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Abstract
We consider a disjoint cover (partition) of an undirected weighted finite or infinite
graph G by J connected subgraphs (clusters) {S j } j∈J and select functions ψ j on
each of the clusters. For a given signal f on G the set of its weighted average values
samples is defined via inner products {〈 f , ψ j 〉} j∈J . The main results of the paper are
based on Poincare-type inequalities that we introduce and prove. These inequalities
provide an estimate of the norm of the signal f on the entire graph G from sets of
samples of f and its local gradient on each of the subgraphs. This allows us to estab-
lish discrete Plancherel-Polya-type inequalities (or Marcinkiewicz-Zigmund-type or
frame inequalities) for signals whose gradients satisfy a Bernstein-type inequality.
These results enable the development of a sampling theory for signals on undirected
weighted finite or infinite graphs. For reconstruction of the signals from their samples
an interpolation theory by weighted average variational splines is developed. Here by
a weighted average variational spline we understand a minimizer of a discrete Sobolev
norm which takes on the prescribed weighted average values on a set of clusters (in
particular, just values on a subset of vertices). Although our approach is applicable to
general graphs it’s especially well suited for finite and infinite graphs with multiple
clusters. Such graphs are known as community graphs and they find many important
applications in materials science, engineering, computer science, economics, biology,
and social studies.
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1 Introduction

Signal processing on combinatorial weighted undirected graphs (without loops and
multiple edges) has been developed during the course of past decade. Vertex-wise
sampling of Paley-Wiener functions (signals) on finite and infinite graphs was initiated
in [25] and was further expanded (mainly for finite graphs) in a number of papers (see
for example [2,19,20,35–37]). The goal of the present article is to go beyond the vertex-
wise approach and explore sampling based on weighted averages over relatively small
subgraphs. One immediate advantage of using averages is that it enables us to deal with
random noise that is intrinsic to point-wise measurements. Our results hold true for
general finite and infinite graphs but they are most effective for community graphs, i.e.
graphswhose set of vertices can be covered by a set of finite clusters withmany heavily
weighted edges inside and a few light edges outside. It is known that such structures
are ubiquities in chemistry, computer science, engineering, biology, economics, social
sciences, etc. [9].

The structure of the paper is as follows. In Sect. 2 we introduce some general
information about analysis on combinatorial graphs. In Sect. 3 we start by establishing
an analog of the Poincare inequality (Theorem 3.1) for finite graphs. In Sect. 4 we
consider a disjoint cover (a partition) of a general graph G (finite or infinite) by
connected finite subgraphsS = {S j } j∈J and assume existence of ”measuring devices”
{ψ j } j∈J where a ”measurement” itself is the inner product of a signal with a function
ψ j ∈ �2(G) supported on S j . Our main result (and our tool) is an inequality which
provides an estimate of the norm of a signal on G through its local measurements and
its local gradients on each S j (Theorem 4.1). This inequality enables us to establish
some Plancherel-Polya-type (or Marcinkiewicz-Zigmund-type, or frame) inequalities
(Theorem 4.5) for signals whose gradient satisfies a Bernstein-type inequality. This,
in turn, allows us to develop a sampling theory for signals in spaces which we denote
as X (ω) and PWω (see Definitions 2, 3 below). It is interesting, that our approach
also permits us to estimate the number of frequencies (counted with multiplicities)
which can be recovered on a finite community graph (Remark 4.8). Namely, if there
are |J | < ∞ clusters which cover G and if the connections between the clusters are
very weak compared to the connections inside of the clusters then exactly |J | first
frequencies can be recovered. In Sects. 5 and 6 an interpolation theory by average
variational splines is developed. The interpolation concept is understood in some
generalized sense, i.e. ifψ j ∈ �2(S j ) is a ”measuring device” associated with a cluster
S j then for a given f ∈ �2(G) we say that sk( f ) is a variational spline interpolating
f by its average weighted values if

(1) 〈ψ j , f 〉 = 〈ψ j , sk( f )〉 for all j ∈ J ,
(2) sk( f ) minimizes the functional u → ‖Lk/2u‖,

where L is the Laplace operator on G.
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We show that such interpolant exists for any function in �2(G) and moreover, there
is a class of functions (functions of small bandwidths) which can be reconstructed
from their sets of samples

{〈ψ j , f 〉} j∈J as limits if interpolating average weighted
splines when k (the degree of smoothness) goes to infinity. This result is a graph
analog of the classical results [32] and [4] (see also [26]). It is interesting to note that
although the set of samples

{〈ψ j , f 〉} j∈J does not contain (in general) the values of f
at vertices of G, the limit of interpolating average weighted splines reconstructs those
values of f (if f is a function of a small bandwidth). This is reminiscent of a function
reconstruction in integral geometry where one starts with the information about the
function given by integrals over submanifolds and then reconstructs this function
at every point of the manifold. In Sect. 7 we describe an algorithm for computing
variational interpolating weighted average splines for finite graphs. The idea to use
local information (other than point values) for reconstruction of bandlimited functions
on graphs was explored in [16,38,41,42]. We discuss their results and compare them
with ours in Sect. 8. Variational splines on graphs which interpolate functions by using
their point values on a subset of vertices where introduced in [26] and then further
developed and applied in [5,6,15,21,33,43,44]. The ideas and methods of sampling
and interpolation are deep-rooted in many aspects of signal analysis on graphs. For
example, they are inseparable from problems related to quadrature formulas on graphs
[5,6,14,28], Spatially Distributed Networks [3], etc.

We want to mention that results of the present paper are similar to results of our
papers [23] and [24] in which sampling by weighted average values was developed
in abstract Hilbert spaces and on Riemannian manifolds. One could also consider
iterative methods (combined with spline interpolation) for reconstruction of bandlim-
ited functions similar to those developed in [7,8] for manifolds. Adaptation of these
methods for graphs will be considered in a separate paper.

2 Analysis and Sampling of Graph Signals

2.1 Analysis on Combinatorial Graphs

Let G denote an undirected weighted graph, with a finite or countable number of
vertices V (G) and weight function w : V (G) × V (G) → [0,∞), w is symmetric,
i.e., w(u, v) = w(v, u), and w(u, u) = 0 for all u, v ∈ V (G). The edges of the graph
are the pairs (u, v) with w(u, v) �= 0. Our assumption is that for every v ∈ V (G) the
following finiteness condition holds

w(v) =
∑

u∈V (G)

w(u, v) < ∞. (2.1)

Let �2(G) denote the space of all complex-valued functions with the inner product

〈 f , g〉 =
∑

v∈V (G)

f (v)g(v)
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and the norm

‖ f ‖ =
⎛

⎝
∑

v∈V (G)

| f (v)|2
⎞

⎠

1/2

.

