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Abstract
We present recent advances in harmonic analysis on infinite graphs. Our approach
combines combinatorial tools with new results from the theory of unbounded Her-
mitian operators in Hilbert space, geometry, boundary constructions, and spectral
invariants. We focus on particular classes of infinite graphs, including such weighted
graphs which arise in electrical network models, as well as new diagrammatic graph
representations. We further stress some direct parallels between our present analysis
on infinite graphs, on the one hand, and, on the other, specific areas of potential theory,
probability, harmonic functions, and boundary theory. The limit constructions, finite
to infinite, and local to global, can be used in various applications.
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Spectral theory · Harmonic analysis · Representation of harmonic functions ·
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1 Introduction

Our presentation here is based in part on new joint research dealing with a geometric
and computational harmonic analysis on infinite graphs and related network-models.
This entails multiple recent research collaborations. Our emphasis is on both new and
recent results from collaborations between the present co-authors, as well as joint
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results by the second named author and Erin Pearse; see especially [7,8,10,13,30,31,
33–35,39]. In the present paper, we aim to address readers and researchers fromdiverse
neighboring areas, as well as from applied areas. We have further added a discussion
of outlook and of new perspectives.

In rough outline, we consider here the following general framework for combina-
torial graphs G. A graph G will be specified by two countable infinite sets, vertices V ,
edges E , with edges “connecting” neighboring pairs of vertices. While there is also
a rich literature for finite graphs, our setting will be that of countable infinite graphs.
The motivation derives in part from new problems dealing with “large networks”.
We have been especially motivated by applications to electrical network models. But
the framework is much more general than that, encompassing for example social net-
works. In addition to a choice of a pair of vertices and edges, (V , E), we shall also
introduce a specific positive and symmetric function, say c, defined on the set E of
edges. In electrical network systems, the function c will represent conductance. For
our graph-systems, we shall use the terminology (V , E, c).

Analysis on infinite graphs has diverse applications in both pure and applied math-
ematics, see e.g. [5]. This includes numerical analysis, signal/image processing, as
well as Monte Carlo simulations in physics and in financial mathematics (pricing of
derivative securities). Some important ideas of classical analysis on R

n and compact
and non-compact manifolds which already have numerous applications to signal and
image processing were extended to finite and infinite graphs in [24,49,50]. Indeed, our
present framework includes cases of graph networks arising as discrete samples within
ambient “continuous” networks, i.e., the case sets of vertex points arising from optimal
sampling. Other notions of optimal sampling also arise in probabilistic frameworks.
The reader can find other applications in [23,48,55].

Our analysiswill be presented in this framework, andwe shall further discuss several
parallels between analysis on combinatorial graphs, on the onehand, andmore classical
notions from harmonic analysis, on the other: In our analysis, the classical Laplacian
has a counterpart for graphs, the graph-Laplacian, �. It will play an important role in
the results we present below. Every choice of conductance function c induces a choice
of graph-Laplacian. Each choice of graph-Laplacian also entails a new and important
study of harmonic functions on graphs.

Our motivations include: boundary-conditions and boundary value problems,
Markov random walk models, and compactifications, for the classical Laplacian in
PDE theory, e.g., Greens–Gauss–Stokes, we show has a counterpart for graphs. There
are two sides to this, one is to make precise the notions of “boundary” for com-
binatorial graphs; and the second entails a precise study of, and identification of,
graph-Laplacians as unbounded semibounded operators in suitable choices of Hilbert
spaces.

The list of examples of the use of infinite graphs in numerical analysis of partial
differential equations (PDEs) problems includes what goes by the name multigrid
methods, finite element methods, and finite difference methods. We refer to popular
tools in numerical analysis involving groups of algorithms for solving classical PDEs
with the use of graph-hierarchies of discretizations. Eachof these techniques, applied to
a specific partial differential operator, leads in turn to an associated discretized operator
(for example a graph Laplacian), with the discretization referring to a choice of an
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infinite weighted graph. These techniques are also calledmultiresolutionmethods, and
they are very useful in problems exhibiting multiple scales of behavior. Since this is
a large and diverse area, we will not explore details here. Interested readers will find
extensive detailed treatments in, for example, [41].

In more detail, starting with a specific graph network (V , E, c), this may be anyone
in avariety of networkmodels, there is then anaturally correspondingLaplaceoperator
�. We outline how this operator reflects both geometric and analytic features of the
network under consideration.

Of course, the corresponding spectral theory and harmonic analysis of the Laplace
operator � will depend on choice of Hilbert space associated with the graph network
(V , E, c). In fact, there are three useful choices of Hilbert spaces, each one serving
its own purpose: We consider (i) the standard �2 Hilbert spaces, �2(V ) and �2(V , c),
(ii) the finite energy Hilbert space HE , and (iii) a certain path-space, the dissipation
Hilbert spaceHD . (We refer readers to Sect. 8.2 below as well as to the paper [33] for
details.) As outlined above, both the operator �, and the three Hilbert spaces, depend
on, and reflect, the particular graph network at hand G = (V , E, c). So our analysis
will therefore also depend on the specification of three parts ofG: (a) the set of vertices
V , (b) the set of edges E for G, and (c) a choice of conductance function c (as it is
defined as a function on E).

Our present proposed graph-harmonic analysis will therefore also depend on such
associated spectral theory for the operator �. We shall outline how � may be realized
as an unbounded symmetric operator in each of the three Hilbert spaces. As a result,
there will be choices, reflecting the particular graph network at hand. This in turn
entails several technical issues from the theory of unbounded operators with dense
domain in Hilbert space, and entailing choices of domains and generalized boundary
conditions. In a way, the theory for the first Hilbert space �2(V ) is easier as it turns out
that � will automatically be essentially self-adjoint on its natural domain in �2(V ).
By contrast, as an operator in the energy Hilbert space HE , � will generally not be
essentially self-adjoint. Nonetheless, we will show that it still has a natural family
of self-adjoint extensions; each one with its own spectral theory, and each of which
yields a graph-harmonic analysis.

It is the realization of� in the energyHilbert spaceHE which best reflects bothmet-
ric (resistance metric) and analytic data: Harmonic analysis of boundary conditions,
random walk properties, and useful correspondences between (i) geometric features
of G on the one hand, and (ii) spectra data on the other.

A particular and versatile choice of graph networks is considered in Sect. 6, the
Bratteli diagrams, denoted by G(B) where B = B(V , E) stands for a Bratteli dia-
gram. As we outline, the choice of this setting for network graph-analysis is dictated
by a variety of applications, e.g., to reversible random walk models, to general classes
of dynamical systems in symbolic dynamics, to combinatorics, and to commutative
and non-commutative harmonic analysis; see the papers cited below in Sect. 6. A
further advantage of the specialization to Bratteli diagrams is that it allows for algo-
rithmic computations, for example, it yields (semi) explicit formulas for computation
of harmonic functions on this class of graph systems, G(B).
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1.1 Organization of the Paper

In Sect. 2, we define the main notions and tools we shall need for our graph analy-
sis; this includes the theory of weighted (electrical, resistance) networks, resistance
metrics, random walk analysis, boundaries, Green kernel, Dirichlet spaces, and graph
Laplacians. Involved in our analysis of graph Laplacians will be three Hilbert spaces
�2(V ), where V is the set of vertices, an energy Hilbert space HE , and a dissipation
Hilbert space HD .

Starting with a given infinite graph, and a prescribed conductance function, in
Sect. 3, we introduce a more detailed potential theoretic analysis; it is based on an
identification of systems of dipoles and monopoles. a graph-theoretic Gauss–Green
Identity.

In Sect. 4, starting with a graph, and an associated graph-Laplacian, we show how
the three Hilbert spaces (�2(V ), the energy Hilbert space, and the dissipation Hilbert
space) enter into our spectral theoretic determination of the graph Laplacian.

In Sect. 5 we use a probabilistic approach for a detailed study of the Green’s
function, dipoles, and monopoles for a transient weighted network.

In Sects. 6–8, we discuss a special class of infinite graphs, Bratteli diagrams. We
include the precise definitions and references on Bratteli diagrams in Sect. 6. In rough
outline, the key feature which characterizes the Bratteli diagrams, dictates a particular
configuration of the corresponding sets of vertices V and edges E as follows. In a
Bratteli diagram B, the set of vertices V (and the set of edges E) admits an arrangement
into a disjoint partition consisting of levels Vn (respectively, En), and indexed by
discrete time. The further property characterizing Bratteli diagrams B is that the edges
only link vertices from neighboring levels.

The results from the previous sections are then applied, in Sects. 6, 7, and 8 to
the case of graphs of particular forms. The focus of Sects. 6 and 7 is an algorithmic
approach to finding particular harmonic functions, for this class of countably graded
graphs.

The ideas andmethods, which are discussed in the first part of the paper, are applied
to several combinatorial graphs. InSects. 7 and8,we considered trees, thePascal graph,
and some special realizations of Bratteli diagrams.

Section 8 is focused on the existence of harmonic functions of finite energy for
some classes of weighted networks.

2 Basic Concepts on Networks and Related Hilbert Spaces

In this section, we define the main notions of the theory of weighted (electrical, resis-
tance) networks. We would like to mention that the material of this section is not a
comprehensive introduction to the theory of weighted networks. Our goal is to prepare
the reader for the main results in the present paper, as well as in related papers. We
do not mention here several key concepts of this theory such as resistance metrics,
boundaries, and physical interpretations of the considered objects.

The reader can find more information on this subject, for example, in [3,4,16,20,
26,30,33,42,43,51], and many other papers and books.
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2.1 Electrical Networks, Laplace andMarkov Operators

Let G be a countably infinite graph. We assume in this paper that all graphs are con-
nected, undirected, and locally finite.Moreover,G has single edges between connected
vertices. Denote by V the set of all vertices ofG, and by E the edge set ofG. The set E
has no loops. If two vertices x and y from V are connected neighbors, we write y ∼ x .
It allows us to identify such pairs of vertices with edges e = (xy) ∈ E . Local finiteness
of G means that the set {y ∈ V : y ∼ x} of all neighbors of x is finite for every vertex
x . For any two vertices x, y ∈ V , there exists a finite path γ = (x0, x1, ..., xn) such
that x0 = x, xn = y and (xi xi+1) ∈ E for all i . On the other hand, we can define the
set XG of all infinite paths.

Definition 2.1 An electrical network (orweighted network)1 (G, c) is, by definition, a
graph G equipped with a symmetric function c : V × V → [0,∞), i.e., cxy = cyx for
any (x, y) ∈ V ×V . Moreover, it is required that cxy > 0 if and only if (xy) ∈ E . This
means that c is actually defined on the edge set E of G. The function c will be called
a conductance function. The reciprocal value rxy = 1/cxy is called the resistance of
the edge e = (xy). For any x ∈ V , we define the total conductance at x as

c(x) :=
∑

y∼x

cxy .

The function c is defined for every x ∈ V since this sum is always finite. If necessary,
one can extend the definition of c to the set V × V setting cxy = 0 if x, y are not
neighbors in G.

Definition 2.2 Let (G, c) be an electric network. (1) The Laplacian (or graph-Laplace
operator) � on (G, c) is the linear operator defined on the space of functions2 f :
V → R by the formula

(� f )(x) :=
∑

y∼x

cxy( f (x) − f (y)). (2.1)

A function f : V → R is called harmonic on (G, c) if � f (x) = 0 for every x ∈ V .
If (2.1) holds at each vertex x of a subset W ⊂ V , then we say that f is harmonic on
W .

