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Abstract
We develop an approach to finding upper bounds for the number of arithmetic opera-
tions necessary for doing harmonic analysis on permutation modules of finite groups.
The approach takes advantage of the intrinsic orbital structure of permutation mod-
ules, and it uses the multiplicities of irreducible submodules within individual orbital
spaces to express the resulting computational bounds. We conclude by showing that
these bounds are surprisingly small when dealing with certain permutation modules
arising from the action of the symmetric group on tabloids.
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1 Introduction

Let G be a finite group acting on a finite set X . Let CG be the complex group
algebra of G, and let CX be the vector space of complex-valued functions defined
on X . The action of G on X turns CX into a CG-permutation module, where if
α = ∑

g∈G α(g)g ∈ CG and f ∈ CX , then

(α · f )(x) =
∑

g∈G
α(g) f (g−1x)

for all x ∈ X . In this setting, we say that a basis B for CX is a harmonic basis (with
respect to CG) if it can be partitioned into subsets such that each subset forms a basis
for an irreducible CG-submodule of CX . Note that a vector in a harmonic basis is
called a fundamental harmonic in [14].

The problem addressed in this paper is the following: Given an arbitrary f ∈ CX ,
how may we efficiently compute the coefficients necessary to express f in terms
of a harmonic basis for CX? In other words, if X = {x1, . . . , xm}, and we are
given f (x1), . . . , f (xm), then how may we efficiently find the complex coeffi-
cients β1, . . . , βm such that f = β1b1 + · · · + βmbm for some harmonic basis
B = {b1, . . . , bm} of CX? In this paper, we create and then analyze a change of
basis algorithm for computing the coefficients β1, . . . , βm when B is a harmonic basis
that is also a symmetry-adapted basis associated to a chain of subgroups of G (see
Sect. 2.3).

The problem of computing such coefficients arises when doing harmonic analysis
on finite groups, especially when the function f ∈ CX corresponds to complex-valued
data defined on a set X with an underlying symmetry group G (see, for example,
[3,13,26]). It also arises in generalized spectral analysis, which was developed by
Diaconis [9,10] and which extends the classical spectral analysis of time series to the
analysis of functions in CX .

For a well-known example, let X = {x1, . . . , xm} and let G be the cyclic group
Z/mZ acting on X by cyclically permuting its elements. The elements of CX may
be viewed as discretized periodic signals on m points, in which case the irreducible
submodules of CX correspond to different frequencies in the usual signal processing
sense. In this case, the coefficients β1, . . . , βm for f ∈ CX are then just fixed scalar
multiples of the usual Fourier coefficients of f , which may be found by applying
the usual discrete Fourier transform (DFT) to f . The classical fast Fourier transform
(FFT)may therefore be used to efficiently compute theβi using O(m logm) arithmetic
operations (see, for example, [5,27]).

For another well-known example, suppose respondents in a survey are asked to
choose their top k favorite items from a set of n items, where k ≤ n/2. In this case,
the set X is the set of all k-element subsets of the items, and the group G is the
symmetric group Sn , whose natural action on the items induces an action on the set
X . If f ∈ CX is the function defined by setting f (x) to be the number of people who
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choose the k-element set x , then the irreducible CSn-modules in CX correspond to
summary statistics about j-element subsets of the items where 0 ≤ j ≤ k. As such,
the associated βi for such survey data can be used to uncover hidden relationships
among the n items being ranked (see, for example, [7,9,10,17]).

The techniques and insights for the analysis of such “top k” survey data extend to the
situation in which survey respondents are asked to choose and rank their top k favorite
items from the set of n items. The efficient harmonic analysis of such partially ranked
data is addressed later in this paper (see Sect. 4). Along theway, we also develop useful
results concerning the harmonic analysis of finite-dimensional permutation modules
in general, and we recover a well-known result due to Clausen [4] concerning a bound
for the number of arithmetic operations necessary to apply generalized discrete Fourier
transforms of finite groups (see Sect. 3).

The overarching approach that we take in this paper is relatively simple. Given
a chain {1} = G1 < · · · < Gn = G of subgroups of G, we will associate to each
subgroupGj a special kind of harmonic basisB j ofCX , whereB1 is the standard basis
of CX . In particular, these harmonic bases will be symmetry-adapted (see Sect. 2.3).
We will then bound the number of arithmetic operations necessary to do a change of
basis from B1 to B2, then from B2 to B3, and so on, until we reach the change of basis
from Bn−1 to Bn (see Sect. 3.2). Combining these results leads to an overall bound for
the number of arithmetic operations necessary to do a change of basis from B1 to Bn .
As we will show, in some cases, this bound is surprisingly small.

Using symmetry-adaptedbases to create fast algorithms for doingharmonic analysis
is not new (see, for example, [2,5,18,19,21]). However, most books and papers on the
subject focus on the regular representation of a group, i.e., when X = G, and the
action of G on X is simply given by group multiplication. The resulting algorithms
are then sometimes modified to deal with homogeneous spaces X = G/H where
H = Gi for some subgroup Gi in the chain {1} = G1 < · · · < Gn = G.

In this paper, we show that it can also be fruitful to use symmetry-adapted bases
when dealing with permutation representations in general. In particular, we do not
require that X be a homogeneous space associated with a subgroup in the chain
{1} = G1 < · · · < Gn = G. Instead, by using symmetry-adapted bases that respect
the intrinsic orbital structure of a permutation representation, we are able to provide
straightforward but nontrivial bounds expressed in terms of the multiplicities of the
irreducible representations that arise when we restrict the action of G to subgroups in
the chain {1} = G1 < · · · < Gn = G (see Sect. 3).

