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Abstract
In super-resolution it is necessary to locate with high precision point sources from
noisy observations of the spectrum of the signal at low frequencies capped by flo.
In the case when the point sources are positive and are located on a grid, it has
been recently established that the super-resolution problem can be solved via linear
programming in a stable manner and that the method is nearly optimal in the minimax
sense. The quality of the reconstruction critically depends on the Rayleigh regularity
of the support of the signal; that is, on the maximum number of sources that can occur
within an interval of side length about 1/ flo. This work extends the earlier result and
shows that the conclusion continues to hold when the locations of the point sources
are arbitrary, i.e., the grid is arbitrarily fine. The proof relies on new interpolation
constructions in Fourier analysis.
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1 Introduction

The super-resolution problem of positive sources (see Fig. 1) consists of recovering a
high-frequency signal

x(w) =
∑

i

xiδ(w − wi ) (1)

consisting of positive point sources (spikes, for short) located at unknown positions
wi ∈ [0, 1) and of unknown intensity xi > 0; δ(·) is the Dirac delta function. The
signal is observed through a convolution measurement of the form

s(v) =
∫

klo(v − w)x(w)dw + z(v), (2)

where klo(·) is a low-frequency kernel that erases the high-frequency components of
the signal and z(·) is noise.

This problem arises in single-molecule super-resolution microscopy [7,22,33]. In
this application,wi ’s encode the unknown locations of fluorescentmolecules, xi is pro-
portional to the number of photons emitted by the i th molecule during the observation
time. Crucially, the number of photons is a nonnegative number, leading to the assump-
tion xi > 0, which makes the problem much simpler. Assume that light of wavelength
λlo is emitted by the molecules. Due to diffraction of light, the high-frequency spatial
details of the signal are destroyed, no matter how perfect or large the microscope is.
At the detector we record a blurred version of the signal, no details smaller than about
λlo are visible. To restate this mathematically: the function klo(·) models the (PSF) of
the microscope; due to diffraction of light the PSF is band-limited to flo � 1/λlo. The
noise z(v) represents all sources of noise in the system. For example, the thermal noise
at the detector, the Poisson quantum mechanical noise due to photon quantization in
low-intensity imaging, and the noise originating from the imperfect knowledge of the
PSF in the optical system. We refer the interested reader to [43], where the connection
to super-resolution microscopy is worked out in details.

0 1 0 1

λlo = 1/flo

(a) (b)

Fig. 1 Microscope as a low-pass filter: signal in a and convolution measurement in b (Color figure online)
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1.1 Discrete Model

In the earlier work [43] a discrete analog of the model in (1) and (2) has been con-
sidered. The signal is modeled by a discrete vector x = [x0 . . . xN−1]T ∈ R

N , where
N is the number of elements in the grid, corresponding to partitioning the interval
wi ∈ [0, 1) into N equispaced segments. Each nonzero element in x corresponds to
one spike in (1). The PSF is modeled by matrix Q that implements an ideal low-pass
filter in the sense that it has a flat spectrum with a sharp cut-off at flo. Formally,

Q = FHQ̂F, (3)

where F is the N × N discrete Fourier transform matrix

[F]k,l = 1√
N
e−i2πkl/N

and Q̂ = diag([Q̂−N/2+1 . . . Q̂N/2]T) with

Q̂k =
{
1, k = − flo, . . . , flo,

0, otherwise.
(4)

The wavelength λlo = 1/ flo gives the width of the convolution kernel represented
by Q. This kernel is called the Dirichlet kernel. We assume throughout the paper that
N is even for simplicity.

Translated to discrete setting the model in (2) becomes

s = Qx + z. (5)

1.2 Recovery Algorithm

Our recovery method from the observations s in (5) is extremely simple: solve

x̂ = arg minx̃ ‖s − Qx̃‖1 subject to x̃ ≥ 0. (CVX)

In other words, we are looking for a set of positive spikes such that the mismatch
in received intensities is minimum. Note that this method does not make use of any
knowledge other than the observations s and the PSF Q. Furthermore, (CVX) is a
simple convex optimization program, which can be recast as a linear program since
both x and Q are real valued.

1.3 Rayleigh Regularity

Consider the discrete signal x ∈ R
N as samples on the grid {0, 1/N , . . . , 1− 1/N } ⊂

T, whereT is the circle in 1D, i.e., the interval [0, 1)with 0 and 1 identified. For a, b ∈
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T, the wrap-around distance between a and b is
∣∣b − a

∣∣ � min(b − a mod 1, a − b
mod 1); for an interval [a, b] ⊂ T, its wrap-around length is

∣∣b − a
∣∣.

We introduce a definition of Rayleigh regularity inspired by [23, Def. 1]. Let
supp(x) � {l/N : xl > 0} denote the support of the discrete signal. As we shall
see, our ability to super-resolve the signal x, will be fundamentally determined by
how regular supp(x) is in the following sense.

Definition 1 (Rayleigh regularity) We say that the set of points V ⊂ T is Rayleigh-
regular with parameters (d, r) and write V ∈ R(d, r) if it may be partitioned as
V = V1 ∪ · · ·∪Vr , where the Vi ’s are disjoint, and each obeys a separation constraint:

1. for all 1 ≤ i < j ≤ r , Vi ∩ V j = ∅;
2. for all intervals D ⊂ T of wrap-around length

∣∣D
∣∣ = d and all i ,

|Vi ∩ D| ≤ 1,

where
∣∣Vi ∩ D

∣∣ denotes the cardinality of the set Vi ∩ D.

In this paper we are interested in super-resolving signals with Rayleigh-regular sup-
port: supp(x) ∈ R(d, r). Such signals are illustrated in Fig. 2.

As we will discuss, in the special case when supp(x) ∈ R(c̃λlo, 1) [i.e., when
r = 1] with c̃ a bit larger than one (as in Fig. 2a), the super-resolution problem is
particularly easy. In this case we will say that the spikes in x are well-separated.

1.4 Discrete Stability Estimates

The main result of the earlier work [43] is the following proposition.

Proposition 1 Assume x ≥ 0 and supp(x) ∈ R(κλlor , r) with κ � 1.87 and flo ≥
128r . Assume that the observations s are given by (5). Then the solution x̂ to (CVX)
obeys

‖x̂ − x‖1︸ ︷︷ ︸
Error

≤ Cd(r) ·
(

N

flo

)2r

· ‖z‖1 = Cd(r) · DSRF2r · ‖z‖1, (6)

where Cd(r) only depends on r (if DSRF ≥ 3.03/r , it can be taken to be Cd(r) =
r2r · 4 · 17r ).
The ratio DSRF � N/ flo is called the discrete super-resolution factor; this is the
ratio between the scale at which we observe the data, 1/ flo, and the scale of the finest
details in the data, 1/N .

1.5 Breakdown of Discrete Stability Estimates

In practice, signals do not belong to a discrete grid. In order to accurately approximate
the continuous model in (1) we might need to make the grid very fine, i.e., take N
large.
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0 1

≥ 2λlo ≥ 2λlo

0 1

λlo ≥ 4λlo

0 1

λlo ≥ 4λlo

0 1

≥ 6λlo ≥ 6λlo

(a) R(2λlo, 1)

(b) R(4λlo, 2)

(c) R(4λlo, 2)

(d) R(6λlo, 3)

Fig. 2 Examples of discrete N dimensional signals whose support belongs to the Rayleigh classes
R(2λlo, 1) in a,R(4λlo, 2) in b and in c,R(6λlo, 3) in d depicted on the grid {0, 1/N , . . . , 1−1/N } ⊂ T.
Note that the signals in b and in c both have support inR(4λlo, 2). In general, Rayleigh regularity does not
require that all spikes in the signal are arranged into separated clusters as is the case in b and in d. The sine
wave sin(2π flot) at the highest visible frequency is shown by the dotted line for reference. Here, N = 120
and flo = 14, so that λlo = 1/14. By periodicity, the endpoints are identified (Color figure online)

The problem is that the theoretical result in (6) becomes meaningless when flo and
‖z‖1 remain fixed, and N → ∞. Indeed, observe that (6) guarantees accurate signal
recovery when the right-hand side of (6) is much smaller than ‖x‖1. When N → ∞
with flo fixed, then DSRF2r → ∞ very quickly, so that the right-hand side of (6)
becomes larger than ‖x‖1, even for very small noise.

This is expected. Consider the hypothetical situation illustrated in Fig. 3. The true
signal x consists of three spikes as depicted in Fig. 3a in solid purple. The grid is very
fine (N is large); the PSF is wide as shown in Fig. 3b (the solid purple curve, with
characteristic width λlo, represents s = Qx + z with x from Fig. 3a); and the data is
noisy. Imagine an algorithm produced an estimate x̂good as depicted in Fig. 3c by the
dashed blue spikes. The estimate x̂good is excellent: the dashed blue spikes are located
in the neighboring discrete bins to the corresponding solid purple ground truth spikes,
the magnitudes are estimated perfectly. In the presence of noise we cannot hope for
infinite resolution, so for large N , we should be happy if we were able to obtain x̂good
as in Fig. 3c. Yet,

‖x̂good − x‖1 = 2‖x‖1,
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(a) signal x (b) observations s solid, kernel khi(·) dotted

x solid, x̂good dashed, khi(·) dotted x solid, x̂bad dashed, khi(·) dotted

(e) error = khi (x − x̂good) 1 (f ) error = khi (x − x̂bad) 1

(c) (d)

Fig. 3 Measuring the estimation error when the grid is very fine (N is large) (Color figure online)

i.e., the estimation error is about as large as it can possibly be. We conclude that the
reason why the result in (6) becomes meaningless when flo and ‖z‖1 remain fixed
and N → ∞ is that the error metric ‖x̂ − x‖1 becomes inadequate. We need a more
forgiving error metric that should penalize small localization errors on the fine grid
mildly.

We will explain in Sect. 2 how to construct the more forgiving error metric and
how to change the definition of super-resolution factor accordingly. With these mod-
ifications we can generalize Proposition 1 and formulate the stability estimates in
Theorem 1 that remain meaningful even when N → ∞ and flo and ‖z‖1 are fixed.
With the appropriate new definitions, the result in Theorem 1 is nearly identical to that
in Proposition 1. Surprisingly, the proof technique necessary to obtain Theorem 1 is
much harder than the trick thatwas sufficient to proveProposition 1. The proof relies on
new trigonometric interpolation constructions that constitute the main mathematical
contribution of this paper.
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2 Main Results

2.1 Measuring the Reconstruction Error

To avoid penalizing the estimators that produce spikes very close to the original spikes
on thefine grid, a natural approach is to convolve the difference x̂−xwith a nonnegative
kernel khi(·) of width λhi (represented by the dotted green line in Fig. 3b) before
computing the �1 norm:

error = ‖khi�(x̂ − x)‖1,

where

[
khi�(x̂ − x)

]
n �

N−1∑

m=0

khi

(
n − m

N

)
hm

and h = [h0, h1, . . . , hN−1]T � x̂ − x is the difference vector. The new error metric
is illustrated in Fig. 3c–f. When the estimated spikes are closer than λhi to the original
spikes, as is the case for x̂ = x̂good in Fig. 3c, the error, represented by the area of
the shaded region in Fig. 3e, is very small. Conversely, when the estimated spikes
are further than λhi from the original spikes, as is the case for x̂ = x̂bad in Fig. 3d,
we have, error = ‖khi�(x̂ − x)‖1 ≈ 2‖x‖1, so that the error is large, as illustrated
in Fig. 3f.

The width, λhi, of the kernel khi(·) is a parameter of the theory. This parameter will
be chosen to be (i) larger (or equal to) the finest scale of the data, λhi ≥ 1/N , and,
simultaneously, (ii) smaller than the native resolution of the observations, λhi < λlo.
Having chosen λhi, we define the super-resolution factor as:

SRF � λlo

λhi
.

The SRF will play the same role in our theory as the DSRF played in Proposition 1.
In Fig. 3b, the SRF is the ratio between λlo, the width of the kernel Q, and λhi, the
width of the kernel khi(·).

To be concrete, a reasonable situation might be: λlo = 1/10, 1/N = 1/1000 so
that DSRF = 100. This makes the right-hand side of (6) huge so that the stability
estimate is useless. Now, choose λhi = 1/100 so that SRF = 10, which is much
smaller than DSRF. The main result of this paper, Theorem 1 below, shows that we
can upper-bound the error ‖khi�(x̂ − x)‖1 in terms of SRF2r , which is much smaller
than DSRF2r , keeping the bound tight for realistic values of the noise.

For khi(·), in this paper we use the Fejér kernel:

khi(t) � 1

N

1

fhi + 1

(
sin(π( fhi + 1)t)

sin(π t)

)2

, fhi = 1/λhi. (7)
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The normalization is such that

N−1∑

n=0

khi
( n

N

)
= 1, (8)

which ensures that the “energy” in the error is preserved in the sense that error =
‖khi�(x̂ − x)‖1 ≈ 2‖x‖1 whenever the estimated spikes in x̂ are far away from the
true spikes in x. The concrete form of the kernel khi(·) is not important. Our results
hold for any other periodic nonnegative high-resolution kernel as long as it satisfies
conditions (106) and (107) below.

When N → ∞, the error metric defined here becomes the one used in [12] in
the analysis of the continuous super-resolution problem. Compared to [12], the key
novelty of this paper is that the results in [12] apply only when the spikes in the signal
are well-separated [supp(x) ∈ R(1.87λlo, 1)] as in Fig. 2a, a stringent assumption.
In this paper we don’t assume that the spikes are well-separated and our results also
hold for signals with supp(x) ∈ R(1.87λlor , r) and r > 1 as in Fig. 2b–d. The price
we pay is that our results are only valid for nonnegative signals, whereas the results
in [12] are valid for complex-valued signals.

2.2 Stability Estimate on an Arbitrarily Fine Grid

In this paper we prove the following theorem.

Theorem 1 Assume x ≥ 0 and supp(x) ∈ R(κλlor , r) with κ � 1.87 and flo ≥ 128r .
Assume λhi < λlo, λhi ≥ 1/N, and SRF > 12. Assume, in addition, that the elements
of supp(x) are separated by at least 2λhi: if t, t ′ ∈ supp(x) with t �= t ′, then

∣∣t − t ′
∣∣ ≥

2λhi, where
∣∣·∣∣ is the wrap-around distance on T. Assume that the observations s are

given by (5). Then the solution x̂ to (CVX) obeys

‖khi�(x̂ − x)‖1 ≤ C(r)SRF2r‖z‖1, (9)

where C(r) � r2r+4cr+1 and the positive numerical constant c is defined in (128)
below.

The theorem is proven in Sects. 5, 6, 7 and in the appendices. Before we embark on
the proof, we discuss the significance and the accuracy of the result.

2.2.1 Significance of the Result

Theorem 1 gives essentially the same stability estimate for an arbitrarily fine grid
as Proposition 1 does for a discrete grid. With the new definition for error met-
ric, λhi in Theorem 1 plays the same role as the grid segment size, 1/N , played in
Proposition 1. In turn, the grid segment size, 1/N , in Theorem 1 may be arbitrarily
small without affecting the stability estimate at all. The only thing that changes when
N grows is that it becomes numerically harder to solve (CVX).
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2.2.2 Tightness

The result is information-theoretically tight in the following sense. It is possible to
prove a converse theorem (see [43, Sec. 2.3]) that says that the best possible algorithm
in the worst case (the minimax setting) cannot achieve stability estimate in (9) with
super-resolution factor dependence better than SRF2r−1. In other words, the exponent
of SRF in (9) is near-optimal.

We have made no attempt to optimize C(r). Finding the tightest possible C(r) is
an important open problem, which seems to be hard to address with the mathematical
techniques developed in this paper.

2.2.3 Mathematical Novelty

The reader might expect that since Theorem 1 is so similar to Proposition 1, the proof
of Theorem 1 is a minor modification of the work done in [43]. Perhaps surprisingly,
this is not the case.

The proof technique in [43] relied on a simple and elegant trigonometric inter-
polation construction reviewed in Sect. 6.2. In this paper, in addition, we had to
develop a flexible set of techniques that allowed us to build trigonometric polyno-
mials with specific interpolation properties. These techniques—that constitute the
main mathematical contribution of this paper—are presented in Sects. 6.3, 6.4, and in
Appendix 2 “Proof of Lemma 5”. We believe that the new techniques are interesting
in their own right and may be useful in other projects.

2.2.4 Separation by 2�hi

Theorem 1 requires the assumption that no two spikes in x are closer than 2λhi. It is
important to contrast this assumption with the separation assumption in [12,13]. The
results in [13] hold only when no two spikes in x are closer than 1.87λlo (the spikes
are well-separated). Our separation requirement is much weaker than the one needed
in [12,13]: we require the separation at the scale of λhi whereas the results in [12,13]
need separation on the scale of λlo. Since the whole point of super-resolution is to
reconstruct the original signal with accuracy about λhi � λlo, our assumption is mild,
whereas the assumption in [12,13] is restrictive.

Further, it follows from the proof of Theorem 1 that the 2λhi separation requirement
may be relaxed to, for example, λhi/2, or, more generally, to λhi/β for any β > 1. The
result in Theorem 1 will not change, except that the constant C(r) will now depend
on β. Specifically, the result will read:

‖khi�(x̂ − x)‖1 ≤ r2r+4cr+1β2rSRF2r‖z‖1.

To keep the proof of Theorem 1 as clean as possible, we decided to stick with the 2λhi
separation assumption in the theorem.

Finally, it is not clear if the separation assumptionof the formλhi/β is fundamentally
necessary. Certainly, it is necessary for the proof technique developed in this paper.
It is an open problem to either find a proof of Theorem 1 that does not rely on this
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assumption, or to prove a converse result showing that this assumption is unavoidable.
Note that there is no explicit separation assumption in Proposition 1; however, since
the spikes are on the grid, the separation assumption at the scale of 1/N is made
implicitly.

2.2.5 Density Constant

We next discuss the following question: can the constant κ = 1.87 in Theorem 1 be
made smaller without changing the result? The answer is “probably yes”. Specifically,
our proof builds upon Lemmas 1 and 2 below. The lemmas generalize [12, Lm. 2.4,
Lm. 2.5, Sec. 2.5] and their proof exploits a construction developed in [13]. The
specific value for κ = 1.87 comes from the construction borrowed from [13]. An
improved construction has recently been reported in [28] leading to a smaller value
κ = 1.26. To keep this paper as simple as possible, we decided not to accommodate
this improvement. To do so, one would need to change Lemmas 1 and 2 below and
the proof of Lemma 2 in Appendix 1 all other derivations in this paper will remain
unchanged. The constant C(r) in Theorem 1 would need to be updated accordingly.

We expect that there is a trade-off: the larger κ is, the smaller the constant C(r)
can be made. However, our estimates do not provide the smallest possible constant.
Hence, we cannot analyze the trade-off.

Finally, as explained in [43, Sec. 2.3.1], κ > 1 is a fundamental limit, so our result
is within the factor 1.87 from the optimum.

2.2.6 Gridless Super-Resolution

It has been shown in [8,12,13] that under the assumption that spikes are separated by
at least 1.87λlo (well-separated spikes), one can solve the gridless super-resolution
problem in which the spikes have completely arbitrary locations on T (no need for
the 1/N discretization). It turns out that in the gridless setup one needs to solve
an infinite-dimensional, but convex, total-variation-minimization problem (see [13,
eq. (1.4)]). Surprisingly, if one works in the dual domain and uses the idea of lifting,
the equivalent problem becomes finite-dimensional and, therefore, may be solved on
the computer. The solution to the original problem may then be reconstructed by
duality. This approach is explained in [13, Sec. 4].

The approach, by now standard, may be carried over to the problem considered
in this paper, where we work with a nonnegative signal x and the spikes need not be
well-separated. The same trigonometric polynomials that certify optimality of (CVX)
and lead to Theorem 1may also be used to prove stability of the corresponding gridless
algorithm.

The reason why we chose to focus on the arbitrarily fine grid and not to discuss the
gridless problem in details is the following practical consideration. In applications, for
example in super-resolution microscopy, there is no real difference between the grid-
less problem and the problem with a very fine grid. The real sources have some finite
nonzero size, perhaps small. Therefore, in practice, one has a choice between solving
(CVX) on a sufficiently fine grid or solving the infinite-dimensional total-variation-
minimization problem via lifting. To solve (CVX) with N variables efficiently, one
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would use a first-order solver whose complexity is dominated by repeated multiplica-
tions by Q, QT. Using (3) one would implement Q via the fast Fourier transform so
that each matrix multiplication takes O(N log N + flo) multiplications. The gridless
approach via lifting, in its standard implementation, requires one to solve a semidef-
inite convex optimization problem (see [13, eq. (4.3)]) with O( f 2lo) variables. The
complexity of the gridless approach does not depend on N at all, a very nice prop-
erty. However, the necessity to deal with a semidefinite problem withO( f 2lo) variables
make it more costly than solving (CVX) on a sufficiently fine grid, for example, in
the important applications in super-resolution microscopy. Having said this, recently
very interesting new approaches to solve the gridless problem much faster have been
developed. One idea is to construct a solver for the semidefinite problem that directly
leverages the structure of the problem [15], another idea is to construct primal Frank-
Wolfe based solvers with heuristics [10,20,29]. It would be interesting to see a rigorous
study comparing the fine grid methods with the gridless methods in applied super-
resolution microscopy problems. We refer to [20, Sec. 5] for fascinating work in this
direction.

2.2.7 General PSFs

The sharp rectangular frequency cut-off of Q in (4) corresponds to the Dirichlet PSF
klo(·) in (2). The Dirichlet kernel takes negative values (as shown in Fig. 3b in solid
purple), whereas all PSFs in microscopy take nonnegative values (as shown in Fig. 1).
The simplest PSF that takes nonnegative values is the Fejèr kernel. The spectrum of
Q that corresponds to the Fejèr kernel has a triangular decay of q̂k in (4) as in [43,
eq. 13] and in (196). The results for the rectangular spectrum can be translated into the
results for the triangular spectrum (in fact for the spectrum of any reasonable shape)
using the idea of spectrum equalization. We refer the reader to [43] for a detailed
explanation on how this can be done. In this paper we focus on the basic case in (4)
only.

2.2.8 The Use of �1-norm in Stability Estimates

A careful reader may ask why do we use the �1-norm in (9) and not the more usual
�2-norm. Interestingly, as explained in [43, Sect. 1.1], in super-resolution microscopy
‖x‖1, and not ‖x‖2, has the meaning of cumulative emitted intensity or the total
energy of light emitted per second. Therefore, ‖khi�(x̂ − x)‖1 is a natural choice as it
corresponds to the error (at high resolution) in cumulative emitted intensity, exactly
the quantity one would like to minimize in microscopy.