(2) A Markov operator P is defined on the space of functions f : V → R by the
relation

(P f )(x) =
∑

y∼x

p(x, y) f (y), (2.2)

1 The terms electrical network, weighted network, electrical resistance network are used as synonyms in
many papers and books on this subject.
2 One can consider complex-valued functions in this (and other) definition; obvious changes can be easily
made.
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where {p(x, y) : x, y ∈ V } is a transition probability kernel, i.e.,
∑

y∼x p(x, y) = 1
for all x ∈ V . A function f is called harmonic if P( f ) = f . If P = (p(x, y)) where

p(x, y) = cxy
c(x)

, then a function f is harmonic if and only if �( f ) = 0.

(3) The space of all harmonic functions will be denoted byHarm. Relations (2.1)
and (2.2) should be viewed as pointwise ones. Usually the operators � and P and
harmonic functions are considered in some Hilbert spaces, see below.

(4) Let W be a subset of V = V (G). The solutions ϕ : V → R of the problem

�ϕ(x) = 0 on V \ W (2.3)

are called harmonic on exterior domain functions.
It is important to find solutions of the equation �ϕ = f for a given function f of

simplest form. If W = {x0}, then the solution w = wx0 to the problem �w(x) = δx0
is called a monopole at the point x0. If W = {x1, x2}, x1 �= x2, then the solution
v = vx1,x2 to �v(x) = δx1 − δx2 is called a dipole. In Sect. 3 we give an equivalent
definition of monopoles and dipoles, see Proposition 3.6. They are also extensions to
the present graph context of Green’s functions in PDE theory.

Naturally, an analysis of infinite weighted graphs entails subtle choices on infinite
dimensional function spaces. And, in infinite dimensions, existence of solutions is
delicate. In fact, this subtlety is at the core of our understanding of a systematic
harmonic analysis for infinite weighted graphs. Indeed, this is a central theme, both
in the present discussion, in earlier papers by Jorgensen and Pearse [30,31,33–35], as
well as in earlier papers by the present co-authors, see e.g., [8,10]. While inclusion
of full details here (of these matters) would take us too far afield, we wish to stress
the following four key features, important for our discussion inside the paper: (i)
Following parallels to PDE theory, readers will notice that the role played here by
monopoles anddipoles is similar to that ofGreen’s functions for elliptic boundary value
problems; so “inverting” elliptic PDEs. (ii)Moreover (for infinite graphs), a systematic
study of monopoles/dipoles reflects a precise graph theoretic analysis of aspects of
“boundaries”. Here, boundaries understood in the sense of Markov processes. Hence,
to make precise our notions of boundaries, we show that our present graph Laplacians
are directly related to Markov operators, referring to associated reversible Markov
processes and their boundaries. With these facts in mind, we make the choice of the
Hilbert space HE (energy Hilbert space), see also [10,13,35], and we show that HE

will always contain the dipole-vectors; in fact, the span of the system of dipoles is
dense in HE . By contrast, except for trivial special cases, the span of the Dirac point
masses is not dense inHE . The latter fact highlights the role played by the harmonic
functions contained inHE . (iii) For some problems,HE will contain monopoles, but
not in general. (iv) There are alternative Hilbert spaces relevant for an analysis and
spectral theory of graph Laplacians, for example l2(V ) , but they typically do not
accommodate the solutions discussed above.

In the following remark we collect several properties of the objects defined above.
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Remark 2.3 (1) The spaceHarm of harmonic function always contains constant func-
tions. We will call them trivial functions. If only trivial harmonic functions exist,
then Harm is called trivial.

(2) Given a weighted network (G, c), one can define a transition probability kernel by

setting p(x, y) := cxy
c(x)

. In this case, the kernel (p(x, y) : x, y ∈ V ) is reversible,

i.e., the relation c(x)p(x, y) = c(y)p(y, x) holds because of the symmetry of the
function cxy .

(3) It follows from (2.1) and (2.2) that

�( f ) = c( f − P( f ))

where c is considered as a multiplication operator.
(4) The domain of operators � and P will be discussed later when we consider these

operators acting in specific Hilbert spaces.

Harmonic functions give an important tool for the study of networks (G, c). In this
connection, we discuss the maximum principle and Dirchlet problem here.

Let G1 be a connected subgraph of G with the vertex set V1 ⊂ V . Define the outer
boundary of V1:

outbd(V1) := {x ∈ V \ V1 : ∃y ∈ V1 such that x ∼ y}, (2.4)

and the inner boundary of V1

inbd(V1) := {x ∈ V1 : ∃y ∈ V \ V1 such that x ∼ y}. (2.5)

Following these definitions, one can introduce the interior I nt(V1) := V1 \ inbd(V1)
and closure cl(V1) := V1 ∪ outbd(V1).

Suppose that h : V → R is a function that is harmonic on V1, and the supremum
of h is achieved at a point from V1. Then the maximum principle states that h is a
constant on V1 ∪ outbd(V1).

Remark 2.4 For infinite graphs (V , E, c) there is a rich variety of corresponding anal-
yses, e.g., harmonic analysis, and path-space analysis. For each one in a list of settings
of analysis on infinite graphs, there is a corresponding variety of important notions of
boundaries. For details, see the cited references. Each one is covered by an extensive
literature, and each one serves different purposes. The simplest of these boundary
notions refers to boundary of a finite subset, say W of V (there one must distinguish
between an inner and an outer variant). More important cases are Cantor space bound-
aries at “infinity”, or infinite-dimensional path-space. Both notions are important in
the analysis of the special case of infinite graphs which may be realized as Bratteli
diagrams (see below Sects. 6–8). A detailed discussion of the extensive literature in all
the diverse settings is far beyond the scope of the present paper, but interested readers
are referred to the sources cited above. For the specific analyses covered here we shall
be specific, and we will cite the literature, e.g., [2,4,5,8,17–20,28,30–32,34,35,45,56].
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The second fact is related to the Dirichlet problem. Let (G, c) and V1 be as above.
The Dirichlet problem consists of solving the following boundary problem:

{
(�u)(x) = g(x) for all x ∈ V1,

u(x) = f (x) for all x ∈ bd(V1),
(2.6)

where u : V → R is an unknown function, and the functions g : V1 → R and
f : bd(V1) → R are given.

Lemma 2.5 If V1 is finite, the Dirichlet problem (2.6) has a unique solution for all
functions g and f . In particular, in the case of finite V1, there exists a unique harmonic
function h on V1 such that h = f on bd(V1).

The reader can find more information about the Dirichlet problem and maximum
principle in [42,43].

2.2 Three Hilbert Spaces Associated with Electrical Networks

Given an electrical network (G, c) = (V , E, c) with a fixed conductance function c,
the following three Hilbert spaces will be considered in the paper: �2(V ), �2(V , c),
and the finite energy space HE . Recall that we work with real-valued functions, so
that we set

�2(V ) := all functions u on V such that ||u||2
�2

=
∑

x∈V
(u(x))2 < ∞,

and the inner product 〈u1, u2〉�2(V ) is
∑

x∈V u1(x)u2(x). Similarly,

�2(V , c) := all functions u on V such that ||u||2
�2(V ,c) =

∑

x∈V
c(x)(u(x))2 < ∞,

and

〈u1, u2〉�2(V ,c) =
∑

x∈V
c(x)u1(x)u2(x).

One of our main objects is the finite energy Hilbert space HE . The definition of
HE (and its properties) requires more details.

Definition 2.6 For an electrical network (G, c), consider a quadratic form E defined
on functions u, v : V → R by

E(u, v) := 1

2

∑

x,y∈V
cxy(u(x) − u(y))(v(x) − v(y)).

Set E(u) = E(u, u). Then E is called an energy form. The domain of E is the set
of all functions u such that E(u) < ∞. Furthermore, E(u) = 0 if and only if u is
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a constant function. This observation leads to the definition of the pre-Hilbert vector
space HE := Dom(E)/R1 equipped with the inner product

〈u1, u2〉HE = E(u1, u2), ||u||HE = E(u)1/2.

The completion ofHE with respect this norm is called the finite energy Hilbert space.
We use the same notation HE for it.

Lemma 2.7 Denote by δx , x ∈ V , the Kronecker delta-function on V : δx (y) = δxy .
Then δx ∈ HE , and

E(δx , δy) = −cxy, E(δx ) = c(x),

and E(δx , δy) = 0 if (xy) /∈ E.

In Remark 4.6, we give the countably infinite matrix M , see (4.2), which defines
the operator � acting in �2(V ). The entries of M are E(δx , δy) : x, y ∈ V .

In the following remark we formulate several facts to explain why the finite energy
Hilbert space plays an important role in the study of graph-Laplacian.

Remark 2.8 In this remark, we gathered several properties of the finite energy space.
(1) In many models of electrical networks harmonic functions do not belong to

�2 space. On the other hand there are interesting networks with wide collection of
harmonic functions of finite energy.

(2) The Hilbert space HE does not have a canonical orthonormal basis. It follows
from Lemma 2.7 that functions δx are in HE for x ∈ V , but they are not orthogonal
and their span is not dense in HE , in general. Indeed, as we will see in Proposition
3.6, the finite energy space HE admits an orthogonal decomposition Fin ⊕ Harm0
where Fin is the span of {δx : x ∈ V } andHarm0 is the set of harmonic functions of
finite energy. For details, readers are referred to the cited literature.

(3) The multiplication operator (M f u)(x) = f (x)u(x) is not Hermitian if f �= 0.
(4) The reader should distinguish pointwise identities and identities in the Hilbert

space HE . Because the vectors of HE are equivalence classes of functions, there are
pointwise identities that do not hold in HE .

For a network (G, c), the Hilbert spaceHE is defined on classes of equivalence of
functions on the vertex set V . It turns out that this space can be embedded into another
Hilbert space defined on the set of functions on the edge set E of G. It is called the
dissipation Hilbert space and denoted by HD .

The dissipation space HD , whose vectors can be viewed as current functions. We
note that vectors from the energy space HE represent voltage difference. To define
HD , we denote by rxy = c−1

xy the resistance of the edge e = (xy) and set

HD := { f : E → R : f (x, y) = − f (y, x) and || f ||HD < ∞}
where

|| f ||2HD
= 1

2

∑

x,y

rxy f (x, y)
2 = 1

2

∑

e∈E
re f (e)

2.
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Equivalently,HD can be defined by using an orientation onG. Let 
e = 
(xy) denote
an edge with orientation. Then

|| f ||2HD
=
∑


e∈E
r
e f (
e)2.

Moreover, the vectors {√ceδ
e} form an orthonormal basis inHD .
To embed the finite energy space into the dissipation space, we use the drop operator

∂ : HE → HD where

(∂u)(x, y) = cxy(u(x) − u(y)).

Lemma 2.9 The operator ∂ is an isometry, ||u||HE = ||∂u||HD .

Let C be a cycle, i.e., C is a finite closed path in (G, c).

Lemma 2.10 For every f ∈ HE ,

〈∂ f , χC 〉HD = 0,

where χC is the characteristic function of a cycle C.

The proof of this lemma follows from the following computation: let C =
{x0, . . . , xn, x0} where (xi xi+1) ∈ E , then

〈∂ f , χC 〉HD =
∑

e

c(e)r(e) f (e)χC (e) =
∑

i

( f (xi ) − f (xi+1)) = 0.

It follows from Lemma 2.10 that the orthogonal compliment Cyc := HD �∂(HE )

is generated by the characteristic functions of cycles in (G, c).
More details about the dissipation space HD are given in Sect. 4. The reader can

find more information about the dissipation space in [44,46].

2.3 Path Space

For a network (G, c), we defined the Markov operator P in Definition 2.2. We can
use it to define a probability measure on the path space of the graph G.

Let 	 ⊂ V∞ be the set of all infinite sequences ω = (xi )i≥0 where (xi xi+1) ∈ E
for all i . We call 	 the path space. Define random variables Xn : 	 → V by setting
Xn(ω) = xn . Let 	x := {ω ∈ 	 : X0 = x} be the subset of all paths beginning at x ;
then 	 is the disjoint union of 	x , x ∈ V .

