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Abstract
The goal of this note is to establish non-tangential convergence results for Schrödinger
operators along restricted curves. We consider the relationship between the dimension
of this kind of approach region and the regularity for the initial data which implies con-
vergence. As a consequence, we obtain an upper bound for p such that the Schrödinger
maximal function is bounded from Hs(Rn) to L p(Rn) for any s > n

2(n+1) .
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1 Introduction

The solution to the Schrödinger equation

iut − �u = 0, (x, t) ∈ R
n × R

+, (1.1)
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with initial datum u (x, 0) = f , is formally written as

eit� f (x) :=
∫
Rn

ei
(
x ·ξ+t |ξ |2) f̂ (ξ) dξ.

The problem about finding optimal s for which

lim
t→0+ eit� f (x) = f (x) a.e. (1.2)

whenever f ∈ Hs (Rn) ,was first considered by Carleson [4], and extensively studied
by Sjölin [20] and Vega [21], who proved independently the convergence for s > 1/2
in all dimensions. Dahlberg–Kenig [8] showed that the convergence does not hold for
s < 1/4 in any dimension. In 2016, Bourgain [3] gave a counterexample showing that
convergence can fail if s < n

2(n+1) . Very recently, Du–Guth–Li [9] and Du–Zhang
[11] obtained the sharp results by the polynomial partitioning and decoupling method.

It is very interesting to consider whether a.e. convergence results mentioned above
still hold true if we replace the vertical line by a wider approach region, such as non-
tangential convergence to the initial data. In fact, Sjölin-Sjögren [19] constructed a
function f ∈ H

n
2 (Rn) such that

lim sup
(y,t)→(x,0)

|x−y|<γ (t),t>0

|eit� f (y)| = ∞,

for all x ∈ R
n , where γ is strictly increasing and γ (0) = 0. This indicates the failure of

non-tangential convergence for s ≤ n/2. Comparing the previous results along vertical
line, one can observe that to guarantee a.e. existence of the non-tangential limit, it is
necessary to require more regularity on the initial data. Therefore, in [6], the authors
tried to seek the relationship between the approach region and the required Sobolev
regularity of the initial data. More concretely, let �x,t = {x + tθ : θ ∈ �}, where
t ∈ [−1, 1], � is a given compact set inR1. In [6], they proved that the corresponding
non-tangential convergence result holds for s >

β(�)+1
4 , here β(�) denotes the upper

Minkowski dimension of�. This result in [6] was established by the T T 	 method and
a time localizing lemma. Recently, by getting around the key localizing lemma in [6],
Shiraki [18] generalized this result to a wider class of equations which includes the
fractional Schrödinger equation.

However, the above question remains open in R
n (n ≥ 2) until recently. In this

article, we consider the non-tangential convergence problem along the set of points in
R
n × R given by {(y, t) : y ∈ �x,t } for each t ∈ [0, 1], where

�x,t = {γ (x, t, θ) : θ ∈ �}

for a given compact set� inRn . γ is a map fromR
n ×[0, 1]×� toRn , which satisfies

γ (x, 0, θ) = x for all x ∈ R
n , θ ∈ �, and the following (C1)–(C3) hold:
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Fig. 1 � = {2, 5/2, · · · , 3 − 1/k, · · · , 3 : k = 1, 2, · · · }

(C1) For fixed t ∈ [0, 1], θ ∈ �, γ has at least C1 regularity in x , and there exists
a constant C1 ≥ 1 such that for each x, x ′ ∈ R

n , θ ∈ �, t ∈ [0, 1],

C−1
1 |x − x ′| ≤ |γ (x, t, θ) − γ (x ′, t, θ)| ≤ C1|x − x ′|; (1.3)

(C2) There exists a constant C2 > 0 such that for each x ∈ R
n , θ ∈ �, t, t ′ ∈ [0, 1],

|γ (x, t, θ) − γ (x, t ′, θ)| ≤ C2|t − t ′|; (1.4)

