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Abstract

We present new estimates in the setting of weighted Lorentz spaces for important
operators in Harmonic Analysis such as sparse operators, Bochner—Riesz at the critical
index, Hormander multipliers and rough singular integrals among others.
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1 Introduction

The main purpose of this paper is to prove boundedness of important operators in
harmonic analysis in weighted Lorentz spaces A”(w), 0 < p < 00, defined by

1

AP(w) =11 € MR (| fllarw) = (/0 f*(t)pw(t)dt)p < o0
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In particular, we shall present new estimates for operators such as the Bochner—Riesz
operator at the critical index B nsls the rough operators T, or the sparse operators As
among many others.

There are many results in the literature about boundedness of operators in A” (w) or
even in rearrangement invariant (r.i.) spaces but they do not usually include the above
ones. Let us just mention the classical paper [42], including the case of the Hilbert
transform and Riesz transforms, and a very recent one [26] which contains a rather
complete list of papers on this topic, among which we should mention [1,10,24].

Now, the three examples mentioned above have one important property in common:
they all satisfy that, for some (and hence forall) 1 < pp < 0o, and for every v € A,

T : LPO(v) —> LP(v) (1.1)

is bounded, where A, is the class of Muckenhoupt weights defined in Sect. 2 (see
[38]). Let us just mention here that these weights A, characterize the boundedness
on L?°(v) of the Hardy-Littlewood maximal operator

1
Mf(x) = sup — / FOIdy,  fe LR, x R,
QO>x |Q| ]

where the supremum is taken overall cubes O € R” containing x. An operator 7
satisfying (1.1) will be called a Rubio de Francia operator [41]. Such operators satisfy
the following result:

Theorem 1.1 [25] If T is a Rubio de Francia operator and X is a Banach function
space suchthat M : X — Xand M : X' — X/, with X' being the associated space of
X, then

T:X—X

is bounded.

This result is very useful to prove the boundedness of operators for which condi-
tion (1.1) has been widely studied while this is not the case in other contexts such
as, for example, of weighted Lorentz spaces or more generally r.i. spaces. Let us
explain, as an example, the case of the sparse operators As introduced by Lerner in
[33]. These operators have become very useful since they dominate many operators
such as Calderon—Zygmund operators. Independently of the fact that the decreasing
rearrangement of an sparse operator As has not been estimated, the above theorem
implies, for example, that if we consider the weighted Lorentz spaces, then if

M : AP (w) — AP (w), M (AP (w)) — (AP (w)) (1.2)
are bounded operators, we have that
Ag : AP (w) — AP (w)
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is bounded, where
(AP W) = {f e MR") : |Ifllarw)y

1
sup o [ g0l dx < o0

genrw) gllarmw)

is the associated space of A”(w). Now, on many occasions the difficulty to apply
Theorem 1.1 to a concrete space X is precisely to characterize w so that (1.2) holds. In
the case of X = A”(w) this has already been done, along the years, in several papers:

i) The boundedness of M in A”(w) was first characterized for p > 1, by Arifio
and Muckenhoupt [4] in 1990, who showed

M : AP(w) — AP(w) <> w € B,, (1.3)

where

wlls =supf0 w(r)mm( r,,)dr.
"0 fo w(r)dr

This class of weights has been widely studied (see for instance [11,14,39,40,44]) and
now it is known that the same result holds for every p > 0. Moreover, from (1.3), it
can be easily seen that if p > 1 and w € B, then A”(w) is a Banach function space.
Besides, the reciprocal is also known to be true (see [42]). In addition, when w € By,
Al(w) is a Banach function space as well (see [16]).

ii) To characterize the boundedness M on (A”(w))’ we can use the following.
Given a r.i. Banach function space X on R”, the Lorentz—Shimogaki theorem (see [7,
Chap.3 p. 154]) asserts that

M:X—X

is bounded if and only if the upper Boyd index ax < 1. Therefore, since axyy = 1 — Bx

