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Abstract
Let Sα be the multilinear square function defined on the cone with aperture α ≥ 1. In
this paper, we investigate several kinds of weighted norm inequalities for Sα . We first
obtain a sharp weighted estimate in terms of aperture α and �w ∈ A �p. By means of
some pointwise estimates, we also establish two-weight inequalities including bump
and entropy bump estimates, and Fefferman–Stein inequalities with arbitrary weights.
Beyond that, we consider the mixed weak type estimates corresponding Sawyer’s
conjecture, for which a Coifman–Fefferman inequality with the precise A∞ norm is
proved. Finally,we present the local decay estimates using the extrapolation techniques
and dyadic analysis respectively. All the conclusions aforementioned hold for the
Littlewood–Paley g∗

λ function. Some results are new even in the linear case.
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1 Introduction

Given α > 0, let Sα be the square function defined by

Sα( f )(x) =
(¨

�α(x)
| f ∗ ψt (y)|2 dydt

tn+1

) 1
2

,

where ψt (x) = t−nψ(x/t) and �α(x) is the cone at vertex x with aperture α.
Lerner [30], by applying the intrinsic square function introduced in [46], proved sharp
weighted norm inequalities for Sα( f ). Later on, he improved the result in the sense
of determination of sharp dependence on α in [32] by using the local mean oscillation
formula. More precisely,

‖Sα‖L p(w)→L p(w) � αn[w]max { 12 , 1
p−1 }

Ap
, 1 < p < ∞. (1.1)

The preceding result is among the plenty important results in the fruitful realm of
weighted inequalities concerning the precise determination of the optimal bounds of
the weighted operator norm of different singular integral operators. We refer the inter-
ested reader to [24,25,27,31] and the references therein for a survey on the advances
on the topic.

Let us recall the definition of multilinear square functions considered in this paper.
The standard kernel for multilinear square functions was introduced in [45]. Let
ψ(x, �y) := ψ(x, y1, . . . , ym) be a locally integrable function defined away from
the diagonal x = y1 = · · · = ym in (Rn)m+1. We assume that there are positive
constants δ and A so that the following conditions hold:

• Size condition:

|ψ(x, �y)| ≤ A(
1 + ∑m

i=1 |x − yi |
)mn+δ

.

• Smoothness condition: There exists γ > 0 so that

|ψ(x, �y) − ψ(x ′, �y)| ≤ A|x − x ′|γ(
1 + ∑m

i=1 |x − yi |
)mn+δ+γ

,

whenever |x − x ′| < 1
2 max j |x − y j |, and

∣∣ψ(x, �y) − ψ(x, y1, . . . , y
′
i , . . . , ym)

∣∣ ≤ A|yi − y′
i |γ(

1 + ∑m
i=1 |x − yi |

)mn+δ+γ
,

whenever |yi − y′
i | < 1

2 max j |x − y j | for i = 1, 2, . . . ,m.
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For t > 0, denote ψt

ψt ( �f )(x) := 1

tmn

ˆ
(Rn)m

ψ
( x
t
,
y1
t

, · · · ,
ym
t

) m∏
j=1

f j (y j )dy j ,

for all x /∈ ⋂m
j=1 supp f j and �f = ( f1, . . . , fm) ∈ S(Rn) × · · · × S(Rn).

Given α > 0 and λ > 2m, the multilinear square functions Sα and g∗
λ are defined

by

Sα( �f )(x) :=
(¨

�α(x)
|ψt ( �f )(y)|2 dydt

tn+1

)1/2

,

where �α(x) = {(y, t) ∈ R
n+1+ : |x − y| < αt}, and

g∗
λ( �f )(x) :=

(¨
R
n+1+

( t

t + |x − y|
)nλ|ψt ( �f )(y)|2 dydt

tn+1

)1/2

.

Hereafter, we assume that for λ > 2m there exist some 1 ≤ p1, . . . , pm ≤ ∞
and some 0 < p < ∞ with 1

p = 1
p1

+ · · · + 1
pm

, such that g∗
λ maps continuously

L p1(Rn) × · · · × L pm (Rn) to L p(Rn). Under this condition, it was proved in [45]
that g∗

λ maps continuously L1(Rn) × · · · × L1(Rn) → L1/m,∞(Rn) provided λ >

2m. Moreover, since Sα is dominated by g∗
λ, we also get that Sα maps continuously

L1(Rn) × · · · × L1(Rn) → L1/m,∞(Rn).
These two mutilinear square functions were introduced and investigated in [45,47].

Indeed, the theory ofmultilinear Littlewood–Paley operators originated in theworks of
Coifman and Meyer [14]. The multilinear square functions has important applications
in PDEs and other fields. In particular, Fabes, Jerison, and Kenig brought very impor-
tant applications of multilinear square functions in PDEs to the attention. In [21], they
studied the solutions of Cauchy problem for non-divergence form parabolic equations
by obtaining some multilinear Littlewood–Paley type estimates for the square root of
an elliptic operator in divergence form. Also, the necessary and sufficient conditions
for absolute continuity of elliptic-harmonic measure were achieved relying upon a
multilinear Littlewood–Paley estimate, in [22]. Moreover, in [23], they applied a class
of multilinear square functions to Kato’s problem. For further details on the theory of
multilinear square functions and their applications, we refer to [8,12–14,21,23] and
the references therein.

In this paper, we investigate some weak and strong type estimates for multilin-
ear Littlewood–Paley operators. This kind of inequalities has its origin in classical
potential theory. A big breakthrough in understanding Poisson’s equation, made by
Lichtenstein [37] in 1916, raised problems that have been central to analysis over the
past decades. The theory of singular integral operators owes its impetus to the change
of point of view of potential theory generated by this work. The action of singular
integral operators on the standard Lebesgue spaces L p(Rn) was for a long time the
main object of study. But these operators have natural analogs in which R

n is replaced
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by a Lie group or Lebesgue measure on R
n is replaced by a weighted measure. It is

in the setting that our work is focused on.
The contributions of this paper are as follows. Based on the ideas from Fefferman’s

celebrated paper [19], in this work, we first prove the upper bound for Sα is sharp
in the aperture α on all class A �p which proves a conjecture given in [2]. Secondly,
we focus on bump and entropy bump estimates, mixed weak type estimates, local
decay estimates, and multilinear version of Fefferman–Stein inequality with arbitrary
weights for multilinear square functions respectively. These interesting estimates have
aroused the attention of many researchers. For example, Ap bump conditions may be
thought of as the classical two-weight Ap condition with the localized L p and L p′

norms "bumped up" in the scale of Orlicz spaces. These conditions have a long history,
we refer to [20,43]. Muckenhoupt and Wheeden [38] first formulated the mixed weak
type estimates for Hardy–Littlewood maximal function and the Hilbert transform on
the real line although Sawyer [44] considered a more singular case, namely he showed
that if μ ∈ A1 and ν ∈ A∞, then

∥∥∥∥M( f ν)

ν

∥∥∥∥
L1,∞(μν)

� ‖ f ‖L1(μν) (1.2)

and conjectured that such an inequality should hold with M replaced by the Hilbert
transform. Later on Cruz-Uribe et al. [15] extended Sawyer’s result to higher dimen-
sions and also settled Sawyer’s conjecture and extended that result for general
Calderón–Zygmund operators reducing it to the case of maximal functions via an
extrapolation argument. That extrapolation argument allowed them to take μ ∈ A1
and ν ∈ A∞. That led them to conjecture that (1.2) should hold μ ∈ A1 and ν ∈ A∞.
Recently, that conjecture was settled by Li, Ombrosi and Pérez [36]. That result was
extended to maximal operators with Young functions [3]. Analogous results were
obtained for commutators [4], fractional operators [5] or in the multilinear setting
[35]. Also quantitative estimates have been studied in [6,39]. Local exponential decay
estimates for CZOs and square functions, multilinear pseudo-differential operators
and its commutator were studied in [7,40] respectively.

The main results of this paper can be stated as follows. We begin with a sharp
weighted inequality in terms of both α and [ �w]A �p .

Theorem 1.1 Let α ≥ 1 and 1
p = 1

p1
+ · · · + 1

pm
with 1 < p1, . . . , pm < ∞. If

�w ∈ A �p, then

‖Sα( �f )‖L p(ν �w) � αmn[ �w]max{ 12 ,
p′1
p ,··· , p′m

p }
A �p

m∏
i=1

‖ fi‖L pi (wi ), (1.3)

where the implicit constant is independent of α and �w. Moreover, (1.3) is sharp in α

on all class A �p.

In order to present two-weight inequalities for square functions, we give the def-
inition of bump conditions. Given Young functions A and �B = (B1, . . . , Bm), we
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denote

‖(u, �v)‖A, �B, �p :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
sup
Q

‖u 1
p ‖p,Q

∏m
j=1 ‖v

− 1
p j

j ‖Bj ,Q, if 1 < p ≤ 2,

sup
Q

‖u 2
p ‖

1
2
A,Q

∏m
j=1 ‖v

− 1
p j

j ‖Bj ,Q, if 2 < p < ∞.

Theorem 1.2 Let α ≥ 1, λ > 2m, and 1
p = 1

p1
+· · ·+ 1

pm
with 1 < p1, . . . , pm < ∞.

If the pair (u, �v) satisfies ‖(u, �v)‖A, �B, �p < ∞ with Ā ∈ B(p/2)′ (2 < p < ∞) and

B̄ j ∈ Bpj , then

‖Sα( �f )‖L p(u) � αmnN �p
m∏
j=1

‖ f j‖L p j (v j )
, (1.4)

‖g∗
λ( �f )‖L p(u) �

N �p
2n(λ−2m) − 1

m∏
j=1

‖ f j‖L p j (v j )
, (1.5)

where

N �p :=

⎧⎪⎪⎨
⎪⎪⎩

‖(u, �v)‖A, �B, �p
∏m

j=1[B̄ j ]
1
p j

(Bj )p j
, if 1 < p ≤ 2,

‖(u, �v)‖A, �B, �p[ Ā]
1
2− 1

p
B(p/2)′

∏m
j=1[B̄ j ]

1
p j

(Bj )p j
, if 2 < p < ∞.

For arbitrary weights, we have the following Fefferman–Stein inequalities.

Theorem 1.3 Let α ≥ 1 and λ > 2m. Then for all exponents 1
p = 1

p1
+ · · · + 1

pm
with

0 < p ≤ 2 and 1 < p1, . . . , pm < ∞, and for all weights �w = (w1, . . . , wm),

‖Sα( �f )‖L p(ν �w) � αmn
m∏
i=1

‖ fi‖L pi (Mwi ), (1.6)

‖g∗
λ( �f )‖L p(ν �w) � 1

2n(λ−2m) − 1

m∏
i=1

‖ fi‖L pi (Mwi ), (1.7)

where ν �w = ∏m
i=1 w

p/pi
i .

We are going to establish entropy bump estimates. See Sect. 5 for the entropy bump
conditions ��σ , ν� 2

�p′ , �p,ε, 2p ,m+1 and ��σ , ν� �p,2,ε.

Theorem 1.4 Let α ≥ 1, λ > 2m, and let 1
p = 1

p1
+· · ·+ 1

pm
with 1 < p1, . . . , pm <

∞. Let ν and �σ = (σ1, . . . , σm) weights. Assume that ε is a monotonic increasing
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function on (1,∞) satisfying
´∞
1

dt
ε(t)t < ∞. Then,

‖Sα( �f σ)‖L p(ν) � αmnN �p,ε
m∏
i=1

‖ f ‖L pi (σi ), (1.8)

‖g∗
λ( �f σ)‖L p(ν) �

N �p,ε
2n(λ−2m) − 1

m∏
i=1

‖ f ‖L pi (σi ), (1.9)

where

N �p,ε :=

⎧⎪⎨
⎪⎩

��σ , ν�
1
2
2
�p′ , �p,ε, 2p ,m+1

, if 0 < p ≤ 2,

��σ , ν�
1
p

�p,2,ε, if 2 < p < ∞.

with �p = (p1, . . . , pm, p′) and 2
�p′ = ( 2

p′
1
, . . . , 2

p′
m
, 2
p

)
.

Next, we turn to the weak type estimates for Littlewood–Paley operators.

Theorem 1.5 Let α ≥ 1 and λ > 2m. Let �w = (w1, . . . , wm) and u = ∏m
i=1 w

1/m
i . If

�w and v satisfy

(1) �w ∈ A�1 and uv1/m ∈ A∞, or (2) w1, . . . , wm ∈ A1 and v ∈ A∞,

then we have

∥∥∥∥ Sα( �f )
v

∥∥∥∥
L1/m,∞(uv1/m)

�
m∏
i=1

‖ fi‖L1(wi )
, (1.10)

∥∥∥∥g
∗
λ( �f )
v

∥∥∥∥
L1/m,∞(uv1/m)

�
m∏
i=1

‖ fi‖L1(wi )
. (1.11)

In particular, both Sα and g∗
λ are bounded from L1(w1)×· · ·×L1(wm) to L1/m,∞(ν �w)

for every �w ∈ A�1.