(C3) There exists a constant C3 > 0 such that for each x ∈ R
n , t ∈ [0, 1], θ, θ ′ ∈ �,

|γ (x, t, θ) − γ (x, t, θ ′)| ≤ C3|θ − θ ′|. (1.5)

We consider the relationship between the dimension of� and the optimal s for which

lim
(y,t)→(x,0)

y∈�x,t

ei t� f (y) = f (x) a.e. (1.6)

whenever f ∈ Hs (Rn).
We first give two examples for �x,t . It is not hard to check that all the conditions

mentioned above can be satisfied if we take (E1): γ (x, t, θ) = x + tθ , where � is a
compact subset of the unit ball inRn . When n = 1, this is just the problem considered
in [6]. Another example is (E2): γ (x, t, θ) = x + tθ , where tθ = (tθ1, tθ2 , · · ·, tθn )
for θ = (θ1, θ2, · · · , θn) ∈ �. Here, � is a compact subset in the first quadrant away
from the axis of Rn . For this example, it is worth to mention that when θ is fixed,
Lee–Rogers [14] have obtained that the convergence along the curve (γθ (x, t), t) is
equivalent to the convergence along the vertical line.

In order to characterize the size of�, we introduce the so called logarithmic density
or upper Minkowski dimension of �,

β(�) = lim sup
δ→0+

logN (δ)

−logδ
,

where N (δ) is the minimum number of closed balls of diameter δ to cover �. It is not
hard to see that when � is a single point, β(�) = 0; when � is a compact subset of
R
n with positive Lebesgue measure, β(�) = n.
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Fig. 2
⋃

t∈[0,1/2]{(y, t) : y ∈ �x,t } consists of all black points where �x,t = {x + tθ , θ ∈ �}. For
every layer t = t0, there are countable black points corresponding to �. We try to seek the optimal s for
which eit� f (y) → f (x) along different green-paths whose points are from

⋃
t∈[0,1/2]{(y, t) : y ∈ �x,t }

whenever f ∈ Hs

By standard arguments, in order to obtain the convergence result, it is sufficient to
establish the bounded estimates for the maximal operator defined by

sup
(t,θ)∈(0,1)×�

|eit� f (γ (x, t, θ))|.

Our main results are as follows. Firstly, we show the following main result in general
dimensional case.

Theorem 1.1 Let n ≥ 1. Suppose that there exists p ≥ 2 such that for any s > n
2(n+1) ,

∥∥∥∥ sup
0<t<1

|eit� f (x)|
∥∥∥∥
L p(B(0,1))

≤ Cs‖ f ‖Hs (Rn) (1.7)

whenever f ∈ Hs(Rn). If γ satisfies (C1)-(C3), then for a given B(x0, R) ⊂ R
n and

any s >
β(�)
p + n

2(n+1) , it holds that

∥∥∥∥ sup
(t,θ)∈(0,1)×�

|eit� f (γ (x, t, θ))|
∥∥∥∥
L p(B(x0,R))

≤ C‖ f ‖Hs (Rn) (1.8)

whenever f ∈ Hs(Rn). Here, the constant C depends on s, C1, C2, C3, and the choice
of B(x0, R), but does not depend on f .
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Theorem 1.1 implies that if (1.7) holds for some p ≥ 2 whenever f ∈ Hs(Rn) for
any s > n

2(n+1) , then for any s >
β(�)
p + n

2(n+1) ,

lim
(y,t)→(x,0)

y∈�x,t

ei t� f (y) = f (x) a.e. (1.9)

whenever f ∈ Hs(Rn). We briefly sketch the proof of Theorem 1.1, and leave the
details to Sect. 2. We decompose � into small subsets {�k} with bounded overlap,
where the size of each �k is small enough so that our problem can be reduced to
estimate the maximal function for Schrödinger operator along certain curves, i.e. the
maximal operator defined by

sup
t∈(0,1)

|eit� f (γ (x, t, θ0k )| (1.10)

for some θ0k ∈ �k . The number of �k is determined by β(�). In order to get the
bounded estimate for maximal function defined by (1.10), we need inequality (1.7).
The idea to establish the bounded estimate formaximal functiondefinedby (1.10) using
inequality (1.7) comes from the method adopted by Lee–Rogers [14] to show equiv-
alence between convergence result for Schrödinger operators along smooth curves
and vertical lines. However, we should be more careful since we need an estimate
uniformly in k. In our case, this can be realized since � is compact.

