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Abstract
Ranked data sets, where m judges/voters specify a preference ranking of n
objects/candidates, are increasingly prevalent in contexts such as political elections,
computer vision, recommender systems, and bioinformatics. The vote counts for each
ranking can be viewed as an n! data vector lying on the permutahedron, which is a Cay-
ley graph of the symmetric group with vertices labeled by permutations and an edge
when two permutations differ by an adjacent transposition. Leveraging combinatorial
representation theory and recent progress in signal processing on graphs, we inves-
tigate a novel, scalable transform method to interpret and exploit structure in ranked
data. We represent data on the permutahedron using an overcomplete dictionary of
atoms, each of which captures both smoothness information about the data (typically
the focus of spectral graph decomposition methods in graph signal processing) and
structural information about the data (typically the focus of symmetry decomposition
methods from representation theory). These atoms have a more naturally interpretable
structure than any known basis for signals on the permutahedron, and they form a Par-
seval frame, ensuring beneficial numerical properties such as energy preservation. We
develop specialized algorithms and open software that take advantage of the symmetry
and structure of the permutahedron to improve the scalability of the proposed method,
making it more applicable to the high-dimensional ranked data found in applications.
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1 Introduction

Ranked data consist of m judges/voters specifying a preference ranking of n
objects/candidates. While methods for analyzing such rankings date back to the late
18th century in the context of social choice theory (e.g., [4,11,23]), ranked data are
increasingly prevalent in contexts such as computer vision [44,45], recommender sys-
tems [86,98], image processing [8,99], crowdsourced subjective labeling [9,16,92],
peer grading [78], metasearch [1], sports analytics [27], computational geometry [48],
and bioinformatics [12,26,61,96] (see [90, Sect. 2.2] for an excellent, comprehensive
overview of application areas). Moreover, an increasing number of cities, states, col-
leges and universities, organizations, and corporations are using ranked choice voting
for elections [35].

The vote counts for each possible ranking of n objects is an n!-dimensional data
vector in R

n!. We view this vector as lying on the permutahedron, denoted Pn and
also referred to by some as the permutation polytope [94]. The permutahedron has
vertices labeled by permutations and an edge when two permutations differ by trans-
posing adjacent entries in the permutation. For example, in P5, the permutation 25134
corresponds to ranking candidate 2 first, candidate 5 second, candidate 1 third, and
so on, and it is connected by an edge to each of 52134, 21534, 25314, and 25143.
The permutahedron Pn is the Cayley graph of the symmetric group Sn induced by the
generating set of adjacent transpositions (see Sect. 3.1), and a signal on the permuta-
hedron Pn is a function f : Sn → R. In this context, f (σ ) equals the number of votes
for the permutation σ.

To deal with the scale of this data (factorial in the number of candidates), it is critical
to construct efficient and meaningful representations that highlight salient features of
the ranking tallies. Specifically, we follow the common signal processing approach of
constructing a dictionary of atoms and representing a signal on the permutahedron as
a linear combination of these atoms. For audio signals and images, as well as signals
residing on more general weighted graphs, Fourier, time-frequency, curvelet, shearlet,
bandlet, and other dictionaries have led to resounding successes in visual analysis of
data, statistical analysis of data, compression, and as regularizers in machine learning
and ill-posed inverse problems such as inpainting, denoising, and classification (see,
e.g., [82, Sect. II] for an excellent historical overview of dictionary design methods
and signal transforms).

In general, desirable properties when designing dictionaries include: (i) the dictio-
naries comprise an orthonormal basis or tight frame for the signal space, ensuring that
the contribution of each atom can be computed via an inner product with the signal,
and the energy of the signal is equal to the energy of the transform coefficients; (ii)
the atoms have an interpretable structure, so that the inner products between the signal
and each atom are informative; (iii) it is numerically efficient to apply the dictionary
analysis and synthesis operators (forward and inverse transforms); and (iv) signals of
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certain mathematical classes can be represented exactly or approximately as sparse
linear combinations of a subset of the dictionary atoms [87].

The main contributions of this work are as follows. First, we leverage techniques
and ideas from both signal processing on graphs and combinatorial representation
theory to propose a novel dictionary construction that can be used to transform high-
dimensional ranked data in order to find, interpret, and exploit structural patterns in the
rankings. Each of the atoms in the overcomplete dictionaries we propose captures both
smoothness information about the data (typically the focus of spectral graph decom-
position methods in graph signal processing) and structural information about the data
(typically the focus of symmetry decomposition methods from representation theory).
Second, we prove that the proposed dictionaries comprise tight Parseval frames and
therefore preserve the energy of the signal (Theorems 1 and 2 in Sect. 4). Third, we
demonstrate the application of the proposed transform methods and show how the
interpretable structure of the atoms can lead to insights on real ranked data sets (Sect.
5). Fourth, we investigate numerical challenges, and propose novel algorithms that
take advantage of the symmetry and structure of the permutahedron to enhance the
scalability of our implementations for applying the analysis operators arising from
our proposed dictionaries (Sect. 6). Fifth, we relate the proposed transform methods
to related methods from combinatorial representation theory, graph signal processing,
and statistical modeling for ranked data (Sects. 3 and 7).

2 Example Data Sets

Weuse the following three ranked data sets in running examples throughout this article.

2.1 1980 American Psychological Association Presidential Election

In Fig. 1 (left), on the permutahedron P5 we plot the vote tallies of the 5738 American
Psychological Association (APA) members who ranked all five candidates for APA
president in 1980 (out of the 15,449 total ballots cast) [14], [29, Table 1]. Under the
instant runoff (Hare) voting system inwhich the votes for the candidate with the fewest
first place votes in each iteration are transferred to the next ranked candidate on those
ballots, candidate 1 was the winner.

2.2 2017Minneapolis City CouncilWard 3 Election

In Fig. 1 (right), on the permutahedronP4 we plot the vote tallies of the 5055 voterswho
ranked at least three of the four candidates for the Minneapolis City Council Ward 3
seat in 2017 (out of 9578 total valid votes cast) [73]. If a voter ranked three candidates,
we assume that the unranked candidate was the voter’s fourth choice. Candidates 1
to 4 are Ginger Jentzen (Socialist-Alternative), Samantha Pree-Stinson (Green), Steve
Fletcher (Democratic-Farmer-Labor), and Tim Bildsoe (Democratic-Farmer-Labor),
respectively. Pree-Stinson began as a Democratic-Farmer-Labor (DFL) candidate, but
was later endorsed by theGreenParty. Fletcherwas endorsed by theDFLParty. Jentzen
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Fig. 1 Left: The signal f on P5 represents the vote tallies of 5738 complete rankings of five candidates for
APA president in 1980. Right: ranked choice voting data g for the 2017 Minneapolis City Council Ward 3
election, which featured four candidates, shown on P4

Index Sushi Type

1 Shrimp
2 Sea eel
3 Tuna
4 Squid
5 Sea urchin
6 Salmon roe
7 Egg
8 Fatty tuna
9 Tuna roll

10 (0) Cucumber roll

(a) (b)

Fig. 2 a Candidate items in the sushi preference data set [50,51]. b Projection of sushi preference signal, h,
onto twodimensions usingGabriel’s biplot. Each blue dot represents a single voter (of the 5000 total), and the
transparency is indicative of the number of voters, with darker shades indicating a higher density of voters.
The poles associated with the popular sushi items tend to fall towards the left on the fatty tuna–cucumber
roll axis. The projection of the Condorcet ranking is plotted in red

received themost first place votes, but Fletcherwon the election under the instant runoff
(Hare) voting system utilized by Minneapolis. A discussion of the candidates’ views
and an interesting analysis of the voting results by geographical regions within the
ward is contained in [101].

2.3 Sushi Preference Data

For a data set with more candidates (n = 10), we use Kamishima’s type A set of
sushi preferences [50,51], in which 5000 people provide complete preference rankings
for the ten different types of sushi listed in Fig. 2a. Since plotting a signal on the
permutahedron P10 (a 9-dimensional object) is not particularly informative, we show
in Fig. 2b the projection of the data into a two-dimensional space via Gabriel’s biplot
[39], [22], [67, Sect. 2.2], which is similar to a principal components projection except
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with a different choice of center. Chen [15, Sect. 5.3] notes that there is a full Condorcet
ranking:

Fatty tuna � Tuna � Salmon roe � Shrimp � Sea eel � Sea urchin

� Squid � Tuna roll � Egg � Cucumber roll.

That is, in a preference comparison of any pair of two sushi items, the majority of
voters would prefer the item that falls earlier in this ranking; i.e., the majority of voters
prefer fatty tuna to any other item, themajority of voters prefer tuna to any item besides
fatty tuna, and so forth.

3 RelatedWork

Analysis of ranked data has a long history in themathematical psychology and statistics
literatures.Approaches have largely focused on parametric statisticalmodels including
order statistic models, distance-based models, and pairwise comparison models (see,
e.g., [62,63,67], [90, Sect. 2.5], and [100] for excellent overviews of thesemodels).We
focus our attention here on linear transforms for ranked data that attempt to identify
structure in the data by taking inner products between the n!-dimensional vote tally
(signal on the permutahedron) and building block signals that have some interpretable
structure.

3.1 The Fourier Analysis on the Symmetric Group Approach

The vertices of the permutahedron Pn are labeled by the symmetric group Sn of
permutations of {1, . . . , n}. For example σ = (

1 2 3 4 5
2 5 1 3 4

) = 25134 ∈ S5 is the bijective
function 1 �→ 2, 2 �→ 5, etc.. We let (i, j) denote the transposition (in cycle notation)
that exchanges i and j and fixes the other entries, and the adjacent transpositions are
(i, i + 1), 1 ≤ i ≤ n − 1. The group operation in Sn is composition of functions, and
right multiplication by an adjacent transposition (i, i + 1) exchanges the candidates
in positions i and i + 1. For example,

(
1 2 3 4 5
2 5 1 3 4

)
(2, 3) = (

1 2 3 4 5
2 1 5 3 4

)
. In this context,

the permutahedron Pn is the Cayley graph with vertices labeled by Sn and edges
{(σ, σ s) | σ ∈ Sn, s ∈ S}, where S = {(i, i + 1) | 1 ≤ i ≤ n− 1}. Each transposition
is its own inverse, so the generating set S is closed under inverses and Pn is a simple
graph that is (n − 1)-regular, since |S| = n − 1.

Using right multiplication of transpositions is natural when studying ranked data,
because two permutations are adjacent if and only if they differ by transposing adjacent
candidates in the ranking. Under left multiplication, two rankings are adjacent if and
only if they differ by swapping the candidates ranked i th and (i + 1)st. For example,
(2, 3) · ( 1 2 3 4 5

2 5 1 3 4

) = (
1 2 3 4 5
3 5 1 2 4

)
. The adjacent transpositions S satisfy the Coxeter

relations [83, 2.12.10] and give Sn the structure of a reflection group. If one uses
the full set of transpositions {(i, j) | 1 ≤ i < j ≤ n}, then the generating set is a
full conjugacy class in Sn . In that case, the Cayley graph is said to be quasi-abelian,
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and the Laplacian eigenvalues and eigenvectors are especially nice, but they are less
interpretable in the context of ranked data as we discuss in Sect. 3.2.

Data on Pn lives in the underlying real vector space R[Sn] (or, equivalently R
n!)

spanned by the symmetric group Sn , which is called the group algebra of Sn and has
a canonical basis {eσ }σ∈Sn .1 A signal on Sn is a function f : Sn → R, which we view
as a vector in R[Sn] by f = ∑

σ∈Sn f (σ )eσ . Non-commutative harmonic analysis
attempts to find structure in ranked data by decomposing them into subspaces that are
set-wise invariant under the relabeling (left multiplication) and/or re-ranking (right
multiplication) of the candidates [29]. Specifically, a permutation σ ∈ Sn acts on the
right and on the left, respectively, of a signal f , by

fσ =
∑

τ∈Sn
f (τ )eτσ =

∑

η∈Sn
f (ησ−1)eη and

σ f =
∑

τ∈Sn
f (τ )eστ =

∑

β∈Sn
f (σ−1β)eβ. (1)

The vector space R[Sn] decomposes into the direct sum of orthogonal subspaces,
called isotypic components

R[Sn] ∼=
⊕

γ�n
Wγ , (2)

where the sum is over all integer partitions γ = [γ1, γ2, . . . , γ�] of n, denoted by
γ � n. The subspaces Wγ are invariant under both relabeling and reindexing by Sn ;
that is, if w ∈ Wγ , then wσ ∈ Wγ and σw ∈ Wγ for any permutation σ ∈ Sn . Thus,
Wγ is both a left and a right submodule of R[Sn]. We refer to the integer partition γ

as the shape or symmetry type (we use these terms interchangeably) of Wγ .
The isotypic components further decompose into a direct sum of irreducible left

and right Sn-submodules, respectively, as

R[Sn] ∼=
⊕

γ�n
Wγ

∼=
⊕

γ�n

dγ⊕

i=1

Vγ,i ∼=
⊕

γ�n

dγ⊕

i=1

V ∗
γ,i , (3)

where Vγ,i ∼= Vγ, j and V ∗
γ,i

∼= V ∗
γ, j are isomorphic as left and right Sn-modules,

respectively, and Vγ,i � Vρ, j and V ∗
γ,i � V ∗

ρ, j if γ 
= ρ. The modules Vγ,i are left
invariant, meaning σv ∈ Vγ,i for all v ∈ Vγ,i and σ ∈ Sn . The modules V ∗

γ,i = { f :
Vγ,i → R} are the dual vector spaces of linear functionals on Vγ,i and are invariant
under the right action ( f σ)(v) = f (σv). The left action of σ ∈ Sn on permutations
replaces i with σ(i) and the right action replaces the entry in the i th position with the
entry in the σ(i)th position, so the left modules Vγ,i are invariant under relabeling
the candidates and the right modules are invariant under re-indexing the candidates.

For shorthand, we write
⊕dγ

i=1 Vγ,i as V
⊕dγ
γ and

⊕dγ

i=1 V
∗
γ,i as (V ∗

γ )⊕dγ . The famous

1 The results of this paper are true over the complex numbers; however, we use R[Sn ] as ranked data are
real valued.
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Fig. 3 Decomposition of the signals of Fig. 1 into orthogonal vectors in each of their respective isotypic
components. The numbers below the signals show how the energy ‖f‖2 splits into the energies ‖fγ ‖2. The
first of these energies is a function of the number of voters (e.g., 274372 = 57382/120 for the APA data of
[29]). The second is a measure of the first order effect given by the number of voters who rank candidate i in
position j . The third and fourth capture the unordered and ordered second order (pair) effects, respectively,
net of the first order marginal effects

isomorphism in (3) was proved around 1900 in the work of Frobenius and Burnside. It
was extended in the 1920s to hold for topological groups in the Peter–Weyl theorem.
This decomposition has special properties: (i) the dimension dγ = dim(Vγ ) equals the
multiplicity of Vγ in Wγ ; (ii) dγ also equals the number of standard Young tableaux
of shape λ and can be computed using the hook formula (see, e.g., [83, 3.10]); (iii)
dim(Wγ ) = d2γ ; and (iv) the only left submodules of R[Sn] isomorphic to Vγ appear
in Wγ . The same properties hold for the right action with the dual spaces.

In Fig. 3, we display the APA data andMinneapolis City Council election data from
Fig. 1 as the sum of projections onto the orthogonal subspaces Wγ .

How can this approach be used to find structure in ranked data? The isotypic
decomposition (2) has a close relationwithmarginal statistics. Thefirst ordermarginals
of ranked data, shown in Fig. 4 for an election with four candidates, capture howmany
voters placed candidate i in ranking position j . There are two types of second order
marginals. The unordered type, shown in Fig. 5a for the same election, capture how
many voters placed candidates i and i ′ in ranking positions j and j ′, in either order. The
ordered type, shown in Fig. 5b, capture howmany voters placed candidate i in ranking
position j and candidate i ′ in ranking position j ′. Higher order marginals that capture
how many voters placed k > 2 specific candidates in k specific ranking positions may
be totally unordered, totally ordered, or partially ordered (e.g., candidates i and i ′ are
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Fig. 4 First order marginals for the 2017 Minneapolis City Council Ward 3 election

Fig. 5 Second order marginals for the 2017 Minneapolis City Council Ward 3 election. a Second order
unordered marginals. b Second order ordered marginals. Each row in (a) is the sum of the two rows in (b)
with the same pair of candidates. In (b), we are only displaying half of the columns in the table, as, e.g., the
“Second-First” column contains the same entries as the “First-Second” column in a different order. This is
why the row sums are not equal to the number of voters in the displayed table

in positions j and j ′ in either order, and candidate i ′′ is in position j ′′). In all of these
marginal tables, each row and each column sum to the total number of votes (5055 in
Figs. 4, 5).