The other reason for the choice of the �1-norm is mathematical feasibility. It would
be interesting to obtain similar bounds for the �2-norm as this might be relevant for
some applications. However, the dual certificates (see below) required to obtain such
bounds need to have completely different properties, and, hence, new mathematical
constructions seem to be necessary for such an extension.
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3 Literature Review and Innovations

3.1 Prior Art

Prony’s method Prony’s method [46] is an algebraic approach for solving the gridless
super-resolution problem from noiseless data when the number of spikes is known a
priori. The observations s are used to form a trigonometric polynomial, whose roots
coincide with the spike locations. The trigonometric polynomial is then factored,
thus revealing those locations, and the amplitudes estimated by solving a system of
linear equations. In the noiseless case, Prony’s method recovers x perfectly provided
that ‖x‖0 ≤ flo. Here and below, ‖·‖0 is the pseudo-norm that denotes the number
of nonzero elements in a vector. No further Rayleigh regularity assumption on the
signal support is needed. With noise, however, the performance of Prony’s method
degrades sharply. The difficulty comes from the fact that the roots of a trigonometric
polynomial constructed by an algebraic method can shift dramatically even with small
changes in the data. See [6] for quantitative analysis showing that Prony’s method is
very sensitive to noise. Therefore, a crucial problem is to find a method for solving
the super-resolution problem in the presence of noise whose performance decays
gracefully with the amount of noise.
Fundamental limits In the pioneering work [23], Donoho studied limits of perfor-
mance for the super-resolution problem and recognized the importance of Rayleigh
regularity as the fundamental property that determines how easy it is to super-resolve
the signal. He analyzed an intractable exhaustive search algorithm and demonstrated
that assuming supp(x) ∈ R(2λlor , r), the estimator, x̂, produced by this algorithm
satisfies:

‖x̂ − x‖2 ≤ C̃(r)SRF2r+1‖z‖2. (10)

The algorithm proposed by Donoho may only be applied to vectors x with very
few dimensions. Therefore, the fundamental problem posed by Donoho is to find
an efficient algorithm that is stable in the sense of (10). Donoho has also proven a
converse to (10): the SRF dependence in (10) cannot be better than SRF2r−1 even
for the best possible algorithm in the worst-case scenario (the minimax setting). The
results of Donoho have been recently (partially) improved in [4,17] where for the same
intractable algorithm the following stability estimate was derived:

‖x̂ − x‖2 ≤ C̃(r , ‖x‖0)SRF2r−1‖z‖2. (11)

The result is sharp in the sense that the SRF dependence matches Donoho’s converse.
The weakness is that C̃(r , ‖x‖0) depends on the total number of spikes in the sig-
nal, which may be very large. This weakness has recently been (partially) removed
in [5], where a model with clustered spikes is considered that is somewhat simi-
lar, but distinct from Rayleigh regularity; stability estimates for the spike locations
and (complex-valued) spike magnitudes are derived and the estimate for the magni-
tudes scales as SRF2r−1‖z‖2. Note further that the stability estimates in (10), (11) are
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expressed in terms of �2 norms, whereas our stability estimates in (9) are expressed
in terms of �1 norms.

Other works [6,53,54] study the stability of the super-resolution problem in the
presence of noise, but likewise donot provide a tractable algorithm toperform recovery.
Work in [31,50,51] analyzes the detection and separation of two closely-spaced spikes,
but does not generalize to the case when there are more than two spikes in the signal.
Recent papers [39,40] analyze the problem of accurately recovering the number of
spikes from the low-pass measurements.
Super-resolution of well-separated spikes Progress towards resolving the question
posed in [23] in the general situation where x ∈ C

N—in this paper we consider the
case x ≥ 0 only—has been made in [12,13,28]. The sharpest from this series of
results [28] implies the following. Assume supp(x) ∈ R(1.26λlo, 1), then the solution
to �1-minimization problem

x̂ = arg minx̃‖x̃‖1 subject to ‖s − Qx̃‖1 ≤ δ (L1)

with δ chosen so that ‖z‖1 ≤ δ satisfies

‖x − x̂‖1 ≤ c̃ · SRF2,

where c̃ is a numerical constant. The requirement supp(x) ∈ R(1.26λlo, 1) (well-
separated spikes in our terminology) is restrictive because it means that the signal x
cannot contain spikes that are at a distance less than 1.26λlo. This is a limitation for
many applications including single-molecule microscopy, as it is usually understood
that the goal of super-resolution is to distinguish spikes that are (significantly) closer
than the Rayleigh diffraction limit, i.e., at a fraction of λlo apart. Unfortunately, if there
are spikes at a distance smaller than λlo, �1 minimization does not, in general, return
the correct solution even if there is no noise. The central question therefore is: which
algorithms and under which assumptions are able to super-resolve signals robustly
when the distance between some of the spikes may be substantially smaller than λlo?

On a similar line of research, see [56] and [57] for related results on the denoising
of line spectra and on the recovery of sparse signals from a random subset of their
low-pass Fourier coefficients. The accuracy of support detection for well-separated
spikes is analyzed in [2,27].
Noise-aware algebraic methods Many noise-aware versions of Prony’s method are
used frequently in engineering applications, for example in radar (see [52, Ch. 6]).
The most popular methods are MUSIC and its numerous variations [3,9,11,45,49,58],
matrix-pencil [32], and ESPRIT [44,47]. For more details on algebraic methods we
refer the reader to the excellent book [52, Ch. 4]. It is important to point out that
unlike convex optimization based methods like (L1), algebraic methods do not need
the spikes to be well-separated (x may contain spikes closer than λlo) even when the
signal is complex-valued, at least in the noiseless case.

The stability of noise-aware algebraicmethods is an active area of research. Asymp-
totic results (at high signal-to-noise ratio) on the stability of MUSIC in the presence
of Gaussian noise are derived in [16,55]. More recently, some steps towards analyzing
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MUSIC and matrix-pencil in a non-asymptotic regime have been taken in [38] and in
[42], respectively.

Especially important is the question of stability of algebraic methods when the
spikes are not well-separated. Substantial progress in understanding this for MUSIC
and ESPRIT algorithms has been made by Li and Liao in the last two years [35–
37]. See also [34] for a simplified exposition of ideas in [36] and some extensions.
The authors considered a separated cluster model for spike locations; the model is
similar to Rayleigh regularity in spirit, but is more restrictive. For example, the signals
depicted in Fig. 2b and c are both Rayleigh-regular with r = 2 and d = 4λlo. At the
same time, the signal in Fig. 2b has spike clusters that are separated by about 3λlo,
but the signal in Fig. 2c has spike clusters that are separated by only about 2λlo. The
separation between clusters determines the stability guarantee of the reconstruction in
the presence of noise. Hence, the theory based on the separated cluster model predicts
that the signal in Fig. 2b is easier to super-resolve than the signal in Fig. 2c. Intuitively,
it is not clear why this should be the case. The theory based on Rayleigh regularity
provides identical stability guarantees for the signals in Fig. 2b and c. Continuing this
argument, it is possible to construct examples when the guarantees based on separated
cluster model will be weak, yet the guarantees based on Rayleigh-regularity will be
strong; the examples where the reverse is true do not exist. For MUSIC in [35,36]
and for ESPRIT in [37], assuming Gaussian noise and making a further (restrictive)
assumption flo � ‖x‖20, the authors derived bounds on signal-to-noise ratio in terms
of SRF2r−2 and a factor that depend on flo so that the correct signal support recovery
is guaranteed. There is still a large gap between these stability estimates and the
minimax converse results. For example, for ESPRIT, the gap is a factor proportional
to flo, which may be very large for high-dimensional signals [37]. Hence, the problem
of finding a super-resolution method for complex-valued signals that performs well
empirically and has sharp theoretical stability estimates in the case when the spikes
are not well-separated is still open.
Super-resolution of nonnegative signals The case of nonnegative signal, x ≥ 0, was
analyzed in [24], see also [30] for a shorter exposition of the same idea. It is proven
in [24] that as long as ‖x‖0 ≤ flo, one can recover x by solving a simple convex
feasibility problem in the noiseless setting. In the presence of noise, [24] does not
provide sharp estimates: it does not reveal the correct SRF dependence in the stability
estimate.

More recently, the authors of [48] generalized [24] to the case of more general
point spread functions and sampling patterns in the noiseless case; further refinements
have been obtained in [25]. The corresponding noisy case has been studied in [26].
Being very general, the results of [26] do not appear to be sharp enough to reveal the
fundamental dependence between the stability of the algorithm, the regularity of the
signal, and the super-resolution factor.

Most relevant to this work is the earlier paper [43] where Proposition 1 has been
proven. The key question remained: what happens if the grid becomes arbitrarily fine
or when there is no grid at all (the gridless setting). Some progress towards answering
this question has since been made in [19] where stability estimates for the detection
of signal support have been expressed in terms of SRF2‖x‖0−1. Note that ‖x‖0 may
be arbitrarily large for high-dimensional signals, and so the bounds in [19] become
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highly suboptimal for the practically relevant case in which the spikes are distributed
in a regular way in the signal. It was shown in [18, Sect. 2.4] that the results of [19]
may be generalized to a separated cluster model, in which case the ‖x‖0 in the estimate
above is substituted with r , the number of spikes in one cluster. However, the result
in [18, Sect. 2.4, Theorem 4] requires the clusters to be far enough, and there is no
quantification of how far the clusters need to be. In other words, the clusters need to
be arbitrarily far away from one another. In contrast, the Rayleigh regularity concept
in this paper specifies exactly how far the clusters need to be for stability estimates
to hold and, further, this distance is tight to within a factor of 1.87 [43, Sect. 2.3.1].
Also see the discussion above explaining that Rayleigh regularity is generally a more
forgiving requirement than the separated cluster model.

3.2 Innovations

The innovations in this paper may be summarized as follows:

– Generalization of the results of [43] to the case when the grid is arbitrarily fine.
– Seamless connection between the super-resolution results for the discrete grid and
the results for the gridless (continuous) setting. This has theoretical as well as
practical implications.

– Mathematically the paper builds on the ideas from [12] and [43] and develops
these methods further. The interpolation constructions in Lemmas 4 and 5 are
new. These constructions may be of independent interest and may be useful for
other problems.

4 Notation

Sets are denoted by calligraphic lettersA,B, and so on. Boldface lettersA,B, . . . and
a,b, . . . denote matrices and vectors, respectively. The element in the i th row and j th
column of a matrixA is ai j or [A]i, j , and the i th element of a vector a is ai or [a]i . For
a vector a, diag(a) stands for the diagonal matrix that has the entries of a on its main
diagonal. The vector of all zeros is denoted 0. The superscript T stands for transposition.
For a, b ∈ T, the wrap-around distance between a and b is

∣∣b − a
∣∣ � min(b − a

mod 1, a − b mod 1); for an interval [a, b] ⊂ T, its wrap-around length is
∣∣b − a

∣∣.
For afinite setI,wewrite

∣∣I
∣∣ for the cardinality.Note that the notation

∣∣·∣∣ is overloaded.
For x ∈ R, �x� � min{m ∈ Z | m ≥ x}. We use [l :k] to designate the set of natural
numbers {l, l + 1, . . . , k}. For a vector a ∈ C

n , ‖a‖1 = ∑n−1
j=0

∣∣a j
∣∣ denotes the �1

norm; ‖a‖2 = (∑n−1
j=0 a

2
j

)1/2 denotes the �2 norm; ‖a‖∞ = max j
∣∣a j
∣∣ denotes the

�∞ norm; and ‖a‖0 denotes the number of nonzero elements in a. For a function
f (·) : R → R, ‖ f (·)‖∞ = maxt∈R

∣∣ f (t)
∣∣. The indicator function is denoted as I [·],

it is equal to one if the condition in the brackets is satisfied and zero otherwise. We use
c with various subindexes and superindexes to denote positive numerical constants;
to track things simpler, we use the convention that the numerical constants with the
subscript u, like cu1, satisfy cu1 > 1, and the numerical constants with subscript l,
like cl1, satisfy 0 < cl1 < 1. Throughout the paper we use the convention: flo denotes
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the frequency cut-off of the measured data [see (4)], λlo = 1/ flo is the corresponding
wavelength; fc denotes an abstract frequency cut-off (this value changes in different
places in the paper) and λc = 1/ fc is the corresponding wavelength. To simplify
writing, we follow the conventions:

∏r
i=1 ai = 1 and {a1, . . . , ar } = ∅ when r = 0.

5 Structure of the Proof

Previous results in the field [12,13,43] suggest that Theorem 1 may be proven by con-
structing an appropriate dual certificate. Specifically, consider a compressed sensing
type problem in which an unknown signal is being recovered from an incomplete set
of noiseless linear measurements using a convex optimization procedure with prior
constraints on the signal (such as nonnegativity) and regularization (such as �1 norm
minimization); see, for example, [14] for a short exposition of the classical ideas.
Then the dual certificate is a vector from the range of the adjoint of the measurement
matrix that satisfies specific interpolation conditions determined by the properties of
the true unknown signal (such as sparsity) and by the type of prior constraints and
regularization used. Geometrically, the existence of the dual certificate guarantees that
the null space of the measurement matrix is oriented in a favorable way: starting from
the true unknown signal it is not possible to move along the null space of the mea-
surement matrix while satisfying the prior constraints and making the solution more
regularized. Therefore, the true unknown signal is the optimal solution of the convex
optimization problem. In other words, the existence of the dual certificate guarantees
that the convex optimization problem recovers the correct solution. In the presence of
noise a similar approach allows one to prove stability of the reconstruction, but the
dual certificate often must satisfy additional properties [43].

In our problem, since themeasurement operator is a low-pass kernel, the dual certifi-
cate is a real-valued trigonometric polynomial frequency-limited to flo with additional
properties. In fact, since we work on an arbitrarily fine grid, similar to [12], we will
need three trigonometric polynomials instead of one, each with its own properties;
they will be called q0(·), q1(·), and q2(·). These dual trigonometric polynomials are
constructed in Lemmas 3, 4, and 5 in Sect. 6; q0(·) is borrowed from [43], q1(·) and
q2(·) are new—they are the main mathematical contribution of this paper. In Sect. 7
we use q0(·), q1(·), and q2(·) to derive the stability estimates and prove Theorem 1.

We invite the reader unfamiliar with the concept of dual certificates in convex opti-
mization or the use of dual certificates in super-resolution problems to study the short
proof of [43, Lm. 1, pp. 426–427] before reading this paper further. The derivations
in Sect. 7 generalize [43, Lm. 1] to the arbitrarily fine grid setting, but they are much
more involved.

Some calculations in this paper are complicated, but we tried to present the key new
ideas in a simple way. At the first pass through the paper we suggest that the reader
studies Sects. 6.1–6.2; then focuses on the formulations of Lemmas 4 and 5 and the
new constructions in Sects. 6.3.1 and in Appendix “Proof of Lemma 5-construction”
skips the details in Sects. 6.3.2–6.3.6 and in the remainder of Appendix “Proof of
Lemma 5” and finally studies the stability estimates in Sect. 7. After this, return to the
technical details in Sects. 6.3.2–6.3.6 and in Appendix “Proof of Lemma 5”.
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6 Dual Certificates

Throughout the paper we will use the following definitions. Define the error vector

h = [h0, . . . , hN−1]T � x̂ − x

and the set of points where the error vector takes on negative values

T = {t1, . . . , tS} � {m/N : hm < 0}. (12)

The points are ordered according to t1 < · · · < tS . Recall, x̂ ≥ 0 and x ≥ 0. Therefore,
hm can only take on negative values on supp(x), which implies T ⊂ supp(x). Since
supp(x) ∈ R(κλlor , r) and since the elements of supp(x) are separated by at least
2λhi, it follows T ∈ R(κλlor , r) and the elements of T are also separated by at least
2λhi. As we will see below, the dual trigonometric polynomials q0(·), q1(·), and q2(·)
need to satisfy specific interpolation constraints on T .

Throughout the paper we will use the following neighborhood notations.

Definition 2 For τ ∈ T, δ > 0,

N (δ, τ ) � {t ∈ T : |t − τ | ≤ δ},

where
∣∣·∣∣ denotes the wrap-around distance on T. Above, N (·, ·) stands for “near”

(i.e., the points near τ ).
For a set V ⊂ T and δ > 0,

N (δ,V) � ∪τ∈VN (δ, τ ),

F(δ,V) � T \ N (δ,V).

Above, F(·, ·) stands for “far” (i.e., the points far from V).

6.1 Building Blocks

The following two lemmas serve as common building blocks for the construction of
trigonometric polynomials q0(·), q1(·), and q2(·).

Lemma 1 allows us to construct a trigonometric polynomial frequency-limited to
fc that interpolates zeros at well-separated points as illustrated in Fig. 4a.

Lemma 1 Let λc ∈ (0, 1/128), set fc � 1/λc. Consider a collection of points v1 <

v2 < · · · < vV , define V � {v1, v2, . . . , vV } and assume V ∈ R(κλc, 1). Then,
there exists a real-valued trigonometric polynomial q(·) = qλc,V (·) that satisfied the
following properties.

1. Frequency limitation to fc: q(t) = ∑ fc
k=− fc

q̂ke−i2πkt for some q̂k ∈ C.
2. Zero values and zero derivatives on V: for all v ∈ V , q(v) = q ′(v) = 0.
3. Uniform confinement between zero and one: for all τ ∈ R, 0 ≤ q(τ ) ≤ 1.
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Fig. 4 a Illustration of Lemma 1. Trigonometric polynomial frequency-limited to fc = 6 interpolates
zeros at well-separated points {v1, v2} ∈ R(2.5λc, 1). Specifically, qλc,V (v j ) = q ′

λc,V (v j ) = 0 and the
curvature in the neighborhoods of v1 and v2 is controlled (indicated in red) according to (13). b Illustration
of Lemma 2. Trigonometric polynomial frequency-limited to fc = 6 interpolates values f1 and f2 at well-
separated points {v1, v2} ∈ R(2.5λc, 1). Specifically, qλc,V,{ f j },{d j }(v j ) = f j and the derivatives at v1

and v2 are constrained (indicated in red) according to q ′
λc,V,{ f j },{d j }(v j ) = d j (Color figure online)

4. Quadratic behavior near V: for all v ∈ V and for all τ ∈ N (
λc, v)

cl(v − τ)2

λ2c
≤ q(τ ) ≤ cu(v − τ)2

λ2c
. (13)

5. Boundedness away from zero far from V: for all τ ∈ F(
λc,V), q(τ ) ≥ cl1 > 0.
6. Uniform confinement of the derivative: ‖q ′(·)‖∞ ≤ 2π/λc.
7. Uniform confinement of the second derivative: ‖q ′′(·)‖∞ ≤ 4π2/λ2c .

Above, all the constants are positive numerical constants. Specifically,


 � 0.17, cl � 0.029
cu � 2π2, cl1 � 
2cl = 8.3 × 10−4.

(14)

Proof This lemma is a direct consequence of the technique developed in [13]. Let
qCFG(·) be the trigonometric polynomial constructed as in [13, eq. (2.4)] to interpolate
−1 on V . Then, according to [13, Lm. 2.4, Lm. 2.5, Sec. 2.5], q(·) = 0.5(qCFG(·)+1)
satisfies Properties 1, 2, 3, 5 of the lemma, and the lower bound in (13). Since, by
Property 3, ‖q(·)‖∞ ≤ 1, Properties 6 and 7 follow by applying (129) [Bernstein
theorem]. Finally, the upper bound in (13) follows from Property 2 and Property 7
by (195) [Mean Value theorem]. ��

Lemma 2 allows us to construct a trigonometric polynomial frequency-limited to fc
that interpolates arbitrary values and has constrained derivatives at well-separated
points as illustrated in Fig. 4b.

Lemma 2 Let λc ∈ (0, 1/128), set fc � 1/λc. Consider a collection of points v1 <

v2 < · · · < vV , define V � {v1, v2, . . . , vV } and assume V ∈ R(κλc, 1). Consider
two sets of real numbers { f1, f2, . . . , fV } and {d1, d2, . . . , dV } that satisfy

∣∣ f j
∣∣ ≤ 1 and

∣∣d j
∣∣ ≤ 1

λc
(15)
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Fig. 5 Illustration of Lemma 3. Trigonometric polynomial frequency-limited to flo = 12 interpolates zeros
on Rayleigh-regular set T = {t1, t2, t3, t4} ∈ R(5λlo, 2) and bounces away from zeros “quickly”: the
curvature in the neighborhoods of each point ti is “high” in the sense of (17). In the figure,

∣∣t3 − t1
∣∣ ≥

5λlo = 5/12,
∣∣t4 − t2

∣∣ ≥ 5λlo = 5/12,
∣∣t2 − t1

∣∣ ∼ 2λhi,
∣∣t3 − t4

∣∣ ∼ 2λhi (Color figure online)

for all j = 1, . . . , V . Then, there exists a real-valued trigonometric polynomial q(·) =
qλc,V,{ f j },{d j }(·) that satisfies the following properties.

1. Frequency limitation to fc: q(t) = ∑ fc
k=− fc

q̂ke−i2πkt for some q̂k ∈ C.
2. Constrained values and derivatives on V: for all j = 1, . . . , V ,

q(v j ) = f j and q ′(v j ) = d j .

3. Uniform confinement: ‖q(·)‖∞ ≤ cu0.
4. Uniform confinement of the derivative: ‖q ′(·)‖∞ ≤ cu1/λc.
5. Uniform confinement of the second derivative: ‖q ′′(·)‖∞ ≤ cu2/λ2c .

Above, cu0, cu1, and cu2 are positive numerical constants that are defined in the proof
of the lemma in Appendix 1 “Proof of Lemma 2”.

The proof of the lemma generalizes the results in [13, Lm. 2.4, Lm. 2.5, Sec. 2.5]
slightly in several technical aspects; it is given in Appendix 1 “Proof of Lemma 2”.

6.2 Dual Certificate q0(·)

We are now ready to construct the trigonometric polynomial q0(·). This trigonometric
polynomial, illustrated in Fig. 5, is frequency-limited to flo, interpolates zeros on a
Rayleigh-regular set, is confined between zero and one, and quickly grows around its
zeros.

The key difference between the trigonometric polynomial q0(·) and the building
block qλc,V (·) constructed in Lemma 1 is that the points where q0(·) must take zero
values may belong to a Rayleigh-regular set from a class R(d, r) with r > 1. Zeros
of q0(·) may be close, whereas zeros of qλc,V (·) are well-separated (compare Figs. 4a
to 5). This is the reason why the technique of [13] and [12] that was used to prove
Lemma 1 cannot be applied directly to construct q0(·).
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Lemma 3 There exists a real-valued trigonometric polynomial q0(·) that satisfies the
following properties.

1. Frequency limitation to flo: q0(t) = ∑ flo
k=− flo

q̂0,ke−i2πkt for some q̂0,k ∈ C.
2. Zero values and zero derivatives on T : for all t ∈ T , q0(t) = q ′

0(t) = 0.
3. Uniform confinement between zero and one: for all τ ∈ R, 0 ≤ q0(τ ) ≤ 1.
4. Controlled behavior near T : Take τ ∈ N (r
λlo, T ), where 
 = 0.17 as before.

Let {vτ
1 , . . . , v

τ
r̂ } � N (r
λlo, τ )∩T . [Note: since T ∈ R(rκλlo, r) and
 < κ , it

follows that 1 ≤ r̂ ≤ r .] Set vτ � arg minv∈{vτ
1 ,...,vτ

r̂ }
∣∣v − τ

∣∣. Then, the following
estimates hold.

(a) Lower bound:

q0(τ ) ≥ crl2

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
(16)

≥ crl2
(vτ − τ)2λ

2(r−1)
hi

(rλlo)2r
. (17)

(b) Upper bound:

q0(τ ) ≤ cr̂u

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
. (18)

5. Boundedness away from zero far from T : for all τ ∈ F(r
λlo, T ),

q0(τ ) ≥ crl1 > 0. (19)

6. Fast growth immediately away from T : for all τ ∈ F(λhi, T ),

q0(τ ) ≥ crl
λ2rhi

(rλlo)2r
.

Above, cl2 is a positive numerical constant, defined in the proof below.

The trick to prove this lemma is the main contribution of the earlier paper [43]. The
key observation is the following. It is possible to construct the nonnegative trigono-
metric polynomial q0(·) frequency-limited to flo that is zero on all the points of the set
T ∈ R(rκλlo, r) as a product of r trigonometric polynomials. Each of these trigono-
metric polynomials is zero on a set that belongs toR(κλlor , 1) and is constructed via
Lemma 1. We reproduce the proof below because it motivates the new construction in
Sect. 6.3.

