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Abstract
We provide quantitative estimates for the supremum of the Hausdorff dimension of
sets in the real line which avoid ε-approximations of arithmetic progressions. Some of
these estimates are in terms of Szemerédi bounds. In particular, we answer a question
of Fraser, Saito and Yu (IMRN 14:4419–4430, 2019) and considerably improve their
bounds. We also show that Hausdorff dimension is equivalent to box or Assouad
dimension for this problem, and obtain a lower bound for Fourier dimension.
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1 Introduction

The study of the relationship between the size of a set and the existence of arithmetic
progressions contained in the set has been a major problem for a long time. We write
k-AP to mean an arithmetic progression of length k. In the discrete context, the cel-
ebrated Szemerédi’s theorem [17] states that if A ⊆ N has positive upper density
then A contains arbitrarily long arithmetic progressions, that is, it contains a k-AP for
arbitrarily large k ≥ 3. This can be restated as saying that if

rk(N ) := max{#A : A ⊆ {1, · · · , N }, A does not contain any k-AP},

then rk(N )/N → 0 as N → ∞ for any k ≥ 3. Finding precise asymptotics for rk
remains a major open problem to this day. The best known upper bounds (valid for
large N ) are:

• r3(N )/N ≤ (log N )−1−c for some c > 0 ( [3], improving [2,15]).
• r4(N )/N ≤ (log N )−c for some absolute c > 0 ( [9]).
• If k ≥ 5, then rk(N )/N ≤ (log log N )−ak , where ak = 2−2k+9

( [8]).

In the opposite direction, Behrend [1] showed that

rk(N ) ≥ r3(N ) ≥ cNe−C
√

log(N ),

where c,C > 0 are absolute constants. Note that, in particular, for all ε > 0, we have
rk(N ) > N 1−ε if N is large enough. See [13] for recent improvement to this lower
bound for general values of k ≥ 3.

In the continuous context, Keleti [10,11] proved that there exists a compact set
E ⊂ R of Hausdorff dimension 1 that does not contain any 3-AP. Later, Yavi-
coli [19] obtained the stronger result that for any dimension function h(x) such that
x

h(x) →x→0+ 0, there exists a compact set of positive h-Hausdorff measure avoiding
3-APs. Hence, while in the discrete context the function r3(N ) distinguishes between
sets that necessarily contain, or may fail to contain, 3-APs, no such function exists in
the continuous context.

In [5], Fraser, Saito and Yu introduced a new related problem: how large can the
Hausdorff dimension of a set avoiding approximate arithmetic progressions be? Given
k ≥ 3 and ε ∈ (0, 1), we say that a set E ⊂ R ε-avoids k-APs if, for every k-AP P ,
one has

sup
p∈P

inf
x∈E |x − p| ≥ ελ, (1.1)

where λ is the gap length of P . To be more precise, in [5] this is defined with strict
inequality. In practice, this makes almost no difference, but the discussion in Sect. 2
below becomes simpler if we allow equality in (1.1).

We define

d(k, ε) := sup{dimH(E) : E is a bounded set that ε-avoidsk-APs}.
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Because of σ -stability of Hausdorff dimension, it is equivalent to consider the supre-
mum over (not necessarily bounded) sets that ε-avoid k-APs. We state the definition
in this way because we will at times consider the Assouad or box dimensions of E as
well, which are usually defined only for bounded sets.

In [5], Fraser, Saito and Yu obtained the following upper and lower bounds for
d(k, ε):

log(2)

log( 2k−2−4ε
k−2−4ε )

≤ d(k, ε) ≤ 1 + log(1 − 1
k )

log(k� 1
2ε �) . (1.2)

(In fact, they obtained the upper bound for Assouad dimension instead of Hausdorff
dimension.While this is a priori stronger,wewill later show that it is in fact equivalent.)
In particular, in contrast to Keleti’s result, sets of full Hausdorff (or even Assouad)
dimension necessarily contain arbitrarily good approximations to arithmetic progres-
sions of any length, see [6]. Nevertheless, one might expect that, for each fixed k,
d(k, ε) →ε→0+ 1, but this does not follow from the above lower bound and was
left as a question in [5]. In this paper we obtain new upper and lower bounds for
d(k, ε) that considerably improve upon (1.2) and, in particular, show that indeed
d(k, ε) →ε→0+ 1.