For a set S ⊂ V (G) the notation �2(S) is used for all functions in �2(G) supported on
S.

Definition 1 The weighted gradient norm of a function f on V (G) is defined by

‖∇ f ‖ =
⎛

⎝
∑

u,v∈V (G)

1

2
| f (u) − f (v)|2w(u, v)

⎞

⎠

1/2

. (2.2)

We intend to prove the Poincaré-type estimates involving weighted gradient norm.
In the case of a finite graph and �2(G)-space the weighted Laplace operator L :
�2(G) → �2(G) is introduced via

(L f )(v) =
∑

u∈V (G)

( f (v) − f (u))w(v, u) . (2.3)

This graph Laplacian is a positive-semidefinite self-adjoint bounded operator. Accord-
ing to Theorem 8.1 andCorollary 8.2 in [11] if for an infinite graph there exists aC > 0
such that the degrees are uniformly bounded

w(v) =
∑

u∈V (G)

w(u, v) ≤ C, (2.4)

then the operator which is defined by (2.3) on functions with compact supports has a
unique positive-semidefinite self-adjoint bounded extension L which is acting accord-
ing to (2.3). We will always assume that (2.4) is satisfied. Note that due to condition
(2.4) one has that ‖∇ f ‖ < ∞ for any f ∈ �2(G). We will also need the following
equality which holds true for all graphs for which (2.4) holds (see [10,11,13,17])

‖L1/2 f ‖ = ‖∇ f ‖, f ∈ �2(G). (2.5)

We are using the spectral theorem for the operator L to introduce the associated
Paley-Wiener spaces which are also known as the spaces of bandlimited functions.

Definition 2 The Paley-Wieners space PWω(L) ⊂ �2(G) is the image space of the
projection operator 1[0, ω](L) (to be understood in the sense of Borel functional cal-
culus). For a given f ∈ PWω(L) the smallest ω ≥ 0 such that f ∈ PWω(L) is called
the bandwidth of f .
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By using the Spectral theorem one can show [25] that a function f belongs to the space
PWω(L) if and only if for every positive t > 0 the following Bernstein inequality
holds

‖Lt f ‖ ≤ ωt‖ f ‖, t > 0. (2.6)

If G is a finite connected graph then L has a discrete spectrum 0 = λ0 < λ1 ≤
... ≤ λ|G|−1, and multiplicity of 0 is the number of connected components of G. A

set of corresponding orthonormal eigenfunctions will be denoted as {ϕ j }|G|−1
j=0 . In this

case the space PWω(L) coincides with

span{ϕ0, ..., ϕk : λk ≤ ω, λk+1 > ω}.

For infinite graphs the spectrum of L is typically not discrete [18,25]. We will also
need the following definition.

Definition 3 For a given graph G and a given τ ≥ 0 let X (τ ) ⊂ �2(G) denote the
subset of all f ∈ �2(G) fulfilling the inequality ‖∇ f ‖ ≤ τ‖ f ‖ .

Although the sets X (τ ) are closed with respect to multiplication they are not linear
spaces (in contrast to PWω(L)). Clearly, for every ω ≥ 0 one has the inclusion
PWω(L) ⊂ X (

√
ω). However, the space PWω(L) can be trivial but the setsX (τ ) are

never trivial (think about a function whose norm is much bigger than its variation).
Note also that if f has a very large norm its variations ‖∇ f ‖ can be large too even if
τ is small.

3 A Poincare-Type Inequality for Finite Graphs.

For a finite connected graph G which contains more than one vertex let � be a
functional on �2(G) which is defined by a function ψ ∈ �2(G), i.e.

�( f ) = 〈ψ, f 〉 =
∑

v∈V (G)

ψ(v) f (v).

Note, that the normalized eigenfunctionϕ0 which corresponds to the eigenvalueλ0 = 0
is given by the formula χG√|G| = ϕ0 where χG(v) = 1 for all v ∈ V (G).

Theorem 3.1 Let G be a finite connected graph which contains more than one vertex
and �(ϕ0) = 〈ψ, ϕ0〉 is not zero. If f ∈ Ker(�) then

‖ f ‖2 ≤ θ

λ1
‖∇ f ‖2, f ∈ Ker(�), (3.1)

where λ1 is the first non zero eigenvalue of the Laplacian (2.3) and

θ = ‖ψ‖2
|〈ψ, ϕ0〉|2

. (3.2)
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Note, that θ ≥ 1. This theorem is a particular case of the following general fact.

Lemma 3.2 Let T be a non-negative self-adjoint bounded operator with a discrete
spectrum (counted with multiplicities) 0 = σ0 < σ1 ≤ .... in a Hilbert space H.
Let ϕ0, ϕ1, ..., be a corresponding set of orthonormal eigenfunctions which is a basis
in H. For any non-trivial ψ ∈ H let H⊥

ψ be a subspace of all f ∈ H which are

orthogonal to ψ . If f ∈ H⊥
ψ then

‖T f ‖2 ≥ σ 2
1

|〈ψ, ϕ0〉|2
‖ψ‖2 ‖ f ‖2. (3.3)

Proof For the Fourier coefficients {ck( f ) = 〈 f , ϕk〉} one has
f =

∑

k=0

ck( f )ϕk

and then for �( f ) = 〈 f , ψ〉

0 = �( f ) = c0( f )�(ϕ0) +
∑

k=1

ck( f )�(ϕk).

Using the Parseval equality and Schwartz inequality we obtain

‖ f ‖2 |�(ϕ0)|2 = |c0( f )|2 |�(ϕ0)|2 + |�(ϕ0)|2
∑

k=1

|ck( f )|2

=
∣∣∣∣∣

∑

k=1

ck( f )�(ϕk)

∣∣∣∣∣

2

+ |�(ϕ0)|2
∑

k=1

|ck( f )|2

≤
∑

k=1

|ck( f )|2
∑

k=1

|�(ϕk)|2 + |�(ϕ0)|2
∑

k=1

|ck( f )|2. (3.4)

At the same time we have

ψ = �(ϕ0)ϕ0 +
∑

k=1

�(ϕk)ϕk,

and from the Parseval formula

∑

k=1

|�(ϕk)|2 = ‖ψ‖2 − |�(ϕ0)|2 .