Spectral analysis through projections onto the isotypic components captures order
effects related to a specificmarginal, net of the structure found in the “less complicated”
marginals [29], [67, Sect. 2.6.1]. For example, Fig. 4 shows that of all first order effects,
two of themost significant are that Steve Fletcher was farmore likely thanwould be the
case under a uniform distribution to be listed as the second choice, and far less likely to
be listed as the fourth choice. These first order effects also appear in the second order
marginals of Fig. 5, as well as higher order marginals. However, the projection of the
signal g from Fig. 1 ontoW captures information about the second order unordered
marginals net of the number of voters (zero order) and first order marginals. Similarly,
the projection of g onto W captures information about the second order ordered

marginals, net of the zero and first order marginals and the second order unordered
marginals.
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Fig. 6 Two signals on P4 with
the same energy decomposition
into isotypic components; i.e.,
‖faγ ‖ = ‖fbγ ‖ := ‖fγ ‖ for all
γ

More generally, the indices of orthogonal subspacesWγ in (2) have a natural partial
ordering, referred to as dominance ordering. The shape ν = [ν1, ν2, . . . , ν�] strictly
dominates shape γ = [γ1, γ2, . . . , γ�′ ] 
= ν, denoted by ν � γ , if

∑ j
i=1 νi ≥ ∑ j

i=1 γi

for each j = 1, 2, . . . ,max{�, �′}. For example, with n = 6, dominates

and , but the latter two shapes are incomparable (neither one dominates the other).
The projection of a signal onto an isotypic componentWγ captures information about
the marginals corresponding to shape γ , net of the marginals corresponding to all
shapes strictly preceding γ in dominance order.

With this justification, returning to the APA example in Fig. 3, Diaconis [29, Sect.
2C] interprets the relatively large contribution on isotypic component W , corre-
sponding to the two-row shape [3, 2], as the contribution of unordered pair (second
order) effects, and he argues that this is related to the fact that the APA divides into two
groups: academics and clinicians. This Fourier analysis approach has also found appli-
cation in “Q-sort" data in psychology [28, 5B], balanced incomplete block designs
[80], multiple object tracking [58], finding graph invariants [56], the quadratic assign-
ment problem [54], computational geometry [48], genomic data analysis [96], and
sports analytics [27].

What are the limitations of this approach? As shown in Fig. 6, two signals with
different structure and support can have exactly the same energy decomposition into
isotypic components, limiting the amount of information that can be extracted from
this energy decomposition alone.

A more refined approach is to use the Fourier transform of f on the symmetric
group, which is defined as the set of matrices { f̂ (γ ) | γ a partition of n}, where for
each integer partition γ , f̂ (γ ) is defined as the sum

∑
σ∈Sn f (σ )ργ (σ ) [28]. Here,

ργ (σ ) is the matrix of the permutation σ as a linear transformation on the Sn-invariant
subspace Vγ,i (for any i). This set { f̂ (γ ) | γ a partition of n} has a total of n! matrix
entries, which are viewed as the Fourier coefficients of f . Unfortunately, there is no
natural choice of basis of the irreducible components Vγ,i (see for example Diaconis
[29, p. 955]), and therefore ad hoc methods are used to interpret these values. The
standard choices are Young’s seminormal basis or Young’s orthogonal basis [28, 8A],
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Fig. 7 Examples of Mallows’ interpretable second order (unordered) functions [29, Sect. 2C]. a Two (of
the 36) functions of the form δ{i,i ′},{ j , j ′}, that are equal to 1 on the vertices where candidates i and i ′ are
in ranking positions j and j ′ (in either order), and equal to 0 elsewhere. b The orthogonal projections of
these interpretable functions onto the isotypic component W . Diaconis [29, Sect. 2C] suggests to take

the inner product between each of these projected interpretable functions and the signal to identify second
order effects in the data, net of the zero order and first order effects found in W and W

[19,30,57], which are used largely because they are well-adapted to fast computation,
but they lack interpretability.

Alternatively, [29, Sect. 2C] applies Mallow’s method: construct an overcomplete
spanning set forWγ by projecting interpretable functions that capture kth order effects(
k = ∑�

i=2 γi

)
onto Wγ , and then take inner products between these projections and

the signal. In Fig. 7, we show 2 of the 36 interpretable second order functions and
their projections in the overcomplete spanning set for W . In general, there are m2

γ

of these spanning vectors for the d2γ -dimensional space Wγ , where mγ = n!∏�
l=1 γl ! .

For this particular isotypic component W , nine projected functions each appear
four times in the 36 vectors; for example,

δ{3,4},{1,2} = δ{1,2},{3,4} = δ{3,4},{3,4} = δ{1,2},{1,2} . (4)

For the 2017 Minneapolis City Council Ward 3 election data g shown in Fig. 1, the
largest inner products

〈g, δ{i,i ′},{ j, j ′} 〉 = 〈g , δ{i,i ′},{ j, j ′}〉 (5)

are the ones between the signal and δ{3,4},{1,2} and the three identical projections

listed in (4). This can be seen visually by thinking about the inner products in the
form listed in the right-hand side of (5) and then examining g in Fig. 3. Again,
an interpretation of these inner products is that net of zero and first order marginal
effects (i.e., starting from g−g −g ), the pairs of candidates {1, 2} and {3, 4} are
likely to appear together in ranking positions {1, 2} or {3, 4}. See [96] for an additional
application of this method to genomic data.

The new approach we propose in Sect. 4 also yields an overcomplete spanning set,
but we directly construct each spanning vector as an interpretable function in Vγ,i (and
in fact in a more precisely defined eigenspace that is a strict subset of Vγ,i ).
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Fig. 8 Graph Fourier transforms
of the two signals from Fig. 1.
For each, more energy is
concentrated on the smoother
eigenvectors associated with the
lower Laplacian eigenvalues of
the corresponding
permutahedron

Finally, it is noteworthy that the non-commutative Fourier analysis approach does
not make any direct use of the permutahedron or any other underlying graph structure
for that matter. Rather, it is completely independent of the choice of generating set of
the symmetric group. We return to this point at the end of Sect. 3.2.

3.2 The Graph Signal Processing Approach

Within the last ten years, researchers in the field of graph signal processing [75,88]
have developed new methods to identify and exploit structure in data residing on the
vertices of weighted or unweighted graphs. Signals on the unweighted permutahedron,
as shown in Fig. 1, fit into this framework. While, to our knowledge, such ranked data
on the permutahedron have not been analyzedwith graph signal processing techniques,
the natural first method to apply would be the graph Fourier transform. The graph
Laplacian matrix is defined as L := D − A, where A is the adjacency matrix of the
permutahedron and the diagonal degree matrix D is equal to (n − 1)In!, where Ik is a
k×k identity matrix, since the permutahedron is an (n−1)-regular graph. The matrix
L is symmetric with nonnegative eigenvalues, and each eigenvalue λ is associated
with an orthogonal eigenspace Uλ. The signal space R[Sn] decomposes into a direct
sum of these orthogonal eigenspaces,

R[Sn] ∼=
⊕

λ

Uλ. (6)

A common definition of the graph Fourier transform is f̂ (λ�) := |〈f,u�〉|, where u�

is the eigenvector associated with the �th eigenvalue of L [88]. Since this definition
depends on the particular choice of the Laplacian eigenvectors in the case of repeated
eigenvalues (which occur inPn),we define the graphFourier transformhere as f̂ (λ) :=
‖fλ‖, where fλ is the orthogonal projection of f onto the eigenspaceUλ. In the absence
of repeated eigenvalues, these two definitions coincide.

How can the graph Fourier transform and other graph signal processing techniques
be used to find structure in ranked data? For each unit norm Laplacian eigenvector uλ

associated with eigenvalue λ, we have

λ = u�λ Luλ =
∑

(i, j)∈E
[uλ(i) − uλ( j)]2, (7)

where E are the edges of the permutahedron. Therefore, the eigenvectors associated
with lower Laplacian eigenvalues are smoother in the sense that the values vary less
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Fig. 9 Orthonormal bases for the graph Laplacian eigenspaces of P4 associated with the eigenvalues λ =
1.2679 and λ = 4.7321. Both of these eigenspaces are two-dimensional subspaces of the 24-dimensional
signal space. Note that the Laplacian eigenvectors associated with the lower eigenvalue are smoother in the
sense that the values vary less across neighboring vertices (see, e.g., the jumps in value from 1234 to 1243
in the third vector above or from 1324 to neighboring 1342 in the fourth vector)

Fig. 10 The Cayley graph Γn on
the symmetric group induced by
the generating set all
transpositions, for n = 4

across neighboring vertices, as shown in Fig. 9. The graph Fourier transform provides a
decomposition of the energy of the signal into the energy in eachLaplacian eigenspace,
yielding information about the signal’s smoothness, as shown in Fig. 8.

What are the limitations of applying the standard graphFourier transform to signals
on the permutahedron? First, because the graph Laplacian eigenvalues and eigenvec-
tors of the permutahedron are not known in closed form, it is computationally intensive
to compute the graph Fourier transform [O(n!3)], and not tractable for ranked data
with more than seven or eight candidates. Second, there is not a natural orthonormal
basis for each eigenspace that preserves the structure and symmetry of the graph. All
but the first and last Laplacian eigenvalues of the permutahedron are repeated multiple
times, and thus there are infinitely many choices of orthornomal bases for the associ-
ated eigenspaces {Uλ}λ/∈{0,2(n−1)}. As shown in Fig. 9 for two Laplacian eigenspaces
of P4, the numerical computation of a basis is not guaranteed to preserve any sort of
symmetry, leading to less interpretable basis vectors. Moreover, and third, different
isotypic components may contain the same Laplacian eigenvalue, and thus, it is not
even guaranteed that the numerically computed basis vectors live in a single isotypic
component.

Why is the permutahedron the right graph to represent the underlying data domain?
An alternative choice is the Cayley graph of the symmetric group induced by the gen-
erating set of all transpositions (not just neighboring transpositions), which is shown
in Fig. 10 and which we denote by Γn . This graph has some nice mathematical prop-
erties: (i) the isotypic components Wγ are each spanned by eigenvectors associated
with a single Laplacian eigenvalue of the Cayley graph Γn [58, Proposition 1]; (ii) the
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Laplacian eigenvalues and eigenvectors of Γn are known in closed form [81, Theorem
1.1], [58, Proposition 2], [40, Theorem III.1]; and, (iii) moreover, the Laplacian eigen-
values to which the isotypic components correspond increase according to dominance
ordering. So if ν � γ , then any vector fν in the isotypic component Wν is smoother
with respect to the Cayley graph Γn [recall the definition of smoothness in (7)] than

any vector fγ in Wγ with the same norm as fν , since
f�ν LΓn fν
f�ν fν

= λν < λγ = f�γ LΓn fγ
f�γ fγ

.

In this sense, the isotypic components provide a notion of frequency, with vectors
residing in isotypic components later in the dominance ordering representing “more
complex” (less smooth) functions, with respect to the Cayley graph Γn induced by the
generating set of all transpositions [58].

Despite these nice mathematical properties, the permutahedron is the more appro-
priate domain on which to develop new techniques for analyzing the structure of most
ranked data sets, due to the different notions of distance the two underlying graphs
capture [55]. The structure of Γn captures an appropriate notion of distance between
the permutations in applications such as multi-object tracking, where, e.g., the object
trajectories (slots) are continuously visible on radar or camera, but the object identities
(candidates) associated with each trajectory are only revealed at certain time instances
(e.g., pilot reports by radio, observations captured by a security camera) [58]. In this
situation, there is not necessarily a physically-meaningful linear order to the trajec-
tories (slots), and therefore it may be likely that objects jump from one trajectory to
a crossing trajectory whose label is not adjacent or even similar. This information is
typically captured by a corresponding noise model (e.g., [58, Sect. 3.1]). However,
in most ranked data applications, the ranking positions represent a linear ordering,
and therefore permutations that swap the candidates in the first and last ranking posi-
tions, e.g., are not close from a voter’s viewpoint. To illustrate this with a specific
example, 1234 and 4231 are adjacent in the Cayley graph of Fig. 10, but they are
far apart from a voter’s perspective and they are far apart in the permutahedron P4,
whereas 1234 and 2134 are adjacent in both graphs. Kondor [55, Sect. 3] distinguishes
these cases in terms of invariance, with our notion being only right-invariant and the
other notion being bi-invariant (right-invariant and left-invariant). As shown in Fig.
11, the graph structures induced by these two different distance metrics (generating
sets) yield different notions of signal smoothness, as captured by the respective graph
Fourier transforms. To summarize the key takeaways, when we choose an underlying
graph data domain, we are defining a notion of distance between permutations; and
the distance induced by the permutahedron structure is most appropriate in ranking
applications where permutations should be considered closest if the candidate swap
occurs across neighboring ranking slots.

3.3 Other Related Transforms for Ranked Data

We briefly mention other related linear transforms for ranked data. Nested orthogonal
contrasts [66,67] compare the rankings of two or more groups of candidates, ignoring
the relative ranks within each group of candidates. Inversions [42,67,70,71] project
the data onto linear subspaces based on the relative rankings of subsets (pairs, triplets,
etc.) of the candidates, net of the effects of lower order subsets.
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Fig. 11 Graph Fourier
transforms of the two signals
from Fig. 6, on Cayley graphs of
the symmetric group induced by
two different choices of the
generating set. On the Cayley
graph Γ4 of Fig. 10, the graph
Fourier transforms of the two
signals fa and fb are the same,
as they have the same energy
decomposition across isotypic
components (c.f., Fig. 6). On the
other hand, the graph Fourier
transforms in the top row show
that fa is smoother than fb with
respect to the permutahedron P4

Other ranked data transforms consider the underlying graph to be a quasi-Abelian
Cayley graph; i.e., the set of generators of the Cayley graph is the union of conjugacy
classes. Rockmore et al. [81] investigates fast Fourier transforms for data on quasi-
Abelian Cayley graphs. Ghandehari et al. [40] extend Rockmore’s work by developing
tightwindowedFourier frames for data residing onquasi-AbelianCayley graphs. Since
the full set of transpositions is a conjugacy class in Sn , the Cayley graph Γn induced
by the generating set of all transpositions is quasi-Abelian, but the permutahedron
Pn does not fall into this class (except for P2). Kondor’s left-invariant coset-based
multiresolution analysis [57] yields an orthogonal basis of wavelet and scaling atoms
that are localized in the vertex and spectral domains of Γn , but not necessarily in either
domain when the underlying graph is taken to be the permutahedron Pn .

Finally, taking inspiration more from one-dimensional signal processing than from
the literature on signal processing on graphs, Kakarala [49] further decomposes the
coefficient matrices f̂ (γ ) of the Fourier transform on the symmetric group into the
product of a positive semidefinite “magnitude” matrix and an orthogonal “phase”
matrix.

4 Tight Spectral Frames for Ranked Data

In this section, we present a new approach to generate dictionaries for ranked data by
combining the symmetry decompositionmethod (3) fromcombinatorial representation
theorywith the spectral graph decompositionmethod (6) fromgraph signal processing,
in order to capture two different kinds of information about the data.

These two approaches are connected in the following way, which is at the crux
of our method. The graph Laplacian matrix is in the regular representation of the
symmetric group algebra, because it can be written as the linear combination

L = (n − 1)ρR(1) −
∑

s∈S
ρR(s), (8)
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where ρR(s) is the matrix of s ∈ S acting as a linear transformation on the right of
R[Sn] and 1 ∈ Sn is the identity element so that ρR(1) = In!. Since our generators
are involutions (s2 = 1), the Laplacian is symmetric, and (8) is also true if the right
regular representation is replaced with the left regular representation and L acts on
the left. As a result of (8), the isotypic components in (3) decompose into Laplacian
eigenspaces, and therefore the group algebra decomposes as follows.

Proposition 1

R[Sn] ∼=
⊕

γ�n

⊕

λ∈�γ

Zγ,λ, where Zγ,λ = Wγ ∩Uλ, (9)

and �γ is the set of Laplacian eigenvectors λ such that Wγ ∩Uλ 
= ∅.
Proof The group algebra decomposes into a direct sum of vector spaces in two ways,

R[Sn] ∼=
⊕

λ∈�

Uλ and R[Sn] ∼=
⊕

γ�n
Wγ .

On the left we use the fact thatL is symmetric to decomposeR[Sn] into a direct sum of
Laplacian eigenspacesUλ, λ ∈ �, where� is the set of eigenvalues ofL. On the right
is the decomposition (3) into isotypic components for Sn . The isotypic components
are closed under both the left and right action of Sn and L is a linear combination (8)
of group elements, so the isotypic components Wγ are closed under the action of L.

If f ∈ R[Sn], then there is a unique decomposition f = ∑
λ∈� fλ with fλ ∈ Uλ;

namely, fλ is the orthogonal projection of f ontoUλ. For each λ ∈ �, there is a unique
decomposition, fλ = ∑

{γ�n:λ∈�γ } fγ,λ, of fλ into vectors {fγ,λ} in the corresponding
isotypic components {Wγ }. Multiplying fλ by λ gives

λfλ =
∑

γ�n:λ∈�γ

λfγ,λ, (10)

and multiplying fλ by L gives

λfλ = Lfλ =
∑

γ�n:λ∈�γ

Lfγ,λ. (11)

Since Wγ is closed under multiplication by L, each term Lfγ,λ in the summation in
(11) is in Wγ . By the uniqueness of the decomposition of f into isotypic components,
we conclude from (10) and (11) that Lfγ,λ = λfγ,λ for each γ � n such that λ ∈ �γ .
Thus, fγ,λ is a Laplacian eigenvector of eigenvalue λ and fγ,λ ∈ Zγ,λ = Wγ ∩Uλ. In
summary, for any f ∈ R[Sn], there is a unique decomposition f = ∑

γ�n
∑

λ∈�γ
fγ,λ,

with fγ,λ ∈ Zγ,λ. ��
If λ ∈ �γ , we say that the eigenvalue λ has symmetry type or shape γ . Eigenvalues

may have multiple symmetry types. For example, the Laplacian eigenvalue λ = 3 on
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P6 is repeated 15 times (i.e., U3 is a 15-dimensional space). This eigenvalue appears

5 times in the γ = component and 10 times in the γ = component (e.g.,
W ∩ U3 is a 10-dimensional space), so λ = 3 has two symmetry types. On the

other hand, λ = 2 has a single symmetry type as it only appears in the γ =
component.

