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Abstract
We present new estimates in the setting of weighted Lorentz spaces for important
operators in Harmonic Analysis such as sparse operators, Bochner–Riesz at the critical
index, Hörmander multipliers and rough singular integrals among others.
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1 Introduction

The main purpose of this paper is to prove boundedness of important operators in
harmonic analysis in weighted Lorentz spaces �p(w), 0 < p < ∞, defined by

�p(w) =
{

f ∈ M(Rn) : || f ||�p(w) =
(∫ ∞

0
f ∗(t)pw(t) dt

) 1
p

< ∞
}

.
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In particular, we shall present new estimates for operators such as the Bochner–Riesz
operator at the critical index B n−1

2
, the rough operators T� or the sparse operators AS

among many others.
There are many results in the literature about boundedness of operators in�p(w) or

even in rearrangement invariant (r.i.) spaces but they do not usually include the above
ones. Let us just mention the classical paper [42], including the case of the Hilbert
transform and Riesz transforms, and a very recent one [26] which contains a rather
complete list of papers on this topic, among which we should mention [1,10,24].

Now, the three examplesmentioned above have one important property in common:
they all satisfy that, for some (and hence for all) 1 < p0 < ∞, and for every v ∈ Ap0 ,

T : L p0(v) −→ L p0(v) (1.1)

is bounded, where Ap0 is the class of Muckenhoupt weights defined in Sect. 2 (see
[38]). Let us just mention here that these weights Ap0 characterize the boundedness
on L p0(v) of the Hardy–Littlewood maximal operator

M f (x) = sup
Q�x

1

|Q|
∫

Q
| f (y)|dy, f ∈ L1

loc(R
n), x ∈ R

n,

where the supremum is taken overall cubes Q ⊆ R
n containing x . An operator T

satisfying (1.1) will be called a Rubio de Francia operator [41]. Such operators satisfy
the following result:

Theorem 1.1 [25] If T is a Rubio de Francia operator and X is a Banach function
space such that M : X → X and M : X

′ → X
′, with X

′ being the associated space of
X, then

T : X −→ X

is bounded.

This result is very useful to prove the boundedness of operators for which condi-
tion (1.1) has been widely studied while this is not the case in other contexts such
as, for example, of weighted Lorentz spaces or more generally r.i. spaces. Let us
explain, as an example, the case of the sparse operators AS introduced by Lerner in
[33]. These operators have become very useful since they dominate many operators
such as Calderón–Zygmund operators. Independently of the fact that the decreasing
rearrangement of an sparse operator AS has not been estimated, the above theorem
implies, for example, that if we consider the weighted Lorentz spaces, then if

M : �p(w) −→ �p(w), M : (�p(w))′ −→ (�p(w))′ (1.2)

are bounded operators, we have that

AS : �p(w) −→ �p(w)
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is bounded, where

(�p(w))′ = {
f ∈ M(Rn) : ‖ f ‖(�p(w))′

= sup
g∈�p(w)

1

‖g‖�p(w)

∫
Rn

| f (x)g(x)| dx < ∞
}

is the associated space of �p(w). Now, on many occasions the difficulty to apply
Theorem 1.1 to a concrete space X is precisely to characterizew so that (1.2) holds. In
the case of X = �p(w) this has already been done, along the years, in several papers:

i) The boundedness of M in �p(w) was first characterized for p > 1, by Ariño
and Muckenhoupt [4] in 1990, who showed

M : �p(w) −→ �p(w) ⇐⇒ w ∈ Bp, (1.3)

where

||w||Bp = sup
t>0

∫ ∞
0 w(r)min

(
1, t p

r p

)
dr∫ t

0 w(r) dr
.

This class of weights has been widely studied (see for instance [11,14,39,40,44]) and
now it is known that the same result holds for every p > 0. Moreover, from (1.3), it
can be easily seen that if p > 1 and w ∈ Bp, then �p(w) is a Banach function space.
Besides, the reciprocal is also known to be true (see [42]). In addition, when w ∈ B1,
�1(w) is a Banach function space as well (see [16]).

ii) To characterize the boundedness M on (�p(w))′ we can use the following.
Given a r.i. Banach function space X on R

n , the Lorentz–Shimogaki theorem (see [7,
Chap.3 p. 154]) asserts that

M : X −→ X

is bounded if and only if the upper Boyd index αX < 1. Therefore, since αX′ = 1−βX

([7]),

M : X
′ −→ X

′

is bounded if and only if the lower Boyd index βX > 0 and it is known [2] that when
W (t) = ∫ t

0 w(r) dr and X = �p(w), this holds if and only if w ∈ B∗∞; that is,

sup
t>0

1

W (t)

∫ t

0

W (r)

r
dr < ∞.

