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Abstract

Let S, be the multilinear square function defined on the cone with aperture @ > 1. In
this paper, we investigate several kinds of weighted norm inequalities for S,. We first
obtain a sharp weighted estimate in terms of aperture o and w € Ajz. By means of
some pointwise estimates, we also establish two-weight inequalities including bump
and entropy bump estimates, and Fefferman—Stein inequalities with arbitrary weights.
Beyond that, we consider the mixed weak type estimates corresponding Sawyer’s
conjecture, for which a Coifman—Fefferman inequality with the precise A, norm is
proved. Finally, we present the local decay estimates using the extrapolation techniques
and dyadic analysis respectively. All the conclusions aforementioned hold for the
Littlewood—Paley g} function. Some results are new even in the linear case.
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1 Introduction

Given o > 0, let Sy be the square function defined by

ydt
Su(/)(0) = (// ST )'zth) ,

where ¥, (x) = t7"y(x/t) and T'y(x) is the cone at vertex x with aperture «.
Lerner [30], by applying the intrinsic square function introduced in [46], proved sharp
weighted norm inequalities for Sy (f). Later on, he improved the result in the sense
of determination of sharp dependence on « in [32] by using the local mean oscillation
formula. More precisely,

ma {7 =
||Sa||Lp(w)ﬁLp(w) Sa [w] , 1 < p<oo. (1.1)

The preceding result is among the plenty important results in the fruitful realm of
weighted inequalities concerning the precise determination of the optimal bounds of
the weighted operator norm of different singular integral operators. We refer the inter-
ested reader to [24,25,27,31] and the references therein for a survey on the advances
on the topic.

Let us recall the definition of multilinear square functions considered in this paper.
The standard kernel for multilinear square functions was introduced in [45]. Let
¥(x,y) := ¥(x,y1,...,ym) be a locally integrable function defined away from
the diagonal x = y; = --- = y,, in (R")”*!. We assume that there are positive
constants § and A so that the following conditions hold:

e Size condition:

A

1Y (x, Y)| < —
(1420 1 — yil) -

e Smoothness condition: There exists y > 0 so that

Alx — x|V
+8+y
(L+ 300 x = i)™

|l/f(x7§) - W(x/,§)| =

whenever |x — x/| < %man |x — y;l, and

Alyi = yil”
( + Z |)C . )mn+8+y

iw‘(xvj;)_I/I(Xayla---aylfv"'vym” S

whenever |y; — y!| < %maxj [x —yjlfori=1,2,...,m
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For t > 0, denote v,

A i XN IV TT £y
o= [ et )T,

forall x ¢ (V/_; supp fj and f = (fi..... fu) € SR") x -+ x SR").
Given o > 0 and A > 2m, the multilinear square functions S, and g;’: are defined

by
. - odydi\'?
Sa(f)(x) := (// [ (DI n+1) ,
g (x) !

where 'y (x) = {(y, 1) € RT‘I t|x — y| < at}, and

o f meo o dyde\'?
(N = ( //]R () o th) :

Hereafter, we assume that for A > 2m there exist some 1 < pi,...,pn < o0
and some 0 < p < oo with L ll + -+ Lm, such that g§ maps continuously
LPY(R") x --- x LPn(R") to L?(R"). Under this condition, it was proved in [45]
that g} maps continuously L'R") x --- x L'R") — L™ ®R") provided 1 >
2m. Moreover, since S, is dominated by g, we also get that S, maps continuously
LYR") x -+ x LYR") — LYm-oo R,

These two mutilinear square functions were introduced and investigated in [45,47].
Indeed, the theory of multilinear Littlewood—Paley operators originated in the works of
Coifman and Meyer [14]. The multilinear square functions has important applications
in PDEs and other fields. In particular, Fabes, Jerison, and Kenig brought very impor-
tant applications of multilinear square functions in PDEs to the attention. In [21], they
studied the solutions of Cauchy problem for non-divergence form parabolic equations
by obtaining some multilinear Littlewood—Paley type estimates for the square root of
an elliptic operator in divergence form. Also, the necessary and sufficient conditions
for absolute continuity of elliptic-harmonic measure were achieved relying upon a
multilinear Littlewood—Paley estimate, in [22]. Moreover, in [23], they applied a class
of multilinear square functions to Kato’s problem. For further details on the theory of
multilinear square functions and their applications, we refer to [8,12—-14,21,23] and
the references therein.

In this paper, we investigate some weak and strong type estimates for multilin-
ear Littlewood—Paley operators. This kind of inequalities has its origin in classical
potential theory. A big breakthrough in understanding Poisson’s equation, made by
Lichtenstein [37] in 1916, raised problems that have been central to analysis over the
past decades. The theory of singular integral operators owes its impetus to the change
of point of view of potential theory generated by this work. The action of singular
integral operators on the standard Lebesgue spaces L” (R") was for a long time the
main object of study. But these operators have natural analogs in which R” is replaced
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by a Lie group or Lebesgue measure on R” is replaced by a weighted measure. It is
in the setting that our work is focused on.

The contributions of this paper are as follows. Based on the ideas from Fefferman’s
celebrated paper [19], in this work, we first prove the upper bound for S, is sharp
in the aperture « on all class Az which proves a conjecture given in [2]. Secondly,
we focus on bump and entropy bump estimates, mixed weak type estimates, local
decay estimates, and multilinear version of Fefferman—Stein inequality with arbitrary
weights for multilinear square functions respectively. These interesting estimates have
aroused the attention of many researchers. For example, A, bump conditions may be
thought of as the classical two-weight A, condition with the localized L? and LY
norms "bumped up" in the scale of Orlicz spaces. These conditions have a long history,
we refer to [20,43]. Muckenhoupt and Wheeden [38] first formulated the mixed weak
type estimates for Hardy-Littlewood maximal function and the Hilbert transform on
the real line although Sawyer [44] considered a more singular case, namely he showed
thatif x € A; and v € Ay, then

M(fv)
v

SIAI Ly (1.2)
L1 (pv)

and conjectured that such an inequality should hold with M replaced by the Hilbert
transform. Later on Cruz-Uribe et al. [15] extended Sawyer’s result to higher dimen-
sions and also settled Sawyer’s conjecture and extended that result for general
Calderén—Zygmund operators reducing it to the case of maximal functions via an
extrapolation argument. That extrapolation argument allowed them to take © € A
and v € A . That led them to conjecture that (1.2) should hold © € Aj and v € A.
Recently, that conjecture was settled by Li, Ombrosi and Pérez [36]. That result was
extended to maximal operators with Young functions [3]. Analogous results were
obtained for commutators [4], fractional operators [5] or in the multilinear setting
[35]. Also quantitative estimates have been studied in [6,39]. Local exponential decay
estimates for CZOs and square functions, multilinear pseudo-differential operators
and its commutator were studied in [7,40] respectively.

The main results of this paper can be stated as follows. We begin with a sharp
weighted inequality in terms of both « and [w] Aj-

Theorem 1.1 Let o > 1and% = %+-~-+mewithl < Plyey Pm < 00. If
w € Ap, then

1 P m

S Plren < qmpa 13
1Sa(PllLrwg) S &[] [Tz - (1.3)
i=1

where the implicit constant is independent of a and w. Moreover, (1.3) is sharp in a
onall class Ap.

In order to present two-weight inequalities for square functions, we give the def-
inition of bump conditions. Given Young functions A and B = (By, ..., By), we
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denote

1
1 ~7 .
sup lu? 1.0 [Ty Ilv; " 15,0, if1 < p <2,
I D)l 5.5 = L L
sup lu? |13 o [0y lv; " ls,.0. 2 < p < oo.
0

Theorem 1.2 Leta > 1, A > 2m,and% = %+-~-+p+ﬂwithl < Plyevy Pm < OO
If the pair (u, V) satisfies ||(u, V)| 4 B j < 0o with A€ By (2 < p < 00)and
Bj € By, then

m
1Sa (D llray S @™ A5 [T 105 w0 (1.4)
j=1
N
lgs (Pllraw < W H 1Ll oy (1.5)
where
1
o ”(u’l_)')”A’E)]‘jl_[/ 1[B ](B )p ifl<p=2,
P 1_1 L

- B T2 p m 3 1P .
||(Lt, U)”A,B,ﬁ[A]B(I,/Z)/ Hj:l[BA]](Bj)pj’ lf2 <p< o0.

For arbitrary weights, we have the following Fefferman—Stein inequalities.