Our objective is to find a spanning set {ϕγ,λ,k,π } of dictionary atoms for each space
Zγ,λ such that

(i) the overall dictionary analysis operator preserves the energy in the signal; that
is,

∑
γ,λ,k,π |〈f,ϕγ,λ,k,π 〉|2 = ‖f‖22, or equivalently, ‖��f‖2 = ‖f‖2, where the

atoms {ϕγ,λ,k,π } comprise the columns of the matrix �;
(ii) the atoms are interpretable (i.e., they have a particular structure that makes the

inner products useful in identifying structure in the data); and
(iii) we can efficiently compute the inner products between these dictionary atoms and

the signal on the permutahedron.

4.1 Preliminaries: Schreier Graphs and Equitable Partitions

We start by detailing (i) how to construct, for each integer partition γ of n, a graph
Pγ , called a Schreier graph, which is isomorphic to a quotient of the permutahedron
Pn [38,84]; and (ii) the relation between the spectral decompositions of the Schreier
graphs and the spectral decomposition of the permutahedron.

If γ = [γ1, . . . , γ�] is an integer partition of n, then a set partitionπ = {C1, . . . ,C�}
has shape γ if its blocks have size |Ci | = γi . There aremγ = n!∏�

i=1 γi ! different ordered
set partitions π of {1, 2, . . . , n} of shape γ , and we refer to this collection of ordered
partitions as γ .2 A permutation σ ∈ Sn acts on an ordered set partition π ∈ γ by
permuting the entries of π . For example if σ = (

1 2 3 4 5
2 5 4 3 1

)
and π = {{2, 4, 5}, {1, 3}}

then σ(π) = {{1, 3, 5}, {2, 4}}.
Definition 1 The Schreier graph Pγ is the graph with vertex set γ and edge set
{(π, sπ) | π ∈ γ , s ∈ S}, where S ⊆ Sn is the subset of adjacent transpositions
defined in Sect. 1.

Each Schreier graph (i) is undirected since adjacent transpositions are involutions;
(ii) is (n − 1)-regular since |S| = n − 1; and (iii) has a self-loop at vertex π for each
pair i, i + 1 that is in the same block of π , since then the transposition s = (i, i + 1)
fixes π . Two ordered set partitions π1 
= π2 are connected by the edge labeled by
s = (i, i + 1) if and only if π1 and π2 are identical except with i and i + 1 switched.
Thus, non-loop edge weights are equal to 1.We view the vertices of Pγ as representing
groupings of rankings (first place, second place, etc.), not specific candidates. Figure
12 shows the example of Pγ with γ = [3, 2].

2 By ordered set partitions, we mean that changing the ordering of the blocks results in a different partition,
but changing the orderingwithin blocks does not. For example,π = {{1, 2}, {3, 4}} andπ ′ = {{3, 4}, {1, 2}}
are distinct elements of [2,2]. However, π ′′ = {{2, 1}, {3, 4}} is equivalent to π .
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Fig. 13 Right: The Schreier graph P = P[2,2] (shown without self loops). Recall from Fig. 12 that

we view the vertices of the Schreier graph as ordered set partitions of ranking slots. Left: three different
equitable partitions of P4 that yield this Schreier graph, corresponding to the ordered set partitions π1 =
{{1, 2}, {3, 4}}, π2 = {{1, 3}, {2, 4}}, and π3 = {{1, 4}, {2, 3}}, respectively, from left to right. We view the
three equitable partitions on the left as set partitions of candidates. For each equitable partition, all vertices
of the permutahedron with the same color are mapped to the node of the corresponding color on the Schreier
graph; this mapping is encoded in the rows of the characteristic matrix Bπi . For each equitable partition,
the two pairs of candidates defined by the ordered set partition πi are in the ranking slots defined by the
two rows of the tableaux with the corresponding color in the Schreier graph on the right. For example, in
the middle equitable partition π2, the red vertices correspond to rankings where candidates 1 and 3 are in
ranking positions 1 and 2, and candidates 2 and 4 are in positions 3 and 4

Next, we show that each ordered set partition π induces an equivalence relation
on Sn , the vertices of the permutahedron Pn , and under this equivalence relation, the
Schreier graphs are isomorphic to quotient graphs of the permutahedron Pn .

Definition 2 Let π ∈ γ be an ordered set partition of shape γ , and let σ, τ ∈ Sn .
The equivalence relation ∼π is given by identifying σ ∼π τ if and only if σ−1(π) =
τ−1(π). The equivalence classes under ∼π are the sets Vπ,μ = {σ ∈ Sn | σ(μ) = π}
for each μ ∈ γ . These are the permutations that place candidates π in the positions
given by μ.

For example, if π = {{2, 4, 5}, {1, 3}} (or {245|13} for shorter notation), then
34512 ∼π 12435 because each group of candidates, {2, 4, 5} and {1, 3}, is in the
same set of positions in the two permutations: 34512 and 12435. Furthermore, the
equivalence class containing these two permutations is the set V{245|13},{235|14} con-
sisting of all permutations with {2,4,5} and {1, 3} in positions {2,3,5} and {1, 4},
respectively.

Proposition 2 The partition of the vertices of Pn into equivalence classes {Vπ,μ | μ ∈
γ } induced by ∼π is an equitable partition, meaning that for every pair of (not
necessarily distinct) ordered set partitions μ, ν ∈ γ , there is a nonnegative integer
Kπ (μ, ν) such that each vertex σ ∈ Vπ,μ has exactly Kπ (μ, ν) neighbors in Vπ,ν

[41, Sect. 9.3]. In fact, when μ 
= ν, Kπ (μ, ν) = 1 if there exists s ∈ S such that
s(μ) = ν and equals 0 otherwise, and Kπ (μ,μ) equals the number of s ∈ S such
that s(μ) = μ.

Proof When the equivalence classVπ,μ = {σ ∈ Sn | σ(μ) = π} is right multiplied by
τ ∈ Sn , we haveVπ,μτ = {στ ∈ Sn | σ(μ) = π} = {στ ∈ Sn | στ(τ−1(μ)) = π} =
Vπ,τ−1(μ). It follows that if s ∈ S and σ ∈ Vπ,μ then σ s ∈ Vπ,s(μ). Multiplication by
a group element s is a bijection, so each element in Vπ,μ is connected by an edge in
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Fig. 14 The characteristic
matrix Bπ2 of the ordered set
partition π2 = {{1, 3}, {2, 4}}
from Fig. 13. In the second row,
e.g., candidates 1, 3 are in
ranking slots 1, 4

Pn to exactly one element in Vπ,s(μ). If there is not an adjacent transposition s such
that s(μ) = ν, then there are no edges in Pn between the vertices in Vπ,μ and those in
Vπ,μ. ��

Proposition 3 For each ordered set partition π ∈ γ , the quotient graph Pn/∼π is
isomorphic to Pγ .

Proof Since ∼π induces an equitable partition of Pn with equivalence classes Vπ,μ,
the quotient Pn/ ∼π is a well-defined graph with vertices {Vπ,μ | μ ∈ γ } and edges
{(Vπ,μ,Vπ,s(μ)) | μ ∈ γ , s ∈ S}. Comparing Proposition 2 with Definition 1 shows
that these graphs are isomorphic by identifying the vertex Vπ,μ in Pn/ ∼π with μ in
Pγ . ��
Definition 3 The characteristic matrix of an equitable partition π of shape γ , denoted
by Bπ , is the n! ×mγ (0, 1)-matrix whose (σ, μ)th element, for σ ∈ Sn and μ ∈ γ ,
is equal to 1 if and only if σ(μ) = π ; that is σ places the candidates from the j th
block of π into the positions corresponding to the j th block of μ, for each j .

Each row of Bπ contains exactly one 1, and each column contains exactly n!
mγ

1s.

Therefore B�
πBπ =

(
n!
mγ

)
Imγ . This is illustrated in Fig. 14. Furthermore, Bπ has
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the following symmetry property, which we use in our frame construction (15) and
Theorem 1.

Proposition 4 For each σ ∈ Sn and π ∈ γ we have ρL(σ )Bπ = Bσ(π), where
ρL(σ ) is the matrix of σ in the left regular representation of Sn on R[Sn].
Proof For σ, τ ∈ Sn and μ ∈ γ , the (τ, μ) entry of ρL(σ )Bπ equals 1 if and only
if σ−1τ(μ) = π , which is true if and only if τ(μ) = σ(π), and this is exactly the
condition for the (τ, μ) entry of Bσ(π). ��

A key property of characteristic matrices of equitable partitions is that they can be
used to lift eigenvectors of the Schreier graphsPγ to eigenvectors of the permutahedron
Pn .

Proposition 5 If π ∈ γ and vγ,λ is a graph Laplacian eigenvector of the Schreier
graph Pγ with eigenvalue λ, then w = Bπvγ,λ is a graph Laplacian eigenvector of
the permutahedron Pn with the same eigenvalue λ.

Proof Let APn be the adjacency matrix of the permutahedron, and APγ
= APn/∼π

be
the adjacency matrix of the Schreier graph Pγ . Since π induces an equitable partition
∼π of Pn , APnBπ = BπAPγ

[41, Lemma 9.3.1], and thus,

LPnBπ = (n − 1)In!Bπ − APnBπ

= (n − 1)Bπ Imγ − BπAPγ
= BπLPγ

, (12)

as both Pn and Pγ are (n-1)-regular graphs. Thus,

LPnBπvγ,λ = BπLPγ
vγ,λ = Bπ (λvγ,λ) = λ(Bπvγ,λ),

where the first equality follows from (12). ��
For each shape γ we view signals on the Schreier graph Pγ as vectors in the vector

space R[γ ] with canonical basis {eπ }π∈γ . This vector space has a natural right
Sn-action defined on a basis element eπ and a permutation σ ∈ Sn by eπσ = eσ−1(π),
where permutations act on set partitions in γ by permuting the entries as described
just before Definition 2. The Sn-module R[γ ] is known as the (right) “permutation
module" for Sn and is often denoted by Mγ (see for example [83, Chap. 2]).

For each shape γ � n, the permutation moduleR[γ ] decomposes into irreducible
(right) Sn-submodules according to

R[γ ] ∼= V ∗
γ ⊕

⊕

ν�γ

(V ∗
ν )⊕Kγ,ν , (13)

where again ν � γ means that ν strictly dominates γ . Thus R[γ ] contains exactly
one copy of the irreducible V ∗

γ and Kγ,ν copies of each irreducible module that comes
before it in dominance order on partitions. The multiplicities Kγ,ν are known as
Kostka numbers (see [83, Sect. 2.11] and Fig. 29). Furthermore, V ∗

γ does not appear



Journal of Fourier Analysis and Applications (2021) 27 :70 Page 21 of 58 70

as a submodule of R[π ] for partitions π whose shapes come before γ in dominance
order, which is beneficial for the computational algorithms that we explore in Sect. 6.

The following proposition says that when a vector in R[γ ] that lives entirely
in the submodule V ∗

γ is lifted to the permutahedron by the characteristic matrix of
an equitable partition of shape γ , the resulting vector resides in the single isotypic
component Wγ ⊆ R[Sn] defined in (2).

Proposition 6 If π ∈ γ and x ∈ V ∗
γ ⊆ R[γ ], then Bπx ∈ Wγ .

Proof The map R[γ ] → R[Sn] given by x �→ Bπx is an injective, right Sn-module
homomorphism (i.e., it commutes with the right Sn action on the the two spaces). It
is injective, since Bπ has rank mγ , and is an Sn-module homomorphism, since for
τ ∈ Sn and π,μ ∈ γ we have

Bπ (eμτ) = Bπ

(
eτ−1(μ)

)
=

∑

σ,στ−1(μ)=π

eσ =
∑

η,η(μ)=π

eητ =
∑

η,η(μ)=π

eητ = (Bπ eμ)τ.

Upon restriction to the irreducible submodule V ∗
γ , by Schur’s lemma, the map

must be an isomorphism. Thus the image of V ∗
γ under x �→ Bπx is an isomor-

phic copy of V ∗
γ . The isotypic component Wγ contains all copies of V ∗

γ in R[Sn]
so Bπx ∈ Wγ . ��

An important implication of Propositions 5 and 6 is that we can compute, visual-
ize, and interpret Laplacian eigenvectors on the lower-dimensional Schreier graphs,
and then lift them up to the higher-dimensional permutahedron graph in different
manners—assigning different groups of candidates to groups of ranking slots—in
order to generate vectors that reside in specific spaces Zγ,λ (i.e., have certain sym-
metry types and smoothness levels). Next, we show that scaled versions of vectors
generated in this manner constitute a tight frame for the space R[Sn] of all possible
signals on the permutahedron Pn .

4.2 Tight Frame Construction

Our strategy is to construct a tight Parseval frame for each nonempty space Zγ,λ, and
then let the dictionary� be the union of these tight frames, so that� is a tight Parseval
frame for R[Sn]. A set of vectors {ϕ j } is a frame for a Hilbert space H if there exists
frame bounds (constants) A, B > 0 such that A‖f‖22 ≤

∑
j |〈f,ϕ j 〉|2 ≤ B‖f‖22, ∀f ∈

H. A frame is said to be tight if A = B, and a Parseval frame if A = B = 1. For
finite dimensional Hilbert spaces (such as our Zγ,λ spaces), a (finite) frame is simply
a set of spanning vectors for the space. A frame is a group frame if there exits a finite
group G that acts as linear transformations on H such that {ϕ j } = {gϕ1}g∈G ; that
is, the frame is generated by rotating a single frame vector ϕ1 by the group G. For
more background on frames and group frames, and their use in signal processing and
machine learning, see [17,59,60,97].
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Analogous to Eq. (8), the Laplacian matrix Lγ on the Schreier graph Pγ equals

Lγ = (n − 1)ργ (1) −
∑

s∈S
ργ (s), (14)

where ργ is the representation of Sn on R[γ ], which decomposes as in (13). It
follows that V ∗

γ is closed under multiplication byLγ , and therefore, from the identical
argument as in the proof of Proposition 1, V ∗

γ decomposes into eigenspaces for Lγ .
For each shape γ � n and eigenvalue λ ∈ �γ , to generate a tight Parseval frame

Φγ,λ for Zγ,λ, we

(i) construct an orthonormal basis
{
vγ,λ,k

}κγ,λ

k=1 for the graph Laplacian eigenspace of
the Schreier graph Pγ that is associated with the eigenvalue λ in V ∗

γ , and then
(ii) lift each eigenvector vγ,λ,k in the basis back to the permutahedron Pn in mγ

different ways.

Specifically, we define ϕγ,λ,k,π := cγBπvγ,λ,k , and

Φγ,λ :=
κγ,λ⋃

k=1

⋃

π∈γ

ϕγ,λ,k,π =
κγ,λ⋃

k=1

⋃

π∈γ

cγBπvγ,λ,k, (15)

where the constant cγ :=
√

dγ

n! with dγ = dim(Vγ ). It may be the case that some of
the liftingsBπvγ,λ,k are equal for different π ∈ γ , but we keep these multiple copies
in �γ,λ (viewing it as a multiset), so that |�γ,λ| = κγ,λmγ . We remove some of these
redundancies in the reduced frame �̄γ,λ in (22) below.

Remark 1 It is often but not always the case that κγ,λ = 1, so that the basis
{
vγ,λ,k

}κγ,λ

k=1
consists of a single vector. When κγ,λ = 1, we shorten the notation from vγ,λ,k to
vγ,λ, and from ϕγ,λ,k,π to ϕγ,λ,π . To make interpretations more consistent, in our
implementations, we always choose the eigenvectors of the Schreier graphs to have
norm 1 and a positive coefficient on the vertex associated with ordered set partition μ

that is last in lexicographic order (e.g., 3 4
1 2

in Fig. 15).

Theorem 1 For γ � n and λ ∈ �γ , the collection of atoms Φγ,λ defined in (15) is
the union of of κγ,λ orthogonal tight Parseval frames and, as such, is a tight Parseval
frame for Zγ,λ. The set of atoms D := ⋃

γ�n
⋃

λ∈�γ
Φγ,λ is a tight Parseval frame

for R[Sn].

Proof Let v ∈ V ∗
γ ⊆ R[γ ] be a unit Laplacian eigenvector of Pγ of eigenvalue λ

and symmetry type γ . For π ∈ γ , the lifted vector w = Bπv ∈ R[Sn] is a Laplacian
eigenvector of Pn of eigenvalue λ by Proposition 5, andw ∈ Wγ (i.e., it has symmetry
type γ ) by Proposition 6. Define the left Sn-module,

Vγ,v := R[Sn]w = R[Sn]Bπv, which is spanned by {ρL(σ )w}σ∈Sn , (16)
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where ρL(σ ) is the matrix of σ in the left regular representation of Sn . Therefore,
{ρL(σ )w}σ∈Sn is a group frame for Vγ,v if we view {ρL(σ )w}σ∈Sn as a multiset of
size n! with (potentially many) repetitions.