When n = 2, Du–Guth–Li [9] proved that for any s > 1/3, inequality (1.7) holds
for any function f ∈ Hs(R2) with p = 3. Therefore, combining with Theorem 1.1,
we obtain the following theorem.

Theorem 1.2 When n = 2 and γ satisfies (C1)–(C3),

(1) for a given B(x0, R) ⊂ R
2, it follows that for any s >

β(�)+1
3 ,

∥∥∥∥ sup
(t,θ)∈(0,1)×�

|eit� f (γ (x, t, θ))|
∥∥∥∥
L3(B(x0,R))

≤ C‖ f ‖Hs (R2) (1.11)

whenever f ∈ Hs(R2), where the constant C depends on s, C1, C2, C3, and the
choice of B(x0, R), but does not depend on f ;

(2) as a consequence of (1), we have

lim
(y,t)→(x,0)

y∈�x,t

ei t� f (y) = f (x) a.e. (1.12)

whenever f ∈ Hs(R2) for each s >
β(�)+1

3 .

We notice that the convergence result obtained in Theorem 1.2 is sharp when
β(�) = 0 ( [9] and [3]) or β(�) = 2 ( [19]). It is quite interesting to seek whether
(1.12) is sharp when 0 < β(�) < 2.
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When n ≥ 3, then it comes to the question about what is the largest possible value
for p such that (1.7) holds for any s > n

2(n+1) . This question is still open to our best
knowledge, but combining with the counterexample given by Sjölin-Sjögren [19], we
get an upper bound for p.

Theorem 1.3 For general positive integer n, if there exists p ≥ 2 such that for any
s > n

2(n+1) , (1.7) holds whenever f ∈ Hs(Rn), then p ≤ 2(n+1)
n .

The upper bound given by Theorem 1.3 is sharp for n = 1 ( [4]) and n = 2 ( [9]).
In [11], it was proved that (1.7) holds for p = 2 when n ≥ 3. There is a gap between
2 and 2(n+1)

n , then there may still be margin to improve for n ≥ 3. Also, combining
the result of [11] with Theorem 1.1, we have the following theorem.

Theorem 1.4 When n ≥ 3, if s >
β(�)
2 + n

2(n+1) , then

lim
(y,t)→(x,0)

y∈�x,t

ei t� f (y) = f (x) a.e.

whenever f ∈ Hs(Rn).

What’s more, by parabolic rescaling and time localizing lemma, inequality (1.7) is
equivalent to

∥∥∥∥ sup
0<t<λ

|eit� f (x)|
∥∥∥∥
L p(B(0,λ))

≤ Cελ
n( 1

p − n
2(n+1) )+ε‖ f ‖L2(Rn) (1.13)

whenever supp f̂ ⊂ {ξ ∈ R
n : |ξ | ∼ 1}, where λ � 1. The range of p has been

discussed in Du–Kim–Wang–Zhang [10], but the optimal range of p is still unknown.
ConventionsThroughout this article, we shall use the well known notation A � B,

which means if there is a sufficiently large constant G, which does not depend on the
relevant parameters arising in the context in which the quantities A and B appear, such
that A ≥ GB. We write A ∼ B, and mean that A and B are comparable. By A � B
we mean that A ≤ CB for some constant C independent of the parameters related to
A and B. Given Rn , we write B(0, 1) instead of the unit ball Bn(0, 1) in Rn centered
at the origin for short, and the same notation is valid for B(x0, R).