7D,
M:X —X

is bounded if and only if the lower Boyd index Bx > 0 and it is known [2] that when
W) = fé w(r)dr and X = AP(w), this holds if and only if w € BJ_; that is,

f W(r)
r < oQ.
t>0 W(t)

From all the above results, we can conclude that if As is an sparse operator and
p=1l

weB,NB, = As:AP(w)— AP(w).
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In fact, the same result is true for every Rubio de Francia operator and it is sharp since
it is known [42] that

weB,NB, <<= H:A(w)— AP(w),

with H the Hilbert transform, which is a Rubio de Francia operator. Now, up to now,
we have considered p > 1 since Theorem 1.1 concerns the case of Banach function
spaces. But, what can we say if 0 < p < 1? Moreover, in the case p = 1, it is known
that

Ag: L' — LI

is bounded, and this case is not covered by Theorem 1.1. To study these two cases are
the purposes of this paper, since they will have as a consequence new estimates for all
the above mentioned operators (see also [19] for related results). Now, it is known that
(1.1) does not imply, in general, the weak boundedness of 7 from L' into L1, but
using the results in [20] we now know that we can arrive to the endpoint p = 1 if we
assume a slightly stronger condition on 7 which is satisfied by the sparse operators
among many others. This condition reads:

T : LP!(v) — L% (v) (1.4)

need to be bounded for every v € AR 3 slightly bigger class than A defined by

po’

lvllaz = sup —-llxollzrow lixev™ IILpO < o0.

IQI

This class was introduced in [23,31] where it was proved that

M:LPOl(y) — LPO®(y) < ve AZ}O
Operators satisfying (1.4) will be called restricted weak type Rubio de Francia oper-
ators or RWT-Rubio de Francia operators, in short.
So a question we want to answer is the following: If 7" is a RWT-Rubio de Francia
operator, what conditions do we need on w in order to have that some restricted weak
type boundedness on weighted Lorentz spaces

T : AP (w) — AP ®(w)
holds? At this point we have to recall that if w = 1, then w € B}, and although
w ¢ Bj it belongs to a slightly bigger class BF defined in Sect. 2. Also, we have the

following extrapolation result [20]: Let T be a sublinear operator satisfying that, for
some po > 1 and every v € AZ,%,

T : LPo (v) — LPO®(v)
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is bounded, with constant less than or equal to ¢, ([[v][; ), with ¢}, an increasing
Po
function on (0, co). Then,

1,L 1
T:L'70 — L"%

is bounded. Hence, if T is a RWT-Rubio de Francia operator, it is natural to expect
that

weBFNB:, = T:A“w)— A"®w), V0<gqg<l.
In fact, our main theorems show this result holds true.
Theorem 1.2 Let T be an operator satisfying that, for every v € Ay,
T:L'(v) > L")

is bounded, with constant less than or equal to ¢(||v|| A, ), with ¢ anincreasing function
on (0, 00). Then, for every 0 < p < 0o and every w € BZ} N B%,

T : AP (w) - AP (w)

is bounded with constant less than or equal to Ci||w||gr¢ (C2||w||B;o) for some
P
positive constants C1, Cy independent of w.

Theorem 1.3 Let T be an operator satisfying that, for some 1 < py < oo and every
ve AR
P’

T LPoY (v) — L% (v)

is bounded, with constant less than or equal to ¢(||v||s= ), with ¢ an increasing
PO

: R
function on (0, 00). Then, for every 0 < p < 00, every w € B;* N B}, and every
0<gqg<l,

T : A?9(w) — AP®(w)
is bounded with constant less than or equal to
D ppug (10l [0l < 2wl (cz||w||r;lfx(”l‘”q)> ,
P 3 o0 1—g » %
for some positives constants C1, Co independent of w.

The paper is organized as follows: in Sect. 2 we present some technical lemmas and
previous results which shall be used later and also the statements of our main results.
Their proof will be given in Sect. 3, and Sect. 4 will be devoted to apply our results
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to the boundedness not only of sparse operators but also of Bochner—Riesz operator
at the critical index, Hormander multipliers, and many others.