We plug the right-hand side of this formula into (3.4) and obtain the following inequal-
ity

|〈ψ, ϕ0〉|2 ‖ f ‖2 ≤ ‖ψ‖2
∑

k=1

|ck( f )|2 ≤ ‖ψ‖2
σ 2
1

∑

k=1

|σkck( f )|2 = ‖ψ‖2
σ 2
1

‖T f ‖2.

��



Journal of Fourier Analysis and Applications (2021) 27 :39 Page 7 of 28 39

By applying this Lemma to the operator L1/2 with eigenvalues λ
1/2
k and using

equality (2.5) we obtain Theorem 3.1 if �(ϕ0) = 〈ψ, ϕ0〉 is not zero.
Theorem 3.3 If �(ϕ0) = 〈ψ, ϕ0〉 is not zero then the following inequality holds for
every f ∈ �2(G) and every ε > 0

‖ f ‖2 ≤ (1 + ε)
‖ψ‖2

λ1 |�(ϕ0)|2
‖∇ f ‖2 + 1 + ε

ε

1

|�(ϕ0)|2 |�( f )|2. (3.5)

Proof By using the inequality

|X |2 ≤ (1 + ε) |X − Y |2 + 1 + ε

ε
|Y |2 , (3.6)

which holds for every positive ε > 0 we obtain

‖ f ‖2 ≤ (1 + ε)

∥∥∥∥ f − �( f )

�(ϕ0)
ϕ0

∥∥∥∥

2

+ 1 + ε

ε

|�( f )|2
|�(ϕ0)|2

,

Note, that if �( f ) = 〈ψ, ϕ0〉 �= 0 then f − 〈ψ, f 〉
〈ψ, ϕ0〉ϕ0 belongs to H⊥

ψ . This fact along
with the previous theorem implies that

∥∥∥∥ f − �( f )

�(ϕ0)
ϕ0

∥∥∥∥

2

≤ ‖ψ‖2
λ1 |�(ϕ0)|2

‖∇ f ‖2. (3.7)

��

4 Generalized Poincare-Type Inequalities for Finite and Infinite
Graphs and Sampling Theorems

4.1 Generalized Poincare-Type Inequalities

For a finite or infinite G we consider the following assumption.

Assumption 1 We assume that S = {S j } j∈J form a disjoint cover of V (G)

⋃

j∈J

S j = V (G). (4.1)

Let L j be the Laplacian for the induced subgraph S j . In order to insure that L j

has at least one non zero eigenvalue, we assume that every S j ⊂ V (G), j ∈ J , is a
finite and connected subset of vertices with more than one vertex. The spectrum of the
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operator L j will be denoted as 0 = λ0, j < λ1, j ≤ ... ≤ λ|S j |, j and the corresponding
o.n.b. of eigenfunctions as {ϕk, j }|S j |k=0. Thus the first non-zero eigenvalue for a subgraph
S j is λ1, j .

Let ‖∇ j f j‖ be the weighted gradient for the induced subgraph S j . With every
S j , j ∈ J , we associate a function ψ j ∈ �2(G) whose support is in S j and introduce
the functionals � j on �2(G) defined by these functions

� j ( f ) = 〈ψ j , f 〉 =
∑

v∈V (S j )

ψ j (v) f (v), f ∈ �2(G). (4.2)

Notation χ j will be used for the characteristic function of S j and we use f j for
f χ j , f ∈ �2(G).

As usual, the induced graph S j has the same vertices as the set S j but only such
edges of E(G) which have both ends in S j . The inequality (4.3) below is our next
result. We call it a generalized Poincaré-type inequality since it contains an estimate
of a function through its gradient.

Applying Theorem 3.3 to every L1/2
j in the space �2(S j ) we obtain the following

result.

Theorem 4.1 Let G be a connected finite or infinite and countable graph andS = {S j }
is its disjoint cover by finite sets. Let L j be the Laplace operator of the induced sub-
graph S j whose first nonzero eigenvalue is λ1, j and ϕ0, j = 1/

√|S j | is its normalized
eigenfunction with eigenvalue zero. Assume that for every j function ψ j ∈ �2(G) has
support in S j , � j ( f ) = 〈ψ j , f 〉, and� j (ϕ0, j ) = 〈ψ j , ϕ0, j 〉 �= 0. Then the following
inequality holds true

‖ f ‖2 ≤ (1 + ε)
∑

j∈J

θ j

λ1, j
‖∇ j f j‖2 + 1 + ε

ε

∑

j∈J

1

|� j (ϕ0, j )|2 |� j ( f j )|2, (4.3)

for every f ∈ �2(G) and every ε > 0

Remark 4.2 It is interesting to note that the inequality (4.3) is independent of the
edges outside of the clusters S j . In other words, if one rearranges and mutually
connects subgraphs {S j } j∈J in any other way in order to obtain a new graph G̃, the
inequality (4.3) would remain the same.

Remark 4.3 In this connection it is worth noting that in [10,27] another family of
inequalities of Poincare-type and Plancherel-Polya-type was established. They also
rely on a certain disjoint cover of a graph by subgraphs (clusters), however those
inequalities are independent of the edges inside of the clusters and depend solely
on the edges between them.
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Let’s introduce notations

a = a = sup
j

1

|� j (ϕ0, j )|2 ,  = ({S j } j∈J , {� j } j∈J
)
,

c = c� = sup
j

‖ψ j‖2, � = {� j } j∈J , (4.4)

� = sup
j∈J

θ j = sup
j

‖ψ j‖2
∣∣〈ψ j , ϕ0, j 〉

∣∣2
,  = ({S j } j∈J , {� j } j∈J

)
, (4.5)

and

�S = inf
j∈J

λ1, j , S = {S j } j∈J . (4.6)

Since our consideration includes infinite graphs we will always assume that

a < ∞, c < ∞, � < ∞, �S > 0. (4.7)

We note the following obvious inequality

∑

j∈J

‖∇ j f j‖2 ≤ ‖∇ f ‖2. (4.8)

Combining it with our assumption that the equality ‖∇ f ‖2 = ‖L1/2 f ‖2 holds (see
(2.5)) we can formulate the following consequence of the previous theorem.