Although we hope that our results appeal to a wide-ranging audience, for both
convenience and space considerations, we will assume throughout the rest of the
paper that the reader has a working knowledge of the basic representation theory of
the symmetric group, and that the reader is familiar with the representation theory of
finite groups in general. See, for example, the books by Sagan [23] and Serre [24].

2 Background and Lemmas

In this section, we explain some of the terminology and notation we will be using
throughout the rest of the paper. We also introduce a couple of foundational lemmas
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that will be used in the next section when we discuss general upper bounds. Good
references for the ideas and terminology in this section are [3,5,13,26].

2.1 Functions on X

Let X = {x1, . . . , xm} be a finite set. We denote the complex vector space of complex-
valued functions defined on X by CX . For convenience, we will identify x ∈ X with
the function that is 1 on x and 0 on all of the other elements. The xi then form a basis
for CX , which we call the standard basis for CX and denote by B1.

If f = f (x1)x1 + · · · + f (xm)xm , then the coordinate vector of f with respect to
B1 is the column vector

[ f ]B1 =
⎡

⎢
⎣

f (x1)
...

f (xm)

⎤

⎥
⎦ .

More generally, ifB = {b1, . . . , bm} is a basis forCX , and f = β1b1+· · ·+βmbm for
some complex coefficients β1, . . . , βm , then the coordinate vector of f with respect
to B is

[ f ]B =
⎡

⎢
⎣

β1
...

βm

⎤

⎥
⎦ .

2.2 PermutationModules

If G is a finite group acting on the left on a finite set X = {x1, . . . , xm}, then G acts
naturally on CX , where if g ∈ G and f ∈ CX , then

(g · f )(x) = f (g−1x)

for all x ∈ X . Linearly extending this action to CG then turns CX into a CG-
permutationmodule. The action ofG onCX gives rise to a permutation representation

ϕ : G → GL |X |(C)

where ϕ(g) is the permutation matrix that encodes the action of g ∈ G on X with
respect to the standard basis B1:

[ϕ(g)]i j =
{
1 if gx j = xi
0 otherwise.
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In particular, for all g ∈ G and for all f ∈ CX ,

[g · f ]B1 = ϕ(g)[ f ]B1 .

In general, if B is a basis for CX , then we will denote the matrix encoding of the
action of g ∈ G with respect toB by [g]B, which is the uniquematrix with the property
that for all f ∈ CX ,

[g]B[ f ]B = [g · f ]B.

In this case, note thatϕ(g) = [g]B1 , and that themap g �→ [g]B creates a representation
of G that is equivalent to ϕ but uses the basis B instead of B1.

2.3 Symmetry-Adapted Bases

Let G be a finite group, and let R(G) denote a fixed maximal set of pairwise
inequivalent irreducible complex representations of G. Let M be a finite-dimensional
CG-module with basisB. Recall thatB is a harmonic basis if it can be partitioned into
subsets such that each subset forms a basis for an irreducible CG-submodule of M .
Furthermore, the basisB is a symmetry-adapted basis of M with respect toR(G) if for
all g ∈ G, [g]B is block diagonal, and each block of [g]B is of the form ρ(g) for some
ρ ∈ R(G). A symmetry-adapted basis is therefore a special kind of harmonic basis
that reflects the action of G as encoded in the representations in R(G). (See [13] for
an algorithm for constructing symmetry-adapted bases, and see [1] for an algorithm
for computing irreducible representations of finite groups.)

Suppose now that {1} = G1 < · · · < Gn = G is chain of subgroups of G. It is
possible to find R(G1), . . . ,R(Gn) and a basis B of M such that for all 1 ≤ i ≤ n,
whenM is viewed as aCGi -module (by restricting the action ofG toGi ),B is simulta-
neously a symmetry-adapted basis with respect toR(G1), . . . ,R(Gn) (see Theorem
13.45 in [2]). In this case, we say that the R(Gi ) are compatible with respect to M ,
and that B is a symmetry-adapted basis with respect to the list R(G1), . . . ,R(Gn).

In what follows, we will make use of bases B1, . . . ,Bn where B j is a symmetry-
adapted basis with respect to the list R(G1), . . . ,R(Gj ). The goal will be to show
that the change of basis from B1 to Bn can sometimes be computed efficiently by
computing a change of basis from B1 to B2, then from B2 to B3, then from B3 to B4,
and so on until we reach Bn .

Since we are dealing with permutation representations in this paper, we will take
advantage of the orbit structure that is inherently present. To explain, suppose the
action of G on X partitions X into orbits X1, . . . , Xt . With a slight abuse of notation,
we may view each CXi as a submodule of CX , in which case we may write CX as
the direct sum

CX = CX1 ⊕ · · · ⊕ CXt .

An orbital harmonic basis for CX is then a basis for CX that can be partitioned
into subsets that form harmonic bases for the CXi . Note that the definition of orbital
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harmonic basis depends only on the orbits of the action ofG on X and does not require
symmetry-adaptedness with respect to a list of compatible representations. We will
specify when we are working with harmonic bases that are both orbital and symmetry-
adapted with respect to a list of compatible representations. As we will see, working
with such bases will sometimes lead to a fast algorithm for doing harmonic analysis
on a permutation module.

As a simple but helpful example, consider the situation where G = S3 acts on the
set X = {1, 2, 3} in the usual way. Expressing the vectors in CX using the coordinate
vectors of the standard basis, we can write CX as a direct sum of irreducible CS1-,
CS2-, and CS3-modules, respectively, as

CX =
〈⎡

⎣
1
0
0

⎤

⎦

〉

⊕
〈⎡

⎣
0
1
0

⎤

⎦

〉

⊕
〈⎡

⎣
0
0
1

⎤

⎦

〉

=
〈⎡

⎣
1
1
0

⎤

⎦

〉

⊕
〈⎡

⎣
1

−1
0

⎤

⎦

〉

⊕
〈⎡

⎣
0
0
1

⎤

⎦

〉

=
〈⎡

⎣
1
1
1

⎤

⎦

〉

⊕
〈⎡

⎣
1

−1
0

⎤

⎦ ,

⎡

⎣
1/2
1/2
−1

⎤

⎦

〉

.