Theorem 1.1 Fix k ∈ N≥3.

(a) For any ε ∈ (0, 1/12),

d(k, ε) ≥ log(rk(
 1
12ε �))

log(12
 1
12ε �) .

(b) For any ε such that 1/ε > k,

d(k, ε) ≤ 1

2

(
log(rk(
1/ε + 1�) + 1)

log(
1/ε + 1�) + 1

)
.

(c) Let k ≥ 3 and ε ∈ (0, 1/10). Then

d(k, ε) ≤ log(�1/ε� + 1)

log(�1/ε� + 1) − log(1 − 1/k)
≤ 1 − c

k| log ε| ,

where c > 0 is a universal constant.

We make some remarks on this statement.

(1) A conceptual novelty of this work is that, even though there is no analog of Sze-
merédi’s Theorem for the presence of exact arithmetic progressions inside fractal
sets, we show that Szemerédi bounds greatly influence the presence of approxi-
mate progressions in fractals. In order to construct large sets without progressions,
the papers [10,11,19] rely on a type of construction in which patterns are “killed”
at much later stages of the construction; i.e. they crucially exploit the existence
of infinitely many scales in the real numbers. The property of uniformly avoiding
progressions is scale-invariant in a sense that precludes such an approach (this is
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related to the discussion in Sect. 2) and may suggest why there is a connection to
Szemerédi in this case.

(2) As we saw before, Behrend’s example shows that rk(N ) ≥ r3(N ) ≥ N 1−δ

for all δ > 0 and all N large enough in terms of δ. Then (a) easily gives that
limε→0+ d(k, ε) = 1.

(3) The two upper bounds we give are proved using completely different methods.
The bound (b) is better asymptotically as ε → 0+ (this follows from Szemerédi’s
Theorem, i.e. rk(N )/N → 0, and a short calculation). However, for moderate
values of ε the bound (c) may be better, and in any case the bound (b) may be
hard to estimate for specific values of ε (we note that the bounds on rk discussed
above are asymptotic) while (c) is completely explicit. This makes sense because
as ε → 0+ we are closer to the discrete setting while for “large” ε we are firmly
in the “fractal” realm and avoiding arithmetic progressions can be seen as a sort
of (multi)porosity. We note that the dependence in (c) on both ε and k is much
better than that of the upper bound of (1.2).

(4) Wedefinedd(k, ε)usingHausdorff dimension.However,we show inCorollary 2.6
below that the value of d(k, ε) remains the same ifHausdorff dimension is replaced
by box, packing or Assouad dimension; moreover, there is a compact set that
attains the supremum in the definition of d(k, ε). Furthermore, for the lower bound
(a), Hausdorff dimension can even be replaced by (the a priori smaller) Fourier
dimension, see Proposition 3.2 below.

After the first version of this paper appeared in the arXiv, we learned that Kota Saito
independently and simultaneously established bounds very similar to those in (a), (b)
from Theorem 1.1, using a related approach [14]. In fact, Saito proved versions of
these bounds also in higher dimensions. He did not obtain bounds analogous to (c),
nor any results about Fourier dimension or the behaviour described in Corollary 2.6 .

2 Sets Avoiding Approximate Progressions and Galleries

Note that a set E ε-avoids k-APs if and only if E ε-avoids k-APs. Since dimH(E) ≥
dimH(E), we can therefore consider only closed sets in the definition of d(k, ε).

We write F to denote the set consisting of the non-empty closed subsets of [0, 1].
Endowed with the Hausdorff metric D, the setF is a complete metric space. We recall
some concepts introduced by Furstenberg [7].

Definition 2.1 Let F ∈ F . A set F ′ ∈ F is a mini-set of F , if for some r ≥ 1 and
u ∈ R, we have F ′ ⊂ r F + u.