Theorem 4.4 Assume that all the assumptions of Theorem 4.1 are satisfied. Then for
every f ∈ �2(G) and every ε > 0 the following inequalities hold true

‖ f ‖2 ≤ (1 + ε)
�

�S
‖L1/2 f ‖2 + 1 + ε

ε
a

∑

j∈J

∣∣� j ( f )
∣∣2 . (4.9)

4.2 Plancherel-Polya Inequalities and Sampling Theorems

Another result that follows from (4.3) is this statement about the Plancherel-Polya (or
Marcinkiewicz-Zygmund, or frame) inequalities.

Theorem 4.5 If all assumptions of Theorem 4.1 hold then the following Plancherel-
Polya inequalities hold

(1 − γ )ε

(1 + ε)a
‖ f ‖2 ≤

∑

j∈J

∣∣� j ( f )
∣∣2 ≤ c‖ f ‖2, (4.10)
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for every f ∈ �2(G) such that f |S j = f j ∈ X j (τ j ) for all j and there exists a constant
σ > 0 for which

θ j

λ1, j
τ 2j ≤ σ, 0 ≤ γ = (1 + ε)σ < 1, (4.11)

for some ε > 0.

Proof To prove Theorem 4.5 we are using its conditions to obtain for each j :

θ j

λ1, j
‖∇ j f j‖2 ≤ θ j

λ1, j
τ 2j ‖ f j‖2 ≤ σ‖ f j‖2, γ = (1 + ε)σ < 1.

Along with (4.3) it gives

‖ f ‖2 ≤ (1 + ε)σ‖ f ‖2 + 1 + ε

ε

∑

j∈J

1

|� j (ϕ0, j )|2 |� j ( f j )|2, f j ∈ X (τ j ),

and then since
∑

j ‖ f j‖2 = ‖ f ‖2 and 1/|� j (ϕ0, j )|2 ≤ a we obtain

(1 − γ )ε

(1 + ε)a
‖ f ‖2 ≤

∑

j∈J

|� j ( f j )|2, (4.12)

On the other hand because ‖ψ j‖2 ≤ c for all j we have

∑

j∈J

|� j ( f j )|2 ≤
∑

j∈J

‖ψ j‖2‖ f j‖2 ≤ c‖ f ‖2.

This proves the Plancherel-Polya inequality (4.10). ��
Remark 4.6 In connection with this statement it can be useful to re-read comments
which follow Definition 3.

The Plancherel-Polya inequalities obviously imply the following Corollary.

Corollary 4.1 Assume that all assumptions of Theorem 4.1 hold true. Then If for f , g ∈
�2(G) and every j:

(a) � j ( f j ) = � j (g j ), f j = f |S j , g j = g|S j ,
(b) f j − g j belongs to X j (τ j ) and (4.11), are satisfied, then

f = g.

In particular, if for every j one has that � j ( f j ) = 0, and every f j belongs to X j (τ j )

then f = 0.

At the same time the inequality (4.3) has the following implication.
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Theorem 4.7 Assume that all assumptions of Theorem 4.5 hold true. For every f ∈
PWω(G) with ω satisfying

0 ≤ ω <
�S
�

, (4.13)

the Plancherel-Polya inequalities hold

(1 − μ)ε

(1 + ε)a
‖ f ‖2 ≤

∑

j∈J

|� j ( f )|2 ≤ c‖ f ‖2, (4.14)

for those ε for which the inequality μ = (1 + ε) �

�S ω < 1 holds.

Proof We are using the assumption 0 ≤ ω <
�S
�

along with (4.9) and (2.6) to obtain
for f ∈ PWω(L)

‖ f ‖2 ≤ (1 + ε)
�

�S
ω‖ f ‖2 + 1 + ε

ε
a

∑

j∈J

∣∣� j ( f )
∣∣2

and then if μ = a ω < 1 we have

(1 − μ)ε

(1 + ε)a
‖ f ‖2 ≤

∑

j∈J

|� j ( f )|2 ≤ c‖ f ‖2,

for those ε forwhich the inequalityμ = (1+ε) �

�S ω < 1 holds. It proves Theorem4.7.
��

It implies the following uniqueness and reconstruction result.

Corollary 4.2 Assume that all assumptions of Theorem 4.5 hold. If for f , g ∈ PWω(G)

with ω satisfying (4.13) one has

� j ( f ) = � j (g),

for all j then f = g. In particular, if for f ∈ PWω(G) one has that � j ( f j ) = 0 for
all j then f = 0. Moreover, every f ∈ PWω(G) can be reconstructed from the set of
its ”samples” � j ( f ) in a stable way.

We will call the interval [0, �S
�

) in (4.13) the admissible interval, the eigenvalues
of L , which belong to it will be called the admissible eigenvalues of L , and the
corresponding eigenfunctions will be called the reconstructable eigenfunctions.

Remark 4.8 The following important question arises in connection with the two last
statements: how many frequencies of L are contained in the admissible interval[
0, �S

�

)
? If the spectrum of L contains an interval of the form (0, ν), ν > 0,
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Fig. 1 Adjacency matrix A of a community graph with 45 vertices and 11 clusters. These plots demonstrate
that when connections (weights) within clusters are substantially stronger than the ones outside of the
clusters then the number of eigenvalues in the admissible interval is exactly the number of clusters. Left:
the adjacency matrix A of the entire graph. It consists of clusters with random weights (of the order of
magnitude ∼ 1) and size (between 2 and 6). The dark-blue pixels have random weights of the order of
magnitude∼ 1.0e−03, the two (barely visible) diagonals parallel to themain one haveweights∼ 1.0e−02.
Right: the admissible eigenvalues. The graph is covered by 11 clusters as shown on the left figure. The
figure on the right illustrates that for graphs with |J | ’strong’ (in the sense described above) clusters there are
exactly |J | admissible eigenvalues (see Remark 4.8); (the zero eigenvalue is not shown). For this example
�S = 0.8786 (not shown). Our method enables the exact recovery of functions from the span of the
corresponding |J | first reconstructable eigenfunctions of G by using their average values over clusters (see
Sect. 4.4 and Sect. 6)

(it can happen only if G is infinite) then the admissible interval
[
0, �S

�

)
contains

”many” frequencies of L .
Now, suppose that G is finite. If the sets of clusters S = {S j } and functionals {� j }

are fixed one can see that �

�S is determined by �S = min j {λ1, j } > 0. As it has been
mentioned, our inequality (4.3) is independent of edges between the clusters S j . Let
us consider the limiting case of a disconnected graph whose connected components
are exactly our clusters. The Laplacian of such disconnected graph is a direct sum
of the Laplacians L j and it’s spectrum is the union of spectrums of all L j . Thus, in

this case the interval
[
0, �S

�

)
contains only eigenvalue zero of multiplicity |S| = J

which is the number of all clusters. Clearly, by ’slightly’ perturbing this disconnected
graph (i.e. by adding a ”few light” edges between the clusters) one can construct
many community-type graphs for which the admissible interval will contain exactly J
eigenvalues countedwithmultiplicities.More substantial perturbations will reduce the
number of reconstructable eigenvalues and eigenfunctions. This pattern is illustrated
in Figs. 1 and 2.