As usual, we write A < B if there exists an universal constant C > 0 which may
depends on the exponents but is independent of A and B, suchthat A < CB.If A < B
and B < A, then we write A ~ B.

2 Definitions, Previous Results and Some Technical Lemmas

Let us recall the definition of the spaces which are going to be important for us. Given
0 < p,q < oo, LP-1 is the Lorentz space of measurable functions such that

1 1
o0 4 d q o0 q_ q
1 fllLre = <p/ Vs ()7 —y) _ (/ F0eh ldt) N
0 y 0

and LP-*° is the Lorentz space of measurable functions such that

1 1
[ fllree = sup yAs(y)7 = sup f*(1)t7 < oo,
y>0 t>0

where f* is the decreasing rearrangement of f defined by
ff@) =inf{y > 0:2p(y) <1}, Ap(@):=Hfl>1}, t>0.
For further information about these notions and related topics see [7]. These spaces

are, in fact, a particular case of the so called weighted Lorentz spaces A?*7 (w) defined
for0 < p,q < oo by

1 1
o0 7d q o0 q_ 5
||f||Ap.q<w>=(p/O qu<Af<y)>?7y> =</0 FEOIW @) ‘w(r)dr),

and for g = oo,

L 1
Lf1lapocquy = sup yW (s ()7 = sup f*(OOW ()7,
y>0 t>0

where w is a positive locally integrable function defined on (0, c0) and W(t) =
fot w(r) dr. We should emphasize here that for 0 < g < oo,

AP (w) = AI(T), W) ~W@)r, @2.1)

~ 1
and, similar, A?®°(w) = A" (@), with W(r) ~ W(r)». Besides, these spaces
satisfy the embeddings
AP () — AP (w) (2.2)
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continuously for 0 < go < g1 < oco. For more details on these spaces, we refer to
[18].

Let us consider the Hardy—Littlewood maximal operator M, defined for locally
integrable functions on R” by

Mf(x) = SUP—/If(y)Idy, x eR”,
0sx 10|

where the supremum is taken over all cubes O C R” containing x. It is known [38]
that for every 1 < p < oo,

M:LP(v) — LP(v) <<= wveA,

where v € A, if v is a positive and locally integrable function such that

p—1
[lvlla, = SUP(|Q|/ v(x)dx> <|1@/‘Qv(x)11’/dx> < 0.

Moreover, if 1 < p < oo,
M:LP(v) — LP®(v) <<= veA),
where v € A if
Mv(x) < Cv(x), ae.x € R",

and the infimum of all such constants C in the above inequality is denoted by ||v]|4,.
Also, in the context of restricted weak type inequalities the following result was proved
in [23,31]:

M:LP'\(v) — LP®() < ve AZ},

where a weight v € AZ} if

1 —1
”U”A;3 = sup _”XQ”LP(U)”XQU ”Ll’/*oo(v) < OQ.

o 10l

Moreover,
||M||L1hl(u)_>Lp-oc(v) S ||U||A;2~

Now, given p > 1, it was proved in [15,20] that A » C AZ}, where

={0<ve Llloc cdh e Llloc’ ueA;v= (Mh)l_pu},
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with

1
lllar S Ioliz, = inf [lullz,,

where the infimum is taken over all u € A for which there exists 7 € L 110 . such that
v = (Mh)!~Pu. Observe that AF =A; =A;.

Also, the following extrapolation result is going to be important in our main theo-
rems.