Definition 2.2 A family G ⊂ F is called a gallery if it satisfies simultaneously:

• G is closed in (F , D),
• for each E ∈ G, every mini-set of E is also in G.

In [7, Theorem 5.1], Furstenberg established the following dimensional homogene-
ity property of galleries.



Journal of Fourier Analysis and Applications (2021) 27 :4 Page 5 of 14 4

Theorem 2.3 Let G be a gallery. Let

�(G) = lim sup
k→∞

1

k
log

(
sup
X∈G

#{Q ∈ Dk : X ∩ Q �= ∅}
)

,

where Dk denotes the collection of half-open dyadic intervals of side length 2−k and
log is the base-2 logarithm. Then there exists a set A ∈ G such that

dimH(A) = �(G).

We note that the set A in the previous theorem satisfies an ergodic-theoretic version
of self-similarity.

To put this result into context, we recall the definition of Assouad dimension:

Definition 2.4 Let E ⊆ R be a bounded set. For r > 0, let Nr (E) denote the least
number of open balls of radius less than or equal to r with which it is possible to cover
the set E . We define the Assouad dimension of a (possibly unbounded) set E ⊆ R as

dimA(E) := inf

{
α ≥ 0 : ∃C > 0 such that whenever 0 < r < R

we have sup
x∈E

Nr (B(x, R) ∩ E) ≤ C

(
R

r

)α }
.

It is easy to see that dimH(X) ≤ dimA(X) ≤ �(G) for any X ∈ G, and therefore
Furstenberg’s Theorem implies that, for any gallery G, the suprema

sup{dimH(X) : X ∈ G}, sup{dimA(X) : X ∈ G},

coincide with each other and with�(G) and, moreover, they are attained. This implies
that the analogous suprema for lower box, upper box and packing dimensions also
coincide with �(G).

Lemma 2.5 Let ε > 0 and k ∈ N≥3. Then, the set

G := {E ∈ F : E ε-avoids k-APs}

=
{
E ∈ F : sup

p∈P
inf
x∈E

|x − p|
λ

≥ ε for every k-AP P

}

is a gallery.

Proof If E ∈ G and A is a mini-set of E , by invariance of the ε-avoidance of k-APs
under homothetic functions, we have A ∈ G.

Suppose now En ∈ G, δn := D(En, E) →n→∞ 0+. We want to see that E ∈ G.
Let P be a k-AP of gap λ. Since for every x ∈ E there exists xn ∈ En such that
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|x − xn| < δn , for each point p we have

inf
x ′
n∈En

|x ′
n − p|
λ

≤ |xn − p|
λ

≤ |xn − x |
λ

+ |x − p|
λ

<
δn

λ
+ |x − p|

λ
.

Hence

inf
x ′
n∈En

|x ′
n − p|
λ

≤ δn

λ
+ inf

x∈E
|x − p|

λ
.

So, since En ∈ G,

ε ≤ sup
p∈P

inf
x ′
n∈En

|x ′
n − p|
λ

≤ δn

λ
+ sup

p∈P
inf
x∈E

|x − p|
λ

.

Since δn → 0, we have

ε ≤ sup
p∈P

inf
x∈E

|x − p|
λ

,

as desired. ��
Combining this fact with Theorem 2.3 and the remark afterward we get:

Corollary 2.6 For any k ≥ 3 and ε > 0,

d(k, ε) = sup{dimH(E) : E ε-avoids k-APs}
= sup{dimA(E) : E is bounded and ε-avoids k-APs},

and moreover the supremum is realized.

Here we are using that, since scaling and translation do not change the Hausdorff or
Assouad dimensions or the property of ε-avoiding k-APs, there is no loss of generality
in restricting to subsets of the unit interval in the above corollary (so that Theorem 2.3
is indeed applicable).