Proof Set

Tk �
{
t jr+k : j ∈ [0 :�(S − 1)/r�]

}
, k = 1, . . . , r . (20)
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Fig. 6 Illustration of the proof ofLemma3.The setT = {t1, t2, t3, t4} isRayleigh-regular:T ∈ R(5λlo, 2),
with r = 2 and λlo = 1/12. The idea is to split this set as T = T1 ∪T2 with T1 = {t1, t3} and T2 = {t2, t4}
and observeTi ∈ R(5λlo, 1). The trigonometric polynomials are frequency-limited to flo/2 = 6 and satisfy
the interpolation constraintsqrλlo,T1 (t) = q ′

rλlo,T1 (t) = 0 for all t ∈ T1 andqrλlo,T2 (t) = q ′
rλlo,T2 (t) = 0

for all t ∈ T2. Then, q0(·) = (qrλlo,T1 × qrλlo,T2 )(·) satisfies q0(t) = q ′
0(t) = 0 for all t ∈ T and is

frequency-limited to 2 × flo/2 = 12. The trigonometric polynomial q0(·) is displayed in Fig. 5. In the
figure,

∣∣t2 − t1
∣∣ ∼ 2λhi,

∣∣t3 − t4
∣∣ ∼ 2λhi (Color figure online)

Observe that T = T1 ∪ · · · ∪ Tr and Tk ∈ R(κλlor , 1). Set

q0(t) � qrλlo,T1(t) × · · · × qrλlo,Tr (t), (21)

where qrλlo,Tk (·), k = 1, . . . , r , are the trigonometric polynomials constructed1 via
Lemma 1 with λc = rλlo and V = Tk ∈ R(κλlor , 1). The idea of this construction
for r = 2 is illustrated in Fig. 6.

It remains to verify that Properties 1–6 are satisfied. Broadly, this follows from (21)
and Lemma 1; the details are given below.

Property 1 is satisfied because each of trigonometric polynomials qrλlo,Tk (·), k =
1, . . . , r is frequency-limited to flo/r . Hence, the product in (21) is frequency-limited
to r( flo/r) = flo.

Properties 2 and 3 follow from (21) and from Lemma 1, Properties 2 and 3, respec-
tively.

To prove (16) we lower-bound the terms in (21) separately as follows. Assume that
k ∈ {1, . . . , r} is such thatN (r
λlo, τ ) ∩ Tk �= ∅, i.e., there exist l ∈ {1, . . . , r̂} that
satisfies vτ

l ∈ Tk . In this case, we use the left-hand side of (13) to write

qrλlo,Tk (τ ) ≥ cl
(vτ

l − τ)2

(rλlo)2
. (22)

1 Strictly speaking this requires that the frequency limitation of qrλlo,Tk (·), flo/r , is an integer. In the rest
of the paper, for simplicity, we will make this additional assumption. If this assumption is not satisfied, we
can simply substitute flo with � flo/r�r and repeat all the arguments in the paper, leading only to a small
increase in the density constant 1.87 in Theorem 1.
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Note that there are exactly r̂ such terms in (21). Assume that k ∈ {1, . . . , r} is such
that N (r
λlo, τ ) ∩ Tk = ∅. In this case, use Lemma 1, Property 5, to write

qrλlo,Tk (τ ) ≥ cl1. (23)

Note that there are exactly r− r̂ such terms in (21). The desired bound (16) is obtained
by plugging (22) and (23) into (21) and setting cl2 � min(cl , cl1).

Bound (17) follows because the elements of T are separated by at least 2λhi and
because λhi/λlo < 1.

To prove (18) we upper-bound the terms in (21) separately as follows. Assume that
k ∈ {1, . . . , r} is such thatN (r
λlo, τ ) ∩ Tk �= ∅, i.e., there exist l ∈ {1, . . . , r̂} that
satisfies vτ

l ∈ Tk . In this case, we use the right-hand side of (13) to write

qrλlo,Tk (τ ) ≤ cu
(vτ

l − τ)2

(rλlo)2
. (24)

Assume that k ∈ {1, . . . , r} is such that N (r
λlo, τ ) ∩ Tk = ∅. In this case, we use
Lemma 1, Property 3, to write

qrλlo,Tk (τ ) ≤ 1. (25)

The desired bound (18) is obtained by plugging (24) and (25) into (21).
Property 5 follows by (21) and Lemma 1, Property 5.
Finally, Property 6 follows from (21), (13), Lemma 1, Property 5, and (14). ��

6.3 Dual Certificate q1(·)

We are now ready to construct the trigonometric polynomial q1(·). This construction
and its analysis is the main mathematical contribution of this paper. Trigonometric
polynomial q1(·), illustrated in Fig. 7, is frequency-limited to flo and, on the points
t j ∈ T , q1(·) interpolates the set of signs

s j � sign

⎛

⎝
∑

m/N∈N (λhi,t j )

hm

⎞

⎠ , j = 1, . . . , S, (26)

at a (low) level ρ/2, ρ = (λhi/λlo)
2r � 1. The behavior of q1(·) is controlled by q0(·)

as explained in Lemma 4 below.

Lemma 4 Set ρ � λ2rhi /λ
2r
lo . Then, there exists a real-valued trigonometric polynomial

q1(·) that satisfies the following properties.

1. Frequency limitation to flo: q1(t) = ∑ flo
k=− flo

q̂1,ke−i2πkt for some q̂1,k ∈ C.
2. Constrained sign pattern (at level ρ) on T and controlled behavior near T : for

all j = 1, . . . , S and all τ ∈ N (λhi, t j ),

∣∣∣q1(τ ) − ρs j
2

∣∣∣ ≤ r2r+4cr+1
u27 q0(τ ), (27)
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Fig. 7 Illustration of Lemma 4. Trigonometric polynomial frequency-limited to flo = 12 interpolates
the sign pattern {s1, s2, s3, s4} = {+1,+1,+1,−1} at a (low) level ρ/2. Specifically, q1(ti ) = siρ/2
and q ′

1(ti ) = 0. The set T = {t1, t2, t3, t4} is Rayleigh-regular: T ∈ R(5λlo, 2) with λlo = 1/ flo and∣∣t2 − t1
∣∣ ∼ 2λhi,

∣∣t3 − t4
∣∣ ∼ 2λhi (Color figure online)

where s j are defined2 in (26). Since q0(τ ) = 0 for τ ∈ T , (27) implies, in
particular, that q1(·) interpolates the sign pattern in (26) at level ρ/2 on T .

3. Uniform confinement: ‖q1(·)‖∞ ≤ r2r+1cru55.
4. Boundedness far from T : for all τ ∈ F(λhi, T ),

|q1(τ )| ≤ r2r+2cru29q0(τ ), (28)

The positive numerical constants cu27, cu55, and cu29 are defined in the proof below.

Discussion Let’s compare q1(·) illustrated in Fig. 7 to qλc,V,{ f j },{d j }(·) constructed
in Lemma 2 and illustrated in Fig. 4b. In qλc,V,{ f j },{d j }(·), the behavior at a well-
separated set of points is independently controlled: the trigonometric polynomial can
take arbitrary values (between −1 and 1). Reminder: we say that the points are well-
separated if the distances between the points are no smaller than ∼ c̃/ fc, where
fc is the frequency limitation of the trigonometric polynomial under consideration
and c̃ is a bit larger than 1. In the case of q1(·), the points where the behavior is
controlled are not well-separated as illustrated on Fig. 7:

∣∣t2 − t1
∣∣ ∼ 2λhi � 1/ flo,∣∣t3 − t4

∣∣ ∼ 2λhi � 1/ flo. Therefore, by Bernstein theorem (see Theorem 2), the
behavior of q1(·) at nearby points cannot be controlled independently. To be concrete:
suppose we require that q1(t1) = −1 and q1(t2) = +1. Since the points t1 and t2
are separated by about 2λhi � λlo (not well-separated), Bernstein theorem says that
these two requirements cannot be satisfied simultaneously. Indeed, since ‖q1(·)‖∞ ≤
C̃(r) = r2r+1cu55, by (129), ‖q ′

1(·)‖∞ ≤ 2πC̃(r) flo. If the two requirement had been
satisfied simultaneously, the derivative of q1(·) between the points t1 and t2 would
have been about (q1(t2) − q1(t1))/(2λhi) = 2/(2λhi) = fhi � 2πC̃(r) flo (we are
assuming that SRF is large). However, if we require that q1(t1) = −ρ and q1(t2) = +ρ

and ρ is small enough, the two requirements may be satisfied simultaneously. This is
the reason why ρ is set to λ2rhi /λ

2r
lo � 1 in the formulation of Lemma 4.

2 The lemma is valid for an arbitrary sign pattern, we formulate it for the sign pattern defined in (26) for
concreteness.
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Let’s compare q1(·) to the trigonometric polynomial q0(·) constructed in Lemma 3
and illustrated inFig. 5. In both trigonometric polynomials the behavior is controlled on
a Rayleigh-regular set, whose points are not well-separated in general. The difference
is that q0(·) takes the same value (zero) on all the points of the Rayleigh-regular set.
This allows us to use the multiplication trick illustrated in Fig. 6 to prove Lemma 3. In
the case of q1(·) this does not work because we need to interpolate an arbitrary sign
pattern on the Rayleigh-regular set. A method to resolve this problem, presented next,
is the main mathematical contribution of this paper.

Proof Lemma 4 is proven in Sects. 6.3.1–6.3.6 below. ��

6.3.1 Construction

Wefirst describe how the trigonometric polynomialq1(·) is constructed. InSects. 6.3.2–
6.3.6 we prove that the construction is valid and that it satisfies the required Properties
1–4.

Recall,T = {t1, . . . , tS} is defined in (12) and, as before, define Tk , k = 1, . . . , r , as
in (20); remember that T = T1∪· · ·∪Tr and Tk ∈ R(κλlor , 1). Set η j = ρ(s j +1)/2
for j = 1, . . . , S.

Wewill construct the trigonometric polynomial q1(·) as a (shifted) sum of r trigono-
metric polynomials {φk(·)}rk=1 (see Fig. 8):

q1(t) =
r∑

k=1

φk(t) − ρ/2. (29)

Each of the trigonometric polynomials {φk(·)}rk=1 is frequency-limited to flo,

φk(t) =
flo∑

l=− flo

φ̂k,l e
−i2πlt for some φ̂k,l ∈ C (30)

and is constructed separately to satisfy the following interpolation constraints on T :

φk(tl) =
{

ηl , if tl ∈ Tk,
0, if tl ∈ T c

k � T \ Tk, (31)

φ′
k(t) = 0 for all t ∈ T . (32)

Constraints (31), (32), and definition (29) guarantee that for all l = 1, . . . , S

q1(tl) = ρsl/2, (33)

q ′
1(tl) = 0. (34)

To develop intuition, observe that (30) and (29) guarantee that Property 1 is satisfied.
Further, observe that the interpolation constraints (33) and (34) are needed for (27) to
hold because q0(t) = q ′

0(t) = 0 for all t ∈ T .
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(a)

(b)

Fig. 8 Construction of the trigonometric polynomial q1(·) (displayed in Fig. 7) with target sign pattern
{s1, s2, s3, s4} = {+1,+1,+1, −1}. a trigonometric polynomials φ1(·) and φ2(·) satisfy interpolation
constraints (31) and (32) as indicated by the points highlighted in bold. Specifically, φ1(t1) = φ1(t3) = ρ,
φ1(t2) = φ1(t4) = 0, φ2(t1) = φ2(t3) = φ2(t4) = 0 and φ2(t3) = ρ; and further φ′

i (t j ) = 0. b the sum
of φ1(·) and φ2(·) that, after shifting down by ρ/2, is equal to q1(·). In this figure, φ1(·) and φ2(·) are
frequency-limited to flo = 12; T ∈ R(5λlo, 2) with λlo = 1/ flo is represented as T = T1 ∪ T2 with
T1 = {t1, t3} ∈ R(5λlo, 1), T2 = {t2, t4} ∈ R(5λlo, 1);

∣∣t2 − t1
∣∣ ∼ 2λhi,

∣∣t3 − t4
∣∣ ∼ 2λhi (Color figure

online)

For r = 2 the construction is illustrated in Fig. 8. The trigonometric polynomials
φ1(·) and φ2(·) are displayed in Fig. 8a; they satisfy the interpolation constraints (31)
and (32) as indicated by the points highlighted in bold.When we compute (φ1+φ2)(·)
weobtain the trigonometric polynomial displayed inFig. 8b,which,when shifted down
by ρ/2, is equal to the desired q1(·) displayed in Fig. 7.

The difficulty remains: how to construct trigonometric polynomials φk(·)? Set

T 0
k �

{
t jr+k : j ∈ [0 :�(S − 1)/r�] and η jr+k = 0

}



4 Page 26 of 80 Journal of Fourier Analysis and Applications (2022) 28 :4

and T +
k � Tk \ T 0

k for k = 1, . . . , r . The idea now is to construct φk(·) as a product
of two trigonometric polynomials (see Fig. 9):

φk(t) � φ0,k(t) × φ+,k(t). (35)

The first term in the product is defined as

φ0,k(t) �
∏

1≤l≤r , l �=k

qrλlo,Tl (t), (36)

where qrλlo,Tl (·), l = 1, . . . , r , are the trigonometric polynomials constructed via
Lemma 1 with λc = rλlo and V = Tl ∈ R(κλlor , 1). Observe similarity to the
trigonometric polynomial in (21); the difference is that the kth term is missing from
the product.

The second term in the product,

φ+,k(t) � r2r cru8qrλlo,Tk ,{ f j },{d j }(t) (37)

is a (rescaled) trigonometric polynomial qrλlo,Tk ,{ f j },{d j }(·) constructed via Lemma 2
with λc = rλlo, and V = Tk ∈ R(κλlor , 1) and cu8 is a positive numerical constant
defined in (62) below. Further, the function-values and derivatives of qrλlo,Tk ,{ f j },{d j }(·)
are constrained on Tk = T 0

k ∪ T +
k so that φ+,k(·) satisfies the following:

φ+,k(t) =
{
0, t ∈ T 0

k ,

ρ 1
φ0,k (t)

, t ∈ T +
k ,

(38)

φ′+,k(t) =
⎧
⎨

⎩
0, t ∈ T 0

k ,

−ρ
φ′
0,k (t)

φ2
0,k (t)

, t ∈ T +
k .

(39)

We will prove in Sect. 6.3.3 below, that this specification is valid, in the sense that
the corresponding function values and derivatives of qrλlo,Tk ,{ f j },{d j }(·) on Tk satisfy
requirements (15) of Lemma 2.

It follows from (35), (36), (38), Lemma1, Properties 2, 4, and 5 that the interpolation
constraint (31) is satisfied:

φk(t) = φ0,k(t)︸ ︷︷ ︸
0

φ+,k(t) = 0 for all t ∈ T c
k ,

φk(t) = φ0,k(t) φ+,k(t)︸ ︷︷ ︸
0

= 0 for all t ∈ T 0
k ,

φk(t) = φ0,k(t)φ+,k(t) = ρ for all t ∈ T +
k .

Next, by (35),

φ′
k(t) = φ′

0,k(t)φ+,k(t) + φ0,k(t)φ
′+,k(t).
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(a) (b)

(c) (d)

Fig. 9 Left column: constructing φ1(·) as a product of φ0,1(·) and φ+,1(·). The trigonometric polynomial
φ0,1(·) is constrained to take zero values (bold blue points) on T2 = {t2, t4} and it is strictly positive
everywhere else. The function values of φ0,1(·) on T1 = {t1, t3} are unconstrained. The trigonometric
polynomial φ+,1(·), in turn, is only constrained on T1 (bold green points). In this case T1 = T 0

1 ∪ T +
1

with T +
1 = {t1, t3} and T 0

1 = ∅. The function values and derivatives of φ+,1(·) are constrained on T1
to “compensate” for the function values and derivatives of φ0,1(·) on T1 in the sense of (38) and (39).
The compensation is such that once the two polynomials are multiplied we obtain φ1(·) with the local
maxima at level ρ on T1 as shown in (c) (bold green points). The local minima of φ1(·) on T2 are produced
“automatically”, because φ0,1(·) has zeros on T2. Note that the function values and the derivatives of
φ+,1(·) can be controlled at t1 and t3 independently, because these two points are well-separated and this
would have been impossible if these points where not well-separated. Right column: constructing φ2(·)
as a product of φ0,2(·) and φ+,2(·). The construction is similar, with the roles of T1 and T2 reversed. The
difference is that in this case T2 = T 0

2 ∪ T +
2 with T +

2 = {t2} and T 0
2 = {t4}. Since T 0

2 is nonempty,
we set φ+,2(t4) = φ′+,2(t4) = 0. Finally: observe that the scale in a and b is different from the scale in
c and d; the level ρ is marked for reference in a and b by a dotted line just above the zero line. The fact
that ρ = 1/SRF2r � 1 is responsible for the noise amplification. The setup is the same as in Figs. 7 and 8
(Color figure online)

Therefore, by (38), (39), Lemma 1, Properties 2, 4, and 5, the interpolation con-
straint (32) is satisfied:

φ′
k(t) = φ′

0,k(t)︸ ︷︷ ︸
0

φ+,k(t) + φ0,k(t)︸ ︷︷ ︸
0

φ′+,k(t) = 0, for all t ∈ T c
k ,

φ′
k(t) = φ′

0,k(t) φ+,k(t)︸ ︷︷ ︸
0

+φ0,k(t) φ′+,k(t)︸ ︷︷ ︸
0

= 0, for all t ∈ T 0
k ,

φ′
k(t) = φ′

0,k(t)φ+,k(t) + φ0,k(t)φ
′+,k(t)

= φ′
0,k(t)ρ

1

φ0,k(t)
− φ0,k(t)ρ

φ′
0,k(t)

φ2
0,k(t)

= 0, for all t ∈ T +
k .
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Finally, (30) follows from (35) because φ0,k(·) in (36) is frequency-limited to
(r − 1)/(λlor) [Lemma 1, Property 1] and φ+,k(·) in (37) is frequency-limited to
1/(λlor) [Lemma 2, Property 1] so that φk(·) is frequency-limited to (r − 1)/(λlor)+
1/(λlor) = 1/λlo = flo. Therefore, by (29), q1(·) is also frequency-limited to flo,
which proves Property 1.

For r = 2 the construction is illustrated in Fig. 9. In Fig. 9a trigonometric poly-
nomials φ0,1(·) and φ+,1(·) are displayed; φ0,1(t) = 0 for t ∈ T2 as indicated by the
bold blue points; φ+,1(·) satisfies the interpolation constraints (38) and (39) on T1 as
indicated by the bold green points. When we compute φ1(·) = (φ0,1 × φ+,1)(·) we
obtain the trigonometric polynomial in Fig. 9c. The same process is displayed in Fig.
9b and d for φ0,2(·) and φ+,2(·). The trigonometric polynomials φ1(·) and φ2(·) in
Fig. 9c and d are the same ones as in Fig. 8a.

6.3.2 Properties of�0,k(·)

We will now record useful properties of φ0,k(·) that are needed in the proof below.
For r = 1, according to (36), φ0,k(t) = 1 for all t . For r > 1, the following properties
hold.

1. Controlled behavior near T c
k : Take τ ∈ N (r
λlo, T c

k ). Let

{vτ
1 , . . . , v

τ
r̂ } � N (r
λlo, τ ) ∩ T c

k .

Note that since T c
k ∈ R(κλlor , r − 1) and 
 < κ , it follows that 1 ≤ r̂ ≤ r − 1.

Then, the following estimates hold.

(a) Lower bound:

φ0,k(τ ) ≥ cr−1
l2

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
. (40)

(b) Upper bound:

φ0,k(τ ) ≤ cr̂u

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
. (41)

(c) Upper bound on modulus of the first derivative:

∣∣φ′
0,k(τ )

∣∣ ≤
r̂∑

m=1

cr̂u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

∣∣vτ
m − τ

∣∣

(rλlo)2r̂

+ (r − 1 − r̂)cr̂+1
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂+1
, (42)

where cu3 is a positive numerical constant defined in the proof below.
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(d) Upper bound on modulus of the second derivative:

∣∣φ′′
0,k(τ )

∣∣

≤
∑

1≤m≤r̂

∑

1≤m′≤r̂
m �=m′

I [r̂ ≥ 2]cr̂u3

∏
1≤l≤r̂

l �=m, l �=m′
(vτ

l − τ)2

(rλlo)2(r̂−2)

∣∣vτ
m − τ

∣∣
(rλlo)2

∣∣vτ
m′ − τ

∣∣
(rλlo)2

+ 2(r − 1 − r̂)
∑

1≤m≤r̂

cr̂+1
u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

(rλlo)2(r̂−1)

∣∣vτ
m − τ

∣∣
(rλlo)2

1

rλlo

+ (r − 1 − r̂)2cr̂+2
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

(rλlo)2

+
∑

1≤m≤r̂

cr̂u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

(rλlo)2(r̂−1)

1

(rλlo)2

+ (r − 1 − r̂)cr̂+1
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

(rλlo)2
. (43)

2. Boundedness away from zero far from T c
k : for all τ ∈ F(r
λlo, T c

k ),

φ0,k(τ ) ≥ cr−1
l1 > 0. (44)

3. Uniform confinement of the derivative:

‖φ′
0,k(·)‖∞ ≤ 2π/λlo. (45)

4. Uniform confinement of the second derivative:

‖φ′′
0,k(·)‖∞ ≤ cu5/λ

2
lo. (46)

5. Fast growth immediately away from T c
k : for all τ ∈ F(λhi, T c

k ),

φ0,k(τ ) ≥ cr−1
l

λ
2(r−1)
hi

(rλlo)2(r−1)
. (47)

Next, we give the proofs of the properties.
Proof of properties 1a–1b These properties are derived in the same way as Properties
4a and 4b in Lemma 3.
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Proof of property 1c To prove (42), observe

∣∣φ′
0,k(τ )

∣∣ =

∣∣∣∣∣∣∣∣

⎡

⎢⎢⎣
∏

1≤m≤r
m �=k

qrλlo,Tm (τ )

⎤

⎥⎥⎦

′∣∣∣∣∣∣∣∣
≤

∑

1≤m≤r
m �=k

∣∣∣∣∣∣∣∣

∏

1≤ j≤r
j �=k, j �=m

qrλlo,T j (τ )

∣∣∣∣∣∣∣∣

∣∣∣q ′
rλlo,Tm (τ )

∣∣∣.

(48)

Above, we applied the chain rule for derivative to (36) and used the triangle inequality.
To upper-bound the sum in (48), we upper-bound quantities

∣∣qrλlo,T j (τ )
∣∣ and∣∣q ′

rλlo,Tm (τ )
∣∣ separately. To upper-bound

∣∣qrλlo,T j (τ )
∣∣ we use the same bounds as

in (24) and (25). To upper-bound
∣∣q ′

rλlo,Tm (τ )
∣∣ we use a similar strategy as follows.