4.3 Sampling by Averages

As an illustration of our previous results let us consider the sampling procedure based
on average values of functions. By this we mean a particular situation when every ψ j
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Fig. 2 The reconstructable eigenvalues for a graph with 801 nodes, and 201 clusters. The inside weights are
of magnitude∼ 1 and outside weights are∼ 1.0e−04. The smallest non-zero eigenvalue of all sub-matrices
�S = 0.4917 (not shown). There are 201 reconstructable eigenfunctions. This is another illustration of
the fact that when a graph G is covered by |J | clusters and connections (weights) inside of clusters are
substantially greater than connections outside of them then there are exactly |J | reconstructable eigenvalues.
Our method enables an efficient recovery of functions from the span of the reconstructable eigenfunctions
of L by using interpolation based on weighted average splines (see Sect. 4.4)

is a characteristic function χUj of a subset Uj ⊆ S j (Fig. 3). In this case one has

‖ψ j‖2 = |Uj |, |� j (ϕ0, j )|2 = |Uj |2
|S j | ,

and then

θ j = |S j |
|Uj | , � = sup

j

|S j |
|Uj | .

Thus Theorem 4.7 says that for

0 ≤ ω <
�S

sup j
|S j |
|Uj |

, (4.15)

the Plancherel-Polya inequality holds

(1 − μ)ε

(1 + ε)a
‖ f ‖2 ≤

∑

j∈J

∣∣� j ( f )
∣∣2 ≤ CU‖ f ‖2, f ∈ PWω(G), (4.16)

for

a = aS,U = sup
j

|S j |
|Uj |2 , CU = sup

j
|Uj | ≥ 1, U = {Uj },
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Fig. 3 Interpolation of eigenfunctions by Lagrangian splines (regular mesh; 50 percent unevenly sampled
points). Left: Lagrangian spline, k = 1, β = 0.5; Right: 2-d (first non-zero) eigenfunction (red), its
interpolation by splines (blue), k = 15, β = 0.1, and their difference (green)

and all ε > 0 for which

μ =
(1 + ε) sup j

|S j |
|Uj |

�S
ω < 1, ε > 0.

4.4 Averages Over Clusters

Let’s consider the limiting situations such that Uj = S j for all j and the samples are
averages over S j (Fig. 4). In this case

‖ψ j‖2 = |S j |, |� j (ϕ0, j )|2 = |S j |, θ j = � = 1,

a = aS,U = 1

|S j | , CU = sup
j

|S j |, μ = (1 + ε)

�S
ω < 1,

�S = inf
j∈J

λ1, j , ε > 0.

It means that for

0 ≤ ω < �S , (4.17)
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Fig. 4 Interpolation of eigenfunctions by Lagrangian splines (regular mesh; 50 percent unevenly sampled
points). Same as the previous figure, but from a different perspective (the rotation angles are different)

we obtain the following Plancherel-Polya inequality

(1 − μ)ε

(1 + ε)
‖ f ‖2 ≤ 1

sup j |S j |
∑

j∈J

∣∣� j ( f )
∣∣2 ≤ ‖ f ‖2, f ∈ PWω(G), (4.18)

for all ε > 0 for which the inequality μ = (1+ε)
�S ω < 1 holds.

4.5 Point-Wise Sampling

Another limiting case is the pointwise sampling
when for every j the corresponding function ψ j is given by ψ j = δu j , where δu j

a Dirac measure δu j at a vertex (any) u j ∈ S j . Thus for every j one has

‖ψ j‖2 = 1, θ j = ‖ψ j‖2
∣∣〈ψ j , ϕ0, j 〉

∣∣2
= |S j |, |Uj | = 1 = C,

and

0 ≤ ω <
�S

(1 + ε) sup j |S j | , ε > 0; a = sup
j

|S j |; � = sup
j

|S j |.
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So for

0 ≤ ω <
�S
�

= �S
sup j |S j | , (4.19)

one has the following Plancherel-Polya inequality

(1 − μ)ε

(1 + ε)a
‖ f ‖2 ≤

∑

j∈J

∣∣ f (u j )
∣∣2 ≤ ‖ f ‖2, f ∈ PWω(L), (4.20)

for all ε > 0 for which the inequality μ = (1+ε) sup j |S j |
�S ω < 1 holds.

5 Weighted Average Variational Splines

5.1 Variational Interpolating Splines

As in the previous sections we assume that G is a connected finite or infinite graph,
S = {S j } j∈J , is a disjoint cover of V (G) by connected and finite subgraphs S j and
every ψ j ∈ �2(S j ), j ∈ J , has support in S j .

For a given sequence = {α j } ∈ l2 the set of all functions in �2(G) such that
� j ( f ) = 〈 f , ψ j 〉 = α j will be denoted by Z . In particular,

Z0 =
⋂

j∈J

Ker(� j )

corresponds to the sequence of zeros.We consider the following optimization problem:
For a given sequence = {α j } ∈ l2 find a function f in the set Z ⊂ �2(G) which

minimizes the functional

u → ‖Lk/2u‖, u ∈ Z . (5.1)

Definition 4 Every solution of the above variational problem is called weighted aver-
age spline of order k.

The following Lemmas were proved in [22,23].

Lemma 5.1 If T is a self-adjoint operator in a Hilbert space and for some f from the
domain of T

‖ f ‖ ≤ b‖T f ‖ + B, B > 0, b > 0,

then for all m = 2l , l = 0, 1, 2, ...

‖ f ‖ ≤ 8m−1bm‖Tm f ‖ + mB

as long as f belongs to the domain of Tm.
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Lemma 5.2 The norms
(‖Lk/2 f + ‖ f ‖2‖2)1/2 and

(
‖Lk/2 f ‖2 + ∑

j |� j ( f )|2
)1/2

are equivalent.