Theorem 1.6 Letα ≥ 1andλ > 2m.Let Q bea cubeand every function f j ∈ L∞
c (Rn)

with supp( f j ) ⊂ Q, j = 1, . . . ,m. Then there exist constants c1 > 0 and c2 > 0
such that

∣∣{x ∈ Q : Sα( �f )(x) > tM( �f )(x)}∣∣ ≤ c1e
−c2β1t2 |Q|, (1.12)∣∣{x ∈ Q : g∗

λ( �f )(x) > tM( �f )(x)}∣∣ ≤ c1e
−c2β2t2 |Q|, (1.13)

for all t > 0, where β1 = α−2mn and β2 = (1 − 2−n(λ−2m)/2)2.
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2 Preliminaries

2.1 MultipleWeights

The multilinear maximal operators M are defined by

M( �f )(x) = sup
Q�x

m∏
j=1

 
Q

| f j (y j )|dy j ,

where the supremum is taken over all the cubes containing x . The corresponding theory
of weights for this new maximal function gives the right class of multiple weights for
multilinear Calderón-Zygmund operators.

Definition 2.1 Let 1 ≤ p1, . . . , pm < ∞. Given a vector of weights �w =
(w1, · · · , wm), we say that �w ∈ A �p if

[ �w]A �p := sup
Q

(  
Q

ν �w dx

) 1
p

m∏
i=1

(  
Q

w
1−p′

i
i dx

) 1
p′i

< ∞,

where 1
p = 1

p1
+ · · · + 1

pm
and ν �w = ∏m

i=1 w
p/pi
i . When pi = 1,

( ffl
Q w

1−p′
i

i dx
)1/p′

i

is understood as (infQ wi )
−1.

The characterizations of multiple weights were given in [10,33] .

Lemma 2.2 Let 1
p = 1

p1
+ · · · + 1

pm
with 1 ≤ p1, . . . , pm < ∞, and p0 = min{pi }i .

Then the following statements hold :

(1) Ar1 �p � Ar2 �p, for any 1/p0 ≤ r1 < r2 < ∞.

(2) A �p = ⋃
1/p0≤r<1 Ar �p.

(3) �w ∈ A �p if and only if ν �w ∈ Amp and w
1−p′

i
i ∈ Amp′

i
, i = 1, . . . ,m. Here, if

pi = 1, w
1−p′

i
i ∈ Amp′

i
is understood as w

1/m
i ∈ A1.

2.2 Dyadic Cubes

Denote by �(Q) the sidelength of the cube Q. Given a cube Q0 ⊂ R
n , let D(Q0)

denote the set of all dyadic cubes with respect to Q0, that is, the cubes obtained by
repeated subdivision of Q0 and each of its descendants into 2n congruent subcubes.

Definition 2.3 A collection D of cubes is said to be a dyadic grid if it satisfies

(1) For any Q ∈ D, �(Q) = 2k for some k ∈ Z.
(2) For any Q, Q′ ∈ D, Q ∩ Q′ = {Q, Q′,∅}.
(3) The family Dk = {Q ∈ D; �(Q) = 2k} forms a partition of R

n for any k ∈ Z.
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Definition 2.4 A subset S of a dyadic grid is said to be η-sparse, 0 < η < 1, if for
every Q ∈ S, there exists a measurable set EQ ⊂ Q such that |EQ | ≥ η|Q|, and the
sets {EQ}Q∈S are pairwise disjoint.

By a median value of a measurable function f on a cube Q we mean a possibly
non-unique, real number m f (Q) such that

max
{|{x ∈ Q : f (x) > m f (Q)}|, |{x ∈ Q : f (x) < m f (Q)}|} ≤ |Q|/2.

The decreasing rearrangement of a measurable function f on R
n is defined by

f ∗(t) = inf{α > 0 : |{x ∈ R
n : | f (x)| > α}| < t}, 0 < t < ∞.

The local mean oscillation of f is

ωλ( f ; Q) = inf
c∈R

(
( f − c)1Q

)∗
(λ|Q|), 0 < λ < 1.

Given a cube Q0, the local sharp maximal function is defined by

M�

λ;Q0
f (x) = sup

x∈Q⊂Q0

ωλ( f ; Q).

Observe that for any δ > 0 and 0 < λ < 1

|m f (Q)| ≤ ( f 1Q)∗(|Q|/2) and ( f 1Q)∗(λ|Q|) ≤
(

1

λ|Q|
ˆ
Q

| f |δdx
)1/δ

. (2.1)

The following theorem was proved by Hytönen [25, Theorem 2.3] in order to improve
Lerner’s formula given in [30] by getting rid of the local sharp maximal function.

Lemma 2.5 Let f be a measurable function on R
n and let Q0 be a fixed cube. Then

there exists a (possibly empty) sparse family S(Q0) ⊂ D(Q0) such that

| f (x) − m f (Q0)| ≤ 2
∑

Q∈S(Q0)

ω2−n−2( f ; Q)1Q(x), a.e. x ∈ Q0. (2.2)

2.3 Orlicz Maximal Operators

A function� : [0,∞) → [0,∞) is called aYoung function if it is continuous, convex,
strictly increasing, and satisfies

lim
t→0+

�(t)

t
= 0 and lim

t→∞
�(t)

t
= ∞.

Given p ∈ [1,∞), we say that a Young function � is a p-Young function, if �(t) =
�(t1/p) is a Young function.
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If A and B are Young functions, we write A(t) � B(t) if there are constants
c1, c2 > 0 such that c1A(t) ≤ B(t) ≤ c2A(t) for all t ≥ t0 > 0. Also, we denote
A(t) � B(t) if there exists c > 0 such that A(t) ≤ B(ct) for all t ≥ t0 > 0. Note that
for all Young functions φ, t � φ(t). Further, if A(t) ≤ cB(t) for some c > 1, then by
convexity, A(t) ≤ B(ct).

A function � is said to be doubling, or � ∈ �2, if there is a constant C > 0 such
that �(2t) ≤ C�(t) for any t > 0. Given a Young function �, its complementary
function �̄ : [0,∞) → [0,∞) is defined by

�̄(t) := sup
s>0

{st − �(s)}, t > 0,

which clearly implies that

st ≤ �(s) + �̄(t), s, t > 0. (2.3)

Moreover, one can check that �̄ is also a Young function and

t ≤ �−1(t)�̄−1(t) ≤ 2t, t > 0. (2.4)

In turn, by replacing t by �(t) in first inequality of (2.4), we obtain

�̄
(�(t)

t

)
≤ �(t), t > 0. (2.5)

Given a Young function �, we define the Orlicz space L�(�,μ) to be the function
space with Luxemburg norm

‖ f ‖L�(�,μ) := inf

{
λ > 0 :

ˆ
�

�
( | f (x)|

λ

)
dμ(x) ≤ 1

}
. (2.6)

Now we define the Orlicz maximal operator

M� f (x) := sup
Q�x

‖ f ‖�,Q := sup
Q�x

‖ f ‖L�(Q, dx
|Q| )

,

where the supremum is taken over all cubes Q in R
n . When �(t) = t p, 1 ≤ p < ∞,

‖ f ‖�,Q =
(  

Q
| f (x)|pdx

) 1
p =: ‖ f ‖p,Q .

In this case, if p = 1, M� agrees with the classical Hardy–Littlewood maximal
operator M ; if p > 1, M� f = Mp f := M(| f |p)1/p. If �(t) � �(t), then
M� f (x) ≤ cM� f (x) for all x ∈ R

n .
The Hölder inequality can be generalized to the scale of Orlicz spaces [16,

Lemma 5.2].
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Lemma 2.6 Given a Young function A, then for all cubes Q,

 
Q

| f g|dx ≤ 2‖ f ‖A,Q‖g‖ Ā,Q . (2.7)

More generally, if A, B and C are Young functions such that A−1(t)B−1(t) ≤
c1C−1(t), for all t ≥ t0 > 0, then

‖ f g‖C,Q ≤ c2‖ f ‖A,Q‖g‖B,Q . (2.8)

The following result is an extensionof thewell-knownCoifman–Rochberg theorem.
The proof can be found in [26, Lemma 4.2].

Lemma 2.7 Let � be a Young function and w be a nonnegative function such that
M�w(x) < ∞ a.e.. Then

[(M�w)δ]A1 ≤ cn,δ, ∀δ ∈ (0, 1), (2.9)

[(M�w)−λ]RH∞ ≤ cn,λ, ∀λ > 0. (2.10)

Given p ∈ (1,∞), a Young function � is said to satisfy the Bp condition (or,
� ∈ Bp) if for some c > 0,

ˆ ∞

c

�(t)

t p
dt

t
< ∞. (2.11)

Observe that if (2.11) is finite for some c > 0, then it is finite for every c > 0. Let
[�]Bp denote the value if c = 1 in (2.11). It was shown in [16, Proposition 5.10] that
if � and �̄ are doubling Young functions, then � ∈ Bp if and only if

ˆ ∞

c

(
t p

′

�̄(t)

)p−1 dt

t
< ∞.

Let us present two types of Bp bumps. An important special case is the “log-bumps"
of the form

A(t) = t p log(e + t)p−1+δ, B(t) = t p
′
log(e + t)p

′−1+δ, δ > 0. (2.12)

Another interesting example is the “loglog-bumps" as follows:

A(t) = t p log(e + t)p−1 log log(ee + t)p−1+δ, δ > 0 (2.13)

B(t) = t p
′
log(e + t)p

′−1 log log(ee + t)p
′−1+δ, δ > 0. (2.14)

Then one can verify that in both cases above, Ā ∈ Bp′ and B̄ ∈ Bp for any 1 < p < ∞.
The Bp condition can be also characterized by the boundedness of the Orlicz max-

imal operator M�. Indeed, the following result was given in [16, Theorem 5.13] and
[26, eq. (25)].
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Lemma 2.8 Let 1 < p < ∞. Then M� is bounded on L p(Rn) if and only if � ∈ Bp.

Moreover, ‖M�‖L p(Rn)→L p(Rn) ≤ Cn,p[�]
1
p
Bp
. In particular, if the Young function A

is the same as the first one in (2.12) or (2.13), then

‖MĀ‖L p′ (Rn)→L p′ (Rn)
≤ cn p

2δ
− 1

p′ , ∀δ ∈ (0, 1]. (2.15)

Definition 2.9 Given p ∈ (1,∞), let A and B be Young functions such that Ā ∈ Bp′
and B̄ ∈ Bp. We say that the pair of weights (u, v) satisfies the double bump
condition with respect to A and B if

[u, v]A,B,p := sup
Q

‖u 1
p ‖A,Q‖v− 1

p ‖B,Q < ∞. (2.16)

where the supremum is taken over all cubes Q in R
n . Also, (u, v) is said to satisfy the

separated bump condition if

[u, v]A,p′ := sup
Q

‖u 1
p ‖A,Q‖v− 1

p ‖p′,Q < ∞, (2.17)

[u, v]p,B := sup
Q

‖u 1
p ‖p,Q‖v− 1

p ‖B,Q < ∞. (2.18)

Note that if A(t) = t p in (2.17) or B(t) = t p in (2.18), each of them actually is
two-weight Ap condition and we denote them by [u, v]Ap := [u, v]p,p′ . Also, the
separated bump condition is weaker than the double bump condition. Indeed, (2.16)
implies (2.17) and (2.18), but the reverse direction is incorrect. The first fact holds
since Ā ∈ Bp′ and B̄ ∈ Bp respectively indicate A is a p-Young function and B is
a p′-Young function. The second fact was shown in [1, Section 7] by constructing
log-bumps.

Lemma 2.10 Let 1 < p < ∞, let A, B and � be Young functions such that A ∈ Bp

and A−1(t)B−1(t) � �−1(t) for any t > t0 > 0. If a pair of weights (u, v) satisfies
[u, v]p,B < ∞, then

‖M� f ‖L p(u) ≤ C[u, v]p,B [A]
1
p
Bp

‖ f ‖L p(v). (2.19)

Moreover, (2.19) holds for �(t) = t and B = Ā satisfying the same hypotheses. In
this case, Ā ∈ Bp is necessary.

The two-weight inequality above was established in [16, Theorem 5.14] and [17,
Theorem 3.1]. The weak type inequality for M� was also obtained in [16, Proposi-
tion 5.16] as follows.

Lemma 2.11 Let 1 < p < ∞, let B and � be Young functions such that t
1
p B−1(t) �

�−1(t) for any t > t0 > 0. If a pair of weights (u, v) satisfies [u, v]p,B < ∞, then
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‖M� f ‖L p,∞(u) ≤ C‖ f ‖L p(v). (2.20)

Moreover, (2.20) holds for M if and only if [u, v]Ap < ∞.

3 Sharpness in Aperture˛

The goal of this section is to give the proof of Theorem 1.1. To this end, we establish
some fundamental estimates.

Lemma 3.1 ψ(x, �y) is continuous at (x0, y1,0, . . . , ym,0) with x0 �= y j,0, j =
1, 2, . . . ,m.

Proof Let x0 �= y j,0 for j = 1, 2, . . . ,m, and let

|x − x0| <
1

4
min

1≤i≤m
{|x0 − yi,0|}, |y j − y j,0| <

1

2
min

1≤i≤m
{|x0 − yi,0|}.