From all the above results, we can conclude that if AS is an sparse operator and
p ≥ 1,

w ∈ Bp ∩ B∗∞ �⇒ AS : �p(w) −→ �p(w).
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In fact, the same result is true for every Rubio de Francia operator and it is sharp since
it is known [42] that

w ∈ Bp ∩ B∗∞ ⇐⇒ H : �p(w) −→ �p(w),

with H the Hilbert transform, which is a Rubio de Francia operator. Now, up to now,
we have considered p ≥ 1 since Theorem 1.1 concerns the case of Banach function
spaces. But, what can we say if 0 < p < 1? Moreover, in the case p = 1, it is known
that

AS : L1 −→ L1,∞

is bounded, and this case is not covered by Theorem 1.1. To study these two cases are
the purposes of this paper, since they will have as a consequence new estimates for all
the above mentioned operators (see also [19] for related results). Now, it is known that
(1.1) does not imply, in general, the weak boundedness of T from L1 into L1,∞, but
using the results in [20] we now know that we can arrive to the endpoint p = 1 if we
assume a slightly stronger condition on T which is satisfied by the sparse operators
among many others. This condition reads:

T : L p0,1(v) −→ L p0,∞(v) (1.4)

need to be bounded for every v ∈ AR
p0 , a slightly bigger class than Ap0 defined by

‖v‖AR
p0

= sup
Q

1

|Q| ‖χQ‖L p0 (v)‖χQv−1‖
L p′

0,∞
(v)

< ∞.

This class was introduced in [23,31] where it was proved that

M : L p0,1(v) −→ L p0,∞(v) ⇐⇒ v ∈ AR
p0 .

Operators satisfying (1.4) will be called restricted weak type Rubio de Francia oper-
ators or RWT-Rubio de Francia operators, in short.

So a question we want to answer is the following: If T is a RWT-Rubio de Francia
operator, what conditions do we need on w in order to have that some restricted weak
type boundedness on weighted Lorentz spaces

T : �p,1(w) −→ �p,∞(w)

holds? At this point we have to recall that if w = 1, then w ∈ B∗∞ and although
w /∈ B1 it belongs to a slightly bigger class BR

1 defined in Sect. 2. Also, we have the
following extrapolation result [20]: Let T be a sublinear operator satisfying that, for
some p0 > 1 and every v ∈ AR

p0 ,

T : L p0,1(v) → L p0,∞(v)
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is bounded, with constant less than or equal to ϕp0(||v|| Â p0
), with ϕp0 an increasing

function on (0,∞). Then,

T : L
1, 1

p0 → L1,∞

is bounded. Hence, if T is a RWT-Rubio de Francia operator, it is natural to expect
that

w ∈ BR
1 ∩ B∗∞ �⇒ T : �1,q(w) −→ �1,∞(w), ∀ 0 < q < 1.

In fact, our main theorems show this result holds true.

Theorem 1.2 Let T be an operator satisfying that, for every v ∈ A1,

T : L1(v) → L1,∞(v)

is bounded, with constant less than or equal to ϕ(||v||A1), with ϕ an increasing function
on (0,∞). Then, for every 0 < p < ∞ and every w ∈ BR

p ∩ B∗∞,

T : �p,1(w) → �p,∞(w)

is bounded with constant less than or equal to C1||w||BR
p

ϕ
(
C2||w||B∗∞

)
for some

positive constants C1, C2 independent of w.

Theorem 1.3 Let T be an operator satisfying that, for some 1 < p0 < ∞ and every
v ∈ AR

p0 ,

T : L p0,1(v) → L p0,∞(v)

is bounded, with constant less than or equal to ϕ(||v||AR
p0

), with ϕ an increasing

function on (0,∞). Then, for every 0 < p < ∞, every w ∈ BR
p ∩ B∗∞ and every

0 < q < 1,

T : �p,q(w) → �p,∞(w)

is bounded with constant less than or equal to

�p0,p,q(||w||BR
p

, ||w||B∗∞) ≤ C1

1 − q
||w||BR

p
ϕ

(
C2||w||max

(
1
p0

,q
)

B∗∞

)
,

for some positives constants C1, C2 independent of w.

The paper is organized as follows: in Sect. 2 we present some technical lemmas and
previous results which shall be used later and also the statements of our main results.
Their proof will be given in Sect. 3, and Sect. 4 will be devoted to apply our results
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to the boundedness not only of sparse operators but also of Bochner–Riesz operator
at the critical index, Hörmander multipliers, and many others.

As usual, we write A � B if there exists an universal constant C > 0 which may
depends on the exponents but is independent of A and B, such that A ≤ C B. If A � B
and B � A, then we write A ≈ B.

