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Abstract
Indicator functions mentioned in the title are constructed on an arbitrary nondiscrete
locally compact Abelian group of finite dimension. Moreover, they can be obtained
by small perturbation from any indicator function fixed beforehand. In the case of a
noncompact group, the term “Fourier sums” should be understood as “partial Fourier
integrals”. A certain weighted version of the result is also provided. This version leads
to a new Men′shov-type correction theorem.

Keywords Uncertainty principle · Men‘shov correction theorem · Thin spectrum

Mathematics Subject Classification Primary 43A25 · 43A50

1 Introduction

When stated in precise terms, any specific form of the vague claim that a function and
its Fourier transform cannot be too small simultaneously (the celebrated “uncertainty
principle in harmonic analysis”) often turns into the question about a frontier beyond
which this claimbecomes false. In the rangeof problemswhere smallness is understood
as the vanishing on a large set, one such frontier was marked recently by Nazarov and
Olevskii (see [11]), who constructed a set E of finite positive measure on the real
line such that the Fourier transform of the indicator function χE has support that
is fairly thin at infinity. More specifically, given arbitrary mutually nonintersecting

Communicated by Sergij Tikhonov.

B S. V. Kislyakov
skis@pdmi.ras.ru

P. S. Perstneva
deepbrightblue@gmail.com

1 St. Petersburg Department of the V. A. Steklov Math. Institute, 27 Fontanka, St. Petersburg, Russia
191023

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-021-09840-3&domain=pdf


33 Page 2 of 18 Journal of Fourier Analysis and Applications (2021) 27 :33

intervals Ik in R+ whose lengths tend to infinity, the support of χ̂E can be placed in
K ∪ (⋃

k(Ik ∪ (−Ik))
)

for some compact set K . We refer the reader to the same paper
[11] for a concise survey of known facts about the two “countries” separated by the
borderline indicated.

Shortly after, the first author of the present paper observed (see [6]) that a slight
modification of the construction in [11] makes it possible to turn an arbitrary set
A ⊂ R of finite positive measure into a set E as above by a small perturbation. It
was also shown in [6] that, basically with the same proof, a similar result holds for
any nondiscrete locally compact Abelian group.1 In fact, the invocation of the idea of
“correcting” a given indicator functionwasmotivated by the results of [1,2] and [7]. For
example, in the last paper, an analog of Men′shov’s classical correction theorem was
proved for an arbitrary locally compact Abelian group of finite dimension, moreover,
the spectrum of the corrected function was placed in a “thin” set like the above union
⋃

k(Ik ∪ (−Ik)) in the case of R.
We remind the reader that, on the circle, Men′shov’s correction theorem says that

any measurable (equivalently, any measurable and bounded) function can be modified
on a set of an arbitrarily small measure so as to acquire a uniformly convergent Fourier
series. Surely, the analog of this statement for general groups also involves a certain
type of uniform convergence for Fourier expansions. For the indicator function that
emerges after correction, one might only hope for the uniform boundedness of partial
Fourier sums or integrals instead of uniform convergence, but even thiswas not ensured
in [6], moreover, it was hinted there that the method would unlikely be suitable for
that.

However, later, a more careful look at the situation showed that, even within the
class of indicator functions, we can still combine “thin” spectrum, uniform bound-
edness of partial Fourier integrals, and the idea of correction à la Men′shov. Again,
all this can be done on every (nondiscrete) locally compact Abelian group of finite
dimension. The present paper is devoted to the exposition of this and related results.
The clever nonlinear construction by Nazarov and Olevskii will again be in the core of
the arguments, but here this construction will require a more substantial modification
than in [6]. Also, some techniques of the paper [7] will be invoked (which, however,
are rather standard in similar issues).

The paper is organized as follows. In Sect. 2, after necessary preliminaries, we state
the results and comment on them. The final Sect. 3 is devoted to the proofs.

2 Preliminaries and Precise Statements

Throughout, G will be a nondiscrete locally compact Abelian group of finite dimen-
sion, and � will stand for its group of characters, with Haar measures dx and dγ ; it
is assumed that these Haar measures are normalized so that the Fourier transform F ,
F f (γ ) = ∫

f (x)γ (x)dx, γ ∈ �, f ∈ L1(G), is a unitary operator from L2(G) onto

1 Formally, the claim is also true for discrete groups, but this is not interesting: the compact set K mentioned
in the description of the result is not controlled, all this is about the behavior of Fourier transforms at infinity.
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L2(�). We will often write |e| for the Haar measure of a measurable subset e of G or
�.

We reproduce a definition from [7] (see also [4]).

Definition (Sufficient pairs) A pair (R, S) of closed subsets of� is said to be sufficient
if for every compact set E ⊂ � there exists a character γ ∈ � with −γ + E ⊂ R and
γ + E ⊂ S.

We shall put the spectrum of corrected (indicator) functions in the union K ∪ R ∪ S,
where (R, S) is a sufficient pair in � and K is a certain compact set depending on the
function we are going to modify. The pair (−⋃

k Ik,
⋃

k Ik), which occurred in the
Introduction, is sufficient for the (dual) group (of) R. Clearly, a similar construction
with intervals replaced by mutually nonintersecting balls of radii tending to infinity
provides a sufficient pair in the case of (the dual group of) Rn , and examples for the
dual group Zn of the torus Tn are provided in the same way. Moreover, in the case of
R

n or Tn , any sufficient pair includes another one of the above form.
Next, to discuss uniformly bounded Fourier sums (or partial Fourier integrals), we

need the notion of a summation basis.

