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Abstract

We prove a sharp general inequality estimating the distance of two probability mea-
sures on a compact Lie group in the Wasserstein metric in terms of their Fourier
transforms. We use a generalized form of the Wasserstein metric, related by Kan-
torovich duality to the family of functions with an arbitrarily prescribed modulus of
continuity. The proof is based on smoothing with a suitable kernel, and a Fourier decay
estimate for continuous functions. As a corollary, we show that the rate of convergence
of random walks on semisimple groups in the Wasserstein metric is necessarily almost
exponential, even without assuming a spectral gap. Applications to equidistribution
and empirical measures are also given.
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1 Introduction

If the Fourier transform of two Borel probability measures on R are equal, then the
measures themselves are also equal. The celebrated Berry—Esseen smoothing inequal-
ity is a quantitative form of this fundamental fact of classical Fourier analysis. Given
two Borel probability measures vy and v; on R, let Fj(x) = v;((—o0,x]), j = 1,2,
and define

Sunif (V1, v2) = sup [ F1(x) — F2(x)] .
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Theorem A (Berry—Esseen smoothing inequality) Assume that |Fy(x) — Fa(y)| <
K|x — y| for all x,y € R with some constant K > 0. Then for any real number
T >0,

K T51(t) — »a (¢
Sunit (V1, 12) K — +/ M dr
T -7 |7]

with a universal implied constant.

In the terminology of probability theory, F;(x) is the distribution function of v;;
the Fourier transform U (r) = [ €""*dv;(x) is the characteristic function of v;;
finally, Synit is the uniform metric (or Kolmogorov metric) on the set of probability
distributions. For somewhat sharper forms of Theorem A see Petrov [28, Chapter 5.1].
Throughout the paper A < B and A = O(B) mean that A < C B with some implied
constant C > 0.

Similar smoothing inequalities are known for several other probability metrics on
R, see Bobkov [4] for a survey. Some, but not all require a smoothness assumption
on one of the distributions; for instance, Theorem A is usually formulated under the
assumption that F is differentiable and |Fj(x)| < K. A common feature of such
results is that the distance of v and v, in some probability metric is bounded above
by the sum of two terms depending on a free parameter 7 > 0: one term decays as T
increases, and the other term depends on the Fourier transforms of v; and v, only on
the interval [T, T].

Berry—Esseen type smoothing inequalities are known in other spaces as well.
The first multidimensional version, an upper bound for the uniform metric on R?
is due to von Bahr [36]. Niederreiter and Philipp proved an analogous result for two
Borel probability measures v; and v, on the torus RY/Z¢. By identifying R?/Z¢
with the unit cube [0, l)d, we can define the uniform metric as Sunif(vi, V2) =
SUpycpo.17¢ [V1(B(x)) —v2(B(x))], where B(x) = [0, x1) X - - - X [0, x4). The Fourier
transform is now v;(m) = fRd/Zd e~ Zmitm.x) dvj(x), m € 74, Let MRd /74 be the
normalized Haar measure, and let ||m||oo = maxj<r<q |mg|-

Theorem B (Niederreiter—Philipp [25]) Assume that v2(B) < K ppa /zd (B) for all

axis parallel boxes B C [0, 1) with some constant K > 0. Then for any real number
M >0,

|D1(m) — Va(m)
T4, max{|my], 1}

K
Bunif (V1. v2) < 7 + >
meZd
O<|Imlloco<M

with an implied constant depending only on d.

The goal of this paper is to prove a Berry—Esseen type smoothing inequality in
more general compact groups. In this more general setting only those probability
metrics remain meaningful whose definition does not rely on concepts such as axis
parallel boxes and distribution functions. One of the most important such metrics is
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the p-Wasserstein metric W,,. Given a compact metric space (X, p) and two Borel
probability measures v and v» on X, we define

Wyr.v) = inf / Pl DG,y (O <p<T),
¥eCoup(vi,12) Jxx X
and
1/p
Wp(vi, ) = inf (/ px, )P do(x, Y)) (I <p<o0)
veCoup(vi,2) \JxxX

Here Coup(v1, v2) is the set of couplings of v| and v, ; that is, the set of Borel probability
measures ¢ on X x X with marginals ¥ (B x X) = vi(B) and 9(X x B) = v2(B),
B C X Borel. Recall that for any p > 0, W, is a metric on the set of Borel probability
measures on X, and it generates the topology of weak convergence. Observe also
the general inequalities W, (vi, v2) < Wi(v,112)?,0 < p < 1 and Wi(vy, 1) <
Wp(v1,12), 1 < p < oo. The Wasserstein metric originates in the theory of optimal
transportation, see Villani [35].