The vectors appearing in each line above form orbital harmonic bases B1,B2, and B3
of CX with respect to the compatible seminormal representations (see, for example,
[16]) of S1, S2, and S3, respectively. The change of basis matrix from B1 to B2 is

⎡

⎣
1/2 1/2 0
1/2 −1/2 0
0 0 1

⎤

⎦

and the change of basis matrix from B2 to B3 is

⎡

⎣
2/3 0 1/3
0 1 0
2/3 0 −2/3

⎤

⎦ .

The change of basis matrix from B1 to B3 is therefore the product

⎡

⎣
2/3 0 1/3
0 1 0
2/3 0 −2/3

⎤

⎦

⎡

⎣
1/2 1/2 0
1/2 −1/2 0
0 0 1

⎤

⎦ =
⎡

⎣
1/3 1/3 1/3
1/2 −1/2 0
1/3 1/3 −2/3

⎤

⎦ .

2.4 Frequency Spaces

Let ρ ∈ R(G), and suppose ρ has degree d. For each i such that 1 ≤ i ≤ d, there is
a primitive idempotent e = ∑

g∈G ε(g)g ∈ CG associated to ρ such that
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(1)
∑

g∈G ε(g)ρ(g) is a d × d matrix filled with zeros except for a 1 in the i i-th
position, and

(2)
∑

g∈G ε(g)ρ′(g) is the zero matrix for all ρ′ ∈ R(G) such that ρ′ �= ρ.

It follows that if B is a symmetry-adapted basis with respect to R(G) for the CG-
module M , then each basis vector in B is an eigenvector for e with eigenvalue 1 or
0.

We call the subspace of M spanned by the vectors in B that are eigenvectors for e
with eigenvalue 1 the frequency space corresponding to e. It is the subspace

eM = {em | m ∈ M}.

If we let E(G) denote the set of primitive idempotents inC(G) corresponding toR(G),
then we may write M as a direct sum

M =
⊕

e∈E(G)

eM

of frequency spaces. (This is known as a Pierce decomposition of the module M . See,
for example, [12].) In this case, we will say that eM is a frequency space of M with
respect toR(G).

Lemma 1 Let G be a finite group, and let M be a finite-dimensional CG-module.
SupposeR(G) = {ρ1, . . . , ρh} and that U j is an irreducibleCG-module correspond-
ing to ρ j . If e is a primitive idempotent associated to ρ j as described above, and
M ∼= α1U1 ⊕ · · · ⊕ αhUh, then the frequency space eM has dimension α j .

Proof Let B be a symmetry-adapted basis of M with respect to R(G). If e =∑
g∈G ε(g)g, then by construction, the matrix [e]B = ∑

g∈G ε(g)[g]B will have
zeros everywhere except for α j 1’s on its diagonal, one for each copy of Uj in M . It
follows that [e]B has rank α j , and thus the dimension of eM is α j . 
�

Suppose now that H is a subgroup of G, and that B is a symmetry-adapted basis
with respect to R(H) and R(G). The following lemma shows that the frequency
spaces for H and G are nicely related.

Lemma 2 Let G be a finite group, let H be a subgroup of G, and let M be a finite-
dimensional CG-module. IfR(H) andR(G) are compatible with respect to M, then
each frequency space of M with respect toR(H) is a direct sum of frequency spaces
of M with respect toR(G).

Proof Without loss of generality, we may assume thatR(H) andR(G) are also com-
patible with respect to the regular CG-module. The result then follows from the fact
that, by our definition of compatibility, each primitive idempotent in E(H) is a sum
of primitive idempotents in E(G). 
�

Finally, we introduce some notation and one more term that will be helpful in the
next section.
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Suppose G acts transitively on a finite set X . Let H be a subgroup of G, let
N1, . . . , Ns be a complete collection of irreducible CH -modules, and suppose that as
a CH -module, we have that

CX ∼= κ1N1 ⊕ · · · ⊕ κs Ns .

Wewill let KX (G, H) denote max{κ1, . . . , κs}. Also, when we consider the frequency
spaces of CX as a CH -module, we will let �X (G, H) denote the sum of the squares
of the dimensions of these frequency spaces. By Lemma 1, it follows that

�X (G, H) = κ2
1 dim(N1) + · · · + κ2

s dim(Ns).

If the action of G on X is not transitive, and the orbits are X1, . . . , Xt , then we will
use �X (G, H) to denote the sum

�X1(G, H) + · · · + �Xt (G, H)

where we apply the previous definition of �Xi (G, H) to each of the Xi . Similarly, we
will use KX (G, H) to instead denote max{KX1(G, H), . . . , KXt (G, H)}. Finally, we
will refer to the frequency spaces of the CXi with respect toR(H) as (G, H)-orbital
frequency spaces.

3 General Upper Bounds

Let G be a finite group acting on a finite set X , let CX be the associated CG-
permutation module, and let f ∈ CX . In this section, we will assume we are given
the subgroup chain

{1} = G1 < · · · < Gn = G

and collectionsR(G1), . . . ,R(Gn) of irreducible representations that are compatible
with respect toCX . We will also assume that we are given harmonic basesB1, . . . ,Bn

of CX , where

(1) B j is an orbital symmetry-adapted basis with respect toR(G1), . . . ,R(Gj ), and
(2) B1 is the standard basis of CX .

In this section, we find bounds for the number of arithmetic operations necessary
to compute the coordinate vector [ f ]Bn when given the coordinate vector [ f ]B1 .