Definition (Summation bases and the norm ‖ · ‖u) For a measurable subset E of � we
define the operator PE (at least on L2(G)) by the formula

PE f = F−1(χEF f ).

A subset of � is said to be bounded if it has compact closure. Let B be a family of
bounded measurable subsets of � such that for every compact set K ⊂ � there exists
E ∈ B with K ⊂ E . Such a system B will be called a summation basis. For functions
f ∈ L2(G) we introduce the following not necessarily finite quantity:

‖ f ‖u = sup
B∈B

(‖PB f ‖∞).

Whenwe talk about uniformly bounded partial Fourier integrals (or sums), we shall
mean the finiteness of the norm ‖ · ‖u for a certain fixed summation basis. Also, it
should be noted that we might consider the quantity ‖ f ‖u beyond the class L2(G)

(for instance, it is well defined also for f ∈ L1(G)), but the present L2(G)-version
will suffice in what follows.

Surely, not all summation bases are expected to admit a Men′shov-type correction
theorem. So, we impose a restriction on them taken from [4] and [8].

Let E be a bounded measurable subset of �. We say that a set B ∈ B splits E if
the sets E ∩ B and E\B have positive Haar measure. (If G is compact, this simply
means that the two sets are nonempty, because � is discrete in this case and its Haar
measure is the counting measure.) Next, we denote by EB an arbitrary representative
of the lowest upper bound (in the complete lattice of measurable sets mod 0) of
the collection {B ∈ B : B splits E} (in symbols, with a slight abuse of notation:
EB = ∪{B ∈ B : B splits E}; if G is compact, then the union in the last formula can
be understood literally).
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The restriction we are going to impose on a summation basis will depend on a
sufficient pair in question. Here it is.

Definition (Coordination of a summation basis and a sufficient pair) A summation
basis B and a sufficient pair (R, S) are said to be coordinated if for every bounded
measurable set E ⊂ � the pair (R\EB, S\EB) is also sufficient.

We give here two simple but important examples of summation bases coordinated
with any sufficient pair. See [4,8] for more information.

Example 2.1 Let G be compact, infinite, and metrizable. Let B = {Bn}n∈N be an
arbitrary strictly monotone increasing sequence of finite subsets of � whose union is
equal to �. Then this collection is a summation basis coordinated with an arbitrary
sufficient pair in �.

Indeed, under the above assumptions all compact sets in � are finite, and it is
easily seen that EB is finite for every finite E . So it suffices to show that, whenever
(S, R) is a sufficient pair in � and A ⊂ � is finite, the pair (S\A, R \ A) is also
sufficient. For this, taking a finite set D ⊂ �, we fix μ ∈ � (to be specified later), put
D1 = (−μ+ D)∪ (μ+ D)∪ D and find λ ∈ � with λ+ D1 ⊂ S and −λ+ D1 ⊂ R.
Then for some choice ofμ either (λ+ D)∪ (−λ+ D) or (λ+μ+ D)∪ (−λ−μ+ D)

does not intersect A. For, otherwise bothλ andλ+μ belong to H = (D−A)∪(A−D),
whence μ ∈ H − H . Since H is finite and � is infinite, there is μ for which the last
condition is violated.

Example 2.2 The second example pertains to the case where G is Rn or Tn (accord-
ingly, � is either R

n or Z
n). A nonempty subset B of R

n or Z
n is said to be

solid if y = (y1, . . . , yn) ∈ B whenever |y j | ≤ |x j | for j = 1, . . . , n and
x = (x1, . . . , xn) ∈ B. We claim that the collection B of all solid sets constitutes
a summation basis coordinated with an arbitrary sufficient pair (S, R).

To explain this, suppose for definiteness that we work with � = Z
n . (The case of

R
n is similar.) Taking a finite set K ⊂ Z

n , for each j = 1, . . . , n consider the smallest
strip D j of the form {x ∈ Z

n : |x j | ≤ d} that includes K , and let D be the union of
these strips. It is quite easy to realize that KB ⊂ D. Now, a simple direct inspection
shows that (S\D, R \ D) is a sufficient pair. The figure illustrates the case of n = 2.
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(R,S)

y

x

KB

K

We pass to precise statements of the results. In fact, we prove a “weighted” version
of what was discussed in the Introduction. By a weight (maybe the term “a rail” would
be more appropriate) we mean a uniformly continuous positive function w on � that
is bounded and bounded away from zero. We will modify functions of the form χaw

(instead of χa) up to functions of the same form. For convenience, we assume that
w ≤ 1 (this is merely a normalization condition). Suppose we are given a sufficient
pair (R, S) in G and a summation basis B in � coordinated with this sufficient pair;
the norm ‖ · ‖u will be related to this summation basis.

Theorem 2.3 For every ε > 0 and an arbitrary measurable subset a of G with 0 <

|a| < ∞, there is a measurable subset b of G such that

(1)
∫

a
b w2 < ε,
(2) the spectrum of χbw is included in K ∪ R ∪ S for some compact set K ⊂ �

depending on a,
(3) the norm ‖wχb‖u is finite.