The transition probability kernel P = (p(x, y) : x, y ∈ V ), where p(x, y) = cxy
c(x)

defines the family ofMarkov measures {Px : x ∈ V } such that Px is supported by the
corresponding set	x . Indeed, Px is determined on cylinder sets of	x by the formula

Px (X1 = x1, X2 = x2, . . . , Xn = xn | X0 = x) = p(x, x1)p(x1, x2) · · · p(xn−1, xn),
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The sequence of random variables (Xn) defines aMarkov chain on (	x , Px ):

Px (Xn+1 = y | Xn = z) = p(z, y), y, z ∈ V .

Since G is a connected graph, the Markov chain defined by (Xn) is irreducible,
that is, for any x, y ∈ V there exists n ∈ N such that p(n)(x, y) > 0, where p(n)(x, y)
is the xy-entry of Pn .

Let λ = (λx : x ∈ V ) be a positive probability vector. Define the measure P =∑
x∈V λxPx on 	.

Lemma 2.11 The measure P is a Markov measure if and only if the probability distri-
bution λ satisfies the relation λP = λ, or

∑
y∼x λy p(y, x) = λx . Then

P(X0 = x, X1 = x1, . . . , Xn = xn) = λx p(x, x1)p(x1, x2) · · · p(xn−1, xn).

In particular, p(n)(x, y) = Px (Xn = y | X0 = x).

We remark that the equation λP = λ may not have solutions in the set of positive
probability vectors λ.

A Markov kernel P = (p(x, y))x,y∈V determines a random walk on the weighted
graph (G, c).

Definition 2.12 It is said that the randomwalk onG = (V , E) defined by the transition
matrix P is recurrent if, for any vertex x ∈ V , it returns to x infinitely often with
probability one. Otherwise, it is called transient. Equivalently, the random walk is
recurrent if and only if, for all x, y ∈ V ,

Px (Xn = y for infinitely many n) = 1, (2.7)

and it is transient if and only if, for every finite set F ⊂ V and for all x ∈ V ,

Px (Xn ∈ F for infinitely many n) = 0. (2.8)

We say that an electrical network (G, c) is recurrent/transient if the random walk
(Xn) defined on the vertices of G by the transition probability matrix P is recur-
rent/transient.

The reader will find more information and results about transient and recurrent
random walks in [19,27,29,40].

Remark 2.13 (1) Let G = (V , E, c) be an infinite transient weighted network, and the
sequence of transition probabilities p(n)(x, y) is defined as in Lemma 2.11. Define the
Green kernel:

G(x, y) =
∞∑

n=0

p(n)(x, y).
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Then, for any fixed y ∈ V , the function G(x, y) satisfies �G(x, y) = δy pointwise in
V , and has finite energy.

(2) As shown in [57], a network supports monopoles if and only if the Green kernel
G(x, y) exists (see Sect. 4 for the definition), which is equivalent to transience of the
random walk. It was proved in [45] that the network is transient if and only if there
exists a finite current flow to infinity.

(3) For a connected network G, the property of transience/recurrence of a random
walk is independent of a point where is is started. Hence, a monopole exists at some
vertex z if and only if there exists a monopole at any other vertex x .

Various notions of boundary for random walk models are discussed, e.g. in the
papers [14,17,18].

3 Harmonic Functions of Finite Energy, Monopoles, Dipoles, and
Laplacian

As sketched above, our present setting is that of infinite and connected graphs G =
(V , E, c), i.e., we specify an infinite set V of vertices (countable discrete), as well
as a fixed and associated system of edges E . In the case of electrical networks (our
main focus), we will also specify a positive function c on E which may represent a
prescribed conductance in the network. Starting with a fixed conduction function c,
we show that there are then two operators, one a graph-Laplacian, � and the other a
transition operator P . Both induce key structures as graph theoretic harmonic analysis
tools. Our present focus is that of harmonic functions, boundaries of graphs, and
associated transforms. However, the precise formulation of these analysis tools require
that we first specify appropriate Hilbert spaces. There will be three, �2(V ), our energy
Hilbert space HE , and our dissipation Hilbert space, HD . Each one serves its own
purpose, for example �2(V ) helps us make precise infinite matrix representations. We
note that �2(V ) is contained in HE , but the inclusion turns out to be an unbounded
operator, in general. The range is non-closed in HE , and not dense. However, with
our assumptions, we find that non-constant harmonic functions cannot be in �2(V ).
Hence, we shall study the of harmonic functions as a subspace ofHE .

The third Hilbert spaceHD , will be a Hilbert space of functions on the edge set E .
We shall need this, and the transition operator P , in order to make precise the notions
of “boundary” which are part of our graph harmonic analysis.

The existing literature in the area is relatively recent. Here we shall follow mainly
the papers [1,7,8,10–13,30,31,33–37,39]. For an analysis of reversible random pro-
cesses, see [40,43,45]. For realization of boundaries as fractals, see e.g., [42]. General
background papers and books on graph analysis include [29,51,54,56].

3.1 Harmonic Functions in the Energy Space

The following result gives formulas for computation of energy for harmonic functions
on graph networks.
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Proposition 3.1 (i) Let f ∈ Harm ∩ HE on (G, c). Then

‖ f ‖2HE
= 1

2

∑

x∈V
c(x)((P f 2)(x) − f 2(x)), (3.1)

and

‖ f ‖2HE
= −1

2

∑

x∈V
(� f 2)(x). (3.2)

(ii) If a given function f on V is harmonic off a finite set F ⊂ V , then it has finite
energy if and only if the sums in (3.1) and (3.2) are finite.

Hence, a harmonic function f on (G, c) has finite energy if and only if the function
x �→ P( f 2)(x) − f 2(x) belongs to �1(V , c).

Let 	,	x , Px , and Xn be as in Sect. 2.3. It was proved in [2] that, for a transient
electrical network (G, c) and a given function f ∈ HE , the sequence ( f ◦ Xn)

converges a.e. and in L2 on the space (	x , Px ) for any x . We set

F̃(ω) = lim
n→∞( f ◦ Xn(ω)). (3.3)

Then the function F̃(ω) is defined a.e.
Let σ : 	 → 	; σ(ω0, ω1, . . .) = (ω1, ω2, . . .) be the shift. Then σ is a finite-to-

one endomorphism of 	 such that

σ(	x ) =
⋃

y∼x

	y

(recall that G is locally finite). For every x ∈ V and y ∼ x , there exists an inverse
branch τxy : 	y → 	x of σ :

τxy(y, y1, y2, . . .) = (x, y, y1, y2, . . .).

Remark that τxy is a one-to-one map such that τxy(	y) ⊂ 	x , σ ◦ τxy = id|	y , and

	x =
⋃

y∼x

τxy(	y).

One can show that

dPx (ω) =
∑

y∼x

p(x, y) d(Py ◦ τ−1
xy )(ω) =

∑

y∼x

p(x, y) dPy(σ (ω)). (3.4)

Applying (3.4), we obtain the following characterization of harmonic functions.
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Theorem 3.2 (i) Suppose that a function f̃ on 	 satisfies the condition f̃ ∈
L1(	x , Px ) for every x ∈ V . Then

f (x) :=
∫

	x

f̃ (ω)dPx (ω)

is harmonic on (G, c) if and only if

∫

	x

f̃ (ω) dPx (ω) =
∫

	x

f̃ (σ (ω)) dPx (ω).

(ii) Suppose that a function f , defined on the vertex set of (G, c), belongs to HE ,
and let F̃ be defined by (3.3). Then the function f = ∫

	x
F̃dPx is harmonic if and

only if F̃ = F̃ ◦ σ .

3.2 More Results on Dipoles andMonopoles

Let (G, c) be a weighted connected graph as defined in Sect. 2. Let x, y be arbitrary
distinct vertices of an electrical network (G, c). Define the linear functional L = Lxy :
HE → R by setting L(u) = u(x) − u(y). It can be shown using connectedness of
G that |L(u)| ≤ k‖u‖HE where k is a constant depending on x and y. By the Riesz
theorem, there exists a unique element vxy ∈ HE such that

〈vxy, u〉HE = u(x) − u(y) (3.5)

(we say that differences are reproduced by vxy ∈ HE ). This element vxy is called
a dipole.3 If o is a fixed vertex from V , we will use the notation vx instead of vxo.
Since for any u, 〈vxy, u〉HE = 〈vx , u〉HE − 〈vy, u〉HE , we see that vxy = vx − vy ,
and it suffices to study function vx , x ∈ V , only. We note that for any network (G, c)
a dipole vx is always inHE , and moreover, the set {vx : x ∈ V } is dense inHE :

span{vx : x ∈ V } = span{vxy : x, y ∈ V } = HE ,

where the closure is taken in HE -norm. Indeed, if a function f ∈ HE is orthogonal
to span{vxy : x, y ∈ V }, then

f (x) − f (y) = 〈vxy, f 〉HE = 0,

i.e., f (x) is pointwise constant, and therefore f = 0 inHE .
The uniqueness of the dipole vxy inHE allows one to define the resistance distance

in V (see, e.g. [31]):

3 It follows from Proposition 3.6 that the definition of a dipole given in Definition 2.2 agrees with that
mentioned in (3.5)
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Lemma 3.3 For any x, y ∈ V , let

dist(x, y) = ||vxy ||2HE
.

Then dist(x, y) is a metric on V which is called the resistance distance.

Definition 3.4 A function w = wx ∈ HE is called a monopole at x ∈ V if it satisfies
the equation

〈wx , u〉HE = u(x) (3.6)

for any u ∈ HE .

In contrast to case of dipoles, there are networks (G, c) that do not have monopoles
inHE . In general, the following classical result holds.

In Proposition 3.6(4) , we show that this definition of a monopole is equivalent to
that given above in Definition 2.2.

Lemma 3.5 An electrical network (G, c) is transient if and only if there exists a
monopole inHE .

In this connection we refer to the classical paper [47] on networks where it is proved
that transience is equivalent to the existence of a flow to infinity of finite energy. We
also refer to [54, Theorem 2.12], where this and other relevant results are discussed.

The roles and properties of dipoles and monopoles can be seen from the following
statement involving these functions and the Laplacian.

Proposition 3.6 (1) Let (G, c) be a weighted graph; choose and fix a vertex o ∈ V .
Let vx ∈ HE be a dipole corresponding to a vertex x ∈ V . Then

�vx = δx − δo. (3.7)

More generally, the dipole vxy satisfies the equation�vxy = δx −δy . The set span{vx }
is dense inHE .

(2) Let u be a function fromHE . Then, for any x ∈ V ,

(�u)(x) = 〈u, δx 〉HE . (3.8)

(3) For any x ∈ V , the function δx is inHE , and

c(x)vx −
∑

y∼x

cxyvy = δx .

(4) If wx is a monopole corresponding to x ∈ V , then �wx = δx . Moreover,
vxy = wx − wy , x, y ∈ V ; thus if a monopole wx0 exists as an element of HE for
some x0, then wx exists in HE for every vertex x.

(5) Functions δx (·), x ∈ V , belong to span{vx : x ∈ V }.
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(6) Let F in denote the closure of span{δx } with respect to the norm ‖ · ‖HE and
Harm0 = Harm ∩ HE . Then

HE = F in ⊕ Harm0, (3.9)

where orthoganality is considered with respect toHE-inner product. Relation (3.9) is
called the Royden decomposition.

Proof The proof of these and more results can be found in [31,33]. We show here (1)
and (5) only.