2 Proofs of Theorem 1.1 and Theorem 1.2

Proof of Theorem 1.1 In order to prove Theorem 1.1, using Littlewood-Paley decom-
position, we only need to show that for f with supp f̂ ⊂ {ξ ∈ R

n : |ξ | ∼ λ}, λ � 1,

∥∥∥∥ sup
(t,θ)∈(0,1)×�

|eit� f (γ (x, t, θ))|
∥∥∥∥
L p(B(x0,R))

≤ Cλs0+ε‖ f ‖L2 , ∀ε > 0, (2.1)

where s0 = β(�)
p + n

2(n+1) .
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We decompose � into small subsets {�k} such that � = ∪k�k with bounded
overlap, where each�k is contained in a closed ball with diameter λ−1. Then we have

1 ≤ k ≤ λβ(�)+ε. (2.2)

Under the assumption of Theorem 1.1, we claim that for each k,

∥∥∥∥ sup
(t,θ)∈(0,1)×�k

|eit� f (γ (x, t, θ))|
∥∥∥∥
L p(B(x0,R))

≤ Cλ
n

2(n+1) + (p−1)ε
p ‖ f ‖L2 . (2.3)

Then we have

∥∥∥∥ sup
(t,θ)∈(0,1)×�

|eit� f (γ (x, t, θ))|
∥∥∥∥
L p (B(x0,R))

≤
(∑

k

∥∥∥∥ sup
(t,θ)∈(0,1)×�k

|eit� f (γ (x, t, θ))|
∥∥∥∥
p

L p (B(x0,R))

)1/p

≤ C

(∑
k

λ

np
2(n+1) +(p−1)ε‖ f ‖p

L2

)1/p

≤ Cλ

β(�)
p + n

2(n+1) +ε‖ f ‖L2 ,

which implies inequality (2.1).
Now we are left to prove inequality (2.3). For this goal, we first show the following

Lemma 2.1. The original idea comes from Lemma 2.2 in [14].

Lemma 2.1 Assume that g is a Schwartz functionwhoseFourier transform is supported
in {ξ ∈ R

n : |ξ | ∼ λ}. If

|θ − θ ′| ≤ λ−1,

then for each x ∈ B(x0, R) and t ∈ (0, 1),

|eit�g(γ (x, t, θ))| ≤
∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣
∫
Rn

ei[γ (x,t,θ ′)+ l
λ
]·ξ+i t |ξ |2 ĝ(ξ)dξ

∣∣∣∣, (2.4)

where the constant C depends on n and C3 in inequality (1.5).

Proof We introduce a cut-off function φ which is smooth and equal to 1 on B(0, 2)
and supported on (−π, π)n . After scaling we have

eit�g(γ (x, t, θ)) = λn
∫
Rn

eiλγ (x,t,θ)·η+i t |λη|2φ(η)ĝ(λη)dη

= λn
∫
Rn

eiλγ (x,t,θ)·η−iλγ (x,t,θ ′)·η+iλγ (x,t,θ ′)·η+i t |λη|2φ(η)ĝ(λη)dη.

(2.5)

Since it follows by inequality (1.5),

λ|γ (x, t, θ) − γ (x, t, θ ′)| ≤ C3,
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then by the Fourier expansion,

φ(η)eiλ[γ (x,t,θ)−γ (x,t,θ ′)]·η =
∑
l∈Zn

cl(x, t, θ, θ ′)eil·η,

where

|cl(x, t, θ, θ ′)| ≤ C

(1 + |l|)n+1

uniformly for each l ∈ Z
n , x ∈ B(x0, R) and t ∈ (0, 1). Then we have

|eit�g(γ (x, t, θ))| ≤
∑
l∈Zn

Cλn

(1 + |l|)n+1

∣∣∣∣
∫
Rn

eil·η+iλγ (x,t,θ ′)·η+i t |λη|2 ĝ(λη)dη

∣∣∣∣

=
∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣
∫
Rn

ei
l
λ
·ξ+iγ (x,t,θ ′)·ξ+i t |ξ |2 ĝ(ξ)dξ

∣∣∣∣,

then we arrive at (2.4). ��
By the similar argument, we can prove the following lemma.