Respecting the philosophy of the Berry—Esseen inequality, we wish to find an upper
bound to W, (v1, v2) depending on the Fourier transform of vy and v, only up to a
certain “level”. For this reason we chose to work with compact Lie groups, where the
theory of highest weights provides a suitable framework to formalize the meaning of
“level”. More precisely, our main result applies to any compact, connected Lie grou
G classical examples include R? /Z4, U(d), SU(d), SO(d), Sp(d) and Spin(d). Let G
denote the unitary dual, and letd,;, A and x; denote the dimension, the highest weight
and the negative Laplace eigenvalue of the representation 7 € G, respectively. Further,
let || A|lus = +/tr(A* A) be the Hilbert—Schmidt norm of a matrix A. For a more formal
setup we refer to Sect. 2.1. In this paper we prove the following Berry—Esseen type
smoothing inequality for W), on compact Lie groups.

Theorem 1 Let v| and vy be Borel probability measures on a compact, connected Lie
group G. For any 0 < p < 1 and any real number M > 0,

1/2

Wpr,v) < o+ MLy B — B0 s (1

e "
O<|Ar|<M

with an implied constant depending only on G.

The result holds without any smoothness assumption on v; and v;. As the applications
in Sect. 2.3 will show, the inequality is sharp up to a constant factor depending on G.
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In the simplest case of the torus G = R¢/Z¢ equation (1) reads

1/2
1 - |01 (m) — D3(m)|?
_— P PRI = AR
Wp(v1, 1) K YT +M E e ()
meZ4
O<|m|<M

with an implied constant depending on d, where |m| is the Euclidean norm of m; this
should be compared to Theorem B. For a detailed proof with explicit constants we
refer to our earlier paper [8, Proposition 3] and to Bobkov and Ledoux [5,6].

Our methods do not work when p > 1; the reason is that the proof is based on
Kantorovich duality for W,. Recall that the Kantorovich duality theorem states that

forany0 < p <1,
[ran—[ ran
G G

where, with p denoting the geodesic distance on G,

s

Wp(vl b U2) = Sup
feF,

Fp={f:G—>R:|f(x)= fOWI=px, y)?forallx,ye G}

is the set of p-Holder functions on G, with Holder constant 1. Theorem 1 thus estimates
the difference of the integrals of f with respect to v; and v uniformly in f € F),.
From our methods it also follows that for any f € F,

fodvl—[Gfdvz

with an implied constant depending only on G; see Proposition 5. Hence for a given
f € F, whose Fourier transform decays fast enough, the results of Theorem 1 can
be improved. Fast Fourier decay follows e.g. from suitable smoothness assumptions
on f, see Sugiura [32]. We mention that by prescribing a higher order modulus of
continuity for f, the term 1/M? can also be improved. Note that Fourier decay rates
play a role in classical Berry—Esseen type inequalities as well: the coefficient 7|~
(resp. ]_[Z: | max{|my|, 1}~ 1Y in Theorem A (resp. Theorem B) is explained by the fact
that the Fourier transform of the indicator function of an interval (resp. axis parallel
box) decays at this rate.

The most straightforward application of Theorem 1 is estimating the rate of con-
vergence of random walks in the W), metric. Let v** denote the k-fold convolution
power of v, and let G be the Haar measure on G. Recall that v — 1 weakly
as k — oo if and only if the support of v is contained neither in a proper closed
subgroup, nor in a coset of a proper closed normal subgroup of G; see Stromberg [31].
Using a nonuniform spectral gap result of Varjui, we prove the following application
of Theorem 1.

MP

1 -~ —~ ~
K==+ D dellf@@lns - 17 () = B0 s

reG
O<|Ag|<M
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Corollary 2 Let v be a Borel probability measure on a compact, connected, semisimple
Lie group G. If v** — g weakly as k — oo, then

W (v, ) < e,

where the constant ¢ > 0 and the implied constant depend only on G and v.