Remark 2.4 The facts discussed in the Introduction follow if w is identically equal to
1. In this case it can also be ensured that |b| = |a|.
Remark 2.5 The claim that ‖wχb‖u is finite can be supplemented with the inequality
‖PB(wχb)‖∞ ≤ C with C depending only on dim G whenever B ∈ B and B ⊃ K
(this will be verified in the course of the proof).

Neither the compact set K nor the norms of the PB(χbw) where B splits K are
under control in general, we only know a uniform bound for these norms depending
on a. However, in some specific cases the estimate can be refined. For example, this
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is true for the groups R and T, the standard summation bases {[−N , N ], n ∈ N} for
the circle and {[−M, M], M ∈ R} for the real line (by the way, these are precisely the
bases of solid sets mentioned in Example 1.2) and an arbitrary sufficient pair.

Theorem 2.6 Under the assumptions listed in the preceding paragraph, the set b as in
Theorem 2.3 can be chosen in such a way that ‖wχb‖u ≤ C log(2 + ε−1

∫

a w). Here
C is a universal constant.

Remark 2.7 The same is true for the dyadic group D = {−1, 1}N if wemean a uniform
bound for the partial sums of Walsh-Fourier series under the standard enumeration of
the Walsh system. Again, a sufficient pair can be taken arbitrarily (note that 1 = −1
in the dual group of D, so the notion itself of a sufficient pair simplifies in this case).
Moreover, theWalsh system here can be replaced with bounded Vilenkin systems. See
Sect. 3.6 for some more information.

Theorem 2.6 will allow us to deduce our final result, which is not confined to
characteristic functions, and is apparently new in the range of correction theorems.
It holds for the groups R and T with the standard summation bases and arbitrary
sufficient pairs, and also for certain zero-dimensional compact groups; see Sect. 3.6
for the discussion. To a certain extent, this correction theoremabsorbs all developments
known previously: the modified function has both thin spectrum and bounded Fourier
integrals, and obeys a sharp estimate like in Theorem 2.6. We give the statement for
the group R for definiteness (and with a slightly weaker inequality for the norm ‖ · ‖u

than in Sect. 3.6).

Theorem 2.8 Let ε > 0. Given a function h ∈ L∞(R) supported on a set of finite
measure and with ‖h‖∞ ≤ 1, there is a function f such that ‖ f ‖∞ ≤ 20, |{h �=
f }| ≤ ε, and ‖wχb‖u ≤ C log(2 + ε−1| supp h|). Furthermore, the spectrum of f is
included in K ∪ R ∪ S, where K is a compact set depending on h.

3 Proofs

3.1 Approximate Identities

We need a certain analog of the Fejér kernels for our group G. Let U be a compact
symmetric neighborhood of zero in the dual group �. We put ψU = (|U |−1/2χU ) ∗
(|U |−1/2χU ). This is a continuous function on � with values in [0, 1], supported on
the compact set K = U + U , and satisfying ψU (0) = 1. Define �U = F−1ψU ; then
‖�U ‖1 = 1 and �U ≥ 0. In this subsection, the assumption that dim G < ∞ is not
required.

Lemma 3.1 For a certain family of neighborhoods U of zero in �, the corresponding
functions �U form an approximate identity2 for G.

2 By definition, this means that the operators of convolution with these functions converge pointwise to the
identity on L p(G), 1 ≤ p < ∞.
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The claim is standard but not quite straightforward because the invocation of the
structure theorem seems to be obligatory for the proof. Next, surprisingly, we have
not found precisely this statement in standard handbooks. So, for completeness, we
sketch the arguments. By the structure theorem (see, e.g., [3]), G splits in the direct
product ofRk and a group containing an open compact subgroup G1. It is quite easy to
see that it suffices to prove the claim separately forRk and G1. The groupRk presents
no problems (when U runs through the family of cubes centered at zero, we obtain
the family of genuine multiple Fejér kernels on R

k). We will see that the case of the
compact group G1 reduces to considering similar cubes, this time in Z

s for some s.
Denote by �1 the (discrete) dual of G1. Since the operators of convolution with �U

have norm at most one on L1(G1), it suffices, given a finite set C of characters on
G1, to find U such that this convolution operator is as close to the identity on C as we
wish. This means that we must find a symmetric finite subset U of �1 containing zero
such that the function ψU is very close to 1 on C .

Now, let 	 be the subgroup of �1 generated by C . Since C is finite, 	 is a direct
sum of finitely many cyclic groups, whence	 = Z

s ⊕
 for some finite Abelian group

. If s = 0, take 
 for U . Otherwise, take a large cube Q centered at zero in Z

s and
put U = Q ⊕ 
. A short reflection shows that the required property of ψU is ensured
as soon as the diameter of Q is much greater then the diameter of the projection of C
to Zs , and we are done.

Lemma 3.2 Given a compact neighborhood V of zero in G and ε > 0, there exists a
compact symmetric neighborhood U of zero in � such that

∫

G\V �U < ε.

Proof This is standard for approximate identities. Indeed, given f in L1(G), we can
find U with ‖ f − f ∗�U ‖L1(G) < ε. Now, take a symmetric neighborhood W of zero
inG such thatW −W ⊂ V and find such aU for f = |W |−1χW . Since now f vanishes
outside W , we have

∫

G\W f ∗ �U (x)dx < ε. After plugging the integral formula for
convolution in the expression on the left and changing the order of integration, this
becomes

∫

G
�U (t)

|(W + t)\W |
|W | dt < ε.