Assume thatm is such thatN (r
λlo, τ )∩Tm �= ∅, i.e., there exist l ∈ {1, . . . , r̂} that
satisfies vτ

l ∈ Tm . In this case, according to Lemma 1, Property 2, q ′
rλlo,Tm (vτ

l ) = 0

and according to Lemma 1, Property 7,
∣∣q ′′

rλlo,Tm (t)
∣∣ ≤ 4π2/(rλlo)2 for all t . This,

by (194) [Mean Value theorem], gives the following bound:

∣∣∣q ′
rλlo,Tm (τ )

∣∣∣ ≤ cu2

∣∣vτ
l − τ

∣∣
(rλlo)2

. (49)

Assume that m is such that N (r
λlo, τ ) ∩ Tm = ∅. In this case, we use Lemma 1,
Property 6, to write

∣∣∣q ′
rλlo,Tm (τ )

∣∣∣ ≤ 2π
1

rλlo
. (50)

Plugging the estimates for
∣∣qrλlo,T j (τ )

∣∣ [(24) and (25)], (49), and (50) into (48), setting
cu3 � max(2π, 4π2, cu) we obtain (42).
Proof of property 1d To prove (43), observe

∣∣φ′′
0,k(τ )

∣∣ =

∣∣∣∣∣∣∣∣

⎡

⎢⎢⎣
∏

1≤m≤r
m �=k

qrλlo,Tm (τ )

⎤

⎥⎥⎦

′′∣∣∣∣∣∣∣∣

≤
∑

1≤m≤r
m �=k

∑

1≤m′≤r
m′ �=k,m′ �=m

∣∣∣∣∣∣∣∣

∏

1≤ j≤r
j �=k, j �=m, j �=m′

qrλlo,T j (τ )

∣∣∣∣∣∣∣∣

∣∣∣q ′
rλlo,Tm (τ )

∣∣∣
∣∣∣q ′

rλlo,Tm′ (τ )

∣∣∣

+
∑

1≤m≤r
m �=k

∣∣∣∣∣∣∣∣

∏

1≤ j≤r
j �=k, j �=m

qrλlo,T j (τ )

∣∣∣∣∣∣∣∣

∣∣∣q ′′
rλlo,Tm (τ )

∣∣∣. (51)
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To upper-bound the sum in (51), we upper-bound the quantities
∣∣qrλlo,T j (τ )

∣∣,∣∣q ′
rλlo,Tm (τ )

∣∣, and
∣∣q ′′

rλlo,Tm (τ )
∣∣ separately. To upper-bound

∣∣qrλlo,T j (τ )
∣∣ and∣∣q ′

rλlo,Tm (τ )
∣∣ we use estimates (24), (25) and (49), (50), respectively. To upper-bound∣∣q ′′

rλlo,Tm (τ )
∣∣ we use Lemma 1, Property 7, to write

∣∣∣q ′′
rλlo,Tm (τ )

∣∣∣ ≤ 4π2 1

(rλlo)2
.

Plugging these estimates into (51), we obtain (43).
Proof of properties 2–5 Property 2 follows by (36) andLemma1, Property 5. Property 3
follow from (48) and from Lemma 1, Property 6:

∣∣φ′
0,k(τ )

∣∣ ≤ (r − 1)
2π

rλlo
<

2π

λlo
.

Property 4 follow from (51) and from Lemma 1, Properties 6 and 7:

∣∣φ′′
0,k(τ )

∣∣ ≤ (r − 1)(r − 2)
4π2

(rλlo)2
+ (r − 1)

4π2

(rλlo)2
<

8π2

λ2lo
,

where we defined cu5 � 8π2. Finally, Property 5 follows from (36), (13), Lemma 1,
Property 5, and (14).

6.3.3 Existence of�+,k(·)

In this subsection, we check that trigonometric polynomial φ+,k(·) that satisfies (38)
and (39) can indeed be defined according to (37) with qrλlo,Tk ,{ f j },{d j } constructed via
Lemma 2 with λc = rλlo and V = Tk ∈ R(κλlor , 1). To this end, we need to show
that the constraints on the function values { f j } and on the derivatives {d j } that are
implied by the constraints (38) and (39) satisfy requirements (15) of Lemma 2.

First consider the case r = 1. As already discussed, in this case φ0,k(t) = 1 for all
t , and, therefore, φ′

0,k(t) = 0 for all t . Plugging these values into (38) and (39) we see
from (37) that the requirements (15) of Lemma 2 are satisfied.

Next, consider the case r > 1.
For t ∈ T 0

k , by (37), (38), (39), qrλlo,Tk (t) = q ′
rλlo,Tk (t) = 0 so that require-

ments (15) of Lemma 2, are satisfied.
To check that requirements (15) are also satisfied for t ∈ T +

k , we need to find upper
bounds on

∣∣φ+,k(·)
∣∣ and

∣∣φ′+,k(·)
∣∣.

Take t ∈ T +
k and observe:

∣∣φ+,k(t)
∣∣ (a)=

∣∣∣∣ρ
1

φ0,k(t)

∣∣∣∣
(b)≤ λ2rhi

λ2rlo

1

λ
2(r−1)
hi

(rλlo)2(r−1)

1

cr−1
l

(c)≤ r2(r−1) 1

crl

λ2hi

λ2lo
(52)

≤ r2r
1

crl
. (53)
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Above, (a) follows by (38); (b) follows by (47) which is valid because t ∈ T +
k implies

t ∈ F(λhi, T c
k ); (c) follows because cl < 1.

Next, take t ∈ T +
k and observe, according to (39),

∣∣φ′+,k(t)
∣∣ =

∣∣∣∣∣ρ
φ′
0,k(t)

φ2
0,k(t)

∣∣∣∣∣. (54)

Consider two cases.
Case 1: t ∈ F(r
λlo, T c

k ). Then, by (44), φ0,k(t) ≥ cr−1
l1 , and, by (45),

∣∣φ′
0,k(t)

∣∣ ≤
2π/λlo. Plugging these estimates into (54) we obtain

∣∣φ′+,k(t)
∣∣ ≤

∣∣∣∣∣ρ
2π

cr−1
l1

1

λlo

∣∣∣∣∣
(a)≤ 2π

c2r−2
l1

λhi

λ2lo

(b)
< r2r−1

(
2π

c2l1

)r
λhi

λ2lo
. (55)

Above, in (a) we used ρ = (λhi/λlo)
2r ≤ λhi/λlo; (b) is a crude inequality where we

used cl1 < 1.
Case 2: t ∈ N (r
λlo, T c

k ). In this case set {v1, . . . , vr̂ } � T c
k ∩ N (r
λlo, t) and

note 1 ≤ r̂ ≤ r − 1. Hence, by (40):

φ0,k(t) ≥ cr−1
l2

∏r̂
j=1(v j − t)2

(rλlo)2r̂
. (56)

By (42):

∣∣φ′
0,k(t)

∣∣ ≤
r̂∑

m=1

cr̂u3

∏
1≤l≤r̂
l �=m

(vl − t)2
∣∣vm − t

∣∣

(rλlo)2r̂
+ (r − 1 − r̂)cr̂+1

u3

∏r̂
l=1(vl − t)2

(rλlo)2r̂+1
.

(57)

Plugging (56) and (57) into (54):

∣∣φ′
0,k(t)

∣∣

φ2
0,k(t)

≤
r̂∑

m=1

cr̂u3
c2(r−1)
l2

(rλlo)2r̂∏
1≤ j≤r̂
j �=r

(v j − t)2
∣∣vm − t

∣∣3

+ (r − 1 − r̂)
cr̂+1
u3

c2(r−1)
l2

(rλlo)2r̂−1

∏r̂
j=1(v j − t)2

(a)≤ r2r̂+1 cr̂+1
u3

c2(r−1)
l2

(
λ2r̂lo

λ2r̂+1
hi

+ λ2r̂−1
lo

λ2r̂hi

)

(b)≤ r2r−1 cru3
c2(r−1)
l2

(
λ2r−2
lo

λ2r−1
hi

+ λ2r−3
lo

λ2r−2
hi

)
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(c)≤ 2r2r−1

(
cu3
c2l2

)r
λ2r−2
lo

λ2r−1
hi

(d)≤ r2r−1cru6
λ2r−2
lo

λ2r−1
hi

. (58)

Above, in (a) we used that
∣∣v j − t

∣∣ ≥ 2λhi for all j = 1, . . . , r̂ , r − 1 − r̂ ≤ r , and
cu3 > 1; in (b) we used that r̂ ≤ r − 1, λlo/λhi > 1, and cu3 > 1; in (c) we used
λlo/λhi > 1 and cl2 < 1; in (d) we defined cu6 � 2cu3/c2l2. Plugging the estimate (58)
into (54),

∣∣φ′+,k(t)
∣∣ ≤ r2r−1cru6

λ2rhi

λ2rlo

λ2r−2
lo

λ2r−1
hi

= r2r−1cru6
λhi

λ2lo
. (59)

Combining (55) and (59) we find that for all t ∈ T +
k ,

∣∣φ′+,k(t)
∣∣ ≤ r2r−1cru7

λhi

λ2lo
(60)

≤ r2r−1cru7
1

λlo
, (61)

where we defined cu7 � max(cu6, cu1/c2l1).
It follows from (53) and (61) that the function values and derivatives of qrλlo,Tk (t) =

φ+,k(t)/(r2r cru8) with

cu8 � max(cu7, 1/cl) (62)

satisfy requirements (15) of Lemma 2 on T +
k . We conclude that φ+,k(·) can indeed be

defined according to (37). According to Properties 3, 4, and 5 of Lemma 2, and (37),
φ+,k(·) satisfies the following properties:

‖φ+,k(·)‖∞ ≤ r2r cru8cu0, (63)

‖φ′+,k(·)‖∞ ≤ r2r−1cru8cu1
1

λlo
, (64)

‖φ′′+,k(·)‖∞ ≤ r2r−2cru8cu2
1

λ2lo
. (65)

6.3.4 Proof of Property 2

Take j ∈ {1, . . . , S} and consider t j ∈ T . There exists a unique l ∈ {1, . . . , r} such
that t j ∈ Tl . We will show that for all τ ∈ N (λhi, t j )

∣∣φl(τ ) − η j
∣∣ ≤ r2r+3cr+1

u24 q0(τ ) (66)

and

|φk(τ )| ≤ r2r+3cr+1
u26 q0(τ ), for k ∈ {1, . . . , r}, k �= l, (67)
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where the positive numerical constants cu24 and cu26 are defined below.
From this we will conclude that

∣∣∣q1(τ ) − ρs j
2

∣∣∣ =
∣∣∣∣∣

r∑

k=1

φk(τ ) − ρ

2
− ρs j

2

∣∣∣∣∣

=
∣∣∣∣∣

r∑

k=1

φk(τ ) − η j

∣∣∣∣∣

≤
r∑

k �=l

|φk(τ )| + ∣∣φl(τ ) − η j
∣∣ ≤ r2r+4cr+1

u27 q0(τ )

with cu27 � 2max(cu24, cu26), as desired.
To prove (66) and (67), recall, by (31) and (32):

∣∣φl(t j ) − η j
∣∣ = 0 = q0(t j ), (68)

φk(t j ) = 0 = q0(t j ), for k ∈ {1, . . . , r}, k �= l, (69)

φ′
k(t j ) = 0 = q ′

0(t j ), for k ∈ {1, . . . , r}. (70)

Hence, in order to prove the bounds in (67) and (66), we will derive upper bounds on
the second derivatives

∣∣φ′′
k (τ )

∣∣, k ∈ {1, . . . , r}, valid for all τ ∈ N (λhi, t j ) and use
the Mean Value theorem (see Theorem 3).

Taking the second derivative of (35) and applying the triangle inequality we find:

∣∣φ′′
k (τ )

∣∣ ≤ ∣∣φ′′
0,k(τ )

∣∣∣∣φ+,k(τ )
∣∣

︸ ︷︷ ︸
E1(τ )

+2
∣∣φ′

0,k(τ )
∣∣∣∣φ′+,k(τ )

∣∣
︸ ︷︷ ︸

E2(τ )

+ ∣∣φ0,k(τ )
∣∣∣∣φ′′+,k(τ )

∣∣
︸ ︷︷ ︸

E3(τ )

. (71)

In the derivation below we upper-bound the terms separately.
We will need the following notations. Set {vτ

1 , . . . , v
τ
r̂ } � N (r
λlo, τ ) ∩ T c

k and

set {v1, . . . , vr̃ } � N (r
λlo − λhi, t j ) ∩ T c
k . Note that the set {v1, . . . , vr̃ } does not

depend on τ and also {v1, . . . , vr̃ } ⊂ {vτ
1 , . . . , v

τ
r̂ } so that r̃ ≤ r̂ .

The remainder of the proof of Property 2 is organized as follows. First, consider
the case t j ∈ Tk and prove (66), next consider the case t j ∈ T c

k and prove (67).
Proof of (66): case t j ∈ Tk . Bounding E1(τ ): By (195) [Mean Value theorem] and
the triangle inequality we can write

∣∣φ+,k(τ )
∣∣ ≤ ∣∣φ+,k(t j )

∣∣+ ∣∣φ′+,k(t j )
∣∣∣∣τ − t j

∣∣+ 1

2

∣∣φ′′+,k(τm)
∣∣(τ − t j )

2

with τm ∈ (t j , τ ). Next, we use (38) and (52) to upper-bound
∣∣φ+,k(t j )

∣∣ by the right-
hand side of (52); use (39) and (60) to upper bound

∣∣φ′+,k(t j )
∣∣ by the right-hand side

of (60); use (65) to upper-bound
∣∣φ′′+,k(τm)

∣∣. With these estimates we can further



Journal of Fourier Analysis and Applications (2022) 28 :4 Page 35 of 80 4

upper-bound
∣∣φ+,k(τ )

∣∣ as follows:

∣∣φ+,k(τ )
∣∣ ≤ r2r−1cru9

(
λ2hi

λ2lo
+ λhi

λ2lo

∣∣τ − t j
∣∣+ 1

λ2lo
(τ − t j )

2

)
≤ r2r−1cru10

λ2hi

λ2lo
. (72)

Above, we defined cu9 � max(1/cl , cu7, cu8cu2), cu10 � 3cu9, and used∣∣τ − t j
∣∣ ≤ λhi.

Assume r̃ ≥ 1 (the case r̃ = 0 will be treated separately below) so that r̂ ≥ 1 and
τ ∈ N (r
λlo, T c

k ), which implies that we can use (43) to upper-bound
∣∣φ′′

0,k(t)
∣∣:

∣∣φ′′
0,k(τ )

∣∣ ≤
∑

1≤m≤r̂

∑

1≤m′≤r̂
m �=m′

I [r̂ ≥ 2]cr̂u3

∏
1≤l≤r̂

l �=m, l �=m′
(vτ

l − τ)2

(rλlo)2(r̂−2)

∣∣vτ
m − τ

∣∣
(rλlo)2

∣∣vτ
m′ − τ

∣∣
(rλlo)2

+ 2(r − 1 − r̂)
∑

1≤m≤r̂

cr̂+1
u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

(rλlo)2(r̂−1)

∣∣vτ
m − τ

∣∣
(rλlo)2

1

rλlo

+ (r − 1 − r̂)2cr̂+2
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

(rλlo)2

+
∑

1≤m≤r̂

cr̂u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

(rλlo)2(r̂−1)

1

(rλlo)2

+ (r − 1 − r̂)cr̂+1
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

(rλlo)2
. (73)

Multiplying (72) and (73) and simplifying we obtain the following upper bound
on E1:

E1(τ ) = ∣∣φ′′
0,k(τ )

∣∣∣∣φ+,k(τ )
∣∣ (a)≤ r2r+1cr+1

u11

∏
1≤l≤r̂ (v

τ
l − τ)2

(rλlo)2r̂
1

λ2lo

(b)≤ r2r+1cr+1
u11

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
. (74)

Above, in (a) we used (multiple times) the bound λhi ≤ ∣∣vτ
l − τ

∣∣, which is true for
all l ∈ {1, . . . , r̂} (follows because the elements of T are separated by at least 2λhi),
used λhi/λlo < 1, and defined cu11 � max(6cu3cu10, cu8cu0cu5); in (b) we used the
fact that

∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
For the case r̃ = 0, the upper-bound (74) also holds by (46) and (63).

Bounding E2(τ ): By (194) [Mean Value theorem] we can write

∣∣φ′+,k(τ )
∣∣ ≤ ∣∣φ′+,k(t j )

∣∣+ ∣∣φ′′+,k(τm)
∣∣∣∣τ − t j

∣∣
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with τm ∈ (t j , τ ). Next, we use (39) and (60) to upper-bound
∣∣φ′+,k(t j )

∣∣ by the right-
hand side of (60); use (65) to upper-bound

∣∣φ′′+,k(τm)
∣∣. With these estimates we can

further upper-bound
∣∣φ′+,k(τ )

∣∣ as follows:

∣∣φ′+,k(τ )
∣∣ ≤ r2r−1cru12

(
λhi

λ2lo
+ 1

λ2lo

∣∣τ − t j
∣∣
)

≤ r2r−1cru13
λhi

λ2lo
. (75)

Above, we defined cu12 � max(cu7, cu2cu8), cu13 � 2cu12, and used
∣∣τ − t j

∣∣ ≤ λhi.
Assume r̃ ≥ 1 (the case r̃ = 0 will be treated separately below) so that r̂ ≥ 1 and

τ ∈ N (r
λlo, T c
k ), which implies that we can use (42) to upper-bound

∣∣φ′
0,k(t)

∣∣:

∣∣φ′
0,k(τ )

∣∣ ≤
r̂∑

m=1

cr̂u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

∣∣vτ
m − τ

∣∣

(rλlo)2r̂
+ (r − 1 − r̂)cr̂+1

u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂+1
.

(76)

Multiplying (75) and (76) and simplifying we obtain the following upper bound
on E2:

E2(τ ) = ∣∣φ′
0,k(τ )

∣∣∣∣φ′+,k(τ )
∣∣ (a)≤ r2r cru14

∏
1≤l≤r̂ (v

τ
l − τ)2

(rλlo)2r̂
1

λ2lo

(b)≤ r2r cru14

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
. (77)

Above, in (a) we used the bound λhi ≤ ∣∣vτ
l − τ

∣∣, which is true for all l ∈ {1, . . . , r̂}
(follows because the elements of T are separated by at least 2λhi), used λhi/λlo <

1, and defined cu14 � max(2cu13cu3, 2πcu8cu1); in (b) we used the fact that∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
For the case r̃ = 0, the upper bound (77) also holds by (45) and (64).

Bounding E3(τ ): By (65),

∣∣φ′′+,k(τ )
∣∣ ≤ r2r−2cru8cu2

1

λ2lo
. (78)

Assume r̃ ≥ 1 (the case r̃ = 0 will be treated separately below) so that r̂ ≥ 1 and
τ ∈ N (r
λlo, T c

k ), which implies that we can use (41) to upper-bound
∣∣φ0,k(τ )

∣∣:

∣∣φ0,k(τ )
∣∣ ≤ cr̂u

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
. (79)
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Multiplying (78) and (79) and simplifying we obtain the following upper bound
on E3:

E3(τ ) = ∣∣φ0,k(τ )
∣∣∣∣φ′′+,k(τ )

∣∣ (a)≤ r2r−2cru15

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

λ2lo

(b)≤ r2r−2cru15

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
. (80)

Above, (a) we defined cu15 � cu8cu2cu ; in (b) we use the fact that∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
For the case r̃ = 0, the upper-bound (80) also holds by (78) because by (36) and

Lemma 1, Property 3,
∣∣φ0,k(τ )

∣∣ < 1 and because cu > 1 and cu2 > 1.
From (71), (74), (77), and (80) we conclude that

∣∣φ′′
k (τ )

∣∣ ≤ r2r+1cr+1
u16

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
, (81)

where we defined cu16 � 4max(cu11, cu14, cu15).
Putting pieces together:On the one hand, by (195) [Mean Value theorem], using (68),
(70), (81) and we can write for all τ ∈ N (λhi, t j ):

∣∣φl(τ ) − η j
∣∣ (a)≤ 1

2
r2r+1cr+1

u16

∏
1≤l≤r̃ (vl − τm)2

(rλlo)2r̃
(τ − t j )2

λ2lo

(b)≤ 1

2
r2r+1cr+1

u16 2
r̃

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
(τ − t j )2

λ2lo

(c)≤ r2r+3cr+1
u23

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
(τ − t j )2

(rλlo)2
. (82)

Above, in (a) τm ∈ (t j , τ ); in (b) we used that
∣∣vl − τm

∣∣ <
∣∣vl − τ

∣∣+λhi < 2
∣∣vl − τ

∣∣,
which is true because τ ∈ N (λhi, t j ) and because the elements of T are separated by
at least 2λhi; in (c) we defined cu23 � 2cu16.

On the other hand, let {uτ
1, . . . , u

τ
r̆ } � N (r
λlo, τ ) ∩ T . Then, by (16),

q0(τ ) ≥ crl2

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆

(a)≥ crl2

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
(τ − t j )2

(rλlo)2

(
(r
λlo − 2λhi)2

(rλlo)2

)r̆−r̃−1

︸ ︷︷ ︸
P1

(b)≥ crl3

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
(τ − t j )2

(rλlo)2
. (83)
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Above, in (a) we use the fact that {v1, . . . , vr̃ } ∪ {t j } ⊂ {uτ
1, . . . , u

τ
r̆ } and the fact that

by construction of the set {v1, . . . , vr̃ } it follows that if, for some k, uτ
k /∈ {v1, . . . , vr̃ }∪

{t j }, then
∣∣uτ

k − τ
∣∣ ≥ r
λlo − 2λhi; in (b) we used the assumption SRF ≥ 12 so that

λhi ≤ λlo/12 and therefore r
λlo−2λhi ≥ r(
−1/6)λlo, used that 0 < 
−1/6 < 1,
which implies that P1 ≥ (
 − 1/6)2r , and defined cl3 � cl2(
 − 1/6)2 that satisfies
0 < cl3 < 1.

The bound (66) follows from (82) and (83) by defining cu24 � cu23/cl3.
Proof of (67): case t j ∈ T c

k . We only need to consider this case when r > 1. Indeed,
when r = 1, the sum in (29) only contains one element, φl(·), and, necessarily, t j ∈ Tl
because T c

l is empty.
In this case t j is one of the elements among {v1, . . . , vr̃ } ⊂ {vτ

1 , . . . , v
τ
r̂ }; in other

words, t j = vm̃ = vτ
m̂ for some1 ≤ m̃ ≤ r̃ , 1 ≤ m̂ ≤ r̂ . The setTk∩N (r
λlo−λhi, t j )

is either empty or contains exactly one element. Let b �
∣∣Tk ∩ N (r
λlo − λhi, t j )

∣∣.
In the case when b = 1, let {t̃} � Tk ∩ N (r
λlo − λhi, t j ).
Bounding E1(τ ): Consider the case b = 1. By (195) [Mean Value theorem] we can
write

∣∣φ+,k(τ )
∣∣ ≤ ∣∣φ+,k(t̃)

∣∣+ ∣∣φ′+,k(t̃)
∣∣∣∣τ − t̃

∣∣+ 1

2

∣∣φ′′+,k(τm)
∣∣(τ − t̃)2

with τm ∈ (t̃, τ ). Next, we use (38) and (52) to upper-bound
∣∣φ+,k(t̃)

∣∣ by the right-hand
side of (52); use (39) and (60) to upper-bound

∣∣φ′+,k(t̃)
∣∣ by the right-hand side of (60);

use (65) to upper-bound
∣∣φ′′+,k(τm)

∣∣. With these estimates we can further upper-bound∣∣φ+,k(τ )
∣∣ as follows:

∣∣φ+,k(τ )
∣∣ ≤ r2r−1cru9

(
λ2hi

λ2lo
+ λhi

λ2lo

∣∣τ − t̃
∣∣+ 1

λ2lo
(τ − t̃)2

)

≤ r2r+1cru10
(t̃ − τ)2

(rλlo)2
= r2r+1cru10

[
(t̃ − τ)2

(rλlo)2

]I [b=1]
, (84)

where we used that λhi ≤ ∣∣t̃ − τ
∣∣ because the elements of T are separated by at least

2λhi and τ ∈ N (λhi, t j ) with t̃ �= t j . According to (63) the upper bound (84) also
holds for b = 0.

Since t j ∈ T c
k and τ ∈ N (λhi, t j ), it follows τ ∈ N (r
λlo, T c

k ) so that r̂ ≥ 1,
which implies that we can use (43) to upper-bound

∣∣φ′′
0,k(τ )

∣∣:

∣∣φ′′
0,k(τ )

∣∣ ≤
∑

1≤m≤r̂

∑

1≤m′≤r̂
m �=m′

I [r̂ ≥ 2]cr̂u3

∏
1≤l≤r̂

l �=m, l �=m′
(vτ

l − τ)2

(rλlo)2(r̂−2)

∣∣vτ
m − τ

∣∣
(rλlo)2

∣∣vτ
m′ − τ

∣∣
(rλlo)2

+ 2(r − 1 − r̂)
∑

1≤m≤r̂

cr̂+1
u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

(rλlo)2(r̂−1)

∣∣vτ
m − τ

∣∣
(rλlo)2

1

rλlo
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+ (r − 1 − r̂)2cr̂+2
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

(rλlo)2

+
∑

1≤m≤r̂

cr̂u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

(rλlo)2(r̂−1)

1

(rλlo)2

+ (r − 1 − r̂)cr̂+1
u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

(rλlo)2

(a)≤ r2cr+1
u17

∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2r̂
. (85)

Above, in (a) we used (multiple times) the fact that
∣∣vτ

m̂ − τ
∣∣ ≤ ∣∣vτ

l − τ
∣∣ for all

l ∈ {1, . . . , r̂}, the fact that ∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}, the fact
r̂ ≤ r − 1, and defined cu17 � 6cu3.