The condition of semisimplicity cannot be removed. The rate of convergence W), <
exp(—pck'/3),0 < p < 1 immediately follows. The main motivation came from our
recent paper [8] on quantitative ergodic theorems for random walks. Given indepen-
dent, identically distributed G-valued random variables {1, {2, ... with distribution v,
we showed that for any f € F, the sum lecvzl f (€182 - - - &) satisfies the central limit
theorem and the law of the iterated logarithm, provided that Y 7o ; W, (v*, ug) < occ.
Corollary 2 thus provides a large class of examples of random walks with fast enough
convergence in W), and consequently to which our quantitative ergodic theorems
apply. We do not know whether W,,(v*k, uG) K e~k ' temains true for p> 1.

Another possible application is in uniform distribution theory, where the goal
is finding finite sets {aj,az,...,ay} C G which make the integration error
IN~! lec\/:l f(ag) — fG fdug| small for a suitable class of test functions. Apply-
ing Theorem 1 to v = N1 Y"1 8,, (where 8, is the Dirac measure concentrated at
a € G) and v» = g, we can quantitatively measure how well distributed a finite set
is with respect to test functions f € F,. Note that in this case we have

N

_ _ 1 _

15 00) = Ba(m)llfs = 77 2 xelag an), 3)
k=1

where xr (x) = tr w(x) is the character of the representation 7 € G. Theorem 1 thus
becomes an abstract version of the Erd6s—Turdn inequality, estimating the distance of
a finite set from uniformity in terms of character sums. As an illustration, consider the
classical construction of Lubotzky, Phillips and Sarnak [23,24] of a finite point set in
SO(3) with optimal spectral gap. We will prove that this point set is also optimally
close to the Haar measure in the W, metric up to a constant factor; see Sect. 2.3.2 for
a more precise formulation.

Corollary 3 The finite point set {ay, az, . ..,ay} C SO(3) with optimal spectral gap
constructed in [23,24] satisfies, for all 0 < p < 1,

N
1
_ -p/3
W, <N 1;—1 Bays Mso<3)> <N

with a universal implied constant.

Estimating W), is more difficultin the p > 1 case, when Kantorovich duality is not
available. Graham [21] gave an analogue of (2) forall p > 1 onR/Z and on the interval
[0, 1]. His arguments do not generalize to higher dimensions; see, however, [30] for
connections between W,, p > 1 and Fourier analysis on R4 /7. Fourier methods
were used to estimate W, p > 1 in the optimal matching problem in [1,5,6,14].
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Brown and Steinerberger [13,29] considered the more abstract setting of compact
Riemannian manifolds, and estimated the distance in W, from N~ Z,](VZ] 84, to the
Riemannian volume in terms of character sums (3), and also in terms of the Green
function of the Laplace—Beltrami operator. A similar Erd§s—Turdn inequality on com-
pact Riemannian manifolds with respect to sufficiently nice test sets was proved by
Colzani, Gigante and Travaglini [17]. Numerical results for certain finite point sets
on the orthogonal group O(d) and on Grassmannian manifolds were obtained by
Pausinger [27].

For probability distributions on R, Esseen [19], [4, Corollary 8.3] used a smoothing
inequality for Wy (vy, v2) to estimate the rate of convergence in Wy in the central limit
theorem; our Theorem 1 and Corollary 2 are far reaching analogues of these classical
results in the compact setting. In the p > 1 case the only known smoothing inequality
on R applies to W>(v1, v2) with v, a Gaussian distribution [4, Theorem 11.1].

The discussion above can be generalized from F), to the class of functions with
an arbitrarily prescribed modulus of continuity, and we will actually work out the
details in this generality. In particular, our results apply to any given f € C(G). The
formal setup and notation are given in Sect. 2.1; we state the general form of Theorem
1 with explicit constants in Sect. 2.2; applications to random walks and to uniform
distribution theory are discussed in more detail, and the proofs of Corollaries 2 and 3
are given in Sect. 2.3. The proof of the main result, Theorem 4 is given in Sect. 3.

2 Results
2.1 Notation

For the general theory of compact Lie groups we refer to Bourbaki [9, Chapter 9].
Throughout the paper G denotes a compact, connected Lie group with identity element
e € G and Lie algebra g. Letexp : ¢ — G and n = dim G denote the exponential
map and the dimension of G as a real smooth manifold. Fix an Ad-invariant inner
product (-, -) on g, and let |X| = +/(X, X), X € g. This inner product defines a
Riemannian metric on G; let p denote the corresponding geodesic metric on G. The
Laplace-Beltrami operator on G is A = Y }_; X Xk (as an element of the universal
enveloping algebra of g), where X1, ..., X, is an orthonormal base in g with respect
to (-, -); this does not depend on the choice of the orthonormal base.