Now, the fraction under the integral sign is equal to 1 if t /∈ W − W ⊂ V . So, it
suffices to restrict integration in the last formula to the complement of V . ��

The last lemma allows us to prove the following statement, which will be useful in
the main construction below. Let w be a weight as in Theorem 2.3, i.e., a uniformly
continuous positive function on � that is bounded above by 1 and bounded away from
zero.

Lemma 3.3 For every η > 0, we have eventually w ∗ �U ≤ (1 + η)w for the above
approximate identity.

Proof Take ε > 0 and find a compact symmetric neighborhood V of zero in G such
that |w(x) − w(y)| ≤ ε whenever x − y ∈ V . Then take �U as in Lemma 3.2 for this
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V and ε and write (denoting by d some positive lower bound for w):

�U ∗ w(x) ≤
∫

V

w(x − y)�U (y)dy +
∫

G\V

�U (y)dy

≤ w(x) + 2ε ≤ w(x)

(

1 + 2ε

d

)

≤ w(x)(1 + η)

if ε is sufficiently small. ��

3.2 Covering Neighborhoods

This is a technical ingredient used in various proofs of Men′shov-type correction
theorems.

Definition 3.4 Acompact neighborhoodV of 0 inG is said to be covering if there exists
a family {xi }i∈I of points inG such thatG = ∪i∈I (xi + V ) and |(xi +V )∩(x j +V )| =
0, i �= j .

With a covering neighborhood V , we associate the family {αi }i∈I ,

αi (t) = χV ∗ χV (t − xi )

|V | , t ∈ G, (3.1)

of functions on G, where {xi } is the family of points mentioned in Definition 3.4.
Observe that ‖αi‖∞ = 1 and ‖Fαi‖1 = 1. The last identity will enable us to use
combinations of these functions to provideFourier expansionswith uniformly bounded
partial integrals (or sums).

Lemma 3.5 (1) Let D be a compact subset of G, and J a finite subset of I such that
D −V ⊂ ∪i∈J (xi + V ). Then

∑

i∈J
αi = 1 on D, i.e., {αi }i∈J is a partition of unity

on D.
(2) There exists a base V of neighborhoods of zero in G such that every V ∈ V is a

covering neighborhood and m(V + V ) ≤ 2dimGm(V ).

Proof (1) This is clear (however, see [7] or [5] for details).
(2) This fact is obvious for the groups Rn and T

n : the role of V can be played by a
certain family of cubes centered at zero. For an arbitrary group G, the claim is
deduced form these elementary cases with the help of the structure theorem. See
again the above references.

��
Remark 3.6 The construction of a covering neighborhood (see the above hint) shows
that the supports of the associated functionsαi form a covering ofG whosemultiplicity
is at most 2dim G . Again, in the cases of Rn and the tori, this is straightforward.
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3.3 Inductive Construction

Herewepresent a principal ingredient of the proofs of themain results.As it has already
been said, we use the ideas of [11]. However, some complications arise. Besides the
fact that now we must ensure also the boundedness of Fourier sums (or partial inte-
grals), a technical difference is that presently we shall need a certain double sequence
{ f (n)

k }n∈Z+, 0≤k≤n of functions on G (instead of a single sequence in [11]). It will turn

out eventually that the functions f (n)
n converge as n → ∞, and this limit yields the

desired function χbw after multiplication by a constant.We shall proceed by induction
on the upper index n (if we view the required functions as the entries of a triangular
matrix, this means that at each step we add an entire new row to this matrix).

So, let w and a be as in Theorem 2.3. Fix a small ε > 0 and a strictly monotone
increasing sequence {tn}n≥0, tn > 1, whose limit t does not exceed 1 + ε. Also, fix a
sequence of positive numbers {ρn}n≥0 with

∑

n≥0
√

ρn < ε. Below we gather certain

properties of the functions f (n)
k that will be ensured by induction. The construction

will imply some important supplements to these properties, which we do not indicate
now.

(i) For every n ≥ 0, we have

0 ≤ f (n)
k ≤ tnw, k = 0, . . . , n.

(ii) The spectra of all f (n)
k are compact and all these functions belong to L1(G) ∩

C0(G). By C0(G) we mean the set of all continuous functions on G tending to
0 at infinity; C0(G) = C(G) if G is compact. Consequently, all f (n)

k are square
integrable.

(iii) There exists a compact subset K of G such that all functions f (n)
k have compact

spectra included in K ∪ R ∪ S, where (R, S) is the sufficient pair mentioned in
Theorem 2.3.

(iv) We have

‖ f (0)
0 − χaw‖1 < ρ0. (3.2)

Next,

‖ f (n)
k − f (n−1)

k ‖1 < ρn (3.3)

for n ≥ 1 and k = 0, . . . , n − 1 (this relates all functions in the (n − 1)st row of
the matrix mentioned above with the first n functions in the nth row).