Theorem 2.1 [20] Let T be an operator satisfying that, for some 1 < py < oo and
every v € AR

po’
T L7 (v) — L% (v)

is bounded, with constant less than or equal to @p, (||v||sR ), With @, an increasing
PO

function on (0, 00). Then, for every 1 < p < pg and every v € Xp
T:L"'(v) - LP™®(v)
is bounded with constant
1—2 P
Ppo.p() ST P0@p, (Ct m) '

Concerning boundedness of the Hardy-Littlewood maximal operator on weighted
Lorentz spaces we have, as mentioned in the introduction, that for every p > 0,

M : AP (w) — AP(w) < w € B,.
Now, in order to characterize the boundedness of

M : AP (w) — AP (w),

~ 1
is such that its primitive W () ~ W (t)» and
O’ f*(r) dr, this boundedness is equivalent to

by (2.1), AP (w) = A" (W) where
hence, since (M f)*(¢) ~ f**(¢) :=
the embedding

=&

A'@) TP (w) = {f € MR") = || f** | arooq) < 00},

which is known [17] to be characterized by the condition w € BZ,2 defined by

1
sW(t)r

[lwllpr = sup - < 00. 2.3)
’ O<s<t<oo tW(S)F
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In faCt, ||M||Ap,1(w)_)Ap,oc(w) < ||U)||B;2 AISO,

a1 f)g()| dx L g*(r)dr L g*(r)dr
gl ariquwy = sup fROO (0 =su fo, — A sup fo T
renl@) Jo SrOW)dr =0 [oW(r)dr >0 W(t)»

)

where in the second equality we have used [18, Corollary 1.2.12]. Hence

t1opr ek ' Lar

- s)dsdt W(r)r <t

0 r fO f (1) S ||f||(APvl(w))’ sup fO ( ) r
t

M fIl(ar1 )y = sup T
0 W@

>0 W([)F

and consequently

t 3 dr
Jo W(r)r <t
UMl Aty = 1M1 ard @y —ari@y S SUp—~—T". (24
t>0 W([)p

Now, the last expression is finite if and only if w € B} (see [3]). So let us recall
several facts on this class of weights and give an expression for the quantity ||w]|| s

which is going to be important for our purposes.

Definition 2.2 A weight w € B} if and only if

R
[lw||px = sup dr < 0.
*® =0 W) Jo r

Now, many equivalent definitions have appeared in the literature and, as a conse-
quence, we have the following result [3]:

Lemma 2.3 For0 < p < oo,

Ml artwyy S llwllss,-

Proof In virtue of estimate (2.4), it would be enough to see that

1
o wr e
hWory

sup ~ S llwllps, -

t>0 W(I)E

If 0 < p < 1, then the result is immediate, since for every ¢ > 0,

! Ldr Loy [T W(r) 1
Wr)r—=W@r ——dr = W) [|wl| By, -
0 r o T

—

=) Birkhiuser
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So let us consider the case p > 1. First, integrating by parts,

1
¢ P
/ W 1~ lim log <5> W(s)7 +l/ 10g< )W(r)P w(r) dr
0 r s—0 N p
1
t P >
5(] (1og5> w(r)dr> 2.5)
0
+ - ! / log< )W(r)ﬂ w(r)dr,
pJo

an observe that by means of the Holder’s inequality,

/log< )W(r)/’ w(r)dr
0
! t\2p ﬁ t 1 212);1
5(/ <log—) w(r)dr) (/ W(r)zpl‘w(r)dr> (2.6)
0 r 0
1
p—1 t 2p
<ep-nE (/ (1og5)2pw(r)dr>2 W(t)% .
0 r

We claim that for every g > 2,

t
/0 (log ) wydr <atq =1+ @ ~ gl + DIl Wo, @)

from which putting together (2.5) and (2.6), we will conclude that

1 1
t - t A
/ W? 4 < ([ (1og E)2pw(r)dr>2 W) < wllse W()?.
0 r 0 r

So let us see (2.7). Observe that since g > 2, using Fubini twice we get

/(log w(r)dr—q// log —w(r)dr
0
—q/ (1og )" win ©
q 2 ds dr
—q(q—l)/ IOg /W()——
sq(q—l)nwnB;C/ (1oe D) “win .
0