3 Proof of Theorem 1.1

3.1 Proof of the Lower Bound (a)

We prove the lower bound in Theorem 1.1, which we repeat for the reader’s conve-
nience:

Proposition 3.1 Let k ∈ N≥3 and ε ∈ (0, 1/12]. We have

d(k, ε) ≥ log(rk(
 1
12ε �))

log(12
 1
12ε �) .
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Proof Given ε ∈ (0, 1
12 ] there exists N ∈ N such that εN+1 < ε ≤ εN where we

define εN := 1
12N ; i.e. N := 
 1

12ε �.
By definition of rk(N ), we can take AN ⊆ {1, · · · , N } which does not contain a

k-AP and #AN = rk(N ). We will construct a set EN εN -avoiding k-APs (in particular,
ε-avoiding k-APs) with dimH(EN ) = log(rk (N ))

log(12N )
.

The set EN is defined as the self-similar attractor for the IFS { f j : j ∈ AN }, where

f j (x) := 1

12N
x + 6 j

12N
.

In other words, since f j ([0, 1]) ⊂ [0, 1] for all j , the set EN is given by

EN =
∞⋂

�=1

⋃
i1,...,i�∈AN

fi1 · · · fi� ([0, 1]).

We call the intervals fi1 · · · fi� ([0, 1]) construction intervals of level �.
Clearly dimH(EN ) = log(#AN )

log(12N )
= log(rk (N ))

log(12N )
, see [4, Chapter 9]. To complete the

proof, we will show that EN εN -avoids k-APs.
We proceed by contradiction. Suppose there exist x̃1 < · · · < x̃k in EN and a

k-AP, say x1 < · · · < xk , such that |xi − x̃i | < εNλ for all i ∈ {1, · · · , k}, where
λ = xi+2−xi

2 (for i = 1, . . . , k − 2) is the gap length of the k-AP.
There exists a minimal construction interval I containing x̃1 and x̃k (so x̃i ∈ I

for every i); let � be its level and zI its left endpoint. The length of the interval I is
|I | = (12N )−�. For each i ∈ {1, · · · , k}, we write

x̃i = zI + (12N )−�

(
6ai
12N

+ δi

)
,

where δi ∈ [0, 1
12N ), ai ∈ AN for every i , a1 ≤ a2 ≤ · · · ≤ ak , and not all of the ai

are equal (because we have taken I minimal). Our goal is to show that the ai form an
arithmetic progression. We write

xi = x̃i + εxi λ where εxi ∈ (−εN , εN ).

Since

λ = xk − x1
k − 1

= x̃k − x̃1
k − 1

+ λ(εxk − εx1)

k − 1
≤ |I |

k − 1
+ 2εN

k − 1
λ,

we have that

λ(12N )� ≤ 1

k − 1 − 2εN
< 1. (3.1)

On the other hand, for i = 1, . . . , k − 2,

zI + (12N )−�

(
6ai+1

12N
+ δi+1

)
= x̃i+1 = xi+1 − λεxi+1
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= xi + xi+2

2
− λεxi+1

= x̃i + x̃i+2

2
+ λ(εxi + εxi+2 )

2
− λεxi+1

= zI + (12N )−�

(
6 ai+ai+2

2

12N
+ δi + δi+2

2
+ ε̃iλ(12N )�

)

where we define ε̃i := εxi +εxi+2
2 − εxi+1 . We deduce that

6ai+1

12N
+ δi+1 = 6 ai+ai+2

2

12N
+ δi + δi+2

2
+ ε̃iλ(12N )�.

Hence

ai+1 − ai + ai+2

2
= 12N

6

(
−δi+1 + δi + δi+2

2
+ ε̃iλ(12N )�

)
.

Now the left-hand side belongs to 1
2Z. But using that εxi ∈ (−εN , εN ), δi ∈ [0, 1

12N ],
the definition of εN and (3.1), we see that the right-hand side above lies in (− 1

2 ,
1
2 ),

and therefore must vanish. Since we had already observed that the ai are not all equal,
we conclude that the ai form an arithmetic progression. This contradicts the definition
of AN , finishing the proof. ��

3.2 Lower Bound on the Fourier Dimension

We now use the approach of [16] to adapt the previous construction to construct a set
of large Fourier dimension that ε-avoids k-APs. We begin by recalling the definition
of Fourier dimension. Given a Borel set A ⊂ R

d , let PA denote the family of all Borel
probability measures μ on R

d with μ(A) = 1. The Fourier dimension is defined as

dimF(A) = sup{s ≥ 0 : ∃μ ∈ PA,C > 0 such that μ̂(ξ) ≤ C |ξ |−s/2for all ξ �= 0}.