Let r denote the rank of G, and fix a maximal torus 7 in G with Lie algebra t. Let
t* = Hom(t, R) denote the dual vector space. The sets

F'={Xet:expnX)=e},
M ={iet : A(X)eZforall X e I'}

are dual lattices of full rank in t and t*, respectively. The inner product on g naturally
defines an inner product on t*, which we also denote by (-, -); we also write |A| =
(&, L), A € t*. The inner product defines a normalized Lebesgue measure m on t.
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The weights will be considered elements of I'*; the character of 7 corresponding
tod € [ isexp(2r X) > 24X X ¢ t. Let R be the set of roots, and choose a set
of positive roots R™; we have |R| =n —rand |[RT| = (n —r)/2. LetT'*  C T'* be
the lattice spanned by the roots. Further, let

root —

C+:{Aet* : (A, ) > 0forall ER+}

be the dominant Weyl chamber; the set of dominant weights is thus ['* N C™T. The
Weyl group of G with respect to T will be denoted by W(G, T) = Ng(T)/T.

Let G be the unitary dual of G. For any 7 € G, let dy and A, denote the dimension
and the highest weight of w. The map = +— A, is a bijection from G to the set of
dominant weights T* N C™T. Let k; > 0 denote the negative Laplace eigenvalue of 7;
that is, Awr = —k,m where A acts entrywise. Recall that

l_loteR+ (A + p+7 o)

kn = Axl> +200, pT)  and  dp = ,
T T T p T naeR+(p+,o()

where p™ = Y g+ /2 is the half-sum of positive roots; in particular,
Bl <ir < Pn P4+ O(Ar])  and  dy < |hy|® /2,

Let g (resp. ;) denote the normahzed Haar measure on G (resp. T'). The Fourler
transform of a function f : G — Cis f(n) = fG fx)mx)* d,u(;(x) 7 € G; that
of a Borel probability measure v on G is V() = fG r(x)*dv(x), T € G. Here (x)*
denotes the adjoint of 7 (x), and the integrals are taken entrywise.

Let g : [0, 00) — [0, o0) be a nondecreasing and subadditive' function such that
lim, o+ g(t) = 0, and define

We(vi, 1) = inf / g(p(x, y))dv(x, y),
PeCoup(vi,12) JGxG

where Coup(vy, v) is the set of couplings, as before. Letting
Fe={f:G=>R:[fx)=fWI=glpx,y)) forallx,ye G},

the Kantorovich duality theorem states

We(vi, 12) = sup
feF;

/Gfdvl—/cfdvz.

Note that W is a metric on the set of Borel probability measures on G and it generates
the topology of weak convergence, unless g is constant zero. In the special case

U Thatis, g(r + u) < g(t) + g(u) forall t,u > 0.
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gt) =17,0 < p <1 we write W, (resp. F) instead of W, (resp. F). We mention
that given f € C(G), the function

gr(@) =sup{lf(x) = fWI] : x,y € G, px,y) =t}

is nondecreasing and subadditive, and lim,_, o+ g (¢) = 0; in fact, g7 is the smallest
g for which f € F,.

Remark Kantorovich duality is usually stated for g(¢) = ¢, i.e. for Lipschitz functions.
To see the general case, note that g(p(x, y)) is another metric on G generating the
topology of G, unless g is constant zero; the subadditivity of g is needed for the triangle
inequality. Kantorovich duality for Lipschitz functions in the g(p(x, ¥)) metric thus
implies Kantorovich duality for Wy as claimed. Further, since the usual 1-Wasserstein
metric with respect to g(p(x, y)) generates the topology of weak convergence, so does
We.

2.2 Berry-Esseen Inequality on Compact Lie Groups

Letn : t > R be a W(G, T)-invariant smooth function such that n(X) = 0 for all
|X| > 1,and 0 < n(X) < n(0) = 1forall X € t. Since W(G, T) acts by orthogonal
transformations on t, W(G, T)-invariance can be ensured e.g. if n(X) depends only
on | X|. For instance, we can use the “bump function”

XE Y ifx) < 1
n(x) — eXp _lf‘x‘z 1 | | <1,
0 if1X] > 1.

Let F : t > C, F(X) = [ n(")e*™ XY dm(Y); note that F(X) is a Schwarz
function, thus | F(X)| decays at an arbitrary polynomial rate as | X| — oo. The main
result of the paper is the following Berry—Esseen type inequality.

