|.

Take ¢ € 7; and observe:

@ 1 |® A 1
t e —
[+ = ¢0,k( ) /\2’ )l
(C) 1 A2
2(}’ l) )\21 (152)
2r 1
<rv—. (153)
¢

Above, (a) follows by (150); (b) follows by (47), which is valid because t € 7} implies
t € F(ini, Z,0); (c) follows because ¢; < 1.
Next, take t € 7 and observe, according to (151),

¢0k()
¢0k(t)

14
G0 ()|

|6, (D] < (154)

The first term above can be upper-bounded following exactly the same steps that lead
from (54) to (60). This gives:

A
<l (155)

AZ

¢>0 Q)
¢0 O

To upper-bound the second term in (154), consider two cases.
Case 1:t € F(rAho, 7,7). Then, by (44), ¢ (1) > cl’fl and, therefore,

v e 1\
i — 1

= = h12r Srzr 1<_2> 32 (156)
011 ar Mo i) Mo

Above, in the last (crude) inequality we used that ¢;; < 1 and that Apj/Aj, < 1.
Case 2: 1 € N (rAxy, TYY). In this case set {v1, ..., v3} £ TE NN (r Ak, 1) and
note that 1 <7 < r — 1. Hence, by (40),

Y
®o,k (1)

I—[ 1(v; ) _ A
poa(t) 2 I D ot M
(rio) (rio)
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where we used that ]v i t| > 2Api forall j = 1, ..., 7 because all elements of 7 are
separated by at least 21p;. Therefore,

2F 2r—1 2f .
14 Y (rio) _ 1 )‘hi (rAto) < -l L ﬁ (157)
O e R SR S ch) Mo

Above, in the last (crude) inequality we used that ¢;p < 1, Api/Alo < 1,and7 < r —1.
Plugging (155), (156), and (157) into (154) we obtain

_ Ahi
|6 O] < rP el (158)
)‘lo
1
< r2’—1c;3ox, (159)
(6]

where we used that Api/Ajo < 1 and defined c,30 £ 2 max(c,7, 1 /clzl, 1/ clzz).
It follows from (153) and (159) that the function values and the derivatives of
Qrane 7 (1) = G4 k(1)) (r¥ cl3)) with

cu31 = max(cy30, 1/cr) (160)

satisfy requirements (15) of Lemma 2 on 7;. We conclude that ¢ (-) can indeed be
defined according to (149). According to Properties 3, 4, and 5 of Lemma 2, and (149),
¢+« () satisfies the following properties:

144 Cllos < 77" chaicu0, (161)

_ 1
18k Olloo = 7 ejz e 5, (162)

lo

r— r 1
164 Olloo =7 2ciz102 75 (163)

lo

Proof of Property 2

Take j € {1,..., S} and consider t; € 7. There exists a unique [ € {1, ..., r} such

that 7; € 7;. We will show that for all T € N (An;, £;)

¢1(t) — p — ysi(t —t))| <r* el qo(r) (164)
and
()] < r¥ 3l qo(r), fork e {1,... r}, k #1, (165)

where the positive numerical constants c¢,44 and c,50 are defined below.
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From this we will conclude:

Y (@) —p—ysix—1))

k=1

42(1) = ysj( —17)| =

< ; O]+ [¢1() = p = ys(z —1))]

2r+4 r+1
<r¥t 0234 qo(7),

with ¢,34 £ 2 max(cya4, cus0), as desired.
To prove (164) and (165) recall, by (143) and (144),

Bi0) = p —ysic—1p)| _ =0=a0t)). (166)
d(gi(r) —p —ysi(t — 1)) , , /
— = 9i(t) —ys; =0=g5t).  (16D)
T=tj
dr(t;) =0 =qo(t;) fork € {1,...,r}, k #1, (168)
G (1)) =0=qytj) fork e {1,...,r}, k #1. (169)

Hence, in order to prove the bounds in (165) and (164), we will derive upper bounds
on the second derivatives }¢,’<’(r) ck e {1,...,r}, valid for all T € N (Api, 1), and
use the Mean Value theorem (see Theorem 3).

Taking the second derivative of (147) and applying the triangle inequality we find:

|81 (O <[00 £ @ |[d+.1 (D] +2 85,1 (D[] £ (O] + |p0.x (D[] £ (D] . (170)

E1(7) Ex(7) E3(7)

In the derivation below we upper-bound the terms separately.