It is well known that dimF(A) ≤ dimH(A), with strict inequality possible (and fre-
quent). Sets for which dimF(A) = dimH(A) are called Salem sets and while many
random sets are known to be Salem, few deterministic examples exist. See [12, §12.17]
for more details on Fourier dimension and Salem sets.

Proposition 3.2 Let k ∈ N≥3 and ε ∈ (0, 1/12]. Then there exists a compact Salem
set E that ε-avoids k-APs with

dimF(E) = dimH(E) = log(rk(
 1
12ε �))

log(12
 1
12ε �) .

Proof The construction is similar to that in the previous section, but at each level
and location in the construction we rotate the set 6AN randomly on the cyclic group
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Z/(12NZ), with all the random choices independent of each other. To bemore precise,
let N = 
 1

12ε � and let AN ⊂ {1, . . . , N } be a set of size rk(AN ) avoiding k-APs,
just as above. Write I12N for the collection of (12N )-adic intervals in [0, 1], and let
{XI , I ∈ I12N } be IID random variables, uniform in {0, 1, . . . , 12N − 1}. Set

BN ,I = {6AN + XI mod 12N } = {6a + XI mod 12N : a ∈ AN }.

Note that (BN ,I )I are IID random subsets of {0, 1, . . . , 12N − 1}. It is critical for us
that BN ,I does not contain any k-APs, which holds since AN avoids k-APs and, when
BN ,I wraps around 12N , the gap in the middle prevents the existence of even 3-APs
in BN ,I that are not translations of corresponding progressions in 6AN .

Now starting with I = [0, 1], we inductively replace each interval I = [zI , zI +
(12N )−�] ∈ I12N by the union of the intervals

{
[zI + (12N )−�−1b, zI + (12N )−�−1(b + 1)] : b ∈ BN ,I

}
.

Let E� be the union of all the intervals of length (12N )−� generated in this way, and
define E = ∩�E�. It is easy to check that dimH(E) = log |AN |/ log(12N ); indeed,
E is even Ahlfors-regular. On the other hand, the randomness of the construction
(more precisely, the independence of the XI together with the fact that each element
of {0, . . . , 12N − 1} has the same probability of belonging to BN ,I ) ensures that E is
a Salem set, see [16, Theorem 2.1].

Finally, the same argument in the proof of Proposition 3.1 shows that E ε-avoids
k-APs. ��

3.3 Proof of the Upper Bound (b)

We now prove the upper bound (b) from Theorem 1.1:

Proposition 3.3 For any ε such that 1/ε > k,

d(k, ε) ≤ 1

2

(
log(rk(
1/ε + 1�) + 1)

log(
1/ε + 1�) + 1

)
.

We start with a lemma in the discrete context, which is related to (but simpler than)
Varnavides’ Theorem (see e.g. [18, Theorem 10.9]); it allows us to find arithmetic
progressions with large gaps.

Lemma 3.4 Fix k, λ,m ∈ N such that k < m. For every subset A ⊆ {1, · · · , λm}
such that #A ≥ λ(rk(m) + 1), we have that A contains an arithmetic progression of
length k and gap ≥ λ.