Since the left and right actions of Sn commute and the Laplacian L is constructed
(8) using the right representation, Vγ,v is a space of Laplacian eigenvectors of Pn

of eigenvalue λ. Moreover, by the double centralizer theorem (see, for example, [34,
Theorem 5.18.1]),Wγ

∼= Vγ ⊗V ∗
γ , as an (Sn, Sn) bimodule, where Vγ and V ∗

γ are irre-
ducible left and right Sn modules indexed by γ , respectively. Using this isomorphism,
we write w = w1 ⊗ w2 ∈ Vγ ⊗ V ∗

γ , and then Vγ,v = R[Sn]w = (R[Sn]w1) ⊗ w2 ∼=
Vγ ⊗ w2 ∼= Vγ , isomorphic as left Sn-modules. Therefore, Vγ,v is an irreducible
Sn-module and, by [97, Theorem 10.5], {ρL(σ )w}σ∈Sn is a tight group frame.

We remove some of the repetition in {ρL(σ )w}σ∈Sn by using Proposition 4:

{ρ(σ)w | σ ∈ Sn}={ρ(σ)Bπv | σ ∈ Sn}={Bσ(π)v | σ ∈ Sn}={Bμv | μ ∈ γ },
(17)

where the third equality comes from the fact that Sn acts transitively on γ . Equation
(17) tells us that Vγ,v is independent of the specific lifting π that we use. Let Sπ =
{σ ∈ Sn | σ(π) = π} be the stabilizer subgroup of π ∈ γ , and for μ ∈ γ , let
τμ ∈ Sn be a permutation such that τμ(π) = μ. Then the left coset τμSπ consists of
all permutations that send π to μ. By [97, Theorem 10.5], for any f ∈ R[Sn], we have

f = dγ

n!
1

〈Bπv, Bπv〉
∑

σ∈Sn
〈f, ρL(σ )Bπv〉ρL(σ )Bπv

= dγ

n!
1

〈Bπv, Bπv〉
∑

σ∈Sn
〈f, Bσ(π)v〉Bσ(π)v

= dγ

n!
1

〈Bπv, Bπv〉
∑

μ∈γ

∑

σ∈Sπ

〈f, Bτμσ(π)v〉Bτμσ(π)v

= dγ

n!
∑

μ∈γ

〈f, Bμv〉Bμv,

where the last equality follows from |Sπ | = n!/mγ and 〈Bπv, Bπv〉 = v�B�
π Bπv =

n!/mγ v�v = n!/mγ . It follows that �γ,v := {√dγ /n!Bμv | μ ∈ γ } is a tight
Parseval frame for Vγ,v, again viewing �γ,v as a multiset that can have repetition (as
seen in Lemma 1).

Now suppose that {v∗i }
dγ

i=1 is an orthonormal basis for V ∗
γ ⊆ R[γ ]. Then �γ,vi

is a tight Parseval frame for Vγ,v∗i for each 1 ≤ i ≤ dγ . Moreover, Vγ,vi and Vγ,v j

are orthogonal subspaces for i 
= j . To see this, identify Vγ,v∗i with Vγ ⊗ v∗i in
Wγ

∼= Vγ ⊗ V ∗
γ . Since Vγ and V ∗

γ are irreducible, they carry a unique (up to scalar
multiple) Sn-invariant inner product, and therefore an Sn-invariant inner product on
Wγ ⊆ R[Sn] equals 〈w1 ⊗ vi ,w2 ⊗ v j 〉 = 〈w1,w2〉〈vi , v j 〉, up to a scalar. The

orthogonality of the spaces {Vγ,v∗i }
dγ

i=1 follows from the orthogonality of {v∗i }
dγ

i=1.



70 Page 24 of 58 Journal of Fourier Analysis and Applications (2021) 27 :70

Finally, if λ ∈ �γ and
{
vγ,λ,k

}κγ,λ

k=1 is an orthonormal basis for the graph Laplacian

eigenspace of V ∗
γ ⊆ R[γ ] of eigenvalue λ, then �γ,λ = ∪κγ,λ

k=1�γ,vγ,λ,k is a union
of orthogonal tight Parseval frames, and therefore is a tight Parseval frame for Zγ,λ.
Furthermore, �γ = ∪λ∈�γ �γ,λ a union of orthogonal tight Parseval frames, and
therefore is a tight Parseval frame for the isotypic component Wγ . Since isotypic
components are orthogonal (e.g., [97, Theorem10.7]),D = ∪γ�n�γ is a tight Parseval
frame for R[Sn]. ��
Remark 2 (Frames for subspaces of R[Sn]) From the proof of Theorem 1 we see that
the proposedmethod can be leveraged to construct a tight Parseval frame for any union
of the Zγ,λ subspaces, not justR[Sn]. This property can be beneficial for computational
reasons, and is explored further in Sect. 6.4. In particular, for γ � n, λ ∈ �γ , and
1 ≤ k ≤ κγ,λ, we have:

1. �γ,λ,k = {ϕγ,λ,k,π }π∈γ is a tight Parseval frame for R[Sn]ϕγ,λ,k,π
∼= Vγ (for

any π ∈ γ ).
2. �γ,λ = {ϕγ,λ,k,π }1≤k≤κγ,λ,π∈γ is a tight Parseval frame for the subspace Zγ,λ.
3. �γ = {ϕγ,λ,k,π }λ∈�γ ,1≤k≤κγ,λ,π∈γ is a tight Parseval frame for the isotypic com-

ponent Wγ .

Remark 3 (Equal norms) Since the frame �γ,λ,k = {ϕγ,λ,k,π }π∈γ is generated by a
group action, the frame vectors have equal norms. In fact, for any ϕγ,λ,k,π ∈ �γ,λ,k ,

〈ϕγ,λ,k,π ,ϕγ,λ,k,π 〉 = c2γ 〈Bπvγ,λ,k,Bπvγ,λ,k〉 = v�γ,λ,kB
�
πBπvγ,λ,k

= c2γ
n!
mγ

v�γ,λ,kvγ,λ,k = c2γ
n!
mγ

= dγ

mγ

.

Remark 4 (Frame angles) The Gram matrix (or Gramian) of �γ,λ,k is the matrix of
inner products,

G�γ,λ,k = [〈ϕ,ψ〉]ϕ,ψ∈�γ,λ,k .

Since�γ,λ,k is a tight Parseval frame for the irreducible module R[Sn]ϕγ,λ,k,π
∼= Vγ ,

the Gram matrixG�γ,λ,k equals themγ ×mγ matrix that projects R[γ ] onto Vγ (see
[97, Corollary 10.2, Theorem 13.1]). This projection has a well-known description
(e.g., [97, (13.19)]) as the matrix of the following operator in the center of the group
algebra R[Sn]:

pγ = dγ

n!
∑

σ∈Sn
χγ (σ−1)σ, (18)

where the coefficientsχγ (σ−1) are givenby the irreducible characterχγ corresponding
to γ . Applying pγ to the basis {eμ}μ∈γ of R[γ ] gives

pγ (eμ) = dγ

n!
∑

σ∈Sn
χγ (σ−1)eμσ = dγ

n!
∑

σ∈Sn
χγ (σ−1)eσ−1(μ) =

dγ

n!
∑

σ∈Sn
χγ (σ )eσ(μ).
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For π,μ ∈ γ , the entry 〈ϕγ,λ,k,π ,ϕγ,λ,k,μ〉 of G�γ,λ,k is the coefficient of eπ in
pγ (eμ); namely,

〈ϕγ,λ,k,π ,ϕγ,λ,k,μ〉 =
dγ

n!
∑

σ∈Vπ,μ

χγ (σ ), (19)

where Vπ,μ = {σ ∈ Sn | σ(μ) = π} is one of the equivalence classes of Definition 2
and is a right coset of the stabilizerVπ,π = {σ ∈ Sn | σ(π) = π}. The characters of the
symmetric group are integers, so,

∑
σ∈Vπ,μ

χγ (σ ) ∈ Z. Frame vectors corresponding
to different values of λ and k are orthogonal (as seen in the proof of Theorem 1).
Therefore the Gram matrixG�γ = ⊕

λ∈�γ

⊕κγ,λ

k=1G�γ,λ,k for the isotypic component
Wγ is the direct sum of dγ matrices, each of the form (19).

For shapes γ withmultiple blocks of the same size, there is redundancy in the frame
Φγ,λ that can be removed. Let γ = [γ1, . . . , γ�] and suppose that two parts of γ are
equal; that is, γi = γ j . For π ∈ γ , let π ′ ∈ γ be the ordered set partition obtained
from π by swapping row i and row j . For example, if γ = [4, 3, 3, 2], then

π =
1 4 7 12
2 5 8
3 6 11
9 10

and π ′ =
1 4 7 12

2 5 8
3 6 11

9 10

(20)

satisfy this condition. The liftings from Vγ ⊆ R[γ ] toR[Sn] via π and π ′ are related
according to the following lemma.

Lemma 1 Let γ = [γ1, . . . , γ�] � n with t = γi = γ j and let π, π ′ ∈ γ be equal
after swapping rows i and j in π . If v ∈ Vγ ⊆ R[γ ], then Bπv = (−1)tBπ ′v.

Proof Let γ = [γ1, . . . , γ�] with t = γi = γ j . For ρ ∈ γ , let ρ′ be the same set
partition as ρ except with rows i and i+1 swapped, as illustrated in (20). Suppose that
v ∈ R[γ ] is expressed in the canonical basis as v = ∑

ρ∈γ
cρeρ . Suppose further

that for each ρ we have cρ = (−1)t cρ′ , which we call the symmetry property. Then,

Bπv =
∑

ρ∈γ

cρBπeρ =
∑

ρ∈γ

cρ

∑

σ∈Sn
σ(ρ)=π

eσ = (−1)t
∑

ρ∈γ

cρ′

∑

σ∈Sn
σ(ρ)=π

eσ = (−1)t
∑

ρ∈γ

cρ′
∑

σ∈Sn
σ(ρ′)=π ′

eσ = (−1)tBπ ′v,

since σ(ρ) = π if and only if σ(ρ′) = π ′. Thus, the proposition is proved if we show
that every v in the submodule Vγ ⊆ R[γ ] has the symmetry property cρ = (−1)t cρ′ .

The submodule V ∗
γ ⊆ R[γ ] is spanned by the following set of vectors, called

polytabloids (see [83, 2.3]),

qπ =
∑

β∈Cπ

sign(β)eπβ =
∑

β∈Cπ

sign(β)eβ−1(π), π ∈ γ , (21)
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where Cπ ⊆ Sn is the column group of π , that is, the permutations that stabilize
the columns of π , and sign(β) is the sign of the permutation β. Let τπ ∈ Cπ be
the permutation that is the product of the t disjoint transpositions (not necessarily
adjacent) that swap an entry in row i of π with the corresponding entry in row j . For
example, in (20), τπ = (2, 3)(5, 6)(8, 11). Then sign(τπ ) = (−1)t and π ′ = τπ (π).

Since τπ ∈ Cπ , we have τ−1
π Cπτπ = Cπ and sign(τ−1

π βτπ ) = sign(β). Moreover,
τ−1
π = τπ , so we have

qπτπ =
∑

β∈Cπ

sign(β)eπβτπ =
∑

β∈Cπ

sign(β)eπτπτ−1
π βτπ

=
∑

β∈Cπ

sign(β)eτπ (π)τ
−1
π βτπ = qτπ (π) = qπ ′ ,

qπτπ =
∑

β∈Cπ

sign(β)eπβτπ =
∑

η∈Cπ

sign(τπη)eπη

= sign(τ )
∑

η∈Cπ

sign(η)eπη = (−1)t qπ ,

and thus qπ = (−1)t qπ ′ . It follows that qπ has the symmetry property cρ = (−1)t cρ′ .
Since this is true of each vector of the spanning set qπ , π ∈ γ , it is true for all of
V ∗

γ , and the result is proved. ��
Lemma 1 tells us that, in the case where γ has repeated parts, many of the

atoms in (15) are identical or are the negatives of others. We then can lift fewer
vectors to generate a tight Parseval frame for Zγ,λ, which leads to a more com-
putationally efficient implementation without sacrificing any interpretability. Define
zγ := mγ∏

i ki ! , where if γ = [γ1, . . . , γ�], ki is the multiplicity of i in γ . For exam-

ple, if γ = [4, 2, 2, 2, 1], mγ = 11!
4!2!2!2!1! and zγ = mγ

3! , as i = 2 appears three
times in γ . Identifying ordered set partitions in γ that feature the same groupings of
candidates yields a smaller set of zγ (unordered) set partitions, which we denote by
̄γ . For example, the ordered set partitions {{1, 2, 3, 4}, {5, 6}, {7, 8}, {9, 10}, {11}},
{{1, 2, 3, 4}, {7, 8}, {5, 6}, {9, 10}, {11}}, and four others are all identified to a single
set partition in ̄[4,2,2,2,1]. For π̄ ∈ ̄γ , define ϕγ,λ,k,π̄ := c̄γBπ̄vγ,λ,k , and define
the reduced frame

Φ̄γ,λ :=
κγ,λ⋃

k=1

⋃

π̄∈γ

ϕγ,λ,k,π̄ :=
κγ,λ⋃

k=1

⋃

π̄∈̄γ

c̄γBπ̄vγ,λ,k, (22)

where the constant c̄γ :=
√

dγ mγ

n!zγ . In Theorem 2 we show that Φ̄γ,λ remains a tight
Parseval frame for Zγ,λ.

Theorem 2 For γ � n and λ ∈ �γ , the collection of atoms Φ̄γ,λ defined in (22) is a
tight Parseval frame for Zγ,λ, and the set of atoms D̄ := ⋃

γ�n
⋃

λ∈�γ
Φ̄γ,λ is a tight

Parseval frame for R[Sn].
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Fig. 15 Left: the graph Laplacian eigenvectors v[2,2],λ of the Schreier graph P[2,2] associated with eigen-
values λ = 1.2679 (top) and λ = 4.7321 (bottom). Right: the dictionary atoms {ϕγ,λ,z} = {c̄γ Bπz v[2,2],λ}
are generated by lifting the Schreier Laplacian eigenvectors according to the three different ordered set parti-
tionsπz ∈ ̄[2,2] shown in Fig. 13. The resulting sets of three atoms form tight frames for the corresponding
spaces Z[2,2],λ. In this case, Z[2,2],1.2679 = U1.2679 and Z[2,2],4.7321 = U4.7321, since the eigenvalues
λ = 1.2679 and λ = 4.7321 only appear in the [2,2] irreducible

Proof By Lemma 1, �γ,λ = ⋃mγ /zγ
i=1 ±�̄γ,λ. Therefore, from Theorem 1, for any

f ∈ R[Sn], we have

f =
∑

φ∈�γ,λ

〈f, φ〉φ =
mγ /zγ∑

i=1

∑

±φ∈±�̄γ,λ

〈f,±φ〉(±φ) =
mγ /zγ∑

i=1

∑

φ∈�̄γ,λ

〈f, φ〉φ

= mγ

zγ

∑

φ∈�̄γ,λ

〈f, φ〉φ.

By observing that c̄γ =
√

dγ mγ

n!zγ =
√

mγ

zγ
cγ , we see that �̄γ,λ is a tight Parseval frame

for Zγ,λ. ��
In Fig. 15, for γ = [2, 2], we show two different eigenvectors of the Schreier

graph Pγ lifted back to the permutahedron according to the zγ = 3 different ordered
set partitions in Fig. 13, yielding tight frames Φ̄[2,2],1.2679 and Φ̄[2,2],4.7321 with three
vectors each for the two-dimensional spaces Z[2,2],1.2679 and Z[2,2],4.7321, respectively.
An important point of emphasis here is that compared to the orthonormal bases for the
same spaces in Fig. 9, the frame vectors in Fig. 15 maintain interpretable symmetry
properties.

In this case, were we to include all mγ = 6 liftings generated from the ordered
set partitions in γ , the resulting frames Φγ,λ would have two copies of each of

these three atoms, all scaled by the constant factor cγ
c̄γ

=
√

zγ
mγ

. In cases where the

repeated parts have odd length (e.g., tight frames for Z[8,1,1],λ generated by lifting
the eigenvector in Fig. 23b), the removed atoms would have the opposite sign in each
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entry. Unless specified, our default in the remainder of the paper is to use the tight
frames with fewer elements defined in (22).

Returning to the three objectives outlined at the beginning of this section, the
proposed dictionary atoms comprise a tight Parseval frame, as shown in Theorems 1
and 2, and therefore satisfy the first objective of preserving the energy of the signal.
Each atomϕγ,λ,k,π̄ belongs to the space Zγ,λ = Wγ ∩Uλ and therefore inherits known
symmetry and smoothness properties fromWγ andUλ, respectively. In the next section,
we investigate the interpretation of specific frame analysis coefficients 〈f,ϕγ,λ,k,π̄ 〉 in
the context of several example data sets. The third objective of identifying methods to
efficiently compute these inner products is the focus of Sect. 6, and this computational
question actually gives rise to additional interesting theoretical questions.