Birkhauser
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Hence, iterating in that way we obtain
! t
/ (log —)qw(r)dr
0 r
t\q-lql dr
<a-0-@ -+ Dillfl [ (o) w2

with [¢] being the integer part of g. Finally,

t _ t q—Ilql q1—q
/O (log é)q lq] W:r)d < </0 logt W(r) ) < W(r) )

u“w a-l4] _

< ([ [ 2asm) T ot wa) o

gl B
< (I W(r)) 1w 1y +la-s

1+
= [Jwllz W),

and the result follows. O

3 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2 Since w € B, we have that M is bounded in (A1 (w))’, and
hence we can define, for every nonnegative function z € (A” *l(w))/,

o0

Mkh(x)
Rh(x) =) 7
=0 CUMIar1w)y)

to be the function resulting from the Rubio de Francia algorithm [41]. Then, i (x) <
Rh(x) a.e., Rh € A; with

IRAlla, S M ariwy S Hwllsz,
by Lemma 2.3, and

IRA(ar1 wyy = 211AH art -

Lety > Oandset F := Fryy, = {x e R" : |[Tf(x)| > y}. Then,v = R(xr) € A;
and,

IA

rrr () f R () (x) dx < M[ F IR () () dx
ITf(x)|>y} y R”

_ M/“’ [/ R(XF)(x)dx] dz
y 0 {If()|>z}
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Now, in the inner integral we apply the definition of associate space to obtain that

/ R(xp)(x)dx < Ixqsi=zar 1) IR a1 )y
{If(0)|>z}

and hence,
@ (llvlla
XTf(Y) 5 %HR(XF)H(APl(w))/”f”[\p](w)
@ (llvlla
S %||XF||(APvl(w))/||f||Ap,l(w)'

Now, since w € BZ}, we have by (2.3) that

Arr(y)
Xl ar oy S Hwllgp ——=—, 3.0
Wrr(y)»
and hence,
1

SUI()))’W()\Tf(y))p < |Iw||3;2§0(C|IwIIB;O)IIfIIAp,l(w)

y>
as we wanted to see. O

Remark 3.1 (1) We observe that, since
AP (w) = AN(W), and AP (w) = AV® (W),
~ 1
with @ such that W(¢) ~ W(¢)? (see (2.1)), and we also have that
weBXNBL, <= ieBFNBL,
the condition
weBXNBL = T: AP (w) — AP ™(w)
is equivalent to
weBRNB:L = T:A'(w) — A"®(w).
(2) Using interpolation theory of weighted Lorentz spaces (see for instance [18,
Theorem 2.6.5]) we can deduce that if 7" is a quasi-linear operator satisfying the
hypothesis of Theorem 1.2, then

we B NBY = T:Aw) — Al(w),

Birkhauser
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and similarly, for every 0 < p < oo,
weB,NBy, = T:A’(w) — AP(w).
Proofof Theorem 1.3 Let y > O and set F := Fryy = {x € R" : |[Tf(x)| > y}.

Then, v = (Mf)!"POR(xF) € EPO - Az,ao and, for every y > 0,

Arr(Y) < Amr(yy) +/ R (xr) (x)dx
(Tf(0)|>y, Mf(x)<yy}

Po
<Amr(yy) + yPO—IyT /F Mfx)'""PR (xF) (x)dx

po—1 pPo
e (lliz,)”
Sampyy) + S A o0 (ar 100 R

Po
po—1 ~
Y w(llvllAm)

= Amr(yy) +

00 pi Po
X (PO/ [/ Mf(X)l"OR(XF)(X)dx} ’ dz)
0 {If(x)|>z}

pPo
po—1 —~
YT e (IIvIIAPO)

Simr(yy) +

1 Po
R B o
(f Z70 [/ R(xr)(x) dx:| dz ;
0 {If ()I>z}

where in the last estimate we have used that for every x € {| f(x)| > z},
Mf)!TP < | fofT < 21
Now, in the inner integral we apply the definition of associate space to obtain that
/ R(xrp)(x) dx = [Ixq£1>231 art @) IR ar1 )y s
{If()[>z}

and hence, using (3.1) and the boundedness of the operator R,

po
Po—1 ~
o (Ivliz,,)

A < 1=po R ,
rr(Y) S Ame(yy) +p y IIfIIAp,pLO(w)II XA artwy)
Po
o (Ivliz,,) ars(
_ y)
<y (ry) + phm Pl
Y (w) W (y)?