We will need the following notations. Set {v], ..., vI} £ N (rAkio, T)NT. Also,
set {vy, ..., vi} = N(rAhio — Api, tj) N 7. Note that the set {vy, ..., v;} does not
depend on 7 and also {vy, ..., v;} C {v],..., vrf} sothat7 < 7.

The remainder of the proof of Property 2 is organized as follows. First, consider
the case ¢; € 7y and prove (164), next consider the case 7; € 7,° and prove (165).
Proof of (164): case t; € Ti.

Bounding E1(t): By (195) [Mean Value theorem] and the triangle inequality we can
write

1
|64 = 01| + [0 4 0|7 = 1] + 5[0 (a2 = 1))?

with 7, € (¢;, 7). Next, we use (152) to upper-bound |¢ x(;)
bound "%r,k(tj)

; use (158) to upper-
; use (163) to upper-bound ]qbl «(tm)|. With these estimates we can
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further upper-bound |¢>+, k(‘L’)| as follows:

_ A2 Ani 1
x| <r*Te)ss <ﬂ + -]+ )L_z(f - f.i)z)

2 2
)‘lo )‘10 lo
A2
< r2’*1c;36r‘;. (171)
lo

Above, we defined c,35 £ max(1/cr, cu30, Cu3iCu2)s Cuzs = 3cuzs, and used
"L’ —1 j‘ < Ahi-
Assume 7 > 1 (the case 7 = 0 will be treated separately below) so that 7 > 1 and
T € N(r Ak, 7)), which implies that |¢(’)/’ k(r)| can be upper-bounded by (73).
Multiplying (171) and (73) and simplifying we obtain the following upper bound
on Eq:

(a) H1<1<A(U[T - T)z 1
E(1) = |lo" (1 )| < r2r+lcr+l__r—A_
1) = [0, O] |p+ k(D] = It

2
©® 2t et Hlicsr =07 1

—_— —. (172)
u37 (r)‘«lo)2r )»120

Above, in (a) we used (multiple times) the bound Ap; < |vlr — 7|, which is true for
alll € {1, ..., 7} (follows because the elements of 7 are separated by at least 2Ap;),
used Api/Alp < 1, and defined ¢,37 £ max(6¢,3¢u36, Cu31Cu0Cus); in (b) we used the
fact that |vf — t|/(A10r) <A< lforalll e{l,...,r}

For the case 7 = 0, the upper bound (74) also holds by (46) and (161).
Bounding E>(t): By (194) [Mean Value theorem] we can write

|¢/+,k(r)| = |¢;,k(t])| + |¢l,k(TM)HI — []|

with 7,, € (¢;, 7). Next, we use (158) to upper-bound |¢;’k(tj) ; use (163) to upper-
bound |¢] , (z,,)|. With these estimates we can further upper-bound |¢/, , ()| as
follows:

_ Ahi 1 _ Ahi
¢ 1 ()] < r el <_21 + |t - tj|> <r 15239—21- (173)
)”10 lo )‘lo

Above, we defined ¢33 2 max(cy30, Cu2Cu3l), Cuzo = 2cusg, and used |r — tj| < Ahi-

Assume 7 > 1 (the case 7 = 0 will be treated separately below) so that 7 > 1
and 7 € N(rAhio, T,°), which implies that |¢(’) k(t)| can be upper-bounded by (76).
Multiplying (173) and (76) and simplifying, we obtain the following upper bound
on Ej:
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H1<l<r(vl )2 !
2r o 1si=rr7l 7
Ex(®) = |85, 0|8, 4 (0] £ el ¥ AL

® 5, g =% 1

—_— 174
N (rklo)zr )L120 ( )

Above, in (a) we used the bound Ay < |vlf , which is true for all [ €
{1,...,7} (follows because the elements of 7 are separated by at least 2Ap;), used
Ahi/AMo < 1, and defined ¢,40 £ max(2¢,39¢u3, 27T Cy31¢u1); in (b) we use the fact that
|of —t|/(hor) < A < Lforalll e {1,...,7}.