Proof We split {1, · · · ,mλ} into λ disjoint arithmetic progressions of length m:

Pj := { j + iλ : 0 ≤ i ≤ m − 1}, j = 1, . . . , λ.
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Since by hypothesis #(A ∩ {1, · · · ,mλ}) ≥ λ(rk(m) + 1), there exists j such that
#(A ∩ Pj ) ≥ rk(m) + 1. Then, by definition of rk(m), the set A ∩ Pj contains an
arithmetic progression of length k. So, A contains an arithmetic progression of length
k and gap ≥ λ. ��
Proof of Proposition 3.3 Pick m such that 1/m < ε ≤ 1/(m − 1). Let E ⊆ R be a
bounded set that ε-avoids k-APs. Since the claim is invariant under homotheties, we
may assume E ⊆ [0, 1]. We will get an upper bound for the Minkowski dimension of
E , and so also for the Hausdorff dimension. For this, we split the interval [0, 1] into
N -adic intervals, where N = m2, and count the number of subintervals of the next
level intersecting E .

Claim: For every j , and for each N -adic interval I of length N− j , the number of
N -adic intervals of length N− j−1 intersecting E is < m(rk(m) + 1).

Assuming the claim, a standard argument gives the desired upper bound for the
Minkowski dimension of E .

We prove the claim by contradiction. Suppose I is an interval for which the
claim fails. Let L denote the set of leftmost points of the N− j−1-sub-intervals of
I intersecting E . Then L can be naturally identified (up to homothety) with a subset
A ⊆ {1, · · · , N } with #A ≥ m(rk(m)+1). Then, by Lemma 3.4 applied with λ = m,
the set A contains an arithmetic progression of length m and gap ≥ m. So, L contains
an arithmetic progression P of length k and gap length equal to gap(P) ≥ mN−( j+1).

We conclude that

sup
p∈P

inf
x∈E |x − p| ≤ N−( j+1) < ε · gap(P),

which is a contradiction, because E ε-avoids k-APs. ��

3.4 Proof of the Upper Bound (c)

Finally, we prove the upper bound (c) in Theorem 1.1, which again we repeat for
convenience:

Proposition 3.5 Let k ≥ 3 and ε ∈ (0, 1/10). Then

d(k, ε) ≤ log(�1/ε� + 1)

log(�1/ε� + 1) − log(1 − 1/k)
≤ 1 − c

k| log ε| ,

where c > 0 is a universal constant.

Proof Fix k ≥ 3 and ε ∈ (0, 1
10 )which we may assume for now to be the reciprocal of

an integer, ε = 1/m. We find an upper bound for the Assouad dimension of a bounded
set E which ε-avoids k-APs. This requires estimating the cardinality of efficient r -
covers of an R-ball centred in E for small scales 0 < r < R. To this end, fix x ∈ E and
0 < r < R, assuming without loss of generality that r ≤ εR/k. Consider the interval
B(x, R) := [x − R, x + R) and express it as the union of k

ε
intervals of common
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length 2εR
k as follows:

[x − R, x + R) =
⋃
·

0≤i≤ k
ε
−1

Ii where Ii :=
[
0,

2Rε

k

)
+ i

2Rε

k
+ x − R.

We partition the set of indices I = {0, . . . , k
ε

− 1} into sets I j = {i ∈ I : i ≡
j(mod 1

ε
)} for j ∈ {0, 1, . . . , 1

ε
− 1}. Note that each partition element I j contains k

indices and the midpoints of the intervals with labels in the same partition element
form a k-AP with gap length 2R

k .
Since E ε-avoids k-APs, for each j at least one of the intervals indexed by an

element of I j must not intersect E . Consider the original interval B(x, R) with these
non-intersecting intervals removed and express it as a finite union of pairwise disjoint
half open intervals given by the connected components of B(x, R) once the non-
intersecting intervals have been removed. Note the number of such intervals could be
one if the non-intersecting intervals lie next to each other and the number of intervals
is at most 1

ε
+ 1.

We now proceed iteratively, repeating the above process within each of the pairwise
disjoint intervals intersecting E formed at the previous stage of the construction. If an
interval has length less than or equal to r , then we do not iterate the procedure inside
that interval. This means the procedure terminates in finitely many steps (once all
intervals under consideration have length less than or equal to r ). The intervals which
remain provide an r -cover of B(x, R)∩ E and therefore bounding the number of such
intervals gives an upper bound for the Assouad (and thus Hausdorff) dimension of E .
This number depends on the relative position of the non-intersecting intervals at each
stage in the iterative procedure and we need to understand the ‘worst case’. Here it is
convenient to consider a slightly more general problem where the nested intervals do
not lie on a grid.