To see that (3.7) holds, we take any function f fromHE and compute

〈 f ,�vxy − (δx − δy)〉HE =〈 f ,�vxy〉HE − 〈 f , δx − δy〉HE

=� f (x) − � f (y) − (� f (x) − � f (y)) = 0

in view of (3.8).
For (5), one can check that

δx = c(x)vx −
∑

y∼x

cxyvy .

��
Remark 3.7 (1) We observe that, in the space of functions u on V , the solution set of
the equation (�u)(z) = (δx − δy)(z) is, in general, infinite because the function u+h
satisfies the same equation for any h ∈ Harm. The meaning of Proposition 3.6 (1)
is the fact that the dipole vxy from (3.5) is a unique solution of this equation if it is
considered as an element of the space HE .

(2) It is worth noting that we will use the same terms, monopoles and dipoles, for
functions wx and vx on V that satisfy the relations �wx = δx and �vx = δx − δo,
respectively.

(3) Since functions from the energy spaceHE are defined up to a constant, we can
assume, without loss of generality, that all functions lying in HE take value zero at a
fixed vertex o ∈ V .

(4) The family of functions {vx : x ∈ V } defines a reproducing kernel for HE in
virtue of the equality 〈vx , f 〉HE = f (x) − f (o).

(5) The dissipation space HD admits the orthogonal decomposition

HD = ∂(Fin) ⊕ ∂(Harm) ⊕ Cyc.

Corollary 3.8 If P is the orthogonal projection fromHD onto ∂(HE ), then the adjoint
of the drop operator ∂∗ : HD → HE is

(∂∗ f )(x) − (∂∗ f )(y) = 1

cxy
P f (x, y).
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Corollary 3.9 Let x0 ∈ V be a fixed vertex. Then wx0 is a monopole if and only if it is
a finite energy harmonic function on V \ {x0}.

It is not hard to see that the notions of monopoles and dipoles can be extended to
more general classes of functions.

Proposition 3.10 Let F = {x0, . . . , xN } be a finite subset of V with N + 1 distinct
vertices. Let αi be positive numbers such that

∑N
i=1 αi = 1. Then there exists a unique

solution v = vF,α ∈ HE such that

〈v, f 〉HE = f (x0) −
N∑

i=1

αi f (xi ) (3.10)

hold for all f ∈ HE . Moreover, the solution v to (3.10) satisfies

�v = δx0 −
N∑

i=1

αiδxi .

Proof The argument is based on the Riesz’ theorem applied to the Hilbert spaceHE ,
and is analogous the proof of existence of dipoles inHE . Assuming v satisfies (3.10),
we verify that

w := �v −
(

δx0 −
N∑

i=1

αiδxi

)

satisfies 〈w, voy〉HE for all y ∈ V \ {o}, where {voy} is the system of dipoles. ��

3.3 Gauss–Green Identity

This subsection deals with boundary value problem on infinite graphs. We will follow
the paper [33]. We begin this section with a fact about Laplacians acting on finite
networks. If the network (G, c) is defined on a finite graph, then

〈u, v〉HE =
∑

x∈V
u(x)(�v)(x), (3.11)

and all harmonic functions of finite energy are constant (HE is trivial). Relation (3.11)
fails if G is infinite. There is a version of (3.11) which includes a boundary term, see
[33].

Let H be a subgraph of G. To simplify notation, the outer boundary of H is called
boundary and denoted by bd(H). For vertices in the boundary of a subgraph, we have
the notion of the normal derivative of a function:

∂v

∂n
(x) =

∑

y∈H
cxy(v(x) − v(y)), x ∈ bd(H).
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Suppose (Gk) is a sequence of finite connected subgraphs of G such that Gk ⊂
Gk+1 and G = ⋃

k Gk . We call (Gk) an exhaustion. For the vertices Vk of Gk , the
notation

∑

x∈V
:= lim

k→∞
∑

x∈Vk

is used whenever the limit in independent of the choice of exhaustion (Gk).
A boundary sum is computed in terms of an exhaustion by

∑

x∈bd(G)

:= lim
k→∞

∑

x∈bd(Gk )

,

whenever the limit in independent of the choice of exhaustion (Gk).
The following result is a discrete analogue of Gauss-Green formula. We use here

the fact that dipoles and monopoles form a dense subset inHE , see Sect. 3.2.

Theorem 3.11 [33] Let (Gk) be an exhaustion. If u ∈ HE and v is in the dense
subspace of HE spanned by dipoles and monopoles, then

〈u, v〉HE =
∑

x∈V
u(x)(�v)(x) +

∑

x∈bd(G)

u(x)
∂v

∂n
(x). (3.12)

If a representative u is chosen such that u(o) �= 0, then

〈u, v〉HE =
∑

x∈V
(u(x) − u(o))(�v)(x) +

∑

x∈bd(G)

(u(x) − u(o))
∂v

∂n
(x).

The following corollary describes a boundary representation of harmonic functions.
We use the notation hx = PHarmvx where PHarm is the orthogonal projection from
HE onto the space of harmonic functions.

Corollary 3.12 (Boundary representation of harmonic functions, [31])Forany function
f ∈ Harm,

f (x) =
∑

bd(V )

u
∂hx
∂n

+ f (0).

It is said that the boundary term is nonvanishing if (3.12) holds with nonzero
boundary term.

Theorem 3.13 The network (G, c) is transient if and only if the boundary term is
nonvanishing.

The detailed justification of these results and properties can be found in the papers
[30,31,33,39]. Interested readers are referred to these papers. A complete discussion
here would take us too far afield.
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4 Spectral Properties of Laplacians in �2 andHE

4.1 Unbounded Operators

For the reader’s convenience, we recall main notions and facts about unbounded linear
operators acting in a Hilbert space.

An unbounded densely defined operator L : H → H on a Hilbert space H is called
symmetric if, for all f , g ∈ dom(L),

〈L f , g〉H = 〈 f , Lg〉H , (4.1)

that is L ⊂ L∗.
A symmetric operator L is called semibounded if 4 〈L f , f 〉H ≥ 0, f ∈ dom(L).
A symmetric operator L is always closable. A symmetric operator L is essentially

self-adjoint if the closure of L is self-adjoint. In otherwords, L has a unique self-adjoint
extension.

The following fact is a useful criterion: A symmetric semibounded operator L is
self-adjoint if and only if the only solution of the equation L∗g = −g is trivial, g = 0.

Suppose H1 and H2 are two Hilbert spaces and A, B are operators with dense
domains such that

A : dom(A) ⊂ H1 −→ H2, B : dom(B) ⊂ H2 −→ H1.

Then (A, B) is called a symmetric pair if

〈A f , g〉H2 = 〈 f , Bg〉H1, f ∈ dom(A), g ∈ dom(B).

It is known that if (A, B) is a symmetric pair, then A and B are closable operators
and

(i) A∗A is densely defined and self-adjoint with dom(A∗A) ⊂ H1
(ii) B∗B is densely defined and self-adjoint with dom(B∗B) ⊂ H2.

4.2 The Laplacians in �2(V) andHE

Let (G, c) be an electrical network and � the corresponding Laplacian, see (2.1). We
collect in this section the results describing the spectral properties of the Laplacian
which is considered as a linear operator acting in Hilbert spaces �2 and HE .

Starting with a fixed weighted infinite graph G = (V , E, c), a natural question
is if, or when, the associated graph Laplacian � might be a bounded operator (i.e.,
continuouswith respect to theHilbert norms on l2(V ) orHE ).While there is an answer
(it is expressed in the language of quadratic forms), the case of bounded� is much too
restrictive. More precisely, the infinite weighted graphs for which the corresponding
� is a bounded operator miss most interesting applications of a systematic harmonic
analysis of such infinite weighted graphs. For details, see e.g., [37–39].

4 More generally, L is semibounded if for some number c one has 〈L f , f 〉H ≥ c〈 f , f 〉H .
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Nonetheless, it is possible to show that, when the Laplacian � is realized as a
densely defined symmetric operator in l2(V ), and in HE , then the following three
facts hold: (i) � will be lower semibounded in both of its incarnations. (ii) � has an
upper bound relative to l2(V ) if and only if it does with respect toHE ; and (iii) if there
is an upper bound, then it will be the same for the two Hilbert spaces, l2(V ) andHE .

Remark 4.1 Consider the three Hilbert spaces: �2(V ),HE , and HD . The set of func-
tions spanned by δx , x ∈ V , is dense in �2(V ). On the other hand, every function δx
defines an element of the energy spaceHE . Hence, we have a natural the embedding
T : �2(V ) → HE : T (δx ) = δx is defined. The operator T is, in general, unbounded.

Moreover, the drop operator ∂ determines an isometric embedding of HE to HD ,
see Lemma 2.9:

�2(V )
T−→ HE

∂−→ HD.

Lemma 4.2 Let the operator T be as in Remark 4.1, and define S : span{vx : x ∈
V } → �2(V ) by S(vx ) = δx − δo. Then (S, T ) is a symmetric pair of operators.

It suffices to check that

〈T δx , vy〉HE = 〈δx , Svy〉�2(V ).

We will use the notation �2 for the Laplacian defined in �2. The space �2(V ) is
equipped with the inner product

〈u, v〉�2(V ) :=
∑

x∈V
u(x)v(x).

The notation �HE is used for the Laplacian acting in HE .

Definition 4.3 We define the operator �2 in �2(V ) as the graph closure of the oper-
ator � which is considered as on span{δx : x ∈ V }, the subspace of finite linear
combinations.

The closed operator �HE is obtained by taking the graph closure of � which is
considered on the dense subset span(vx : x ∈ V ) where vx is a dipole corresponding
to x , see Proposition 3.6.

Theorem 4.4 Let S and T be as in Lemma 4.2. Then T ∗T is a self-adjoint extension
of �2 and S∗S is a self-adjoint extension of �HE .

More details about the properties of the Laplacians �2 and �HE can be found in
the following statement (see Sect. 4.1 for the definition of an Hermitian operator).

Theorem 4.5 (1) The Laplacian �HE is a well-defined non-negative closed and Her-
mitian operator acting in HE . The operator �HE is, in general, unbounded and not
self-adjoint.

(2) The operator �2 : �2(V ) → �2(V ) is essentially self-adjoint, generally
unbounded with dense domain.
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(3) The Markov operator P is self-adjoint and bounded in �2(V , c). Moreover, the
spectrum of P is a subset of [−1, 1], and −I ≤ P ≤ I on �2(V , c) where I is the
identity operator.

Proof (sketch) To see that the Laplacians5 are symmetric operators, we will check that
(4.1) holds. For vx , vy, x, y ∈ V \ {o}, we have

〈�vx , vy〉HE = 〈δx − δo, vy〉HE = (�vy)(x) − (�vy)(o) = δxy + 1 = 〈vx ,�vy〉HE .

The property of semi-boundness for the operator �HE follows from the equality

〈
∑

x

axvxy, �HE

(
∑

x

axvx

) 〉

HE

=
∑

x

a2x +
(
∑

x

ax

)2

.

The fact that P is a self-adjoint operator follows from the relations c(y)p(y, x) =
c(x)p(x, y), i.e., P is reversible.

Next, it follows, from the inequality

2
∑

x∈V

(
c(x)u(x)2 − 〈u, Pu〉�2(V ,c)

)
=

∑

x,y∈V
cxy(u(x) − u(y))2 ≥ 0,

that

〈u, Pu〉�2(V ,c) ≤ ||u||2
�2(V ,c).

Similarly, one can prove that 〈u, Pu〉l2(c) ≥ −||u||2
�2(V ,c)

. ��

Remark 4.6 (1) The operator �2 admits a simple representation by an infinite matrix
M whose entries are indexed by the set V × V . Using {δx : x ∈ V } as a basis, we find
that

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . . 0

c(x) · · · − cxy
. . .