For the case 7 = 0, the upper bound (174) also holds by (45) and (162).
Bounding E3(t): By (163),

_ 1
¢ (D] <r¥ Zc{mcuz?. (175)
(6]

Assume 7 > 1 (the case 7 = 0 will be treated separately below) so that 7 > 1
and T € N(rAh, 7,°), which implies that |¢0,k(r)| can be upper-bounded by (79).
Multiplying (175) and (79) and simplifying, we obtain the following upper bound
on E3:

” (@) r—2 r 1_[ (U - )2 1
E3(1) = |pos(D||¢] ()] = r¥ 2 “‘“WT%O

®) s —1)? 1
& 2r=2 n Hlfl_r 12; . (176)
(riio) Mo
Above, (a) we defined c,41 £ c,31¢u2¢4; in (b) we use the fact that
|vf —7|/Guor) < A < 1foralll € {1,.... 7).
For the case ¥ = 0, the upper bound (176) also holds by (175) because by (148)

) < 1 and because ¢, > 1 and ¢, > 1.
From (170), (172), (174), and (176) we conclude that

2
2r+1 1 [Tioiu—0)" 1

(D) < —, 177
k@] = e == 7 177

where we defined ¢, 40 £ 4 max(c,37, Cya0, Cusl)-

Putting pieces together Applying (195) [Mean Value theorem] to the function f(-) =
1) — — Vs (- —t;) witha = t; and b = 7 and using (166), (167), (177) and we
can erte for all T € N (i, t)):

@ 1 [Ti<i<i o — w)? (x —1))2
¢1(T)—p—)/s;(‘[—t/) 2 2V+1C;1-21 <I<r m J

(riio)? AL
® L o r o7 [Ti<i<i(u — )% (r — tj)?
= 2 u4?2 (r)ul )Zr )\120
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2
© 2r43 1 o -0 (@ —1)?
- W rhe¥ (Tho)?

(178)

Above, in (a) 7, € (¢, T); in (b) we used that ‘v; — rm] < ]vl — r]+khi < 2|v1 -1,
which is true because T € N (Ap;, ¢ 7) and because the elements of T are separated by
at least 2Ap;; in (c) we defined c a3 2 2cy40.

The bound (164) follows from (178) and (83) by defining c,44 £ a3 /cr3.

Proof of (165): case tj € T,f. We only need to consider this case when r > 1. Indeed,
when r = 1, the sum in (141) only contains one element, ¢;(-), and, necessarily,
tj € 1) because 7/ is empty.

In this case #; is one of the elements among {v1, ..., vz} C {v7, ..., v;}; in other
words, 7; = vy = v’ forsome 1 <m < 7,1 < < 7. The set TeNN (r Ahio—Ani, 1)
is either empty or contains exactly one element. Let b £ ]ﬂ NN Ao — Ani, t i) |
In the case when b = 1, let {7} £ Ty NN (r Ahio — Anis 1))

Bounding E{(7): Consider the case b = 1. By (195) [Mean Value theorem] we can
write:

|01 (D] < @ a D] + |0} D]t — 7| + 1\¢i,k<rm>}<r — )
2

with 7,, € (7, 7). Next, we use (152) to upper-bound | x(F)|; use (158) to upper-
bound |¢jr k(f) ; use (163) to upper-bound |¢l k(Tm)|. With these estimates we can
further upper-bound |¢+, k(r)| as follows:

2r—1 .r )‘ﬁi Ahi = 1 =2
‘¢+,k(f)’§r Cu3s K_2+)\_2T_t‘+)\_2(r_t)
lo lo lo
- 5 ~ 5 ~1[b=1]
t—t t—T
< r2r+1C;36( ) = 72r+1CZ36 g ) (179)
(V)Llo)2 (")\]0)2

where we used that Ap; < |f - r| because the elements of 7 are separated by at least
2Ani and T € N (Api, tj) with I+ tj. According to (161) the upper bound (179) also
holds for b = 0.

Since t; € 7, and T € N (Api, 1)), it follows T € N (rAiy, 7)) so that 7 > 1,
which implies that |¢6’) % (r)| can be upper-bounded by (85).