3.1 Nonzero Entries in Matrices

If A is a nonzero m ×m matrix with complex entries, then we will denote the number
of nonzero entries in A by ν(A). We will view ν(A) as a measure of how difficult it is
to multiply the matrix A and an arbitrary vector in C

m . In particular, note that such a
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product will require no more than ν(A) multiplications and strictly fewer than ν(A)

additions.
If we letω(A) denote the total number of arithmetic operations required to compute

the product of a nonzero m × m matrix A and an arbitrary vector in C
m , note that

we then have that ω(A) < 2ν(A). Furthermore, if A can be factored as a product
A = A1 · · · Al , then ω(A) < 2ν(A1) + · · · + 2ν(Al).

Suppose now that V is an m-dimensional vector space, and that B and B′ are bases
for V . Let C(B,B′) be the change of basis matrix from the basis B′ to the basis B. In
other words, C(B,B′) is the unique m × m matrix such that

C(B,B′)[v]B′ = [v]B
for all v ∈ V . In this case, note that ν(C(B,B′)) ≤ m2. Also, if B′′ is another basis
for V , then C(B,B′′) = C(B,B′)C(B′,B′′) and thus

ω(C(B,B′′)) < 2ν(C(B,B′)) + 2ν(C(B′,B′′)).

It follows that if we are given harmonic bases B1, . . . ,Bn of CX corresponding to
the chain

{1} = G1 < · · · < Gn = G

then we may compute [ f ]Bn by iteratively computing the product C(B j ,B j−1)

[ f ]B j−1 = [ f ]B j as j goes from 2 to n. Furthermore, this approach will be more
efficient than the usual naive approach of simply computingC(Bn,B1)[ f ]B1 = [ f ]Bn

whenever

ν(C(Bn,Bn−1)) + · · · + ν(C(B2,B1))

is small relative to (dimCX)2 = |X |2. We would therefore like to find upper bounds
for each of the ν(C(B j ,B j−1)) that are much smaller than |X |2.

3.2 Bounds Based on the Dimensions of Frequency Spaces

The following theorem is our main theorem. It provides a bound on ν(C(B j ,B j−1))

in terms of the dimensions of the frequency spaces of CX when viewed as a CG j−1-
module.

Theorem 3 Let 2 ≤ j ≤ n. The number of nonzero entries in the change of basis
matrix C(B j ,B j−1) is bounded above by �X (Gj ,Gj−1). In other words,

ν(C(B j ,B j−1)) ≤ �X (Gj ,G j−1).

Furthermore, each columnofC(B j ,B j−1) has atmost KX (Gj ,Gj−1) nonzero entries,
and thus we also have that

ν(C(B j ,B j−1)) ≤ KX (Gj ,Gj−1)|X |.
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Proof This follows from Lemma 1, Lemma 2, and the fact thatB j−1 andB j are orbital
symmetry-adapted bases. In particular, suppose the action of Gj on X partitions X
into orbits X1, . . . , Xt . By Lemma 2, the change of basis from B j−1 to B j only
involves doing a change of basis within every frequency space, when viewed as a
CG j−1-module, of each submodule CXi of CX . Thus, by Lemma 1, each column of
C(B j ,B j−1) will have at most KX (Gj ,Gj−1) nonzero entries. Also, since a change
of basis matrix for a d-dimensional vector space has at most d2 nonzero entries, the
number of nonzero entries in the change of basismatrixC(B j ,B j−1) is bounded above
by �X (Gj ,Gj−1), which is simply the sum of the squares of the dimensions of the
(Gj ,Gj−1)-orbital frequency spaces for CG j−1 (in each CXi ). 
�
Corollary 4 If f ∈ CX, then the number ω(C(Bn,B1)) of arithmetic operations nec-
essary to compute [ f ]Bn when given [ f ]B1 is strictly bounded above by

2�X (Gn,Gn−1) + · · · + 2�X (G2,G1).

Proof Recall that C(Bn,B1)[ f ]B1 = [ f ]Bn . The result then follows directly from the
fact that

ω(C(Bn,B1)) ≤ ω(C(Bn,Bn−1)) + · · · + ω(C(B2,B1))

and because by Theorem 3 we have that

ω(C(B j ,B j−1)) < 2ν(C(B j ,B j−1)) ≤ 2�X (Gj ,Gj−1)

for all j such that 2 ≤ j ≤ n. 
�

3.3 Regular Representations

Before we apply the results above to the harmonic analysis of partially ranked data in
the next section, we finish this section by considering the case where the permutation
module in question is the regular representation of G.

Suppose H is a finite group, and that d1, . . . , ds are the dimensions of the irreducible
representations of H . Define d3(H) = d31 +· · ·+d3s , and let [G : H ] denote the index
of H in G.

Lemma 5 Let G be a finite group acting on X = G by left multiplication so that
CX = CG is the regular CG-module. If H is a subgroup of G, then �G(G, H) =
[G : H ]2d3(H).

Proof Let N1, . . . , Ns be a complete collection of irreducibleCH -modules. The orbits
ofG under the action of H are the right cosets of H inG. Therefore, as aCH -module,
CG ∼= ⊕[G:H ]

j=1 CH . As aCH -module,CH ∼= ⊕s
i=1 dim(Ni )Ni , sowe therefore have

that

CG ∼= [G : H ] dim(N1)N1 ⊕ · · · ⊕ [G : H ] dim(Ns)Ns .
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The result now follows from Lemma 1 and the discussion after Lemma 2. 
�

By recursively applying Lemma 5 to a chain of subgroups, we get the following
theorem, which is essentially Theorem 1.1 of [4], and which provides a general upper
bound for applying a discrete Fourier transform to a finite group and therefore a bound
for doing harmonic analysis on the regular representation of a finite group.