. . .
. . .

−cxy · · · c(y)

0
. . .

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.2)

so that M is a countable banded matrix.
(2) It was shown in [36] that �HE is a bounded operator in HE if and only if

�2(V ) is boundely contained inHE . Recall that, in general, the Laplacian �HE is an
unbounded operator.

5 We deal with �HE
here; the operator �2 is considered similarly.
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Example 4.7 Wemention here several examples with various properties of Laplacians
and harmonic functions.

(1) Let the set of vertices of G be N0 and edges connect only neighboring vertices.
For cn,n+1 = n + 1, one can compute ||δn||2HE

= 2n + 1. This example shows that

�2 � HE .
(2) Let (G, c) be a network where V = Z and E is the set of edges connecting

nearest neighbors. Suppose ci,i+1 = 1 for all i . Then

� f (n) = 2 f (n) − f (n − 1) − f (n + 1)

and

||u||2HE
=
∑

n∈Z
(u(n) − u(n + 1))2.

For n ≥ 0, the dipole vn is defined by

vn(i) =

⎧
⎪⎨

⎪⎩

i, 0 ≤ i ≤ n

n, i ≥ n

0 i ≤ 0

(4.3)

and vn(i) = −v−n(−i) for n < 0. Clearly, vn ∈ HE but vn /∈ �2(Z), hence �2(Z) is
a proper subset of HE .

(3) The space Harm of harmonic functions on (Z, c) is nontrivial if and only if

∑

n,n+1

c−1
n,n+1 < ∞.

Moreover, in this case, the space Harm is 1-dimensional. To see this, set u(0) = 0,
define u(1) = c−1

0,1, and take

u(n) − u(n − 1) = 1

cn−1,n
.

Then u is a harmonic function of finite energy.

The boundary term for this function is
∑

bd(Z) h
∂h

∂n
= 1.

(4) We modify now the above example (2) and consider the network (Z, c) where
ci,i+1 = λmax (|i |,|i+1|), i ∈ Z. For this example the following results can be deduced:

(i) The energy kernel (dipoles) (vn : n ∈ Z) is defined by

vn(i) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, k ≤ 0,
1 − rk+1

1 − r
, 1 ≥ k ≥ n, n > 0,

1 − rn+1

1 − r
k ≥ n,
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and similarly for n ≤ 0. A similar result can be obtained for dipoles on a stationary
Bratteli diagrams, see Sects. 6 and 7 for definitions.

(ii) The functionw0(n) = r

2(1 − r)
r |n| defines amonopole, and h(n) = sgn(n)(1−

w0(n)) is an element of Harm.
(iii) The Laplacian � in the energy space HE is not essentially self-adjoint. One

can explicitly construct a defect function g such that �g = −g.
(5) Take now V = N0 and E as above. For a fixed λ > 1, set ci,i+1 = λi . Then

� f (n) = (λn + λn+1) f (n) − λn f (n − 1) − λn+1 f (n + 1)

and

||u||2HE
=
∑

n∈Z
λn+1(u(n) − u(n + 1))2.

One can see that, in this case, the spaces �2 and HE are different.

5 Green’s Function, Dipoles, andMonopoles for Transient Networks

We recall that the Hilbert spaceHE always contains dipoles (see Sect. 5, Proposition
3.6). Here we will show how a dipole can be found in the space HE by an explicit
formula assuming that the electrical network (G, c) is transient. The results of this
section are proved mostly in [8].

Given a weighted network (G, c) = (V , E, c) we define the matrix P =
(p(x, y) : x, y ∈ V ) of the transition probabilities where p(x, y) = cxy

c(x)
. Then

P defines a random walk (Xn) on V such that Xn(ω) = xn where the sequence
ω = (x0, . . . , xn, . . .) ∈ 	 (the path space 	 is defined in 2.3). For a fixed vertex
a ∈ V , we consider the probability space (	a, Pa) where 	a consists of infinite paths
that start at a, and Pa is the corresponding Markov measure on 	a , see, e.g. [54,56]
for details.

Let F be a subset of V (we will be primarily interested in the case when F =
{x1, . . . , xN } is finite). For a probability space (	a, Pa), define the stopping time

τ(F)(ω) = min{n ≥ 0 : Xn(ω) ∈ F}

with ω ∈ 	a . The hitting time is defined by

T (F) = min{n ≥ 1 : Xn(ω) ∈ F}.

If F = {x} is a singleton, then we write τ(x) and T (x) for the stopping and hitting
times, respectively.
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Let f (n)(x, y) = Px [τ(y) = n], u(n)(x, x) = Px [T (x) = n], and p(n)(x, y) =
Px [Xn = y]. Then the following quantities are crucial for the study ofMarkov chains:

G(x, y) =
∑

n∈N0

p(n)(x, y), F(x, y) =
∑

n∈N0

f (n)(x, y), U (x, x) =
∑

n∈N
u(n)(x, x)

The following properties of these functions are well known (see e.g. [43,54]).

Lemma 5.1 Let (G, c) = (V , E, c) be an electrical network. Then, for any pair of
vertices x, y ∈ V ,

G(x, x) = 1

1 −U (x, x)
,

G(x, y) = F(x, y)G(y, y),

U (x, x) =
∑

y∼x

p(x, y)F(y, x),

F(x, y) =
∑

z∼x

p(x, z)F(z, y) = Pr [x → y], (x �= y).

Remark 5.2 It follows from the reversibility of the Markov chain (Xn) defined by
transition probabilities P = (p(x, y)) that

c(x)F(x, y) = c(y)F(y, x) and c(x)G(x, y) = c(y)G(y, x).

Lemma 5.3 (1) Let F be a subset of V and let x ∈ F be any fixed vertex. We define

hx (a) := Ea(χ{x} ◦ Xτ(F)).

Then

hx (a) = F(a, x), ∀a ∈ V .

(2) Given a subset F = {x1, . . . , xN } of vertices from V , we set

hi (a) := Ea(χ{xi } ◦ Xτ(F)) =
∫

	a

χ{xi }(Xτ(F)(ω))dPa(ω), i = 1, . . . , N ,

where a is an arbitrary vertex in V . Then

(�hi )(a) = 0, a ∈ V \ F, and hi (x j ) = δi j .

Corollary 5.4 Let F = {x1, . . . , xN } be a finite subset of V , and hxi is defined as in
Lemma 5.3. Suppose that ϕ : F → R is a given function on F. Define

�(a) :=
N∑

i=1

ϕ(xi )hxi (a).
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Then � is a solution of the Dirichlet problem

{
(��)(a) = 0, a ∈ V \ F,

�(a) = ϕ(a), a ∈ F .

Lemma 5.5 Let hx be defined as in Lemma 5.3. Then

‖hx‖2HE
<

1

2
c(x)

∑

a∈V
Pr [x → a](1 − Pr [a → x]).

Proof We use the equalities cab = c(a)p(a, b) and
∑

b p(a, b)F(b, x) = F(a, x)
(Lemma 5.1, and the inequality F(b, x)2 < F(b, x) in order to estimate the energy
of hx :

‖hx‖2HE
= 1

2

∑

a,b

cab(hx (a) − hx (b))
2

= 1

2

∑

a,b

cab(Ea(χ{x} ◦ Xτ(x)) − Eb(χ{x} ◦ Xτ(x)))
2

= 1

2

∑

a,b

cab(F(a, x) − F(b, x))2

= 1

2

∑

a

[
c(a)F(a, x)2 − 2F(a, x)

∑

b∼a

cabF(b, x) +
∑

b∼a

cabF(b, x)2
]

= 1

2

∑

a

[
−c(a)F(a, x)2 +

∑

b∼a

c(a)p(a, b)F(b, x)2
]

<
1

2

∑

a

[
−c(a)F(a, x)2 + c(a)F(a, x)

]

= 1

2
c(x)

∑

a∈V
Pr [x → a](1 − Pr [a → x]).

The last equality follows from Remark 5.2. ��
For a transient network (G, c), one can see that the function hx belongs toHE , see

Theorem 5.7 below.
Our goal is to find formulas for dipoles vx1,x2 and monopoles wx looking for

solutions of equations �vx1,x2 = δx1 − δx2 and �wx = δx in the space HE .
Suppose that F = {x1, x2}, and x1 �= x2. Let h1 and h2 be the function defined in

Lemma 5.3. Consider the matrix

D :=
⎛

⎝
(�h1)(x1) (�h2)(x1)

(�h1)(x2) (�h2)(x2)

⎞

⎠ (5.1)
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and compute its entries using Lemma 5.3. To do this, we apply the relation �h =
c(I − P)h, which is valid for any function h on V .

Theorem 5.6 The matrix M defined in (5.1) is represented as follows:

D =
⎛

⎝
c(x1) 0

0 c(x2)

⎞

⎠

⎛

⎝
1 −U (x1, x1) −F(x1, x2)

−F(x2, x1) 1 −U (x2, x2)

⎞

⎠ . (5.2)

Moreover,

det M = c(x1)c(x2)(1 − G(x1, x2)G(x2, x1))

G(x1, x1)G(x2, x2)
(5.3)

and

det M = 0 ⇐⇒ G(x1, x2) =
√
c(x2)

c(x1)
.

The main results of this section are included in the following theorem.

Theorem 5.7 Let (G, c) be a transient network, and x a fixed vertex in V . Let hx be
the function defined in Lemma 5.3, i.e.,

hx (a) := Ea(χ{x} ◦ Xτ(x)), a ∈ V .

Then the function a �→ wx (a) := G(a, x)

c(x)
is a monopole at x and satisfies the relation

wx (a) = 1

c(x)(1 −U (x, x))
hx (a), a ∈ V . (5.4)

In other words, wx ∈ HE and it satisfies the equation �wx = δx .

Remark 5.8 (1) It follows from Theorem 5.7 that the monopole wx has finite energy

and ||wx ||HE = G(x, x)

c(x)
‖hx‖HE .

(2) Moreover, we deduce from relation (5.4) the following result: an electrical
network (G, c) is transient if and only if the function a �→ G(a, x) has finite energy
for every fixed x ∈ V .

Corollary 5.9 Let x1, x2 be any distinct vertices in V . Set

vx1,x2(a) := (wx1 − wx2)(a) = G(a, x1)

c(x1)
− G(a, x2)

c(x2)
.

Then vx1,x2 is a dipole inHE .
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We finish this section with another result regarding dipoles.

Theorem 5.10 Let (G, c) be a transient electrical network, and let x1, x2 be any two
distinct vertices in V such that the Green’s function G (see Lemma 5.1) satisfies the
relation

G(x1, x2) �=
√
c(x2)

c(x1)
.

Let D be the matrix defined by (5.1). Then the function

vx1,x2(a) = αh1(a) + βh2(a), a ∈ V ,

is a dipole defined on V , where the coefficients α and β are determined as the solution
to the equation

D

(
α

β

)
=
(

1
−1

)
(5.5)

Equivalently, we can write

vx1,x2(a) = [h1(a), h2(a)]D−1
(

1
−1

)
, a ∈ V .

Remark 5.11 It follows from Corollary 5.9 and Theorem 5.10 that the functions vx1,x2
and vx1,x2 satisfy the same equation. Therefore their difference f = vx1,x2 − vx1,x2 is
a harmonic function which again is a linear combination of h1 and h2.

6 Combinatorial Diagrams and Electrical Networks

6.1 Fundamentals on Bratteli Diagrams

In the introduction, we described the notion of a Bratteli diagram considering it as an
infinite graded graph.We give here the detailed definition and discuss the two principal
cases: (i) finite number of vertices at each level, and (ii) countably many vertices at
each level. In case (i), we deal with “classical” Bratteli diagrams, and case (ii) is
considered as generalized Bratteli diagrams. The following definition is given for the
second case, but it can be easily adopted to case (i). The notion of Bratteli diagrams is
widely used in operator algebras, dimension groups, the theory of dynamical systems,
and other adjoint areas. The reader can findmore information in [7,9–12,22,28,32,52].