Theorem 4 Let v| and vy be Borel probability measures on a compact, connected Lie
group G, and let g : [0, 00) — [0, 00) be nondecreasing and subadditive such that
lim,_, o+ g(t) = 0. Let

_ 2 27| X| r 2mia(X) _ 2)
YO =G /;g<L[/(|2P+|+d)J>a 'F(ax)'< [] e ) dm )

aeRT

where a = minyer* |A|/2 = mingeg |a|/2 and p* =Y, p+ /2, and let

root

c
P(1) = inf / - 8 (C’”).
O<c<2(¥/n24+n—n) Il—c—c /(47’!) nt
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Then for any real number M > |2p7| + a,
1/2

de
Werv) YD+ | 3 EITIen) = ) s

b4
eG
O<|Arz|<M

Observe that (M) K< g(1/M) and ¢ (M) K Mg(1/M) with implied constants
depending only on G. Theorem 1 thus follows from Theorem 4 with g(¢) = t?,
O<p<l.

2.3 Applications
2.3.1 Spectral Gaps and Random Walks

Given Borel probability measures v and v on G, let v| * v> denote their convolution,
and let v{(B) = vi(B™Y), B € G Borel. If ¢; and ¢ are independent G-valued
random variables with distribution vy and v, then vy * vy (resp. vik) is the distribution
of 142 (resp. ¢ ).

Let L%(G, ) be the orthogonal complement of the space of constant functions in
L*(G, pug); thatis, the set of all f € L*(G, pug) with [; f dug = 0. Given a Borel
probability measure v on G, let T, : L3(G, ng) — L3(G, 1g),

(T, f)(x) Z/Gf(Xy) dv(y)

be its associated Markov operator. Observe that 7,4, = Ty, T\, and T, = T,; in
particular, T;, is self-adjoint (resp. normal) if and only if v = v* (resp. vk V* = V*xv).

We start with a trivial estimate for W, (v, i) in terms of 7). It is not difficult to
see that

qv = [ITyllop = sup V() lop,
reG
T #£T)

where 7 € G denotes the trivial representation, and || - ||op is the operator norm. Let
f € Fp with fG fdug = 0 be arbitrary, and note that T, f € F),. Since |T), f| >
[(Ty, f)(e)|/2 on the ball centered at e with radius r = (|(Tuf)(e)|/2)1/”, we have

Ty, f)(e)
2

2
”Rﬂ@i( )MG@@JD»KRﬂ@WMW,

1T FI3 < 1Tl - 115 << T lIgy-
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Therefore | [ f dv| = [(T}, /) (e)| K g2’ " 2P and consequently

W, (v, ng) < g0/ +2p), 4

We now deduce a sharp improvement on the trivial estimate (4). Recall that
lAllas < V/dxllAllop for any dy; x dy matrix A. With v; = v and v = ug,

dy _ dz
> é”‘)l(ﬂ)—\/z(ﬂ)”%sf > énv(n)nép

~ ~

TeG TeG
O<|Ar|<M O<|Ar|<M
<< Z |)\' |n r— 2 2
< )
reG
0<|Az|<M
q2 ifn=1,
<} (log(M +2))q? ifn =2,
M”_2q3 ifn > 3.

Optimizing the value of the free parameter M > 0, in dimension n > 3 Theorem 1
thus gives that forany 0 < p <1,

Wy(v, ne) < q?" (6)

with an implied constant depending only on G. Using Theorem 4 instead, we get
We(v, ug) < g(qu/ ™. Similar estimates can be deduced in dimensions n = 1 and 2.
Clearly g, < 1, and gy, < quv,qv,; in particular, (6) gives the upper bound for the
rate of convergence of random walks W, (vy * - - % vy, ug) < Hk 1 qu/n.

We say that v has a spectral gap, if the spectral radius of 7, is strictly less than 1;
note that this is a direct generalization of Cramér’s condition in classical probability
theory. Assuming 7, is normal, having a spectral gap is equivalent to ¢, < 1; for
general T, it is equivalent to g+ < 1 for some integer m > 1. Deciding whether
a given v has a spectral gap is a highly nontrivial problem. Generalizing results of
Bourgain and Gamburd [10,11] on SU(2) and SU(d), Benoist and Saxcé considered
a Borel probability measure v on a compact, connected, simple Lie group G. They
proved [3, Theorem 3.1] that if the support of v is not contained in any proper closed
subgroup, and each element of the support (as a matrix) has algebraic entries, then v
has a spectral gap. The same authors also conjectured that the condition that the matrix
entries are algebraic can be dropped.