Theorem 1.3 Leta > 1 and ) > 2m. Then for all exponents - = % +-+ me with

0<p<2andl < pi,..., pm < 00, and for all weights W = (w1, ..., Wy),
m
1Se (O ILres) S am”l_[ I fill Lei (v » (1.6)
i=1
||gx(f)||LP(vu) S 2"@2—’") l_[ I fill Lpi (Mwyy s (1.7)

wherevg,:]_[jnlwp/p’

We are going to establish entropy bump estimates. See Sect. 5 for the entropy bump
conditions |G, V] 2 o2t and [G,v]52,.

Theorem 1.4 Leta > 1, L > 2m,andlet% = %+-~-+prithl < Plyeees P <
m
00. Let v and 6 = (o1, ..., 0p) weights. Assume that & is a monotonic increasing
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function on (1, 00) satisfying |, loo sz’)t < o0. Then,
m
IS (folLray S o™ Ao [ [ 1 1Lri), (1.8)
i=1
lgX(follrw) S Srgm— 2,,1) 1"[||f||w(a,), (1.9)
where 1
2
Lo UJ%J» &2 m+1’ fo<p=2
ﬁ,E = i P
LU")Jﬁ,zev if2 <p<oo
ith b = / 2 (2 2 2
wzthp—(pl,...,pm,p)and;—, = (p,l,..., o p).

Next, we turn to the weak type estimates for Littlewood—Paley operators.

Theorem 1.5 Let o > 1 and A > 2m. Let w = (wy, ..., wy) andu = [ [}, wl/m If
w and v satisfy
(1) weA; and uv'’'™ € Ass, or (2) wi,..., wm € Ay and v € Aso,
then we have
Sa(f) u
’ - STl (1.10)
v Ll/m,oo(uvl/m) im1
g5 (f) "
S ST - (1.11)
v Ll/m,x(uvl/m)

i=1

In particular, both Sy, and g5 are bounded from L'(wy) x - x LY (wy,) to L™ (vy)
for every W € Aj.

Theorem 1.6 Leta > land ) > 2m. Let Q be a cube and every function f; € LZ°(R")

with supp(f;) C O, j = 1,...,m. Then there exist constants ¢ > 0 and c2 > 0
such that
{reoQ: Sa(HH(x) > tM(f)(X)H < cre=eh ||, (1.12)
{reoQ: g(H) > tM(f)(X)H < 1P| g, (1.13)

forallt > 0, where B1 = a~ 2" and pr = (1 — 27 "*=2m)/2)2,

) Birkhduser
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2 Preliminaries
2.1 Multiple Weights

The multilinear maximal operators M are defined by
M(fHx) = sup H ][ £ pldyj,

where the supremum is taken over all the cubes containing x. The corresponding theory
of weights for this new maximal function gives the right class of multiple weights for
multilinear Calderén-Zygmund operators.

Definition2.1 Let 1 < pi,...,pm < oo. Given a vector of weights W =
(wy, -+, wy), we say that w € Aj if

L

1 m .
[171]A,; = stép (fQ Vi dx)l 1_[ (][Q wl.lp’dx> "< 0,
i=1

i 1*1’,{ 1/p!
Where%=ﬁ+~-~+ﬁandezﬂlf"zlwf/p.Whenpi:1,(wii dx) /i

is understood as (inf o w;)~ L.
The characterizations of multiple weights were given in [10,33] .

Lemma2.2 Let 1 5= +--+=—withl < p1,..., pn < 00, and py = min{p;};.
Then the following statements hofd

(D) App C Anp, forany 1/po <rp <ry < oo.
(2) A Ul/p0§r<l A”P
(3) w € Aj if and only if vy € Ay and w.lip’ € App i = 1,....m. Here, if

1—p;
pi — 1’ w.

; € A, is understood as w; l/m Aj.

2.2 Dyadic Cubes

Denote by £(Q) the sidelength of the cube Q. Given a cube Qo C R”, let D(Qy)
denote the set of all dyadic cubes with respect to Qg, that is, the cubes obtained by
repeated subdivision of Qg and each of its descendants into 2" congruent subcubes.

Definition 2.3 A collection D of cubes is said to be a dyadic grid if it satisfies

(1) Forany Q € D, £(Q) = 2% for some k € Z.

(2) Forany Q, Q" € D, 0N Q" ={0Q, 0, h}.
(3) The family Dy = {Q € D; £(Q) = 2} forms a partition of R” for any k € Z.
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Definition 2.4 A subset S of a dyadic grid is said to be n-sparse, 0 < n < 1, if for
every Q € S, there exists a measurable set Eo C Q such that |Eg| > n|Q]|, and the
sets {Ep}pes are pairwise disjoint.

By a median value of a measurable function f on a cube Q we mean a possibly
non-unique, real number m ¢ (Q) such that

max {[{x € Q: f(x) > mp( O}, lfx € Q: f(x) <mp(D}} < 101/2.
The decreasing rearrangement of a measurable function f on R” is defined by
ffO)=infla>0:|{x eR": |f(x)| >a}l <1}, 0<t<o0.
The local mean oscillation of f is
w(f: Q) = inf ((f - Olg) (AQD., 0<i<l1.
Given a cube Qy, the local sharp maximal function is defined by

M, o, f(x) = o/ 0)

Observe that forany § > 0and 0 < A < 1

1 1/8
Im(Q)] = (f10)*(121/2) and (f1p)*(A|Q]) < <@ /Q |f|8d1€> - 2.1

The following theorem was proved by Hytonen [25, Theorem 2.3] in order to improve

Lerner’s formula given in [30] by getting rid of the local sharp maximal function.

Lemma 2.5 Let f be a measurable function on R" and let Qg be a fixed cube. Then
there exists a (possibly empty) sparse family S(Qo) C D(Qo) such that

fG) =mp(Q0) <2 Y wyua(fi Do), ae.xe Qo (22)
0eS(Qo)

2.3 Orlicz Maximal Operators

A function @ : [0, oo) — [0, 00) is called a Young function if it is continuous, convex,
strictly increasing, and satisfies

Dt Dt
fim 29— 0 and tim 2P — oo
=0+t =00t

Given p € [1, 00), we say that a Young function ® is a p-Young function, if ¥ (¢) =
®(1'/7) is a Young function.
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If A and B are Young functions, we write A(f) ~ B(t¢) if there are constants
c1,cp > O such that ciA(r) < B(t) < cpA(t) forall t > 19 > 0. Also, we denote
A(t) < B(t) if there exists ¢ > O such that A(t) < B(ct) forall t > ty > 0. Note that
for all Young functions ¢, t < ¢(¢). Further, if A(r) < cB(¢t) for some ¢ > 1, then by
convexity, A(t) < B(ct).

A function  is said to be doubling, or ® € A, if there is a constant C > 0 such
that ®(2t) < C®(¢) for any t+ > 0. Given a Young function &, its complementary
function ® : [0, co) — [0, 0o) is defined by

(1) := sup{st — D(s)}, >0,

s>0

which clearly implies that
st < d(s) + (), s,t>0. (2.3)
Moreover, one can check that ® is also a Young function and
r<d'd ') <2, t>0. (2.4)

In turn, by replacing 7 by ®(#) in first inequality of (2.4), we obtain
- O(t
¢(¥) <o), >0 2.5)

Given a Young function ®, we define the Orlicz space L® (2, 1) to be the function
space with Luxemburg norm

11l o = inf{k>0:/§2d>(|ff\x)|)du(x)§ 1}. (2.6)

Now we define the Orlicz maximal operator

Mo f ) = sup [ f 0.0 = sup [ fll o g as .
O>x O>x '10]

where the supremum is taken over all cubes Q in R*. When ®(t) = 17,1 < p < oo,

Iflle.o = (][Q If(X)IPdX>p = [1fllp.0-

In this case, if p = 1, Mg agrees with the classical Hardy-Littlewood maximal
operator M; if p > 1, Mo f = M,f = M fI)HYP. If &(r) < W(r), then
Mo f(x) < cMy f(x) for all x € R".

The Holder inequality can be generalized to the scale of Orlicz spaces [16,
Lemma 5.2].

Birkhauser
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Lemma 2.6 Given a Young function A, then for all cubes Q,
][Q Ifgldx < 2| fllaolglli o 2.7

More generally, if A, B and C are Young functions such that A~ (t)B~' (1) <
c1C~Y@), forallt > ty > 0, then

Ifglic.o = c2ll flla.ollgls,o- (2.8)

The following resultis an extension of the well-known Coifman—Rochberg theorem.
The proof can be found in [26, Lemma 4.2].