Theorem 6 Let G be a finite group acting on X = G by left multiplication so that
CX = CG is the regular CG-module. Let

{1} = G1 < · · · < Gn = G

be a chain of subgroups of G, and suppose R(G1), . . . ,R(Gn) are compatible with
respect to CX. Let B1, . . . ,Bn be harmonic bases of CX, where B j is an orbital
symmetry-adapted basis with respect to R(G1), . . . ,R(Gj ), and B1 is the standard
basis of CX. If q j = [Gj : Gj−1], then

ω(C(Bn,B1)) < 2
n∑

j=2

(q2j q j+1 · · · qnd3(G j−1)).

Proof By Theorem 3 and Lemma 5, the number of nonzero entries in C(B j ,B j−1) is
bounded above by

�G(Gj ,Gj−1) = [G : Gj ][Gj : Gj−1]2d3(Gj−1) = qn · · · q j+1q
2
j d

3(Gj−1).

The result now follows from Corollary 4. 
�

4 The Symmetric Group Acting on Tabloids

We now shift our attention to the permutation modules that arise when the symmetric
group acts on tabloids (see below for the definition). These objects have been used
to index both fully and partially ranked data (see, for example, [7,8]). The results in
this section may therefore be viewed as statements about the efficient analysis of such
data. Good references for many of the ideas and much of the notation and terminology
found in this section are [16,23,25].

4.1 Tabloids

Let n be a positive integer. A weak composition of n is a sequence α = (α1, . . . , αk)

of nonnegative integers satisfying
∑

αi = n. If each of the summands α1, . . . , αk is
a positive integer, then α is a composition of n. A partition of n is then a composition
λ = (λ1, . . . , λk) of n such that λ1 ≥ · · · ≥ λk . If λ = (λ1, . . . , λk) is a partition of n
then we write λ  n and say that λ has k parts.
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Fig. 1 Two equivalent tableaux
of shape (2, 3, 1, 3) and their
tabloid

Fig. 2 The action of
σ = (147)(56) on a tabloid of
shape (2, 3, 1, 3)

Note that a weak composition α can be identified with a unique partition ᾱ

by writing the positive summands in weakly decreasing order. For example, if
α = (3, 4, 0, 1, 0, 2), then

ᾱ = (4, 3, 2, 1).

We will make use of this fact below.
Given a weak composition α = (α1, . . . , αk) of n, the Young diagram of shape α is

the left-justified array of boxes with k rows and αi boxes in the i th row. Filling these
boxes with the numbers 1, . . . , n, without repetition, creates a Young tableau of shape
α. Two Young tableaux of shape α are then row-equivalent if they have the same set of
numbers in each row. Each equivalence class of tableaux of shape α under this relation
is a tabloid of shape α. We will use Xα to denote the set of all tabloids of shape α.

It is common to denote a tabloid by first forming a representative tableau and then
removing the vertical dividers within each row (see Fig. 1).

4.2 The Action of Sn

We may view CXα as a CSn-permutation module under the natural action of the
symmetric group Sn on Xα , where if σ ∈ Sn and T ∈ Xα , then σ · T is the tabloid
obtained from T by applying the permutation σ to each entry of T (see Fig. 2).

Note that the action of Sn on Xα does not depend on the order of the rows of α.
In particular, as CSn-modules, we have that CXα ∼= CX ᾱ . For convenience, we will
therefore always assume that we are starting with a permutation module CXλ where
λ is a partition.

Fortunately, there arewell-studied collectionsR(S1), . . . ,R(Sn)of irreducible rep-
resentations that are compatible with respect to CXλ. For example, two possible such
collections are Young’s seminormal representations and Young’s orthogonal represen-
tations. In fact, these are the representations most often used when doing harmonic
analysis on tabloids, and these are the ones we suggest using if the reader wishes to
implement any of the ideas that follow.
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4.3 Irreducible Representations

There is a well-known parametrization of the irreducible representations of Sn by the
partitions of n. As is typically done, we use Sμ to denote the irreducible CSn-module
corresponding to μ  n. (Sμ is called a Specht module.) The multiplicity of Sμ in the
decomposition of CXλ into irreducible CSn-modules is given by the well-studied but
elusive Kostka numbers, which are defined below.

Definition 7 Given two partitions λ = (λ1, . . . , λk), μ = (μ1, . . . , μk′) of n, we say
that μ dominates λ, and write λ � μ, if

j∑

i=1

λi ≤
j∑

i=1

μi

for all j such that 1 ≤ j ≤ max(k, k′). If λ � μ, then a Kostka filling of μ by λ is any
filling of a tableau of shape μ using exactly λi i’s such that the entries in each row,
when read from left to right, are non-decreasing and the entries of each column, when
read from top to bottom, are strictly increasing.

Example 8 If λ = (3, 1, 1) andμ = (4, 1), then λ�μ and there are twoKostka fillings
of μ by λ, namely

1 1 1 2
3

and
1 1 1 3
2

Let κμ,λ denote the number of Kostka fillings of μ by λ. These are the Kostka
numbers, and Young’s rule (see, for example, Theorem 2.11.2 in [23]) states that as a
CSn-module,

CXλ ∼=
⊕

μ: λ�μ

κμ,λS
μ. (1)

In order to make use of Theorem 3 when dealing with CXλ, we need to find suit-
able bounds for KXλ(S j , S j−1) for each 2 ≤ j ≤ n. Recall that if the orbits of Xλ

under the action of S j are X1, . . . , Xt , then KXλ(S j , S j−1) is the maximum over all
of theCXi of the dimensions of their (S j , S j−1)-orbital frequency spaces. Combining
an understanding of the orbits of Xi under the action of S j−1, and decomposing the
resulting spaces into irreducibleCS j−1-modules according to Young’s rule will there-
fore enable us to determine the maximum frequency space dimension KXλ(S j , S j−1).
We begin by considering the case where j = n, and then proceed recursively.