Given an interval J and a finite collection of (at most 1
ε

+ 1) pairwise disjoint
subintervals Ji , let s ∈ [0, 1] be the unique solution of

∑
i

( |Ji |
|J |

)s

= 1

and let pi be the weights pi =
( |Ji ||J |

)s
. The value s may be expressed as a continuous

function with finitely many variables
{ |Ji ||J |

}
i
on a compact domain. We define smax as

the maximum possible value of s given the constraint

∑
i

|Ji | ≤ |J |
(
1 − 1

k

)
(3.2)

which is well-defined, and attained, by the extreme value theorem.
Define a probability measure μ on the collection of intervals we are trying to count

by startingwithmeasure 1 uniformly distributed on J = B(x, R) and then subdividing
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it across the intervals Ji formed in the iterative construction subject to the weights pi .
Write

I = Jin ⊂ Jin−1 ⊂ · · · Ji1 ⊂ J = B(x, R)

where the interval Ji� is the interval containing I at the �-th stage in the iterative
procedure, noting that

εr

k
≤ |I | ≤ r .

Writing pil for the weight associated with Jil ,

μ(I ) = pi1 pi2 · · · pin ≥
( |Ji1 |

|J |
)smax

( |Ji2 |
|Ji1 |

)smax

· · ·
( |Jin |

|Jin−1 |
)smax

=
( |Jin |

|J |
)smax

=
( |I |
2R

)smax

≥
( ε

2k

)smax
( r

R

)smax
.

Therefore, writing N for the total number of intervals I ,

1 = μ(B(x, R)) ≥
( ε

2k

)smax
( r

R

)smax
N

and

N ≤
(
2k

ε

)smax
(
R

r

)smax

proving dimA E ≤ smax. It remains to estimate smax in terms of k and ε.
We claim that s is maximised subject to (3.2) by choosing the largest number of

intervals possible (i.e.: 1
ε

+ 1) and, moreover, choosing them to have equal length

|Ji | = |J | (1 − 1
k

)
1
ε

+ 1

for all i . This yields

smax = log( 1
ε

+ 1)

log( 1
ε

+ 1) − log(1 − 1
k )

as required. Recall that the maximum exists by compactness. Observe that s depends
only on the lengths of the intervals Ji and on the number of them. If we choose less than
themaximal number of intervals, then s can always be increased by splitting an interval
into two pieces, using the general inequality (a+b)s < as +bs for a, b, s ∈ (0, 1) and
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the fact that (3.2) forces smax < 1. From then, a simple optimisation argument yields
that s is maximised when all the intervals have the same length. Indeed, if there were
two intervals with distinct lengths a < b, then averaging them to form two intervals
of length (a + b)/2 increases s, using the general inequality as + bs < 2((a + b)/2)s

for all s ∈ (0, 1). We have proved the result in the case where ε is the reciprocal of
an integer. However, if ε is not the reciprocal of an integer then we replace it with
ε′ = 1

� 1
ε
� which is the reciprocal of an integer and, moreover, E ε′-avoids k-APs and

the general result follows by applying the integer case established above. ��

4 Open Questions

There is still a gap between the lower and upper bounds provided by Theorem 1.1,
even though both bounds (a) and (b) are closely connected to Szemerédi-type bounds
in the discrete context.

Question 4.1 For a fixed k ≥ 3, is d(k, ε) ∼ log(rk (
 1
ε
�))

log(
 1
ε
�) as ε → 0?

We have seen that

log(rk(
 1
12ε �))

log(12
 1
12ε �) ≤ sup{dimF (E) : E is Borel and ε-avoids k-APs} ≤ d(k, ε),

and that the value of d(k, ε) remains the same if Hausdorff dimension is replaced by
box, packing or Assouad dimension. So it seems natural to ask:

Question 4.2 Is d(k, ε) = sup{dimF(E) : E is Borel and ε-avoids k-APs}?
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