Then we get

|y j − y j,0| <
1

2
|x0 − y j,0|

and

|x0 − y j,0| ≤ |x0 − y j | + |y j − y j,0| < |x0 − y j | + 1

2
|x0 − y j,0|

and so
|x0 − y j,0| < 2|x0 − y j |, j = 1, . . . ,m,

which implies

|x − x0| <
1

4
|x0 − y j,0| <

1

2
|x0 − y j |, j = 1, . . . ,m,

Therefore, we have

|ψ(x, y1, . . . , ym) − ψ(x0, y1,0, . . . , ym,0)|
≤ |ψ(x, y1, . . . , ym) − ψ(x0, y1, . . . , ym)|

+
m∑
j=1

|ψ(x0, y1,0, . . . , y j−1,0, y j , y j+1, . . . , ym)

− ψ(x0, y1,0, . . . , y j−1,0, y j,0, y j+1, . . . , ym)|

≤ A|x − x0|γ
(1 + ∑m

i=1 |x − yi |)mn+δ+γ
+

m∑
j=1

A|y j − y j,0|γ
(1 + ∑m

i=1 |x0 − yi |)mn+δ+γ
.

This shows ψ(x, �y) is continuous at (x0, y1,0, . . . , ym,0) ∈ R
n(m+1) with x0 �= y j,0,

j = 1, 2, . . . ,m. ��
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Lemma 3.2 There exist x0 ∈ R
n, r0 > 0, t0 > 1 and f j ∈ S(Rn), j = 1, . . . ,m, such

that

A0 :=
¨

�0

|ψt ( �f )(y)|2dydt ∈ (0,∞), (3.1)

where �0 := B(0, |x0| + r0) × [1, t0].
Proof Since ψ is a non-zero function in R

n(m+1), there exist x0, y1,0, . . . , ym,0 ∈ R
n

such that x0 �= yi,0(i = 1, . . . ,m) and ψ(x0, y1,0, . . . , ym,0) �= 0. By Lemma 3.1,
there exists r0 > 0 such that ψ(x, �y) > 0 or ψ(x, �y) < 0 for all x ∈ B(x0, r0)
and y j ∈ B(y j,0, r0), j = 1, . . . ,m. Without loss of generality, we assume the case
ψ(x, �y) > 0. Keeping these notations in mind, we set

t0 =

⎧⎪⎨
⎪⎩
(
1 − r0

2max{|x0|,|y1,0|,...,|ym,0|}
)−1

, max{|x0|, |y1,0|, . . . , |ym,0|} ≥ r0;
2, otherwise.

We claim that
∣∣∣ x
t

− x0
∣∣∣ < r0 and

∣∣∣ yi
t

− yi,0
∣∣∣ < r0, i = 1, . . . ,m, (3.2)

for all 1 < t < t0, |x − x0| < r0
2 and |yi − yi,0| < r0

2 , i = 1, . . . ,m. Indeed, if
max{|x0|, |y1,0|, . . . , |ym,0|} < r0, it follows

| x
t

− x0| <
|x − x0|

t
+ (1 − 1

t
)|x0| < |x − x0| + |x0|

2
< r0,

and similarly we get | yit − yi,0| < r0, i = 1, . . . ,m. In the case

y j0,0 := max{|x0|, |y1,0|, . . . , |ym,0|} ≥ r0,

we have

|yi − yi,0|
t

< |yi − yi,0| <
r0
2

and

(
1 − 1

t

)
|y j0,0| <

(
1 − 1

t0

)
|y j0,0| =

(
1 −

(
1 − r0

2|y j0,0|
))

|y j0,0| = r0
2

.

As a consequence,

∣∣∣ yi
t

− yi,0
∣∣∣ < r0, i = 1, . . . ,m.

Similarly, we get | xt − x0| < r0. This shows (3.2).
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Thus, we have ψ( xt ,
�y
t ) > 0 for 1 < t < t0 and |x − x0| < r0

2 , |yi − yi,0| <
r0
2 , i = 1, . . . ,m. Pick non-negative valued f j ∈ S(Rn), j = 1, . . . ,m such that
supp f j ⊂ B(y j,0,

r0
2 ) and f j (y j ) > 0 for |y j − y j,0| < r0

2 , j = 1, 2, . . . ,m. Then it
follows from (3.2) that

ψt ( �f )(x) = 1

tmn

ˆ
B(y1,0,

r0
2 )×···×B(ym,0,

r0
2 )

ψ(
x

t
,
y1
t

, . . . ,
ym
t

)

m∏
j=1

f j (y j )d �y > 0

for all 1 < t < t0 and |x − x0| < r0
2 . Therefore,

¨
B(x0,

r0
2 )×[1,t0]

∣∣ψt ( �f )(y)∣∣2dydt > 0.

In particular, since B(x0,
r0
2 ) ⊂ B(0, |x0| + r0), we have

A0 =
¨

B(0,|x0|+r0)×[1,t0]
∣∣ψt ( �f )(y)∣∣2dydt > 0. (3.3)

On the other hand, by using the size condition ofψ , we obtain for every (y, t) ∈ �0,

|ψt ( �f )(y)| ≤ 1

tmn

ˆ
Rmn

∣∣∣∣ψ
( y
t
,
y1
t

, · · · ,
ym
t

)∣∣∣∣
m∏
j=1

| f j (y j )|dy j

≤ 1

tmn

ˆ
Rmn

∏m
j=1 | f j (y j )|dy j(

1 + |y−y1|
t + · · · + |y−ym |

t

)mn+δ
≤

∏m
j=1 ‖ f j‖L1

tmn
.

This immediately yields that

A0 ≤
¨

�0

∏m
j=1 ‖ f j‖2L1

t2mn
dydt �

m∏
j=1

‖ f j‖2L1 < ∞. (3.4)

Consequently, the desired result follows from (3.3) and (3.4). ��
Lemma 3.3 Let 0 < λ < 2m and 1

m < p < 2
λ
. Then g∗

λ is not bounded from
L p1 × · · · × L pm to L p, where 1

p = 1
p1

+ · · · + 1
pm

with 1 ≤ p1, . . . , pm < ∞.

Proof By Lemma 3.2, there exist x0 ∈ R
n , r0 > 0, t0 > 1 and f j ∈ S(Rn), j =

1, . . . ,m, such that 0 < A0 < ∞, where A0 is defined in (3.1). Write R0 := 2(|x0| +
r0 + t0). Then for all |x | > R0 and (y, t) ∈ �0,

|x |
2

< |x | − |y| ≤ t + |x − y| ≤ |x | + |y| + t0 ≤ 2|x |.
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Thus, t + |x − y| � |x |. This gives that for all |x | > R0,

g∗
λ( �f )(x)2 ≥

¨
�0

tnλ−n−1

|x |nλ
|ψt ( �f )(y)|2dydt

� 1

|x |nλ

¨
�0

|ψt ( �f )(y)|2dydt = A0

|x |nλ
.

Therefore, for any λ ≤ 2
p ,

‖g∗
λ( �f )‖p

L p � A
p
2
0

ˆ
|x |>R0

dx

|x | nλp
2

= ∞.

On the other hand, for �f ∈ S(Rn) × · · · × S(Rn), we have
∏m

j=1 ‖ f j‖L p j < ∞. As

a consequence, g∗
λ is not bounded from L p1 × · · · × L pm to L p whenever λ ≤ 2

p .

In particular, for 0 < λ < 2m (equivalently 1
m < 2

λ
), and p ∈ ( 1

m , 2
λ
), 1 <

p1, . . . , pm < ∞ with 1
p = 1

p1
+ · · · + 1

pm
, g∗

λ is not bounded from L p1 × · · · × L pm

to L p. ��
Proof of Theorem 1.1 It follows from [2] that

‖Sα( �f )‖L p(ν �w) � αmn[ �w]max{ 12 ,
p′1
p ,··· , p′m

p }
A �p

m∏
i=1

‖ fi‖L pi (wi ), (3.5)

for all 1
p = 1

p1
+ · · · + 1

pm
with 1 < p1, . . . , pm < ∞, and for all �w ∈ A �p, where the

implicit constant is independent of α and �w. Now, we seek for γ (α) = αr such that

‖Sα( �f )‖L p(ν �w) � γ (α)[ �w]max{ 12 ,
p′1
p ,··· , p′m

p }
A �p

m∏
i=1

‖ fi‖L pi (wi ).

We follow Lerner’s idea to show r ≥ mn for any 1/m < p < ∞. In fact, for the case
r < mn we can reach a contradiction as follows. This means that the power growth
γ (α) = αmn in (3.5) is sharp.

Using the standard estimate

g∗
λ( �f )(x) ≤ S1( �f )(x) +

∞∑
k=0

2− kλn
2 S2k+1( �f )(x), (3.6)

we get for some fixed 1
q = 1

q1
+ · · ·+ 1

qm
with 1 < q1, . . . , qm < ∞, and γ (α) = αr0

‖g∗
λ( �f )‖Lq (ν �w) �

( ∞∑
k=0

2− kλn
2 2kr0

)
[ �w]max{ 12 ,

q′
1
q ,··· , q′

m
q }

A�q

m∏
i=1

‖ fi‖Lqi (wi ).
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This means that if λ > 2r0
n , g∗

λ is bounded from Lq1(w1)×· · ·× Lqm (wm) to Lq(ν �w).
From this, by extrapolation(see [34]), we get g∗

λ is bounded from L p1 × · · · × L pm

to L p for any p > 1/m, whenever λ > 2r0
n . But by Lemma 3.3, we know g∗

λ is not
bounded from L p1 × · · · × L pm to L p for λ < 2m and 1

m < p < 2
λ
. If r0 < mn, we

would obtain a contradiction to the latter fact for p sufficiently close to 1/m. ��

4 Bump and Fefferman–Stein Inequalities

In this section, we will prove bump inequalities (Theorem 1.2) and Fefferman–Stein
inequalities (Theorem 1.3). Our strategy is to use the sparse domination for the mul-
tilinear Littlewood–Paley operators.

Proof of Theorem 1.2 Given r ≥ 1 and a sparse family S, we denote

Ar
S( �f )(x) :=

( ∑
Q∈S

m∏
i=1

〈 fi 〉rQ1Q(x)

) 1
r

.

The sparse domination below will provide us great convenience:

Sα
�f (x) ≤ cnα

mn
3n∑
j=1

A2
S j

(| �f |)(x), a.e. x ∈ R
n, (4.1)

g∗
λ

�f (x) ≤ cn
2n(λ−2m) − 1

3n∑
j=1

A2
S j

(| �f |)(x), a.e. x ∈ R
n, (4.2)

where S j is a sparse family for each j = 1, . . . , 3n . These results are explicitly proved
in [2]. By (4.1) and (4.2), the inequalities (1.4) and (1.5) follow from the following

‖A2
S( �f )‖L p(u) � Np

m∏
j=1

‖ f j‖L p j (v j )
, (4.3)

for every sparse family S, where the implicit constant does not depend on S.
To show (4.3), we begin with the case 1 < p ≤ 2. Actually, the Hölder inequality

(2.7) gives that

‖A2
S( �f )‖p

L p(u) =
ˆ

Rn

( ∑
Q∈S

m∏
j=1

〈 f j 〉2Q1Q(x)

) p
2

u(x)dx ≤
∑
Q∈S

m∏
j=1

〈| f j |〉pQu(Q)

�
∑
Q∈S

m∏
j=1

‖ f jv
1
p j
j ‖p

B̄ j ,Q
‖v

− 1
p j

j ‖p
B j ,Q

‖u 1
p ‖p

p,Q |Q|

� ‖(u, �v)‖p

A, �B, �p
∑
Q∈S

m∏
j=1

(
inf
Q

MB̄j
( f jv

1
p j
j )

)p

|EQ |
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≤ ‖(u, �v)‖p

A, �B, �p

m∏
j=1

(ˆ
Rn

MB̄ j
( f jv

1
p j
j )(x)p j dx

)p/p j

≤ ‖(u, �v)‖p

A, �B, �p

m∏
j=1

‖MB̄j
‖p
L p j (Rn)

‖ f j‖p
L p j (v j )

, (4.4)

where Lemma 2.8 is used in the last step.
Next let us deal with the case 2 < p < ∞. By duality, one has

‖A2
S( �f )‖2L p(u) = ‖A2

S( �f )2‖L p/2(u) = sup
0≤h∈L(p/2)′ (u)
‖h‖

L(p/2)′ (u)=1

ˆ
Rn

A2
S( �f )(x)2h(x)u(x)dx .