4.4 Orbits Under the Action ofCSn−1

Suppose λ  n. The orbits of Sn−1 acting on Xλ are given by the ways to obtain a
weak composition of n − 1 from λ by subtracting 1 from a nonzero part λi of λ. To
describe this more formally, we introduce the following notation.
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Definition 9 If λ = (λ1, . . . , λk) is a partition, and α = (λ1, . . . , λi−1, λi −
1, λi+1, . . . , λk), then we will define λi to be the partition α.

Example 10 Let λ = (4, 2, 1, 1). Then λ1 = (3, 2, 1, 1), λ2 = (4, 1, 1, 1), and λ3 =
λ4 = (4, 2, 1).

Theorem 11 If λ = (λ1, . . . , λk) is a partition of n, then as a CSn−1-module,

CXλ ∼=
k⊕

i=1

CXλi .

Proof Two tabloids T , T ′ ∈ Xλ are in the same orbit under the action of Sn−1 if and
only if they contain n in the same row. Furthermore, the action of Sn−1 on the orbit of
a tabloid T that contains n in its i th row corresponds exactly to the action of Sn−1 on
Xλi . It follows that, as a CSn−1-module, CXλ ∼= ⊕k

i=1 CXλi . 
�

4.5 The Case � = (n− k, k)

The action of the symmetric group on two-rowed tabloids gives rise to a permuta-
tion module with a particularly simple decomposition into irreducible modules using
Young’s rule. As noted in Sect. 1, these tabloids arise when dealing with survey data
for which respondents have been asked simply to choose their top k items from a set
of n items, where k ≤ n/2.

Lemma 12 If λ = (n − k, k) is a partition of n, then as a CSn-module,

CXλ ∼=
⊕

0≤l≤k

S(n−l,l).

In particular, this is a multiplicity-free decomposition.

Proof By Young’s rule (1), we are only concerned with Sμ such that λ�μ. Since λ =
(n − k, k), we see that μ must have the form (n − l, l) for 0 ≤ l ≤ k. The multiplicity
of Sμ is given by κμ,λ, which is the number of Kostka fillings of μ = (n − l, l) with
(n − k) 1’s and k 2’s. To be a Kostka filling, all (n − k) 1’s must be in the first row of
μ, completely determining the filling. Thus κμ,λ = 1. 
�

Together with Theorems 3 and 11, the simple decomposition of CX (n−k,k) into
irreducible modules in Lemma 12 gives rise to an efficient approach to doing a change
of basis from the standard basis B1 to a harmonic basis Bn , especially when compared
to the naive bound of ω(C(Bn,B1)) < 2

(n
k

)2.

Theorem 13 Suppose λ = (n − k, k) is a partition of n, and that R(S1), . . . ,R(Sn)
are compatible with respect toCXλ. Let B1, . . . ,Bn be harmonic bases ofCXλ where
B j is an orbital symmetry-adapted basis with respect to R(S1), . . . ,R(S j ), and B1
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is the standard basis of CXλ. Then

ω(C(Bn,B1)) < 4(n − 1)

(
n

k

)

.

Proof Let 2 ≤ j ≤ n. The action of S j on Xλ partitions Xλ into orbits Xλ′
that

correspond to tabloids with at most two rows and with entries from {1, . . . , j}. With
the use of Theorem 11 and Lemma 12, we see that restricting the action further to S j−1

on Xλ′
gives rise to a decomposition of theCXλ′

into irreducibleCS j−1-modules each
with multiplicity no more than two. It follows that

KXλ(S j , S j−1) ≤ 2.

By Theorem 3, we have that

ν(C(B j ,B j−1)) ≤ KXλ(S j , S j−1)|Xλ| ≤ 2

(
n

k

)

.

The theorem statement now follows from the fact that

ω(C(Bn,B1)) <

n∑

j=2

2ν(C(B j ,B j−1)).


�
Remark Theorem 13 is essentially Theorem 2 in [15]. In that paper, the authors use
Gelfand–Tsetlin bases, which are a special case of what we are calling harmonic bases,
and the bound they provide is 2(n − 1)

(n
k

)
. It differs from our bound of 4(n − 1)

(n
k

)

because the computational model they use counts a single complex multiplication and
addition as one operation.

4.6 The Case � = (n− k, 1, . . . , 1)

We now consider the situation where we are dealing with partitions of n of the form
λ = (n − k, 1, . . . , 1). As noted in Sect. 1, tabloids of this shape arise when dealing
with survey data for which respondents have been asked to rank their top k items from
a set of n items. Such data is called hook data in [22], in which a detailed analysis of
such a data set is given, together with a discussion of the underlying representation
theory.

As we saw when λ = (n − k, k), the two main steps in determining bounds
on the number of nonzero entries in a full factorization of the change of basis
matrix C(Bn,B1) involve decomposing Xλ into orbits Xλ′

under the action of S j ,
and then decomposing the resulting permutation modules CXλ′

into irreducible
CS j−1-submodules. Bounds then come from the maximum dimensions of the
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Fig. 3 Two standard skew
tableaux of shape μ/λ where
μ = (5, 4, 2) and λ = (3, 1)

4 7

2 5 6

1 3

2 5

1 3 7

4 6

(S j , S j−1)-orbital frequency spaces, which amounts to summing Kostka numbers
across certain S j−1-orbits.

Though the Kostka numbers are well-studied, Stanley remarks in [25] that it is
unlikely that a general formula for κμ,λ exists. Fortunately, when λ = (n − k, k), the
Kostka number κμ,λ is trivially 1 for eachμ dominatingλ.Whenλ = (n−k, 1, . . . , 1),
this is no longer the case. However, the orbits in this case still exhibit enough structure
for us to find bounds for the multiplicities. We use the language of skew tableaux to
describe the orbits (see, for example, [16]).