Lemma 2.2 Assume that g is a Schwartz functionwhoseFourier transform is supported
in {ξ ∈ R

n : |ξ | ∼ λ}. If

|t − t ′| ≤ λ−1,

then for each x ∈ B(x0, R) and θ ∈ �,

|eit�g(γ (x, t, θ))|
≤

∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣
∫
Rn

ei[γ (x,t ′,θ)+ l
λ
]·ξ+i t |ξ |2 ĝ(ξ)dξ

∣∣∣∣, (2.6)

where the constant C depends on n and C2 in inequality (1.4).

We now prove inequality (2.3). For fixed k, by the construction of �k , there is a
θ0k ∈ �k such that

|θ − θ0k | ≤ λ−1

holds for each θ ∈ �k . Then according to Lemma 2.1, for each x ∈ B(x0, R),
t ∈ (0, 1) and θ ∈ �k , we have

|eit� f (γ (x, t, θ))| ≤
∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣
∫
Rn

eiγ (x,t,θ0k )·ξ+i t |ξ |2ei
l
λ
·ξ f̂ (ξ)dξ

∣∣∣∣
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=
∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣
∫
Rn

eiγ (x,t,θ0k )·ξ+i t |ξ |2 f̂ lλ(ξ)dξ

∣∣∣∣

=
∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣eit� f lλ(γ (x, t, θ0k ))

∣∣∣∣, (2.7)

where

f̂ lλ(ξ) = ei
l
λ
·ξ f̂ (ξ).

It follows that
∥∥∥∥ sup

(t,θ)∈(0,1)×�k

|eit� f (γ (x, t, θ))|
∥∥∥∥
L p(B(x0,R))

≤
∑
l∈Zn

C

(1 + |l|)n+1

∥∥∥∥ sup
(t,θ)∈(0,1)×�k

|eit� f lλ(γ (x, t, θ0k ))|
∥∥∥∥
L p(B(x0,R))

=
∑
l∈Zn

C

(1 + |l|)n+1

∥∥∥∥ sup
t∈(0,1)

|eit� f lλ(γ (x, t, θ0k ))|
∥∥∥∥
L p(B(x0,R))

≤
∑
l∈Zn

C

(1 + |l|)n+1 λ
n

2(n+1) + (p−1)ε
p ‖ f lλ‖L2

≤ λ
n

2(n+1) + (p−1)ε
p ‖ f ‖L2 , (2.8)

provided that we have proved the following lemma.

Lemma 2.3 Under the assumption of Theorem 1.1, if g is a Schwartz function whose
Fourier transform is supported in the annulus {ξ ∈ R

n : |ξ | ∼ λ}. Then for each k,

∥∥∥∥ sup
t∈(0,1)

|eit�g(γ (x, t, θ0k ))|
∥∥∥∥
L p(B(x0,R))

≤ Cλ
n

2(n+1) + (p−1)ε
p ‖g‖L2 , (2.9)

where the constant C is independent of k.

Now let’s turn to prove Lemma 2.3. The following theorem is required.

Theorem 2.1 ( [14]) Let ρ : Rn+1 → R
n, q, r ∈ [2,+∞], λ ≥ 1, supp ν ⊂ [−2, 2],

λ ≥ ‖1‖1/n
Lq

μLrν
, and suppose that

sup
x∈supp(μ),t∈supp(ν)

|ρ(x, t)| ≤ M,

where M > 1. Suppose that for a collection of boundedly overlapping intervals I of
length λ−1, there exists a constant C0 > 1 such that

‖eit� f (ρ(x, t))‖Lq
μLrν (I ) ≤ C0‖ f ‖L2(Rn)
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whenever f̂ is supported in {ξ ∈ R
n : |ξ | ∼ λ}. Then there is a constant Cn > 1 such

that

‖eit� f (ρ(x, t))‖Lq
μLrν (∪I ) ≤ CnM

1/2C0‖ f ‖L2(Rn)

whenever f̂ is supported in {ξ ∈ R
n : |ξ | ∼ λ}.