Proof According to (4.9) there exists a constant C1 such that

‖ f ‖ ≤ C1

⎛

⎝‖L1/2 f ‖2 +
∑

j

|� j ( f )|2
⎞

⎠

1/2

.

By using Lemma 5.1 we obtain for every natural k existence of a constant Ck > 0
such that for every f

‖ f ‖ ≤ Ck

⎛

⎝‖Lk/2 f ‖2 +
∑

j

|� j ( f )|2
⎞

⎠

1/2

.

It gives that

‖Lk/2 f ‖2 + ‖ f ‖2 ≤ (1 + Ck)

⎛

⎝‖Lk/2 f ‖2 +
∑

j

|� j ( f )|2
⎞

⎠ .

The inverse inequality follows from the estimate

∑

j∈J

|� j ( f )|2 =
∑

j∈J

∣∣∣∣∣∣

∑

v∈S j
f j (v)ψ j (v)

∣∣∣∣∣∣

2

≤
∑

j∈J

‖ψ j‖2‖ f j‖2 ≤ c‖ f ‖2,

where c = sup j ‖ψ j‖2. Lemma is proven >> This completes the proof of the lemma.
��

Remark 5.3 Note that L is not always invertible!

We have the following characterization of variational splines.

Theorem 5.4 A function sk ∈ �2(G) is a variational spline if and only if Lk/2sk is
orthogonal to Lk/2Z0.

Corollary 5.1 Splines of the same order k form a linear space.

The last theorem implies the next one.

Theorem 5.5 Under the above assumptions the optimization problem has a unique
solution for every k.



39 Page 18 of 28 Journal of Fourier Analysis and Applications (2021) 27 :39

5.2 Solving theVariational Problem

Theorem 5.4 also justifies the following algorithm to find a variational interpolating
spline.

(1) Pick any function f ∈ Z .
(2) Construct P0 f where P0 is the orthogonal projection of f onto Z0 with respect

to the inner product

〈 f , g〉k = 〈 f , g〉 + 〈Lk/2 f , Lk/2g〉.

(3) The function f − P0 f is the unique solution to the given optimization problem.

5.3 Representations of Splines

We keep the same notations as above.

Definition 5 For a ν ∈ J we say that Lν
k is a Lagrangian spline supported on Sν it

is a function in �2(G) such that

(1) 〈ψ j ,Lν
k 〉 = δν, j where δν, j is the Kronecker delta,

(2) Lν
k is a minimizer of the functional (5.1).

The theorem below is a direct consequence of the Corollary 5.1.

Theorem 5.6 If sk is a spline of order k and 〈ψν, sk〉 = αν then

sk =
∑

ν∈J

ανLν
k . (5.2)

The next lemma provides another test for being a variational interpolating spline.

Lemma 5.7 A function sk is a spline if and only if Lksk belongs to the span of {ψ j }.
Moreover, the following equality holds

Lksk =
∑

j

ξ j,kψ j , (5.3)

where

ξ j,k = 1

〈ψ j , χ j 〉 〈sk, L
kχ j 〉, (5.4)

The proof is similar to the proof of the corresponding lemma in [26]. This theorem
implies another representation of splines.

Theorem 5.8 If F j
k is a ”fundamental solution of Lk” in the sense that it is a solution

to the equation

Lk F j
k = ψ j , j ∈ J , (5.5)
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then for every spline sk of order k there exist coefficients μ j,k such that the following
representation holds

sk =
∑

j∈J

μ j,k F
j
k . (5.6)

Remark 5.9 Note, that the last representation is not unique at least in the case of a finite
graph, since in this case the operator L has a non-trivial kernel and any two solutions
F j,(1)
k , F j,(2)

k of equation (5.5) are differ by a constant function cχG .

6 Interpolation and Approximation by Splines. Reconstruction of
Paley-Wiener Functions Using Splines

The goal of this section is to prove a reconstruction theorem for interpolating appro-
priate Paley-Wiener functions from their average samples by using average variational
interpolating splines.

6.1 Interpolation by Splines. Reconstruction of Paley-Wiener Functions Using
Splines

The following lemma was proved in [26].

Lemma 6.1 If T is a self-adjoint non-negative operator in a Hilbert space H and for
an ϕ ∈ X and a positive b the following inequality holds

‖ϕ‖ ≤ b‖Tϕ‖,

then for the same ϕ ∈ H, and all k = 2l , l = 0, 1, 2, ... the following inequality holds

‖ϕ‖ ≤ bk‖T kϕ‖.

Theorem 6.2 Let’s assume that G is a connected finite or infinite graph, {S j } j∈J

is a disjoint cover of V (G) by connected and finite subgraphs S j and every ψ j ∈
�2(S j ), j ∈ J , has support in S j . If

0 ≤ ω <
�S
�

, (6.1)

� = sup
j∈J

θ j , θ j = ‖ψ j‖2
∣∣〈ψ j , ϕ0, j 〉

∣∣2
≥ 1, ∇ jϕ0, j = 0, (6.2)

�S = inf
j∈J

λ1, j , (6.3)
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then any function f in PWω(L), ω > 0, can be reconstructed from a set of values
{〈 f , ψ j 〉} using the formula

f = lim
k→∞ sk( f ), k = 2l , l = 0, 1, ...,

and the error estimate is

‖ f − sk( f )‖ ≤ 2ηk‖ f ‖, k = 2l , l = 0, 1, ..., (6.4)

where

η = �

�S
ω < 1.

Proof For a k = 2l , l = 0, 1, 2, .... apply to the function f − sk( f ) inequality (4.9)
to obtain

‖ f − sk( f )‖2

≤ (1 + ε)
�

�S
‖L1/2( f − sk( f ))‖2 + 1 + ε

ε
a

∑

j∈J

∣∣� j ( f − sk( f ))
∣∣2 , ε > 0.

(6.5)

Since sk( f ) interpolates f the last term here is zero. Because ε here is any positive
number it brings us to the next inequality

‖ f − sk( f )‖2 ≤ �

�S
‖L1/2( f − sk( f ))‖2,

and an application of Lemma 6.1 gives

‖ f − sk( f )‖2 ≤
(

�

�S

)k

‖Lk/2( f − sk( f ))‖2.