Lemma 2.7 Let ® be a Young function and w be a nonnegative function such that
Mgopw(x) < oo a.e.. Then

[(Mow)’1a, < cns, Y8 €(0,1), (2.9)
[(Mow) *IRH., < cnn, YA > 0. (2.10)

Given p € (1,00), a Young function @ is said to satisfy the B, condition (or,
® € B)) if for some ¢ > 0,

Pt

JAE @.11)

Observe that if (2.11) is finite for some ¢ > 0, then it is finite for every ¢ > 0. Let
[<I>]Bp denote the value if ¢ = 1 in (2.11). It was shown in [16, Proposition 5.10] that

if ® and ® are doubling Young functions, then ® € B p if and only if

o st NP gy
_ — < Q.
[ Ga)

Let us present two types of B, bumps. An important special case is the “log-bumps"
of the form

A(t) =tV log(e + )P0, B(t) =17 log(e + )P "0, 5> 0. (2.12)
Another interesting example is the “loglog-bumps" as follows:
A@t) = t” log(e + 1)P "' loglog(e¢ + )P ™11, 5 >0 (2.13)

B(t) = t” log(e + t)” " loglog(e® + )P "1, 5> 0. (2.14)

Then one can verify that in both cases above, A € B p and BeB pforanyl < p < oo.

The B/, condition can be also characterized by the boundedness of the Orlicz max-
imal operator M. Indeed, the following result was given in [16, Theorem 5.13] and
[26, eq. (25)].
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Lemma28 Let1 < p < 00. Then Mo is bounded on L? (R") if and only if ® € B).
1

Moreover, ||Mo||Lr®my—Lr @R < C,,,p[@]gp. In particular, if the Young function A
is the same as the first one in (2.12) or (2.13), then

L
1Mzl @rys 10/ @y < €nD78 7, V8 € (0, 11. (2.15)

Definition 2.9 Given p € (1, o), let A and B be Young functions such that A € By
and B € B,. We say that the pair of weights (u, v) satisfies the double bump
condition with respect to A and B if

1 _1
[u,v]a,B,p :=suplurllagllv ?lpo < o0. (2.16)
0

where the supremum is taken over all cubes Q in R”. Also, (u, v) is said to satisfy the
separated bump condition if

1 1
[u, v]a,p :==supllur|la,ollv 7, o < o0, (2.17)
(@]
1 1
[u,vlp,g :==supllu?|pollv 7lpo < 0. (2.18)
0

Note that if A(r) = ¢ in (2.17) or B(t) = t? in (2.18), each of them actually is
two-weight A, condition and we denote them by [u, vla, = [u,vlp p- Also, the
separated bump condition is weaker than the double bump condition. Indeed, (2.16)
implies (2.17) and (2.18), but the reverse direction is incorrect. The first fact holds
since A € B, and B e B, respectively indicate A is a p-Young function and B is
a p’-Young function. The second fact was shown in [1, Section 7] by constructing
log-bumps.

Lemma2.10 Ler 1 < p < oo, let A, B and ® be Young functions such that A € B,
and A=Y ()B~L (1) < &7 Nt) forany t > ty > 0. If a pair of weights (u, v) satisfies
[u, v]p, B < 00, then

1
Mo fliLra = Clu, vlp BlAlg If1lLrw)- (2.19)
Moreover, (2.19) holds for ®(t) =t and B = A satisfying the same hypotheses. In

this case, A € By is necessary.

The two-weight inequality above was established in [16, Theorem 5.14] and [17,
Theorem 3.1]. The weak type inequality for M¢ was also obtained in [16, Proposi-
tion 5.16] as follows.

1
Lemma2.11 Let 1 < p < oo, let B and ® be Young functions such that t» B~ (1) <
&~1(r) forany t > to > 0. If a pair of weights (u, v) satisfies [u, v]p, B < 00, then
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Mo fllLrow = CILfllLrw)- (2.20)

Moreover, (2.20) holds for M if and only if [u, v]a, < oo.

3 Sharpness in Aperture a

The goal of this section is to give the proof of Theorem 1.1. To this end, we establish
some fundamental estimates.

Lemma3.1 ¥ (x,y) is continuous at (xo, y1,0,--., Ym0) With xo # yjo. j =
1,2,...,m.

Proof Letxg # yjofor j=1,2,...,m, and let

1 |
|x —xol < — min {|xo — yiol}, |y; —yj0l <z min {|xo— yiol}.
4 1<i<m 2 1<i<m

Then we get

1
ly; —yjol < §|x0 = yj0l

and 1
lxo — yjol <lxo—yjl+1y; —yjol <lxo—y;l+ §|x0 = yj.0l
and so
lxo —yjol <2lxo—yl, j=1,....m,
which implies
1 1 .
|lx — xo| < Z|xo—yj,o| < §|x0—yj|, j=1,...,m,

Therefore, we have

[V, yis ooy Ym) — ¥ (X0, Y1,05 -+ -5 Ym,0)|
<Gyt Ym) — Y (X0, Y1s - Yl

m
+ Z [V (X0, Y1,05 « - > Yj=1,05 Yj» Yjt1s -+ s Ym)
Jj=1

- \[’(XO, yl,Ov ceey )’j—l,07 )’j,07 }’j+17 ey Ym)|

m

< Alx — xol” Z Alyj — yj.ol”

T b =yl (L 3T o — Y
This shows ¥ (x, y) is continuous at (X, 1.0, - - - » Ym.0) € R2"+D with xq # Yj,0
j=12,....,m. O
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Lemma3.2 Thereexistxo € R", ro > 0,10 > land f; € SR"), j =1,...,m, such
that

Ag = //s2 1 () ) Pdydt € (0, 00), 3.1)
0
where Qo := B(0, |xgo| + ro) x [1, to].

Proof Since v is a non-zero function in R”"*1  there exist xo, V1,05 -5 Ym0 € R?
such that xo # y; 0(i = 1,...,m) and ¥ (x0, y1,0, ..., Ym,0) 7 0. By Lemma 3.1,
there exists rg > 0 such that ¥ (x,y) > 0 or ¥(x,y) < 0 for all x € B(xg, rg)
and y; € B(yj0.70), j = 1,...,m. Without loss of generality, we assume the case
¥ (x,y) > 0. Keeping these notations in mind, we set

-1
_ ro > .
= (1 Zmax{lxol.[y1.0l.- ym,on) > max{|xol, [yrol, .-, [ymol} = ro;

2, otherwise.

We claim that

X .

‘?—xo‘<ro and ‘%—yi,0’<ro, i=1,...,m, 3.2)
forall 1 <t < fo, |x —xol < % and |y; — yiol < 5, i = 1,...,m. Indeed, if
max{|xol, [y1.0l, - [ym.0l} < ro, it follows

X lx — xol 1 |xol
|; —xol < 74'(1 - ;)|X0| < |X—x0|+7 < rQ,

and similarly we get |- — y; o] < ro,i =1, ..., m. In the case
Yjo.0 := max{|xol, [y1,0l, - [ym,o0l} = ro,
we have
by — yial < lyi —yiol < n
t ' 2
and

(1= Disjool < (1= = )ixiool (1 oo )| =2
= =)ol < (1= =)lyjp.ol = —(——) Yio.ol = 5
1) to/ "7 20yjp.0l/ )" 2

As a consequence,

Vi .
— —Yyio|<ro, i=1,....m.
t

Similarly, we get |3 — xo| < ro. This shows (3.2).
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Thus, we have ¥ (%, z) > 0forl <t <1and [x —xo| < 3, |yi —yiol <
2,1’ =1, , m. Pick non-negative valued f; € S(R"), j = 1,...,m such that
supp fj C B(yj,o, F)and f;(y;) > Ofor|y; —yjol <%,j=12,...,m. Thenit
follows from (3.2) that

m
X V1 Ym -
V(o — .o, =) | | filyj)dy >0
mn ‘/B(ylo 2)>< XB()mO 2) t t ! Jljll

i (fHx) =

foralll <t < fgand |x — xg| < %’ Therefore,

// |1ﬂt(f)()’)|2dydt > 0.
B(xo, z)x[] 1]

In particular, since B(xo, 3*) C B(0, |xo| + ro), we have

Ay = // e (FY() Pdyd > o. (33)
B(0,|xo|+ro)x[1,t0]

On the other hand, by using the size condition of 1, we obtain for every (y, 1) € Qo,

7 ! y ym\| T
PO = o [ (32 2 T 001y,
t Rmn t t t i
2 [T7oi 1fipidy; - [T/ Il
o mn 1 [y=yil [y=Yml mn+s = pmn ’
( Tt T)

This immediately yields that

[T 15113, -
// = Fomn —I= e dyde S [ 1£i13 < oo (3.4)
j=1
Consequently, the desired result follows from (3.3) and (3.4). O

Lemma3.3 Let 0 < A < 2m and n% < p < % Then g5 is not bounded from
Lpl><-~-><L1""toL1’,where%=%+---+#with1§p1,...,pm<oo.