Now, we start the construction with n = 0. To ensure (3.2), we put f (0)
0 = (χaw)∗

�U0 , where U0 ⊂ � is chosen in such a way that ‖(χaw) ∗ �U0 − χaw‖1 ≤ ρ0 (see
Lemma 3.1) and w ∗ �U0 ≤ t0w (see Lemma 3.3). Since χaw ≤ w, the inequalities
in (i) for n = 0 follow. Next, clearly, f (0)

0 ∈ L1(G) ∩ C0(G). Moreover, F( f (0)
0 )

is supported on the compact set K = U0 − U0; this will be the “K ” mentioned in
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Theorem 2.3 and in (iii) above. Next, since F( f (0)
0 ) is integrable, the norm ‖ f (0)

0 ‖u

is finite, though no reasonable control of it is available.
Next, suppose that for some n > 0 the functions f (n−1)

0 , . . . , f (n−1)
n−1 have already

been constructed. We are going to construct the required collection with the upper
index n. If k ≤ n − 1, we take f (n)

k = �Un ∗ f (n−1)
k , where Un is chosen so as to

ensure (3.3) and also the inequality�Un ∗w ≤ tn
tn−1

w (see Lemmas 3.1 and 3.3). In the
sequel, we will impose more restrictions on Un , compatible with the above. Surely,
the present choice of Un ensures the estimates in (i) for all k except for k = n.

The construction of f (n)
n is more tricky. First, we introduce the auxiliary function

gn = f (n−1)
n−1

(

1 − f (n−1)
n−1

tn−1w

)

. (3.4)

Observe that the spectrum of gn is a compact subset of � and gn is nonnegative by (i).
The subsequent arguments will involve certain objects (sets, functions, coefficients,

parameters) depending in fact on n. But since now n is fixed, this dependence will not
always be reflected in the notation. We shall approximate gn from below by a function
suitable for further constructions.

For this, observe that gn is square-integrable, so the quantity
∫

G min(gn(x), δ)2dx
tends to zero as δ → +0. Hence, we can find a (small) δ > 0 such that for the compact
set C = {x ∈ G : gn(x) ≥ δ} we have ‖(gn − δ)χC‖2 > (9/10)‖gn‖2. Denote
g = (gn − δ)χC , then g is continuous and compactly supported, hence uniformly
continuous. Next, clearly, g(x) + δ/2 < gn(x) in a neighborhood W of C with
compact closure. By using Lemma 3.5 (with C in the role of “D”), it is easy to realize
that there is a (small) covering neighborhood V in G (among other things, we need
that C − V ⊂ W ) such that g is approximated uniformly and in L2(G) within any
precision prescribed beforehand by a function of the form

hn =
∑

i∈J

ciαi , ci = g(xi ) ≥ 0,

(the α j are given by (3.1); we also use the notation from Lemma 3.5). Clearly, hn ≤ gn

if V is sufficiently small, and all this can be arranged so as to ensure the inequality

‖hn‖22 ≥ 1

2
‖gn‖22. (3.5)

Next, by Remark 3.6, we have

hn(x)2 ≤ 2dim G
∑

i∈J

(ciαi (x))2, x ∈ G.

Integrating, we arrive at

‖gn‖22 ≤ 2dim G+1
∑

i∈J

(ci )
2‖αi‖22. (3.6)
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Recall that the set J in the last sum is finite. For a detail in what follows, it is
convenient to assume that J is a segment of positive integers. Now, we want to replace
the functions αi , i ∈ J , by the functions βi = �Un ∗αi , i ∈ J , with compact spectrum.
In addition to the restrictions on Un imposed above, we demand that

‖βi‖22 = ‖�Un ∗ αi‖22 ≥ 1

2
‖αi‖22. (3.7)

(See Lemma 3.1.)
Finally, we can define the function f (n)

n : put

f (n)
n = f (n)

n−1 + ˜hn, where ˜hn = Re
∑

i∈J

ciβiγi . (3.8)

Here the γi are certain characters of the group G (of course, they depend also on n,
but we do not reflect this in the notation for short). These characters are introduced to
eliminate the interference between the summands in (3.8) (and elsewhere), which will
provide the desired estimate for ‖·‖u . The choice of the γi is described in the following
lemma, whose proof is much similar to the proof of Lemma 1 in [6],3 and is based
entirely on the definition of a sufficient pair and on the fact that the summation basis
and the sufficient pair in question are coordinated. We do not reproduce the arguments
here. Note that the lemma is quite transparent for the groups Rn and Tn in the role of
G. Surely, in these cases � has no elements of order two, so item (2) below can be
shortened accordingly. In any case, the γi are chosen one after another as i ∈ J grows
(we remind the reader that we have assumed that J is a segment of integers). Recall
also that the sufficient pair in question is denoted by (R, S).

Lemma 3.7 The characters γi can be chosen in such a way that

(1) the support of the Fourier transform of Re(βiγi ) = βi (γi +γi )/2 lies in S∪ R and
intersects neither the spectra of all functions f ( j)

k constructed previously (i.e., with
j ≤ n and k ≤ n − 1), nor the spectra of all functions Re βsγs for 1 ≤ s < i , nor
the “union4” of all sets in the summation basis B that split any of these spectra;

(2) either 2γi = 0 (i.e., γi (·)2 = 1) or the ±2γi do not lie in the spectrum of β2
i .

Now, we verify the inequality in (i) for the function f (n)
n . By the definition of the

βi , we have

∣

∣

∣

∣

∣

Re
∑

i∈J

ciβiγi

∣

∣

∣

∣

∣

≤
∑

i∈J

ciαi ∗ �Un = hn ∗ �Un ≤ gn ∗ �Un .

So, by (3.8) and the definition of f (n)
n−1, we have

�Un ∗ ( f (n−1)
n−1 − gn) ≤ f (n)

n ≤ �Un ∗ ( f (n−1)
n−1 + gn).