Multiplying (179) and (85) and simplifying, we obtain the following upper bound
on E:

E1(7) = |44 (|| ¢+.4(D)]

~ 1[b=1] 2
@ 25 L |:(f - 7)2] [Ti<i<pen @ — 1) 1
- “S 1 (ro)? (rho)?=b A%

. I1b=1 2
© 2rii1 ri |:(f - 7)2] . 1_[1515;,1#,(}’1 - €
- L (rho)? (rho)?F=D A

(180)
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Above, in (a) we defined cu5 = cu36¢417; in (b) we used that |vf — r|/()qor) <A<l
foralll e {1,...,r}.

Bounding E»(t): Consider the case b = 1. By (194) [Mean Value theorem] we can
write:

4 k(O] < |84 D]+ |¢] @] |7 — 1]

with 7, € (7, 7). Next, we use (158) to upper-bound |¢jﬁk (H)|; use (163) to upper-

bound ]qu/r k(rm)]. With these estimates we can further upper-bound !qﬁjr k(r)] as
follows:

Ahi 1 -
|9/ (D] < Pl e ( hi g |t — t‘)

K
. A 1lb=1]
T—1t] 1 T—t 1
S,,ZcmS()| |_:r2rc{l39 | | —, (181)
Ao Ao rAlo Ao

where we used that Ap; < |f — r!. According to (162) the upper bound (181) also
holds for b = 0.

Since t; € 7, and T € N (Api, 1)), it follows T € N (rAiy, 7)) so that 7 > 1,
which implies that |¢6) % (r)| can be upper-bounded by (88).

Multiplying (181) and (88) and simplifying we obtain the following upper bound
on Ej:

Ex(v) = |¢ (D] | 1 (0]

~ b=
(a) % r |:(t—7f)2j|1[ !l nlglgf,l;érh(vlr _T)ZL
(rhio)? (rho)?=b

(i) 2y (f — 'L')2 Ie=1] 1_[1515;’1#,;1(1)1 — T)2 1
r E—— = —.
EINE SR T

Above, in (a) we defined ¢, 46 £ ,30Cy19;1in (b) we used that |vlf — r|/()qor) <A<l
foralll e {1,...,r}.
Bounding E3(t): By (163),

¢} (O] < r* 2 00 (183)

32
)‘10

Since 1; € T,f and © € N(ip, 1)), it follows © € N(rAxy, 7)) so that
7 > 1, which implies that ’¢0)k(r)| can be upper-bounded as in (91). Mul-

tiplying (183) and (91) and simplifying, we obtain the following upper bound
on Ej:

E3(1) = |dos(D)||¢] 1 (D]

Birkhauser



Journal of Fourier Analysis and Applications (2022) 28:4 Page 710f80 4

~ I1[b=1
@ ar-ar [(f - T)z} P iz OF =07 1
= 47 P vl
L (re)? (rAio)2F=D AL

~ I[b=1
(i) 2r2 [(t - r)z} (b=11 Hlflf?,l;ﬁyﬁ(vl -1)2 1

C = —. 184
w47 (riio)? (i) =D )\120 (159

Above, in (a) we defined cya7 2 cuzicuacy; in (b) we used the fact that
|of —1|/(uor) < A < 1foralll € {1,..., 7}
From (170), (180), (182), and (184) we conclude that

- b=1
(t — T)2i|l[ ] [ici<r im0 = D% 1 . ass)

"y < r2r+lcr+1 _ i
|¢k ( )| = u48 (riio)? ()2 =D )L120
where we defined c;48 24 max(cy45, Cud6, Cud7)-

Putting pieces together: Applying (195) [Mean Value theorem] to the function f(-) =
¢i(-) with a = t; and b = 7 and using (168), (169), (185), and we can write for all
7 € N (i, tj):

- ITh=1] 2
(o) L Lt [(f - fm)z} Mhzizrapn v — @)™ (x — 1))
) u48

(rhio)? (rkio)?=D AL
~ Ib=1 2
® 1 i 1 [ (=7 P crmrin 0 = D% (0 = 1)?
2 T Lo (rhgo)?=D Ao
~ 9 ~1[b=1] 2
(2 r2r+3cr+] |:(t — T) } Hlflff(vl B T) (186)
L (rhao)? (rii0)?"
Above, in (a) 7, € (¢, 7); in (b) we used the fact that, for [ # m, |v; — tm| <

|v1—r| + Ani < 2 vl—r| and |f—tm| < |f—r| + A < 2|f—t , which is true
because T € N (Ap;, ¢ ;) and because the elements of 7" are separated by at least 2Ap;;
in (c) we defined c, 49 2 2c,4g and used the fact that ¢ = Us.