5 Interpretation of the Analysis Coefficients

The inner products between a signal on the permutahedron and the atoms of the tight
spectral frame D̄ from Theorem 2 (or D from Theorem 1), referred to as analysis
coefficients, are useful in identifying structure in voting data, such as popular candi-
dates, polarizing candidates, and clusters of candidates commonly ranked similarly by
subgroups of voters (e.g., political parties). The analysis coefficients have the form:

αγ,λ,k,π̄ := 〈f,ϕγ,λ,k,π̄ 〉 = 〈f, c̄γBπ̄vγ,λ,k〉 = c̄γ 〈B�̄
π f, vγ,λ,k〉. (23)

In some instances, it is beneficial for interpretation purposes to view these analysis
coefficients as inner products between the signal f and the atoms [the first two terms in
(23)]. All of these signals reside on the permutahedron Pn (see Fig. 15 or the second
row from the bottom in Fig. 18 for illustrations of example atoms). In other instances,
it is helpful to view the same quantity via the last term in (23): a constant times an
inner product between the signal projected down to the Schreier graph Pγ in a specific
manner, and a Laplacian eigenvector of that Schreier graph.

Recalling that the energy of the signal is equal to the energy of the analysis coeffi-
cients, i.e.,

‖f‖2 =
∑

γ,λ,k,π̄

|〈f,ϕγ,λ,k,π̄ 〉|2, (24)

we first investigate what information can be garnered from the decomposition of the
energy of the analysis coefficients on the right-hand side of (24) (i) across shapes
γ , (ii) across eigenvalues λ within a fixed shape γ , and (iii) across atoms within a
shape–eigenvalue pair γ, λ. We then examine the interpretation of specific analysis
coefficients.

5.1 Energy Decomposition

The squared magnitudes |〈f,ϕγ,λ,k,π̄ 〉|2 in the summand of (24) can be aggregated
and plotted in different ways to identify structural patterns in the ranking tallies, f .
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Fig. 16 Decomposition of the energy of the 2017 Minneapolis City Council Ward 3 election data g into the
shape–eigenvalue spaces {Zγ,λ}

Fig. 17 The sushi data h is a smooth signal on the permutahedron P10, and the energies of h in each
shape–eigenvalue space generally decay as the eigenvalues increase, with the exception of two values for
which κγ,λ > 1 (these outliers are expected and do not reflect any structure of interest in this particular
data)

First, for each shape γ , the sum
∑

λ,k,π̄ |〈f,ϕγ,λ,k,π̄ 〉|2 is equal to ‖fγ ‖2, the energy
of the projection of the signal onto the corresponding isotypic component (compare,
e.g., the bottom image in Fig. 3 to the top table in Fig. 18). Each of these quantities
can be further decomposed across the eigenspaces associated with the eigenvalues in
�γ via the sums ‖fγ,λ‖2 = ∑

k,π̄ |〈f,ϕγ,λ,k,π̄ 〉|2. For example, as shown in Fig. 18,
for the 2017 Minneapolis City Council Ward 3 e lectio n data g,

355201.6 = ‖g ‖2 = ‖g
,0.586

‖2 + ‖g
,2
‖2 + ‖g

,3.414
‖2

=
∑

π̄

∣∣
∣
〈
g,ϕ

,0.586,π̄

〉∣∣
∣
2+

∑

π̄

∣∣
∣
〈
g,ϕ

,2,π̄

〉∣∣
∣
2 +

∑

π̄

∣∣
∣
〈
g,ϕ

,3.414,π̄

〉∣∣
∣
2

= 147617.5+ 192845.1+ 14739.0.

Through plots such as those shown in Figs. 16 and 17, we can visualize the full
decomposition of energy into shape–eigenvalue pairs. For example, in Fig. 16 (or
the top row of Fig. 18), we see that most of the energy from the 2017 Minneapolis
City Council Ward 3 election data g shown in Fig. 1 falls in the spaces Z[4],0 (which
just conveys information about the total number of voters), Z[3,1],2, Z[3,1],0.586, and
Z[2,2],1.268. As discussed in Sect. 3.2, typically occurring rankings are smooth with
respect to the underlying permutahedron structure, and we therefore expect to see a
decay in the energies {‖fγ,λ‖2} as λ increases, as is the case, e.g., in the sushi data in
Fig. 17. While in the examples shown Figs. 16 and 17 the bar at each eigenvalue is
comprised of a single color representing the corresponding shape, this need not be the
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case. For example, when n = 6, the eigenvalue λ = 3 appears in two shapes (

and ), and therefore the energy of a signal at this eigenvalue would be comprised
of two bars of different colors stacked on top of each other. Additionally, when the
graph Laplacian eigenspace of the Schreier graph Pγ that is associated with λ in Vγ

has dimension greater than one (i.e., κγ,λ > 1), the energies of the analysis coefficients
resulting from all atoms generated from the basis

{
vγ,λ,k

}κγ,λ

k=1 are stacked on top of
one another and shown as a single bar. For example, the apparent outliers at λ = 8 and
λ = 10 in Fig. 17 are only due to the fact that κγ,λ > 1 for these shape–eigenvalue
pairs, as opposed to some structure of interest in the sushi data; a plot of the energies
of the analysis coefficients of a pure noise signal yields similar outliers.

We can further decompose the energy in any shape–eigenvalue pair by examining
the sequence of energies, {|〈f,ϕγ,λ,k,π̄ 〉|2}1≤k≤κγ,λ,π∈̄γ

, associated with each atom
in the frame. In particular, for any shape–eigenvalue pair with a significant amount of
energy, we can identify the ordered set partitions π̄ used to lift the associated eigenvec-
tors to generate the atoms that yield the inner products with the highest magnitudes.
For example, for the sushi data signal h, Fig. 19 shows the shape–eigenvalue-lifting
triplets associated with largest magnitude analysis coefficients.

5.2 Interpretation of Specific Analysis Coefficients

How can we use the magnitudes of the analysis coefficients to identify structure in
the ranked data? The general methodology for each analysis coefficient is to look at
the structure of the corresponding eigenvector on the Schreier graph of the identified
shape and the projection of the signal onto that Schreier graph via B�̄

π , as the analysis
coefficient is the inner product of those two signals on Pγ [see (23)]. One key advan-
tage of this method is that it allows us to create visualizations of high-dimensional data
on much lower-dimensional graphs. Some of these eigenvectors are more easily inter-
pretable than others, but we are fortunate that the most interpretable eigenvectors are
often the ones associated with the largest magnitude analysis coefficients, particularly
for the smooth signals that commonly arise in ranking applications.

5.2.1 The Shape � = [n]: Number of Votes

The only eigenvalue in �[n] is λ = 0, and there is just a single atom associated with
the shape γ = [n]: ϕ[n],0,{{1,2,...,n}} = 1√

n!1n!, where 1n! is a constant vector of ones
of length n!. This atom is a basis for the isotypic component W[n], and the analysis
coefficient 〈f,ϕ[n],0,{{1,2,...,n}}〉 = f̂ (0) = ‖f[n]‖ is just equal to the total number of
votes (rankings) divided by n! (c.f., Fig. 3).

5.2.2 The Shape � = [n− 1, 1]: Individual Popularity and Polarization

The Laplacian eigenvalues �[n−1,1] and associated eigenvectors of the Schreier graph
P[n−1,1] are the same as the n − 1 nonzero Laplacian eigenvalues and associated
eigenvectors of a path graph with n vertices. These are known in closed form.
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Fig. 18 Top: the energies of the projections of g onto the spaces Zγ,λ associated with each shape–Laplacian
eigenvalue pair. Bottom: inner products between g and a subset of the dictionary atoms of the form ϕγ,λ,π̄ ,
each of which is created by lifting the Schreier eigenvector vλ back to the permutahedron according to the
partition π̄

Fig. 19 The 14 tight spectral frame analysis coefficients with the largest magnitudes for the sushi preference
data
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Fig. 20 The Laplacian eigenvectors associated with the first two eigenvalues in �[n−1,1] on the Schreier
graph P[9,1]. The index on each vertex corresponds to the element in the second block of the set partition

associated with the vertex; e.g., “3” is shorthand notation for 1 2 4 5 6 7 8 9 0
3

Lemma 2 [see, e.g., [93]] Let Qn denote the path graph on n vertices. The Laplacian
eigenvalues of Qn are

λ
Qn
� = 2− 2 cos

(
π�

n

)
, � = 0, 1, . . . , n − 1,

and the associated Laplacian eigenvectors are

vQn
0 (i) = 1√

n
, i = 1, 2, . . . , n, and

vQn
� (i) = 2√

n
cos

(
π�(i − 0.5)

n

)
, � = 1, 2, . . . , n − 1, i = 1, 2, . . . , n.

In Fig. 20, we show the first two eigenvalues �[9,1] and their associated eigenvectors
on P[9,1].

Atoms Generated from the Laplacian Eigenvector v[n−1,1],2−2 cos( π
n ):HowPopular

Is Each Candidate?
For z = 1, 2, . . . , n, let π̄z be the set partition that places candidate z in one block

and all other candidates in the other block (e.g. with n = 4, π̄2 = {{1, 3, 4}, {2}}).
Then the atom ϕ[n−1,1],2−2 cos( π

n ),π̄z
= c̄[n−1,1]Bπ̄zv[n−1,1],2−2 cos( π

n ) is equal to

c̄[n−1,1] 2√
n
cos

(
π(i−0.5)

n

)
on each vertex of the permutahedron Pn associated with a

ranking in which candidate z is ranked in place i (see the second row from the bottom
in Fig. 18 for illustrations of such atoms). Since the eigenvector v[n−1,1],2−2 cos( π

n ) =
2√
n
cos

(
π(i−0.5)

n

)
decreases from i = 1 to i = n (see, Fig. 20), the analysis coef-

ficient α[n−1,1],2−2 cos( π
n ),π̄z

conveys a notion of general favorability of candidate z.
As shown in Fig. 18, for the 2017 Minneapolis City Council Ward 3 election data,
the largest analysis coefficient in this shape–eigenvalue pair is the 290.8 associated
with π̄3, followed by π̄1, π̄4, and π̄2, indicating that candidate 3 is generally popular
whereas candidate 2 is generally not popular. In the sushi preference data, the order of
the candidate popularities according to this metric, frommost popular to least popular,
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is 8, 3, 1, 6, 2, 5, 4, 9, 7, 10. This ordering is the same as the Condorcet ranking listed
in Sect. 2.3, except with shrimp and salmon roe swapped in third and fourth place.

Remark 5 (Relation with rank aggregation and the Borda count) The problem of map-
ping ranking data into a single consensus ranking of the candidates is referred to as
rank aggregation and dates back to social choice theory in the eighteenth century [11]
(see [62], [100, Sect. 5] for more recent surveys). Borda’s original method [11] is to
assign n points to each first place vote, n − 1 points to each second place vote, and
so forth, until 1 point for each last place vote. The consensus ranking is then formed
according to the total number of points each candidates receives. The ranking of the
candidates according to the analysis coefficients α[n−1,1],2−2 cos( π

n ),π̄z
demonstrated

above is equivalent to a Borda count aggregate ranking that uses point values

(n − 1) cos
(

π(i−0.5)
n

)

2 cos
(

π
2n

) + n + 1

2
, i = 1, 2, . . . , n

for i th place instead of the more common linearly spaced point values from n to 1. For
example, with 10 candidates, the ranking of the analysis coefficients generated from
this eigenvector is equivalent to a weighted Borda count where the points assigned for
each vote, from first place to last place, are 10.00, 9.56, 8.72, 7.57, 6.21, 4.79, 3.43,
2.28, 1.44, and 1.00.

Atoms Generated from the Laplacian Eigenvector v[n−1,1],2−2 cos
(
2π
n

): How Polar-

izing Is Each Candidate?

The eigenvector elements v[n−1,1],2−2 cos
(
2π
n

)(i) = 2√
n
cos

(
2π(i−0.5)

n

)
decrease

from i = 1 to i = � n2 �, and then increase again from i = � n2 � + 1 to i = n (see, e.g.,
Fig. 20). The atom

ϕ[n−1,1],2−2 cos
(
2π
n

)
,π̄z

= c̄[n−1,1]Bπ̄zv[n−1,1],2−2 cos
(
2π
n

)

therefore features positive values on the vertices of Pn associated with rankings in
which candidate z is ranked towards the top or bottom, and negative values on vertices
associated with rankings in which candidate z is ranked in the middle. Accordingly,
the analysis coefficient α[n−1,1],2−2 cos

(
2π
n

)
π̄z

is large when many voters feel strongly

(either positively or negatively) about candidate z. For example, looking at the sum-
maryof the analysis coefficients for the 2017MinneapolisCityCouncilWard3 election
data in the bottom row of the column for eigenvalue λ = 2 − 2 cos

( 2π
4

) = 2 in
Fig. 18, the largest analysis coefficient is the 318.7 associated with the set parti-
tion {{2, 3, 4}, {1}}, indicating that candidate 1 (Ginger Jentzen) is often ranked in
either first or last place. The corresponding coefficients for candidates 2 and 3 are
negative, indicating they are often ranked in positions 2 and 3, and are less polar-
izing. For the sushi preference data, the largest positive analysis coefficients in the
γ = [9, 1], λ = 0.382 pair (see Fig. 19) indicate items 8 and 5 (fatty tuna and
sea urchin) are often ranked quite highly or quite lowly, while item 9 (tuna roll) is
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often ranked in the middle. The key takeaway is that the combination of a near-zero
value of α[n−1,1],2−2 cos( π

n ),π̄z
and a relatively large value of α[n−1,1],2−2 cos

(
2π
n

)
,π̄z

indicates that the candidate identified by the singleton in the set partition π̄z is
highly polarizing. This is the case in the sushi preference data for the sea urchin
item, for which α[n−1,1],2−2 cos

(
2π
n

)
,π̄z

= −0.016 (lowest magnitude of any item) and

α[n−1,1],2−2 cos
(
2π
n

)
,π̄z

= 0.960 (second highest of the items), indicating that the voting

population is roughly split between strongly liking and strongly disliking sea urchin.

5.2.3 The Shapes � = [n− 2, 2] and � = [n− 2, 1, 1]: Pairwise Co-occurence

Net of their individual popularities, when are two candidates likely to be ranked simi-
larly (either positively or negatively) by voters? Given a voter’s first choice candidate,
are there other candidates the voter is likely to feel positively, negatively, or neutral
about? These are the types of pairwise co-occurence questions that can be answered
with the second-order marginal information found in the shapes γ = [n − 2, 2] and
γ = [n − 2, 1, 1].

For the 2017 Minneapolis City Council Ward 3 election data, the largest analysis
coefficient in this shape, shown in bottom-right of Fig. 18, is the 239.0 associated with
eigenvalue λ = 1.268 and the set partition πz = {12|34}, indicating candidates 3 and
4 are often ranked together in the first two positions or last two positions. This is not
surprising as these candidates belong to the same political party. For a small number
of candidates, such as n = 4 in this case, it is possible to visually inspect the atoms of
the form ϕγ,λ,π̄ shown in Fig. 18 in order to interpret the analysis coefficients.

For larger values of n, however, it is more convenient to think about the inner
products defined in (23) as αγ,λ,π̄ = c̄γ 〈B�̄

π f, vγ,λ〉. Here, B�̄
π f is a projection of

the signal from Pn down to the Schreier graph Pγ , the same structure on which the
eigenvector vγ,λ resides. In Fig. 21, we show four such projections of h onto P[8,2] that
capture the joint placement of four different pairs of items: 3 and 8 (two favorites), 8
and 10 (one favorite and one of the least preferable items), 5 and 6 (twomore polarizing
items that are often ranked together near the top or together at the bottom), and 1 and
2 (two generally well liked items that are often ranked towards the top but not at the
top). In each of the projections shown in Fig. 21, the value at each vertex is equal to
the number of voters who ranked the selected pair of items in the ranking positions
contained in the vertex labels; for example, Fig. 21a shows that 637 of the 5000 voters
placed items 3 and 8 (tuna and fatty tuna) in their top two ranking slots.

The other halves of the inner products α[8,2],λ,π̄ = c̄[8,2]〈B�̄
π f, v[8,2],λ〉 are the

Laplacian eigenvectors of themodule V[8,2], the first two of whichwe show in Fig. 22c,
d. The coefficients {α[8,2],0.2047,π̄ } associated with the eigenvector in Fig. 22c capture
a notion of pairwise proximity. Specifically, a large positive coefficient indicates the
two items/candidates grouped by the set partition π̄z are likely to be close to the
first two or last two ranking positions, suggesting they may have similar features or
belong to the same political party in the case of an election. For the sushi preference
data, as shown in Fig. 19, the two largest positive coefficients c̄[8,2]〈B�̄

π f, v[8,2],λ〉
are the 1.3304 associated with the set partition π̄ = {12456790|38}, which groups
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Fig. 21 The sushi preference signal h projected down from the permutahedron P10 to the Schreier graph
P[8,2] via four different projection matrices that correspond to four different ordered set partitions in ̄[8,2]

Fig. 22 a and b The Laplacian eigenvectors v[9,1],λ, for λ = 0.0979 and λ = 0.3820, lifted from P[9,1]
to P[8,2]. c and d The Laplacian eigenvectors v[8,2],λ, for λ = 0.2047 and λ = 0.4700, are orthogonal to
each other and to the two vectors in (a) and (b) on the Schreier graph P[8,2]

the two overall favorites fatty tuna and tuna together, and the 1.6543 associated with
π̄ = {12345689|70}, which groups the two overall least favorites—and the only two
vegetarian options—egg and cucumber roll together. In ranked voting elections where
there are more than two candidates in the same political party, we might expect to
see large positive coefficients on these [n− 2, 2] analysis coefficients associated with
each of the pairs of candidates from the same party. A negative coefficient with large
magnitude, on the other hand, indicates the two items are frequently ranked at opposite
ends. In the sushi data, themost negative coefficient c̄[8,2]〈B�̄

π f, v[8,2],λ〉 is the−1.7150
associatedwith the set partition π̄ = {12345679|80}, which groups the overall favorite
(fatty tuna) and overall least favorite (cucumber roll) items together.