The results given below in Sect. 6 are taken mostly from [8,10].

Definition 6.1 Let V0 be a countable vertex set (which may be identified with either
N or Z when it is convenient). Set Vi = V0 for all i ≥ 1. A countable graded graph
B = (V , E) is called a generalized Bratteli diagram if it satisfies the following
properties.
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(i) The set of vertices V of B is a disjoint union of subsets Vi : V = ⊔∞
i=0 Vi .

(ii) The set of edges E of B is represented as
⊔∞

i=0 Ei where Ei is the subset of
edges connecting vertices of the levels Vi and Vi+1.

(iii) For every w ∈ Vi , v ∈ Vi+1, the set of edges E(w, v) between the vertices
w and v is finite (or empty); set |E(w, v)| = f (i)

vw . It defines a sequence of infinite
(countable-by-countable) incidence matrices (Fn; n ∈ N0) whose entries are non-
negative integers:

Fi =
(
f (i)
vw : v ∈ Vi+1, w ∈ Vi

)
, f (i)

vw ∈ N0.

(iv) The matrices Fi have finitely many non-zero entries in each row.
(v) The maps r , s : E → V are defined on the diagram B: for every e ∈ E , there

are w, v such that e ∈ E(w, v); then s(e) = w and r(e) = v. They are called the
range (r ) and source (s) maps.

(vi) For every w ∈ Vi , i ≥ 0, there exists an edge e ∈ Ei such that s(e) = w, and
for i > 0 there exists an edge e′ ∈ Ei−1 such that r(e′) = w. In other words, every
incidence matrix Fi has no zero row and zero column.

Remark 6.2 (1) If V0 is a single vertex, and each Vn is a finite set, then we obtain
the standard definition of a Bratteli diagram originated in [9]. Later it was used in the
theory ofC∗-algebras and dynamical systems for solving some classification problems
and the construction of models of transformations in ergodic theory, Cantor, and Borel
dynamics (the references are given above and in Introduction 1).

(2) Property (iv) ofDefinition 6.1 allows tomultiplymatrices Fn .We emphasize that
no restriction on the entries of columns of the incidencematrices Fn are assumed in the
case when generalized Bratteli diagram is considered in the framework of dynamical
systems. But interpreting B = (V , E) as a network, we will usually assume that every
vertex has finitely many neighbors.

(3) It follows fromDefinition 6.1 that every generalizedBratteli diagram is uniquely
determined by a sequence of matrices (Fn) such that every matrix satisfies (iii) and
(iv). When such a sequence is given, one can easily restore a Bratteli diagram with the
prescribed incidence matrices. For this, one uses the rule that the entry f (n)

vw indicates
the number of edges between the vertex w ∈ Vn and vertex v ∈ Vn+1. It defines the
set E(w, v); then one takes

En =
⋃

w∈Vn ,v∈Vn+1

E(w, v)

(4) A generalized Bratteli diagram is calledstationary if Fn = F for all n ∈ N0.

On Fig. 1, we give an example of a generalized Bratteli diagram. This example is a
small (finite) part of a diagram since every Bratteli diagram has infinitely many levels
and every level is a countably infinite set. We note that horizontal lines on Fig. 1 are
not edges, they are used to show the levels of a diagram.
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Fig. 1 Example of a Bratteli diagram: levels, verices, and edges (see Definition 6.1)

Definition 6.3 A finite or infinite path in a Bratteli diagram B = (V , E) is a sequence
of edges (ei : i ≥ 0) such that r(ei ) = s(ei+1). Denote by XB the set of all infinite
paths. Every finite path e = (e0, . . . , en) determines a cylinder subset [e] of XB :

[e] := {x = (xi ) ∈ XB : x0 = e0, . . . , xn = en}.

The collection of all cylinder subsets forms a base of neighborhoods for a topology
on XB . In this topology, XB is a Polish zero-dimensional space and every cylinder set
is clopen. The metric on XB can be defined by the formula:

dist(x, y) = 1

2N
, N = min{i ∈ N0 : xi �= yi }.

Remark 6.4 (1) It follows fromDefinition 6.3 that XB is a 0-dimensional Polish space.
We consider diagrams B for which XB has no isolated points. In case (i) of classical
Bratteli diagrams, XB is compact.
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(2) For a generalized Bratteli diagram, i.e., case (ii) is considered, every point
x = (xi ) ∈ XB is represented as follows:

{x} =
⋂

n≥0

[e]n

where [e]n = [x0, . . . , xn]. But, in general, it is not true that any nested sequence of
clopen sets determines a point in XB because the intersection may be empty.

Definition 6.5 It is said that a generalized Bratteli diagram B is irreducible if, for
any two vertices v and w, there exists a level Vm such that v ∈ V0 and w ∈ Vm
are connected by a finite path. This is equivalent to the property that, for any fixed
v,w, there exists m ∈ N such that the product of matrices Fm−1 . . . F0 has non-zero
(w, v)-entry.

Remark 6.6 The structure of a generalized Bratteli diagram allows us to visualize the
definitions of boundaries defined in (2.4) and (2.5). IfW = V0∪ . . .∪Vn is a subgraph
of B = (V , E, c), then

outbd(W ) = Vn+1, inbd(W ) = Vn,

I nt(W ) = V0 ∪ . . . ∪ Vn−1, cl(W ) = V0 ∪ . . . ∪ Vn+1.

The path-space XB is a 0-dimensional space which is the boundary of finite paths in
the graph B.

In this paper, we focus on the case of 0-1 Bratteli diagrams, i.e., the entries of
matrices Fn are either 0 or 1. There exists a simple procedure that allows to transform
any Bratteli diagram to this case [28].

In what follows we discuss the question about conditions under which a countable
locally finite graph G can be represented as a Bratteli diagram with finite levels.

For a finite path γ (x, y) between x, y ∈ V , define its length �(γ ) as the number of
edges from E that form γ . Define

dist(x, y) = min{�(γ ) : γ ∈ E(x, y)},

where E(x, y) is the set of all finite paths γ from x to y.

Proposition 6.7 [8] (1) A connected locally finite graph G(V , E) has the structure of
a Bratteli diagram if and only if:

(i) deg(x) ≥ 2 for all but at most one o ∈ V ;
(ii) there exists a vertex x0 ∈ V such that, for any n ≥ 1, there are no edges between

any vertices from the set Vn := {y ∈ V : dist(x0, y) = n};
(iii) for any vertex x ∈ Vn there exists an edge e(xy) connecting x with some vertex

y ∈ Vn+1, n ∈ N.
(2) In general, the vertex x0 is not unique: there are graphs G(V , E) that satisfy

(i)–(iii) for different vertices x0 and y0 from V .
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To illustrate Proposition 6.7, we note thatZd , d ≥ 2, can be represented as a Bratteli
diagram. Another example of this kind is the Cayley graph C(S) of finitely generated
group F with a finite generating set S ⊂ F such that S = S−1 and SS ∩ S = ∅.

6.2 Weighted Bratteli Diagrams

Let B = (V , E) be a graph which is represented by a Bratteli diagram with finite
levels Vn for all n which is constructed by the incidence matrices Fn . The case of
countably infinite sets Vn will be considered later. Recall that we denote by An the
matrix transpose to Fn . We assume that B = (V , E) is a 0-1 Bratteli diagram, i.e.,
every entry of An is either 0 or 1.

The conductance function c is defined on E and takes positive value at every edge
e. Since every edge e is uniquely determined by a pair of vertices (x, y), we write also
ce = cxy = cyx . Based on the structure of the vertex set V = ∐

n≥0 Vn and edge set
E = ∐

n≥0 En of the Bratteli diagram B, we define a sequence of matrices (Cn)n≥0,

Cn = (c(n)
xy ), which is naturally related to the matrices (An) and the conductance

function c:

c(n)
xy :=

{
cxy, x = s(e), y = r(e), e ∈ En

0, otherwise

Then c(n)
xy > 0 if and only if a(n)

xy = 1 and the size of Cn is |Vn| × |Vn+1|, n ≥ 0. In

particular, C0 is a row matrix with entries (c(0)
ox : x ∈ V1) where o is the root of the

diagram. It is helpful to remember that for every n, the matrix Cn determines a linear
transformation Cn : R

|Vn+1| → R
|Vn |.

We note that the order of indexes in c(n)
xy is important: although the values of the

conductance function c depend on edges only, the entry c(n)
yx belongs to the matrix CT

n
transpose of Cn .

It is said that the sequence of matrices (Cn) is associated to the weighted Bratteli
diagram (B, c).

Together with the sequence of associated matrices (Cn), we will consider two other
sequences of matrices. They are denoted by (

←−
P n) and (

−→
P n−1), and their entries are

defined by the formulas

←−p (n)
xz = c(n)

xz

cn(x)
, x ∈ Vn, z ∈ Vn+1, (6.1)

−→p (n−1)
xy = c(n−1)

yx

cn(x)
, x ∈ Vn, y ∈ Vn−1. (6.2)

This means, in particular, that
←−
P 0 is a row matrix, and, for all n,

−→
P n = ←−

P T
n+1 where

T stands for the transpose matrix.

Remark 6.8 (1) We represent a Bratteli diagram as an infinite graph that is expanding
in the “horizontal” direction from left to right, see Fig. 2.
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Fig. 2 Matrices acting on a
Bratteli diagram

Then the arrows used in the notation of the matrices show how the transformations
defined by the matrices act:

←−
P n sends R

|Vn+1| to R
|Vn | and −→

P n−1 sends R
|Vn−1| to

R
|Vn |,
(2) The matrix P of transition probabilities has a simple form. It can be schemati-

cally represented as follows

P =

⎛

⎜⎜⎜⎜⎜⎝

0
←−
P 0 0 0 · · · · · ·−→

P 0 0
←−
P 1 · · · · · ·

0
−→
P 1 0

←−
P 2 · · · · · ·

0 0
−→
P 2 0

←−
P 3 · · ·

· · · · · · · · · · · · · · · · · ·

⎞

⎟⎟⎟⎟⎟⎠
. (6.3)

Here every entry Pi j , i, j = 0, 1, 2, . . . , corresponds to a block matrix whose rows
are enumerated by vertices from Vi and columns are enumerated by vertices from Vj .

6.3 Existence of Harmonic Functions on a Bratteli Diagram

In this subsection, we give some algebraic criteria under which a function f , defined
on the set of vertices, is harmonic, i.e., P f = f where P is as in (6.3). All results in
this section are taken from [8].

Let Dn be the diagonal matrix with d(n)
xx = c(x), x ∈ Vn . Every function f on the

vertices of B = (V , E) is represented as a sequence of vectors ( fn : n ∈ N0).

Proposition 6.9 (1) Let (B, c) = (V , E, c) be a weighted 0-1 Bratteli diagram with
conductance function c. Let (Cn) be the sequence of matrices associated to (B, c).
Then a function f : V → R is harmonic if and only the sequence of vectors ( fn)
where fn = f |Vn satisfies

Cn fn+1 = Dn fn − CT
n−1 fn−1, n ∈ N. (6.4)

(2) Let the matrices (
−→
P n) and (

←−
P n) are defined as in (6.1) and (6.2). Then a

sequence of vectors ( fn) ( fn ∈ R
|Vn |) represents a harmonic function f = ( fn) :
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V → R if and only if for any n ≥ 1

fn − −→
P n−1 fn−1 = ←−

P n fn+1. (6.5)

Harmonic functions exist on a Bratteli diagram if the following criterion holds. Let
N1 be the solution set of C0 f1 = 0 and N2 = { f2 ∈ R

|V2| : ←−
P 1 f2 ∈ N1}. We define

Nn+1 = { fn+1 ∈ R
|Vn+1| : ←−

P n fn+1 ∈ Gn} where Gn = { fn − −→
P n−1 fn−1 ∈ R

|Vn | :
fn ∈ Nn, fn−1 ∈ Nn−1}. Then we have the following result.