Notice that in our case, for each k, we have

sup
(x,t)∈B(x0,R)×(0,1)

|γ (x, t, θ0k )|
≤ sup

(x,t,θ)∈B(x0,R)×(0,1)×�

|γ (x, t, θ)|.

By inequality (1.4), for each (x, t, θ) ∈ B(x0, R) × (0, 1) × �,

|γ (x, t, θ) − γ (x, 0, θ)| ≤ C2,

then |γ (x, t, θ)| is uniformly bounded for (x, t, θ) ∈ B(x0, R) × (0, 1) × �, and the
upper bound is determined by C2 and the choice of B(x0, R), but independent of k.

Therefore, according to Theorem 2.1, in order to prove Lemma 2.3, we only need
to show that for each interval I ⊂ (0, 1) of length λ−1, and any function g such that
ĝ is supported in {ξ ∈ R

n : |ξ | ∼ λ}, we have
∥∥∥∥sup
t∈I

|eit�g(γ (x, t, θ0k ))|
∥∥∥∥
L p(B(x0,R))

≤ Cλ
n

2(n+1) + (p−1)ε
p ‖g‖L2 . (2.10)

Since I is an interval of length λ−1, there exists t0I ∈ I such that for each t ∈ I ,

|t − t0I | ≤ λ−1.

Then by Lemma 2.2, for each x ∈ B(x0, R), t ∈ I , we have

|eit�g(γ (x, t, θ0k ))|
≤

∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣
∫
Rn

eiγ (x,t0I ,θ
0
k )·ξ+i t |ξ |2ei

l
λ
·ξ ĝ(ξ)dξ

∣∣∣∣

=
∑
l∈Zn

C

(1 + |l|)n+1

∣∣∣∣eit�glλ(γ (x, t0I , θ
0
k ))

∣∣∣∣,
(2.11)

where

ĝlλ(ξ) = ei
l
λ
·ξ ĝ(ξ).
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It follows that
∥∥∥∥sup
t∈I

|eit�g(γ (x, t, θ0k ))|
∥∥∥∥
L p(B(x0,R))

≤
∑
l∈Zn

C

(1 + |l|)n+1

∥∥∥∥sup
t∈I

|eit�glλ(γ (x, t0I , θ
0
k ))|

∥∥∥∥
L p(B(x0,R))

. (2.12)

For each t0I , θ0k , γt0I ,θ
0
k
is at least C1 from R

n to R
n . By inequality (1.3), for each

x ∈ R
n ,

C−1
1 ≤ |∇xγ (x, t0I , θ

0
k )| ≤ C1.

By the same reason, for each x ∈ B(x0, R),

|γ (x, t0I , θ
0
k ) − γ (x0, t

0
I , θ

0
k )| ≤ C1R,

which implies γt0I ,θ
0
k
(B(x0, R)) ⊂ B(γ (x0, t0I , θ

0
k ),C1R). Therefore, changes of vari-

ables and inequality (1.7) imply that

∥∥∥∥sup
t∈I

|eit�glλ(γ (x, t0I , θ
0
k ))|

∥∥∥∥
L p(B(x0,R))

≤ Cλ
n

2(n+1) + (p−1)ε
p ‖glλ‖L2 . (2.13)

Combining inequality (2.12) with inequality (2.13), we have

∥∥∥∥sup
t∈I

|eit�g(γ (x, t, θ0k ))|
∥∥∥∥
L p(B(x0,R))

≤
∑
l∈Zn

C

(1 + |l|)n+1 λ
n

2(n+1) + (p−1)ε
p ‖glλ‖L2

≤ Cλ
n

2(n+1) + (p−1)ε
p ‖g‖L2 . (2.14)

This completes the proof of Lemma 2.3.

Proof of Theorem 1.2 We only need to prove that (1) implies (2). The proof is quite
standard. We write the details for completeness. Let s >

β(�)+1
3 , and f ∈ Hs(R2).