Multiplying (84) and (85) and simplifying we obtain the following upper bound
on E1:

E1(τ ) = ∣∣φ′′
0,k(τ )

∣∣∣∣φ+,k(τ )
∣∣

(a)≤ r2r+1cr+1
u18

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

1

λ2lo

(b)≤ r2r+1cr+1
u18

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
. (86)

Above, in (a)we defined cu18 � cu10cu17; in (b)weused that
∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 < 1

for all l ∈ {1, . . . , r̂}.
Bounding E2(τ ): Consider the case b = 1. By (194) [Mean Value theorem] we can
write

∣∣φ′+,k(τ )
∣∣ ≤ ∣∣φ′+,k(t̃)

∣∣+ ∣∣φ′′+,k(τm)
∣∣∣∣τ − t̃

∣∣

with τm ∈ (t̃, τ ). Next, we use (39) and (60) to upper-bound
∣∣φ′+,k(t̃)

∣∣ by the right-
hand side of (60); use (65) to upper-bound

∣∣φ′′+,k(τm)
∣∣. With these estimates we can

further upper-bound
∣∣φ′+,k(τ )

∣∣ as follows:

∣∣φ′+,k(τ )
∣∣ ≤ r2r−1cru12

(
λhi

λ2lo
+ 1

λ2lo

∣∣τ − t̃
∣∣
)

≤ r2r cru13

∣∣τ − t̃
∣∣

rλlo

1

λlo

= r2r cru13

[∣∣τ − t̃
∣∣

rλlo

]I [b=1]
1

λlo
, (87)

where we used that λhi ≤ ∣∣t̃ − τ
∣∣. According to (64) the upper bound (87) also holds

for b = 0.
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Since t j ∈ T c
k and τ ∈ N (λhi, t j ), it follows τ ∈ N (r
λlo, T c

k ) so that r̂ ≥ 1,
which implies that we can use (42) to upper-bound

∣∣φ′
0,k(τ )

∣∣:

∣∣φ′
0,k(τ )

∣∣ ≤
r̂∑

m=1

cr̂u3

∏
1≤l≤r̂
l �=m

(vτ
l − τ)2

∣∣vτ
m − τ

∣∣

(rλlo)2r̂
+ (r−1−r̂)cr̂+1

u3

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂+1

(a)≤ cru19

∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

[∣∣t̃ − τ
∣∣

rλlo

]I [b=1]
1

λlo
. (88)

Above, in (a) we used the fact that
∣∣vτ

m̂ − τ
∣∣ ≤ ∣∣vτ

l − τ
∣∣ for all l ∈ {1, . . . , r̂}, the

fact that
∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}, and the fact that ∣∣vτ

m̂ − τ
∣∣ ≤∣∣t̃ − τ

∣∣, and defined cu19 � 2cu3.
Multiplying (87) and (88) and simplifying we obtain the following upper bound

on E2:

E2(τ ) = ∣∣φ′
0,k(τ )

∣∣∣∣φ′+,k(τ )
∣∣

(a)≤ r2r cru20

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

1

λ2lo

(b)≤ r2r cru20

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
. (89)

Above, in (a) we defined cu20 � cu13cu19; in (b) we used the fact that∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
Bounding E3(τ ): By (65),

∣∣φ′′+,k(τ )
∣∣ ≤ r2r−2cru8cu2

1

λ2lo
. (90)

Since t j ∈ T c
k and τ ∈ N (λhi, t j ), it follows τ ∈ N (r
λlo, T c

k ) so that r̂ ≥ 1,
which implies that we can use (41) to upper-bound

∣∣φ0,k(τ )
∣∣:

∣∣φ0,k(τ )
∣∣ ≤ cr̂u

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
(a)≤ cr̂u

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)
.

(91)

Above, in (a) we used the fact that
∣∣vτ

m̂ − τ
∣∣ ≤ ∣∣vτ

l − τ
∣∣ for all l ∈ {1, . . . , r̂}, the

fact that
∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}, and the fact that ∣∣vτ

m̂ − τ
∣∣ ≤∣∣t̃ − τ

∣∣. Multiplying (90) and (91) and simplifying we obtain the following upper
bound on E3:

E3(τ ) = ∣∣φ0,k(τ )
∣∣∣∣φ′′+,k(τ )

∣∣
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(a)≤ r2r−2cru21

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

1

λ2lo

(b)≤ r2r−2cru21

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
. (92)

Above, in (a) we defined cu21 � cu8cu2cu ; in (b) we used that
∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 <

1 for all l ∈ {1, . . . , r̂}.
From (71), (86), (89), and (92) we conclude that

∣∣φ′′
k (τ )

∣∣ ≤ r2r+1cr+1
u22

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
, (93)

where we defined cu22 � 4max(cu18, cu20, cu21).
Putting pieces together:On the one hand, by (195) [Mean Value theorem], using (69),
(70), (93), and we can write for all τ ∈ N (λhi, t j ):

|φk(τ )| (a)≤ 1

2
r2r+1cr+1

u22

[
(t̃ − τm)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τm)2

(rλlo)2(r̃−1)

(τ − t j )2

λ2lo

(b)≤ 1

2
r2r+1cr+1

u22 2
r̃
[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

(τ − t j )2

λ2lo

(c)≤ r2r+3cr+1
u25

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
. (94)

Above, in (a) τm ∈ (t j , τ ); in (b) we used the fact that, for l �= m̃,
∣∣vl − τm

∣∣ <∣∣vl − τ
∣∣ + λhi < 2

∣∣vl − τ
∣∣ and

∣∣t̃ − τm
∣∣ <

∣∣t̃ − τ
∣∣ + λhi < 2

∣∣t̃ − τ
∣∣, which is true

because τ ∈ N (λhi, t j ) and because the elements of T are separated by at least 2λhi;
in (c) we defined cu25 � 2cu22 and used the fact that t j = vm̃ .

On the other hand, let {uτ
1, . . . , u

τ
r̆ } � N (r
λlo, τ ) ∩ T . Then by (16),

q0(τ ) ≥ crl2

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆

(a)≥ crl2

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃

(
(r
λlo − 2λhi)2

(rλlo)2

)r̆−r̃−I [b=1]

︸ ︷︷ ︸
P2

(b)≥ crl3

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
. (95)

Above, in (a) we used the fact that {v1, . . . , vr̃ } ⊂ {uτ
1, . . . , u

τ
r̆ }, the fact that if b = 1,

then t̃ ∈ {uτ
1, . . . , u

τ
r̆ }, and the fact that by construction of the set {v1, . . . , vr̃ } it follows

that if, for some k, uτ
k /∈ {v1, . . . , vr̃ } and uτ

k �= t̃ , then
∣∣uτ

k − τ
∣∣ ≥ r
λlo−2λhi; in (b)
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we used the assumption SRF ≥ 12 so that λhi ≤ λlo/12 and therefore r
λlo −2λhi ≥
r(
 − 1/6)λlo, used that 0 < 
 − 1/6 < 1, which implies that P2 ≥ (
 − 1/6)2r .

The bound (67) follows from (94) and (95) by defining cu26 � cu25/cl3.

6.3.5 Proof of Property 3

By (29) and the triangle inequality:

‖q1(·)‖∞ ≤ ρ/2 + r max
1≤k≤r

‖φk(·)‖∞

(a)≤ ρ/2 + r max
1≤k≤r

‖φ+,k(·)‖∞

(b)= ρ/2 + r2r+1cru8 max
1≤k≤r

‖qrλlo,Tk ,{ f j },{d j }(·)‖∞

(c)≤ ρ/2 + r2r+1cu0c
r
u8

(d)≤ r2r+1cru55.

Above, in (a) we used (35) and the fact that by (36) and Lemma 1, Property 3,
‖φ0,k(·)‖∞ ≤ 1; in (b) we used (37); in (c) we used Lemma 2, Property 3; in (d)
we defined cu55 � 2cu0cu8 and used the fact that ρ/2 < 1 < cu0cu8.

6.3.6 Proof of Property 4

Take τ ∈ F(λhi, T ). As above, let {uτ
1, . . . , u

τ
r̆ } � N (r
λlo, τ ) ∩ T . Then by (16),

q0(τ ) ≥ crl2

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆
. (96)

By (19) this bound is also valid when r̆ = 0.
Fix k. If τ ∈ N (r
λlo, T c

k ), then we can use (41) to upper-bound
∣∣φ0,k(τ )

∣∣:

∣∣φ0,k(τ )
∣∣ ≤ cr̂u

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
, (97)

where, as before, {vτ
1 , . . . , v

τ
r̂ } � N (r
λlo, τ ) ∩ T c

k . If τ /∈ N (r
λlo, T c
k ), we will

use that by (36) and by Lemma 1, Property 3,

∣∣φ0,k(τ )
∣∣ ≤ 1. (98)

The set Tk ∩ N (r
λlo, τ ) is either empty or contains exactly one element. Let b �∣∣Tk ∩ N (r
λlo, τ )
∣∣denote the size of this set;whenb = 1, let {t̃} � Tk∩N (r
λlo, τ ).

Following the steps that lead to (84), we obtain

∣∣φ+,k(τ )
∣∣ ≤ r2r+1cru10

[
(t̃ − τ)2

(rλlo)2

]I [b=1]
(99)
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and the bound is valid for both cases b = 0 and b = 1.
Case r̂ ≥ 1: Then, {uτ

1, . . . , u
τ
r̆ } = {vτ

1 , . . . , v
τ
r̂ } ∪ {t̃} if b = 1, and

{uτ
1, . . . , u

τ
r̆ } = {vτ

1 , . . . , v
τ
r̂ } if b = 0. Therefore,

|φk(τ )| = ∣∣φ0,k(τ )
∣∣∣∣φ+,k(τ )

∣∣

(a)≤ r2r+1cru10c
r̂
u

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂

= r2r+1cru10c
r̂
u

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆
(b)≤ r2r+1cru28q0(τ ). (100)

Above, (a) follows by (97) and (99); (b) follows by (96) with cu28 � cu10cu/cl2.
Case r̂ = 0: Then, r̆ = 1 and {uτ

r̆ } = {t̃} if b = 1 and r̆ = 0 if b = 0. Therefore,

|φk(τ )| = ∣∣φ0,k(τ )
∣∣∣∣φ+,k(τ )

∣∣

(a)≤ cru10r
2r+1

[
(t̃ − τ)2

(rλlo)2

]I [b=1]

= r2r+1cru10

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆
(b)≤ r2r+1cru28q0(τ ). (101)

Above, (a) follows by (98) and (99); (b) follows by (96) because cu > 1.
By Lemma 3, Property 6,

ρ

2
= λ2rhi

2λ2rlo
≤ r2r

crl
q0(τ ). (102)

Therefore, by (29), (100), (101), (102),

|q1(τ )| ≤
r∑

k=1

|φk(τ )| + ρ/2 ≤ r2r+2cru29q0(τ ),

where we defined cu29 � cu28 + 1/cl . ��

6.4 Dual Certificate q2(·)

Finally, we construct the trigonometric polynomial q2(·). This trigonometric poly-
nomial is conceptually similar to q1(·). The difference is that in q1(·) we control
the function values on T and the derivatives on T are zero; in q2(·) we control the
derivatives on T and the function values on T are zero.
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Specifically, on the point t j ∈ T , q2(·) is approximated by a linear function whose
derivative is controlled by the sign

s′
j � sign

⎛

⎝
∑

m/N∈N (λhi,t j )

(m
N

− t j
)
hm

⎞

⎠ , j = 1, . . . , S, (103)

as explained in Lemma 5 below.

Lemma 5 Set γ � ρ/λhi = λ2r−1
hi /λ2rlo . Then, there exists a real-valued trigonometric

polynomial q2(·) that satisfies the following properties.

1. Frequency limitation to flo: q2(t) = ∑ flo
k=− flo

q̂2,ke−i2πkt for some q̂2,k ∈ C.
2. Constrained derivative on T and controlled behavior near T : for all j = 1, . . . , S

and all τ ∈ N (λhi, t j ),

∣∣∣q2(τ ) − γ s′
j (τ − t j )

∣∣∣ ≤ r2r+4cr+1
u34 q0(τ ), (104)

where s′
j are defined3 in (103). Since q0(τ ) = 0 for τ ∈ T , (104) implies, in

particular, that the derivative of q2(·) interpolates the sign pattern in (103) scaled
by γ on T .

3. Uniform confinement: ‖q2(·)‖∞ ≤ r2r+1cru56.
4. Boundedness far from T : for all τ ∈ F(λhi, T ),

|q2(τ )| ≤ r2r+2cru52q0(τ ). (105)

The positive numerical constants cu34, cu56, and cu52 are defined in the proof below.

The proof of the lemma parallels that of Lemma 4 but contains some important
differences; it is given in Appendix 2 “Proof of Lemma 5”.

7 Stability Estimates

In this section we use the dual trigonometric polynomials q0(·), q1(·), and q2(·) to
prove Theorem 1.

We will use the fact that the high-resolution kernel khi(·) satisfies the following
estimates:

N−1∑

n=0

∣∣∣k′
hi

( n

N

)∣∣∣ ≤ c′
k

λhi
, (106)

1

2

N−1∑

n=0

sup
u∈N (λhi,n/N )

∣∣k′′
hi(u)

∣∣ ≤ c′′
k

λ2hi
, (107)

3 The lemma is valid for arbitrary sign pattern, we formulate it for the sign pattern defined in (103) for
concreteness.
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where c′
k and c

′′
k are positive numerical constants. The bounds are proven inAppendix 4

“Properties of Fejér Kernel”.
We will use the following shorthand notations:

Nhi � ∪t∈T N (λhi, t),

Fhi � T \ Nhi.

7.1 Basic Estimates

We begin by decomposing the error ‖khi�(x̂− x)‖1 into a sum of simpler terms; each
of the terms will then be upper-bounded separately:

‖khi�(x̂ − x)‖1 =
N−1∑

n=0

∣∣∣∣∣

N−1∑

m=0

khi

(
n − m

N

)
hm

∣∣∣∣∣

≤
N−1∑

n=0

∣∣∣∣∣∣

∑

m/N∈Fhi

khi

(
n − m

N

)
hm

∣∣∣∣∣∣

+
N−1∑

n=0

∣∣∣∣∣∣

∑

m/N∈Nhi

khi

(
n − m

N

)
hm

∣∣∣∣∣∣
. (108)

The first term in (108) can be written as follows:

N−1∑

n=0

∣∣∣∣∣∣

∑

m/N∈Fhi

khi

(
n − m

N

)
hm

∣∣∣∣∣∣
(a)=

∑

m/N∈Fhi

(
N−1∑

n=0

khi

(
n − m

N

))
hm

(b)=
∑

m/N∈Fhi

(
N−1∑

n=0

khi
( n

N

))
hm

(c)=
∑

m/N∈Fhi

hm

︸ ︷︷ ︸
A0

. (109)

Above, (a) follows because hm ≥ 0 for m/N ∈ Fhi and khi(·) ≥ 0; (b) follows by
periodicity of khi(·); (c) follows by (8).

The second term in (108) can be upper-bounded as follows:

N−1∑

n=0

∣∣∣∣∣∣

∑

m/N∈Nhi

khi

(
n − m

N

)
hm

∣∣∣∣∣∣
(a)=

N−1∑

n=0

∣∣∣∣∣∣

S∑

j=1

∑

m/N∈N (λhi,t j )

khi

(
n − m

N

)
hm

∣∣∣∣∣∣
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(b)≤
N−1∑

n=0

S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

khi

(
n − m

N

)
hm

∣∣∣∣∣∣
︸ ︷︷ ︸

B

.

(110)

Above, (a) follows because the sets N (λhi, t j ) do not intersect; (b) follows by the
triangle inequality. Toupper-bound B in (110)wewill use that for all τ ∈ N (λhi, t j )∩T

and all t ∈ T,

∣∣khi(t − τ) − khi(t − t j ) − k′
hi(t − t j )(t j − τ)

∣∣ ≤ sup
u∈N (λhi,t−t j )

1

2

∣∣k′′
hi(u)

∣∣(t j − τ)2.

(111)

The inequality follows by expanding khi(t − τ) in Taylor series in τ around τ = t j up
to first order and writing the remainder in Lagrange form. We have:

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

khi

(
n − m

N

)
hm

∣∣∣∣∣∣

(a)≤
∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

khi
( n

N
− t j

)
hm

∣∣∣∣∣∣

+
∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

k′
hi

( n

N
− t j

) (
t j − m

N

)
hm

∣∣∣∣∣∣

+
∑

m/N∈N (λhi,t j )

∣∣∣∣khi
(
n − m

N

)
− khi

( n

N
− t j

)
− k′

hi

( n

N
− t j

) (
t j − m

N

)∣∣∣∣|hm |

(b)≤ khi
( n

N
− t j

)
∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣

+
∣∣∣k′

hi

( n

N
− t j

)∣∣∣

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

(
t j − m

N

)
hm

∣∣∣∣∣∣

+
∑

m/N∈N (λhi,t j )

sup
u∈N (λhi,n/N−t j )

1

2

∣∣k′′
hi(u)

∣∣
(
t j − m

N

)2 |hm |. (112)

Above, (a) follows by adding and subtracting the corresponding terms and applying
the triangle inequality; (b) follows by (111) with t = n/N and τ = m/N and because
khi(·) ≥ 0.
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Using (112) we can upper-bound B in (110) as follows:

B ≤
S∑

j=1

(
N−1∑

n=0

khi
( n

N
− t j

))
∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣

+
S∑

j=1

(
N−1∑

n=0

∣∣∣k′
hi

( n

N
− t j

)∣∣∣

) ∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

(
t j − m

N

)
hm

∣∣∣∣∣∣

+
S∑

j=1

N−1∑

n=0

sup
u∈N (λhi,n/N−t j )

1

2

∣∣k′′
hi(u)

∣∣
∑

m/N∈N (λhi,t j )

(
t j − m

N

)2 |hm |

(a)=
(
N−1∑

n=0

khi
( n

N

)) S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣

+
(
N−1∑

n=0

∣∣∣k′
hi

( n

N

)∣∣∣

)
S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

(
t j − m

N

)
hm

∣∣∣∣∣∣

+
(
N−1∑

n=0

sup
u∈N (λhi,n/N )

1

2

∣∣k′′
hi(u)

∣∣
)

S∑

j=1

∑

m/N∈N (λhi,t j )

(
t j − m

N

)2 |hm |

(b)≤
S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣
︸ ︷︷ ︸

A1

+ c′
k

1

λhi

S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

(
t j − m

N

)
hm

∣∣∣∣∣∣
︸ ︷︷ ︸

A2

+ c′′
k

1

λ2hi

S∑

j=1

∑

m/N∈N (λhi,t j )

(
t j − m

N

)2 |hm |
︸ ︷︷ ︸

A3

. (113)

Above, (a) follows by periodicity of khi(·); (b) follows by (8), (106), (107).
To complete the proof of Theorem 1, it remains to upper-bound each of the terms

A0, A1, A2, and A3 by ∼ C(r)SRF2r‖z‖1. To do this we will use extended duality
arguments that will rely on the trigonometric polynomials q0(·), q1(·), and q2(·).

7.2 Upper Bound on A0

In this section we use the trigonometric polynomial q0(·) from Lemma 3 to upper-
bound A0. Let

q0 = [q00 , . . . , q0N−1]T � [q0(l/N ) : l ∈ [0 : N − 1]]T

be the vector that consists of the samples of q0(·).
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On the one hand,

〈
q0,h

〉
(a)=
〈
Qq0,h

〉
(b)=
〈
q0,Qh

〉

(c)≤ ‖q0‖∞‖Qh‖1
(d)≤ ‖Qx̂ − s + s − Qx‖1
(e)≤ ‖Qx̂ − s‖1 + ‖s − Qx‖1

( f )≤ 2‖z‖1. (114)

Above, (a) follows because by Lemma 3, Property 1, q0(·) is frequency-limited to flo,
and, therefore, the vector of its samples is also frequency limited (in discrete sense) so
that q0 = Qq0; (b) follows becauseQ is self-adjoint; (c) follows by Cauchy-Schwartz
inequality; (d) follows by Lemma 3, Property 3; (e) follows by the triangle inequality;
(f) follows since (CVX) implies ‖Qx̂ − s‖1 ≤ ‖Qx − s‖1 and, by assumption, s =
Qx + z.

On the other hand,

〈
q0,h

〉
(a)=

N−1∑

m=0

q0m |hm | (b)≥
∑

m/N∈Fhi

q0m |hm | (c)≥ crl
λ2rhi

(rλlo)2r
∑

m/N∈Fhi

|hm |. (115)

Above, (a) follows because, by construction, q0(t) = 0 for all t ∈ T , which means
that hm < 0 implies q0m = q0(m/N ) = 0, so that q0mhm ≥ 0 for m = 0, . . . , N − 1;
(b) follows because all terms in the sum are nonnegative; (c) follows from Lemma 3,
Property 6. From (114) and (115), we conclude that

A0 =
∑

m/N∈Fhi

|hm | ≤ r2r

crl
SRF2r‖z‖1, (116)

where the equality follows because hm ≥ 0 for m/N ∈ Fhi and we remind the reader
that cl < 1.

7.3 Upper Bound on A3

In this section we use q0 to upper-bound A3. We have,

2‖z‖1
(a)≥

N−1∑

m=0

q0m |hm | (b)≥
S∑

j=1

∑

m/N∈N (λhi,t j )

q0m |hm |

(c)≥
S∑

j=1

∑

m/N∈N (λhi,t j )

crl2
(t j − m/N )2λ

2(r−1)
hi

(rλlo)2r
|hm |.
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Above, (a) follows from (114) because q0mhm ≥ 0 for m = 0, . . . , N − 1; (b) follows
because the sets N (λhi, t j ) do not intersect since the elements of T are separated by
at least 2λhi; (c) follows from (17). Hence,

A3 = 1

λ2hi

S∑

j=1

∑

m/N∈N (λhi,t j )

(
t j − m

N

)2 |hm | ≤ r2r

crl2
SRF2r2‖z‖1 (117)

and we remind the reader that cl2 < 1.

7.4 Upper Bound on A1

In this section we use trigonometric polynomial q1(·) constructed in Lemma 4 to
upper-bound A1. Set

q1 = [q10 , . . . , q1N−1]T � [q1(l/N ) : l ∈ [0 : N − 1]]T.

We now proceed as follows:

A1 =
S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣

(a)= 2

ρ

S∑

j=1

∑

m/N∈N (λhi,t j )

ρs j
2

hm

(b)= 2

ρ

∣∣∣∣∣∣

S∑

j=1

∑

m/N∈N (λhi,t j )

(ρs j
2

− q1m
)
hm +

S∑

j=1

∑

m/N∈N (λhi,t j )

q1mhm

∣∣∣∣∣∣

(c)≤ 2

ρ

S∑

j=1

∑

m/N∈N (λhi,t j )

∣∣∣
ρs j
2

− q1m

∣∣∣|hm |
︸ ︷︷ ︸

A11

+ 2

ρ

∣∣∣∣∣∣

∑

m/N∈Nhi

q1mhm

∣∣∣∣∣∣
︸ ︷︷ ︸

A12

. (118)

Above, (a) follows by (26); (b) follows by adding and subtracting the corresponding
term and because the expression in (a) is nonnegative; (c) follows by the triangle
inequality and because the setsN (λhi, t j ) do not intersect since the elements of T are
separated by at least 2λhi. Next, we upper-bound the terms A11 and A12 separately.