Proof By Lemma 3.2, there exist xo € R", rg > 0,7 > l and f; € SR"), j =
1,...,m,suchthat 0 < Ay < oo, where Ag is defined in (3.1). Write Ry := 2(|xo| +
ro + fo). Then for all |x| > Ry and (y, 1) € Qo,

5 <kl=bl=t+x =yl =lxl+Ilyl+0 = 2|
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Thus, t 4+ |x — y| =~ |x|. This gives that for all |x| > Ry,
nk —n—1
G (H? = // (D) Py

s A
> 2 _ 0
~ x| //QO [ (f)(W)|"dydt Mz

Therefore, for any A < %,
dx
||gx(f)||Lp =~ nip = 00.
IxI>Ro |x| 2"

On the other hand, for f e SR™") x --- x S(R"), we have ]_[;flz1 | fillpi < o0.As
a consequence, gi“ is not bounded from LP! x --- x LPm to LP whenever A < %.

In particular, for 0 < A < 2m (equivalently L - %) and p € (l %), 1 <
Pls -, Pm < 00 With % = — + -+ —, gA is not bounded from LP! x ... x LPm
to LP. O

Proof of Theorem 1.1 It follows from [2] that
max(L 2L .. P
”Sa(f)”LP(vw) <am"[w]Aﬁ R l_[”fi”L”i(wi)’ (3.5)

forall% = %—l—---%—# with1 < py, ..., pm < 00, and for all w € Aﬁ,wherethe
implicit constant is independent of « and . Now, we seek for y (o) = " such that

(1 P pm

1Su D lerwg S v @il R 1‘[||f,||m<w,

We follow Lerner’s idea to show r > mn for any 1/m < p < oo. In fact, for the case
r < mn we can reach a contradiction as follows. This means that the power growth
y () = ™" in (3.5) is sharp.

Using the standard estimate

% 7 7 .- —n £
gHHE) = SIHE + D277 S (H), (3.6)
k=0
Wegetforsomeﬁxedcll = q]—l+-~-+#with1 <1y qm < 00,and y () = '

14 @}m

00 ’
2 —k max{z, L.,
||g;<f>||m(ui,>,<v<§ 2 2"’°)[w]Aq 2T Nz -
k=0 i=1
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This means that if A > zﬂ, g5 is bounded from L4' (wy) x - - - x L4 (wy,) to LY (vy).
From this, by extrapolatlon(see [34]), we get g} is bounded from LP! x ... x LPm

to L? for any p > 1/m, whenever A > 2,1& But by Lemma 3.3, We know g} is not

bounded from LP' x --- x LPm to L? for . < 2m and ’i <p< X If ro < mn, we
would obtain a contradiction to the latter fact for p sufficiently close to 1/m. O

4 Bump and Fefferman-Stein Inequalities

In this section, we will prove bump inequalities (Theorem 1.2) and Fefferman—Stein
inequalities (Theorem 1.3). Our strategy is to use the sparse domination for the mul-
tilinear Littlewood—Paley operators.

Proof of Theorem 1.2 Given r > 1 and a sparse family S, we denote

m 1
() = ( > ]'[<ﬁ>’QIQ<x)> :

QeSi=l

The sparse domination below will provide us great convenience:

3}1
Saf(x) < cn@™ Y AG (IfD@). ae.x €R", @.1)
j=1
) < 5 A ZA (/D). ae.xeR", (4.2)
where S; is a sparse family foreach j =1, ..., 3". These results are explicitly proved

in [2]. By (4.1) and (4.2), the inequalities (1.4) and (1.5) follow from the following

m

IAZ P erawy S A5 [T1ilLriy)s (4.3)
j=1

for every sparse family S, where the implicit constant does not depend on S.
To show (4.3), we begin with the case 1 < p < 2. Actually, the Holder inequality
(2.7) gives that

P m
”A?S(f)”f,l’(u) :/ <Z l_[ (i) lQ(x)>2u(x)dx < Z l_[(lijVéu(Q)

QeS/ 1 QeS j=1
_ 1
<> 1‘[||f] "||” ||§j,Q||w||”Q|Q|
QeS j=1
1 \7

V4 . pPj

Sha ol 5> H <néfMg,.<f,~vjf>> |Eol
QGS] 1
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r/pj
< Il 1 (/ Mg (fjv ’)(x)p/dx)

<l I, H M35, 1 a1 4.4)

where Lemma 2.8 is used in the last step.
Next let us deal with the case 2 < p < oo. By duality, one has

IAZON = 14D I rrey = sup AL @) h()u(x)dx.
0<heL®@/? ) /R
Hh”L(P/z)/(u)=l
4.5)

Fix a nonnegative function i € LP/2 (u) with ||k} o2y w = 1. Then using Holder’s
inequality (2.7) and Lemma 2.8, we obtain

/ AL(F)@)2h(x)u(x)dx

<Y 1‘[ £ thu) ol Q]

QeS j=1

< - ﬁ 2 *% 2 1-2 2
< 2 [T 1, ollv 771, ol P liz ollu? a0l Q]
Q€S j=1

m 1\ 2
N _2
Sha ol ;5 2 1 (iféfMBj(fj”jpj )) (iréfMA(hu1 p)) |Eol

QeS j=1

m 1
< | (u, 17)”124,37[; /Rn l_[ ng (fjvjpj )(x)2MA(hu1_%)(x)dx

- 2 2
<l DI 5 ;| H Mg (fjv; ) g | M5 G P11 oy -
- 2
-\ 12 7 ) -2
=< Il (u, U)HA,E’,[; 1_[ ||MB‘J,(fjvjf )||Ll’j(Rn)”MA(hu Loy @
j=1
-\ 2 2 5
< 0D 5 5 TTIM5 07 10 ) 1107 05 0 1M ooy oy 1 ooy -
j=1
(4.6)
where
”MB_] ”L(ij (R7)) = ”MB ||Lp] (R”)—)Lp/ ®")
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and

||MA||£(L(p/2)/(Rn)) = ||M/i||L(n/2)’(Rn)ﬁL(p/Z)/(Rn)-
Therefore, (4.3) immediately follows from (4.4), (4.5) and (4.6). O
Proof of Theorem 1.3 Fix exponents % = il +o+ L withl < p1, ..., pu < 00,
0 < p < 2and weights @ = (w1, ..., wy). Note that v; (x) := Mw;(x) > (w;) o for

any dyadic cube Q € S containing x. For each 7, let A; be a Young function such that
A; € B),. By Lemma 2.8, we have

1

Mz (fiv/ e @n S I filloriwns, i=1,...,m. 4.7

Thus, using sparse domination (4.1), Holder’s inequality and (4.7), we deduce that

1Sa (O p ) S,a”’””Z > H 1 fiDGvi(Q)

J=1Q0eS;i=1
1

<aP’""Z > ]_[Ilﬁ g 15, ol " I%, oV (Q)

Jj=1Q0eS;i=1

3n m o
<y ]_[Ilﬁ "’ 1% ,widg” (va)olQl

Jj=1QeS;i

3" m 1 p
(i btz )" el

ZQESU e S ¢

m
sarm [ [ )@ dx S o™ [TIMg, o

i=1

m
p _ 1P
<l H AT oi oy = @™ T TUANT bt g
i=1 i=1
This shows (1.6). Likewise, one can obtain (1.7). O

5 Entropy Bumps

In this section, we will prove entropy bump inequalities (Theorem 1.4). By the sparse
domination for Littlewood—Paley operators, see (4.1) and (4.2), it suffices to prove the
results for A's, r > 1.

Let us call (o;) = (g, @z, ..., ay). We will denote (o;);2; = (a1,..., a1,
Qji1,-..,0y). Having that notation at our disposal we define the following sub-
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multilinear maximal function.

MG =sup [T (o0
XE€Q c(1,. m)itj

and given p = (p1, ..., pm)

MIL’@)(X) = sup 1_[ (o7)

erl 1

Let 1 <p1,...,pm<ooand%=ﬁ+~~+#.Wedeﬁne

P - 2
ps,5(Q) = (/QMP(UiXQ)(X)dx>(/Q]_[Gi(X)”f dX>
i=1

In the scalar case we shall denote just

—1

puQ) =~ / Mxo)®)dx.

Given an increasing function ¢ : [1, 4+00) — (0, +00) let us denote

05.,5,6(Q) = p5,5(Qe(pz 5(Q)) and p,(Q) := pu(Q)e(pv(Q)).