2 Definitions, Previous Results and Some Technical Lemmas

Let us recall the definition of the spaces which are going to be important for us. Given
0 < p, q < ∞, L p,q is the Lorentz space of measurable functions such that

|| f ||L p,q =
(

p
∫ ∞

0
yqλ f (y)

q
p

dy

y

) 1
q =

(∫ ∞

0
f ∗(t)q t

q
p −1dt

) 1
q

< ∞,

and L p,∞ is the Lorentz space of measurable functions such that

|| f ||L p,∞ = sup
y>0

yλ f (y)
1
p = sup

t>0
f ∗(t)t

1
p < ∞,

where f ∗ is the decreasing rearrangement of f defined by

f ∗(t) := inf{y > 0 : λ f (y) ≤ t}, λ f (t) := |{| f | > t}|, t > 0.

For further information about these notions and related topics see [7]. These spaces
are, in fact, a particular case of the so called weighted Lorentz spaces�p,q(w) defined
for 0 < p, q < ∞ by

|| f ||�p,q (w) =
(

p
∫ ∞

0
yq W (λ f (y))

q
p

dy

y

) 1
q =

( ∫ ∞

0
f ∗(t)q W (t)

q
p −1

w(t)dt

) 1
q

,

and for q = ∞,

|| f ||�p,∞(w) = sup
y>0

yW (λ f (y))
1
p = sup

t>0
f ∗(t)W (t)

1
p ,

where w is a positive locally integrable function defined on (0,∞) and W (t) =∫ t
0 w(r) dr . We should emphasize here that for 0 < q < ∞,

�p,q(w) = �q(w̃), W̃ (t) ≈ W (t)
q
p , (2.1)

and, similar, �p,∞(w) = �1,∞(w̃), with W̃ (t) ≈ W (t)
1
p . Besides, these spaces

satisfy the embeddings
�p,q0(w) ↪→ �p,q1(w) (2.2)
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continuously for 0 < q0 ≤ q1 ≤ ∞. For more details on these spaces, we refer to
[18].

Let us consider the Hardy–Littlewood maximal operator M , defined for locally
integrable functions on R

n by

M f (x) = sup
Q�x

1

|Q|
∫

Q
| f (y)|dy, x ∈ R

n,

where the supremum is taken over all cubes Q ⊆ R
n containing x . It is known [38]

that for every 1 < p < ∞,

M : L p(v) −→ L p(v) ⇐⇒ v ∈ Ap,

where v ∈ Ap if v is a positive and locally integrable function such that

||v||Ap := sup
Q

(
1

|Q|
∫

Q
v(x)dx

) (
1

|Q|
∫

Q
v(x)1−p′

dx

)p−1

< ∞.

Moreover, if 1 ≤ p < ∞,

M : L p(v) −→ L p,∞(v) ⇐⇒ v ∈ Ap,

where v ∈ A1 if

Mv(x) ≤ Cv(x), a.e. x ∈ R
n,

and the infimum of all such constants C in the above inequality is denoted by ||v||A1 .
Also, in the context of restrictedweak type inequalities the following result was proved
in [23,31]:

M : L p,1(v) −→ L p,∞(v) ⇐⇒ v ∈ AR
p ,

where a weight v ∈ AR
p if

‖v‖AR
p

= sup
Q

1

|Q| ‖χQ‖L p(v)‖χQv−1‖L p′,∞(v)
< ∞.

Moreover,
‖M‖L p,1(v)→L p,∞(v) � ‖v‖AR

p
.

Now, given p ≥ 1, it was proved in [15,20] that Â p ⊆ AR
p , where

Â p := {0 < v ∈ L1
loc : ∃h ∈ L1

loc, u ∈ A1; v = (Mh)1−pu},
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with

‖v‖AR
p

� ‖v‖ Â p
:= inf ||u||

1
p
A1

,

where the infimum is taken over all u ∈ A1 for which there exists h ∈ L1
loc such that

v = (Mh)1−pu. Observe that AR
1 = Â1 = A1.

Also, the following extrapolation result is going to be important in our main theo-
rems.

Theorem 2.1 [20] Let T be an operator satisfying that, for some 1 < p0 < ∞ and
every v ∈ AR

p0 ,

T : L p0,1(v) → L p0,∞(v)

is bounded, with constant less than or equal to ϕp0(||v||AR
p0

), with ϕp0 an increasing

function on (0,∞). Then, for every 1 < p ≤ p0 and every v ∈ Â p

T : L p,1(v) → L p,∞(v)

is bounded with constant

ϕp0,p(t) � t
1− p

p0 ϕp0

(
Ct

p
p0

)
.

Concerning boundedness of the Hardy–Littlewood maximal operator on weighted
Lorentz spaces we have, as mentioned in the introduction, that for every p > 0,

M : �p(w) −→ �p(w) ⇐⇒ w ∈ Bp.