Let λ = (λ1, . . . , λk) andμ = (μ1, . . . , μ) be partitions. The partitionμ contains
λ if k ≤  and λi ≤ μi for all i such that 1 ≤ i ≤ k. If μ contains λ, then the skew
diagram of shape μ/λ is the set of boxes in the Young diagram of shape μ that are
not in the Young diagram of shape λ. If n is the number of boxes in the skew diagram
of shape μ/λ, then a standard skew tableau of shape μ/λ is a filling of the boxes of
the skew diagram with the numbers 1, . . . , n, without repetition, so that the entries in
each row and each column are strictly increasing (see Fig. 3).

Let dμ/λ denote the number of standard skew tableaux of shape μ/λ. For conve-
nience, if μ does not contain λ, then we will set dμ/λ = 0. For positive integers k and
n such that k ≤ n, let (n)k denote the falling factorial

(n)k = n(n − 1)(n − 2) · · · (n − (k − 1)).

Note that if λ = (n − k, 1, . . . , 1) is a partition of n, then dimCXλ = (n)k .
For nonnegative integers  and r such that  ≥ r , let D(, r) = {μ | μ  , μ1 ≥ r}.

Let

M(n, k) = max
μ∈D(n−1,n−k−1)

{
dμ/(n−k−1) + kdμ/(n−k)

}
.

Note that if μ has first part μ1 = n − k − 1, the sum reduces to dμ/(n−k−1).
As μ/(n − k − 1) represents the skew diagram resulting from removing n − k − 1

of the boxes in the first row of μ, and similarly for μ/(n − k), for large enough n, the
value of M(n, k) depends only on k. For example, M(7, 6) = 112, M(8, 6) = 155,
and M(n, 6) = 160 for all n > 8. Let N (k) denote the maximum value of M(n, k)
over all positive integers n such that n > k.

Theorem 14 Let λ = (n − k, 1, . . . , 1)  n and letR(S1), . . . ,R(Sn) be compatible
with respect toCXλ. LetB1, . . . ,Bn be harmonic bases ofCXλ whereB j is an orbital
symmetry-adapted basis with respect to R(S1), . . . ,R(S j ), and B1 is the standard
basis of CXλ. Then

ω(C(Bn,B1)) < 2N (k)(n − 1)(n)k
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as opposed to the naive bound of 2((n)k)
2.

In Table 1, we compare the bound of Theorem 14 to the naive bound.

Proof Let λ = (n − k, 1, . . . , 1)  n. By Theorem 11, as a CSn−1-module,

CXλ ∼=
k+1⊕

i=1

CXλi ∼= CXλ1 ⊕ kCXλ2

where λ1 = (n − k − 1, 1, . . . , 1)  (n − 1) and λ2 = λ3 = · · · = λk+1 =
(n − k, 1, . . . , 1)  (n − 1). Using Young’s rule (1) to decompose CXλ1 as a CSn−1-
module we first note that the set of partitions of n − 1 that dominate λ1 is given by
D(n − 1, n − k − 1).

Suppose μ ∈ D(n − 1, n − k − 1). To determine the multiplicity of Sμ in the
decomposition of CXλ1 as a CSn−1-module, we need to determine κμ,λ1 . This is the
number of Kostka fillings ofμwith (n−k−1) 1’s, along with the entries 2, . . . , k+1.
In order to be a valid Kostka filling, this means that the first n − k − 1 entries of the
first row of μ must be a 1, leaving exactly one of each number 2, . . . , k + 1 to fill
the remaining k boxes of μ. This is exactly the number of standard skew tableaux of
shape μ/(n − k − 1). Thus, as a CSn−1-module,

CXλ1 ∼=
⊕

μ∈D(n−1,n−k−1)

dμ/(n−k−1)S
μ.

As λ2 = (n − k, 1, . . . , 1)  (n − 1), we see by the same argument that each of
the k copies of CXλ2 decomposes as a CSn−1-module as

CXλ2 ∼=
⊕

μ∈D(n−1,n−k)

dμ/(n−k)S
μ.

Then in the complete decomposition ofCXλ into irreducibleCSn−1-modules, only
those Sμ with μ ∈ D(n−1, n− k−1) will appear, and they appear with multiplicity

dμ/(n−k−1) + kdμ/(n−k).

Note that if μ1 = (n − k − 1), this sum reduces to dμ/(n−k−1), as dμ/(n−k) = 0.
By Theorem 3, the number of nonzero entries in each column of the change of basis
matrix C(Bn,Bn−1) is bounded by KXλ(Sn, Sn−1) = M(n, k).

Now consider the change of basis matrix C(B j ,B j−1). By repeated applications of
Theorem 11, as a CS j -module,

CXλ ∼=
⊕

CXλ′

where the λ′ are a collection of (possibly repeated) partitions of j , each of which has
form λ′ = ( j − m, 1, . . . , 1) for some nonnegative integer m, where k − (n − j) ≤
m ≤ k.
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By Theorem 3, we need only determine

KXλ(S j , S j−1) = max
λ′ KXλ′ (S j , S j−1).

Applying the same arguments as above to decompose CXλ′
into irreducible CS j−1-

submodules using Theorem 11 andYoung’s rule (1), we see that the number of nonzero
entries in each column of the change of basis matrix C(B j ,B j−1) is bounded by
M( j,m), where

M( j,m) = max
μ∈D( j−1, j−m−1)

{dμ/( j−m−1) + mdμ/( j−m)}.

Suppose μ = (μ1, . . . , μs) ∈ D( j − 1, j − m − 1). Then μ  j − 1 and μ1 =
j −m − 1+ t for some t such that 0 ≤ t ≤ m. The skew diagram μ/( j −m − 1) has
the same shape as μ for all but its first row and has t boxes in its first row.