) Birkhduser
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1
so that using that w € BZ,Z and the continuous embedding AP0 (w) € AP Y (w) (see
(2.2)),

L 1
sup YW (ko (v 3)7 = M llar=ta
y>
IIwIIBR
5 y ||f||Ap1(w)
llwllgr
< ——LNfll 1
Y A"PO (w)

Therefore, we conclude

1
o) < — P01 ~
1T llar <w>Nmax<y,y o (Ivilz, )" )IIwIIBRIIfIIA,,()
and taking the infimum in y > 0,
o} < 1
ITfllars S llgge (1017, ) 171
Now,
1 1
o1, SR Gl S Hlwll

Therefore,

1
Tl S 1wllgpe (ClwllE) AL, 1

70 (w)’

Observe thatif 0 < g < %, by the continuous embeddings of the weighted Lorentz
spaces (see (2.2)), then

e
AP (w) — AP 70 (w)
and the result follows. Otherwise, take % < g < 1. Hence, by Theorem 2.1,
1 1
T:Lo'(v) = Lo ()

is bounded for every v € A 1 with constant less than or equal to Ppo <| lvllz, )
7

Therefore, applying the first part of the proof we have that
T : AP9(w) — AP®(w)

is bounded with constant less than or equal to @ , 4 <| |w||B;z, ||w||350). O
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4 Boundedness of Operators on Weighted Lorentz Spaces

The main result of this section is the following:

Theorem 4.1 Let T be any of the following operators:
(1) Sparse operators As.

(i1) Bochner—Riesz at the critical index B nol

(iii) Radial Fourier multipliers satisfying (4.2).

(iv) Hormander multipliers withm € HC (s, k).

(V) Rough singular integrals.

Then, for every p > 0 and every w € BZ} N B,
T : AP (w) — AP ®(w) 4.1)

is bounded.

Let us give the definition of all the above mentioned operators, some references
related to them and, when possible, an estimate for the norm of the operator 7 in (4.1).

4.1 Sparse Operators

These operators have become very popular due to their role in the so called A con-
jecture consisting in proving that if 7" is a Calder6n—Zygmund operator then

NTfllr2y S Holasllfll2q)-

This result was first obtained by Hytonen [29] and then simplified by Lerner [33,34],
who proved that the norm of a Calderén—Zygmund operator in a Banach function
space X is dominated by the supremum of the norm in X of all the possible sparse
operators and then proved that every sparse operator is bounded on L?(v) for every
weight v € A with sharp constant. Let us give the precise definition. A general dyadic
grid D is a collection of cubes in R" satisfying the following properties:

(i) For any cube Q € D, its side length is 2 for some k € Z.
(i) Every two cubes in D are either disjoint or one is wholly contained in the other.
(iii) Given x € R", for every k € Z there is only one cube in D of side length 2%
containing it.

Let 0 < n < 1, a collection of cubes S C D is called n-sparse if one can choose
pairwise disjoint measurable sets Eg C Q with |Eg| > n|Q|, where Q € S.

Definition 4.2 Given a sparse family of cubes S C D, the sparse operator is defined
by

1
Asfx)=Y_ (@ / ) dy) X0 ().
QeS 0

Birkhauser
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Proposition 4.3 [30] For every v € Ay, it holds that

I1As fllptooy S Hvlla, (1 +Tog [vllap) 1Lt w)-

In [35], this same bound was proved for a Calderon—Zygmund operator and in [36]
the authors have proved that it is sharp. Hence, using the domination property of the
sparse operators, we conclude that the bound in the above proposition is also sharp.
We thank A.K. Lerner for this information.