Now, in order to characterize the boundedness of

M : �p,1(w) −→ �p,∞(w),

by (2.1), �p,1(w) = �1(w̃) where w̃ is such that its primitive W̃ (t) ≈ W (t)
1
p and

hence, since (M f )∗(t) ≈ f ∗∗(t) := 1
t

∫ t
0 f ∗(r) dr , this boundedness is equivalent to

the embedding

�1(w̃) ⊂ � p,∞(w) := {
f ∈ M(Rn) : ‖ f ∗∗‖�p,∞(w) < ∞}

,

which is known [17] to be characterized by the condition w ∈ BR
p defined by

||w||BR
p

= sup
0<s≤t<∞

sW (t)
1
p

tW (s)
1
p

< ∞. (2.3)
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In fact, ||M ||�p,1(w)−→�p,∞(w) ≤ ||w||BR
p
. Also,

‖g‖(�p,1(w))′ = sup
f ∈�1(w̃)

∫
Rn | f (x)g(x)| dx∫ ∞
0 f ∗(t)w̃(t)dt

= sup
t>0

∫ t
0 g∗(r) dr∫ t
0 w̃(r)dr

≈ sup
t>0

∫ t
0 g∗(r) dr

W (t)
1
p

,

where in the second equality we have used [18, Corollary 1.2.12]. Hence

||M f ||(�p,1(w))′ ≈ sup
t>0

∫ t
0

1
r

∫ r
0 f ∗(s)dsdt

W (t)
1
p

� || f ||(�p,1(w))′

⎛
⎝sup

t>0

∫ t
0 W (r)

1
p dr

r

W (t)
1
p

⎞
⎠ ,

and consequently

||M ||(�p,1(w))′ := ||M ||(�p,1(w))′→(�p,1(w))′ � sup
t>0

∫ t
0 W (r)

1
p dr

r

W (t)
1
p

. (2.4)

Now, the last expression is finite if and only if w ∈ B∗∞ (see [3]). So let us recall
several facts on this class of weights and give an expression for the quantity ||w||B∗∞
which is going to be important for our purposes.

Definition 2.2 A weight w ∈ B∗∞ if and only if

||w||B∗∞ = sup
t>0

1

W (t)

∫ t

0

W (r)

r
dr < ∞.

Now, many equivalent definitions have appeared in the literature and, as a conse-
quence, we have the following result [3]:

Lemma 2.3 For 0 < p < ∞,

||M ||(�p,1(w))′ � ||w||B∗∞ .

Proof In virtue of estimate (2.4), it would be enough to see that

sup
t>0

∫ t
0 W (r)

1
p dr

r

W (t)
1
p

� ||w||B∗∞ .

If 0 < p ≤ 1, then the result is immediate, since for every t > 0,

∫ t

0
W (r)

1
p

dr

r
≤ W (t)

1
p −1

∫ t

0

W (r)

r
dr ≤ W (t)

1
p ||w||B∗∞ .
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So let us consider the case p > 1. First, integrating by parts,

∫ t

0

W (r)
1
p

r
dr = lim

s→0
log

(
t

s

)
W (s)

1
p + 1

p

∫ t

0
log

(
t

r

)
W (r)

1
p −1

w(r) dr

≤
(∫ t

0

(
log

t

r

)p

w(r) dr

) 1
p

+ 1

p

∫ t

0
log

(
t

r

)
W (r)

1
p −1

w(r) dr ,

(2.5)

an observe that by means of the Hölder’s inequality,∫ t

0
log

(
t

r

)
W (r)

1
p −1

w(r) dr

≤
(∫ t

0

(
log

t

r

)2p
w(r) dr

) 1
2p

(∫ t

0
W (r)

1
2p−1−1

w(r) dr

) 2p−1
2p

≤ (2p − 1)
2p−1
2p

(∫ t

0

(
log

t

r

)2p
w(r) dr

) 1
2p

W (t)
1
2p .

(2.6)

We claim that for every q ≥ 2,

∫ t

0

(
log

t

r

)q
w(r) dr ≤ q(q − 1) · · · (q − [q] + 1)‖w‖q

B∗∞ W (t), (2.7)

from which putting together (2.5) and (2.6), we will conclude that

∫ t

0

W (r)
1
p

r
dr �

(∫ t

0

(
log

t

r

)2p
w(r) dr

) 1
2p

W (t)
1
2p � ‖w‖B∗∞ W (t)

1
p .

So let us see (2.7). Observe that since q ≥ 2, using Fubini twice we get

∫ t

0

(
log

t

r

)q
w(r) dr = q

∫ t

0

∫ t

r

(
log

t

s

)q−1 ds

s
w(r) dr

= q
∫ t

0

(
log

t

s

)q−1
W (s)

ds

s

= q(q − 1)
∫ t

0

(
log

t

r

)q−2
∫ r

0
W (s)

ds

s

dr

r

≤ q(q − 1)||w||B∗∞

∫ t

0

(
log

t

r

)q−2
W (r)

dr

r
.
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Hence, iterating in that way we obtain