The first term in (118), A11, can be upper-bounded as follows:

A11
(a)≤ r2r+4cr+1

u27

∑

m/N∈Nhi

q0m |hm |

(b)= r2r+4cr+1
u27

∑

m/N∈Nhi

q0mhm
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(c)≤ r2r+4cr+1
u27

N−1∑

m=0

q0mhm
(d)≤ r2r+42cr+1

u27 ‖z‖1. (119)

Above, (a) follows by (27) and because the setsN (λhi, t j ) do not intersect; (b) follows
because hm < 0 implies q0m = 0; (c) follows because q0mhm ≥ 0 form = 0, . . . , N−1;
(d) follows by (114).

Following exactly the same steps as in (114), changing q0m to q1m , and using in step
(d) that by Lemma 4, Property 3, ‖q1‖∞ ≤ r2r+1cru55, we obtain:

∣∣∣∣∣

N−1∑

m=0

q1mhm

∣∣∣∣∣ ≤ 2r2r+1cru55‖z‖1. (120)

Using this, the second term in (118), A12, can be upper-bounded as follows

A12
(a)≤
∣∣∣∣∣

N−1∑

m=0

q1mhm

∣∣∣∣∣+
∣∣∣∣∣∣

∑

m/N∈Fhi

q1mhm

∣∣∣∣∣∣
(b)≤ 2r2r+1cru55‖z‖1 +

∑

m/N∈Fhi

∣∣∣q1m
∣∣∣|hm |

(c)≤ 2r2r+1cru55‖z‖1 + r2r+2cru29
∑

m/N∈Fhi

q0m |hm |

(d)= 2r2r+1cru55‖z‖1 + r2r+2cru29
∑

m/N∈Fhi

q0mhm

(e)≤ 4r2r+2cru57‖z‖1. (121)

Above, (a) follow by the triangle inequality and because Fhi is complementary to
Nhi; (b) follow by (120) and by the triangle inequality; (c) follow by (28); (d) follows
because hm > 0 for m/N ∈ Fhi; (e) follows by (114) because q0mhm ≥ 0 for m =
0, . . . , N − 1, because cu29 > 1, and by defining cu57 � max(cu55, cu29).

Substituting (119) and (121) into (118), using that 1/ρ = SRF2r , we finally obtain

A1 =
S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣
≤ r2r+4cr+1

u53 SRF
2r‖z‖1, (122)

where we defined cu53 � 12max(cu27, cu57).
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7.5 Upper Bound on A2

In this section we use trigonometric polynomial q2(·) to upper-bound A2. Set

q2 = [q20 , . . . , q2N−1]T � [q2(l/N ) : l ∈ [0 : N − 1]]T.

We now proceed as follows:

A2 = 1

λhi

S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

(m
N

− t j
)
hm

∣∣∣∣∣∣

(a)= 1

ρ

S∑

j=1

∑

m/N∈N (λhi,t j )

γ s′
j

(m
N

− t j
)
hm

(b)= 1

ρ

∣∣∣∣∣∣

S∑

j=1

∑

m/N∈N (λhi,t j )

(
γ s′

j

(m
N

− t j
)

− q2m
)
hm +

S∑

j=1

∑

m/N∈N (λhi,t j )

q2mhm

∣∣∣∣∣∣

(c)≤ 1

ρ

S∑

j=1

∑

m/N∈N (λhi,t j )

∣∣∣γ s′
j

(m
N

− t j
)

− q2m

∣∣∣|hm |
︸ ︷︷ ︸

A21

+ 1

ρ

∣∣∣∣∣∣

∑

m/N∈Nhi

q2mhm

∣∣∣∣∣∣
︸ ︷︷ ︸

A22

. (123)

Above, (a) follows by (103) and because γ = ρ/λhi; (b) follows by adding and
subtracting the corresponding term and because the expression in (a) is nonnegative;
(c) follows by the triangle inequality and because the setsN (λhi, t j ) do not intersect.
Next, we upper-bound the terms A21 and A22 separately.

The first term in (123), A21, can be upper-bounded as follows

A21
(a)≤ r2r+4cr+1

u34

∑

m/N∈Nhi

q0m |hm | (b)= r2r+4cr+1
u34

∑

m/N∈Nhi

q0mhm

(c)≤ r2r+4cr+1
u34

N−1∑

m=0

q0mhm
(d)≤ 2r2r+4cr+1

u34 ‖z‖1. (124)

Above, (a) follows by (104) and because the setsN (λhi, t j ) do not intersect; (b) follows
because hm < 0 implies q0m = 0; (c) follows because q0mhm ≥ 0 form = 0, . . . , N−1;
(d) follows by (114).

Following exactly the same steps as in (114), changing q0m to q2m , and using that by
Lemma 5, Property 3, ‖q2‖∞ ≤ r2r+1cru56, we obtain:

∣∣∣∣∣

N−1∑

m=0

q2mhm

∣∣∣∣∣ ≤ 2r2r+1cru56‖z‖1. (125)
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Using this, the second term in (123), A22, can be upper-bounded as follows

A22
(a)≤
∣∣∣∣∣

N−1∑

m=0

q2mhm

∣∣∣∣∣+
∣∣∣∣∣∣

∑

m/N∈Fhi

q2mhm

∣∣∣∣∣∣
(b)≤ 2r2r+1cru56‖z‖1 +

∑

m/N∈Fhi

∣∣∣q2m
∣∣∣|hm |

(c)≤ 2r2r+1cru56‖z‖1 + r2r+2cru52
∑

m/N∈Fhi

q0m |hm |

(d)= 2r2r+1cru56‖z‖1 + r2r+2cru52
∑

m/N∈Fhi

q0mhm
(e)≤ 4r2r+2cru58‖z‖1. (126)

Above, (a) follow by the triangle inequality and becauseFhi is complementary toNhi;
(b) follow by (125) and by the triangle inequality; (c) follow by (105); (d) follows
because hm > 0 for m/N ∈ Fhi; (e) follows by (114) because q0mhm ≥ 0 for m =
0, . . . , N − 1, because cu52 > 1, and by defining cu58 � max(cu56, cu52).

Substituting (124) and (126) into (123), using that 1/ρ = SRF2r , we finally obtain:

A2 = 1

λhi

S∑

j=1

∣∣∣∣∣∣

∑

m/N∈N (λhi,t j )

hm

∣∣∣∣∣∣
≤ r2r+4cr+1

u54 SRF
2r‖z‖1, (127)

where we defined cu54 � 6max(cu34, cu58).

7.6 Putting Pieces Together

Substituting (116) into (109); substituting (117), (122), (127) into (113) and the result
into (110); then, substituting (109) and (110) into (108), and defining

c � 4max(1/cl , c
′′
k /cl2, cu53, c

′
kcu54) (128)

we obtain the desired bound (9) and complete the proof of Theorem 1. ��

8 Connection to Bernstein Theorem

The famous Bernstein theorem states the following [21, Ch. 4, eq. (1.1)].

Theorem 2 (Bernstein) Consider a trigonometric polynomial frequency-limited to fc:
q(t) = ∑ fc

k=− fc
q̂ke−i2πkt . Then,

‖q ′(·)‖∞ ≤ 2π fc‖q(·)‖∞. (129)
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In other words, if a trigonometric polynomial is uniformly bounded, its derivative
cannot be too large anywhere.

Bernstein theorem helped us construct trigonometric polynomials q0(·), q1(·), and
q2(·) with the required properties by telling us what may be achievable and what is
forbidden. We now describe these connections to provide more intuition about our
constructions.
Independent control Consider q(·) = qλc,V,{ f j },{d j }(·) in Fig. 4. Since we require
‖q(·)‖∞ ≤ cu0, then, by Bernstein theorem, ‖q ′(·)‖∞ ≤ 2πcu0 fc. Suppose, q(v1)

= 0. How large q(v2) may possibly be? Since ‖q ′(·)‖∞ ≤ 2πcu0 fc, we must have
q(v2) ≤ 2πcu0(v2 − v1) fc. Now, if the points v1 and v2 are well-separated, i.e., if
v2 − v1 is order λc, Bernstein theorem puts no restrictions on q(v2). However, if
v2 − v1 � λc, then

∣∣q(v1) − q(v2)
∣∣ ≤ 2πcu0(v2 − v1) fc � 1. Generalizing: it may

be possible to independently control q(v1) and q(v2) only if the points v1 and v2 are
well-separated. This is the reason why q0(·), q1(·), and q2(·) are constructed in an
interlaced way. We control the building blocks on sets of interlaced points that are
well-separated, then we multiply the resulting trigonometric polynomials. See (21)
and Fig. 6 for an easy example of interlacing; see (35), (36), Figs. 8, and 9 for a more
sophisticated example of interlacing.

For readers familiar with using �1-minimization for super-resolution of real-valued
(spikes may be positive and negative) and complex-valued signals [13]: Bernstein
theorem is responsible for the fact that �1-minimization fails when the spikes are not
well-separated (closer than λlo to one another). The dual certificate in the real-valued
case is a trigonometric polynomial q(·) with ‖q(·)‖∞ ≤ 1 that interpolates the sign of
the spikes in the signal. If, say q(v1) = −1, and v2 − v1 � λc, it is not possible that
q(v2) = +1 because ‖q ′(·)‖∞ ≤ 2π fc. The required dual trigonometric polynomial
does not exist and the algorithm fails.

In contrast to the real-valued case, consider our trigonometric polynomial q1(·),
displayed in Fig. 7. Here, we interpolate the sign of the sequence s1, s2, s3, s4 at a set
of points t1, t2, t3, t4 that are not well-separated. How is that possible? The difference
is that we interpolate the sign sequence at a low level ρ = (λhi/λlo)

2r � 1, i.e., we
interpolate the points siρ/2, and not the points si . The transitions q1(·) needs to make
between the points, are small; for example

∣∣q1(t3) − q1(t4)
∣∣ = ρ � 1 and this is not

disallowed by Bernstein theorem.
High curvatureAs should be clear by now, the curvature of the building block qλc,V (·)
in the vicinity of its zeros expressed by (13) (see also the sections marked in red in
Fig. 4a) determines the noise amplification in our bounds. How curvy can qλc,V (·)
possibly be? Since ‖qλc,V (·)‖∞ ≤ 1, applying Bernstein theorem twice, we conclude
that the second derivative must satisfy ‖q ′′

λc,V (·)‖∞ ≤ 4π2 f 2c . Therefore, for v ∈ V ,
it must hold that qλc,V (v − τ) ≤ 2π2(v − τ)2/λ2c . We conclude that the curvature of
qλc,V (·) in (13) depends on λc in an optimal way (up to a constant). This leads to the
near-optimal stability estimate in Theorem 1.
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9 Numerical Results

In this section we describe a simple numerical experiment that demonstrates how the
bounds developed in this paper reflect the true error accurately in the setting where
the error metric used in the previous work [43] leads to an unreasonably pessimistic
conclusion.

Set flo = 9. For DSRF ∈ {8, 16, 32, 64, 128} set N = flo · DSRF. For each N
we generate 50 signals from each of the classes R(2λlo, 1) and R(4λlo, 2). To focus
on the worst-case setup described by the theorems, the signals from R(2λlo, 1) were
generated so that pairs of spikes are forced to be close together. Specifically, for signals
fromR(4λlo, 2), each spike has a pair that is no further than 3/N away (assuming the
signal is depicted on the (0, 1] interval as in Fig. 2). All spikes were chosen to have
equal magnitude set to one. The observations are generated according to s = Qx+ z.
The noise is taken to be low-pass filtered Guassian: z = c · QzG , where zG has
independent identically distributed entries that are standard Gaussian with mean zero
and unit variance, the constant c controls the signal-to-noise ratio (SNR) taken to be
SNR = ‖x‖1/‖z‖1 = 100000 in all simulations.

In Fig. 10a we depict log
(

1
50

∑50
i=1‖xi − x̂i‖1/‖si − Qxi‖1

)
, i.e., the log of

the noise amplification factor (NAF), averaged over the 50 trials, as a function of
log(DSRF). Observe that on the log-log scale the data are well approximated by
straight lines (displayed). We found the slopes of these lines to be 1.02 forR(2λlo, 1)
data and 2.85 forR(4λlo, 2) data. This matches the conclusions of Proposition 1 and
the corresponding converse [43, Sec. 2.3], which together predict (2r−1) log(SRF) ≤
log(‖x − x̂‖1/‖s − Qx‖1) ≤ (2r) log(SRF). Note that for r = 2, the exponent in the
NAF, 2.85, estimated in the simulation, happened to be a bit more optimistic than the
range between 2r − 1 = 3 and 2r = 4 predicted by theory, presumably because the
Gaussian noise is not the worst case. In Fig. 10b, for reference, we depict the average
relative error, 1

50

∑50
i=1‖xi − x̂i‖1/‖xi‖1 and observe that for all DSRF values and for

both ensembles, the average relative error is significantly below one, implying that the
reconstructed signals are high quality.

Next, consider a 20 times higher super-resolution factor
DSRF f ∈ {160, 320, 640, 1280, 2560} with N f = flo · DSRF f = 20N (‘ f ’ stands
for fine-scale) and repeat the above experiment with all other parameters kept the
same. We use the same random signals from the experiment above, when depicted on
the interval (0, 1]. Since the grid is now 20 times finer, in the vector representation the
index of each nonzero element of x has been multiplied by 20. To be sure: if before the
first and the second elements of xwere equal to one, all others being zero, now the 20th
and the 40th elements of x are equal to one, all others being zero. This construction
guarantees that for signals from R(4λlo, 2), each spike has a pair that is no further
than 3 · 20/N f = 3/N away (assuming the signal is depicted on the (0, 1] interval as
in Fig. 2), precisely as before.

In Fig. 10c we depict log
(

1
50

∑50
i=1‖xi − x̂i‖1/‖si − Qxi‖1

)
, i.e., the log of the

NAF, averaged over the 50 trials as a function of log(DSRF f ) for the fine-scale exper-
iment. The curve for signals from R(2λlo, 1) [blue diamonds] looks very similar to
how it did for the coarse grid in Fig. 10a. In contrast, the curve for signals from
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Fig. 10 In a and c, log( 1
50
∑50

i=1‖xi − x̂i‖1/‖si −Qxi‖1), as a function of log(DSRF) and log(DSRF f ),

respectively. In e, log( 1
50
∑50

i=1‖khi�(xi − x̂i )‖1/‖si − Qxi‖1), as a function of log(SRF). In b

and d, 1
50
∑50

i=1‖xi − x̂i‖1/‖xi‖1, as a function of log(DSRF) and log(DSRF f ), respectively. In f,
1
50
∑50

i=1‖khi�(xi − x̂i )‖1/‖xi‖1, as a function of log(DSRF). In all plots, blue diamonds represent signals
from class R(2λlo, 1) and green circles (and green stars) represent signals from class R(4λlo, 2) (Color
figure online)
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R(4λlo, 2) [green circles and stars] now looks different: it saturates for large values
of DSRF f (DSRF f ∈ {1280, 2560}, as marked by the green stars). By looking at
Fig. 10d, where we depict the average relative error 1

50

∑50
i=1‖xi − x̂i‖1/‖xi‖1 as

a function of log(DSRF f ), we see that for the large values of DSRF f , the norm
of the error, ‖xi − x̂i‖1, is comparable to the norm of the signal ‖xi‖1, so that
the error is nearly as large as it can possibly be (see the points marked by green
stars). Does this mean that the algorithm produced bad reconstructions? The point
of this paper is that the reconstructions are still good, even for the high values of
DSRF f ∈ {1280, 2560}, if the error is measured at the appropriate scale. To see this,
in Fig. 10f we depict 1

50

∑50
i=1‖khi�(xi − x̂i )‖1/‖xi‖1 with λhi = 1/(DSRF · flo)

so that SRF = λlo/λhi = DSRF, matching the resolution of the first experiment, as
a function of log(SRF). We observe that ‖khi�(xi − x̂i )‖1 � ‖xi‖1 for all values
of SRF. In other words, if the error is measured at the scale λhi the reconstruction
is good for all values of SRF. For example, for DSRF f = 1280 in Fig. 10d the
error on average is 1.5 times larger than the signal (in l1-norm), but for the corre-
sponding SRF = 64 in Fig. 10f, the l1-norm of the error on average is only 0.02
of the l1-norm of the signal—small. By comparing Fig. 10d and f, we infer that in
the fine-scale case and for high DSRF ∈ {1280, 2560} the reconstruction algorithm
disperses the spikes, but the estimated dispersed spikes are still concentrated around
the correct locations with dispersion smaller than λhi (recall illustration in Fig. 3).

Next, in Fig. 10e we depict log
(

1
50

∑50
i=1‖khi�(xi − x̂i )‖1/‖si − Qxi‖1

)
as a func-

tion of log(SRF). We see that the saturation effect disappeared and, as in the first
experiment, on the log-log scale the data are well approximated by straight lines
(displayed). We found the slopes of these lines to be 1.25 for R(2λlo, 1) data and
3.28 for R(4λlo, 2) data. This demonstrates that the bounds in Theorem 1 together
with the converse [43, Sec. 2.3] reflect the true error on the scale λhi accurately:
(2r −1) log(SRF) ≤ log(‖khi�(x− x̂)‖1/‖s−Qx‖1) ≤ (2r) log(SRF), i.e., the expo-
nents in the NAF are predicted to be between 1 and 2 for r = 1 and between 3 and 4
for r = 2, as observed in the experiment.

10 Conclusion

When a signal is positive and Rayleigh-regular, then linear programming solves the
super-resolution problemwith near-optimal worst-case performance. This result holds
independently on how fine the discretization grid is, approximating the continuum
arbitrarily closely. The proof relies on new trigonometric interpolation constructions;
the underlying ideas might be useful for other problems.

Finding an efficient algorithm that solves the same problem with a near-optimal
worst-case performance for complex-valued signals is still an open problem. Despite
recent work that derives stability estimates for MUSIC and ESPRIT algorithms in cer-
tain cases, the question of how far are these algorithms from the optimal performance
is not yet answered completely.
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In a different direction, all results in this paper are valid for the 1D model. The
discrete results have been generalized to the 2D model in [43]. It would be interesting
to see if the techniques developed in this paper may also be extended to the 2D model.

Acknowledgements V. M. was supported by the Simons Foundation when developing the early ideas that
led to this work. The author is grateful to Emmanuel Candès for inspiring and useful discussions.

Proof of Lemma 2

Let

g(t) �
[
sin (π( fc/2 + 1)t)

( fc/2 + 1) sin(π t)

]4

and set

q(t) �
V∑

j=1

α j g(t − v j ) + β j g
′(t − v j ),

where {α j }Vj=1 and {β j }Vj=1 are free coefficients that will be determined in the fol-
lowing. Because g(·) is frequency-limited to [− fc, fc] [cf. (7), (196)], q(·) satisfies
Property 1. Note,

q ′(t) =
V∑

j=1

α j g
′(t − v j ) + β j g

′′(t − v j ).

Define matrices D0,D1,D2 ∈ R
V×V with the elements

[D0] jk = g(v j − vk), [D1] jk = g′(v j − vk), [D2] jk = g′′(v j − vk).

To satisfy the interpolation constraints in Property 2 we define
α = [α1, . . . , αV ]T, β = [β1, . . . , βV ]T, f = [ f1, . . . , fV ]T, d = [d1, . . . , dV ]T,
demand

[
D0 D1
D1 D2

]

︸ ︷︷ ︸
D

[
α

β

]
=
[
f
d

]

and solve for α and β. It can be verified that D0 and D2 are both invertible; the
corresponding Schur complements

E = D2 − D1D
−1
0 D1

F = D0 − D1D
−1
2 D1
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are well defined and are also both invertible (see [13, Sec. 2.3.1, pp. 925–926], [12,
App. B, p. 1249] for the relevant results). Therefore, D is invertible and the inverse
can be written as [41, Sec. 9.11.3.(2)]

D−1 =
[

F−1 −D−1
0 D1E−1

−D−1
2 D1F−1 E−1

]
.

We know (see [13, Sec. 2.3.1, pp. 925–926], [12, App. B, p. 1249]):

‖D1‖∞ ≤ c̃1
λc

, (130)

‖D−1
0 ‖∞ ≤ 1

1 − c̃0
= c̄0, (131)

‖E−1‖∞ ≤
(

π2 fc( fc + 4)

3
−
(
c̃2 + c̃21

1 − c̃0

)
f 2c

)−1

≤ c̄Eλ2c, (132)

‖F−1‖∞ ≤ c̄F ,

‖D−1
2 ‖∞ ≤ c̄2λ

2
c . (133)

Above, ‖A‖∞ is the infinity norm of a matrix defined as

‖A‖∞ = max‖y‖∞=1
‖Ay‖∞ = max

i

∑

j

∣∣ai j
∣∣

and

c̃0 ≤ 0.007, c̃1 ≤ 0.08, c̃2 ≤ 1.06,

c̄0 ≤ 1.008, c̄E ≤ 0.47, c̄2 ≤ 0.43, c̄F ≤ 1.009.

Now we have

‖α‖∞ = ‖F−1f − D−1
0 D1E−1d‖∞

≤ ‖F−1f‖∞ + ‖D−1
0 D1E−1d‖∞

≤ ‖F−1‖∞‖f‖∞ + ‖D−1
0 D1E−1‖∞‖d‖∞

(a)≤ ‖F−1‖∞ + 1

λc
‖D−1

0 ‖∞‖D1‖∞‖E−1‖∞
(b)≤ c̄F + c̄0c̃1c̄E � cα.

Above, (a) follows because
∣∣ f j
∣∣ ≤ 1 and

∣∣d j
∣∣ ≤ 1/λc for all j = 1, . . . V ; (b)

follows by (130), (131), (132), and (133); and cα can be upper-bounded as cα ≤ 1.05.
Similarly,

‖β‖∞ = ‖−D−1
2 D1F−1f + E−1d‖∞
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≤ ‖−D−1
2 D1F−1f‖∞ + ‖E−1d‖∞

≤ ‖−D−1
2 D1F−1‖∞‖f‖∞ + ‖E−1‖∞‖d‖∞

≤ ‖D−1
2 ‖∞‖D1‖∞‖F−1‖∞ + 1

λc
‖E−1‖∞

≤ cβλc

with cβ � c̄2c̃1c̄F + c̄E that can be upper-bounded as cβ ≤ 0.51.
The following lemma, proven in the end of this section, records bounds on∑V
j=1

∣∣g(l)(t − v j )
∣∣, l = 0, 1.

Lemma 6 The following estimates hold:

V∑

j=1

∣∣g(t − v j )
∣∣ ≤ cs0,

V∑

j=1

∣∣g′(t − v j )
∣∣ ≤ cs1/λc,

where cs0, cs1 are positive numerical constants defined in the proof of the lemma
below.

Using the bounds we obtain the required estimates as follows. Observe,

|q(t)| =
∣∣∣∣∣∣

V∑

j=1

α j g(t − v j ) + β j g
′(t − v j )

∣∣∣∣∣∣

≤ ‖α‖∞
V∑

j=1

∣∣g(t − v j )
∣∣

︸ ︷︷ ︸
≤cs0

+‖β‖∞
V∑

j=1

∣∣g′(t − v j )
∣∣

︸ ︷︷ ︸
≤cs1/λc

≤ cαcs0 + cβcs1 � cu0. (134)

This proves Property 3. Property 4 in the lemma follows from (134) by (129) [Bernstein
theorem], using that q ′(t) is also a trigonometric polynomial frequency-limited to fc:

∣∣q ′(t)
∣∣ ≤ cu1 fc, cu1 � 2πcu0. (135)

In turn, Property 5 follows from (135) by (129) [Bernstein theorem], using that q ′′(t)
is also a trigonometric polynomial frequency-limited to fc:

∣∣q ′′(t)
∣∣ ≤ cu2 f

2
c , cu2 � 4π2cu0.