With the notation we have just fixed, we are in the position to introduce the entropy
bump conditions. For weights 6 = (o1, ..., 0,) and v, we define

m

6. v]pre = sup (H(az)

i=1

Q __"3\\-@

)< V) 003.5.6(Q)pue(Q)7 L. (5.1

Also, if ¢ = (o1, ..., 6,n), we denote

0 0
S MO/@PD)iz; (on)) (fQ M/ Oz (GXQ))

1/(6 i 1/(@pi)
) fQ Hi;éj 0; !

m
161G.5.p.0.) = sgp]‘[(a»g (
i=1

fQ 1#] i

—
Denote fo := (fio1, ..., fmom). Armed with the notation and the definitions of the
entropy bumps just introduced, we can finally state and prove the main theorems of
this section.

Theorem 5.1 Ler + = L 4+ ... 4 p— with p > rand 1 < py,..., pm < 00. Let
01,y ...,0n and v be wezghts Assume that ¢ is a monotonic increasing function on
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(1, 00) satisfying [~ % < 00. Then

A (Flre S 13 VJ,’,’, 81—[ I fllLri o) (5.2)

Note that the theorem above extends to the multilinear setting [28, Theorem 3.2].

Theorem 5.2 Let% = % + -4 pL with p <randl < p1,..., pm < 00. Let
m
o1, ...,0, and v be weights. Assume that p is a monotonic increasing function on

(1, 00) satisfying [~ A~ o0 and p(2t) < Cp(t) fort > 1. Then

pr(ne

A (F)lrey S 15.0)5 H £ 1ot o (5.3)

PP

":\“1“‘ =

whereﬁ:(p1,...,pm,p’)and§=(PL1,...,L,,%).

Note that in this case the linear version of the estimate obtained is slightly different
from [28, Theorem 3.3] since the entropy bump constant involved in that case is the
following

. A D) M@xo) \" JoM@xo)r\"
Lo, v] (5.5)rn s = sgp(o)Q o | | o||

an'

Also the integrability condition imposed on p does not match the one in [28, Theorem
3.3].

5.1 Proof of Theorem 5.1

We need a multilinear version of Carleson embedding theorem from [11].

Lemma 5.3 Let 0 = (01,.. ,0m) be weights. Let 1 < p; < oo and p € (1, 00)
sansfymg L— L. . 4L Assume that {ap}oep is a sequence of non-negative
numbers for which the followmg condition holds

Y ag < A/ Ho”’ dx, Y0 eD. (5.4)
0'co

Then for all f; € LPi(o;),

(Z

m
P
][fzdo"z > SAHP;”fi”L”i(oi)- (5.5)
i=1

QeD i=1
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With this result in hand, we are in the position to settle Theorem 5.1 following ideas
in [29].

Proof of Theorem 5.1 First we split the sparse family as follows. We say that Q € S,
if and only if

(H“’f)g ) (1) 5055, (Q)7 py.e (Q)V/ P/ 20

i=1

Let us begin providing a suitable estimate for each of those pieces of the sparse
family. Given a weight y let us denote (h)g = @ fQ [h(x)|y (x)dx. Assume that

g€ L("/’)/(v). By duality we can write

= > ([T#3) (TTene) @l
(TTo) (TTe0d )| (TTeod Jergons ™ w10

QESa i=1 i=1 ie1
N gt Y
= (H( ) 19ilg 0 (&)h-10
0eS, i=1 ¢ Ps.5.e(Q)7 Pv.e(Q)V/ P/

P35 (Q)7 pre (@)1

X
e,
N
=
)
Q=
N———"
62‘-

N | R (O L VAl
<2t (fiYo : i — (g
Qesu(g Q) P5.5.c(Q)F Poe(@V N 2T0
m m r _1
a o \P L 1; 101(Q)"') ( oy V(@) )(p/r)’
<2 : Q= e b4 )
< (Qesa(g<f>g) o) (Do
For the second term, we would like to get that
vy V(D) (/1Y
> )y @) 18 Gn (5.6)

€S,

We omit the proof of (5.6) and focus on the first term above, since the argument that
we are going provide, essentially contains the linear case. For the first term, it needs
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to show

e\ P T la,<Q>z =
) HELIEE 020 (5.7)
(TT%) e EnfnL o

0eS, i=l
Taking into account Lemma 5.3, it suffices to verify that (5.4) holds with

p
[T, 0i(Q) Pi
ag = P5.5.6(Q) Q € S,
0 otherwise.

Indeed, let us call S, (R) the set of cubes of S, that are contained in R € D. Then

> [a@n 3 5 [Eaor
Po.5e(Q) 05.5.6(Q)
0eS,(R) P> = ps. (@~ o, B,
0eS4(R)
3 [T, oi(P) P
> vy oy Hhedr
j=1 maximal QeS,(R) PcCQ Ps.p, S(P)
05,5(Q)>2/ PeS,(R)
o0
=2 X > 8(2])/ M7 (0710) (x)dx
Jj=1 maximal QeS,(R) PCQ
05 5(Q)=2/  PESa(R)

<y ) / M5 (o719) (x)dx
j=1 maximal Q€S (R) 8(21)

05,5(Q)~2/
ooz gt

<(ITo5 ) = (oo [ 355

This provides the desired bound.
Collecting (5.6) and (5.7), we have shown that

m r m
< > ([Ttsone) 1Q,gv> S 2T o) - N8l -
QeS, i=1 i=1
Since for the largest a for which &, is not empty we have that |o, vjﬁ re = 24,

summing in a yields

<Z (ﬁ<ﬁoi>g)rlg,gv> &

QeSS i=l

'twar—,

m
1'[ LN oy 18N Ly 1)
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Consequently,
||Ag(ff7)”L1’(v) S Lo, VJ,‘:, ¢ 1_[ I fillr o)

This shows Theorem 5.1. O

5.2 Proof of Theorem 5.2

To settle Theorem 5.2 we are going to follow the scheme in [48]. First we borrow a
result from [9].

Lemma 5.4 Foreveryl < s < oowe have that for every positive locally finite measure
o on R" and any positive numbers Lo, Q € D, we have

. Z ZL10w) dow 50 Y to(0@7 Y o)

Q€D 0'co

-1

Given a sparse family S contained in a dyadic grid D, for every Q € S we will
denote S(Q) the family of cubes of S that are contained in Q. For § and @ =
(wi, ..., wy), we denote

2 6
. q, f M(l/(epz))i#/’(c_[)xg) f M(l/(gﬂi))i#j(&')xg)
l©]G.5.0.0.j.5 = SUP H i) /@) p l/(epl
[ fQ t;é/ i fQ l#j

The following lemma is a particular case of [48, Lemma 2.3]. The proof is also
essentially contained in the earlier work [18, Proposition 4.8].

Lemma5.5 Let Bi, ..., Bm > 0 be such that B := Y ;" i < 1. Let S C D be a
sparse family. Then for every cube Q € S and all functions wy, . .., Wy,

> |Q|1‘[wl <|Q|H< o
0'eS(Q) i=1 i=1
The following lemma will be one of the fundamental pieces to settle Theorem 5.2.

Lemma5.6 Let j € {l,...,m}, s1,...,5n € Rwiths; > 0 foreachi € {1,...,m}
withi # j,and q1, ..., qum > Owithq; = 1+ s; be such that

, Si . Si
§ sz_§ qi, < mm —.

qi i#] qi
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Let S be a sparse family such that for every Q € S and some 6 > 0

, - <f M(l/(epi))i#j(ﬁ)XQ)

Jo Tlizjw;

1/0pi)

(5.8)

[%
) < 2r+]

where p; € (0,400). Then, if p is a monotonic increasing function on (1, 0o0), for
every 0 < a < oo we have that

(Z l_[ w; s’alQ) dw; <

QeSi=I

|. Jqpp@jS
2 0(2)

> 101 Jows

0eS i#]j

Proof The left-hand side of the conclusion is monotonically decreasing in « and the
right-hand side does not depend on «, so it suffices to consider small «, in particular

We may assume o < 1.