∫ t

0

(
log

t

r

)q
w(r) dr

≤ q(q − 1) · · · (q − [q] + 1)‖w‖[q]−1
B∗∞

∫ t

0

(
log

t

r

)q−[q]
W (r)

dr

r
,

with [q] being the integer part of q. Finally,

∫ t

0

(
log

t

r

)q−[q] W (r)

r
dr ≤

(∫ t

0
log

t

r

W (r)

r
dr

)q−[q] (∫ t

0

W (r)

r
dr

)1+[q]−q

≤
(∫ t

0

∫ u

0

W (s)

s
ds

du

u

)q−[q] (||w||B∗∞ W (t)
)1+[q]−q

≤
(
‖w‖2B∗∞ W (t)

)q−[q] ||w||1+[q]−q
B∗∞ W (t)1+[q]−q

= ||w||1+q−[q]
B∗∞ W (t),

and the result follows. ��

3 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2 Since w ∈ B∗∞, we have that M is bounded in (�p,1(w))′, and
hence we can define, for every nonnegative function h ∈ (

�p,1(w)
)′
,

Rh(x) =
∞∑

k=0

Mkh(x)(
2||M ||(�p,1(w))′

)k

to be the function resulting from the Rubio de Francia algorithm [41]. Then, h(x) ≤
Rh(x) a.e., Rh ∈ A1 with

||Rh||A1 � ||M ||(�p,1(w))′ � ||w||B∗∞

by Lemma 2.3, and

‖Rh||(�p,1(w))′ ≤ 2||h||(�p,1(w))′ .

Let y > 0 and set F := FT f ,y = {x ∈ R
n : |T f (x)| > y}. Then, v = R(χF ) ∈ A1

and,

λT f (y) ≤
∫

{|T f (x)|>y}
R (χF ) (x) dx ≤ ϕ

(||v||A1

)
y

∫
Rn

| f (x)|R (χF ) (x) dx

= ϕ
(||v||A1

)
y

∫ ∞

0

[∫
{| f (x)|>z}

R(χF )(x) dx

]
dz.
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Now, in the inner integral we apply the definition of associate space to obtain that

∫
{| f (x)|>z}

R(χF )(x) dx ≤ ||χ{| f |>z}||�p,1(w)||R(χF )||(�p,1(w))′ ,

and hence,

λT f (y) �
ϕ

(||v||A1

)
y

||R(χF )||(�p,1(w))′ || f ||�p,1(w)

�
ϕ

(||v||A1

)
y

||χF ||(�p,1(w))′ || f ||�p,1(w).

Now, since w ∈ BR
p , we have by (2.3) that

||χF ||(�p,1(w))′ � ||w||BR
p

λT f (y)

W (λT f (y))
1
p

, (3.1)

and hence,

sup
y>0

yW (λT f (y))
1
p � ||w||BR

p
ϕ
(
C ||w||B∗∞

)|| f ||�p,1(w)

as we wanted to see. ��
Remark 3.1 (1) We observe that, since

�p,1(w) = �1(w̃), and �p,∞(w) = �1,∞(w̃),

with w̃ such that W̃ (t) ≈ W (t)
1
p (see (2.1)), and we also have that

w ∈ BR
p ∩ B∗∞ ⇐⇒ w̃ ∈ BR

1 ∩ B∗∞,

the condition

w ∈ BR
p ∩ B∗∞ �⇒ T : �p,1(w) −→ �p,∞(w)

is equivalent to

w ∈ BR
1 ∩ B∗∞ �⇒ T : �1(w) −→ �1,∞(w).

(2) Using interpolation theory of weighted Lorentz spaces (see for instance [18,
Theorem 2.6.5]) we can deduce that if T is a quasi-linear operator satisfying the
hypothesis of Theorem 1.2, then

w ∈ B1 ∩ B∗∞ �⇒ T : �1(w) −→ �1(w),
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and similarly, for every 0 < p < ∞,

w ∈ Bp ∩ B∗∞ �⇒ T : �p(w) −→ �p(w).

Proof of Theorem 1.3 Let y > 0 and set F := FT f ,y = {x ∈ R
n : |T f (x)| > y}.

Then, v = (M f )1−p0 R(χF ) ∈ Â p0 ⊂ AR
p0 and, for every γ > 0,

λT f (y) ≤ λM f (γ y) +
∫

{|T f (x)|>y, M f (x)≤γ y}
R (χF ) (x) dx

≤ λM f (γ y) + γ p0−1 y p0

y

∫
F

M f (x)1−p0 R (χF ) (x) dx

� λM f (γ y) +
γ p0−1ϕ

(
||v|| Â p0

)p0

y
|| f ||p0

L p0,1(M f 1−p0 R(χF ))

= λM f (γ y) +
γ p0−1ϕ

(
||v|| Â p0

)p0

y

×
(

p0

∫ ∞

0

[∫
{| f (x)|>z}

M f (x)1−p0 R(χF )(x) dx

] 1
p0

dz

)p0

� λM f (γ y) +
γ p0−1ϕ

(
||v|| Â p0

)p0

y(∫ ∞

0
z

1
p0

−1
[∫

{| f (x)|>z}
R(χF )(x) dx

] 1
p0

dz

)p0

,

where in the last estimate we have used that for every x ∈ {| f (x)| > z},

M f (x)1−p0 ≤ | f (x)|1−p0 ≤ z1−p0 .