Proposition 6.10 The spaceHarm of harmonic functions on a weighted Bratteli dia-
gram (B, c) is nontrivial if and only if for every n

Col(
←−
P n) ∩ Gn �= {0} (6.6)

where Col(
←−
P n) is the column space of

←−
P n. In particular, if Rank(

←−
P n) = |Vn| for all

n ≥ 1 then (6.6) is automatically satisfied.

Remark 6.11 (1) We can refine the definition of a stationary Bratteli diagrams given
above in this section: a weighted Bratteli diagram (B, c) is called stationary if An = A
and Cn = C for all n ≥ 1. It can be seen that there are stationary weighted Bratteli
diagrams such that the space Harm is finitely dimensional.

(2) On the other hand, if a Bratteli diagram has the property that |Vn| < |Vn+1| for
all n, then the space Harm is infinite-dimensional.

Now we consider some properties of harmonic functions defined on a Bratteli
diagram (B, c). Given a function f : V → R, define the current I (x) through x ∈ V
as

I (x) :=
∑

y∼x

cxy( f (x) − f (y)).

The following statement represents a form of the Kirchhoff law and can serve as a
characterization of harmonic functions defined on vertices of a Bratteli diagram.

Lemma 6.12 A function f : V → R is harmonic on a weighted Bratteli diagram
(B, c) if and only if for every x ∈ Vn, n ≥ 1,

Iin(x) :=
∑

y∈Vn−1

cxy( f (x) − f (y)) =
∑

z∈Vn+1

cxz( f (z) − f (x)) =: Iout (x).

Hence, the incoming current is equal to outgoing current for every vertex if and only
if the function f is harmonic.

Based on this result, we can define, for x ∈ Vn ,

In(x) := Iin(x), and In =
∑

x∈Vn
In(x).
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Lemma 6.13 Let f be a harmonic function on a weighted Bratteli diagram (B, c).
Then, for any n ≥ 1, we have In = I1 = ∑

x∈V1 cox ( f (x) − f (o)) and

∑

x∈Vn
(In(x))

2 ≥ I 21
|Vn| . (6.7)

We formulate the following statement for harmonic functions only although it can
be given in more general terms of subharmonic functions (that is (� f )(x) ≤ 0 for
every x) and superharmonic functions (that is (� f )(x) ≥ 0 for every x) functions
which are not discussed here.

Proposition 6.14 [8] Let (B, c) be a weighted Bratteli diagram and Gn = {o} ∪ V1 ∪
· · · ∪ Vn. Then for any nontrivial harmonic function f : V → R

max{ f (x) : x ∈ Gn} = max{ f (x) : x ∈ ∂Gn = Vn} =: Mn( f ).

min{ f (x) : x ∈ Gn} = min{ f (x) : x ∈ ∂Gn = Vn} =: mn( f ).

Moreover, for any x, y ∈ Gn,

f (x) − f (y) ≤ Mn( f ) − mn( f ), n ∈ N. (6.8)

The sequence {Mn( f )} is strictly increasing, and the sequence {mn( f )} is strictly
decreasing.

It can be noticed that in conditions of Proposition 6.14 one can always assert that
the sequence {Mn( f )} is formed by positive numbers and the sequence {mn( f )} has
only negative terms provided f (o) = 0.

Corollary 6.15 Let (B(V , E), c) be a weighted Bratteli diagram. A harmonic function
f : V → R belongs to �∞(V ) if and only if the sequences {Mn( f )}, {mn( f )} have
finite limits.

6.4 Explicit Integral Representation of Harmonic Functions

In this subsection we will assume that the networks considered on Bratteli diagrams
(B, c) are transient; see Definition 2.12. We use the paper [2] and find an integral
representation of harmonic functions in terms of a Poisson kernel, and investigate the
convergence of harmonic functions on the path space of a Bratteli diagram.

The transition probabilities matrix P = (pxy : x, y ∈ V ) defines a randomwalk on
the set of all vertices V . Let 	 ⊂ V∞ be the set of all paths ω = (x0, x1, . . . , xn, . . .)
where (xi−1xi ) ∈ E . By 	x we denote the subset of 	 formed by those paths that
starts with x . Then Px denotes the Markov measure on 	x generated by P (see Sect.
2.3 for details).

Let Xi : 	x → V be the random variable on (	x , Px ) such that Xi (ω) = xi . For
a given vertex x ∈ V and some level Vn ⊂ V such that x /∈ Vn , we determine the



Journal of Fourier Analysis and Applications (2021) 27 :34 Page 35 of 46 34

function of stopping time (more information on this notion can be found, for instance,
in [21,53]):

τ(Vn)(ω) = min{i ∈ N : Xi (ω) ∈ Vn}, ω ∈ 	x .

For x ∈ Vn , we set τ(Vn)(ω) = 0. The value τ(Vn)(ω) showswhen the orbitω reaches
Vn at the first time.

Lemma 6.16 Let (B, c) be a transient network, and Wn−1 = ⋃n−1
i=0 Vi . Then for every

n ∈ N and any x ∈ Wn−1, there exists m > n such that for Px -a.e. ω ∈ 	x

τ(Vi+1)(ω) = τ(Vi )(ω) + 1, i ≥ m. (6.9)

Now we fix a vector fn ∈ R
|Vn | and define the function hn : X → R by setting

hn(x) := Ex ( fn ◦ Xτ(Vn)) =
∫

	x

fn(Xτ(Vn)(ω))dPx (ω), n ∈ N. (6.10)

Lemma 6.17 For a given function f = ( fn), and, for every n, the function hn(x) is
harmonic on V \ Vn and hn(x) = fn(x), x ∈ Vn. Furthermore, hn(x) is uniquely
defined on Wn−1.

Proof (Sketch) We see that hn(x) = fn(x) when x ∈ Vn because in the relation
hn(x) = Ex ( fn ◦ Xτ(Vn)(ω)) the right side does not depend on ω and τ(Vn) = 0. Then
we compute

hn(x) =
∑

y∼x

p(x, y)Ex ( fn ◦ Xτ(Vn) | X1 = y)

=
∑

y∼x

p(x, y)Ey( fn ◦ Xτ(Vn)) (using the Markov property)

=
∑

y∼x

p(x, y)hn(y)

= (Phn)(x)

The fact that hn(x) is uniquely determined on Wn−1 follows from the uniqueness
of the solution of the Dirichlet problem

(�u)(x) = 0, x ∈ Wn−1, and u(x) = fn(x), x ∈ Vn

where Vn = ∂Wn−1. ��

Theorem 6.18 [8]Let f = ( fn) ≥ 0 be a function on V such that
←−
P n fn+1 = fn. Then

the sequence (hn(x)) defined in (6.10) converges pointwise to a harmonic function
H(x). Moreover, for every x ∈ V , there exists n(x) such that hi (x) = H(x), i ≥ n(x).
Equivalently, the sequence ( fn ◦ Xτ(Vn)) converges in L1(	x , Px ).
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Remark 6.19 (1) We notice that the condition
←−
P n fn+1 = fn need not to be true for

all n. It suffices to have this property for all sufficiently large n; the function fi can be
chosen arbitrary for a finite set of i’s.

(2) In [2], the following statement was proved: If a reversible Markov chain Xn

is transient and f is a (harmonic) function of finite energy, then ( f ◦ Xn) converges
almost everywhere. Our result above is of the same nature, but we do not require that
the harmonic function has finite energy.

7 Harmonic Functions on Trees, Pascal Graph, Stationary Bratteli
Diagrams

The goal of this section: we will show that the algorithm of finding harmonic functions
and monopoles/dipoles described in Sect. 6. We use the notations introduced in Sect.
6. The results of this section are obtained in [8].

7.1 Harmonic Functions on Trees

Proposition 7.1 Let T be a tree with conductance function c. The space Harm of har-
monic functions on the electrical network (T , c) is infinite-dimensional. Any harmonic
function can be found according to Proposition 6.10.

Example 7.2 (Symmetric harmonic functions on the binary tree) Let x0 be the root of
the binary tree T , and let Vn denote the set of vertices on the distance n from the root.
Next, we assume that the conductance function c = c(e), e ∈ E , has the property:
c(e) = λn for all e ∈ En, n ≥ 0. Hence, the associated matrices Cn are of the size
2n × 2n+1, and the i-th row of Cn consists of all zeros but c(n)

i,2i−1 = c(n)
i,2i = λn .

Denote by xn(1), ..., xn(2n) the vertices of Vn enumerated from the top to the bottom,
see Fig. 3.

Proposition 7.3 Let (T , c) be the weighted binary tree defined above.

(1) For each positive λ there exists a unique harmonic function f = fλ satisfying the
following conditions:

(i) f (x0) = 0;
(ii) f (x1(1)) = − f (x1(2)) = λ and

f (xn(1)) = − f (xn(2
n)) = 1 + · · · + λn−1

λn−2 , n ≥ 2;

(iii) function f is constant on each of subtrees Ti and T ′
i whose all infinite paths

start at the roots xi (1) and xi (2i ), respectively, and go through the vertices
xi+1(2) and xi+1(2i+1 − 1), i ≥ 1 (see Fig.3).

(2) The function fλ has finite energy if and only if λ > 1.
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Fig. 3 Symmetric harmonic function on the binary tree

7.2 Harmonic Functions on the Pascal Graph

Bydefinition, the Pascal graph is the 0-1Bratteli diagramwith the sequence ofmatrices
(An)n≥0 (An is transpose to the incidence matrix Fn) of the size (n + 1) × (n + 2)
where

An =

⎛

⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0
0 1 1 0 · · · 0 0
0 0 1 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 1 1

⎞

⎟⎟⎟⎟⎠

Every vertex v ∈ Vn of the Pascal graph can be enumerated by two numbers
(coordinates) (n, i), where 0 ≤ i ≤ n is the position of v in Vn (it is assumed that the
set of vertices {(x, 0) : x ∈ N0} is the upper bound line of the graph).

It can be proved that the algorithm of finding harmonic functions from Sect. 6 is
applicable for the Pascal graph. In other words, the equation

←−
P n fn+1 = fn − −→

P n−1 fn−1 (7.1)

always has a solution for fn+1 assuming that fn and fn−1 have been determined in
the previous steps. Moreover, the solution set of this equation is one-dimensional for
every n.

Equation (7.1) becomes more transparent if we additionally require that the con-
ductance function c is defined by the rule c(e) = λn , for any e ∈ En , and the harmonic
function f vanishes at (0, 0). Then one can easily find the explicit form of

←−
P n for
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Fig. 4 Harmonic function on the
Pascal graph

any n ≥ 1:

←−
P n =

⎛

⎜⎜⎜⎜⎝

λ
1+λ

λ
1+λ

0 0 · · · 0
0 λ

2+λ
λ

2+λ
0 · · · 0

0 0 λ
2+λ

λ
2+λ

· · · 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · λ

1+λ
λ

1+λ

⎞

⎟⎟⎟⎟⎠

We say that a harmonic function h on the Pascal graph (B, c) is symmetric if it
satisfies the condition h(n, i) = −h(n, n − i) for any n and 0 ≤ i ≤ n.

Lemma 7.4 Let (B, c) be a weighted Pascal graph. Then Harm is a non-empty infi-
nite dimensional space containing the subspace of symmetric harmonic functions.
Moreover, this subspace is also infinite dimensional.