For a fixed λ > 0, choose g ∈ C∞
c (R2) such that

‖ f − g‖Hs (R2) ≤ λε1/3

2C
,

where the constant C is the constant in inequality (1.11), which follows

∣∣∣∣
{
x ∈ B(x0, R) : sup

(t,θ)∈(0,1)×�

|eit�( f − g)(γ (x, t, θ))| >
λ

2

}∣∣∣∣
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≤ 23

λ3

∥∥∥∥ sup
(t,θ)∈(0,1)×�

|eit�( f − g)(γ (x, t, θ))|
∥∥∥∥
3

L3(B(x0,R))

≤ 23C3

λ3
‖ f − g‖3Hs (R2)

≤ ε. (2.15)

Moreover,

lim
(y,t)→(x,0)

y∈�x,t

ei t�g(y) = g(x) (2.16)

uniformly for x ∈ B(x0, R). Indeed, for each x ∈ B(x0, R),

lim sup
(y,t)→(x,0)

y∈�x,t

|eit�g(y) − g(x)| ≤ lim sup
(y,t)→(x,0)

y∈�x,t

|eit�g(y) − eit�g(x)| + lim sup
(y,t)→(x,0)

y∈�x,t

|eit�g(x) − g(x)|

= lim sup
(y,t)→(x,0)

y∈�x,t

|eit�g(y) − eit�g(x)| + lim sup
t→0+

|eit�g(x) − g(x)|. (2.17)

By mean value theorem and inequality (1.4), we have

|eit�(g)(γ (x, t, θ)) − eit�g(x)| ≤ t
∫
R2

|ξ ||ĝ(ξ)|dξ, (2.18)

and

|eit�g(x) − g(x)| ≤ t
∫
R2

|ξ |2|ĝ(ξ)|dξ . (2.19)

Inequalities (2.17) - (2.19) imply (2.16).
By (2.15) and (2.16) we have

∣∣∣∣
{
x ∈ B(x0, R) : lim sup

(y,t)→(x,0)
y∈�x,t

|eit�( f )(y) − f (x)| > λ

}∣∣∣∣

≤
∣∣∣∣
{
x ∈ B(x0, R) : lim sup

(y,t)→(x,0)
y∈�x,t

|eit�( f − g)(y)| >
λ

2

}∣∣∣∣

+
∣∣∣∣
{
x ∈ B(x0, R) : | f (x) − g(x)| >

λ

2

}∣∣∣∣
≤

∣∣∣∣
{
x ∈ B(x0, R) : sup

(t,θ)∈(0,1)×�

|eit�( f − g)(γ (x, t, θ))| >
λ

2

}∣∣∣∣
+

∣∣∣∣
{
x ∈ B(x0, R) : | f (x) − g(x)| >

λ

2

}∣∣∣∣
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� ε + 22

λ2
‖ f − g‖2Hs (R2)

≤ ε + ε
2
3

C2

≤ ε + ε
2
3 , (2.20)

since we can always assume that C ≥ 1, which implies convergence for f ∈ Hs(R2)

and almost every x ∈ B(x0, R). By the arbitrariness of B(x0, R), in fact we can get
convergence for almost every x ∈ R

2. This completes the proof of Theorem 1.2. ��

3 Proof of Theorem 1.3

Proof of Theorem 1.3 We take γ (x, t, θ) = x + tθ , where � is the interior of the
unit ball in Rn . Then we have

β(�) = n, (3.1)

and for t ∈ [0, 1], choose

�x,t = {γ (x, t, θ) : θ ∈ �} = {y : |y − x | < t}. (3.2)

Assuming that (1.7) holds, then it follows from Theorem 1.1 and the choice of �x,t

that for any s >
β(�)
p + n

2(n+1) ,

lim
(y,t)→(x,0)

|x−y|<t

ei t� f (y) = f (x) a.e. (3.3)

whenever f ∈ Hs(Rn). But according to Theorem 3 in [19], this result fails for any
s ≤ n

2 . Therefore, we get

β(�)

p
+ n

2(n + 1)
≥ n

2
. (3.4)

Then inequality (3.4) and equality (3.1) imply Theorem 1.3. ��
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