(4.5)

Fix a nonnegative function h ∈ L(p/2)′(u)with ‖h‖L(p/2)′ (u)
= 1. Then using Hölder’s

inequality (2.7) and Lemma 2.8, we obtain

ˆ
Rn

A2
S( �f )(x)2h(x)u(x)dx

�
∑
Q∈S

m∏
j=1

〈| f j |〉2Q〈hu〉Q |Q|

�
∑
Q∈S

m∏
j=1

‖ f jv
1
p j
j ‖2

B̄ j ,Q
‖v− 1

p j ‖2Bj ,Q‖hu1− 2
p ‖ Ā,Q‖u 2

p ‖A,Q |Q|

� ‖(u, �v)‖2
A, �B, �p

∑
Q∈S

m∏
j=1

(
inf
Q

MB̄j
( f jv

1
p j
j )

)2 (
inf
Q

MĀ(hu1−
2
p )

)
|EQ |

≤ ‖(u, �v)‖2
A, �B, �p

ˆ
Rn

m∏
j=1

MB̄j
( f jv

1
p j
j )(x)2MĀ(hu1−

2
p )(x)dx

≤ ‖(u, �v)‖2
A, �B, �p‖

m∏
j=1

MB̄j
( f jv

1
p j
j )2‖L p/2(Rn)‖MĀ(hu1−

2
p )‖L(p/2)′ (Rn)

≤ ‖(u, �v)‖2
A, �B, �p

m∏
j=1

‖MB̄j
( f jv

1
p j
j )‖2

L p j (Rn)
‖MĀ(hu1−

2
p )‖L(p/2)′ (Rn)

≤ ‖(u, �v)‖2
A, �B, �p

m∏
j=1

‖MB̄j
‖2L(L p j (Rn))

‖ f j‖2L p j (v j )
‖MĀ‖L(L(p/2)′ (Rn))

‖h‖L(p/2)′ (u)
,

(4.6)

where

‖MB̄j
‖L(L p j (Rn)) = ‖MB̄j

‖L p j (Rn)→L p j (Rn)
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and

‖MĀ‖L(L(p/2)′ (Rn))
= ‖MĀ‖L(p/2)′ (Rn)→L(p/2)′ (Rn)

.

Therefore, (4.3) immediately follows from (4.4), (4.5) and (4.6). ��
Proof of Theorem 1.3 Fix exponents 1

p = 1
p1

+ · · · + 1
pm

with 1 < p1, . . . , pm < ∞,
0 < p ≤ 2 and weights �w = (w1, . . . , wm). Note that vi (x) := Mwi (x) ≥ 〈wi 〉Q for
any dyadic cube Q ∈ S containing x . For each i , let Ai be a Young function such that
Āi ∈ Bpi . By Lemma 2.8, we have

‖MĀi
( fiv

1
pi
i )‖L pi (Rn) � ‖ fi‖L pi (vi ), i = 1, . . . ,m. (4.7)

Thus, using sparse domination (4.1), Hölder’s inequality and (4.7), we deduce that

‖Sα( �f )‖p
L p(ν �w) � α pmn

3n∑
j=1

∑
Q∈S j

m∏
i=1

〈| fi |〉pQν �w(Q)

≤ α pmn
3n∑
j=1

∑
Q∈S j

m∏
i=1

‖ fiv
1
pi
i ‖p

Āi ,Q
‖v− 1

pi
i ‖p

Ai ,Q
ν �w(Q)

≤ α pmn
3n∑
j=1

∑
Q∈S j

m∏
i=1

‖ fiv
1
pi
i ‖p

Āi ,Q
〈wi 〉

− p
pi

Q 〈ν �w〉Q |Q|

� α pmn
3n∑
j=1

∑
Q∈S j

m∏
i=1

(
inf
Q

MĀi
( fiv

1
pi
i )

)p|EQ |

� α pmn
ˆ

Rn

m∏
i=1

MĀi
( fiv

1
pi
i )(x)pdx � α pmn

m∏
i=1

‖MĀi
( fiv

1
pi
i )‖p

L pi (Rn)

� α pmn
m∏
i=1

‖ fi‖p
L pi (vi )

= α pmn
m∏
i=1

‖ fi‖p
L pi (Mwi )

.

This shows (1.6). Likewise, one can obtain (1.7). ��

5 Entropy Bumps

In this section, we will prove entropy bump inequalities (Theorem 1.4). By the sparse
domination for Littlewood–Paley operators, see (4.1) and (4.2), it suffices to prove the
results for Ar

S , r ≥ 1.
Let us call (αi ) = (α1, α2, . . . , αm). We will denote (αi )i �= j = (α1, . . . , α j−1,

α j+1, . . . , αm). Having that notation at our disposal we define the following sub-
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multilinear maximal function.

M(αi )i �= j (�σ)(x) := sup
x∈Q

∏
i∈{1,...,m},i �= j

〈σi 〉αiQ

and given �p = (p1, . . . , pm)

M 1
�p (�σ)(x) := sup

x∈Q

m∏
i=1

〈σi 〉
1
pi
Q

Let 1 < p1, . . . , pm < ∞ and 1
p = 1

p1
+ · · · + 1

pm
. We define

ρ�σ , �p(Q) =
( ˆ

Q
M

p
�p (σiχQ)(x)dx

)( ˆ
Q

m∏
i=1

σi (x)
p
pi dx

)−1

.

In the scalar case we shall denote just

ρν(Q) = 1

ν(Q)

ˆ
Q
M(νχQ)(x)dx .

Given an increasing function ε : [1,+∞) → (0,+∞) let us denote

ρ�σ , �p,ε(Q) := ρ�σ , �p(Q)ε(ρ�σ , �p(Q)) and ρν,ε(Q) := ρν(Q)ε(ρν(Q)).

With the notation we have just fixed, we are in the position to introduce the entropy
bump conditions. For weights �σ = (σ1, . . . , σm) and ν, we define

��σ , ν� �p,r ,ε = sup
Q

( m∏
i=1

〈σi 〉
p
p′i
Q

)
〈ν〉Qρ�σ , �p,ε(Q)ρν,ε(Q)

p
r −1. (5.1)

Also, if �σ = (σ1, . . . , σm), we denote

��σ��q, �p,ρ,θ, j := sup
Q

m∏
i=1

〈σi 〉qiQ

⎛
⎝
´
Q M(1/(θ pi ))i �= j (�σχQ)´

Q

∏
i �= j σ

1/(θ pi )
i

⎞
⎠

θ

ρ

⎛
⎜⎝
⎛
⎝
´
Q M(1/(θ pi ))i �= j (�σχQ)´

Q

∏
i �= j σ

1/(θ pi )
i

⎞
⎠

θ
⎞
⎟⎠ .

Denote
−→
f σ := ( f1σ1, . . . , fmσm). Armed with the notation and the definitions of the

entropy bumps just introduced, we can finally state and prove the main theorems of
this section.

Theorem 5.1 Let 1
p = 1

p1
+ · · · + 1

pm
with p > r and 1 < p1, . . . , pm < ∞. Let

σ1, . . . , σm and ν be weights. Assume that ε is a monotonic increasing function on
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(1,∞) satisfying
´∞
1

dt
ε(t)t < ∞. Then

‖Ar
S(

−→
f σ)‖L p(ν) � ��σ , ν�

1
p

�p,r ,ε
m∏
i=1

‖ f ‖L pi (σi ). (5.2)

Note that the theorem above extends to the multilinear setting [28, Theorem 3.2].

Theorem 5.2 Let 1
p = 1

p1
+ · · · + 1

pm
with p ≤ r and 1 < p1, . . . , pm < ∞. Let

σ1, . . . , σm and ν be weights. Assume that ρ is a monotonic increasing function on
(1,∞) satisfying

´∞
1

dt

ρ
p
r (t)t

< ∞ and ρ(2t) ≤ Cρ(t) for t ≥ 1. Then

‖Ar
S(

−→
f σ)‖L p(ν) � ��σ , ν�

1
r
�r
p′ , �p,ρ, rp ,m+1

m∏
i=1

‖ f ‖L pi (σi ), (5.3)

where �p = (p1, . . . , pm, p′) and r
�p′ = ( r

p′
1
, . . . , r

p′
m
, r
p

)
.

Note that in this case the linear version of the estimate obtained is slightly different
from [28, Theorem 3.3] since the entropy bump constant involved in that case is the
following

�σ, ν�( r
p′ ,

r
p

)
,(p,p′),ρ, rp ,2

:= sup
Q

〈σ 〉
r
p′
Q 〈ν〉

r
p
Q

⎛
⎝
´
Q M(σχQ)

1
r

´
Q σ

1
r

⎞
⎠

r
p

ρ

⎛
⎜⎝
⎛
⎝
´
Q M(σχQ)

1
r

´
Q σ

1
r

⎞
⎠

r
p
⎞
⎟⎠ .

Also the integrability condition imposed on ρ does not match the one in [28, Theorem
3.3].

5.1 Proof of Theorem 5.1

We need a multilinear version of Carleson embedding theorem from [11].

Lemma 5.3 Let �σ = (σ1, . . . , σm) be weights. Let 1 < pi < ∞ and p ∈ (1,∞)

satisfying 1
p = 1

p1
+ · · · + 1

pm
. Assume that {aQ}Q∈D is a sequence of non-negative

numbers for which the following condition holds

∑
Q′⊂Q

aQ′ ≤ A
ˆ
Q

m∏
i=1

σ

p
pi
i dx, ∀Q ∈ D. (5.4)

Then for all fi ∈ L pi (σi ),

( ∑
Q∈D

aQ
( m∏
i=1

 
Q

fi dσi

)p
) 1

p ≤ A
m∏
i=1

p′
i‖ fi‖L pi (σi ). (5.5)
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With this result in hand, we are in the position to settle Theorem 5.1 following ideas
in [29].

Proof of Theorem 5.1 First we split the sparse family as follows. We say that Q ∈ Sa

if and only if

( m∏
i=1

〈σi 〉
r
p′i
Q

)
〈ν〉

r
p
Qρ�σ , �p,ε(Q)

r
p ρν,ε(Q)1/(p/r)

′ � 2a .

Let us begin providing a suitable estimate for each of those pieces of the sparse
family. Given a weight γ let us denote 〈h〉γQ := 1

γ (Q)

´
Q |h(x)|γ (x)dx . Assume that

g ∈ L(p/r)′(ν). By duality we can write

〈 ∑
Q∈Sa

( m∏
i=1

〈 fiσi 〉Q
)r
1Q, gν

〉

=
∑
Q∈Sa

( m∏
i=1

〈 fi 〉σiQ
)r( m∏

i=1

〈σi 〉Q
)r 〈g〉νQ〈ν〉Q |Q|

=
∑
Q∈Sa

( m∏
i=1

〈 fi 〉σiQ
)r( m∏

i=1

〈σi 〉
r
pi
Q

){( m∏
i=1

〈σi 〉
r
p′i
Q

)
〈ν〉

r
p
Q

}
〈ν〉1/(p/r)′Q 〈g〉νQ · |Q|

=
∑
Q∈Sa

( m∏
i=1

〈 fi 〉σiQ
)r ∏m

i=1〈σi 〉
r
pi
Q

ρ�σ, �p,ε(Q)
r
p

〈ν〉1/(p/r)′Q

ρν,ε(Q)1/(p/r)
′ 〈g〉νQ · |Q|

×
{( m∏

i=1

〈σi 〉
r
p′i
Q

)
〈ν〉

r
p
Qρ�σ , �p,ε(Q)

r
p ρν,ε(Q)1/(p/r)

′}

� 2a
∑
Q∈Sa

( m∏
i=1

〈 fi 〉σiQ
)r ∏m

i=1 σi (Q)
r
pi

ρ�σ , �p,ε(Q)
r
p

ν(Q)1/(p/r)
′

ρν,ε(Q)1/(p/r)
′ 〈g〉νQ

≤ 2a
( ∑

Q∈Sa

( m∏
i=1

〈 fi 〉σiQ
)p

∏m
i=1 σi (Q)

p
pi

ρ�σ , �p,ε(Q)

) r
p
( ∑

Q∈Sa

(〈g〉νQ)(p/r)
′ ν(Q)

ρν,ε(Q)

) 1
(p/r)′

.

For the second term, we would like to get that

∑
Q∈Sa

(〈g〉νQ)(p/r)
′ ν(Q)

ρν,ε(Q)
� ‖g‖(p/r)′

L(p/r)′ (ν)
. (5.6)

We omit the proof of (5.6) and focus on the first term above, since the argument that
we are going provide, essentially contains the linear case. For the first term, it needs



62 Page 22 of 42 Journal of Fourier Analysis and Applications (2021) 27 :62

to show

∑
Q∈Sa

( m∏
i=1

〈 fi 〉σiQ
)p

∏m
i=1 σi (Q)

p
pi

ρ�σ, �p,ε(Q)
�

m∏
i=1

‖ fi‖p
L pi (σi )

. (5.7)

Taking into account Lemma 5.3, it suffices to verify that (5.4) holds with

aQ =
⎧⎨
⎩

∏m
i=1 σi (Q)

p
pi

ρ�σ, �p,ε(Q)
Q ∈ Sa,

0 otherwise.

Indeed, let us call Sa(R) the set of cubes of Sa that are contained in R ∈ D. Then

∑
Q∈Sa(R)

∏m
i=1 σi (Q)

p
pi

ρ�σ , �p,ε(Q)
�

∞∑
j=1

∑
ρ�σ, �p(Q)∼2 j

Q∈Sa(R)

∏m
i=1 σi (Q)

p
pi

ρ�σ , �p,ε(Q)

�
∞∑
j=1

∑
maximal Q∈Sa(R)

ρ�σ, �p(Q)�2 j

∑
P⊂Q

P∈Sa(R)

∏m
i=1 σi (P)

p
pi

ρ�σ , �p,ε(P)

≤
∞∑
j=1

∑
maximal Q∈Sa(R)

ρ�σ , �p(Q)�2 j

∑
P⊂Q

P∈Sa(R)

2− j

ε(2 j )

ˆ
EP

M
p
�p (σi1Q)(x)dx

�
∞∑
j=1

∑
maximal Q∈Sa(R)

ρ�σ, �p(Q)�2 j

2− j

ε(2 j )

ˆ
Q
M

p
�p (σi1Q)(x)dx

�
( m∏
i=1

σ

p
pi
i

)
(R)

∞∑
j=0

1

ε(2 j )
�

( m∏
i=1

σ

p
pi
i

)
(R)

ˆ ∞

1

dt

tε(t)
.