For the case when c = 1, we can find an explicit formula of symmetric harmonic
function.

Proposition 7.5 Define h(0, 0) = 0 and set, for every vertex v = (n, i),

h(n, i) := n(n + 1)

2
− i(n + 1), (7.2)

where 0 ≤ i ≤ n and n ≥ 1. Then h : V → R is an integer-valued harmonic function
on (B, 1) satisfying the symmetry condition h(n, i) = −h(n, n − i) (see Fig.4) .

7.3 Harmonic Functions on Stationary Bratteli Diagrams

Let A be the incidence matrix of a stationary Bratteli diagram B, and suppose A has
d × d size. Assume that the conductance function c has the property: ce = cxy = λn
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for any e ∈ En with s(e) = x ∈ Vn, r(e) = y ∈ Vn+1. Then the associated matrix
Cn = λn A (Cn is defined in Sect. 6).

We start with rewriting relations (6.4) and (6.5) for the stationary case and the
chosen c

AT ( fn−1 − fn(x)1d) + λA( fn+1 − fn(x)1d) = 0 (7.3)

where x ∈ Vn, n ∈ N and 1d = (1, . . . , 1)T ∈ R
d .

Proposition 7.6 ([8]) Let the weighted stationary Bratteli diagram (B, c) be as defined
above. Suppose that A = AT , and A is invertible. Then any harmonic function f =
( fn) on (B, c) can be found by the formula:

fn+1(x) = f1(x)
n∑

i=0

λ−i , x ∈ V . (7.4)

Proof We first observe that, as Vn = V for n ≥ 1, we can interpret relation (7.3) as a
sequence of relations between vectors fn that hold on the same space R

d , where x is
any vertex from V . Moreover, using the properties of A, we obtain

( fn−1 − fn(x)1d) + λ( fn+1 − fn(x)1d) = 0.

From this equation between vectors, we deduce that it holds for any coordinate y ∈ V ,
in particular, for y = x . Hence, for every n ≥ 1,

λ( fn+1(x) − fn(x)) = fn(x) − fn−1(x),

fn+1(x) − fn(x) = 1

λn
( f1(x) − f0(x)) = 1

λn
f1(x).

Summation of these relations gives

fn+1(x) = f1(x)
n∑

i=0

λ−i .

��

It follows from Proposition 7.6 that we can explicitly describe elements of the space
Harm for this class of weighted stationary Bratteli diagrams.

Corollary 7.7 Let (B, c) be as in Proposition 7.6.

(1) The dimension of the space Harm is d − 1 where d = |V |.
(2) If λ > 1, then every harmonic function on (B, c) is bounded.
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8 Harmonic Functions of Finite and Infinite Energy on Combinatorial
Graphs

8.1 Energy Space for a Bratteli Diagram

Recall that, given a function u : V → R defined on the vertex set V of an electrical
network (G, c), its energy ‖u‖HE is computed by

||u||2HE
= 1

2

∑

x,y

cxy(u(x) − u(y))2.

In case of a harmonic function h ∈ Harm, one can also use the formulas from Lemma
3.1 to find the energy of h.

Let (B, c) be a weighted Bratteli diagram. Denote

βn = max{c(x) : x ∈ Vn}. (8.1)

Theorem 8.1 [8] Let f be a harmonic function on a weighted Bratteli diagram (B, c).
Then

∞∑

n=0

I 21
βn|Vn| ≤ ‖ f ‖2HE

, (8.2)

where I1 = ∑
x∈V1 cox ( f (x) − f (o)) was defined in Lemma 6.13.

It immediately follows from the proved inequality (see (8.2)) that the following
result holds.

Corollary 8.2 Suppose that a weighted Bratteli diagram (B, c) satisfies the condition

∞∑

n=0

(βn|Vn|)−1 = ∞ (8.3)

where V = ⋃
n Vn and βn = max{c(x) : x ∈ Vn}. Then any nontrivial harmonic

function has infinite energy, i.e.,Harm∩HE = {const}. In other words, such a (B, c)
does not support non-constant harmonic functions of finite energy.

It is not difficult to realize the condition of Corollary 8.2 for a weighted Bratteli
diagram (B, c). For instance, suppose that cxy = 1 for any edge e = (xy) If the
sequence (|Vn|) satisfies∑∞

n=0 |Vn|−1 = ∞, then any harmonic function has infinite
energy.

For example, if c = 1 for the Pascal graph considered in Sect. 7, then Proposition
7.5 gives us the explicitly defined harmonic function h. It follows from Corollary 8.2
that ‖h‖HE = ∞. Moreover, there is no harmonic functions of finite energy on the
Pascal graph with the conductance function c = 1.

The following results can be obtained from Proposition 3.1.
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Lemma 8.3 For the Pascal graph,

‖ f ‖2HE
= 1

2

∑

x∈V

∑

y∼x

cxy( f
2(y) − f 2(x))

for any harmonic function.

In Proposition 7.6, we described arbitrary harmonic function on a class of stationary
Bratteli diagrams with ce ∈ {λn : n ∈ N0}.

Proposition 8.4 Suppose that a stationary weighted Bratteli diagram (B, c) satisfies
conditions of Proposition 7.6 with ce = λn, e ∈ En, and λ > 1. Let f = ( fn) be a
harmonic function defined by (7.4). Then ‖ f ‖HE < ∞ if and only if the vector f1(x)
is constant.

Remark 8.5 In [26], it was proved that if for an electrical network (G, c) the total
conductance is finite, i.e.,

∑
e∈E c(e) < ∞, then there is no nontrivial harmonic

function of finite energy. If the networkG is represented by aweightedBratteli diagram
(B, c), we have

∑

e∈E
c(e) = 1

2

∑

x

∑

y

cxy = 1

2

∞∑

n=0

∑

x∈Vn
c(x).

Thenwe deduce that if, in particular,
∑∞

n=0 βn|Vn| < ∞, then there is no non-constant
harmonic function of finite energy on (B, c), see also [26].

Thus, we obtain the following qualitative observation: there two classes of Bratteli
diagrams when all harmonic functions have infinite energy: (i) the sequence (βn|Vn|)
is either decreasing sufficiently fast, or (ii) it is not growing too fast.

8.2 Graph Laplacians and Associated Harmonic Functions on Generalized Bratteli
Diagrams

Let B = (V , E) be a 0-1 generalized Bratteli diagram with infinite levels Vn . Let
q(0) = (q(0)

v : v ∈ V0) be a strictly positive vector. Consider a sequence of non-
negative matrices Rn = (r (n)

w,v), w ∈ Vn, v ∈ Vn+1 such that (i) r (n)
w,v > 0 if and only

if (wv) ∈ En , and (ii)
∑

v∈Vn+1
r (n)
w,v = 1 for every w ∈ Vn .

Define inductively the vectors q(n) indexed by vertices of the level Vn by the relation

q(n+1)
v =

∑

w,(wv)∈En

q(n)
w r (n)

w,v.

If q(0) is a probability vector, then all q(n) are probability.
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The sequences (Rn) and (q(n)) determine a dual sequence of matrices (Sn) where
Sn = (s(n)

v,w : w ∈ Vn, v ∈ Vn+1) and the entries are

s(n)
v,w = q(n)

w

q(n+1)
v

r (n)
w,v.

The matrices Rn and Sn generate operators which are defined by the formulas: if f
is a bounded function on Vn+1, then for any w ∈ Vn ,

(TRn f )(w) =
∑

v,(wv)∈En

r (n)
w,v f (v).

Similarly,

(TSn g)(v) =
∑

w,(wv)∈En

s(n)
v,wg(w).

Let Hn be the linear space of all functions f = ( f (v) : v ∈ Vn) such that

|| f ||2Hn
:=

∑

v∈Vn
q(n)
v f (v)2 < ∞. (8.4)

Then Hn , equipped with this norm, is a Hilbert space with the inner product

〈ϕ,ψ〉Hn =
∑

v∈Vn
ϕ(v)ψ(v)q(n)

v .

Proposition 8.6 [10]

(1) The operators TRn : Hn+1 → Hn and TSn : Hn → Hn+1 are positive and
contractive for all n ∈ N0.

(2) (TRn )
∗ = TSn and (TSn )

∗ = TRn .

We use now the graph B = (V , E) and turn it in an electrical network G(B) by
defining the conductance function c := c(n)

w,u .

Definition 8.7 For w ∈ Vn−1, v ∈ Vn, u ∈ Vn+1, we set

c(n)
vu = 1

2
q(n)
v r (n)

v,u, c(n−1)
vw = 1

2
q(n)
v s(n−1)

v,w . (8.5)

Lemma 8.8 (1) c(n)
vu = c(n)

uv , i.e., the conductance function c is correctly defined on
edges from E.

(2)

cn(v) = q(n)
v , v ∈ Vn, n ∈ N0.
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Lemma 8.8 shows that c(v) = (cn(v)) is finite for every v ∈ V . We will omit the
index n in cn(v) if it is clear that v is taken from Vn .

Definition 8.9 For G = G(B) and the conductance function c as above, we define a
reversible Markov kernel M = {m(v, u) : v, u ∈ V } by setting

m(v, u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c(n)
vu

cn(v)
= 1

2r
(n)
v,u, v ∈ Vn, u ∈ Vn+1,

c(n−1)
uv

cn(v)
= 1

2 s
(n−1)
v,u , v ∈ Vn, u ∈ Vn−1.

The Markov kernel M is reversible, i.e.,

c(v)m(v, u) = c(u)m(u, v), ∀v, u, v ∼ u.

Definition 8.10 Let f = ( fn) be a function defined on vertices of the graph G(B)

(or the Bratteli diagram). Suppose that a Markov kernel M is defined as in 8.9. The
operator

(M f )(v) =
∑

u∼v

m(v, u) f (u), v ∈ V ,

is called aMarkov operator acting on the weighted network (G, c).
Define a Laplacian operator �:

(� f )(v) =
∑

u∼v

cvu( f (v) − f (u)) = c(v)[ f (v) − (M f )(v)], v ∈ V .

A function f is called harmonic, if M( f ) = f (equivalently, � f = 0).

Theorem 8.11 [10] Let f = ( fn) be a function on the vertex set of G(B). Then f is
harmonic if and only if 2 fn = Rn fn+1 + Sn−1 fn−1.

In particular,

q(n)M = 1

2
(q(n+1) + q(n−1)), n ∈ N. (8.6)

The next result characterizes functions of finite energy for the network (G(B), c).

Proposition 8.12 [10] Suppose that a function f = ( fn) is such that every fn belongs
to Hn, n ≥ 0, where the Hilbert space Hn is defined in (8.4). Then f ∈ HE if and
only if

∑

n≥0

(
|| fn||2Hn

− 2〈 fn, TRn ( fn+1)〉Hn + || fn+1||2Hn+1

)
< ∞

where the operator TRn : Hn+1 → Hn is defined in Proposition 8.6.
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Remark 8.13 Wemention here two results which characterize weighted networks with
nontrivial (or trivial) space of harmonic functions in HE .

It is a well known fact that if an electrical network (G, c) is recurrent, then HE is
trivial (this result can be found, for instance, in [43]).

(1) In [15] the author characterizes the locally finite connected networks (C, c) that
admit non-constant harmonic functions of finite energy. More precisely, it is proved
(G, c) has such harmonic functions if and only if there exist transient vertex-disjoint
subnetworks G1 = (V1, E1) and G2 = (V2, E2) such that the graph obtained from
G by contracting each of the sets V1 and V2 to a vertex admits a function ϕ of finite
energy such that ϕ(A) �= ϕ(B).

(2) The reader can find interesting results in [25] and [6] about the graphs that do
not support non-constant functions of finite energy and harmonic functions on them.
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