The bound (165) follows from (186) and (95) by defining c,50 £ c,49/c/3.

Proof of Property 3
By (141) and the triangle inequality:
l22()lloe < p 41 max [|¢x()lloo
1<k<r

(a)
< p+r max ¢+ 1 ()loo
I1<k=<r

(b_) 2r+1 .r )
=p+r'Tlels lféll?;(r||CIrA|0,’Z7<,{fj},{d_,-}(')||oo

(c) (d)
< o+ escu0 < rP e
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Above, in (a) we used (147) and the fact that by (148) and Lemma 1, Property 3,
0.k ()]lco < 1;in (b) we used (149); in (c) we used Lemma 2, Property 3; in (d) we
defined c 56 = 2c,0cy31 and used the fact that p < 1 < cuocu3i.

Proof of Property 4

Take 7 € F(Ani, 7). As above, let {u], ..., ul} £ N'(r Ak, ) N 7. Then by (16),

7 T 2
y =i — 1)

T) > , 187
qo(T) = ¢y (rk10)2’ ( )
By (19) this bound is also valid when 7 = 0.
Fix k. If T € N (r Ak, T)Y), then we can use (41) to upper-bound |¢o,k(r)|:
7 2
Lo 0f — 1)
g0k (D)] < ¢, [y &f — 07 (188)

(V)Vlo)zf

where, as before, {v], ..., v}} 2 N(rAhrp, T) N TS It ¢ N(rAhe, T)F), we will
use that by (36) and by Lemma 1, Property 3,

g0k (7)) < L. (189)
The set 7 N N (r Ak, T) is either empty or contains exactly one element. Let b =

|7k N N (r Ahio, T)| denote the size of this set; when b = 1,let {f} £ TrNN (r Ahio, T).
Following the steps that lead to (179), we obtain:

~ 5~ 1[b=1]
< 2r+1 r (t — T) 190
|4k (D] < el [—(mo)z (190)
and the bound is valid for both cases b =0 and b = 1.
Case 7 > 1:Then, {uf,...,uf} = {vf,..., vI}U {fYifb =1, and
{uf, ..., u;} ={v],..., v;} if b = 0. Therefore,

@ 2= T r g2
18] = o (D] | b1k )| sr”“c;%c;[“ ’)} [y o — o)

(rii0)? (rhio)¥
T ! —1)% ®
= rzr“C;asCZ—(Mll)z; < r*esi1g0().
(¢}

(191)

Above, (a) follows by (188) and (190); (b) follows by (187) with ¢,51 £ Cu36Cu/Cr2.
Case 7 = 0: Then, 7 = 1 and {u}} = {f}if b =1 and # = 0 if b = 0. Therefore,

- 1)2}1[b=1]

(@)
161D = [po.x(D)|[$+k (D] = r¥ g [W
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i T 2
_ ooty i =07 @ 5,
=r Cu36 IR <r C,5190(T).
()

(192)
Above, (a) follows by (189) and (190); (b) follows by (187) because ¢, > 1.
By Lemma 3, Property 6,
Az 1
p="3 =¥ —qo(. (193)
Mo i
Therefore, by (141), (191), (192), (193),
r
g2 < D 1@ + p < r elsrq0(0),
k=1
where we defined c,50 £ 51 + 1/¢. O

Mean Value Theorem

We repeatedly use the Taylor series approximation with the remained expressed via
the Mean Value theorem [1, p. 880, 25.2.25] given below for the convenience of the
reader.

Theorem 3 Assume that f(t) is twice differentiable on the interval [a, b]. Then, there
exists t; € (a, b) such that

fb) = f@+ f' ()b —a). (194)

and there exists ty € (a, b) such that

1" ()
2

fb) = f@@+ f(@®b—a)+ (b — a)*. (195)

Properties of Fejér Kernel

The results proven in subsections below are analogous to the results in [12, eq. (1.11)
and eq. (2.6)] with the difference that here we need bounds on sums and in [12] bounds
on the corresponding integrals are provided.