This provides the desired bound.
Collecting (5.6) and (5.7), we have shown that

〈 ∑
Q∈Sa

( m∏
i=1

〈 fiσi 〉Q
)r
1Q, gν

〉
� 2a

m∏
i=1

‖ fi‖rL pi (σi )
· ‖g‖L(p/r)′ (ν)

.

Since for the largest a for which Sa is not empty we have that ��σ , ν�
r
p

�p,r ,ε � 2a ,
summing in a yields

〈 ∑
Q∈S

( m∏
i=1

〈 fiσi 〉Q
)r
1Q, gν

〉
� ��σ , ν�

r
p

�p,r ,ε
m∏
i=1

‖ fi‖rL p(σi )
‖g‖L(p/r)′ (ν)

.
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Consequently,

‖Ar
S(

−→
f σ)‖L p(ν) � ��σ , ν�

1
p

�p,r ,ε
m∏
i=1

‖ fi‖L p(σi ).

This shows Theorem 5.1. ��

5.2 Proof of Theorem 5.2

To settle Theorem 5.2 we are going to follow the scheme in [48]. First we borrow a
result from [9].

Lemma 5.4 For every 1 < s < ∞wehave that for every positive locally finitemeasure
σ on R

n and any positive numbers λQ, Q ∈ D, we have

ˆ
Rn

( ∑
Q∈D

λQ

σ(Q)
1Q(x)

)s
dσ(x) �s

∑
Q∈D

λQ

(
σ(Q)−1

∑
Q′⊆Q

λQ′
)s−1

.

Given a sparse family S contained in a dyadic grid D, for every Q ∈ S we will
denote S(Q) the family of cubes of S that are contained in Q. For S and �ω =
(ω1, . . . , ωm), we denote

� �ω��q, �p,ρ,θ, j,S := sup
Q∈S

m∏
i=1

〈ωi 〉qiQ

⎛
⎝
´
Q M(1/(θ pi ))i �= j ( �ωχQ)´

Q

∏
i �= j ω

1/(θ pi )
i

⎞
⎠

θ

ρ

⎛
⎜⎝
⎛
⎝
´
Q M(1/(θ pi ))i �= j ( �ωχQ)´

Q

∏
i �= j ω

1/(θ pi )
i

⎞
⎠

θ
⎞
⎟⎠ .

The following lemma is a particular case of [48, Lemma 2.3]. The proof is also
essentially contained in the earlier work [18, Proposition 4.8].

Lemma 5.5 Let β1, . . . , βm ≥ 0 be such that β := ∑m
i=1 βi < 1. Let S ⊂ D be a

sparse family. Then for every cube Q ∈ S and all functions w1, . . . , wm,

∑
Q′∈S(Q)

|Q′|
m∏
i=1

〈wi 〉βiQ′ � |Q|
m∏
i=1

〈wi 〉βiQ .

The following lemma will be one of the fundamental pieces to settle Theorem 5.2.

Lemma 5.6 Let j ∈ {1, . . . ,m}, s1, . . . , sm ∈ R with si > 0 for each i ∈ {1, . . . ,m}
with i �= j , and q1, . . . , qm > 0 with q j = 1 + s j be such that

∑
i

si ≤
∑
i

qi ,

∑
i si∑
i qi

< min
i �= j

si
qi

.
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Let S be a sparse family such that for every Q ∈ S and some θ > 0

2r ≤
(´

Q M(1/(θ pi ))i �= j ( �wχQ)´
Q

∏
i �= j w

1/(θ pi )
i

)θ

≤ 2r+1, (5.8)

where pi ∈ (0,+∞). Then, if ρ is a monotonic increasing function on (1,∞), for
every 0 < α < ∞ we have that

A :=
ˆ

Rn

( ∑
Q∈S

m∏
i=1

〈wi 〉siαQ 1Q
) 1

α
dw j �

� �ω��q, �p,ρ,θ, j,S
2rρ(2r )

∑
Q∈S

|Q|
∏
i �= j

〈wi 〉si−qi
Q .

Proof The left-hand side of the conclusion is monotonically decreasing in α and the
right-hand side does not depend on α, so it suffices to consider small α, in particular
we may assume α < 1.

It follows from the hypothesis that for sufficiently small α there exists an ε such
that

α
∑

i si∑
i qi

< ε ≤ min

{
1

1/α − 1
, min

i

αsi + δi j

qi

}
.

where as usual δi j = 1 if i = j or 0 otherwise. By the assumption α < 1 and
Lemma 5.4,

A �
∑
Q∈S

|Q|
m∏
i=1

〈wi 〉αsi+δi j
Q

( ∑
Q′∈S(Q)

|Q′|
w j (Q)

m∏
i=1

〈wi 〉αsi+δi j
Q′

) 1
α
−1

.

Taking into account the definition of � �ω��q, �p,ρ,θ, j,S and (5.8), we get

A �
( � �ω��q, �p,ρ,θ, j,S

2rρ(2r )

)ε( 1
α

−1) ∑
Q∈S

|Q|
m∏
i=1

〈wi 〉αsi+δi j
Q

( ∑
Q′∈S(Q)

|Q′|
w j (Q)

m∏
i=1

〈wi 〉αsi+δi j−εqi
Q′

) 1
α

−1
.

Observe that αsi + δi j − εqi ≥ 0 and
∑

i (αsi + δi j − εqi ) < 1. Hence, Lemma 5.5
implies that

A �
(� �ω��q, �p,ρ,θ, j,S

2rρ(2r )

)ε( 1
α
−1) ∑

Q∈S
|Q|

m∏
i=1

〈wi 〉αsi+δi j
Q

( |Q|
w j (Q)

m∏
i=1

〈wi 〉αsi+δi j−εqi
Q

) 1
α
−1

=
(� �ω��q, �p,ρ,θ, j,S

2rρ(2r )

)ε( 1
α
−1) ∑

Q∈S
|Q|

m∏
i=1

〈wi 〉δi j+si−εqi (
1
α
−1)

Q .
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By construction 1− ε(1/α −1) ≥ 0, and again by the definition of � �ω��q, �p,ρ,θ, j,S and
(5.8), we conclude that

A �
� �ω��q, �p,ρ,θ, j,S

2rρ(2r )

∑
Q

|Q|
m∏
i=1

〈wi 〉δi j+si−qi
Q .

and we are done, since q j = 1 + s j . ��

Now we present a stopping time condition. Let S ⊂ D be a finite sparse family and
let λi : S → [0,∞), Q �→ λi,Q be a function that takes a cube to a non-negative real
number. Then we have that Fi is the minimal family of cubes such that the maximal
members ofS are contained inFi , and if F ∈ Fi , then everymaximal subcube F ′ ⊂ F
with λi,F ′ ≥ 2λi,F is also a member of Fi .

For each cube Q, let πi (Q) (the parent of Q in the stopping family Fi ) be the
smallest cube with Q ⊆ πi (Q) ∈ Fi . We write

∑
F1,...,Fm for the sum running over

Fi ∈ Fi . We also write

Mλi (x) := sup
x∈Q∈D

λi,Q .

Lemma 5.7 Let m ≥ 2, 0 < p1, . . . , pm−1 < ∞. Define α := ∑m−1
i=1 1/pi and

assume

0 < qi := si −
{
1/pi , i < m,

1 − α, i = m.

Assume that S is a sparse family such that for every Q ∈ S,

2r ≤
⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠

α

≤ 2r+1. (5.9)

Then, if ρ is a monotonic increasing function on (1,∞) and ρ(2t) ≤ Cρ(t) for t ≥ 1,
one has

B � � �w��q, �p,ρ,α,mρ(2r )−1
m−1∏
i=1

‖Mλi‖L pi (wi ),

where

B :=
( ∑

F1,...,Fm−1

m−1∏
i=1

λ
1
α

i,Fi

ˆ ( ∑
Q:∀ j,π j (Q)=Fj

1Q
m∏
i=1

〈wi 〉si−δim
Q

) 1
α
dwm

)α

.
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Proof We will estimate B by means of Lemma 5.6 letting si → s̃i = (si − δim)/α,
i ≤ m, qi → q̃i = qi/α and θ → α. We can provide such an estimate since

∑
i≤m

αq̃i =
∑
i≤m

si − (1 − α) −
∑
i<m

1/pi =
∑
i≤m

si − 1 =
∑
i≤m

αs̃i .

This yields that the first inequality in the hypothesis of the lemma holds, and for i < m
we have q̃i < s̃i , verifying the second inequality. Then, there holds

B �
( ∑

F1,...,Fm−1

m−1∏
i=1

λ
1/α
i,Fi

� �w��̃q, �p,ρ,α,m,S
2rρ(2r )

∑
Q:∀ j,π j (Q)=Fj

|Q|
m−1∏
i=1

〈wi 〉s̃i−q̃i
Q

)α

.

(5.10)

Note that

� �w��̃q, �p,ρ,α,m,S

:= sup
Q∈S

m∏
i=1

〈wi 〉
qi
α

Q

⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠

α

ρ

⎛
⎝
⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠

α⎞
⎠

= sup
Q∈S

m∏
i=1

〈wi 〉
qi
α

Q

⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠ ρ

⎛
⎝
⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠

α⎞
⎠

1
α

×
⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠

α−1

ρ

⎛
⎝
⎛
⎝
´
Q M(1/(α pi ))i �=m ( �wχQ)´

Q

∏m−1
i=1 w

1/(α pi )
i

⎞
⎠

α⎞
⎠

1− 1
α

� � �w�
1
α

�q, �p,ρ,α,m(2r+1)1−
1
α (ρ(2r+1))1−

1
α .

The sparseness of S enables us to continue as follows

∑
Q:∀ j,π j (Q)=Fj

|Q|
m−1∏
i=1

〈wi 〉s̃i−q̃i
Q �

∑
Q:∀ j,π j (Q)=Fj

|EQ |
( m−1∏

i=1

〈wi 〉
1
pi
Q

) 1
α

≤
∑

Q:∀ j,π j (Q)=Fj

ˆ
EQ

M(1/(α pi ))i �=m ( �wχQ) ≤
ˆ
F1∩···∩Fm−1

M(1/(α pi ))i �=m ( �wχF1∩···∩Fm−1 ).

Thus, it follows from (5.9) and Hölder’s inequality that

B �
� �w��q, �p,ρ,α,m

ρ(2r )
(2r+1)α−12−rα

(
ρ(2r+1)

ρ(2r )

)α−1

( ∑
F1,...,Fm−1

m−1∏
i=1

λ
1
α

i,Fi
2

r
α

ˆ
F1∩···∩Fm−1

m−1∏
i=1

w

1
α pi
i

)α

�
� �w��q, �p,ρ,α,m

ρ(2r )
2α−1

( ˆ m−1∏
i=1

∑
Fi

1Fi λ
1
α

i,Fi
w

1
α pi
i

)α
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�
� �w��q, �p,ρ,α,m

ρ(2r )

m−1∏
i=1

( ˆ (∑
Fi

1Fi λ
1
α

i,Fi

)α pi wi

) 1
pi

.

We end the proof noticing that

(∑
Fi

1Fi λ
1
α

i,Fi

)α

� Mλi ,

since at each point, the sum on the left-hand side is geometrically increasing and,
consequently, it is comparable to the last term. ��
Lemma 5.8 Let m ≥ 2 and 0 < pi , si < ∞, 1 ≤ i < m, and let α := ∑m−1

i=1 1/pi .
Suppose qi := si −1/pi > 0 for i < m and let qm := α. Then for every sparse family
S and α ≥ 1,

∥∥∥∥
∑
Q∈S

m−1∏
i=1

λi,Q〈wi 〉siQ1Q
∥∥∥∥
L1/α(wm )

� � �w��q, �p,ρ,α,m

m−1∏
i=1

‖Mλi‖L pi (wi ), (5.11)

provided that ρ is a monotonic increasing function on (1,∞),
´∞
1

dt

ρ
1
α (t)t

< ∞ and

ρ(2t) ≤ Cρ(t) for t ≥ 1.

Proof First we split S as follows

∑
Q∈S

m−1∏
i=1

λi,Q〈wi 〉siQ1Q =
∑
j

∑
Q∈S j

m−1∏
i=1

λi,Q〈wi 〉siQ1Q,

where

Q ∈ S j ⇐⇒ 2 j ≤
(´

Q M(1/(α pi ))i �=m ( �wχQ)´
Q

∏m−1
i=1 w

1/(α pi )
i

)α

≤ 2 j+1.

Then one has

ˆ ⎛
⎝∑

Q∈S

m−1∏
i=1

λi,Q〈wi 〉siQ1Q
⎞
⎠

1
α

wm ≤
∑
j

ˆ ⎛
⎝ ∑

Q∈S j

m−1∏
i=1

λi,Q〈wi 〉siQ1Q
⎞
⎠

1
α

wm .