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary4.4 LetO < p < ocoand w € BZ,2 N BX,. Then,
Ag : APV (w) = AP (w)
is bounded with constant controlled by
Cillwllgrllwllpg, (1+1og (Callwllsy))

with Cy, Cy constants independent of w.

4.2 The Bochner-Riesz Operator

Let

fe = fooe?™*dax, &eR”,
Rll

be the Fourier transform of an integrable function f € L' (R") andleta, = max{a, 0}
denote the positive part of a € R. Given A > 0, the Bochner—Riesz operator B; on
R” is defined by

Br©=(1-12) j@.

They were first introduced by Bochner in [8] and, since then, they have been widely
studied. The case A = 0 corresponds to the so-called ball multiplier, which is known
to be unbounded on LP(R") if n > 2 and p # 2 ([27]). It is known that when
A > %, B, f is controlled by the Hardy-Littlewood maximal function Mf, and
hence B, satisfies the same weighted estimates as M. We will focus on the value
A= % which is called the critical index. In this case, Christ [22] showed that B nt

is bounded from L!(R") to L1:°°(R"), and although we do not have the control of
B% by M, Shi and Sun proved in [43] that B% is bounded on L” (v) for every

v € A, when1 < p < o0. The corresponding weak-type inequality for p = 1 was
obtained by Vargas in [45], where she proved that B% is bounded from L!(v) to

L1 (v) for every v € Aj.
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Proposition 4.5 [37] For everyn > 1,

Bai : L'(v) = LY"®(®v)

2

is bounded with constant less than or equal to ||v| |Z‘1 log, (Cllv]|a, + D).
Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.6 Foreveryn > 1,0 < p <ocoand w € BZ} N B,
Bu AP (w) = AP (w)
is bounded with constant controlled by
Cillwll g 1wl (1 +log(Callwl|zy)),

with Cy1, Cy constants independent of w.

4.3 Radial Multipliers

Given a multiplier m, we say that T, is a radial Fourier multiplier if ﬁ?(é) =

m(|€]) f ).

Definition 4.7 Given 0 < § < 1 and r > 0, we define the truncated fractional integral
of order 1 — § of a locally integrable function f on R by

1 . g
D= f) = | T =g [ T @ ds, <,

0, t>r,

telR,

with I" being the Gamma function. Moreover, if « = [a] + § > 0, with [«] being its
integer part and § its fractional part, we define the fractional derivative of f of order
o by

[e]
DYf(t) = — (ﬁ> lim i1,1—‘3f(z),

dt r—oo dt
whenever the right-hand side exists.

Let ACjoc be the space of functions which are absolutely continuous on every
compact subset of (0, 00).

Proposition4.8 ([13]) Fixn > 2 and a = # Let m be a bounded, continuous
function on (0, 00) which vanishes at infinity and satisfies that

D Jme ACpe Vj=1,..., [al
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Then, if D%m exists and
(1) =1*"'D"m(r) € L'(0, 0), 4.2)
the operator T,, defined by
T f© =m(EDFE), &R,
satisfies that
T, : L'(v) = LV (v)

is bounded for every v € Ay with constant controlled by C||®||1(0, o0 u] |§41.
Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary 4.9 Let0 < p < oo and w € BZ,2 N B%.. Then if m satisfies the hypothesis
of Proposition 4.8 we have that

Ty o AP N (w) — AP (w)
is bounded with constant controlled by
CHPII 10,00 [lwl1 g 1]
with C independent of w.

4.4 Fourier Multipliers of Hormander Type

Let us use the standard notation |¢| = o] + --- + o, for a multi-index o =
(ay,...,0,) € N and if x € R",

9 \“ 0“1 a%n
(&) -5 v
Then, the Hormander condition for a multiplier m is the following.