It follows from the hypothesis that for sufficiently small « there exists an € such

that
e T
oS <e< min{—, mlnm}.
2 i di la—1" i gi
where as usual §;; = 1if i = j or O otherwise. By the assumption @ < 1 and
Lemma 5.4,

ﬂ<ZIQ|]_[

QeS i=1

ozv,+31,( Z

Q/ES(Q)

Taking into account the definition of L@sz, 5p.0.,S and (5.8), we get

l®15.5.0.0.j.5
2"p(2")

7z

Observe that as; + §;;
implies that

<
g

Birkhauser

(&)G.5.0.0.7.8
2 p(27)

o <

~

L&1G.5.0.0./.5
2 p(27)

)E(; Z|Q|]‘[ Do (Y

QeSS

i=l1

—€g; > 0and Zi(asi + 8ij

)5(0'[—1)

)E(;—n Z IQI]_[ 511+51 eqt(ﬁl)

Z|Q|1’[

QeS i=1

QeS i=1

il 1
l_[ ar,+6,] eq,>u

0'eS(Q) Wi

— €q;) < 1. Hence, Lemma 5.5

14
w;(Q)

as, +3ij (

" —1
1—[ as, +3ij—€qi )
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By construction 1 —€(1/a — 1) > 0, and again by the definition of @] 5 , ¢, ;.5 and
(5.8), we conclude that

|_J S 81 Si —qi
o < 24,”("2,9’ ZIQI]_[ AR

and we are done, since g; = 1 + 5. O

Now we present a stopping time condition. Let S C D be a finite sparse family and
letd; : § — [0, 00), Q — A; o be afunction that takes a cube to a non-negative real
number. Then we have that F; is the minimal family of cubes such that the maximal
members of S are contained in F;, and if F' € F;, then every maximal subcube F' C F
with A; pr > 2A; r is also a member of F;.

For each cube Q, let 7;(Q) (the parent of Q in the stopping family ;) be the
smallest cube with Q C 7;(Q) € F;. We write ) Fi....F for the sum running over
F; € F;. We also write

.....

MA;i(x) ;== sup ;.
xeQeD

Lemma5.7 Letm > 2,0 < p1,..., pm_1 < 00. Define a := Zlm:_ll 1/p; and
assume

1/pi, i<m,

0<gi=si— .
l—a, i =m.

Assume that S is a sparse family such that for every Q € S,

o

M(l/(api))i;’:m(ﬁ)x )
Jo ) <o (5.9)

r
2 f - 1/(‘3‘[71
Q w;

IA

Then, if p is a monotonic increasing function on (1, o0) and p(2t) < Cp(t) fort > 1,
one has

m—1

B S N\B)G.5.0amp @) [T 1Ml Lr ()
i=1

m—1 m 1 @
2= X TIa [( X o[ way™) au,) .
F F,

seees B =1 O:Vj,mi(Q)=F; i=l1
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Proof We will estimate % by means of Lemma 5.6 letting s; — §; = (s; — §im)/,
i <m,q; > ¢; = qi/a and & — «. We can provide such an estimate since

ZO@' = Zsi —-(l—a)— Z 1/pi = Zs,- —1= ZaE,-.
i<m i<m i<m i<m i<m

This yields that the first inequality in the hypothesis of the lemma holds, and fori < m
we have g; < §;, verifying the second inequality. Then, there holds

m—1

Lwl;z -\«
l/oz q.p.p,a,m,S A\Si—qi
( Z l—[ 27 p(27) Z 1 l_[<wl)Q
Fy— i=1 0Vj, 7 (Q)=F; i=1
(5.10)
Note that
LwJé,ﬁ,p,a,m,S
m 9 f M(l/(apl))[#m(l]}XQ) ¢ f M(l/(ap[))[#m(a}xg)
= sup [Twi)g T w7 p T @)
Q€S fQ w; fQ w;
1
N\ o
%1 f M(l/(api))i¢y,z(i)XQ) f M(l/(api))l#m(ﬁ)XQ)
= sugl_l wi)g 7w /@) L 175 w/@?)
Q€S JoITE) w; Jo ITS w;
—1 -1
Jo MOT@PDizn (@ o) “ Jo MOT@PDizn @y o)
x f m l 1/(otpi) P f m l 1/(Otl7i)
0 w; 0 Wi
1
<mie. rly1-4 rly -2
SWwlgsam@ ) @ (@)«
The sparseness of S enables us to continue as follows
m—1 o m—1 1 al
Yoo He ]yt s Y |EQ|(1_[<wi>g)
0Vj,7; (Q)=F; i=1 O:Vj, i (0)=F; i=1
- / M(l/(ap,»,#m(wxg)</ M@ (e e,
Eg Fin--NF,_

ONj, ﬂj(Q) Fj

Thus, it follows from (5.9) and Holder’s inequality that

, —1
(% < Lqu p,p,a,m (2r+1)(x—12—r(1 (,0(2 +1)>a

T @)
< m—1 | \«
Z H k / 1_[ wl_api)
Fi,....Fp—1 i=1 FIN-NFp_1 1

5%0{1(/1‘[211:)» )

i=1 ,'
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1

LwJ o,m éal P
< T ([t ow)”

We end the proof noticing that

o
<Zl ;*Fl) ~ M,

since at each point, the sum on the left-hand side is geometrically increasing and,
consequently, it is comparable to the last term. O

Lemma5.8 Letm >2and0 < p;,s; <00, 1 <i < m, and let a := Zl'-":_]l 1/pi.
Suppose g; == s; —1/p; > Ofori < m and let g, = . Then for every sparse family
Sando > 1,

m—1 m—1
' 2 [Trotwiplef S L0lgpam [ [ IMAilLriy.  (5-11)
QES i=1 L /a(wm) i=1
provided that p is a monotonic increasing function on (1, 00), floo ldt < 00 and

pE (1)t
p(2t) < Cp(1) fort = 1.

Proof First we split S as follows
m—1 m—1
2 [Trowiplo=2_ 2 []x.etwiple.
QeS i=1 J QeS; i=1

where

(/@ pi)izm ()
JoM (ng))"‘Esz.

. J
Qe < 2 S( f —wl/(ap,
o 1li=1

Then one has

R|—

m—1
/ > ]_[Al-,g<w,»>SQ"1Q wy < Z/ > ]‘[ ki {wi) Wy
0eS i=1 QeS; i=1

Note that each term in the right-hand side of the preceding equation can be estimated
by

m—1
JOE a3 TTto) “am )
..... Fpoi i=1 OV, (Q)=F; i=1

Birkhauser



62 Page 28 of 42 Journal of Fourier Analysis and Applications (2021) 27:62

By subadditivity of the function x — x!/¢  this is bounded by
> T /(¥ T ato) .
Fi,..., Fp—1 i=1 ovj, JTJ(Q) F i=1

Therefore, Lemma 5.7 applied with s, = 1 gives

1 1
o 1

. m—1 1 1 m—1 @
/ Do [T rewidle meZLwJ}j T (]'[ |MA,-||LF;(,‘,,1>) :
Qes i=1 p(2)« \ig
St (1T )
= — | LB]2 . IMA Ly ) -
F p(20)e P i

Consequently

m—1 g « m—1
/ (Z ]‘[xi,Q<wi>S¢'1Q) wn | S (Z (;j),) LG, 5.pocm | | IMAllLri )
jopLe)e

QeS i=1 i=1

and (5.11) holds as desired. ]
Proof of Theorem 5.2 'We rewrite

m

Z(E<ﬁoi> ) 0

QeS

1A (Fo) o) = ‘

L Oms1)

A7
Form + 1, w; = 0j, Wyy1 =V, Aj,9 = ((ﬁ)g) ,si=r,anda = % = Z:":] ﬁ,
we have ¢; := r — r/p; and by Lemma 5.8

|5 (Fluiene) o
Qes

m
=16 )z ezt [ [1Mo fIni oy S 152 0] 5 fe. 2 mo H LA 0t o -

< |o,v]

~

L7 (v)

’!l‘\
3

Pt ]j|( Mo )N

i=1 i=1
Hence,
m i
IIAg(fcr)lle<u)—” (1‘[<ﬁ-a,->g) 0
QeS i=1 L7 )
1
SLEV 5es H 11127 o)
i=1
as we wanted to show. O
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6 Mixed Weak Type Estimates
The goal of this section is devoted to presenting the proof of Theorem 1.5. To this

end, we first establish a Coifman—Fefferman inequality with the precise Ao, weight
constant.