Note that each term in the right-hand side of the preceding equation can be estimated
by

ˆ ( ∑
F1,...,Fm−1

m−1∏
i=1

λi,Fi

∑
Q:∀ j,π j (Q)=Fj

m−1∏
i=1

〈wi 〉siQ1Q
)1/α

dwm

)
.
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By subadditivity of the function x �→ x1/α , this is bounded by

∑
F1,...,Fm−1

m−1∏
i=1

λ
1/α
i,Fi

ˆ ( ∑
Q:∀ j,π j (Q)=Fj

m−1∏
i=1

〈wi 〉siQ1Q
)1/α

dwm .

Therefore, Lemma 5.7 applied with sm = 1 gives

ˆ ⎛
⎝∑

Q∈S

m−1∏
i=1

λi,Q〈wi 〉siQ1Q
⎞
⎠

1
α

wm �
∑
j

� �w�
1
α

�q, �p,ρ,α,m

1

ρ(2r )
1
α

(
m−1∏
i=1

‖Mλi‖L pi (wi )

) 1
α

,

=
⎛
⎝∑

j

1

ρ(2 j )
1
α

⎞
⎠ � �w�

1
α

�q, �p,ρ,α,m

(
m−1∏
i=1

‖Mλi‖L pi (wi )

) 1
α

.

Consequently
⎛
⎜⎝
ˆ ⎛

⎝∑
Q∈S

m−1∏
i=1

λi,Q〈wi 〉siQ1Q
⎞
⎠

1
α

wm

⎞
⎟⎠

α

�

⎛
⎝∑

j

1

ρ(2 j )
1
α

⎞
⎠

α

� �w��q, �p,ρ,α,m

m−1∏
i=1

‖Mλi‖L pi (wi )

and (5.11) holds as desired. ��
Proof of Theorem 5.2 We rewrite

‖Ar
S(

−→
f σ)‖L p(ν) =

∥∥∥∥
∑
Q∈S

( m∏
i=1

〈 fiσi 〉Q
)r

1Q

∥∥∥∥
1
r

L
p
r (σm+1)

.

For m + 1, wi = σi , wm+1 = ν, λi,Q =
(
〈 fi 〉σiQ

)r
, si = r , and α = r

p = ∑m
i=1

r
pi
,

we have qi := r − r/pi and by Lemma 5.8

∥∥∥∥
∑
Q∈S

( m∏
i=1

〈 fiσi 〉Q
)r

1Q

∥∥∥∥
L

p
r (ν)

� ��σ , ν� r
�p′ , �p,ρ, rp ,m+1

m∏
i=1

‖(Mσi f )
r‖

L
pi
r (σi )

= ��σ , ν� r
�p′ , �p,ε, rp ,m+1

m∏
i=1

‖Mσi f ‖rL pi (σi )
� ��σ , ν� r

�p′ , �p,ε, rp ,m+1

m∏
i=1

‖ f ‖rL pi (σi )
.

Hence,

‖Ar
S(

−→
f σ)‖L p(ν) =

∥∥∥∥
∑
Q∈S

( m∏
i=1

〈 fiσi 〉Q
)r

1Q

∥∥∥∥
1
r

L
p
r (ν)

� ��σ , ν�
1
r
r
�p′ , �p,ε, rp ,m+1

m∏
i=1

‖ f ‖L pi (σi )

as we wanted to show. ��
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6 MixedWeak Type Estimates

The goal of this section is devoted to presenting the proof of Theorem 1.5. To this
end, we first establish a Coifman–Fefferman inequality with the precise A∞ weight
constant.

6.1 A Coifman–Fefferman Inequality

Theorem 6.1 Let α ≥ 1. Then for every 0 < p < ∞ and for every w ∈ A∞,

‖Sα( �f )‖L p(w) � αmn(p + 1)[w]
1
2
A∞‖M( �f )‖L p(w). (6.1)

• Sparse approach for p ≥ 2. Considering (4.1), we are going to show that

‖A2
S( �f )‖L p(w) � [w]

1
2
A∞‖M( �f )‖L p(w), ∀p ≥ 2. (6.2)

Without loss of generality, we shall assume that fi ≥ 0, i = 1, . . . ,m. Note that

‖A2
S( �f )‖2L p(w) = sup

0≤g∈L(p/2)′ (w)
‖g‖

L(p/2)′ (w)=1

∣∣∣∣
∑
Q∈S

m∏
i=1

〈 fi 〉2Q
 
Q
g dw w(Q)

∣∣∣∣. (6.3)

Fix 0 ≤ g ∈ L(p/2)′(w)with ‖g‖L(p/2)′ (w)
= 1. We are going to split the sparse family

in terms of principal cubes. Set

τ(P) :=
m∏
i=1

〈 fi 〉2P
 
P
g dw,

and consider F0 the family of maximal cubes of S. We define

F :=
∞⋃
i=0

Fi and Fi :=
⋃

Q∈Fi−1

{P � Q maximal : τ(P) > 2τ(Q)} .

For this family of cubes, we have that

∑
Q∈S

m∏
i=1

〈 fi 〉2Q
 
Q
g dw w(Q)

≤
∑
P∈F

m∏
i=1

〈 fi 〉2P
 
P
g dw

∑
Q∈S:π(Q)=P

w(Q)

� [w]A∞
∑
P∈F

m∏
i=1

〈 fi 〉2P
 
P
g dw w(P)
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� [w]A∞

ˆ
Rn

M( �f )(x)2Mwg(x) w(x)dx

� [w]A∞‖M( �f )2‖L p/2(w)‖g‖L(p/2)′ (w)
. (6.4)

Thus, (6.3) and (6.4) immediately lead (6.2). ��
• M�

δ approach.We next deal with the general case 0 < p < ∞. Recall that the sharp
maximal function of f is defined by

M�
δ ( f )(x) := sup

x∈Q
inf
c∈R

(  
Q

| f δ − c|dx
) 1

δ

.

It was proved in [41] that for every 0 < p < ∞ and δ ∈ (0, 1),

‖ f ‖L p(w) � (p + 1)[w]A∞‖M�
δ ( f )‖L p(w). (6.5)

Let � be a fixed Schwartz function such that 1B(0,1)(x) ≤ �(x) ≤ 1B(0,2)(x). We
define

S̃α( �f )(x) :=
(¨

R
n+1+

�
( x − y

αt

)
|ψt ( �f )(y)|2 dydt

tn+1

)1/2

. (6.6)

It is easy to verify that

Sα( �f )(x) ≤ S̃α( �f )(x) ≤ S2α( �f )(x). (6.7)

We note here that

‖S̃α( �f )‖L1/m,∞(Rn) � αmn
m∏
j=1

‖ f j‖L1(Rn). (6.8)

In fact, by [2, Lemma 3.1] and the endpoint estimate for S1, we get

‖S̃α( �f )‖L1/m,∞(Rn) ≤ ‖S2α( �f )‖L1/m,∞(Rn)

� αmn‖S1( �f )‖L1/m,∞(Rn) � αmn
m∏
j=1

‖ f j‖L1(Rn).

Now, combining (6.7), (6.5) and Lemma 6.2 below, we conclude that

‖Sα( �f )‖L p(w) ≤ ‖S̃α( �f )‖L p(w) ≤ ‖S̃α( �f )2‖
1
2
L p/2(w)

≤ (p + 1)[w]
1
2
A∞‖M�

γ (S̃α( �f )2)‖
1
2
L p/2(w)

� αmn(p + 1)[w]
1
2
A∞‖M( �f )2‖

1
2
L p/2(w)
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= αmn(p + 1)[w]
1
2
A∞‖M( �f )‖L p(w)

where we have used that for suitable choices of γ ,

M�
γ (S̃α( �f )2)(x) � α2mnM( �f )(x)2, x ∈ R

n .

Hence to end the proof of Theorem 6.1, it remains to settle that pointwise estimate.

Lemma 6.2 For every α ≥ 1 and 0 < γ < 1
2m , we have

M�
γ (S̃α( �f )2)(x) � α2mnM( �f )(x)2, x ∈ R

n . (6.9)

Proof Let x ∈ Q. It suffices to show that for some cQ chosen later

J :=
( 

Q
|S̃α( �f )2(x) − cQ |γ dx

) 1
γ

� α2mnM( �f )(x)2. (6.10)

For a cube Q ⊂ R
n , we set T (Q) = Q × (0, �(Q)). We then write

S̃α( �f )2(x) = E( �f )(x) + F( �f )(x),

where

E( �f )(x) :=
¨

T (2Q)

�
( x − y

αt

)
|ψt ( �f )(y)|2 dydt

tn+1 ,

F( �f )(x) :=
¨

R
n+1+ \T (2Q)

�
( x − y

αt

)
|ψt ( �f )(y)|2 dydt

tn+1 .

Let us choose cQ = F( �f )(xQ) where xQ is the center of Q. Then we have that

J �
(  

Q
|E( �f )(x)|γ dx

) 1
γ +

( 
Q

|F( �f )(x) − F( �f )(xQ)|γ dx
) 1

γ =: J1 + J2.

(6.11)

Let us first focus on J1. Set �f 0 := ( f 01 , . . . , f 0m), f 0i = fiχQ∗ , and f ∞
i = fiχ(Q∗)c ,

i = 1, . . . ,m, where Q∗ = 8Q. Then we have

E( �f )(x) � E( �f 0)(x) +
∑
α∈I0

E( f α1
1 , . . . , f αm

m )(x), (6.12)

where I0 := {α = (α1, . . . , αm) : αi ∈ {0,∞}, and at least one αi �= 0}. Using
Kolmogorov’s inequality and (6.8), we have
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(  
Q

|E( �f 0)(x)|γ dx
) 1

γ ≤
( 

Q
|S̃α( �f 0)|2γ dx

) 2
2γ

� ‖S̃α( �f 0)‖2
L1/m,∞(Q, dx

|Q| )
� α2mn

( m∏
j=1

 
Q

| f j |dx
)2

. (6.13)

On the other hand, for each α ∈ I0,
(  

Q
|E( �f α)(x)|γ dx

) 1
γ

� 1

|Q|
ˆ

Rn

¨
T (2Q)

�
( x − y

αt

)
|ψt ( �f α)(y)|2 dydt

tn+1 dx

� 1

|Q|
¨

T (2Q)

(αt)n|ψt ( �f α)(y)|2 dydt
tn+1 , (6.14)

since
´

Rn �
( x−y

αt

)
dx ≤ cn(αt)n . By size estimate, for y ∈ 2Q and α ∈ I0, one has

|ψt ( �f α)(y)| �
(

t

�(Q)

)δ ∞∑
k=0

2−kδ
( m∏

j=1

 
2k Q

| f j |dx
)

. (6.15)

Then, (6.14) and (6.15) give that for every α ∈ I0,
(  

Q
|E( �f α)(x)|γ dx

) 1
γ

�
[ ∞∑
k=0

2−kδ
( m∏

j=1

 
2k Q

| f j |
)]2

αn

|Q|
¨

T (2Q)

(
t

�(Q)

)2δ

dy
dt

t

� αn
[ ∞∑
k=0

2−kδ
( m∏

j=1

 
2k Q

| f j | dx
)]2

� αn
∞∑
k=0

2−kδ
( m∏

j=1

 
2k Q

| f j | dx
)2

, (6.16)

where theCauchy-Schwarz inequalitywas used in the last inequality. Gathering (6.12),
(6.13) and (6.16), we obtain

J1 � α2mnM( �f )(x). (6.17)

To complete the proof it remains to provide a bound for J2. From [2, eq. (4.6)], we
have that for any x ∈ Q,

|F( �f )(x) − F( �f )(xQ)| � α2mn
∞∑
k=0

2−kδ
( m∏

j=1

 
2k Q

| f j | dx
)2

. (6.18)

Hence, (6.10) is a consequence of (6.11), (6.17) and (6.18). ��
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6.2 Proof of Theorem 1.5

In view of (3.6) and λ > 2m, it is enough to present the proof of (1.10). We use a
hybrid of the arguments in [15] and [35]. Define

Rh(x) =
∞∑
j=0

T j
u h(x)

2 j K j
0

,

where K0 > 0 will be chosen later and Tu f (x) := M( f u)(x)/u(x) if u(x) �= 0,
Tu f (x) = 0 otherwise. It immediately yields that

h ≤ Rh and Tu(Rh) ≤ 2K0Rh. (6.19)

Moreover, we claim that for some r > 1,

Rh · uv
1

mr ′ ∈ A∞ and ‖Rh‖
Lr ′,1(uv

1
m )

≤ 2‖h‖
Lr ′,1(uv

1
m )

. (6.20)

The proofs will be given at the end of this section.
Note that

‖ f q‖L p,∞(w) = ‖ f ‖qL pq,∞(w), 0 < p, q < ∞. (6.21)

This implies that

∥∥∥∥ Sα( �f )
v

∥∥∥∥
1
mr

L
1
m ,∞(uv

1
m )

=
∥∥∥∥
(
Sα( �f )

v

) 1
mr

∥∥∥∥
Lr ,∞(uv

1
m )

= sup
‖h‖

Lr
′,1(uv

1
m )

=1

∣∣∣∣
ˆ

Rn
|Sα( �f )(x)| 1

mr h(x)u(x)v(x)
1

mr ′ dx

∣∣∣∣

≤ sup
‖h‖

Lr
′,1(uv

1
m )

=1

ˆ
Rn

|Sα( �f )(x)| 1
mr Rh(x)u(x)v(x)

1
mr ′ dx .