Definition 4.10 Let k € N such that k > n/2 and let m : R” — R be a bounded
function of C¥ class on R” \ {0}. Given 1 < s < 2, we say that m satisfies the
Hormander condition respect s and &, and denote it by m € HC (s, k), if

sup (rzl""_" /
r>0 r<|x|<2r

Birkhauser
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The Fourier multipliers operators of Hormander type are those defined by

T f(E) =mE) f(&), EeR",

where m € HC (s, k) fork > n/2 and 1 < s < 2. The classical Hérmander theorem
(see for example [28, Theorem 5.2.7]) says that when s = 2, in the unweighted case,
T, is bounded on L?(R") for 1 < p < oo and satisfies the weak-type inequality

T : L'(R") — LM (R")

whenever m € HC (2, k). The generalization of the condition to 1 < s < 2 was
introduced by Calderdn and Torchinsky in [12], where the authors see that in order to
the classical result to be true for m € HC (s, k) is needed that k > n/s.

Proposition 4.11 [32, Theorem 1] Let 1 < s <2 andm € HC (s, n). Then, for every
S Al,

T, : L'(v) = LV (v)

is bounded with constant less than or equal to ¢(||v||a,) with ¢ being an increasing
function in (0, 00).

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary4.12 Let 0 < p < oo and w € BZ} N B%,. Then
Ty : AP (w) = AP (w)
is bounded with constant controlled by
Cillwllgr o(Callwllpy,),

with C1 and C; independent of w.

At this point we have to say that although the property of ¢ being increasing is
known, the sharp expression for such ¢ is unknown.

4.5 Rough Singular Integrals

Definition4.13 Let "~ ! = {x e R* : |x| = 1} and given Q € L (X"~ !) such that

/ Qx)dx =0.
»n—1

The rough singular integral is defined by

Q !
Tof(x) = p.v'/ ﬂf(x —ydy,
re | y["
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where y' = |y_| In [37], the authors obtained the following result:
y
Proposition 4.14 For everyv € Ay,
To: L'(v) — LY ()

is bounded with constant controlled by ||v| |1241 log, (I1v]l4, + D).

Therefore, as a consequence of Theorem 1.2, we get the following result.

Corollary4.15 Let 0 < p < oo and @ € L®(Z"~Y) such that [z, Q@ = 0. If
w e B;z N B%,, then

To : AP (w) — AP (w)
is bounded with constant controlled by
Cl||w||B;2||w||123go (1 +1log (Callwllzs))

with Cy1, Ca constants independent of w.

4.6 Assani Operator

There is a very interesting operator which satisfies the hypothesis of Theorem 1.3 but
it is not of weak type (1, 1) and hence we cannot apply Theorem 1.2. This operator is
related with the Return time theorem of Bourgain [9], and we refer to [5] for a very
interesting review on the topic and also to [6], where the following related operator
was introduced:

AfG) — H fOx0:0

L1290, 1)

Since one can easily check that Axg < M xg, we have that A satisfies (1.4) and
consequently, we can deduce that, forevery 1 < p < ocoandv € AR

HAfllLreow) S ol AR L Lp )

p—1
Therefore, as a consequence of Theorem 1.3, we get the following result.

Corollary4.16 Let0 < p <00, 0 <g <landw € BZ]z N B%,, then
A AP (w) = AP (w)

is bounded with constant less than or equal to

¢ q
m”w”BF”w”Bé‘o’

Birkhauser



Journal of Fourier Analysis and Applications (2021) 27:43 Page210f22 43

with C independent of w.

At this point, we have to say that, in the case w = 1, the boundedness of A in Lba
was obtained in [21] and, as a consequence, it was proved that the space L9 satisfies
the Return Time Property for the Tail, while this is not the case for L' (see [6]).

On the other hand, it is an interesting open question in the area whether the space
Llogloglog L satisfies this property. Since

1
Llogloglog L = Al (1 + log (1 + log (1 + log ;>>> ,

it will be very interesting to study, for which weights w, the Assani operator A is
bounded on Al(w).

Acknowledgements The authors would like to thank the anonymous referees who provided useful, detailed
and insightful comments on an earlier version of the manuscript.
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