6.1 A Coifman-Fefferman Inequality

Theorem 6.1 Let o > 1. Then for every 0 < p < 0o and for every w € A,

- 1 -
1S (e S o™ (p+ Diwly  IMLrw)- (6.1)

e Sparse approach for p > 2. Considering (4.1), we are going to show that

> 1 >
IAZ(HllLrw) S (w3 IMHllrw, Yp=2. (6.2)
Without loss of generality, we shall assume that f; > 0,i = 1, ..., m. Note that
m
IAZ(DlZry = sup > 1"[<ﬁ>2gf gdww(Q)‘- (6.3)
0<geL®? ()| pesi=1 Q
\IgIIL(p/z)’(u,>:1

FixO0<ge LP/Y (w) with ||g||L<p/2>/(w) = 1. We are going to split the sparse family
in terms of principal cubes. Set

m
7(P) := n(fl-)%,][ gdw,
i=1 P
and consider F the family of maximal cubes of S. We define
o0
F = U]—',- and F; = U {P C O maximal : T(P) > 27(Q)}.
i=0 QeFiy
For this family of cubes, we have that

> ]"[<ﬁ>2Qf gdww(Q)

0eSi=1 Q

=y 1‘[<ﬁ->%f gdw Y w(Q)

PeFi=1 P 0eS:n(Q)=P

Slwlay, Y 1‘[<ﬁ>%f gdw w(P)

PeFi=1 P
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< fwla, /]R MP)(x)* Mug () wix)dx
S [wla M Loz 181 ooy ) - (6.4)

Thus, (6.3) and (6.4) immediately lead (6.2). O
° Mg approach. We next deal with the general case 0 < p < oo. Recall that the sharp
maximal function of f is defined by

1
ML (f)(x) := sup inf (7[ TR —c|dx)5.
0

xeQ ceR

It was proved in [41] that forevery 0 < p < oo and § € (0, 1),

1 1Lea) S (P + DIwlag M5 Lo ). (6.5)

Let ® be a fixed Schwartz function such that 159, 1)(x) < ®(x) < 1p(,2)(x). We

define
172
Sal ) = ( // =N (H)P n+1> . (6.6)

It is easy to verify that

Sa(F)(x) < Su(H)(x) < S20 (f)(x). (6.7)
We note here that
1Sa (P L1moo @y S @™ H £l 2t ey - (6.8)
j=1

In fact, by [2, Lemma 3.1] and the endpoint estimate for S, we get
1Sa (O meo @y < 1820 ()| L1/moo g,

S " ST O L1moogeny S @™ H 171 2t ey -

j=1

Now, combining (6.7), (6.5) and Lemma 6.2 below, we conclude that

1Se (OllLray = 18a(DllLra < 15’ ||L,,/z(w)
< (p+ Dlwl} 1M G (7 >||L,,/2(w)

S o™ (p + 1)[w]goo ||M(f)2||2p/2(w)
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=a™(p+ 1)[w ”M(f)”LP(w)
where we have used that for suitable choices of y,
MESa(HHx) S ™M), x e R
Hence to end the proof of Theorem 6.1, it remains to settle that pointwise estimate.

Lemma 6.2 Foreverya > 1and0 <y < ﬁ we have
MESu(HH @) S ™ MF(x)?, x € R" 6.9)

Proof Let x € Q. It suffices to show that for some co chosen later

- ( ][ 150 ()2 (x) — cQde)y <&M M(f) ()2 (6.10)
0

For acube Q C R",weset T(Q) = Q x (0, £(Q)). We then write

Se()2(x) = E(fHx) + F(NH(x),

where

E(H() = //
T20)

F(H(x) = // e
RIFNT(20)

Let us choose cg = F( f )(xp) where x is the center of Q. Then we have that

n+1 ’

)Wt(f)()’ﬂz t,,ﬁf

1
J S (][Q |E(f)(X)|de>V 4 (][Q IF(f)(x) B F(f)(xQ)Iydx>y e
©6.11)

Let us first focus on 7. Set ]?0 = (flo, ...,frg), fl.0 = fixop*, and fl.°° = fiXxo"e»

i=1,...,m,where Q* = 8Q. Then we have
E(H@) S EF)@) + Y B, .. f2), (6.12)

aEI()
where 7o := {¢ = (a1, ...,0y) : «; € {0,00}, and atleast one «; # 0}. Using

Kolmogorov’s inequality and (6.8), we have
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1 2
(][ |E<f°><x)|ydx)y < <][ |§a<f0>|2mx> &
0 0

m 2
S ”Sa(fo)”il/m,oo(Q dX) < (szn(l_[fé |f]|d.x) . (613)
j=1

On the other hand, for each @ € 7,

N V
E(F) )7 d fo
<][Q| (FO0) x) |Q|/” //m@ Y0Pt a

n ro 2 y
IQI //T(zg)(at) 1Y (f )(y)l

since [, ®(=2)dx < cu(at)". By size estimate, for y € 20 and a € Zp, one has

5 oo
|w,<f°‘>(y>|<<e(tQ)) "5(1"[ f Ifjldx> (6.15)

Then, (6.14) and (6.15) give that for every « € 7y,

(6.14)

<][Q|E<f“)<x>|ydx)V
oo m 2 n 28
51 ] o )
N[,g Jli[l 2kQ|fl| 101 JJT20) \€(Q) o
00 m 2
oS, )]
o] m . 2
5&22"“‘(]’[][ |f,-|dx), (6.16)
k=0 j=172"¢

where the Cauchy-Schwarz inequality was used in the last inequality. Gathering (6.12),
(6.13) and (6.16), we obtain
Ji S "M, (6.17)

To complete the proof it remains to provide a bound for 7;. From [2, eq. (4.6)], we
have that for any x € Q,

F(F)) — F(P o)l < a2"1"22—’<6<]‘[ ][ | f,ldx) L 68
k=0
Hence, (6.10) is a consequence of (6.11), (6.17) and (6.18). O

Birkhauser



Journal of Fourier Analysis and Applications (2021) 27:62 Page330f42 62

6.2 Proof of Theorem 1.5

In view of (3.6) and A > 2m, it is enough to present the proof of (1.10). We use a
hybrid of the arguments in [15] and [35]. Define

o0

J
Rice) = 3° 1),

i )
=0 2/Kj

where Ky > O will be chosen later and 7, f(x) := M(fu)(x)/u(x) if u(x) # 0,
T, f (x) = 0 otherwise. It immediately yields that

h<Rh and T,(Rh) < 2KoRh. (6.19)

Moreover, we claim that for some r > 1,

1
Rh-uvn’ € Ase and |RA|| o< 20h] (6.20)

The proofs will be given at the end of this section.

Note that
1F sy = 1F 1 prcoqys O < Pog < 0. (6.21)

This implies that

L
mr

Sa(f)

v

1 1
Lm®(yym)

~ H(Sa(f)>nfr
- v

< sup 1So (F) ()| RAGe)u () (x) o dix.
(17211 1 =1JR?

L’/J(uvﬁ)

1S DI R dx

L= sup
L7 (yym) Al 1 =1
L o)

Invoking Theorem 6.1 and Holder’s inequality, we obtain

/]R [Se (f)(x)| %Rh(X)u(x)v(x)ﬁdx

5/ M(.I?)(X)#Rh(x)u(x)v(x)ﬁdx
Rﬂ

= / (M) " Rh G )v(x) s dx
n v(x)

P
< H (M) " IR
v

1
/ =
L7 (v ) LY uum)
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’M(f)

] Al

1
Lhory L @)

where we used (6.21) and (6.20) in the last inequality. Here we need to apply the
weighted mixed weak type estimates for M proved in Theorems 1.4 and 1.5 in [35].
Consequently, collecting the above estimates, we get the desired result

m
‘ l_[”fi”Ll(w,-)'
i=1

It remains to show our foregoing claim (6.20). The proof follows the same scheme
of that in [15]. For the sake of completeness we here give the details. Together with

Sa(f) M)

v

1 1.~ ’ 1
L (yym) L™ ()

Lemma 2.2, the hypothesis (1) or (2) indicates thatu € A and v% € Axo. The former
implies that

<
151y < 0 00 - (622)
1
The latter yields that v € Ay, for some go > 1. It follows from A, factorization
theorem that there exist vy, vo € A such that v% = vlvé_qo.

Additionally, it follows from Lemma 2.3 in [15] that if vj, v € Aj, then there
exists €y = €o([v1]a;, [v2]a,) € (0, 1) such that viu§ € A, and vou§ € A, for any
q0—1
0<e<epu €Ay anduy € Ap,, 1 < py, p2 < 0. Thenuv2 e A if we set
po > 1+ (g0 — 1)/€p. Thus, we have

a-1 . j_
_ 1 i Po
u “Poym = vl<u02’}° ) € Apy.