3 There is a slight inaccuracy in that proof in the Russian version of the paper, which was corrected in the
English translation
4 Not quite: the lowest upper bound in the lattice of measurable subsets of �.
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Finally, we use the inductive hypothesis in (i) and the definition (3.4) to conclude that
f (n−1)
n−1 − gn ≥ f (n−1)

n−1 − f (n−1)
n−1 ≥ 0 and

f (n−1)
n−1 + gn ≤ f (n−1)

n−1 + tn−1w

(

1 − f (n−1)
n−1

tn−1w

)

= tn−1w.

The desired result follows because �Un ∗ (tn−1w) ≤ tnw by the choice of Un .
This finishes the induction.

Remark 3.8 It can easily be arranged that U0 ⊂ U1 ⊂ U2 ⊂ . . .. Then the spectrum
of f (n)

k does not change when n varies with k fixed (i.e., within each column of the
matrix). In the sequel, we will assume that the Un have this property.

3.4 Proof of All Claims Except the Uniform Boundedness of Partial Fourier
Integrals

In this subsection we show that the sequence {t−1
n f (n)

n }n∈Z+ converges to a function of
the form χbw, and we verify all metric and spectral conditions for the limit function,
except the finiteness of the norm ‖ · ‖u for it.

3.4.1 Convergence

First, we observe that for every k the limit Fk = lim j≥k, j→∞ f ( j)
k exists in

L2(G). (These are “the limits along all columns”.) Indeed, by (3.3) and (i), we have
‖ f ( j)

k − f ( j−1)
k ‖2 < c

√
ρ j , and the quantities on the right were chosen to constitute

a convergent series.
Next, the functions {Fk} form partial sums of an orthogonal series. Indeed, it can

easily be seen by induction that, for each n, the spectra of the functions f (n)
0 , f (n)

1 −
f (n)
0 , . . . , f (n)

n − f (n)
n−1 are mutually disjoint (see Lemma 3.7), hence, these functions

are mutually orthogonal, and the claim follows by the limit passage as n → ∞.
It is also easily seen by induction that

∫

G

f (n)
k (x)dx =

∫

a

w(x)dx (3.9)

for all n ≥ 0 and all k = 0, . . . , n. Indeed, this is clear for k = n = 0 and then
for k = 0, n = 1, because these two functions are obtained from χaw by convolu-
tion with positive functions of unit L1-norm. Hence, the spectrum of f (1)

0 includes a

(neighborhood of) zero. So, f (1)
1 is obtained from f (1)

0 by adding a function with zero
integral (see again Lemma 3.7). This proves (3.9) for n = 1. Then we pass to n = 2
in the same way, etc.
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Now, we see that

∫

G

(Fk)
2dx = lim

n→∞

∫

G

( f (n)
k )2dx ≤ c

∫

a

wdx,

hence the functions Fk converge to some function F in L2(G) as k → ∞. Since

‖Fk − f (k)
k ‖2 ≤ c

∑

i>k

√
ρi and ‖Fk−1 − f (k)

k−1‖2 ≤ c
∑

i>k

√
ρi ,

we see that the sequences { f (k)
k } and { f (k)

k−1} also tend to F in L2(G) as k → ∞.

Hence, ‖˜hk‖2 = ‖ f (k)
k − f (k)

k−1‖2 → 0 as k → ∞.
But the terms Re(ciβiγi ) in the formula for ˜hk (see (3.8)) are mutually orthogonal

by construction (see Lemma 3.7), hence

‖˜hk‖22 =
∑

i∈J

‖Re(ciβiγi )‖22.

Next, we observe that

‖Re(βiγi )‖22 = 1

4

∫

G

(γi + γi )
2β2

i =

⎧

⎪

⎨

⎪

⎩

∫

G
β2

i , 2γi = 0,

1
2

∫

G
β2

i , 2γi �= 0

(in the second line, we have used the fact that the characters ±2γi are not in the
spectrum of β2

i if γi is not of order 2, see Lemma 3.7). Combining (3.7), (3.6), and

(3.5), we see that gk → 0 in L2(G). Since some subsequence of { f (k)
k } must converge

to F a.e., looking at formula (3.4) for gk we realize that at every x ∈ G, either
F(x) = 0, or F(x) = tw(x) (recall that tn → t). Hence, F = tχbw for some
measurable set b. We shall show that this b is the required set.

Observe, by the way, that

∫

b

tw(x)dx =
∫

a

w(x)dx . (3.10)

Indeed, inequality (3.3) implies that f (n)
k → Fk also in L1(G) as n → ∞, hence

∫

G Fk(x)dx = ∫

a w(x)dx for all k by (3.9). Since also all Fk are nonnegative, F is
integrable and

∫

G F(x)dx ≤ ∫

a w(x)dx by the Fatou lemma. In fact, equality occurs
here. Indeed, the construction and the Plancherel theorem show that F(F) and F(F0)

coincide a.e. in some neighborhood of zero in �. Since both functions are continuous,
they coincide at 0, whence the claim.

Since t > 1, we see that
∫

b w ≤ ∫

a w.
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3.4.2 Correction

Here we prove that a and b differ only slightly, as claimed in Theorem 2.3. By the
above discussion, the functions F0 and F − F0 are orthogonal, hence

∫

G F0Fdx =
∫

G(F0)
2dx . Since f (0)

0 is at the distance of at most (const ε) from F0 in L2(G), we
see that

∫

G

f (0)
0 F =

∫

G

( f (0)
0 )2 + O(ε).