This completes the proof of Lemma 2. ��
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Proof of Lemma 6 For all t ∈ [−1/2, 1/2], we have the following bounds [13,
Sec. 2.3.2, p. 928]:

|g(t)| ≤ 1, (136)

∣∣g′(t)
∣∣ ≤ π2

3
fc( fc + 4)|t |. (137)

For all t with λc/2 ≤ ∣∣t
∣∣ ≤ 1/2 and l = 0, 1, by inspection it follows from [13,

Lm. 2.6] that the following bound holds:

∣∣∣g(l)(t)
∣∣∣ ≤ π l clg

( fc + 2)4−l t4
(138)

with c0g � 1, c1g � 6. [To obtain this result from [13, Lm. 2.6], observe that, in the

terminology of [13], for all t with λc/2 ≤ ∣∣t
∣∣ ≤ √

2/π , b(t) < 2a(t) and a(t) < 1.]
Define uk j � t − v j , ordered in such a way that

∣∣u1
∣∣ < . . . <

∣∣uV
∣∣. Since

{v1, v1, . . . , vV } ∈ R(κλc, 1), we have

∣∣u2 j
∣∣ > λcκ( j − 1) and

∣∣u2 j−1
∣∣ > λcκ( j − 1), for j ≥ 2, (139)

and also,

∣∣u j
∣∣ >

λc

2
κ j, for j > 1. (140)

First,

V∑

j=1

∣∣g(t − v j )
∣∣ =

V∑

j=1

∣∣g(u j )
∣∣ (a)≤ 2 + 1

( fc + 2)4

V∑

j=3

1

u4j

(b)≤ 2 + 2

( fc + 2)4

�V /2�∑

j=1

1

(λcκ j)4

≤ 2 + 1

f 4c

2

(λcκ)4

∞∑

j=1

1

j4
(c)≤ 2 + 2

κ4

4

3

(d)≤ cs0.

Above, in (a) we used (136) to bound the terms for j = 1, 2 and used (138) to bounds
the terms for j > 2 [(138) is applicable because u3 > λcκ/2 > λc/2 since κ=1.87];
in (b) we used (139); in (c) we used

∞∑

j=1

1

j4
= π2

90
≤ 4

3
;

and in (d) we defined cs0 � 2.22.
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Second,

V∑

j=1

∣∣g′(t − v j )
∣∣ = ∣∣g′(u1)

∣∣+
V∑

j=2

∣∣g′(u j )
∣∣

(a)≤ π2

3
fc( fc + 4)

λc

2
κ + 1

( fc + 2)3
6π

((λc/2)κ)4
+

V∑

j=2

∣∣g′(u j )
∣∣

(b)≤ π2

3
fc( fc + 4)

λc

2
κ + 1

( fc + 2)3
6π

((λc/2)κ)4
+ 1

( fc + 2)3

V∑

j=2

6π

u4j

(c)≤ π2

3
fc( fc + 4)

λc

2
κ + 1

( fc + 2)3

V∑

j=1

6π

((λc/2)κ j)4

≤ π2

6
( fc + 4)κ + 6π

f 3c

24

(λcκ)4

∞∑

j=1

1

j4

(d)≤ π2

6
( fc + 4)κ + 35 fc ≤ 12.4 + 38.1 fc

(e)≤ cs1 fc.

Above, in (a) we used that if
∣∣u1
∣∣ < λcκ/2, then

∣∣g′(u1)
∣∣ < (π2/3) fc( fc + 4)λcκ/2

by (137) and otherwise
∣∣g′(u1)

∣∣ < 6π/[( fc + 2)3((λc/2)κ)4] by (138); in (b) we
used (138), which is applicable because

∣∣u j
∣∣ > λcκ > λc/2 by (140); in (c) we

used (140); in (d) we used
∑∞

j=1 1/ j
4 < 4/3; in (e) we used that fc > 128 and

defined cs1 � 38.2. ��

Proof of Lemma 5

Construction

We first describe how the trigonometric polynomial q2(·) is constructed. In the fol-
lowing four subsections, we prove that the construction is valid and that it satisfies the
required Properties 1–4.

Recall, T = {t1, . . . , tS} is defined in (12) and, as before, define Tk , k = 1, . . . , r ,
as in (20); remember that T = T1 ∪ . . . ∪ Tr and Tk ∈ R(κλlor , 1).

Wewill construct the trigonometric polynomial q2(·) as a (shifted) sumof r trigono-
metric polynomials {φk(·)}rk=1:

q2(t) =
r∑

k=1

φk(t) − ρ. (141)

Note that we are overloading the notations here and φk(·) in this section are differ-
ent from φk(·) in Sect. 6.3.1. Each of the trigonometric polynomials {φk(·)}rk=1 is
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frequency-limited to flo,

φk(t) =
flo∑

l=− flo

φ̂k,l e
−i2πlt for some φ̂k,l ∈ C (142)

and is constructed separately to satisfy the following interpolation constraints on T :

φk(tl) =
{

ρ, if tl ∈ Tk,
0, if tl ∈ T c

k � T \ Tk, (143)

φ′
k(tl) =

{
γ s′

l , if tl ∈ Tk,
0, if tl ∈ T c

k .
(144)

Constraints (143), (144), and definition (141) guarantee, for all l = 1, . . . , S,

q2(tl) = 0, (145)

q ′
2(tl) = γ s′

l . (146)

To develop intuition about our construction, observe that (142) and (141) guaran-
tee that Property 1 is satisfied. Further, observe that interpolation constraints (145)
and (146) are needed for (104) to hold because q0(t) = q ′

0(t) = 0 for all t ∈ T .
Next, we explain how to construct the trigonometric polynomials φk(·), k =

1, . . . , r . The idea is to construct φk(·) as a product of two trigonometric polyno-
mials:

φk(t) � φ0,k(t) × φ+,k(t). (147)

The first term in the product is defined as

φ0,k(t) �
∏

l �=k

qrλlo,Tl (t), (148)

where qrλlo,Tl (·), l = 1, . . . , r are the trigonometric polynomials constructed via
Lemma 1 with λc = rλlo and V = Tl ∈ R(κλlor , 1). The second term,

φ+,k(t) � r2r cru31qrλlo,Tk ,{ f j },{d j }(t) (149)

is a (rescaled) trigonometric polynomial qrλlo,Tk ,{ f j },{d j }(·) constructed via Lemma
2 with λc = rλlo, and V = Tk ∈ R(κλlor , 1) and cu31 is a positive numeri-
cal constant defined in (160) below. Further, the function-values and derivatives of
qrλlo,Tk ,{ f j },{d j }(·) are constrained on Tk so that φ+,k(·) satisfies the following:

φ+,k(t) = ρ
1

φ0,k(t)
, for all t ∈ Tk, (150)
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φ′+,k(tl) = −ρ
φ′
0,k(tl)

φ2
0,k(tl)

+ γ s′
l

φ0,k(tl)
, for all tl ∈ Tk . (151)

Note that φ0,k(·) in this section is identical to φ0,k(·) defined in Sect. 6.3.1 and,
therefore, satisfies all the properties derived in Sect. 6.3.2; φ+,k(·) in this section is
different from φ+,k(·) in Sect. 6.3.1 and the notation is overloaded.

We will prove in the next subsection, that this specification is valid, in the sense that
the corresponding function values and derivatives of qrλlo,Tk ,{ f j },{d j }(·) on Tk satisfy
requirements (15) of Lemma 2.

It follows from (147), (148), (150), Lemma 1, Properties 2, 4, and 5, that the
interpolation constraint (143) is satisfied:

φk(t) = φ0,k(t)φ+,k(t) = ρ, for all t ∈ Tk,
φk(t) = φ0,k(t)︸ ︷︷ ︸

0

φ+,k(t) = 0, for all t ∈ T c
k .

Next, by (147),

φ′
k(t) = φ′

0,k(t)φ+,k(t) + φ0,k(t)φ
′+,k(t).

Therefore, by (150) and (151),

φ′
k(tl) = φ′

0,k(tl)φ+,k(tl) + φ0,k(tl)φ
′+,k(tl)

= φ′
0,k(tl)ρ

1

φ0,k(tl)
+ φ0,k(tl)

(
−ρ

φ′
0,k(tl)

φ2
0,k(tl)

+ γ s′
l

φ0,k(tl)

)
= γ s′

l ,

for all tl ∈ Tk . Further, by (148), Lemma 1, Property 2,

φ′
k(t) = φ′

0,k(t)︸ ︷︷ ︸
0

φ+,k(t) + φ0,k(t)︸ ︷︷ ︸
0

φ′+,k(t) = 0,

for all t ∈ T c
k . We conclude that the interpolation constraint (144) is satisfied.

Finally, (142) follows from (147) because φ0,k(·) in (148) is frequency-limited to
(r − 1)/(λlor) [Lemma 1, Property 1] and φ+,k(·) in (149) is frequency-limited to
1/(λlor) [Lemma 2, Property 1] so that φk(·) is frequency-limited to (r − 1)/(λlor)+
1/(λlor) = 1/λlo = flo. Therefore, by (141), q2(·) is also frequency-limited to flo,
which proves Property 1.

Existence of�+,k(·)

In this subsection, we check that the trigonometric polynomial φ+,k(·) that sat-
isfies (150) and (151) can be defined according to (149) with qrλlo,Tk ,{ f j },{d j }(·)
constructed via Lemma 2 with λc = rλlo and V = Tk ∈ R(κλlor , 1). To this end, we
need to show that the constraints on the function values { f j } and on the derivatives
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{d j } that are implied by the constraints (150) and (151) satisfy requirements (15) of
Lemma 2.

First consider the case r = 1. As already discussed, in this case φ0,k(t) = 1 for all
t , and, therefore, φ′

0,k(t) = 0 for all t . Plugging these values into (150) and (151) we
see from (149) that the requirements (15) of Lemma 2 are satisfied.

Next, consider the case r > 1.
To check that requirements (15) are satisfied for t ∈ Tk , we need to find upper

bounds on
∣∣φ+,k(t)

∣∣ and on
∣∣φ′+,k(t)

∣∣.
Take t ∈ Tk and observe:

∣∣φ+,k(t)
∣∣ (a)=

∣∣∣∣ρ
1

φ0,k(t)

∣∣∣∣
(b)≤ λ2rhi

λ2rlo

1

λ
2(r−1)
hi

(rλlo)2(r−1)

1

cr−1
l

(c)≤ r2(r−1) 1

crl

λ2hi

λ2lo
(152)

≤ r2r
1

crl
. (153)

Above, (a) follows by (150); (b) follows by (47), which is valid because t ∈ Tk implies
t ∈ F(λhi, T c

k ); (c) follows because cl < 1.
Next, take t ∈ Tk and observe, according to (151),

∣∣φ′+,k(t)
∣∣ ≤

∣∣∣∣∣ρ
φ′
0,k(t)

φ2
0,k(t)

∣∣∣∣∣+
∣∣∣∣

γ

φ0,k(t)

∣∣∣∣. (154)

The first term above can be upper-bounded following exactly the same steps that lead
from (54) to (60). This gives:

∣∣∣∣∣ρ
φ′
0,k(t)

φ2
0,k(t)

∣∣∣∣∣ ≤ r2r−1cru7
λhi

λ2lo
. (155)

To upper-bound the second term in (154), consider two cases.
Case 1: t ∈ F(r
λlo, T c

k ). Then, by (44), φ0,k(t) ≥ cr−1
l1 and, therefore,

∣∣∣∣
γ

φ0,k(t)

∣∣∣∣ ≤ γ

cr−1
l1

= 1

cr−1
l1

λ2r−1
hi

λ2rlo
≤ r2r−1

(
1

c2l1

)r
λhi

λ2lo
. (156)

Above, in the last (crude) inequality we used that cl1 < 1 and that λhi/λlo < 1.
Case 2: t ∈ N (r
λlo, T c

k ). In this case set {v1, . . . , vr̂ } � T c
k ∩ N (r
λlo, t) and

note that 1 ≤ r̂ ≤ r − 1. Hence, by (40),

φ0,k(t) ≥ cr−1
l2

∏r̂
j=1(v j − t)2

(rλlo)2r̂
≥ cr−1

l2
λ2r̂hi

(rλlo)2r̂
,
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where we used that
∣∣v j − t

∣∣ ≥ 2λhi for all j = 1, . . . , r̂ because all elements of T are
separated by at least 2λhi. Therefore,

∣∣∣∣
γ

φ0,k(t)

∣∣∣∣ ≤ γ

cr−1
l2

(rλlo)2r̂

λ2r̂hi

= 1

cr−1
l2

λ2r−1
hi

λ2rlo

(rλlo)2r̂

λ2r̂hi

≤ r2r−1

(
1

c2l2

)r
λhi

λ2lo
. (157)

Above, in the last (crude) inequality we used that cl2 < 1, λhi/λlo < 1, and r̂ ≤ r −1.
Plugging (155), (156), and (157) into (154) we obtain

∣∣φ′+,k(t)
∣∣ ≤ r2r−1cru30

λhi

λ2lo
(158)

≤ r2r−1cru30
1

λlo
, (159)

where we used that λhi/λlo < 1 and defined cu30 � 2max(cu7, 1/c2l1, 1/c
2
l2).

It follows from (153) and (159) that the function values and the derivatives of
qrλlo,Tk (t) = φ+,k(t)/(r2r cru31) with

cu31 � max(cu30, 1/cl) (160)

satisfy requirements (15) of Lemma 2 on Tk . We conclude that φ+,k(·) can indeed be
defined according to (149). According to Properties 3, 4, and 5 of Lemma 2, and (149),
φ+,k(·) satisfies the following properties:

‖φ+,k(·)‖∞ ≤ r2r cru31cu0, (161)

‖φ′+,k(·)‖∞ ≤ r2r−1cru31cu1
1

λlo
, (162)

‖φ′′+,k(·)‖∞ ≤ r2r−2cru31cu2
1

λ2lo
. (163)

Proof of Property 2

Take j ∈ {1, . . . , S} and consider t j ∈ T . There exists a unique l ∈ {1, . . . , r} such
that t j ∈ Tl . We will show that for all τ ∈ N (λhi, t j )

∣∣∣φl(τ ) − ρ − γ s′
j (τ − t j )

∣∣∣ ≤ r2r+3cr+1
u44 q0(τ ) (164)

and

|φk(τ )| ≤ r2r+3cr+1
u50 q0(τ ), for k ∈ {1, . . . , r}, k �= l, (165)

where the positive numerical constants cu44 and cu50 are defined below.
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From this we will conclude:

∣∣∣q2(τ ) − γ s′
j (τ − t j )

∣∣∣ =
∣∣∣∣∣

r∑

k=1

φk(τ ) − ρ − γ s′
j (τ − t j )

∣∣∣∣∣

≤
∑

k �=l

|φk(τ )| +
∣∣∣φl(τ ) − ρ − γ s′

j (τ − t j )
∣∣∣

≤ r2r+4cr+1
u34 q0(τ ),

with cu34 � 2max(cu44, cu50), as desired.
To prove (164) and (165) recall, by (143) and (144),

φl(τ ) − ρ − γ s′
j (τ − t j )

∣∣∣
τ=t j

= 0 = q0(t j ), (166)

d(φl(τ ) − ρ − γ s′
j (τ − t j ))

dτ

∣∣∣∣∣
τ=t j

= φ′
l(t j ) − γ s′

j = 0 = q ′
0(t j ), (167)

φk(t j ) = 0 = q0(t j ) for k ∈ {1, . . . , r}, k �= l, (168)

φ′
k(t j ) = 0 = q ′

0(t j ) for k ∈ {1, . . . , r}, k �= l. (169)

Hence, in order to prove the bounds in (165) and (164), we will derive upper bounds
on the second derivatives

∣∣φ′′
k (τ )

∣∣, k ∈ {1, . . . , r}, valid for all τ ∈ N (λhi, t j ), and
use the Mean Value theorem (see Theorem 3).

Taking the second derivative of (147) and applying the triangle inequality we find:

∣∣φ′′
k (τ )

∣∣ ≤ ∣∣φ′′
0,k(τ )

∣∣∣∣φ+,k(τ )
∣∣

︸ ︷︷ ︸
E1(τ )

+2
∣∣φ′

0,k(τ )
∣∣∣∣φ′+,k(τ )

∣∣
︸ ︷︷ ︸

E2(τ )

+ ∣∣φ0,k(τ )
∣∣∣∣φ′′+,k(τ )

∣∣
︸ ︷︷ ︸

E3(τ )

. (170)

In the derivation below we upper-bound the terms separately.
We will need the following notations. Set {vτ

1 , . . . , v
τ
r̂ } � N (r
λlo, τ )∩T c

k . Also,

set {v1, . . . , vr̃ } � N (r
λlo − λhi, t j ) ∩ T c
k . Note that the set {v1, . . . , vr̃ } does not

depend on τ and also {v1, . . . , vr̃ } ⊂ {vτ
1 , . . . , v

τ
r̂ } so that r̃ ≤ r̂ .

The remainder of the proof of Property 2 is organized as follows. First, consider
the case t j ∈ Tk and prove (164), next consider the case t j ∈ T c

k and prove (165).
Proof of (164): case t j ∈ Tk .
Bounding E1(τ ): By (195) [Mean Value theorem] and the triangle inequality we can
write

∣∣φ+,k(τ )
∣∣ ≤ ∣∣φ+,k(t j )

∣∣+ ∣∣φ′+,k(t j )
∣∣∣∣τ − t j

∣∣+ 1

2

∣∣φ′′+,k(τm)
∣∣(τ − t j )

2

with τm ∈ (t j , τ ). Next, we use (152) to upper-bound
∣∣φ+,k(t j )

∣∣; use (158) to upper-
bound

∣∣φ′+,k(t j )
∣∣; use (163) to upper-bound

∣∣φ′′+,k(τm)
∣∣. With these estimates we can
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further upper-bound
∣∣φ+,k(τ )

∣∣ as follows:

∣∣φ+,k(τ )
∣∣ ≤ r2r−1cru35

(
λ2hi

λ2lo
+ λhi

λ2lo

∣∣τ − t j
∣∣+ 1

λ2lo
(τ − t j )

2

)

≤ r2r−1cru36
λ2hi

λ2lo
. (171)

Above, we defined cu35 � max(1/cl , cu30, cu31cu2), cu36 � 3cu35, and used∣∣τ − t j
∣∣ ≤ λhi.

Assume r̃ ≥ 1 (the case r̃ = 0 will be treated separately below) so that r̂ ≥ 1 and
τ ∈ N (r
λlo, T c

k ), which implies that
∣∣φ′′

0,k(τ )
∣∣ can be upper-bounded by (73).

Multiplying (171) and (73) and simplifying we obtain the following upper bound
on E1:

E1(τ ) = ∣∣φ′′
0,k(τ )

∣∣∣∣φ+,k(τ )
∣∣ (a)≤ r2r+1cr+1

u37

∏
1≤l≤r̂ (v

τ
l − τ)2

(rλlo)2r̂
1

λ2lo

(b)≤ r2r+1cr+1
u37

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
. (172)

Above, in (a) we used (multiple times) the bound λhi ≤ ∣∣vτ
l − τ

∣∣, which is true for
all l ∈ {1, . . . , r̂} (follows because the elements of T are separated by at least 2λhi),
used λhi/λlo < 1, and defined cu37 � max(6cu3cu36, cu31cu0cu5); in (b) we used the
fact that

∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
For the case r̃ = 0, the upper bound (74) also holds by (46) and (161).

Bounding E2(τ ): By (194) [Mean Value theorem] we can write

∣∣φ′+,k(τ )
∣∣ ≤ ∣∣φ′+,k(t j )

∣∣+ ∣∣φ′′+,k(τm)
∣∣∣∣τ − t j

∣∣

with τm ∈ (t j , τ ). Next, we use (158) to upper-bound
∣∣φ′+,k(t j )

∣∣; use (163) to upper-
bound

∣∣φ′′+,k(τm)
∣∣. With these estimates we can further upper-bound

∣∣φ′+,k(τ )
∣∣ as

follows:

∣∣φ′+,k(τ )
∣∣ ≤ r2r−1cru38

(
λhi

λ2lo
+ 1

λ2lo

∣∣τ − t j
∣∣
)

≤ r2r−1cru39
λhi

λ2lo
. (173)

Above, we defined cu38 � max(cu30, cu2cu31), cu39 � 2cu38, and used
∣∣τ − t j

∣∣ ≤ λhi.
Assume r̃ ≥ 1 (the case r̃ = 0 will be treated separately below) so that r̂ ≥ 1

and τ ∈ N (r
λlo, T c
k ), which implies that

∣∣φ′
0,k(t)

∣∣ can be upper-bounded by (76).
Multiplying (173) and (76) and simplifying, we obtain the following upper bound
on E2:
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E2(τ ) = ∣∣φ′
0,k(τ )

∣∣∣∣φ′+,k(τ )
∣∣ (a)≤ r2r cru40

∏
1≤l≤r̂ (v

τ
l − τ)2

(rλlo)2r̂
1

λ2lo

(b)≤ r2r cru40

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
. (174)

Above, in (a) we used the bound λhi ≤ ∣∣vτ
l − τ

∣∣, which is true for all l ∈
{1, . . . , r̂} (follows because the elements of T are separated by at least 2λhi), used
λhi/λlo < 1, and defined cu40 � max(2cu39cu3, 2πcu31cu1); in (b) we use the fact that∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.

For the case r̃ = 0, the upper bound (174) also holds by (45) and (162).
Bounding E3(τ ): By (163),

∣∣φ′′+,k(τ )
∣∣ ≤ r2r−2cru31cu2

1

λ2lo
. (175)

Assume r̃ ≥ 1 (the case r̃ = 0 will be treated separately below) so that r̂ ≥ 1
and τ ∈ N (r
λlo, T c

k ), which implies that
∣∣φ0,k(τ )

∣∣ can be upper-bounded by (79).
Multiplying (175) and (79) and simplifying, we obtain the following upper bound
on E3:

E3(τ ) = ∣∣φ0,k(τ )
∣∣∣∣φ′′+,k(τ )

∣∣ (a)≤ r2r−2cru41

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
1

λ2lo

(b)≤ r2r−2cru41

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
. (176)

Above, (a) we defined cu41 � cu31cu2cu ; in (b) we use the fact that∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
For the case r̃ = 0, the upper bound (176) also holds by (175) because by (148)

and Lemma 1, Property 3,
∣∣φ0,k(τ )

∣∣ < 1 and because cu > 1 and cu2 > 1.
From (170), (172), (174), and (176) we conclude that

∣∣φ′′
k (τ )

∣∣ ≤ r2r+1cr+1
u42

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
1

λ2lo
, (177)

where we defined cu42 � 4max(cu37, cu40, cu41).
Putting pieces together:Applying (195) [Mean Value theorem] to the function f (·) =
φl(·) − ρ − γ s′

j (· − t j ) with a = t j and b = τ and using (166), (167), (177) and we
can write for all τ ∈ N (λhi, t j ):

∣∣∣φl(τ ) − ρ − γ s′
j (τ − t j )

∣∣∣
(a)≤ 1

2
r2r+1cr+1

u42

∏
1≤l≤r̃ (vl − τm)2

(rλlo)2r̃
(τ − t j )2

λ2lo

(b)≤ 1

2
r2r+1cr+1

u42 2
r̃

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
(τ − t j )2

λ2lo
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(c)≤ r2r+3cr+1
u43

∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
(τ − t j )2

(rλlo)2
. (178)

Above, in (a) τm ∈ (t j , τ ); in (b) we used that
∣∣vl − τm

∣∣ <
∣∣vl − τ

∣∣+λhi < 2
∣∣vl − τ

∣∣,
which is true because τ ∈ N (λhi, t j ) and because the elements of T are separated by
at least 2λhi; in (c) we defined cu43 � 2cu42.