Below, we will need uniform upper bounds on |khi(~) , |kp; ()], and |kfl’i(-) ; these
are derived next.
Fejér kernel (7) can be written as a Fourier sum as follows:
1 |k| .
kni(f) = — 1 — ——— |2k, 196
i (1) NZ( fhi+1> (196)
k< fhi
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Taking the absolute value of both sides in (196) and applying the triangle inequality
we find:

1 k 1
LIGIESIDY (1—fh"+‘1>=ﬁ(1+fhi).

[k < fhi

Above, the equality follows by summing up the simple series.
Differentiating (196) we obtain:

2 k .
K, (1) = 17” (1 - |—|1) kel2mik. (197)
1I< fi Joi+

Taking the absolute value of both sides in (197) and applying the triangle inequality
we find:

2 }k| (a) 27 ) 27

k. — kI(1— E R+ ) < — f2. 1

ko] = lk§| fj | |( fhi+1) Ty @ i) = S fE (198)
=/hi

Above, (a) follows by summing up the simple power series; (b) follows because

fhi > 1.
Differentiating (197) we obtain:

" __(277)2 _ }k| 2 2wtk
ki) = == lklg;h(l th_])ke : (199)

Taking the absolute value of both sides in (199) and applying the triangle inequality
we find:

(27)2 ) |k| (@) 272 5 ) 47?4
k)| < E ll——— ] = — miQ+3Mmi+ f3) < — fo.
[kii(0)] = N o fui+ 1 3N Fui( Fui i) = N Fii

=</hi

(200)

Above, (a) follows by summing up the simple power series; (b) follows because

Soi > 1.
The bounds derived below in this section are crude in the sense that no attempt has

been made to obtain the tightest possible constants; for this reason some of the steps
below may appear unnecessarily wasteful.

Birkhauser



Journal of Fourier Analysis and Applications (2022) 28:4 Page 750f80 4

Proof of (106)

Begin by splitting the summation interval and recombining the terms in the following
way:

()l X

N
n=0 N E[O,/’Lhi) N e[)\his 21 )

ACR>

%E[llfkhi) le[lf)this])
n
22 ()l x WG
> W@ r
N G[0,)“]11 N) €[Ani, 2+N)

(201)

Above, the inequality follows by symmetry of k;, (-) around 1/2. Next, we upper-bound
the two sums separately.
To upper-bound the first sum in (201) we proceed as follows:

2

1[0, 5)

2 (%)‘ < (i + 1/N)N max [k, ()] D a2 12 L dr .

(202)

Above, in (a) we used (198) and the assumption that 1 /N < Ap;; in (b) we used that
Shi = 1/Ani.

To upper-bound the second term in (201) we observe that ‘kt/li(')‘ can be upper-
bounded as follows for r € [0, 0.55]:

cos(m (fhi + 1)1) cos(rrt) sin(mw (fyi + 1))

|k’ ¢ )’ (@ 2 sin(w (fri + D1t)
hi

N sin?(rt) (fni + 1) sin’ (1)
@l( 27 N 27 )@l(#ng)
= N \sin?(rt)  (foi+ Dsin’(re)) = N \(fui+ D23 12)°

(203)

Above, (a) follows by differentiating kp;(+) in (7); in (b) we used the triangle inequality
and the fact that |sin(.)] < < 1; in (c) we used the inequalities sin(r)? >
712 and sin(m‘)3 > 713 for t € [0, 0.55]. Therefore,

‘o N
¥ €nis 3+ 5)

(@ 2 1 1 2 1
STRRN X NN o (/N2

r€lhnis 3+ el 3 +4
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< ——3 —dt +——2+2/ —dt
N M t N)‘hi Ahi !

< 1dt + 2 1 +2/°° 1dt

- 13 N}Lﬁl Mhi 12

_ n 2 1 n 2
- 1+fh1 N)»3 2)\%1 Nlﬁi Mhi

— (204)
T+ fhl kh )»hi )‘-hl

Above, (a) follows from (203) because 1/2+1/N < 0.55; in (b) the bound for the first
term follows because the function 1/73 is monotonically decreasing and the bound for
the second term follows because the function 1/¢2 is monotonically decreasing; (c)
follows because 1/N < Ap;.

Finally, plugging (202) and (204) into (201) and defining ¢, = 87 + 14 we
obtain (106).