Now,

∫

a∩b

w2 = 1

t

∫

G

(χaw)F = 1

t

⎛

⎝

∫

G

(χaw − f (0)
0 )F +

∫

G

( f (0)
0 )2 + O(ε)

⎞

⎠ .

Clearly, the first integral in parentheses is O(ε) by (3.2). For the second integral, we
write
∫

G

( f (0)
0 )2 ≥

∫

G

(χaw)2 −
∫

G

|( f (0)
0 )2 − (χaw)2| ≥

∫

a

w2 − A0

∫

G

| f (0)
0 − χaw|.

The subtrahend in the last expression is again O(ε). Collecting the estimates, we arrive
at

∫

a∩b
w2 ≥ 1

t

∫

a
w2 − A1ε ≥ ∫

a
w2 − A2ε if t has been chosen sufficiently close to 1.

Since
∫

b w ≤ ∫

a w, we arrive at
∫

a	b
w2 ≤ A3ε, as required.

3.4.3 About Remark 2.4

We have 1 ∗ �U = 1 for every U . Hence, the numbers tn are not required in the case
where w is identically equal to 1: the above arguments work with tn = 1 for all n
(accordingly, t = 1). Now the claim of the remark follows from (3.10).

3.4.4 Spectrum

Needless to say that condition (2) in Theorem 2.3 is clear from the construction.

3.5 Uniform Boundedness of Partial Fourier Integrals

We remind the reader that by Remark 3.8, the spectrum of f (n)
k does not change when

n ≥ k varies with k fixed.
Now, take a set B in the summation basis B in question and find the minimal k such

that B does not include the spectrum of f (k)
k (here and in the next several lines, all

inclusions are understood up to a set of zero measure in �). We shall provide some
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uniform bound for |PB f (k)
k |, and this will suffice. Indeed, suppose we have ensured an

upper bound D for this function. Since for every j > k the function f ( j)
k is obtained

form f (k)
k by convolution with a nonnegative function with unit integral and since

convolution commutes with PB , we see that |PB f ( j)
k | ≤ D. However, by construction

(see Lemma 3.7), we have PB f ( j)
j = PB f (k)

k , and we see that |PB f ( j)
j | ≤ D for all

j ≥ k, hence also |PB F | ≤ D in the limit.
The nature of the required uniform estimate depends heavily on whether k = 0 or

k > 0. If k = 0 (i.e., B splits the support of f (0)
0 ), then |PB f (0)

0 | ≤ ‖F f (0)
0 ‖1. The

last quantity does not depend on B, as required, but otherwise it is out of our control,
we know only that it is finite becauseF f (0)

0 is bounded and compactly supported. But
if k > 0 (which is true for sure if B ⊃ K , as in Remark 2.5), we see that B includes
the support of f (k)

k−1 by the minimality of k. Hence, PB f (k)
k = f (k)

k−1 + PB ˜hk , see (3.8).

Since (it can be arranged that) all functions f (n)
j are uniformly bounded, say, by 2, it

suffices to estimate the second summand on the right in the last formula.
Recall that in the expression given for ˜hk in (3.8) we assumed that J is a segment

of integers. The way in which we used the order on J in the construction (see again
Lemma 3.7) shows that there is a unique l ∈ J with

PB ˜hk =
∑

i<l

Re(ciβiγi ) + PB(Re clβlγl).

Now, we remind the reader that βi = �Un ∗ αi , i ∈ J . Hence, recalling the properties
of the functions αi (see (3.1) and Lemma 3.5) and the fact that |ci | = |g(xi )| ≤ 2, we
obtain

∣

∣

∣

∣

∣

∑

i<l

Re ciβiγi

∣

∣

∣

∣

∣

≤ 2
∑

i<l

�Un ∗ αi = 2�Un ∗
(

∑

i<l

αi

)

≤ 2

and

|PB(Re clβlγl)| ≤ 2‖F(
γl + γ̄l

2
βl)‖1 ≤ ‖Fαl‖1 ≤ 1.

Collecting the estimates, we see that we have proved Theorem 2.3 together with
Remark 2.5.

3.6 Sharp Inequalities

HereweproveTheorem2.6.We saw in the preceding subsection that only f (0)
0 presents

an obstruction to what we are going to do, and in order to prove the desired claim we
must ensure an appropriate control of the partial Fourier integrals (or sums) for this
function. In some specific but important cases, this can be done indeed, with the help
of a theorem proved in [9] and formulated below.
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Let X be a Banach space whose elements are locally integrable functions on a
measure space (S, μ). In a natural way, the space L1

loc(μ) is locally convex. Next,
we denote by L∞

0 (μ) the space of all essentially bounded functions supported on a
set of finite measure. If g ∈ L∞

0 (μ), the formula �g(u) = ∫

S
gudμ defines a linear

functional on L1
loc(μ), hence on every linear subspace of this space. Suppose that the

following two conditions are satisfied.

A1. The natural embedding X ↪→ L1
loc(μ) is continuous and the unit ball of X is

weakly compact in L1
loc(μ).

A2. For every g ∈ L∞
0 (μ) we have the weak type estimate

m({|g| > t}) ≤ c
‖�g‖X∗

t
,

where c depends only on X .