Invoking Theorem 6.1 and Hölder’s inequality, we obtain

ˆ
Rn

|Sα( �f )(x)| 1
mr Rh(x)u(x)v(x)

1
mr ′ dx

�
ˆ

Rn
M( �f )(x) 1

mr Rh(x)u(x)v(x)
1

mr ′ dx

=
ˆ

Rn

(M( �f )(x)
v(x)

) 1
mr

Rh(x)u(x)v(x)
1
m dx

≤
∥∥∥∥
(M( �f )

v

) 1
mr

∥∥∥∥
Lr ,∞(uv

1
m )

‖Rh‖
Lr ′,1(uv

1
m )
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≤
∥∥∥∥M( �f )

v

∥∥∥∥
1
mr

L
1
m ,∞(uv

1
m )

‖h‖
Lr ′,1(uv

1
m )

,

where we used (6.21) and (6.20) in the last inequality. Here we need to apply the
weighted mixed weak type estimates for M proved in Theorems 1.4 and 1.5 in [35].
Consequently, collecting the above estimates, we get the desired result

∥∥∥∥ Sα( �f )
v

∥∥∥∥
L

1
m ,∞(uv

1
m )

�
∥∥∥∥M( �f )

v

∥∥∥∥
L

1
m ,∞(uv

1
m )

�
m∏
i=1

‖ fi‖L1(wi )
.

It remains to show our foregoing claim (6.20). The proof follows the same scheme
of that in [15]. For the sake of completeness we here give the details. Together with

Lemma 2.2, the hypothesis (1) or (2) indicates that u ∈ A1 and v
1
m ∈ A∞. The former

implies that
‖Tu f ‖

L∞(uv
1
m )

≤ [u]A1‖ f ‖
L∞(uv

1
m )

. (6.22)

The latter yields that v
1
m ∈ Aq0 for some q0 > 1. It follows from Ap factorization

theorem that there exist v1, v2 ∈ A1 such that v
1
m = v1v

1−q0
2 .

Additionally, it follows from Lemma 2.3 in [15] that if v1, v2 ∈ A1, then there
exists ε0 = ε0([v1]A1, [v2]A1) ∈ (0, 1) such that v1uε

1 ∈ Ap1 and v2uε
2 ∈ Ap2 for any

0 < ε < ε0, u1 ∈ Ap1 and u2 ∈ Ap2 , 1 ≤ p1, p2 < ∞. Then uv

q0−1
p0−1

2 ∈ A1 if we set
p0 > 1 + (q0 − 1)/ε0. Thus, we have

u1−p0v
1
m = v1

(
uv

q0−1
p0−1

2

)1−p0 ∈ Ap0 .

It immediately implies that

‖Tu f ‖
L p0 (uv

1
m )

= ‖M( f u)‖
L p0 (u1−p0v

1
m )

≤ c1‖ f ‖
L p0 (uv

1
m )

. (6.23)

By (6.22), (6.23) and Marcinkiewicz interpolation in [15, Proposition A.1], we have

Tu is bounded on L p,1(uv
1
m ) for all p ∈ (p0,∞) with the constant

K (p) = 2
1
p

(
c1

( 1

p0
− 1

p

)−1 + c2

)
,

and c2 := [v]A1 . Note that K (p) is decreasing with respect to p. Hence, we obtain

‖Tu f ‖
L p,1(uv

1
m )

≤ K0‖ f ‖
L p,1(uv

1
m )

, ∀p ≥ 2p0, (6.24)

where K0 := 4p0(c1 + c2) > K (2p0) ≥ K (p).
The inequality (6.19) indicates that Rh · u ∈ A1 with [Rh · u]A1 ≤ 2K0. Let

0 < ε < min{ε0, 1
2p0

}, and r = ( 1
ε
)′. Then (Rh ·u)vε

1 ∈ A1, and the second inequality
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in (6.20) follows from (6.24). By Ap factorization theorem again, we obtain

Rh · uv
1

mr ′ = [(Rh · u)vε
1] · v

1−[(q0−1)ε+1]
2 ∈ A(q0−1)ε+1 ⊂ A∞.

The proof is complete. ��

7 Local Decay Estimates

To show Theorem 1.6, we need the following Carleson embedding theorem from [26,
Theorem 4.5].

Lemma 7.1 Suppose that the sequence {aQ}Q∈D of nonnegative numbers satisfies the
Carleson packing condition

∑
Q∈D:Q⊂Q0

aQ ≤ Aw(Q0), ∀Q0 ∈ D.

Then for all p ∈ (1,∞) and f ∈ L p(w),

( ∑
Q∈D

aQ
( 1

w(Q)

ˆ
Q

f (x)w dx
)p

) 1
p ≤ A

1
p p′‖ f ‖L p(w).

We also need a local version of Coifman–Fefferman inequality with the precise Ap

norm.

Lemma 7.2 For every 1 < p < ∞ and w ∈ Ap, we have

‖Sα( �f )‖L2(Q,w) ≤ cn,pα
mn[w]

1
2
Ap

‖M( �f )‖L2(Q,w), (7.1)

‖g∗
λ( �f )‖L2(Q,w) ≤ cn,p

1 − 2−n(λ−2m)/2
[w]

1
2
Ap

‖M( �f )‖L2(Q,w), (7.2)

for every cube Q and f j ∈ L∞
c with supp f j ⊂ Q ( j = 1, . . . ,m).

Proof Let w ∈ Ap with 1 < p < ∞. Fix a cube Q ⊂ R
n . Recall the definition of

S̃α in (6.6). Pick 0 < ε < 1
2m . By (2.1), Kolmogorov’s inequality, (6.8) and f j ∈ L∞

c
with supp f j ⊂ Q, j = 1, . . . ,m, we have

mS̃α( �f )2(Q) � ‖S̃α( �f )2‖Lε (Q, dx
|Q| )

� ‖S̃α( �f )‖2
L1/m,∞(Q, dx

|Q| )

� α2mn
( m∏

i=1

 
Q

| fi |dx
)2

≤ α2mn inf
x∈QM( �f )(x)2,
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which implies that

mS̃α( �f )2(Q)w(Q) � α2mn
ˆ
Q
M( �f )(x)2w(x)dx . (7.3)

On the other hand, from [2, Proposition 4.1], one has for every cube Q′,

ωλ(S̃α( �f )2; Q′) � α2mn
∞∑
j=0

2− jδ0

( m∏
i=1

 
2 j Q′

| fi (yi )|dyi
)2

� α2mn
∞∑
j=0

2− jδ0 inf
Q′ M( �f )2 � α2mn inf

Q′ M( �f )2, (7.4)

where 0 < δ0 < min{δ, 1
2 }. Thus, together with (7.3) and (7.4), the estimate (2.2)

applied to Q0 = Q and f = S̃α( �f )2 gives that

‖S̃α( �f )‖2L2(Q,w)
� mS̃α( �f )2(Q)w(Q) +

∑
Q′∈S(Q)

ω2−n−2(S̃α( �f )2; Q′)w(Q′)

� α2mn‖M( �f )‖2L2(Q,w)
+ α2mn

∑
Q′∈S(Q)

inf
Q′ M( �f )2w(Q′).

From this and (6.7), we see that to obtain (7.1), it suffices to prove

∑
Q′∈S(Q)

inf
Q′ M( �f )2w(Q′) � [w]Ap‖M( �f )‖2L2(Q,w)

. (7.5)

Recall that a new version of A∞ was introduced by Hytönen and Pérez [26]:

[w]′A∞ := sup
Q

1

w(Q)

ˆ
Q
M(w1Q)(x)dx .

By [26, Proposition 2.2], there holds

cn[w]′A∞ ≤ [w]A∞ ≤ [w]Ap . (7.6)

Observe that for every Q′′ ∈ D,

∑
Q′∈S(Q):Q′⊂Q′′

w(Q′) =
∑

Q′∈S(Q):Q′⊂Q′′
〈w〉Q′ |Q′| �

∑
Q′∈S(Q):Q′⊂Q′′

inf
Q′ M(w1Q′′)|EQ′ |

�
ˆ
Q′′

M(w1Q′′)(x)dx ≤ [w]′A∞w(Q′′) � [w]Apw(Q′′),

where we used the disjointness of {EQ′ }Q′∈S(Q) and (7.6). This shows that the col-
lection {w(Q′)}Q′∈S(Q) satisfies the Carleson packing condition with the constant
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cn[w]Ap . As a consequence, this and Lemma 7.1 give that

∑
Q′∈S(Q)

inf
Q′ M( �f )2w(Q′) ≤

∑
Q′∈S(Q)

(
1

w(Q′)

ˆ
Q′

M( �f ) 1Qw dx

)2

w(Q′)

� [w]Ap‖M( �f )1Q‖2L2(w)
= [w]Ap‖M( �f )1Q‖2L2(Q,w)

,

where the above implicit constants are independent of [w]Ap and Q. This shows (7.5)
and completes the proof of (7.1).

Finally, the estimate (7.2) immediately follows from (7.1) and the fact that

g∗
λ( �f )(x) ≤ S1( �f )(x) +

∞∑
k=0

2− kλn
2 S2k+1( �f )(x).

This completes the proof. ��

Proof of Theorem 1.6 Let p > 1 and r > 1 be chosen later. Define theRubio de Francia
algorithm:

Rh =
∞∑
k=0

Mkh

2k‖M‖k
Lr ′→Lr ′

.

Then it is obvious that

h ≤ Rh and ‖Rh‖Lr ′ (Rn)
≤ 2‖h‖Lr ′ (Rn)

. (7.7)

Moreover, for any nonnegative h ∈ Lr ′
(Rn), we have that Rh ∈ A1 with

[Rh]A1 ≤ 2‖M‖Lr ′→Lr ′ ≤ cn r . (7.8)

By Riesz representation theorem and the first inequality in (7.7), there exists some
nonnegative function h ∈ Lr ′

(Q) with ‖h‖Lr ′ (Q)
= 1 such that

F
1
r
Q := |{x ∈ Q : Sα( �f )(x) > tM( �f )(x)}| 1r

= |{x ∈ Q : Sα( �f )(x)2 > t2M( �f )(x)2}| 1r

≤ 1

t2

∥∥∥∥
(
Sα( �f )
M( �f )

)2∥∥∥∥
Lr (Q)

≤ 1

t2

ˆ
Q
Sα( �f )2 hM( �f )−2dx

≤ t−2‖Sα( �f )‖2L2(Q,w)
, (7.9)
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where w = w1w
1−p
2 , w1 = Rh and w2 = M( �f )2(p′−1). Recall that the m-linear

version of Coifmann–Rochberg theorem [40, Lemma 1] asserts that

[(M( �f ))δ]A1 ≤ cn
1 − mδ

, ∀δ ∈ (0,
1

m
). (7.10)

In view of (7.8) and (7.10), we see that w1, w2 ∈ A1 provided p > 2m + 1. Then the
reverse Ap factorization theorem gives that w = w1w

1−p
2 ∈ Ap with

[w]Ap ≤ [w1]A1 [w2]p−1
A1

≤ cn r . (7.11)

Thus, gathering (7.1), (7.9) and (7.11), we obtain

F
1
r
Q ≤ cnt

−2α2mn[w]Ap‖M( �f )‖2L2(Q,w)

= cnt
−2α2mn[w]Ap‖Rh‖L1(Q)

≤ cnt
−2α2mn[w]Ap‖Rh‖Lr ′ (Q)

|Q| 1r
≤ cnt

−2α2mn[w]Ap‖h‖Lr ′ (Q)
|Q| 1r

≤ cnrt
−2α2mn|Q| 1r .

Consequently, if t >
√
cne αmn , choosing r > 1 so that t2/e = cnα2mnr , we have

FQ ≤ (cnα
2mnrt−2)r |Q| = e−r |Q| = e

− t2

cneα2mn |Q|. (7.12)

If 0 < t ≤ √
cneαmn , it is easy to see that

FQ ≤ |Q| ≤ e · e− t2

cneα2mn |Q|. (7.13)

Summing (7.12) and (7.13) up, we deduce that

FQ = |{x ∈ Q : Sα( �f )(x) > tM( �f )(x)}| ≤ c1e
−c2t2/α2mn |Q|, ∀t > 0.

This proves (1.12).
To obtain (1.13), we use the same strategy and (7.2) in place of (7.1). ��
Next we present another proof of Theorem 1.6. In view of (4.1) and (4.2), following

the approach in [42], it suffices to prove the following.

Lemma 7.3 There exist c1 > 0 and c2 > 0 such that for every sparse family S ⊂ D
and for every cube Q0,

|{x ∈ Q0 : A2
S( �f ) > tM( �f )}| ≤ c1e

−c2t2 |Q0|.

where �f = ( f1, . . . , fm) are supported on Q0.
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Proof Fix a sparse family S ⊂ D and a cube Q0. First we observe that

K := |{x ∈ Q0 : A2
S( �f ) > tM( �f )}| =

∣∣∣{x ∈ Q0 :
∑
Q∈S

m∏
i=1

〈| fi |〉2Q > t2M( �f )2
}∣∣∣.