Proof of (107)

Begin by splitting the summation interval and recombining the terms in the following
way:

— Z sup  |kp(w)| = sup |k ()|

—0 MGN(A}H N) %E[O,Z}»hi)L‘EN(Ahi’

1
+3 > sup [kl ()|

e, 1 /21 SN G )

1
+§n Z sup |k (u)|

2 172, 1— 2 EN Ot )

1
+5 D sup [k ()|

Rell—2Ai, HUeN i 1)
= X sup [k )|
2 €[0,20i Jﬁ)“eN(lhi.N)
D sup  |kfia)|.  (205)
ueN (ui, 5)

L2, 3 +7)

Above, the inequality follows by symmetry of sup,c ar,..) |kl’1’i(u)| around 1/2. Next,
we upper-bound the two sums separately.
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To upper-bound the first sum in (205) we proceed as follows:

> sup k()| < (2xhi+ 1)Nmax |kt ()]

eN (hni. 5
1 e1023g+ )" <Y oo W)

(@) 3 (b) 1272
< 3)¥hi4 i = 2
hi

(206)

Above, in (a) we used (200) and the assumption that 1 /N < Ap;; in (b) we used that
Shi = 1/Ani.

To upper-bound the second term in (205) we differentiate kp;(-) in (7) twice to
obtain:

71_ (sin(2mt) sin(27 fpit) — cos(2mwt) cos(2m frit) — 2 cos(2m fhit))
N (fhi+ 1D sin* (1)
+

7% (cos(2mt) +2)

W(fhi + 1) sin® (1)

472 fsin(rQfui + D1) 272 fZ cosa(fii + D)
N (fu+ DsintGr) N (fu+ Dsin(r)

This leads to the following upper bound on |kl/1/i(t)| fort € [0, 0.55]:

@ 1 T2 472 fii 272 2
ki ()| < ~ ——— + — )
(foi + Dsin®(wt)  (foi + Dsin’(wr)  (fo + 1) sin” (1)

(b) 1 T 4 27 fiy
—_—t —+ —— ). 207
TN (fhif4 S ) 20D
Above, in (a) we used the triangle inequality and the fact that |sin(~)} < <1

in (b) we used the inequalities sin(zr)? > w2, sin(ne)? > 7o, sin(r[t)4 > nt* for
t € [0, 0.55]. Next observe that since the right-hand side of (207) is monotonically
decreasing for t > 0 we have for € (Apj, 0.55]:

1 7 4 2 ;
sup [k w)| = ( T Ty 2). (208)
ueN G, 1) Jni(t — Ani) (t — Ani) (t — Ani)

Therefore, the second term in (205) can be upper-bounded as follows:

Z sup |k (u)|

ueN (i,
el s+ SN O )

Jui N (n/N Ani)*

v E[Z)th > +
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1 1
+ar— —
N2 (/N = Ani)’
el2ni, 5+ 4)
1 1
2 - - -
tam iy 2 /N =)

e[, 144

») Tm (1 1 /UZH/N 1 d)
< |-+ —di
foi \N Qxni —)*  Jo, (t — an)?
1 1 1/2+1/N 1
+4n (—— —l—/ —dt)
N (2Ani — Ani)? 2hni (t — Ani)3
1 1 1/2+1/N 1
27 fa (—— +/ —dt)
"\N Qhni — )2 Sy (t — Ani)?
© 7x 11+f°°1dt+4 11+/°°1dt
=s—|v= = |~ =
foi \N )"ﬁi Ahi t# N )‘gi Ahi 13
+ 27 fi L1 +/‘°° 1dt
I —
hi N )\'ﬁl },hi t2
T (1 1 n 1 44 1 1 n 1
= — _—— —_— T _—— —_—
Joi \N )‘ﬁi 3)‘t31i N )‘ﬁi Zkﬁi

11 1
2 fi | —— + —
+ fhl (NAZ. + )»hi)

hi
@ (28 1 587 1
< (—n+6n +4n)—2=—”—2. (209)
3 )\hi 3 )Lhi

Above, (a) follows from (208) because 1/2+ 1/N < 0.55; (b) follows because the
functions 1/(t — i), 1 /(t — )3, and 1 /(t — Ani)? are monotonically decreasing;
(c) follows by changing the integration variable; (d) follows because 1/N < Ap; and
because fhi = 1/An;.

Finally, plugging (206) and (209) into (205) and defining ¢}/ £ 1272 4 587 /3 we
obtain (107).
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