Theorem 3.9 For every f ∈ L∞(μ) ∩ L1(μ) with ‖ f ‖∞ ≤ 1 and every ε > 0, there
exists a measurable function ϕ with 0 ≤ ϕ ≤ 1 such that ϕ f ∈ X, μ({ϕ �= 1}) ≤ ε,
and ‖ϕ f ‖X ≤ const log(2 + ε−1‖ f ‖1). The constant in the last inequality depends
only on c in A2.

Now, as usual, let G be a nondiscrete locally compact Abelian group. For a subset
e of G with 0 < |e| < ∞, we introduce the space

u(G, e;B) = { f : f ∈ L2(G), supp f ⊂ e, and ‖ f ‖u = sup
B∈B

‖PB f ‖∞ < ∞}.

It should be noted that all functions f from this space lie in fact in L∞(G) with
‖ f ‖∞ ≤ ‖ f ‖u . If G itself is compact, we need only the case where e = G and write
u(G,B) in place of u(G, G;B). For some discussion around the space u(G, e;B) and
the norm ‖ · ‖u , see Sect. 1 of [7].

Now, we explain which spaces will play the role of X in Theorem 3.9. Let B be the
summation basis for the unit circle or the real line consisting of all symmetric intervals
centered at zero in the dual group Z or R. For short, we denote the corresponding
spaces u(T,B) and u(R, e;B) (where e ⊂ R is of finite positive measure) by u(T)

and u(R, e), or even simply by u. Next, we take for μ the Lebesgue measure on the
circle or on the set e. Then the two above spaces do satisfy Axiom A2 (A1 being a
triviality), but this is quite involved. Indeed, eventually this is based on the Carleson
almost everywhere convergence theorem for classical Fourier expansions. See [13]
and [12] for the proof of A2 in these cases, and also Sects. 2.5 and 2.6 in [9] for
some explanations. Hint: in the case of u(R, e), it is convenient to consider first the
situation where e is open, and then pass to its subsets of positive measure by using the
arguments at the beginning of Sect. 3 in [9]. It is important to note that the constant
in A2 does not depend on the set e in the case of the real line.

Thus, given a weight w (we still assume that w ≤ 1), a number ε > 0, and a
measurable set a of finite measure on the line or on the circle, we start as at the
beginning of Sect. 3.3, but first we modify f = χaw in accordance with Theorem 3.9
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(with u(T) or u(R, a) in the role of X ) The resulting function ˜f = f ϕ satisfies
0 ≤ ˜f ≤ w and

‖ ˜f ‖u ≤ const log

(

2 +
∫

a w

ε

)

, (3.11)

where the constant is independent on a, and also ‖χaw − ˜f ‖1 ≤ ε. Next, we put
f (0)
0 = ˜f ∗ ϕU0 as before, so as to ensure (3.2) but with ε + ρ0 instead of ε on the

right. This new function f (0)
0 will satisfy (3.11) because ˜f does. Then we proceed

as previously. All O(ε)‘s in Sect. 3.4.2 will remain O(ε). We do not enter in further
details.

Remark 3.10 By [10], the conclusion of Theorem 2.6 is also true for certain zero-
dimensional compact groups, specifically, for those linked with bounded Vilenkin
systems (in particular, the dyadic group with the Walsh system in the usual ordering
fits). Again, the verification of Axiom A2 for the corresponding space of functions
with uniformly bounded Fourier sums is based eventually on an analog of the Carleson
almost everywhere convergence theorem for Vilenkin systems.

Finally, we prove the announced correction theorem about essentially bounded
functions with support of finite measure, as opposed to the mere indicator functions.
We restate it and sketch the proof for the group R, but it will be clear that similar
arguments apply toT and to the zero-dimensional groupsmentioned in the last remark.
As above, on R we consider the summation basis of symmetric intervals, and also we
are given a sufficient pair (R, S) of subsets of R.

Theorem 3.11 Let ε > 0. Given a function h ∈ L∞(R) supported on a set of finite
measure and with ‖h‖∞ ≤ 1, there is a function f ∈ u(R) such that ‖ f ‖∞ ≤ 20,
|{h �= f }| ≤ ε, and f satisfies an estimate like (3.11). Furthermore, the spectrum of
f is included in K ∪ R ∪ S, where K is a compact set depending on h.

Proof Here h is, in general, complex-valued, but the claim can be reduced to the case
of a positive h if we ensure a smaller constant (say, 3) in place of 20. So, let 0 ≤ h ≤ 1,
and let A be the support of h. Find a compact set a ⊂ A with |A\a| ≤ ε such that
h is continuous on a, and then extend h|a up to a nonnegative uniformly continuous
function v on R with v ≤ 1. Finally, consider the weights (“rails”) w1 = v + 1 and
w2 = 1 on R.5

We apply Theorem 2.6 to the set a consecutively with the weights w1 and w2,
obtaining two sets b1 and b2. The function χb1w1 − χb2w2 does the job. ��

Note that we cannot eliminate the uncontrollable set K in this statement because
of the sharp estimate (3.11). (Should this be possible, all L1-functions would have
spectrum in R ∪ S.) To the contrary, in the results of [1,2], and [7], the spectrum of a
corrected function always lies in R ∪ S, but, naturally, the control of the size of this
function and its partial Fourier integrals is much weaker.

5 Surely, the fact that now the weight w1 is no longer bounded by 1 from above does not present an
obstruction.
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