Let μ′ = (μ1 + n − j, μ2, . . . , μs). Then μ′  n − 1 and μ′
1 = n − m − 1 + t ≥

n − k − 1 + t , so μ′ ∈ D(n − 1, n − k − 1). The skew diagram μ′/(n − k − 1) has
the same shape as μ for all but its first row and has t + k − m ≥ t boxes its first row.
Moreover, as n − k − 1 ≥ j − m − 1, the first box in this row is either in the same
position or to the right of the first box in the first row of μ/( j − m − 1).

A standard skew tableau of shape μ/( j − m − 1) yields a standard skew tableau
of shape μ′/(n − k − 1) as follows: fill the boxes in rows μ2, . . . , μs the same way
as in μ/( j − m − 1) and fill the first t boxes of the first row of μ′/(n − k − 1) as
they are filled in the first row of μ/( j − m − 1). If boxes remain in the first row of
μ′/(n − k − 1), fill them with the numbers that remain, in ascending order from left
to right.

This implies that there are at least as many standard skew tableau of shape μ′/(n−
k−1) as there are of shapeμ/( j−m−1). Thus, dμ/( j−m−1) ≤ dμ′/(n−k−1). Similarly,
dμ/( j−m) ≤ dμ′/(n−k) and so

dμ/( j−m−1) + mdμ/( j−m) ≤ dμ′/(n−k−1) + kdμ′/(n−k)

implying that M( j,m) ≤ M(n, k) ≤ N (k). By Theorem 3, we have that

ν(C(B j ,B j−1)) ≤ KXλ(S j , S j−1)|Xλ| ≤ N (k)(n)k .

The theorem statement now follows from the fact that

ω(C(Bn,B1)) <

n∑

j=2

2ν(C(B j ,B j−1)).


�

5 Conclusion and Open Questions

In this paper, we have developed a framework for computing the coefficients of f ∈
CX in terms of a harmonic basis B of CX using intermediate bases B1, . . . ,Bn and
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Table 1 Comparison of bound
given by Theorem 14 with naive
bound

k N (k)(n − 1)(n)k

2 4(n − 1)(n)2 ((n)2)
2

3 9(n − 1)(n)3 ((n)3)
2

4 18(n − 1)(n)4 ((n)4)
2

5 60(n − 1)(n)5 ((n)5)
2

6 160(n − 1)(n)6 ((n)6)
2

7 420(n − 1)(n)7 ((n)7)
2

8 1344(n − 1)(n)8 ((n)8)
2

9 5376(n − 1)(n)9 ((n)9)
2

10 16800(n − 1)(n)10 ((n)10)
2

11 59400(n − 1)(n)11 ((n)11)
2

12 222750(n − 1)(n)12 ((n)12)
2

13 878592(n − 1)(n)13 ((n)13)
2

iteratively computing a change of basis from B j−1 to B j . In Sect. 3, we saw that when
B1 is the standard basis and B j is an orbital symmetry-adapted basis with respect to
compatible representationsR(G1), . . . ,R(Gj ), we can bound the number of nonzero
entries in the change of basis matrix C(B j ,B j−1) in terms of the multiplicities of the
irreducible CG j−1-submodules in the orbital decomposition of CX under the action
of Gj .

In Sect. 4, we applied these results to permutation modules that arise when the
symmetric group acts on a set of tabloids Xλ. In particular, for both λ = (n−k, k)  n
andλ = (n−k, 1, . . . , 1)  n, we provided a coarse bound based only on bounding the
largest number of nonzero entries per column in C(Bn,Bn−1). Despite the coarseness
of these bounds, they greatly improve on the naive bound, which is 2(dim(CXλ))2

computations (see Table 1).
In truth, both results could be refined further by bounding the number of nonzero

entries in each column of each change of basis matrix, rather than focusing on the
maximum possible number of nonzero entries in a column over all change of basis
matricesC(B j ,B j−1). Indeed, the proof of Theorem 14 leads to a more refined bound
than the theoremstatement itself. Theproof provides a bound for thenumber of nonzero
entries in each individual column of C(Bn,Bn−1). Summing over the columns leads
to a bound of at most

∑

μ∈D(n−1,n−k−1)

(dμ/(n−k−1) + kdμ/(n−k)) dim(Sμ)

nonzero entries in C(Bn,Bn−1). Continuing in this manner yields similar looking
bounds for the number of nonzero entries in each change of basis matrixC(B j ,B j−1).
Preliminary numerical results suggest that these more refined bounds are worth inves-
tigating. Indeed, for small values of n and k they differ by only about a factor of 2
from the bound given in the recent algorithm of Clausen and Hühne [6], which uses



80 Page 20 of 21 Journal of Fourier Analysis and Applications (2021) 27 :80

detailed knowledge about the appearance of repeated entries in the corresponding
representation matrices.

It is also worth noting that the results of Sect. 3 apply for any set of harmonic
bases B1, . . . ,Bn where B1 is the standard basis and B j is an orbital symmetry-
adapted basiswith respect to a compatible collectionR(G1), . . . ,R(Gj )of irreducible
representations. Is there a particular choice for these bases that can lead to a more
efficient change of basis computation? Algorithms exist for constructing symmetry-
adapted bases (see, for example, [13]) but at several key steps in these algorithms
there is a degree of choice. As some choices could lead to more efficient bounds than
others, it would be interesting to refine our bounds further by streamlining these basis
constructions from the perspective of creating sparse change of basis matrices.

Finally, it would be interesting to explore the extent to which the change of basis
algorithm presented in this paper might be helpful when dealing with other computa-
tional problems associated with permutation modules (see, for example, [11,20]).
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