Using minimization property of sk( f ) and the Bernstein inequality (2.6) for f ∈
PWω(L) one obtains (6.4). ��

7 Algorithm for Computing Variational InterpolatingWeighted
Average Splines

7.1 ComputingVariational InterpolatingWeighted Average Splines for Finite
Graphs

The above results give a constructiveway for computing variational splines. For a given
coverS = {S j }, a set of functions� = {ψ j }, supportψ j ⊆ S j , a sequence α = {α j }
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Fig. 5 Interpolation based on averaged measurements. There are 801 nodes and 201 clusters in the graph.
The number of reconstructable eigenfunctions is 201 (see Figs 1 and 2). A linear combination f with random
coefficients of 20 reconstructable eigenfunctions was generated and its averages |S j |−1 ∑

v∈S j f (v) over

each S j were calculated. Using these values the variational average weighted spline of order k = 10 was
constructed by using the regularized Laplacian (I + L) (see Remark 7.1). The values of the spline almost
perfectly overlap with the values of the function f (only 250 nodes are plotted.) MAE over all vertices of
the graph is 1.07e-08

Fig. 6 Mean absolute error (MAE) for spline approximation as a function of k and β (see Remark 7.1).
The graph G and the signal f are the same as in the Fig. 4, but the interpolation procedure is point-wise.
It means that a single point u j from every cluster S j was chosen and the values f (u j ) were used in the
interpolation process

we are going to construct a spline Y α
k which has prescribed values 〈Y α

k , ψ j 〉 = α j

(Figs. 5, 6).

(1) First, one has to fix a k ∈ N and to solve the following J systems of linear equations
of the size |V (G)| × |V (G)|

Lk F j
k = ψ j , j ∈ J , k ∈ N, (7.1)

in order to determine corresponding ”fundamental solutions” F j
k which are func-

tions on V (G). Note, that since the operator L is not invertible the solution to each
of each of the systems (7.1) is not unique (see Remark 7.1).
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(2) The next step is to find representation (5.6) of the corresponding Lagrangian
splines in the sense of Definition 5. To do this one has to solve J linear system of
the size J × J to determine coefficients μν

j

∑

j∈J

μν
j 〈F j

k , ψρ〉 = δν,ρ, ν, ρ ∈ J , (7.2)

where δν,ρ is the Kronecker delta.
(3) Every Lagrangian spline Lν

k which has order k ∈ N and the property 〈Lν
k , ψ j 〉 =

δν, j (δν, j is the Kronecker delta) has the following representation

Lν
k =

∑

j∈J

μν
j F

j
k , ν ∈ J . (7.3)

(4) Every spline Y α
k which takes prescribed values 〈Y α

k , ψ j 〉 = α j can be written
explicitly as

Y α
k =

∑

j∈J

α jL j
k .

In particular, when every ψ j is a Dirac measure δu j at a vertex u j ∈ S j then the
systems (7.1) and (7.2) take the following form respectively:

(1)

Lk F j
k = δu j j ∈ J , k ∈ N, (7.4)

(2)

∑

j∈J

μν
j F

j
k (uρ) = δν,ρ, ν, ρ ∈ J , (7.5)

Remark 7.1 The problem with equation (7.1) is that the operator L is not invertible
(at least for all finite graphs). One way to overcome this obstacle is to use, say, the
Moore-Penrose inverse of L . Another way is to consider a regularization of L of the
form β I + L , with a β > 0. In all our calculations we adopted this approach with
β < 1.

8 Background and Additional Comments

8.1 Known Results About Sampling Based on Subgraphs

As it has been mentioned, the idea to use local information (other than point values)
for representation, sampling and reconstruction of bandlimited functions on graphs
was explored in [12,16,38,41,42].



Journal of Fourier Analysis and Applications (2021) 27 :39 Page 23 of 28 39

In [12] authors suggesting a unified approach to the point-wise sampling, aggre-
gation sampling and local weighted sampling on finite graphs. For a given a family
ζi ∈ �2(G), i = 1, 2, ..., M, authors consider the matrix � = (ζ1, ..., ζM )t and call
it a uniqueness operator for a space PWω(L) if for any two f , g ∈ PWω(L) the
equality � f = �g implies that f and g are identical. One of the main results of [12]
states that � is a uniqueness operator for a space PWω(L) if and only if the orthogo-
nal projections Pω(ζi ), i = 1, 2, ..., M, onto PWω(L) form a frame. Moreover, they
determine the exact constants in the corresponding frame inequality. Namely, consider
a set of orthonormal eigenfunctions ϕ0, ϕ1, .., ϕk which form s basis of PWω(L) and
letUk be thematrix whose columns are these vectors ϕi , i = 0, ..., k,. If σmin and σmax
are the smallest and the largest singular values of the matrix �Uk then the following
frame inequality holds for all f ∈ PWω(L)

σ−2
max

M∑

i=1

|〈 f ,Pωζi 〉|2 ≤ ‖ f ‖2 ≤ σ−2
min

M∑

i=1

|〈 f ,Pωζi 〉|2.

The so-called aggregation samplingwhich was developed in [16] relies on samples
of a signal of the form f (v0), L f (v0), ..., Lm f (v0), where L is the Laplacian and
v0 ∈ V (G) is a fixed vertex. Since L is self-adjoint, each of the samples Lk f (v0), k =
1, , ... ,m, is the same as the inner product of the original signal f with the function
μk = Lkδv0 , k = 1, , ... ,m, where δv0 is the Delta function supported at the vertex
v0 ∈ V (G). Namely,

Lk f (v0) = 〈Lk f , δv0〉 = 〈 f , Lkδv0〉 = 〈 f , μk〉.

Due to the property that every application of L to a compactly supported function
extends the function to the vertex-neighborhood of its support, one obtains an increas-
ing ladder of subgraphs {v0} ⊂ U1 ⊂ U2 ⊂ ... ⊂ Um and a set of functions μ0 =
δv0 , μ1, ..., μm , where everyμk is supported onUk . In other words, authors of [16] are
using the collection of ”local measurements” {〈 f , μk〉}, f ∈ �2(G), k = 1, , ... ,m,

to develop a specific approach to sampling of bandlimited functions and to obtain
sparse representations of signals in the graph-frequency domain.