Now we consider the family of at most 3n cubes Q j ∈ D such that |Q j | � |Q0| and
|Q j ∩ Q0| > 0. We have that adding those cubes to S it remains a sparse family, we
shall assume then that Q j ∈ S. For such Q j , we define

T 1
j (

�f ) :=
∑

Q∈S:Q⊂Q j

m∏
i=1

〈| fi |〉2Q1Q and T 2
j (

�f ) :=
∑

Q∈S:Q�Q j

m∏
i=1

〈| fi |〉2Q1Q .

Then, one has

K ≤
3n∑
j=1

∣∣∣{x ∈ Q j : T 1
j (

�f ) + T 2
j (

�f ) > t2M( �f )2
}∣∣∣

≤
3n∑
j=1

2∑
i=1

∣∣∣{x ∈ Q j : T i
j (

�f ) > cnt
2M( �f )2

}∣∣∣ =:
3n∑
j=1

(K1
j + K2

j ).

We recall that in [41, Theorem 2.1], it was established that

∣∣∣∣
{
x ∈ Q :

∑
Q′∈S, Q′⊆Q

1Q′(x) > t

}∣∣∣∣ ≤ ce−αt |Q|, ∀Q. (7.14)

For K1
j , taking into account (7.14), we obtain

K1
j ≤

∣∣∣∣
{
x ∈ Q j :

∑
Q∈S,Q⊂Q j

1Q(x) > cnt
2
}∣∣∣∣ ≤ ce−αt2 |Q j | � ce−αt2 |Q0|.

For K1
j , since �f is supported in Q0, we deduce that

K2
j ≤

∣∣∣{x ∈ Q j : T 2
j (

�f · 1Q0) > cnt
2

m∏
i=1

〈| fi |〉2Q0

}∣∣∣

≤
∣∣∣{x ∈ Q j :

∑
Q∈S,Q�Q j

( m∏
i=1

|Q0|/|Q|
)2
1Q(x) > cnt

2
}∣∣∣

≤
∣∣∣{x ∈ Q j :

∞∑
j=1

2−2mj > cnt
2
}∣∣∣.
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Observe that if t is large enough, then

∣∣∣{x ∈ Q j :
∞∑
j=1

2−2mj > cnt
2
}∣∣∣ = 0.

Consequently,

K2
j � e−t2 |Q0|.

We are done. ��
Acknowledgements We would like to thank the anonymous referee for his/her careful reading that helped
improving the quality of the paper.

References

1. Anderson, T., Cruz-Uribe, D., Moen, K.: Logarithmic bump conditions for Calderón–Zygmund oper-
ators on spaces of homogeneous type. Publ. Mat. 59, 17–43 (2015)

2. Bui, T.A., Hormozi,M.:Weighted bounds formultilinear square functions. Potential Anal. 46, 135–148
(2017)

3. Berra, F.: From to: new mixed inequalities for certain maximal operators, Available online in Potential
Anal. (2021)

4. Berra, F., Carena, M., Pradolini, G.: Mixed weak estimates of Sawyer type for commutators of gener-
alized singular integrals and related operators. Mich. Math. J. 68, 527–564 (2019)

5. Berra, F., Carena, M., Pradolini, G.: Mixed weak estimates of Sawyer type for fractional integrals and
some related operators. J. Math. Anal. Appl. 479, 1490–1505 (2019)

6. Caldarelli, M., Rivera-Ríos, I.P.: A sparse approach to mixed weak type inequalities. Math. Z. 296,
787–812 (2020)

7. Cao, M., Xue, Q., Yabuta, K.: Weak and strong type estimates for the multilinear pseudo-differential
operators. J. Funct. Anal. 278, 108454 (2020)

8. Cao, M., Yabuta, K.: The multilinear Littlewood–Paley operators with minimal regularity conditions.
J. Fourier Anal. Appl. 25, 1203–1247 (2019)

9. Cascante, C., Ortega, J.M., Verbitsky, I.E.: Nonlinear potentials and two weight trace inequalities for
general dyadic and radial kernels. Indiana Univ. Math. J. 53, 845–882 (2004)

10. Chen, S., Wu, H., Xue, Q.: A note on multilinear Muckenhoupt classes for multiple weights. Studia
Math. 223, 1–18 (2014)

11. Chen, W., Damián, W.: Weighted estimates for the multisublinear maximal function. Rend. Circ. Mat.
Palermo 62, 379–391 (2013)

12. Coifman, R.R., Deng, D., Meyer, Y.: Domains de la racine carrée de certains opérateurs différentiels
accrétifs. Ann. Inst. Fourier (Grenoble) 33, 123–134 (1983)

13. Coifman, R.R., McIntosh, A., Meyer, Y.: L’integrale de Cauchy definit un operateur borne sur L2 pour
les courbes lipschitziennes. Ann. Math. 116, 361–387 (1982)

14. Coifman, R., Meyer, Y.: On commutators of singular integral and bilinear singular integrals. Trans.
Am. Math. Soc. 212, 315–331 (1975)

15. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weighted weak-type inequalities and a conjecture of Sawyer.
Int. Math. Res. Not. 30, 1849–1871 (2005)

16. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia,
Operator Theory: Advances and Applications. Springer, Basel (2011)

17. Cruz-Uribe, D., Pérez, C.: Sharp two-weight, weak-type norm inequalities for singular integral oper-
ators. Math. Res. Lett. 6, 1–11 (1999)

18. Damián, W., Hormozi, M., Li, K.: New bounds for bilinear Calderón-Zygmund operators and appli-
cations. Rev. Mat. Iberoam. 34(3), 1177–1210 (2018)



Journal of Fourier Analysis and Applications (2021) 27 :62 Page 41 of 42 62

19. Fefferman, C.: Inequalities for strongly singular convolution operators. Acta Math. 124, 9–36 (1970)
20. Fefferman, C.: The uncertainty principle. Bull. Am. Math. Soc. 9, 129–206 (1983)
21. Fabes, E.B., Jerison, D., Kenig, C.: Multilinear Littlewood–Paley estimates with applications to partial

differential equations. Proc. Natl. Acad. Sci. 79, 5746–5750 (1982)
22. Fabes, E.B., Jerison, D., Kenig, C.: Necessary and sufficient conditions for absolute continuity of

elliptic harmonic measure. Ann. Math. 119, 121–141 (1984)
23. Fabes, E.B., Jerison, D., Kenig, C.: Multilinear square functions and partial differential equations. Am.

J. Math. 107, 1325–1368 (1985)
24. Hytönen, T.: The sharp weighted bound for general Calderón–Zygmund operators. Ann. Math. 175,

1473–1506 (2012)
25. Hytönen, T.: The A2 theorem: remarks and complements, Contemp. Math. 612, Am. Math. Soc.,

91–106, Providence (2014)
26. Hytönen, T., Pérez, C.: Sharp weighted bounds involving A∞. Anal. PDE 6, 777–818 (2013)
27. Lacey, M.T.: An elementary proof of the A2 bound. Isr. J. Math. 217, 181–195 (2017)
28. Lacey, M.T., Li, K.: On Ap-A∞ type estimates for square functions. Math. Z. 284(3–4), 1211–1222

(2016)
29. Lacey, M.T., Spencer, S.: On entropy bumps for Calderón–Zygmund operators. Concr. Oper. 2, 47–52

(2015)
30. Lerner, A.K.: Sharp weighted norm inequalities for Littlewood–Paley operators and singular integrals.

Adv. Math. 226, 3912–3926 (2011)
31. Lerner, A.K.: A simple proof of the A2 conjecture. Int. Math. Res. Not. 14, 3159–3170 (2013)
32. Lerner, A.K.: On sharp aperture-weighted estimates for square functions. J. Fourier Anal. Appl. 20,

784–800 (2014)
33. Lerner, A.K., Ombrosi, S., Pérez, C., Torres, R.H., Trujillo-González, R.: New maximal functions and

multiple weights for the multilinear Calderón–Zygmund theory. Adv. Math. 220, 1222–1264 (2009)
34. Li, K.,Martell, J.M., Ombrosi, S.: Extrapolation for multilinearMuckenhoupt classes and applications.

Adv. Math. 373, 107286 (2020)
35. Li, K., Ombrosi, S., Picardi, B.: Weighted mixed weak-type inequalities for multilinear operators.

Studia Math. 244, 203–215 (2019)
36. Li, K., Ombrosi, S., Pérez, C.: Proof of an extension of E. Sawyer’s conjecture about weighted mixed

weak-type estimates. Math. Ann. 374, 907–9029 (2019)
37. Lichtenstein, L.:Über die ersteRandwertaufgabe der Potentialtheorie Sitzungsber. BerlinMath.Gesell.

15, 92–96 (2017)
38. Muckenhoupt, B., Wheeden, R.: Some weighted weak-type inequalities for the Hardy–Littlewood

maximal function and the Hilbert transform. Indiana Math. J. 26, 801–816 (1977)
39. Ombrosi, S., Perez, C., Recchi, J.: Quantitative weighted mixed weak-type inequalities for classical

operators. Indiana Univ. Math. J. 65, 615–640 (2016)
40. Ortiz-Caraballo, C., Pérez, C., Rela, E.: Exponential decay estimates for singular integral operators.

Math. Ann. 357, 1217–1243 (2013)
41. Ortiz-Caraballo, C., Pérez, C., Rela, E.: Improving bounds for singular operators via sharp reverse

Hölder inequality for A∞, Advances in harmonic analysis and operator theory, pp. 303–321, Oper.
Theory Adv. Appl., 229, Birkhäuser/Springer Basel AG, Basel (2013)

42. Pérez, C., Rivera-Ríos, I.P.: Three observations on commutators of singular integral operators with
BMO functions. Harmonic analysis, partial differential equations, Banach spaces, and operator theory.
Vol. 2, 287–304, Assoc. Women Math. Ser., 5, Springer, Cham (2017)

43. Pérez, C., Wheeden, R.: Uncertainty principle estimates for vector fields. J. Funct. Anal. 181, 146–188
(2001)

44. Sawyer, E.T.: Norm inequalities relating singular integrals and maximal function. Studia Math. 75,
254–263 (1983)

45. Shi, S., Xue, Q., Yabuta, K.: On the boundedness of multilinear Littlewood–Paley g∗
λ function. J. Math.

Pures Appl. 101, 394–413 (2014)
46. Wilson, J.M.: The intrinsic square function. Rev. Mat. Iberoam. 23, 771–791 (2007)
47. Xue, Q., Yan, J.: On multilinear square function and its applications to multilinear Littlewood–Paley

operators with non-convolution type kernels. J. Math. Anal. Appl. 422, 1342–1362 (2015)
48. Zorin-Kranich, P.: Ap-A∞ estimates for multilinear maximal and sparse operators. J. Anal. Math. 138,

871–889 (2019)



62 Page 42 of 42 Journal of Fourier Analysis and Applications (2021) 27 :62

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Mingming Cao1 ·Mahdi Hormozi2 · Gonzalo Ibañez-Firnkorn3 ·
Israel P. Rivera-Ríos4,5 · Zengyan Si6 · Kôzô Yabuta7

B Zengyan Si
zengyan@hpu.edu.cn

Mingming Cao
mingming.cao@icmat.es

Mahdi Hormozi
me.hormozi@gmail.com

Gonzalo Ibañez-Firnkorn
gibanez@famaf.unc.edu.ar

Israel P. Rivera-Ríos
israelpriverarios@gmail.com

Kôzô Yabuta
kyabuta3@kwansei.ac.jp

1 Instituto de Ciencias Matemáticas CSIC-UAM-UC3M-UCM, Consejo Superior de
Investigaciones Científicas, C/ Nicolás Cabrera, 13-15, 28049 Madrid, Spain

2 School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P. O. Box
19395-5746 Tehran, Iran

3 FAMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad
Universitaria, Córdoba, Argentina

4 Departamento de Matematica, Universidad Nacional del Sur (UNS), Bahiá Blanca, Argentina

5 INMABB, Universidad Nacional del Sur (UNS)-CONICET, Alem 1253, Bahiá Blanca,
Argentina

6 School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo 454000,
People’s Republic of China

7 Research Center for Mathematics and Data Science, Kwansei Gakuin University, Gakuen 2-1,
Sanda 669-1337, Japan

http://orcid.org/0000-0002-0554-9647
http://orcid.org/0000-0002-8444-1254
http://orcid.org/0000-0002-2842-6594
http://orcid.org/0000-0003-3024-2644
http://orcid.org/0000-0002-9144-6491

	Weak and Strong Type Estimates for the Multilinear Littlewood–Paley Operators
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Multiple Weights
	2.2 Dyadic Cubes
	2.3 Orlicz Maximal Operators

	3 Sharpness in Aperture α
	4 Bump and Fefferman–Stein Inequalities
	5 Entropy Bumps
	5.1 Proof of Theorem 5.1
	5.2 Proof of Theorem 5.2

	6 Mixed Weak Type Estimates
	6.1 A Coifman–Fefferman Inequality
	6.2 Proof of Theorem 1.5

	7 Local Decay Estimates
	Acknowledgements
	References