Now, in the inner integral we apply the definition of associate space to obtain that

∫
{| f (x)|>z}

R(χF )(x) dx ≤ ||χ{| f |>z}||�p,1(w)||R(χF )||(�p,1(w))′ ,

and hence, using (3.1) and the boundedness of the operator R,

λT f (y) � λM f (γ y) + p1−p0
γ p0−1ϕ

(
||v|| Â p0

)p0

y
|| f ||

�
p, 1

p0 (w)
||R (χF )||(�p,1(w))′

� λM f (γ y) + p1−p0
γ p0−1ϕ

(
||v|| Â p0

)p0

y
|| f ||

�
p, 1

p0 (w)
||w||BR

p

λT f (y)

W (λT f (y))
1
p

,
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so that using that w ∈ BR
p and the continuous embedding �

p, 1
p0 (w) ⊂ �p,1(w) (see

(2.2)),

sup
y>0

yW (λM f (γ y))
1
p = 1

γ
||M f ||�p,∞(w)

�
||w||BR

p

γ
|| f ||�p,1(w)

�
||w||BR

p

γ
|| f ||

�
p, 1

p0 (w)
.

Therefore, we conclude

||T f ||�p,∞(w) � max

(
1

γ
, γ p0−1ϕ

(
||v|| Â p0

)p0
)

||w||BR
p

|| f ||
�

p, 1
p0 (w)

,

and taking the infimum in γ > 0,

||T f ||�p,∞(w) � ||w||BR
p

ϕ
(
||v|| Â p0

)
|| f ||

�
p, 1

p0 (w)
.

Now,

||v|| Â p0
� ||R (χF )||1/p0

A1
� ||w||1/p0

B∗∞ .

Therefore,

||T f ||�p,∞(w) � ||w||BR
p

ϕ
(

C ||w||1/p0
B∗∞

)
|| f ||

�
p, 1

p0 (w)
.

Observe that if 0 < q ≤ 1
p0
, by the continuous embeddings of the weighted Lorentz

spaces (see (2.2)), then

�p,q(w) ↪→ �
p, 1

p0 (w)

and the result follows. Otherwise, take 1
p0

< q < 1. Hence, by Theorem 2.1,

T : L
1
q ,1

(v) → L
1
q ,∞

(v)

is bounded for every v ∈ Â 1
q
with constant less than or equal to ϕp0,

1
q

(
||v|| Â 1

q

)
.

Therefore, applying the first part of the proof we have that

T : �p,q(w) → �p,∞(w)

is bounded with constant less than or equal to �p0,p,q

(
||w||BR

p
, ||w||B∗∞

)
. ��
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4 Boundedness of Operators onWeighted Lorentz Spaces

The main result of this section is the following:

Theorem 4.1 Let T be any of the following operators:

(i) Sparse operators AS .
(ii) Bochner–Riesz at the critical index B n−1

2
.

(iii) Radial Fourier multipliers satisfying (4.2).
(iv) Hörmander multipliers with m ∈ HC(s, k).
(v) Rough singular integrals.

Then, for every p > 0 and every w ∈ BR
p ∩ B∗∞

T : �p,1(w) −→ �p,∞(w) (4.1)

is bounded.

Let us give the definition of all the above mentioned operators, some references
related to them and, when possible, an estimate for the norm of the operator T in (4.1).

4.1 Sparse Operators

These operators have become very popular due to their role in the so called A2 con-
jecture consisting in proving that if T is a Calderón–Zygmund operator then

||T f ||L2(v) � ||v||A2 || f ||L2(v).

This result was first obtained by Hytönen [29] and then simplified by Lerner [33,34],
who proved that the norm of a Calderón–Zygmund operator in a Banach function
space X is dominated by the supremum of the norm in X of all the possible sparse
operators and then proved that every sparse operator is bounded on L2(v) for every
weight v ∈ A2 with sharp constant. Let us give the precise definition. A general dyadic
grid D is a collection of cubes in R

n satisfying the following properties:

(i) For any cube Q ∈ D, its side length is 2k for some k ∈ Z.
(ii) Every two cubes in D are either disjoint or one is wholly contained in the other.
(iii) Given x ∈ R

n , for every k ∈ Z there is only one cube in D of side length 2k

containing it.

Let 0 < η < 1, a collection of cubes S ⊂ D is called η-sparse if one can choose
pairwise disjoint measurable sets EQ ⊂ Q with |EQ | ≥ η|Q|, where Q ∈ S.
Definition 4.2 Given a sparse family of cubes S ⊂ D, the sparse operator is defined
by

AS f (x) =
∑
Q∈S

(
1

|Q|
∫

Q
f (y) dy

)
χQ(x).
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Proposition 4.3 [30] For every v ∈ A1, it holds that

||AS f ||L1,∞(v) � ||v||A1(1 + log ||v||A1)|| f ||L1(v).