It immediately implies that

1T fl = M (fuw)] cllfl 1 (6.23)

LPO (uv LPo(u'~ POy ) - LPO (uy)

By (6.22), (6.23) and Marcinkiewicz interpolation in [15, Proposition A.1], we have
T, is bounded on LP-! (uv%) for all p € (po, co) with the constant

k=2 (o= ) )

and ¢ := [v]4,. Note that K (p) is decreasing with respect to p. Hence, we obtain

1Tl N sy < KOUS U+ VP 2 2000 (624)

where K := 4po(c1 + ¢2) > K(2po) > K(p).
The inequality (6 19) indicates that Rh - u € Ay with [Rh - u]a, < 2Kp. Let
0<e< mln{eo, } andr = ( ). Then (Rh- u)vi € Ay, and the second inequality
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in (6.20) follows from (6.24). By A, factorization theorem again, we obtain

L 1—[(go—1)e+1
Rh - uvm’ = [(Rh-u)v§]-vy OV H e a1 1) C An.

The proof is complete. O

7 Local Decay Estimates

To show Theorem 1.6, we need the following Carleson embedding theorem from [26,
Theorem 4.5].

Lemma 7.1 Suppose that the sequence {ag}gep of nonnegative numbers satisfies the
Carleson packing condition

> ag = Aw(Qo). YQo € D.
0eD:0CQo

Then for all p € (1,00) and f € L?(w),

1
1 P\ 7P 1
aQ(TQ)/Qfmw dx) ) < AP f Lo q)-

(

QeD

We also need a local version of Coifman-Fefferman inequality with the precise A,
norm.

Lemma7.2 Foreveryl < p <ooandw € Aj,, we have

- 1 -

||Sa(f)||L2(Q,w) = Cn,pamn[w]ip ||M(f)||L2(Q,w), (7.1)
> c 1 >

185Dl = T—mmt=zmyz W14, IMD 200, (7.2)

Sfor every cube Q and f; € LY withsupp f; C Q (j =1,...,m).

Proof Let w € A, with 1 < p < oo. Fix a cube O C R". Recall the definition of
Sy in (6.6). Pick 0 < € < 5o By (2.1), Kolmogorov’s inequality, (6.8) and f; € LY

2m*

withsupp f; C Q, j =1,...,m, we have
. << 2 << 2N 012
M5, (Q) S I8P ety S Wa DI e, )

m 2
< 2mn f id ) < 2mn f M = 27
S <i|_1| Qlfl x) so7 inf (fHx)
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which implies that
mga(f)z(Q)w(Q)saz’"”/QM(f)(x)zw(x)dx. (7.3)

On the other hand, from [2, Proposition 4.1], one has for every cube Q’,
N 00 _ m 2
o1 (S (/)% Q) Sa®™y " 27i% ( [1 ][ _ Iﬁ(yi)ldyi)
j=0 i=172'Q
Oo .
SNy 27 inf M(f)? S o™ inf M7, (T4)

= 0 0

where 0 < §y < min{$, %}. Thus, together with (7.3) and (7.4), the estimate (2.2)

appliedto Qg = Q and f = 50, ( f )? gives that

1S (P20, S M5, 72 (@QWQ + Y @pn2(Sal( )% QHw(Q)
Q'eS(Q)

5a2mn||M(f)||i2(Q’w)+a2mn Z in/fM(J?)zw(Q/)-
0'eS(0)

From this and (6.7), we see that to obtain (7.1), it suffices to prove

Y inf MO W) S [wla, IMDNF2g. - (7.5)
Q'eS(Q)

Recall that a new version of A, was introduced by Hytonen and Pérez [26]:

1
[w]y  :=su

—_— M(wl dx.
- 1= SUP w(Q)/Q (wlg)(x)dx

By [26, Proposition 2.2], there holds
enlwly, < [wlay, < [wla,. (7.6)

Observe that for every Q" € D,
Yoo w@)= Y weldls D] inf M (wlgn)|Eg/
0'eS5(0):0'cQ” Q'eS5(0):0'cQ” Q'eS(0):0'cQ”

< o Mwlgn)(x)dx < [w]y w(Q") < [wla,w(Q"),

where we used the disjointness of {E g/} ges(p) and (7.6). This shows that the col-
lection {w(Q")}pres(g) satisfies the Carleson packing condition with the constant
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cplwla b As a consequence, this and Lemma 7.1 give that

> mfM(Dw@) s Y ( 1

2
M(f) ledx) w(Q)
A
0'e5(0) vesio V(@) e
S [wla, IM(H101720,, = [wla, IMH10070 0
where the above implicit constants are independent of [w] 4 » and Q. This shows (7.5)
and completes the proof of (7.1).

Finally, the estimate (7.2) immediately follows from (7.1) and the fact that

Z(HW < S1H+ 327 Sy (Hx).
k=0
This completes the proof.

O
Proof of Theorem 1.6 Let p > landr > 1be chosen later. Define the Rubio de Francia
algorithm:

0]

h:Z MFn

k k ’
kM,

Then it is obvious that

h <Rh and “Rh”Lr/(Rn) =< 2||h”Lr’(Rn)~ (7.7
Moreover, for any nonnegative h € Lr/(R”), we have that Rh € A; with
[Rh]Al = 2||M||Lr’_)Lr’ =cpr. (7.8)

By Riesz representation theorem and the first inequality in (7.7), there exists some
nonnegative function 2 € L (Q) with ||a]| ) = 1 such that

1 - - 1
Fo = lx € 0:Sa(f)x) > M7

lx € Q1 Sa(H)? > PM(H)H
s 2
1 <sa<{))
MPH) o

<5
< 1218 (O 7200y

<

<z, Su(F)? h M(f)2dx

(7.9)
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where w = wlw;_p, wi = Rh and wy = M(F)2?'=D. Recall that the m-linear
version of Coifmann—Rochberg theorem [40, Lemma 1] asserts that

) ) 1
[(MF)°1a, < — S V8 e ). (7.10)
m

“1-m

In view of (7.8) and (7.10), we see that w1, wy € A; provided p > 2m + 1. Then the
reverse A, factorization theorem gives that w = w; wé_p € A, with

[wla, < [wila, lwaly, ' <cor. (7.11)

Thus, gathering (7.1), (7.9) and (7.11), we obtain

Q~i—

Fo < ent 2@ wla, IMD7200 0,
= cat 2™ [wla, IR 110

_ 1
< et 2@ [wla, IRl )| O
— 1
< et 2@ [wla, Ikl )1 Q17
1
< cprt2Q?"M Q|7 .

2

Consequently, if t > ,/c,e ™", choosing r > 1 so that t? /e = c,a’™"r, we have

2

.
Fo < (™' ri) 10l = e7"|Q| = ¢ @™ |Q). (7.12)

If0 <t < . /c,ea™", it is easy to see that

2

Fo <0l <e-e we®|Q]. (7.13)

Summing (7.12) and (7.13) up, we deduce that

Fo =llx € 0: Su(Hx) > tMP @)Y < cre 2 #"" 10), Vi > 0.

This proves (1.12).
To obtain (1.13), we use the same strategy and (7.2) in place of (7.1). O

Next we present another proof of Theorem 1.6. In view of (4.1) and (4.2), following
the approach in [42], it suffices to prove the following.

Lemma7.3 There exist c; > 0 and ca > 0 such that for every sparse family S C D
and for every cube Qy,

l{x € Qo : AR(F) > LMD < c1e™2 Q).
where f = (f1,..., fm) are supported on Q.
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Proof Fix a sparse family S C D and a cube Q. First we observe that

K= € Qo A5 > tMDN = |fx € 002 Y- [TUAG > M.
QeSi=I

Now we consider the family of at most 3" cubes Q; € D such that |Q ;| ~ |Qo| and
|Q; N Qol > 0. We have that adding those cubes to S it remains a sparse family, we
shall assume then that Q; € S. For such Q ;, we define

/(=Y J[Uhibsle and T7(H):= Y [[Ufibsle.

0eS:0cQ; i=l1 0eS:020Q; i=1
Then, one has

K < i‘{x € 0;: T/ (H + T = PP
j=l
33 [ i atm < 3

j=1i=1 j=1

We recall that in [41, Theorem 2.1], it was established that

{x eQ: Z 1o/(x) > t}

Q'eS, Q'cQ

<ce 0|, VO. (7.14)

For IC} , taking into account (7.14), we obtain

Kl <

—at? ~ . —at?
! < ™[] = ce™|Qy.

{x €Qj: Z Io(x) > c,,tz}

0e8.0CQ;

For IC}, since f is supported in Q¢, we deduce that

K3 < || e 0 THF 100 = e TTAAND, |
i=1

freo s X (TT10dn2) 100 = )|

=<
0e8,020; i=I
o

< {x €Q; :22_2’” > c,,t2H.
j=1
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Observe that if ¢ is large enough, then

e¢]

Hx €Q; :2272"”' > cntzH =0.
Jj=1
Consequently,
2
K5 < e 1Qol.
We are done. O
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