The bound (164) follows from (178) and (83) by defining cu44 � cu43/cl3.
Proof of (165): case t j ∈ T c

k . We only need to consider this case when r > 1. Indeed,
when r = 1, the sum in (141) only contains one element, φl(·), and, necessarily,
t j ∈ Tl because T c

l is empty.
In this case t j is one of the elements among {v1, . . . , vr̃ } ⊂ {vτ

1 , . . . , v
τ
r̂ }; in other

words, t j = vm̃ = vτ
m̂ for some1 ≤ m̃ ≤ r̃ , 1 ≤ m̂ ≤ r̂ . The setTk∩N (r
λlo−λhi, t j )

is either empty or contains exactly one element. Let b �
∣∣Tk ∩ N (r
λlo − λhi, t j )

∣∣.
In the case when b = 1, let {t̃} � Tk ∩ N (r
λlo − λhi, t j ).
Bounding E1(τ ): Consider the case b = 1. By (195) [Mean Value theorem] we can
write:

∣∣φ+,k(τ )
∣∣ ≤ ∣∣φ+,k(t̃)

∣∣+ ∣∣φ′+,k(t̃)
∣∣∣∣τ − t̃

∣∣+ 1

2

∣∣φ′′+,k(τm)
∣∣(τ − t̃)2

with τm ∈ (t̃, τ ). Next, we use (152) to upper-bound
∣∣φ+,k(t̃)

∣∣; use (158) to upper-
bound

∣∣φ′+,k(t̃)
∣∣; use (163) to upper-bound

∣∣φ′′+,k(τm)
∣∣. With these estimates we can

further upper-bound
∣∣φ+,k(τ )

∣∣ as follows:

∣∣φ+,k(τ )
∣∣ ≤ r2r−1cru35

(
λ2hi

λ2lo
+ λhi

λ2lo

∣∣τ − t̃
∣∣+ 1

λ2lo
(τ − t̃)2

)

≤ r2r+1cru36
(t̃ − τ)2

(rλlo)2
= r2r+1cru36

[
(t̃ − τ)2

(rλlo)2

]I [b=1]
, (179)

where we used that λhi ≤ ∣∣t̃ − τ
∣∣ because the elements of T are separated by at least

2λhi and τ ∈ N (λhi, t j ) with t̃ �= t j . According to (161) the upper bound (179) also
holds for b = 0.

Since t j ∈ T c
k and τ ∈ N (λhi, t j ), it follows τ ∈ N (r
λlo, T c

k ) so that r̂ ≥ 1,
which implies that

∣∣φ′′
0,k(τ )

∣∣ can be upper-bounded by (85).
Multiplying (179) and (85) and simplifying, we obtain the following upper bound

on E1:

E1(τ ) = ∣∣φ′′
0,k(τ )

∣∣∣∣φ+,k(τ )
∣∣

(a)≤ r2r+1cr+1
u45

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

1

λ2lo

(b)≤ r2r+1cr+1
u45

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
. (180)
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Above, in (a)we defined cu45 � cu36cu17; in (b)weused that
∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 < 1

for all l ∈ {1, . . . , r̂}.
Bounding E2(τ ): Consider the case b = 1. By (194) [Mean Value theorem] we can
write:

∣∣φ′+,k(τ )
∣∣ ≤ ∣∣φ′+,k(t̃)

∣∣+ ∣∣φ′′+,k(τm)
∣∣∣∣τ − t̃

∣∣

with τm ∈ (t̃, τ ). Next, we use (158) to upper-bound
∣∣φ′+,k(t̃)

∣∣; use (163) to upper-
bound

∣∣φ′′+,k(τm)
∣∣. With these estimates we can further upper-bound

∣∣φ′+,k(τ )
∣∣ as

follows:

∣∣φ′+,k(τ )
∣∣ ≤ r2r−1cru38

(
λhi

λ2lo
+ 1

λ2lo

∣∣τ − t̃
∣∣
)

≤ r2r cru39

∣∣τ − t̃
∣∣

rλlo

1

λlo
= r2r cru39

[∣∣τ − t̃
∣∣

rλlo

]I [b=1]
1

λlo
, (181)

where we used that λhi ≤ ∣∣t̃ − τ
∣∣. According to (162) the upper bound (181) also

holds for b = 0.
Since t j ∈ T c

k and τ ∈ N (λhi, t j ), it follows τ ∈ N (r
λlo, T c
k ) so that r̂ ≥ 1,

which implies that
∣∣φ′

0,k(τ )
∣∣ can be upper-bounded by (88).

Multiplying (181) and (88) and simplifying we obtain the following upper bound
on E2:

E2(τ ) = ∣∣φ′
0,k(τ )

∣∣∣∣φ′+,k(τ )
∣∣

(a)≤ r2r cru46

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

1

λ2lo

(b)≤ r2r cru46

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
. (182)

Above, in (a)we defined cu46 � cu39cu19; in (b)weused that
∣∣vτ

l − τ
∣∣/(λlor) ≤ 
 < 1

for all l ∈ {1, . . . , r̂}.
Bounding E3(τ ): By (163),

∣∣φ′′+,k(τ )
∣∣ ≤ r2r−2cru31cu2

1

λ2lo
. (183)

Since t j ∈ T c
k and τ ∈ N (λhi, t j ), it follows τ ∈ N (r
λlo, T c

k ) so that
r̂ ≥ 1, which implies that

∣∣φ0,k(τ )
∣∣ can be upper-bounded as in (91). Mul-

tiplying (183) and (91) and simplifying, we obtain the following upper bound
on E3:

E3(τ ) = ∣∣φ0,k(τ )
∣∣∣∣φ′′+,k(τ )

∣∣
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(a)≤ r2r−2cru47

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̂ ,l �=m̂(vτ

l − τ)2

(rλlo)2(r̂−1)

1

λ2lo

(b)≤ r2r−2cru47

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
. (184)

Above, in (a) we defined cu47 � cu31cu2cu ; in (b) we used the fact that∣∣vτ
l − τ

∣∣/(λlor) ≤ 
 < 1 for all l ∈ {1, . . . , r̂}.
From (170), (180), (182), and (184) we conclude that

∣∣φ′′
k (τ )

∣∣ ≤ r2r+1cr+1
u48

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

1

λ2lo
, (185)

where we defined cu48 � 4max(cu45, cu46, cu47).
Putting pieces together:Applying (195) [Mean Value theorem] to the function f (·) =
φl(·) with a = t j and b = τ and using (168), (169), (185), and we can write for all
τ ∈ N (λhi, t j ):

|φk(τ )| (a)≤ 1

2
r2r+1cr+1

u48

[
(t̃ − τm)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τm)2

(rλlo)2(r̃−1)

(τ − t j )2

λ2lo

(b)≤ 1

2
r2r+1cr+1

u48 2
r̃
[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ ,l �=m̃(vl − τ)2

(rλlo)2(r̃−1)

(τ − t j )2

λ2lo

(c)≤ r2r+3cr+1
u49

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏
1≤l≤r̃ (vl − τ)2

(rλlo)2r̃
. (186)

Above, in (a) τm ∈ (t j , τ ); in (b) we used the fact that, for l �= m̃,
∣∣vl − τm

∣∣ <∣∣vl − τ
∣∣ + λhi < 2

∣∣vl − τ
∣∣ and

∣∣t̃ − τm
∣∣ <

∣∣t̃ − τ
∣∣ + λhi < 2

∣∣t̃ − τ
∣∣, which is true

because τ ∈ N (λhi, t j ) and because the elements of T are separated by at least 2λhi;
in (c) we defined cu49 � 2cu48 and used the fact that t j = vm̃ .

The bound (165) follows from (186) and (95) by defining cu50 � cu49/cl3.

Proof of Property 3

By (141) and the triangle inequality:

‖q2(·)‖∞ ≤ ρ + r max
1≤k≤r

‖φk(·)‖∞

(a)≤ ρ + r max
1≤k≤r

‖φ+,k(·)‖∞

(b)= ρ + r2r+1cru31 max
1≤k≤r

‖qrλlo,Tk ,{ f j },{d j }(·)‖∞

(c)≤ ρ + r2r+1cru31cu0
(d)≤ r2r+1cru56.
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Above, in (a) we used (147) and the fact that by (148) and Lemma 1, Property 3,
‖φ0,k(·)‖∞ ≤ 1; in (b) we used (149); in (c) we used Lemma 2, Property 3; in (d) we
defined cu56 � 2cu0cu31 and used the fact that ρ < 1 < cu0cu31.

Proof of Property 4

Take τ ∈ F(λhi, T ). As above, let {uτ
1, . . . , u

τ
r̆ } � N (r
λlo, τ ) ∩ T . Then by (16),

q0(τ ) ≥ crl2

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆
. (187)

By (19) this bound is also valid when r̆ = 0.
Fix k. If τ ∈ N (r
λlo, T c

k ), then we can use (41) to upper-bound
∣∣φ0,k(τ )

∣∣:

∣∣φ0,k(τ )
∣∣ ≤ cr̂u

∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂
, (188)

where, as before, {vτ
1 , . . . , v

τ
r̂ } � N (r
λlo, τ ) ∩ T c

k . If τ /∈ N (r
λlo, T c
k ), we will

use that by (36) and by Lemma 1, Property 3,

∣∣φ0,k(τ )
∣∣ ≤ 1. (189)

The set Tk ∩ N (r
λlo, τ ) is either empty or contains exactly one element. Let b �∣∣Tk ∩ N (r
λlo, τ )
∣∣denote the size of this set;whenb = 1, let {t̃} � Tk∩N (r
λlo, τ ).

Following the steps that lead to (179), we obtain:

∣∣φ+,k(τ )
∣∣ ≤ r2r+1cru36

[
(t̃ − τ)2

(rλlo)2

]I [b=1]
(190)

and the bound is valid for both cases b = 0 and b = 1.
Case r̂ ≥ 1: Then, {uτ

1, . . . , u
τ
r̆ } = {vτ

1 , . . . , v
τ
r̂ } ∪ {t̃} if b = 1, and

{uτ
1, . . . , u

τ
r̆ } = {vτ

1 , . . . , v
τ
r̂ } if b = 0. Therefore,

|φk(τ )| = ∣∣φ0,k(τ )
∣∣∣∣φ+,k(τ )

∣∣ (a)≤ r2r+1cru36c
r̂
u

[
(t̃ − τ)2

(rλlo)2

]I [b=1] ∏r̂
l=1(v

τ
l − τ)2

(rλlo)2r̂

= r2r+1cru36c
r̂
u

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆
(b)≤ r2r+1cru51q0(τ ).

(191)

Above, (a) follows by (188) and (190); (b) follows by (187) with cu51 � cu36cu/cl2.
Case r̂ = 0: Then, r̆ = 1 and {uτ

r̆ } = {t̃} if b = 1 and r̆ = 0 if b = 0. Therefore,

|φk(τ )| = ∣∣φ0,k(τ )
∣∣∣∣φ+,k(τ )

∣∣ (a)≤ r2r+1cru36

[
(t̃ − τ)2

(rλlo)2

]I [b=1]



Journal of Fourier Analysis and Applications (2022) 28 :4 Page 73 of 80 4

= r2r+1cru36

∏r̆
l=1(u

τ
l − τ)2

(rλlo)2r̆
(b)≤ r2r+1cru51q0(τ ).

(192)

Above, (a) follows by (189) and (190); (b) follows by (187) because cu > 1.
By Lemma 3, Property 6,

ρ = λ2rhi

λ2rlo
≤ r2r

1

crl
q0(τ ). (193)

Therefore, by (141), (191), (192), (193),

|q2(τ )| ≤
r∑

k=1

|φk(τ )| + ρ ≤ r2r+2cru52q0(τ ),

where we defined cu52 � cu51 + 1/cl . ��

Mean Value Theorem

We repeatedly use the Taylor series approximation with the remained expressed via
the Mean Value theorem [1, p. 880, 25.2.25] given below for the convenience of the
reader.

Theorem 3 Assume that f (t) is twice differentiable on the interval [a, b]. Then, there
exists t1 ∈ (a, b) such that

f (b) = f (a) + f ′(t1)(b − a). (194)

and there exists t2 ∈ (a, b) such that

f (b) = f (a) + f ′(a)(b − a) + f ′′(t2)
2

(b − a)2. (195)

Properties of Fejér Kernel

The results proven in subsections below are analogous to the results in [12, eq. (1.11)
and eq. (2.6)] with the difference that here we need bounds on sums and in [12] bounds
on the corresponding integrals are provided.

Below, we will need uniform upper bounds on
∣∣khi(·)

∣∣,
∣∣k′

hi(·)
∣∣, and

∣∣k′′
hi(·)

∣∣; these
are derived next.

Fejér kernel (7) can be written as a Fourier sum as follows:

khi(t) = 1

N

∑

|k|≤ fhi

(
1 −

∣∣k
∣∣

fhi + 1

)
ei2π tk . (196)
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Taking the absolute value of both sides in (196) and applying the triangle inequality
we find:

|khi(t)| ≤ 1

N

∑

|k|≤ fhi

(
1 −

∣∣k
∣∣

fhi + 1

)
= 1

N
(1 + fhi) .

Above, the equality follows by summing up the simple series.
Differentiating (196) we obtain:

k′
hi(t) = i2π

N

∑

|k|≤ fhi

(
1 −

∣∣k
∣∣

fhi + 1

)
kei2π tk . (197)

Taking the absolute value of both sides in (197) and applying the triangle inequality
we find:

∣∣k′
hi(t)

∣∣ ≤ 2π

N

∑

|k|≤ fhi

|k|
(
1 −

∣∣k
∣∣

fhi + 1

)
(a)= 2π

3N
fhi(2 + fhi)

(b)≤ 2π

N
f 2hi. (198)

Above, (a) follows by summing up the simple power series; (b) follows because
fhi > 1.
Differentiating (197) we obtain:

k′′
hi(t) = − (2π)2

N

∑

|k|≤ fhi

(
1 −

∣∣k
∣∣

fhi + 1

)
k2ei2π tk . (199)

Taking the absolute value of both sides in (199) and applying the triangle inequality
we find:

∣∣k′′
hi(t)

∣∣ ≤ (2π)2

N

∑

|k|≤ fhi

k2
(
1 −

∣∣k
∣∣

fhi + 1

)
(a)= 2π2

3N
fhi(2 + 3 fhi + f 2hi)

(b)≤ 4π2

N
f 3hi.

(200)

Above, (a) follows by summing up the simple power series; (b) follows because
fhi > 1.
The bounds derived below in this section are crude in the sense that no attempt has

been made to obtain the tightest possible constants; for this reason some of the steps
below may appear unnecessarily wasteful.
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Proof of (106)

Begin by splitting the summation interval and recombining the terms in the following
way:

N−1∑

n=0

∣∣∣k′
hi

( n

N

)∣∣∣ =
∑

n
N ∈[0,λhi)

∣∣∣k′
hi

( n

N

)∣∣∣ +
∑

n
N ∈[λhi, 12 )

∣∣∣k′
hi

( n

N

)∣∣∣

+
∑

n
N ∈[ 12 ,1−λhi)

∣∣∣k′
hi

( n

N

)∣∣∣ +
∑

n
N ∈[1−λhi,1)

∣∣∣k′
hi

( n

N

)∣∣∣

≤ 2
∑

n
N ∈[0,λhi+ 1

N )

∣∣∣k′
hi

( n

N

)∣∣∣ + 2
∑

n
N ∈[λhi, 12+ 1

N )

∣∣∣k′
hi

( n

N

)∣∣∣.

(201)

Above, the inequality follows by symmetry of k′
hi(·) around 1/2.Next, we upper-bound

the two sums separately.
To upper-bound the first sum in (201) we proceed as follows:

∑

n
N ∈[0,λhi+ 1

N )

∣∣∣k′
hi

( n

N

)∣∣∣ ≤ (λhi + 1/N )N max
t

∣∣k′
hi (t)

∣∣ (a)≤ 2λhi2π f 2hi
(b)= 4π/λhi.

(202)

Above, in (a) we used (198) and the assumption that 1/N ≤ λhi; in (b) we used that
fhi = 1/λhi.
To upper-bound the second term in (201) we observe that

∣∣k′
hi(·)

∣∣ can be upper-
bounded as follows for t ∈ [0, 0.55]:
∣∣k′

hi(t)
∣∣ (a)= 2π sin(π( fhi + 1)t)

N

∣∣∣∣
cos(π( fhi + 1)t)

sin2(π t)
− cos(π t) sin(π( fhi + 1)t)

( fhi + 1) sin3(π t)

∣∣∣∣
(b)≤ 1

N

(
2π

sin2(π t)
+ 2π

( fhi + 1) sin3(π t)

)
(c)≤ 1

N

(
2

( fhi + 1)t3
+ 2

t2

)
.

(203)

Above, (a) follows by differentiating khi(·) in (7); in (b) we used the triangle inequality
and the fact that

∣∣sin(·)∣∣ ≤ 1,
∣∣cos(·)∣∣ ≤ 1; in (c) we used the inequalities sin(π t)2 ≥

π t2 and sin(π t)3 ≥ π t3 for t ∈ [0, 0.55]. Therefore,
∑

n
N ∈[λhi, 12+ 1

N )

∣∣∣k′
hi

( n

N

)∣∣∣

(a)≤ 2

1 + fhi

1

N

∑

n
N ∈[λhi, 12+ 1

N )

1

(n/N )3
+ 2

N

∑

n
N ∈[λhi, 12+ 1

N )

1

(n/N )2
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(b)≤ 2

1 + fhi

(
1

N

1

λ3hi
+
∫ 1/2+1/N

λhi

1

t3
dt

)
+ 2

N

1

λ2hi
+ 2

∫ 1/2+1/N

λhi

1

t2
dt

≤ 2

1 + fhi

(
1

N

1

λ3hi
+
∫ ∞

λhi

1

t3
dt

)
+ 2

N

1

λ2hi
+ 2

∫ ∞

λhi

1

t2
dt

= 2

1 + fhi

(
1

N

1

λ3hi
+ 1

2λ2hi

)
+ 2

N

1

λ2hi
+ 2

λhi

(c)≤ 3

1 + fhi

1

λ2hi
+ 4

λhi
<

7

λhi
. (204)

Above, (a) follows from (203) because 1/2+1/N < 0.55; in (b) the bound for the first
term follows because the function 1/t3 is monotonically decreasing and the bound for
the second term follows because the function 1/t2 is monotonically decreasing; (c)
follows because 1/N ≤ λhi.

Finally, plugging (202) and (204) into (201) and defining c′
k = 8π + 14 we

obtain (106).

Proof of (107)

Begin by splitting the summation interval and recombining the terms in the following
way:

1

2

N−1∑

n=0

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣ = 1

2

∑

n
N ∈[0,2λhi)

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣

+ 1

2

∑

n
N ∈[2λhi,1/2)

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣

+ 1

2

∑

n
N ∈[1/2,1−2λhi)

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣

+ 1

2

∑

n
N ∈[1−2λhi,1)

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣

≤
∑

n
N ∈[0,2λhi+ 1

N )

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣

+
∑

n
N ∈[2λhi, 12+ 1

N )

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣. (205)

Above, the inequality follows by symmetry of supu∈N (λhi,·)
∣∣k′′

hi(u)
∣∣ around 1/2. Next,

we upper-bound the two sums separately.
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To upper-bound the first sum in (205) we proceed as follows:

∑

n
N ∈[0,2λhi+ 1

N )

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣ ≤
(
2λhi + 1

N

)
N max

t

∣∣k′′
hi (t)

∣∣

(a)≤ 3λhi4π
2 f 3hi

(b)= 12π2

λ2hi
. (206)

Above, in (a) we used (200) and the assumption that 1/N ≤ λhi; in (b) we used that
fhi = 1/λhi.
To upper-bound the second term in (205) we differentiate khi(·) in (7) twice to

obtain:

k′′
hi(t) = π2

N

(sin(2π t) sin(2π fhit) − cos(2π t) cos(2π fhit) − 2 cos(2π fhit))

( fhi + 1) sin4(π t)

+ π2

N

(cos(2π t) + 2)

( fhi + 1) sin4(π t)

− 4π2

N

fhi sin(π(2 fhi + 1)t)

( fhi + 1) sin3(π t)
+ 2π2

N

f 2hi cos(2π( fhi + 1)t)

( fhi + 1) sin2(π t)
.

This leads to the following upper bound on
∣∣k′′

hi(t)
∣∣ for t ∈ [0, 0.55]:

∣∣k′′
hi(t)

∣∣ (a)≤ 1

N

(
7π2

( fhi + 1) sin4(π t)
+ 4π2 fhi

( fhi + 1) sin3(π t)
+ 2π2 f 2hi

( fhi + 1) sin2(π t)

)

(b)≤ 1

N

(
7π

fhit4
+ 4π

t3
+ 2π fhi

t2

)
. (207)

Above, in (a) we used the triangle inequality and the fact that
∣∣sin(·)∣∣ ≤ 1,

∣∣cos(·)∣∣ ≤ 1;
in (b) we used the inequalities sin(π t)2 ≥ π t2, sin(π t)3 ≥ π t3, sin(π t)4 ≥ π t4 for
t ∈ [0, 0.55]. Next observe that since the right-hand side of (207) is monotonically
decreasing for t > 0 we have for t ∈ (λhi, 0.55]:

sup
u∈N (λhi,t)

∣∣k′′
hi(u)

∣∣ ≤ 1

N

(
7π

fhi(t − λhi)4
+ 4π

(t − λhi)3
+ 2π fhi

(t − λhi)2

)
. (208)

Therefore, the second term in (205) can be upper-bounded as follows:

∑

n
N ∈[2λhi, 12+ 1

N )

sup
u∈N (λhi,

n
N )

∣∣k′′
hi(u)

∣∣

(a)≤ 7π

fhi

1

N

∑

n
N ∈[2λhi, 12+ 1

N )

1

(n/N − λhi)4
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+ 4π
1

N

∑

n
N ∈[2λhi, 12+ 1

N )

1

(n/N − λhi)3

+ 2π fhi
1

N

∑

n
N ∈[2λhi, 12+ 1

N )

1

(n/N − λhi)2

(b)≤ 7π

fhi

(
1

N

1

(2λhi − λhi)4
+
∫ 1/2+1/N

2λhi

1

(t − λhi)4
dt

)

+ 4π

(
1

N

1

(2λhi − λhi)3
+
∫ 1/2+1/N

2λhi

1

(t − λhi)3
dt

)

+ 2π fhi

(
1

N

1

(2λhi − λhi)2
+
∫ 1/2+1/N

2λhi

1

(t − λhi)2
dt

)

(c)≤ 7π

fhi

(
1

N

1

λ4hi
+
∫ ∞

λhi

1

t4
dt

)
+ 4π

(
1

N

1

λ3hi
+
∫ ∞

λhi

1

t3
dt

)

+ 2π fhi

(
1

N

1

λ2hi
+
∫ ∞

λhi

1

t2
dt

)

= 7π

fhi

(
1

N

1

λ4hi
+ 1

3λ3hi

)
+ 4π

(
1

N

1

λ3hi
+ 1

2λ2hi

)

+ 2π fhi

(
1

N

1

λ2hi
+ 1

λhi

)

(d)≤
(
28

3
π + 6π + 4π

)
1

λ2hi
= 58π

3

1

λ2hi
. (209)

Above, (a) follows from (208) because 1/2+ 1/N < 0.55; (b) follows because the
functions 1/(t − λhi)

4, 1/(t − λhi)
3, and 1/(t − λhi)

2 are monotonically decreasing;
(c) follows by changing the integration variable; (d) follows because 1/N ≤ λhi and
because fhi = 1/λhi.

Finally, plugging (206) and (209) into (205) and defining c′′
k � 12π2 + 58π/3 we

obtain (107).
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