Let us now consider the set partition π̄ = {34567890|12}, for which the corre-
sponding projection onto P[8,2] is shown in Fig. 21d. Of the 45 analysis coefficients
{α[8,2],0.2047,π̄ },α[8,2],0.2047,{34567890|12} = −0.0231 is the third smallest inmagnitude,
andof the 45 analysis coefficients {α[8,2],0.4700,π̄ },α[8,2],0.4700,{34567890|12} = −0.0088
is the smallest in magnitude. There are two reasons these coefficients are closer to 0.
First, the energy of the projection B�{34567890|12}h in Fig. 21d is more evenly spread
across the vertices of P[8,2] than the other projections in Fig. 21a–c even though they
all have the same sum; thus, the norm ‖B�{34567890|12}h‖ is smaller. Second, from a

graph signal processing viewpoint, the energy ‖B�{34567890|12}h‖2 decomposes across
the Laplacian eigenspaces of the Schreier graph P[8,2]. In this case, most of that energy
falls into the one-dimensional spaces spanned by the eigenvectors shown in Fig. 22a,
b. In addition to being Laplacian eigenvectors of P[8,2], these vectors can be viewed
as liftings of eigenvectors from the module V[9,1] to P[8,2]. More formally and gen-
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Fig. 23 aTheLaplacian eigenvector v[8,2],0.2047, lifted fromP[8,2] toP[8,1,1].bTheLaplacian eigenvector
v[8,1,1],0.4799 is orthogonal to the vector in (a) on the Schreier graph P[8,1,1]

erally, if ν � γ , then for any ξ ∈ ̄ν and π ∈ ̄γ , we define the linear mapping
Tξ,π : R[ν] → R[γ ] by Tξ,πx := B�

πBξx (see Proposition 8). If Kγ,ν = 1, then
Tξ,πx
‖Tξ,πx‖ = ± Tξ ′,π ′x

‖Tξ ′,π ′x‖ for all ξ, ξ ′ ∈ ̄ν , π, π ′ ∈ ̄γ , and x ∈ Vν , and we identify all

of these transformations under the notation Tν,γ .
Next, we examine the ordered second-order marginals, discussed in Sect. 3.1 and

captured in the [n− 2, 1, 1] isotypic component. Returning to the negative coefficient
α[8,2],0.2047,{12345679|80} = −1.7150, potential causes for the large magnitude could be
that (i) the first selected candidate (8) is commonly ranked first and the second selected
candidate (10) is commonly ranked last, (ii) the first selected candidate is commonly
ranked last and the second selected candidate is commonly ranked first, or (iii) both
candidates are polarizing, but ranked at opposite ends of the spectrum by different sets
of voters.Which other coefficients provide structural information that can be combined
with α[8,2],0.2047,{12345679|80} to inform which of these scenarios might be occurring?
In this case, we know from the coefficients α[9,1],0.0979,{123456789|0} = −2.1513 and
α[9,1],0.0979,{123456790|8} = 1.9978 that item 8 (fatty tuna) is the popular one and
item 10 (cucumber roll) is the unpopular one. More generally, we can examine the
coefficient α[8,1,1],0.4799,{12345679|8|0}, which is equal to 1.3471 in this case. From the
eigenvector v[8,1,1],0.4799 in Fig. 23b, we see that a positive value implies the first
selected candidate is more often ranked towards the top (the case here), a negative
value implies the second selected candidate is more often ranked towards the top, and
a coefficient of small magnitude indicates that both candidates are roughly evenly
located at the two ends [scenario (iii) above].

An analysis coefficient associated with the first eigenvector of the module
V ∗[n−2,1,1] can also provide some insight into the interpretation of a large positive
analysis coefficient associated with the first eigenvector of the module V ∗[n−2,2].
Namely, a positive value of the coefficient indicates the second selected candi-
date is more popular than the first, and vice versa. For example, consider the pairs
of items 7/10 and 9/10. From the fact that α[8,2],0.2047,{12345689|70} = 1.6543 and
α[8,2],0.2047,{12345678|90} = 0.7055 are positive, we conclude these pairs of items often
appear together at the top or bottom of the rankings. We know from the fact that the
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Fig. 24 Projections capturing the second order ordered and unordered marginals for the pairs of sushi items
7/10 and 9/10

Fig. 25 The sushi preference signal h projected down from the permutahedron P10 to the Schreier graph
P[7,3] via two different projection matrices that correspond to two of the 120 different ordered set partitions
in ̄[7,3]

coefficientsα[9,1],0.0979,{123456789|0} = −2.1513,α[9,1],0.0979,{123456890|7} = −1.1896,
and α[9,1],0.0979,{123456780|9} = −0.3733 are all negative that all three items are
unpopular and these pairs therefore appear together more often at the bottom of
the rankings. Is one item in each pair more likely to be ranked last? We see from
the projections onto P[8,1,1] in Fig. 24b, d that when ranked in the last two slots,
item 10 is only slightly more likely than item 7 to be ranked last, but item 9 is
much more frequently ranked higher than item 10 in these pairwise frequencies. This
difference is reflected in the coefficients α[8,1,1],0.4799,{12345689|7|0} = −0.4050 and
α[8,1,1],0.4799,{12345678|9|0} = −0.9136.

5.2.4 Shapes with �1 < n− 2

For subsequent shapes, we can interpret the analysis coefficient in a similar manner,
as the inner products between projections of the signal down to the Schreier graph and
Laplacian eigenvectors vγ,λ in V ∗

γ . Once again, the most interpretable eigenvectors
and therefore informative analysis coefficients are usually those associated with lower
eigenvalues (i.e., the first couple from each new irreducible V ∗

γ ).
As a final example, we consider the analysis coefficients α[7,3],λ,π̄ generated by the

values λ equal to 0.3227, 0.5660, and 0.8122 (the associated eigenvectors of which are
shown in the bottom row of Fig. 26) and the set partitions π̄ equal to {1234790|568}
and {3567890|124}. The first projection of the data in Fig. 25, corresponding to
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Fig. 26 The three Laplacian eigenvectors v[7,3],λ of P[7,3] shown in (d–f) (and the 72 others not shown)
are orthogonal to each other and to the liftings to P[7,3] of all Laplacian eigenvectors of P[10], P[9,1], and
P[8,2] (the Schreier graphs corresponding to the shapes that strictly precede [7, 3] in dominance ordering),
including the three liftings shown in (a–c)

π̄ = {1234790|568}, shows that items 5, 6, and 8 (sea urchin, salmon roe, and fatty
tuna) most frequently occur in the top three rankings or rankings 1, 2, and 4, but it is
also common that voters ranked two of the three at the top and one at the bottom, or one
at the top and two at the bottom. Due to the high concentration of the projection on the
vertices of the Schreier P[7,3] labeled by 123 and 124, the inner products with the three
eigenvectors in Fig. 26d–f have the 2nd, 7th, and 10th largest magnitudes of the 9000
analysis coefficients {α[7,3],λ,π̄ }λ∈�[7,3],π̄∈̄[7,3] , and the 2nd, 1st, and 1st largest mag-
nitudes of the 120 analysis coefficients in each of the subsets {α[7,3],0.3227,π̄ }π̄∈̄[7,3] ,{α[7,3],0.5660,π̄ }π̄∈̄[7,3] , and {α[7,3],0.8122,π̄ }π̄∈̄[7,3] , respectively. That is to say, there
is a strong third order effect of these three items being ranked together and highly,
net of the first order and second order effects, which are captured, e.g., in the lifted
eigenvectors in Fig. 26a–c.

The second projection of the data in Fig. 25 captures the joint ranking positions
of three sushi items with cooked fish: 1, 2, and 4 (shrimp, sea eel, and squid). Our
suspicion that these three itemswould be ranked similarly bymany voters is confirmed
by the projectionB�{3567890|124}h, which shows the items are most commonly ranked in
slots 4/5/6, 5/6/7, or 6/7/8. Despite the frequent closeness of the rankings of these three
items, themagnitudes of the inner productswith the three eigenvectors in Fig. 26d–f are
quite small (all less than 0.075 and ranking 88th, 72nd, and 52nd out of the magnitudes
of the analysis coefficients associatedwith 120 different set partitions for the respective
eigenvalues). The reason for this is that the projection B�{3567890|124}h is quite close
(up to a sign change) to T[9,1],[7,3]v[9,1],0.3820 in Fig. 26b, and the eigenvectors in Fig.
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26d–f are orthogonal to T[9,1],[7,3]v[9,1],0.3820. That is, the third order effect of these
three cooked fish sushi items being ranked together is weak once the first order effects
found in the [9, 1] shape have been accounted for.

6 Computationally Efficient Algorithms

In this section, we develop efficient algorithms for the proposed transform, and discuss
details of our openly available software that implements the transform and helps users
find structure in ranked data by visualizing the analysis coefficients and/or projecting
the data into lower dimensional spaces to visualize.

What are the initial computational challenges? First, naively computing the eigen-
vectors of Pn is not feasible for n above 7 or 8, as it has complexityO([n!]3). Second,
even naively computing the eigenvectors of the required Schreier graphs is not feasible

(complexity O
([

n!
�n/2�!

]3)
). Third, any method that explicitly computes and stores

all dictionary atoms of length n! on the permutahedron in order to take inner products
with the ranked data will quickly run into memory issues as n grows. Fourth, the
number of dictionary atoms inD from Theorem 1 is

∑
γ�n dγmγ , which grows faster

than n!; i.e., the redundancy of the dictionary increases as n increases.
In order to circumvent these issues, we need specialized algorithms (i.e., not stan-

dard signal processing or numerical linear algebra techniques) that take advantage of
the symmetry and structure present in the permutahedron.

Our general approach is to include as much of the computation as possible into a
setup portion that is independent of the data and can therefore be performed just once,
offline and ahead of time, for each n. This setup portion consists of three phases: the
dynamic constructions of the adjacency matrix and the characteristic matrix Bγ for
each Schreier graph Pγ (Sect. 6.1), the computation of the Laplacian eigenvalues and
eigenvectors of the Schreier graphs (Sect. 6.2), and the computation of a path from
each reading set partition to every other vertex in the Schreier graph (Sect. 6.3). With
all of this information stored for a given n, the data-dependent analysis portion of the
code (Sect. 6.3) needs to be executed for each new ranked data vector f .

6.1 Construction of the Schreier Adjacency Matrices and a LiftingMatrix from
Each Schreier to the Permutahedron

The Schreier graphs for Sn can be constructed in an iterative dynamic manner from
those for Sn−1. If γ = [γ1, γ2, . . . , γ�] � n, then for each 1 ≤ i ≤ �, let γ,i ⊆ γ

be the subset of ordered set partitions μ with n in the i th row of μ and let Pγ,i be
the subgraph of Pγ induced by γ,i . In this way, Pγ partitions into a disjoint union
of subgraphs {Pγ,i }�i=1 with edges between vertices in different subgraphs as follows:
μ ∈ Pγ,i is connected to ν ∈ Pγ, j (i 
= j) by an edge labeled by (n − 1, n) if and
only if μ = (n− 1, n)(ν). Note that Pγ,i ∼= Pγ ′ where γ ′ is the integer partition given
by subtracting 1 from γi and, if necessary, sorting the parts so they are nonincreasing.
For example, Fig. 27 gives the decomposition of P[4,1,1] into P[3,1,1], P[4,0,1], and



70 Page 40 of 58 Journal of Fourier Analysis and Applications (2021) 27 :70

Fig. 27 The decomposition of the Schreier graph P[4,1,1] into P[3,1,1], P[4,1,0], and P[4,0,1]. Note that
P[4,1,0] and P[4,0,1] are each isomorphic to P[4,1]. The red numbers indicate the number of adjacent
transpositions to get to the reading-order set partition π1, and the highlighted paths are minimal paths from
each π̄ ∈ ̄[4,1,1] to π1, constructed via a breadth-first search

P[4,1,0] with P[4,0,1] ∼= P[4,1,0] ∼= P[4,1]. This decomposition allows one to construct
the Schreier graphs of Sn dynamically from those for Sn−1. Since the permutahedron is
a Schreier graph, Pn = P[1,1,...,1], we also construct it dynamically using this method.

LetBγ := Bπ1 denote the characteristicmatrix corresponding to the readingordered
set partition π1 ∈ γ , which is a matrix that lifts Schreier eigenvectors from the
Schreier Pγ to the permutahedron Pn . Then Bγ has a recursive structure that respects
the decomposition of Pγ , and, as we show in Sect. 6.3, this is the only lifting matrix
that we need to compute for shape γ . If γ = [γ1, . . . , γ�] � n, then for 1 ≤ i ≤ n, let
Sn,i := {σ ∈ Sn | σ(n) = i}. The decomposition of Bγ is given in Proposition 7 and
illustrated in Example 1.

Proposition 7 If γ = [γ1, . . . , γ�] � n, then the characteristic matrixBγ decomposes
into block sub-matrices,

(Bγ )i, j =
{
Bγ ( j), if i is in the j th row of π1,

0, otherwise,
1 ≤ i ≤ n, 1 ≤ j ≤ �,

where γ ( j) is obtained from γ by subtracting 1 from γ j .

Proof For σ ∈ Sn and μ ∈ γ , the (σ, μ)-entry of Bγ equals 1 if and only if
σ(μ) = π1. If n is in the j th block of μ and σ(n) = i , then this entry can be nonzero
only if i is in the j th row of π1. The nonzero blocks equal Bγ ( j) by definition (after
ignoring n). ��
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Fig. 28 The recursive structure of the characteristic matrix B[2,2]

Example 1 In Fig. 28, we show the recursive structure of the characteristic matrix
B[2,2], which corresponds to the ordered set partition π1 = {12|34} (compare with
Fig. 14, which gives this same matrix with the permutations in lexiocgraphic order).

Similarly, the recursive structure of B[4,1,1], which corresponds to the ordered set
partition π1 = {1234|5|6}, is given by

B[4,1,1] = B 1 2 3 4
5
6

=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

[4,1,1],3 [4,1,1],2 [4,1,1],1

S6,6 B[4,1,0] · ·
S6,5 · B[4,0,1] ·
S6,4 · · B[3,1,1]
S6,3 · · B[3,1,1]
S6,2 · · B[3,1,1]
S6,1 · · B[3,1,1]

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.

6.2 Computation of the Schreier Eigenvalues and Eigenvectors Via Deflation

Frame vectors ϕγ,λ,k,π̄ of eigenvalue λ and shape γ are computed as lifts from the
λ-eigenspace of the Schreier graph corresponding to the irreducible component V ∗

γ

inside of R[γ ]. The multiplicity of V ∗
γ in R[γ ] is equal to one and the other

irreducible components V ∗
ν that appear in R[γ ] correspond to shapes ν with ν  γ

in dominance order. See (13) and Fig. 29. By computing the Laplacian eigenvectors
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Fig. 29 The (upper-left quadrant of the) table of Kostka numbers Kγ,ν giving the multiplicity of the
irreduciblemoduleV ∗

ν as a component of themoduleR[γ ]. The dimension dν ofV ∗
ν is given below it in red

and the dimensionmγ of R[γ ] is given to its right in blue. The dimensions sum asmγ = ∑
ν�n Kγ,μdν ;

for example, 60 = 1 · 1+ 2 · 5+ 2 · 9+ 1 · 10+ 1 · 5+ 1 · 16

in any order that respects dominance, we will have already computed the eigenvectors
vν,�,k for ν  γ . To single out V ∗

γ inside R[γ ], we lift the Laplacian eigenvectors
from Pν up to Pγ , and find the eigenvectors associated with the eigenvalues of V ∗

γ as
an orthogonal complement of this span.

Interesting new theory is needed here, as the multiplicity of V ∗
ν in R[γ ] equals

the Kostka number, and therefore we need to lift the eigenvectors of shape ν in Kγ,ν

linearly independent ways to R[γ ]. In Proposition 8, we show that lifting and pro-
jecting with set partitions constructed from “column-strict" tableaux is the same as
Young’s rule for decomposingR[γ ] into irreducible modules with multiplicity Kγ,ν .
Therefore, using mappings that come from different column-strict tableaux give us
linearly independent images in R[γ ] as needed.