In [35], this same bound was proved for a Calderón–Zygmund operator and in [36]
the authors have proved that it is sharp. Hence, using the domination property of the
sparse operators, we conclude that the bound in the above proposition is also sharp.
We thank A.K. Lerner for this information.

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.4 Let 0 < p < ∞ and w ∈ BR
p ∩ B∗∞. Then,

AS : �p,1(w) → �p,∞(w)

is bounded with constant controlled by

C1||w||BR
p

||w||B∗∞
(
1 + log

(
C2||w||B∗∞

))
,

with C1, C2 constants independent of w.

4.2 The Bochner–Riesz Operator

Let

f̂ (ξ) =
∫
Rn

f (x)e−2π i x ·ξ dx, ξ ∈ R
n,

be the Fourier transformof an integrable function f ∈ L1 (Rn) and let a+ = max{a, 0}
denote the positive part of a ∈ R. Given λ > 0, the Bochner–Riesz operator Bλ on
R

n is defined by

B̂λ f (ξ) =
(
1 − |ξ |2

)λ

+ f̂ (ξ).

They were first introduced by Bochner in [8] and, since then, they have been widely
studied. The case λ = 0 corresponds to the so-called ball multiplier, which is known
to be unbounded on L p(Rn) if n ≥ 2 and p �= 2 ([27]). It is known that when
λ > n−1

2 , Bλ f is controlled by the Hardy–Littlewood maximal function M f , and
hence Bλ satisfies the same weighted estimates as M . We will focus on the value
λ = n−1

2 , which is called the critical index. In this case, Christ [22] showed that B n−1
2

is bounded from L1(Rn) to L1,∞(Rn), and although we do not have the control of
B n−1

2
by M , Shi and Sun proved in [43] that B n−1

2
is bounded on L p(v) for every

v ∈ Ap when 1 < p < ∞. The corresponding weak-type inequality for p = 1 was
obtained by Vargas in [45], where she proved that B n−1

2
is bounded from L1(v) to

L1,∞(v) for every v ∈ A1.
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Proposition 4.5 [37] For every n > 1,

B n−1
2

: L1(v) → L1,∞(v)

is bounded with constant less than or equal to ||v||2A1
log2(C ||v||A1 + 1).

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.6 For every n > 1, 0 < p < ∞ and w ∈ BR
p ∩ B∗∞,

B n−1
2

: �p,1(w) → �p,∞(w)

is bounded with constant controlled by

C1||w||BR
p

||w||2B∗∞(1 + log(C2||w||B∗∞)),

with C1, C2 constants independent of w.

4.3 Radial Multipliers

Given a multiplier m, we say that Tm is a radial Fourier multiplier if T̂m f (ξ) =
m(|ξ |) f̂ (ξ).

Definition 4.7 Given 0 ≤ δ < 1 and r > 0, we define the truncated fractional integral
of order 1 − δ of a locally integrable function f on R by

I 1−δ
r f (t) :=

⎧⎨
⎩

1

�(1 − δ)

∫ r
−r (s − t)−δ+ f (s) ds, t < r ,

0, t ≥ r ,
t ∈ R,

with � being the Gamma function. Moreover, if α = [α] + δ > 0, with [α] being its
integer part and δ its fractional part, we define the fractional derivative of f of order
α by

Dα f (t) = −
(

d

dt

)[α]
lim

r→∞
d

dt
I 1−δ
r f (t),

whenever the right-hand side exists.

Let ACloc be the space of functions which are absolutely continuous on every
compact subset of (0,∞).

Proposition 4.8 ([13]) Fix n ≥ 2 and α = n+1
2 . Let m be a bounded, continuous

function on (0,∞) which vanishes at infinity and satisfies that

Dα− j m ∈ ACloc ∀ j = 1, . . . , [α].
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Then, if Dαm exists and

�(t) = tα−1Dαm(t) ∈ L1(0,∞), (4.2)

the operator Tm defined by

T̂m f (ξ) = m(|ξ |2) f̂ (ξ), ξ ∈ R
n,

satisfies that

Tm : L1(v) → L1,∞(v)

is bounded for every v ∈ A1 with constant controlled by C||�||L1(0,∞)||u||5A1
.

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.9 Let 0 < p < ∞ and w ∈ BR
p ∩ B∗∞. Then if m satisfies the hypothesis

of Proposition 4.8 we have that

Tm : �p,1(w) → �p,∞(w)

is bounded with constant controlled by

C ||�||L1(0,∞)||w||BR
p

||w||5B∗∞,

with C independent of w.