The objective of the paper [38] was to develop a method of decomposition of sig-
nals on graphs for efficient compression and denoising. First, the authors partitioned
a finite weighted graph G into connected subgraphs Gk . Given a signal f ∈ �2(G) its
restriction to each Gk was decomposed into Fourier basis of the Laplacian associated
with Gk . Using these decompositions the authors constructed a sequence of approx-
imations to the original signal f which they treated as signals on a series of coarse
versions of G constructed by using subgraphs Gk as ”super-nodes”.

In [41] authors considered a finite and unweighted graphG and its disjoint covering
by connected subgraphs {Ni }i∈I . Given a signal f ∈ PWω(L) they evaluated f (ui ) at
random single points ui ∈ Ni and defined a piecewise constant function F(v) = f (ui )
iff v and ui belong to the same Ni . The orthogonal projection f0 of F onto PWω(L)

was used as a first approximation to f in an iterative procedure which converges to
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f ∈ PWω(L) if ω satisfies the inequality

0 ≤ ω <
1

maxi∈I K (ui )R(ui )
, (8.1)

where

R(ui ) = max
v∈Ni

dist(ui , v); K (ui ) = max
(v,ui )∈T (ui )

|Tui (v)|,

with T (ui ) being the shortest-path tree of the subgraphN (ui ) rooted at ui , and Tui (v)

being a subtree which v belongs to when ui and its associated edges are removed from
T (ui ).

Authors of [42] developed what can be called the local weighted sampling. They
also considered a finite and unweighted graphG and its disjoint covering by connected
subgraphs {Ni }i∈I . With every Ni they associated a non-negative function ϕi which
is supported on Ni and such that

∑
v∈Ni

ϕi = 1. Let Di be a diameter of Ni .
According to [42], if

0 ≤ ω <
1

maxi∈I (|Ni |Di )
. (8.2)

then every f ∈ PWω(L) can be uniquely reconstructed from the set of its ”samples”
{〈 f , ϕi 〉}i∈I . The reconstruction is given by an iterative procedure which requires
knowledge of eigenfunctions of the Laplacian L .

Remark 8.1 In fact, the correct estimate of the frequency interval is given not by the
inequality (8.2) but by the following one

0 ≤ ω <
1

maxi∈I (2|Ni |Di )
, (8.3)

Indeed, the proof in [42] of Lemma 1 in which the condition (8.2) was obtained relied
on the incorrect formula

∑

u,v∈V (G)

| f (u) − f (v)|2w(u, v) = ‖L1/2 f ‖2,

while the correct one is

∑

u,v∈V (G)

| f (u) − f (v)|2w(u, v) = 2‖L1/2 f ‖2,

(see our formulas (2.2 and (2.5)).

The results of [42] are the closest to our Theorem 4.7. Let’s compare our condition
(4.13) with (8.3) in the case when every subgraph Ni coincides with the unweighted
complete graph Kn of n vertices. Note, that this graph has just two eigenvalues 0 and
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n (with multiplicity n − 1). In this case (for averages over subgraphsNi ) our interval
(4.13) for all the frequencies which can be recovered is

0 ≤ ω < n,

while the interval which is given by (8.3) is only

0 ≤ ω < 1/2n,

since the diameter of Kn is 1. In the same situation but for the signal sampled at
randomly chosen vertices {vi } where vi ∈ Ni , our interval for the recoverable
frequenciesω (see ( 4.19)) is 0 ≤ ω < n/n = 1,while (8.3)would give 0 ≤ ω < 1/2n.

8.2 Comparison with the Poincaré Inequality on RiemannianManifolds

Here we are using the same notation as in Sect. 3. Our Theorem 3.1 implies the
following inequality

∥∥∥∥∥∥
f −

⎛

⎝ 1

|G|
∑

v∈V (G)

f (v)

⎞

⎠ χG

∥∥∥∥∥∥

2

≤ 1

λ1
‖∇ f ‖2, (8.4)

which looks essentially like the Poincare inequality for compact Riemannian mani-
folds.Note that the Poincaré inequality onRiemannianmanifolds is formulated usually
for balls B(r) of a small radius r and has the form

∫

B(r)

∣∣ f − fB(r)χB(r)
∣∣2 ≤ Cr2

∫

B(r)
|∇ f |2 , fB(r) = 1

VolB(r)

∫

B(r)
f . (8.5)

However, our Poincaré-type inequality (8.4) is valid for any finite graph. The constants
on the right sides in (8.4) and (8.5) look very different. It should be mentioned in this
connection that on domains inRn (and on balls onRiemannianmanifolds) the diameter
of a domain is essentially reciprocal to the first eigenvalue (which is never zero) of
the corresponding Dirichlet Laplacian L (assuming the formula Lu j = λ j u j , where
u j and λ j are eigenfunctions and eigenvalues respectively). This shows that if a graph
has the property that for every ball B(r) the following inequality holds

1

λ1(B(r))
≤ Cr2, C > 0,

then our (8.4) is analogous to the ”regular” inequality.

8.3 Other Poincaré-Type Inequalities

We keep the same notations as in Sects. 3 and 4. Having Theorems 4.1 and 4.4 one
can easily obtain the following Poincaré-type inequalities.
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Corollary 8.1 For every function such that f ∈ ∩ j∈J Ker � j one has

‖ f ‖2 ≤
∑

j∈J

θ j

λ1, j
‖∇ j f j‖2, (8.6)

and

‖ f ‖2 ≤ �

�S
‖L1/2 f ‖2. (8.7)

More general, if J0 ⊂ J and G0 = ∪ j∈J0 S j and

‖ f ‖2G0
=

∑

v∈G0

| f (v)|2,

then one has

‖ f ‖2G0
≤

∑

j∈J0

θ j

λ1, j
‖∇ j f j‖2, f ∈

⋂

j∈J0

Ker� j , (8.8)

and

‖ f ‖2G0
≤ �o



�o
S

‖L1/2
G0

f0‖2, f0 = f |G0 , f0 ∈
⋂

j∈J0

Ker� j , (8.9)

where LG0 is the Laplacian of the induced graph G0. Here

�o
 = sup

j∈J0
θ j = ‖ψ j‖2

∣∣〈ψ j , ϕ0, j 〉
∣∣2

,  = ({S j } j∈J0 , {� j } j∈J0

)
, (8.10)

and

�o
S = inf

j∈J0
λ1, j > 0, S = {S j } j∈J0 . (8.11)

Note, that in the case when {� j } is a set of Dirac functions similar inequalities played
important role in the sampling and interpolation theories on Riemannian manifolds in
[22–24]. In the case of graphs they were recently explored in [43].
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