The Kostka number Kν,γ equals the number of column-strict tableaux of shape ν

and content γ ; that is, a tableau constructed by filling the boxes of ν with γ1 ones, γ2
twos, and so on, such that the rows weakly increase and the columns strictly increase.
For example, the Kγ,ν = 3 column-strict tableaux T1, T2, T3 of shape ν = [5, 4] and
content γ = [4, 2, 2, 1] are shown in Fig. 30. Note that from this definition, Kγ,ν = 0
if ν � γ . If T is a column-strict tableaux of shape ν and content γ , then define
ξT ∈ γ to be the set partition with j in row r if the j th box of Ti , read in reading
order, contains r . By reading order, we mean left-to-right across the rows from top to
bottom. The set partitions {ξT1, ξT2 , ξT3} are shown in Fig. 30. For example, ξT2 has 5
in row 3 because the 5th box of T2 contains 3.

Proposition 8 If π1 ∈ ν is the reading-order set partition and {ξi }Kγ,ν

i=1 ⊆ γ are

the set partitions corresponding to the column-strict tableaux {Ti }Kγ,ν

i=1 of shape ν

and content γ, then the matrices Tξi ,π1 = B�
ξi
Bπ1 , 1 ≤ i ≤ Kγ,ν, give Sn-module
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Fig. 30 When ν = [5, 4] and γ = [4, 2, 2, 1], the Kostka number is Kγ,ν = 3. The three column-strict
tableaux T1, T2, T3 of shape ν and content γ are shown here. They each have γ1 = 4 ones, γ2 = 2 twos,
γ3 = 2 threes, and γ4 = 1 four. The set partitions π1 ∈ ν and ξ1 ∈ γ are in reading order, and
ξT1 , ξT2 , ξT3 ⊆ γ are the set-partitions with Ti fillings; that is ξTi has j is row r if the j th box of Ti (read
in reading order) contains r

isomorphisms between V ∗
ν ⊆ R[ν] and Kγ,ν linearly independent copies {V ∗

ν,i }
Kγ,ν

i=1
of V ∗

ν in R[γ ].
Proof The transformation Tξi ,π1 is a right Sn-module homomorphism, since both
Bξi ,Bπ1 are. We will show that Tξi ,π1 = ci�Ti , for a nonzero scalar ci , where �Ti
is the Sn-module isomophism given by Young’s rule defined in [83, Definition 2.9.3].
These transformations�Ti are known to give Kγ,ν linearly independent isomorphisms
from V ∗

ν ∈ R[ν] to V ∗
ν,i ∈ R[γ ] by [83, Theorem 2.11.2].

Since Tξi ,π1 is a module homomorphism, and Sn acts transitively on ν , it is
sufficient to show that they are equal at eπ1 . Let Sπ1 = {σ ∈ Sn | σ(π1) = π1} be the
stabilizer subgroup of π1. Then

B�
ξi
Bπ1eπ1 =

∑

σ∈Sπ1

B�
ξi
eσ =

∑

σ∈Sπ1

∑

μ∈γ ,σ(μ)=ξi

eμ =
∑

σ∈Sπ1

eσ−1(ξi )
=

∑

σ∈Sπ1

eσ(ξi ).

Thus the coefficient of eμ in B�
ξi
Bπ1eπ is cμ,ξi ,π1 = #{σ ∈ Sn | σ(ξi ) = μ, σ(π1) =

π1}. This set is a coset of the stabilizer of (ξi , π1) under the action of Sn on γ ×ν ,
so its cardinality is constant for all μ, which we denote by cξi (equal to the size of this
stabilizer). By comparing with the action of �Ti in [83, Definition 2.9.3] (identifying
ordered set partitions here with “tabloids” there), we have that Tξi ,π1 = cξ�Ti , where
ξi is the set partition filled according to Ti . ��

To summarize, from the structure of the Schreier graphs, we know that the graph
Laplacian of the Schreier graph Pγ has the following spectral decomposition:

LPγ
=

∑

λ∈�γ

κγ,λ∑

k=1

λvγ,λ,kv�γ,λ,k +
∑

ν�γ

Kγ,ν∑

i=1

∑

λ∈�ν

κν,λ∑

k=1

λ
(
Tν,γ

ξi ,π1
vν,λ,k

) (
Tν,γ

ξi ,π1
vν,λ,k

)�
.

Thus, when the Laplacian eigenvectors of the Schreier graphs that precede Pγ in
dominance order have already been computed, to find an orthonormal eigenbasis for
V ∗

γ , it suffices to diagonalize the rank dγ matrix

LPγ
−
∑

ν�γ

Kγ,ν∑

i=1

∑

λ∈�ν

κν,λ∑

k=1

λ
(
Tν,γ

ξi ,π1
vν,λ,k

) (
Tν,γ

ξi ,π1
vν,λ,k

)�
, (25)



70 Page 44 of 58 Journal of Fourier Analysis and Applications (2021) 27 :70

as opposed to the rankmγ matrixLPγ
. The complexity of forming and computing the

eigendecomposition of the matrix in (25) is O(mγ d2γ + m2
γ (
∑

ν�γ dνKγ,ν)).

6.3 Efficient Computation of the Analysis Coefficients

As detailed in (23), the analysis coefficients associated with shape γ can be computed
either by lifting each eigenvector vγ,λ,k up to the permutahedron in zγ different ways
and taking the inner product of each with the signal f , or by projecting the signal down
to the Schreier graph in zγ different ways and taking the inner product between each
of the projections and each eigenvector vγ,λ,k . Since the characteristic matrix used to
lift or project between the Schreier Pγ and the permutahedron Pn is a sparse matrix
with n! entries equal to 1 (one per row) and the remainder equal to 0, the respective
complexities of these two approaches areO(n!dγ zγ ) andO(zγ (n!+dγmγ )). However,
the more problematic issue with both of these approaches is the memory required to
store all zγ characteristic matrices Bπ̄ associated with each shape γ , which is 4n!zγ
bytes (e.g., storing these Bπ̄ matrices for all π̄ ∈ ̄[4,3,2,1] alone would require
approximately 383GB).

To reduce the required memory, we use the following method which only requires
storing the single characteristic matrix Bγ = Bπ1 associated with the reading-ordered
set partition π1 for each shape γ ; these matrices are computed dynamically, as detailed
in Sect. 6.1. For each π̄ ∈ ̄γ , we let σ ∈ Sn be a permutation such that σ(π1) = π̄ .
Then we have

〈f,ϕγ,λ,k,π̄ 〉 = c̄γ 〈f,Bπ̄vγ,λ,k〉 = c̄γ 〈f,Bσ(π1)vγ,λ,k〉 = c̄γ 〈f, ρL(σ )Bπ1vγ,λ,k〉
= c̄γ 〈B�

π1
ρL(σ−1)f, vγ,λ,k〉,

where the third equality follows from Proposition 4 and the fourth equality fol-
lows from the orthogonality of ρL(σ ). Therefore, to compute the analysis coefficient
〈f,ϕγ,λ,k〉we can compute instead 〈B�

π1
ρL(σ−1)f, vγ,λ,k〉, which amounts to reorder-

ing the data vector f by σ−1, projecting it down to the Schreier graph using a single
matrix Bπ1 , and then taking the inner product with vγ,λ,k .

The permutation σ−1 is recorded as the product of a minimal sequence of adja-
cent transpositions, and the reorderings are computed by sequentially applying these
transpositions. Thus, the third and final phase of the setup portion consists of comput-
ing σ−1 for each shape γ and every π̄ ∈ ̄γ by constructing a path in Pγ from the
reading-order set partition π1 ∈ ̄γ to π̄ ∈ ̄γ , which is a sequence (π1, π2, . . . , πr )
such that πi+1 = ( ji , ji + 1)(πi ) for i = 1, . . . , r − 1 and πr = π̄ . Thus, paths give
the sequence of adjacent transpositions that transform π1 into π̄ . A path is minimal if
there is no path inPγ fromπ1 to π̄ with fewer edges (equivalently, no way to transform
π1 to π̄ with fewer swaps). Minimal paths can be constructed via a breadth-first search
[10]. One example of a minimal path constructed in this manner is shown in Fig. 27.
Moreover, all minimal paths to π̄ ∈ ̄γ live entirely in ̄γ . To see this, we use the
fact that the length of a minimal path to π ∈ γ equals the number of inversions in
π , where an inversion is a pair (i, j) with i < j and j in a higher row than i in π (see
[3] for a proof). Thus, inversion numbers go up at each step in a minimal path from
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π1 to π . A minimal path never leaves ̄γ and returns to ̄γ , for that would require
the number of inversions to go down. So for each π̄ ∈ ̄γ , we pre-compute and save
the (length n!) permutation that rearranges f into ρL(σ−1)f . These permutations are
constructed by first dynamically making the permutation corresponding to each of the
n − 1 adjacent swaps. Then we perform a tree traversal on the Schreier graph and
multiply adjacent swaps to get the permutation corresponding to each Schreier vertex
in ̄γ . For each Schreier graph Pγ , the complexity of computing these permutations
is O(zγ n!).

Finally, in the analysis portion of the code (the only part that is dependent on the
data), for each γ � n and each π̄ ∈ ̄γ , the vector f is reordered into ρL(σ−1)f by
the stored permutation and projected by B�

π1
to the Schreier graph Pγ , where its inner

product with each of the Laplacian eigenvectors {vγ,λ,k} is computed and multiplied
by the constant c̄γ . This portion has complexity O(zγ (2n! + mγ dγ )) for each shape
γ .

Remark 6 The implementation as described thus far requires us to store zγ permutation
vectors of length n! for each shape, which can lead to memory issues as n grows
(e.g., for n = 10, the permutation vectors associated with the liftings in ¯̄[4,3,2,1]
require approximatley 170 GB of memory). Thus, for larger n, we also implement an
alternative version of the code that is more memory efficient. In this second version,
we save only the permutations corresponding to the adjacent transpositions and the
lists of adjacent transpositions leading from reading-ordered set partitions to the other
vertices of the Schreier graphs. During the analysis phase, we perform a tree traversal
of each Schreier graph, and at each step, the data vector is permuted by the adjacent
transposition corresponding to the edge in the tree. The rearranged vectors are then
projected down to the corresponding Schreier graph, where the inner products with the
Laplacian eigenvectors of Pγ are computed. While this variant is more efficient from
a memory standpoint, the downside is that the work of computing the permutations
that rearrange f into each ρL(σ−1)f from phase 3 of the setup portion now needs to
be done for each new data vector f .

6.4 Subsampling of the Dictionary Atoms

The total number of dictionary atoms in D from Theorem 1 is
∑

γ�n dγmγ . We
briefly mention three ways to reduce the number of atoms in order to improve the
computational efficiency of the applying the analysis operator.

First, we always use the less redundant dictionary D̄ from Theorem 2, which pro-
vides exactly the same information but avoids identical atoms in order to reduce the
total number of atoms to

∑
γ�n dγ zγ . However, this quantity still grows faster than

n!, meaning that the redundancy of the dictionary D̄ also increases as n increases.
Second, in many applications, the most relevant information lies in the isotypic

components associated with the first handful of symmetry types and/or the Laplacian
eigenspaces of the permutahedron associated with the lowest eigenvalues. In this case,
we do not need to compute all of the analysis coefficients, which significantly reduces
the overall complexity, as the computational bottlenecks lie in the symmetry types
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that are later in the dominance order. If the energy decomposition onto each isotypic
component is still desired,we can leverage the bipartite nature of the permutahedron by
computing the inner products between the atoms associated with the transpose shape
with the element-wise product of the signal and the sign vector of the permutahedron;
for example,

15∑

z=1

∣∣∣∣
∣

〈

f,ϕ
,7.1774,π̄z

〉∣∣∣∣
∣

2

=
10∑

z=1

∣∣∣
〈
f̄,ϕ

,0.8226,π̄z

〉∣∣∣
2
,

where f̄ (σ ) = sign(σ ) f (σ ). We denote by Fn the set of integer partitions of n that
cannot be written as the transpose of a symmetry type that precedes it in lexicographic
order (e.g., when n = 10, Fn contains 22 of the 42 symmetry types, which are shown
below in Fig. 33).

Third, and most efficaciously, we can simply compute transform coefficients for
atoms associated with the first k symmetry types, which again is often where the most
interesting information resides. As an example, if n = 10, |D| = ∑

γ�n dγmγ =
419, 571, 370 (redundancy factor of 115.6); |D̄| = ∑

γ�n dγ zγ = 44, 711, 456
(10.7% of |D|, redundancy factor of 12.3);

∑
γ∈Fn

dγ zγ = 18, 004, 348 (40.3%

of |D̄|, redundancy factor of 5.0); there are
∑

γ∈F8
n
dγ zγ = 98, 866 atoms generated

from the first k = 8 shapes (0.55% of
∑

γ∈Fn
dγ zγ , redundancy factor of 0.03); and,

finally, there are
∑

γ∈F8
n
min{2, dγ }zγ = 1, 821 atoms generated from the first k = 8

shapes and up to two eigenvalues from each shape (1.8% of the previous quantity,
redundancy factor of 0.0005). These values are shown in Fig. 31 for a wider range
of n. Importantly, if we only plan to use atoms generated from the first k shapes in
the analysis, we only need to compute the corresponding Schreier adjacency matrices,
lifting matrices, paths, and eigendecompositions described in Sects. 6.1 and 6.2 for
these shapes. We demonstrate the resulting computational savings in Sect. 6.5. Appli-
cations that could benefit from such a reduced transform with the top k shapes include
lossy compression and machine learning problems, for which the reduced transform
coefficients can serve as low-dimensional feature vectors for the high-dimensional
ranked data.

6.5 Computational Summary

To summarize, when we perform the transform using all atoms associated with the
shapes inFn , phase 1 of the setup portion is negligible when compared to phases 2 and
3 of the setup and the computation of the analysis coefficients. Figure 32 shows the
times required for our MATLAB implementations to perform the proposed transform
over all shapes inFn , on a 2.3GHzMacBook Pro laptopwith 32GBofRAM. The code
is not yet optimized in the sense that we have not precompiled any C/C++ subroutines
intoMEX functions.As an example, for n = 9 candidates (362,880 vertices or possible
rankings), the main implementation of the code performs the offline computations in
the three phases of the setup portion in approximately 43 s, and then computes the
analysis coefficients for each data vector f in approximately 26 s.
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Fig. 31 Number of dictionary atoms for different values of n, the number of candidates. The third column
(
∑

γ∈Fn
dγ zγ ) gives the number of atoms in the proposed dictionary D̄ associated with the shapes in Fn ,

and the fourth column is the resulting redundancy of the transform (number of atoms divided by the length
of the data vector f). The fifth and sixth columns contain the number of atoms when the dictionary is further
restricted to those atoms associated with the top k = 8 shapes in F8

n and either all eigenvalues in those
shapes or at most two eigenvalues in each shape, respectively

Fig. 32 Computation times for the setup and analysis portions in our a base implementation, and b more
memory efficient implementation thatmoves some of the phase 3 setup computation into the analysis portion
of the code

Whenweonly compute the analysis coefficients associatedwith thefirst k symmetry
types (Fk

n ), the two main computational bottlenecks are computing the permutations
that rearrange f into ρL(σ−1)f and computing the analysis coefficients, each of which
has complexity of O(zγ n!) for shape γ . The overall complexity is therefore equal to
O(nm̄k n!), where m̄k is defined to be the smallest value ofm that results in

∑m
i=1 p(i) ≥

k, where p(i) is the partition number of integer i . For k = 5, 8, 15, 30, m̄k is equal to
3, 4, 5, 6, respectively. So, for the example above with the top k = 8 shapes, which
includes all shapes in lexicographic order up to [n−4, 4] (i.e., wheremost of the useful
information resides), the complexity is O(n4n!) = O(n! log4(n!)). With n = 10 and
k = 8, which includes the computation of all of the largest magnitude coefficients in



70 Page 48 of 58 Journal of Fourier Analysis and Applications (2021) 27 :70

Fig. 19 for the sushi preference data, both the setup and analysis portions run in under
one minute.

Finally, to synthesize a signal from the analysis coefficients (i.e., perform the inverse
transform), we need to lift each Schreier Laplacian eigenvector back to the permu-
tahedron one time, reorder these vectors in different ways, and then take a linear
combination of the reordered vectors:

frec =
∑

γ�n

∑

λ∈�γ

κγ,λ∑

k=1

∑

π̄∈̄γ

αγ,λ,k,π̄ϕγ,λ,k,π̄

=
∑

γ�n
c̄γ

∑

λ∈�γ

κγ,λ∑

k=1

∑

π̄∈̄γ

αγ,λ,k,π̄ ρL(σ )Bπ1vγ,λ,k,

where αγ,λ,k,π̄ = 〈f,ϕγ,λ,k,π̄ 〉.

7 RelatedWork, Revisited

7.1 Bases, Frames, and Interpretability

Asdiscussed in Sect. 3.1,Diaconis [29, p. 955] remarks that there is not a natural choice
of basis of the irreducible components Vγ,i with interpretable basis elements, and
circumvents this issue via Mallows’ method of projecting an overcomplete spanning
set of interpretable functions (two of which are shown in Fig. 7) onto the isotypic
component Wγ . Interestingly, these projections also form a tight frame for Wγ .

Proposition 9 For each π, ξ ∈ γ , define δπ,ξ ∈ R[Sn] by

δπ,ξ (σ ) :=
{
1, if σ(ξ) = π

0, otherwise
, σ ∈ Sn;

that is, δπ,ξ (σ ) = 1 if and only if σ places the candidates in each block of π in the
ranking slots of the corresponding block of ξ . Let (δπ,ξ )γ be the orthogonal projection
of δπ,ξ onto Wγ . Then the collection of vectors {(δπ,ξ )γ }π,ξ∈γ is a tight frame for
Wγ .