4.4 Fourier Multipliers of Hörmander Type

Let us use the standard notation |α| = α1 + · · · + αn for a multi-index α =
(α1, . . . , αn) ∈ N

n and if x ∈ R
n ,

(
∂

∂x

)α

= ∂α1

∂xα1
1

· · · ∂αn

∂xαn
n

.

Then, the Hörmander condition for a multiplier m is the following.

Definition 4.10 Let k ∈ N such that k > n/2 and let m : R
n → R be a bounded

function of Ck class on R
n \ {0}. Given 1 < s ≤ 2, we say that m satisfies the

Hörmander condition respect s and k, and denote it by m ∈ HC(s, k), if

sup
r>0

(
r2|α|−n

∫
r<|x |<2r

∣∣∣∣
(

∂

∂x

)α

m(x)

∣∣∣∣
s

dx

)1/s

< ∞, |α| ≤ k.
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The Fourier multipliers operators of Hörmander type are those defined by

T̂m f (ξ) = m(ξ) f̂ (ξ), ξ ∈ R
n,

where m ∈ HC(s, k) for k > n/2 and 1 < s ≤ 2. The classical Hörmander theorem
(see for example [28, Theorem 5.2.7]) says that when s = 2, in the unweighted case,
Tm is bounded on L p(Rn) for 1 < p < ∞ and satisfies the weak-type inequality

Tm : L1(Rn) → L1,∞(Rn)

whenever m ∈ HC(2, k). The generalization of the condition to 1 < s < 2 was
introduced by Calderón and Torchinsky in [12], where the authors see that in order to
the classical result to be true for m ∈ HC(s, k) is needed that k > n/s.

Proposition 4.11 [32, Theorem 1] Let 1 < s ≤ 2 and m ∈ HC(s, n). Then, for every
v ∈ A1,

Tm : L1(v) → L1,∞(v)

is bounded with constant less than or equal to ϕ(||v||A1) with ϕ being an increasing
function in (0,∞).

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.12 Let 0 < p < ∞ and w ∈ BR
p ∩ B∗∞. Then

Tm : �p,1(w) → �p,∞(w)

is bounded with constant controlled by

C1||w||BR
p

ϕ(C2||w||B∗∞),

with C1 and C2 independent of w.

At this point we have to say that although the property of ϕ being increasing is
known, the sharp expression for such ϕ is unknown.

4.5 Rough Singular Integrals

Definition 4.13 Let�n−1 = {x ∈ R
n : |x | = 1} and given� ∈ L∞(�n−1) such that∫

�n−1
�(x) dx = 0.

The rough singular integral is defined by

T� f (x) = p.v.
∫
Rn

�(y′)
|y|n f (x − y) dy,
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where y′ = y

|y| . In [37], the authors obtained the following result:

Proposition 4.14 For every v ∈ A1,

T� : L1(v) → L1,∞(v)

is bounded with constant controlled by ||v||2A1
log2(||v||A1 + 1).

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.15 Let 0 < p < ∞ and � ∈ L∞(�n−1) such that
∫
�n−1 � = 0. If

w ∈ BR
p ∩ B∗∞, then

T� : �p,1(w) → �p,∞(w)

is bounded with constant controlled by

C1||w||BR
p

||w||2B∗∞
(
1 + log

(
C2||w||B∗∞

))
,

with C1, C2 constants independent of w.

4.6 Assani Operator

There is a very interesting operator which satisfies the hypothesis of Theorem 1.3 but
it is not of weak type (1, 1) and hence we cannot apply Theorem 1.2. This operator is
related with the Return time theorem of Bourgain [9], and we refer to [5] for a very
interesting review on the topic and also to [6], where the following related operator
was introduced:

A f (x) =
∥∥∥∥ f (·)χ(0,x)(·)

x − ·
∥∥∥∥

L1,∞(0,1)
.

Since one can easily check that AχE ≤ MχE , we have that A satisfies (1.4) and
consequently, we can deduce that, for every 1 < p < ∞ and v ∈ AR

p ,

||A f ||L p,∞(v) � 1

p − 1
||v||AR

p
|| f ||L p,1(v).

Therefore, as a consequence of Theorem 1.3, we get the following result.

Corollary 4.16 Let 0 < p < ∞, 0 < q < 1 and w ∈ BR
p ∩ B∗∞, then

A : �p,q(w) → �p,∞(w)

is bounded with constant less than or equal to

C

(1 − q)2
||w||BR

p
||w||qB∗∞,
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with C independent of w.

At this point, we have to say that, in the case w = 1, the boundedness of A in L1,q

was obtained in [21] and, as a consequence, it was proved that the space L1,q satisfies
the Return Time Property for the Tail, while this is not the case for L1 (see [6]).

On the other hand, it is an interesting open question in the area whether the space
L log log log L satisfies this property. Since

L log log log L = �1
(
1 + log

(
1 + log

(
1 + log

1

t

)))
,

it will be very interesting to study, for which weights w, the Assani operator A is
bounded on �1(w).
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