Proof For τ ∈ Sn we have τδπ,ξ = δτ(π),ξ and δπ,ξ τ = δπ,τ−1(ξ), since σ(ξ) = π if
and only if τσ (ξ) = τ(π) if and only if στ(τ−1ξ) = π. Furthermore, projection onto
the isotypic component Wγ is in the center of the group algebra R[Sn] (see (18) and
[97, (13, 19)]), so it commutes with both the left and right action of the group, giving
τ(δπ,ξ )γ = (τδπ,ξ )γ = (δτ(π),ξ )γ and (δπ,ξ )γ τ = (δπ,ξ τ )γ = (δπ,τ−1(ξ))γ . For any
fixed π, ξ ∈ γ , the irreducible left Sn-module generated by (δπ,ξ )γ is given by

R[Sn](δπ,ξ )γ = R-span{τ(δπ,ξ )γ | τ ∈ Sn} = R-span{(δτ(π),ξ )γ | τ ∈ Sn}
= {(δπ,ξ )γ | π ∈ γ },
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where the last equality follows from the fact that Sn acts transitively onγ . Since this
module is irreducible, it follows from [97, Theorem 10.5], that {(δτ(π),ξ )γ | τ ∈ Sn}
is a tight group frame for its span, and the span is isomorphic to Vγ . The symmetric
argument with Sn acting on the right produces a copy of the right irreducible Sn-
module V ∗

γ and proves that {(δπ,ξ )γ | ξ ∈ γ } is a tight frame for its span. The isotypic
component is isomorphic to a tensor productWγ

∼= Vγ⊗V ∗
γ of irreducible left and right

Sn modules, respectively. Therefore, by [97, Corollary 5.1], {(δπ,ξ )γ | π, ξ ∈ γ } is
a tight frame for Wγ . ��

On the other hand, we can distinguish a subset of our frame vectors that yield a
basis for each Vγ,i . An ordered set partition π ∈ γ is standard if when the rows are
put in increasing order from left to right, the columns also are in increasing order from
top to bottom. For example, the five ordered set partitions in the bottom right corner
of the Schreier graph in Fig. 12 are standard. Standard ordered set partitions are in
bijection with standard tableaux and dγ = dim(Vγ ) equals the number of standard
ordered set partitions [83]. Let std

γ denote the set of standard ordered set partitions.
The atoms coming from liftings by standard set partitions provide the desired basis.

Proposition 10 For γ � n, λ ∈ �γ , and 1 ≤ k ≤ κγ,λ, the set {ϕγ,λ,k,π | π ∈ std
γ }

is a basis for the irreducible Sn module R[Sn]ϕγ,λ,k,π0
∼= Vγ (for any π0 ∈ γ ).

Proof The module V ∗
γ ⊆ R[γ ] is spanned by the polytabloids {qπ | π ∈ γ }

with symmetric group action qπσ = qσ−1(π) [see (21)] and has a basis consisting of
standard polytabloids {qπ | π ∈ std

γ } by [83, Theorem 2.5.2]. We show that this
property transfers to R[Sn]ϕγ,λ,k,π0

= R[Sn](Bπ0vγ,λ,k). For any 0 
= v ∈ V ∗
γ , the

map R[Sn](Bπ0v) → V ∗
γ given by sending σBπ0v to vσ−1 is an isomorphism (the

representing matrices are transposes of one another to account for the change from left
to rightmodules).Moreover, for 0 
= v,w ∈ V ∗

γ ⊆ R[γ ], the action of the symmetric
group on (R[Sn]Bπ0)v is identical to the action on (R[Sn]Bπ0)w. To see this, observe
that σBπ0v = Bσ(π0)v and σBπ0w = Bσ(π0)w. Moreover, if

∑
σ∈Sn cσ σBπ0v =∑

σ∈Sn cσBσ(π0)v = 0 is a dependence relation, then there is x ∈ R[Sn] so that
w = vx so

∑
σ∈Sn cσBσ(π0)w = ∑

σ∈Sn cσ σBπ0(vx) = (∑
σ∈Sn cσ σBπv

)
x = 0,

since the left and right group actions commute. The converse argument holds, so
dependence relations on {Bπv}π∈γ and {Bπw}π∈γ are the same. If v = qπ0 , then
Bσ(π0)qπ0 = σBπ0qπ0 which maps to qπ0σ

−1 = qσ(π0) under the isomorphism, so
for each π ∈ γ , Bπqπ0 maps to qπ . It follows that {Bπqπ0 | π ∈ std

γ } is a basis for
R[Sn](Bπ0qπ0). The result holds for R[Sn](Bπ0vγ,λ,k) by the fact that the dependence
relations are the same for {Bπqπ0}π∈γ and {Bπvγ,λ,k}π∈γ . ��

To recap, there are two important differences between the data analysis methods we
propose here and those presented by Diaconis [29]. First, we directly construct each
spanning vector as an interpretable function in Vγ,i , whereas the Mallows vectors are
constructed as interpretable functions but then projected, during which some of the
interpretability may be lost. Second, and probably more importantly, the atoms of the
formϕγ,λ,k,π̄ thatwe use reside in a singleLaplacian eigenspace of the permutahedron,
whereas the atoms of the form (δπ,ξ )γ from Proposition 9 (and shown in the bottom
of Fig. 7) reside in multiple Laplacian eigenspaces of the permutahedron, making the



70 Page 50 of 58 Journal of Fourier Analysis and Applications (2021) 27 :70

corresponding analysis coefficients less interpretable from a smoothness perspective.
Our proposed frame is therefore amore refined representation that enables us to capture
both smoothness and symmetry information about the ranking data.

7.2 Smoothness, Notions of Frequency, and Symmetry Types

We mentioned in Sect. 3.2 that the symmetry types carry a notion of frequency: the
Laplacian eigenvectors of the Cayley graph induced by the generating set of all trans-
positions, Γn , that reside in isotypic components that occur earlier in the dominance
ordering are smoother functions with respect to the graph structure. This notion of
frequency and relationship between dominance ordering and smoothness does not
carry over directly to the setting of the permutahedron, as all but the first and last
isotypic components contain Laplacian eigenvectors of Pn associated with different
eigenvalues. However, we believe there is still an interesting relationship between the
dominance ordering of the isotypic components and the smoothness with respect to
the permutahedron of the smoothest eigenvectors within each isotypic component.

Conjecture 1 For each γ � n, define λ̃γ := minλ∈�γ {λ}. If ν � γ, then λ̃ν < λ̃γ .

We have numerically verified this conjecture for n ≤ 10. Figure 33 shows an example
of Conjecture 1 with n = 10.

7.3 Computational Complexity and Efficient Algorithms

A naive implementation of the Fourier transform on Sn requires O((n!)2) time. The
FFT of Clausen and Baum [19] reduces the time toO(n3n!) andMaslen [68] improves
this to O(n2n!). It is conceivable that we could leverage some of the ideas from
these works to further improve the complexity of applying our proposed transform.
However, these methods also run into space constraints as they save time by storing
many vectors of length n! in their implementation. For example, most transforms on
Sn are built recursively from Sn−1 and the sequences of adjacent swaps (i, i + 1)(i +
1, i + 2) · · · (n − 1, n) for each 1 ≤ i ≤ n − 1 (coset representatives of Sn−1 in Sn).
For these reasons in part, References [53,76] implement algorithms to compute the
FFT on individual isotypic components.

Another possible computational improvementwehavenot yet explored is to approx-
imately compute the transform coefficients, avoiding the eigendecompositions of the
Schreier Laplacians. This is the approach taken in most scalable graph signal process-
ing algorithms [43,89].

7.4 Parametric Distance-BasedModels

Of the probability models for ranked data, the most closely related to our framework
are distance-based and multistage models that use the Kendall distance metric ([67,
Chap. 6], [2, Chap. 8.3], and [100, Sect. 4.3] all contain overviews of distance-based
models). For example, Mallows’ φ-model [65], [28, Chap. 6] assumes there is a sin-
gle modal ranking σ0 and the probability of a voter voting for another ranking σ is
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Fig. 33 Dominance order poset
with each of the 22 shapes in
F10 labeled by the smallest
eigenvalue λ̃γ associated with
an eigenvector in the isotypic
component Wγ . Conjecture 1
also holds for the 20 conjugate
shapes, which are not shown

proportional to e−τdK (σ,σ0), where τ is a single dispersion parameter and the Kendall
distance dK (σ, σ0) is equal to the number of hops separating σ and σ0 on the permu-
tahedron. Generalizations of this model include mixture models with multiple modes
and dispersion rates to represent heterogeneous voting populations [74], generalized
Mallows models that allow for different dispersion parameters at each position of the
permutation [37], and mixtures of generalized Mallows models [72]. A review and
comparison of these models is in [13] and software implementations are detailed in
[46,77].

From a graph signal processing perspective, fitting these models is closely related
to blind deconvolution on graphs [47,79,85]; e.g.,

min
x,h

{‖f − h(L)x‖2} s.t. ‖x‖0 ≤ S, (26)

where x is a sparse input signal whose support corresponds to the S modes used in
the mixture of Mallows models, h is a diffusion filter which may be a polynomial of
small degree or have a parametrized form such as h(λ�) = αe−τλ� , andL is the graph
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Laplacian of either the (unweighted) permutahedron or a weighted variant that places
different edge weights on edges corresponding to swaps of candidates in different
adjacent positions in the rankings.

While our proposed approach models the length n! data vector as the linear combi-
nation of a much higher number of atoms, f = ∑

φ∈D̄〈f, φ〉φ, the approach can also
be used to generate compressed representations with atoms of the same form. This is
because ranked data found in applications is typically smooth with respect to the per-
mutahedron, and therefore the magnitudes of most of the coefficients 〈f, φ〉 are small
(see, e.g., Fig. 17). Thus, sparse linear combinations of these atoms can yield effective
approximations to high-dimensional ranked data; i.e., f ≈ ∑

φ∈D̄′ αφφ, where D̄′ is a
subset of the tight frame dictionary D̄ with cardinality |D̄′| $ n!.

8 Extensions and Future Directions

We conclude with a brief mention of three lines of future work.

8.1 Closed Form Computation of the Schreier Eigenvalues and Eigenvectors

Availability of closed-form formulas for the Laplacian eigenvalues and eigenvectors
of the Schreier graphs could eliminate the need to perform the computations men-
tioned above altogether. Closed forms are known for Cayley graphs generated by all
transpositions [31] and for Cayley graphs generated by transposing i with n for each
i (the star graph) [36], but no general, closed formula is known in the case of adjacent
transpositions (the permutahedron). Partial results are known [5,33,38] when γ is a
“hook shape,” i.e., γ = [n − k, 1, . . . , 1] for 0 ≤ k ≤ n − 1.

Lemma 3 ([5,38]) Define the k-fold Cartesian product graph

Qn,k := Q×k
n = Qn × Qn × · · · × Qn︸ ︷︷ ︸

kcopies

, (27)

which is the k-dimensional cube graph of side length n. For each subset I =
{i1, . . . , ik} ⊆ {1, . . . , n− 1} of size k, λI := ∑k

j=1 λ
Qn
i j

is a Laplacian eigenvalue of
Qn,k , and the k-fold wedge product

wγ,λI := vQn
i1

∧ vQn
i2

∧ · · · ∧ vQn
ik

= 1√
k!

∑

σ∈Sk
sign(σ )vQn

iσ (1) ⊗ vQn
iσ (2) ⊗ · · · ⊗ vQn

iσ (k)

(28)

is a Laplacian eigenvector of Qn,k associated with λI .

As shown in Fig. 34, the vertices of Qn,k can be labeled by the set of k-tuples from
the alphabet {1, . . . , n}:

V (Qn,k) =
{
(a1, . . . , ak) | 1 ≤ a j ≤ n

}
,
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Fig. 34 Embedding of the Schreier graph Pγ in the k-dimensional cube graph Qn,k

and the vertices of the Schreier graphP[n−k,1,...,1] can be labeled by the k-permutations
of {1, . . . , n}:

V (P[n−k,1,...,1]) =
{
(a1, . . . , ak) | 1 ≤ a j ≤ n, ai 
= a j if i 
= j

}
.

Thus V (P[n−k,1,...,1]) ⊆ V (Qn,k).

Proposition 11 ([5,38]) Let γ be a “hook shape”; i.e., γ = [n − k, 1k] = [n −
k, 1, . . . , 1] for0 ≤ k ≤ n−1. For each subset I = {i1, . . . , ik} ⊆ {1, . . . , n−1}of size
k, λI := ∑k

j=1 λ
Qn
i j

is a Laplacian eigenvalue of Pγ with the associated eigenvector
given by vγ,λI := wγ,λI |V (Pγ ), the restriction of wγ,λI , viewed as a function on the
vertices of Qn,k, to the vertices of Pγ . Thus, for any hook shape γ = [n − k, 1k],
the complexity of computing each eigenvector of Pγ is O(k!nk), and the complexity

of computing all eigenvectors of Pγ is O
(
n!k!nk
(n−k)!

)
, which is bounded by O(k!n2k).

Remark 7 Earlier, Edelman and White [33] studied the integer eigenvalues of the per-
mutahedron, found the integer eigenvalues from the hook shapes, and also conjectured
that the only integer eigenvalues that appear in non-hook shapes also appear in the
hook shapes for the same value of n.

Remark 8 The permutahedron Pn is the same as the Full-Flag Johnson graph F J (n, 1)
studied in [25], in which Dai uses the recursive structure of Full-Flag Johnson graphs
to compute a subset of the adjacency spectrum of Pn , namely the eigenvalues of the
matrix Mn in [25, Lemma 10]. That matrix Mn is actually equal to the adjacency
matrix of the Schreier graph P[n,n−1], which is a path graph with additional self loops
that make it regular. Since, as mentioned in Sect. 5.2.2, the Laplacian eigenvalues of
P[n,n−1] are known in closed form, an alternative closed form of the eigenvalues of
Dai’s Mn matrix is

{
n − 3+ 2 cos

(
π�
n

)}
�=0,1,...,n−1, and we do indeed know which

subset of the spectrum of Pn is attained from this matrix.
The Schreier graphP[n−2,2] (shown, e.g., in Fig. 12) closely resembles the quartered

Aztec diamond, the adjacency spectrum of which is studied and specified by Ciucu
[18, Eq. (2.4)]. However, the quartered Aztec diamond graph studied by Ciucu does
not include the self loops that are present in P[n−2,2], and is therefore not regular and
the Laplacian eigenvalues do not follow immediately. We have not yet found a way to
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successfully adapt the approach of [18] to write down a closed-form formula for the
Laplacian eigenvalues of P[n−2,2].

8.2 Partial and Incomplete Rankings

Our approach to construct tight frames for signals on the permutahedron can be
extended to (i) partial rankings, in which voters are allowed to include ties for one or
more candidates [6,24,29,52,55,94,95], and (ii) incomplete rankings, in which voters
may only rank a subset of the candidates [20,52,64,90,91]. A common example of
partial rankings is when voters list their top k candidates, and the remaining n − k
are implicitly considered to be tied. An example of incomplete rankings is balanced
incomplete block design, where each voter is assigned k out of the n objects to rank,
in such a way that each object is judged by the same number of voters and each pair
of objects is presented to the same number of voters [67, Chap. 11], [7,21,32]. This is
used, for example, if there are toomany objects for an individual to effectively compare
due to time constraints or cognitive limitations. Our frame vectors may yield a natu-
rally interpretable spanning set for the possible vote tallies in this experimental design.
Both of these extensions merit further investigation given the myriad applications in
which partial and incomplete rankings appear.

8.3 Tight Frames for Analyzing Data on Other Cayley Graphs, Groups, and
Combinatorial Structures

The frame construction presented here works when the permutahedron is replaced by
the Cayley graph �(Sn, S) corresponding to any generating set S ⊆ Sn . For example,
if S is the set of all transpositions, then the Cayley graph is the graph Γn discussed
in Sect. 3.2, and if S = {(i, n) | 1 ≤ i < n}, then the Cayley graph is the star
graph studied in [36]. In any of these cases, our methods yield a tight spectral frame
with respect to the graph, and signals can be projected down to and interpreted on the
corresponding Schreier graphs.

Furthermore, these methods extend to any finite group. The equitable partition ∼π

(see Definition 2) on Sn induced by the ordered set partition π ∈ γ has equivalence
classes equal to the right cosets of the stabilizer subgroup Sπ = {σ ∈ Sn | σ(π) = π},
and the Schreier graph Pγ is isomorphic to the Cayley graph determined by Sn acting
on these cosets. When Sn is replaced by any finite group G and Sμ is replaced by
a subgroup H ≤ G, one obtains tight spectral frames (with the same geometric and
energy-preserving properties) for studying data onGwith respect to anyCayley graph.
These methods naturally extend to groups that generalize the symmetric group such as
Weyl groups, complex reflection groups, and finite general linear groups. For example,
when applied to the hyperoctahedral group (theWeyl group of type B), these methods
provide a setting to analyze data on signed permutations. One can further extend
these methods to analyze data on matchings, subsets, and set partitions by using the
representation theory of the corresponding semisimple algebras with “group-like”
structure, the Brauer, rook monoid, and partition algebras. Fourier analysis methods
on these algebras are initiated in the recent work [69].
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