Using (6) (or even just (4)), Wp(v*k , uG) — 0 exponentially fast as k — oo
whenever v has a spectral gap. Corollary 2 is thus basically an unconditional (i.e. not
assuming the conjecture of Benoist and Saxcé), weaker form of this fact. In contrast
to the (semi)simple case, W,,(v*k, uwg) — 0 polynomially fast for certain finitely
supported measures v on the torus R? /Z< [8].

So far we have only discussed the relationship between W, (v, 1) and the spectral
gap of v. Theorem I, however, provides a quantitative relationship between W, (v, ug)
and the spectrum of the self-adjoint operator T, T, itself. Indeed, by the Peter—Weyl
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theorem L3(G, 1) = @, G, w#m, Vs Where Vi is the vector space spanned by the
entries of 7 (x). Since (T, 7)(x) = w(x)v(7w)*, the action of T, on V; is determined
by V(xr); in particular, d, ||V () ||]2_,S is simply the sum of all spectrum points of 7,7,
on V. The proof of Corollary 2 is based on this quantitative relationship.

Proof of Corollary 2 Varju [34, Theorem 6] proved that for any Borel probability mea-
sure ¥ on G and any M > 0,

1

= max llep 2 co | 1= max  DElp | o,

(N

e Te
0<|Az|=M 0<|Az|=Mo

where the constants ¢y, Mp > 0 and 1 < A < 2 depend only on the group G;
in fact, the exact value of A was also given. Since v** — g weakly, we have

Yk = v/*?‘(rr) — 0 for all = # 7o, and hence the spectral radius of V() is less
than 1. It follows that for any 7 € G with 0 < |A;| < Mo, we have [[V(7)" [lop < 1
with some positive integer m = m(G, v); in particular,

b=b(G,v):=co[1— max [V(@)"|lep | > 0.

TE
0<|Az|=Mo

*m

Applying (7) to 9 = v*", we get that for any positive integer k and any M > 0,

Lk/m)
— b (k—m)/m
max vk (@)lop < | max V()" llop < (1 7)

1€G 1eC  logh(M +2)
O<lin <M 0<lin | <M

< o~ bk=m)/(m logA(M+2))'

Hence

dy — ) 42 —~ 5
E — v () s < E k() 15,
-  Kx -~ Kz
TeG neG
0<|Ay|<M O<|Ag|<M
< Z - |n—r—Ze—h(k—m)/(m log4 (M +2))

7eG
O<|Ay|<M
< M" o~ blk=m)/(m 1ogA(M+2))_

The first factor is actually 1, log(M + 2), M"2Zinthecasesn = 1,n = 2,n > 3, but
this will not play an important role. Theorem 1 thus gives that for any M > 0,

W, (v*k’ 1e) < % + M2 bk=m)/@m logA(MJrZ)).
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Choosing logAt! M = b(k — m)/(2mn), we deduce

_1

bk — AFT
W0, ng) <« kﬁrl exp _n ﬂ )
2 2mn

In particular, W (v*k, nG) <K exp <—ckﬁ> withany 0 < ¢ < % . (%)ﬁl. O

Remark Using Theorem 4 instead of Theorem 1, we deduce the general form of the
conclusion of Corollary 2 as Wg(v*k, ue) < gle<* 1/3).

2.3.2 Uniform Distribution Theory

Next, we consider applications in uniform distribution theory. It is not difficult to see
e.g. directly from the definition of Wy, that for any given nonempty finite set A C G
and any g as in Sect. 2.1,

inf  We(v, MG)Z/ g(dist (A, x)) dug (x), (®)
supp vCA G

where the infimum is over all probability measures v whose support is contained in A,
and dist (A, -) denotes distance from the set A. Indeed, the infimum is attained when
for any a € A, v({a}) is the Haar measure of the Voronoi cell

{x e G : dist(A, x) = p(a, x)}.

In this case the optimal transport plan from v to p¢ is to simply spread v({a}) evenly
over the given Voronoi cell. Recall that open balls B(x,r) in G of radius 0 < r <
diam G satisfy r"* < ug(B(x, r)) < r". A standard ball packing argument (using e.g.
the “3r covering lemma” of Vitali) shows that the optimal distance from a probability
measure supported on at most N points to the Haar measure is

sV < Isupipnvf|<1v W (v, ng) < g(N~H™) ®)

with implied constants depending only on G. In particular, (8) and (9) hold for W,
0 < p < 1. We mention that W,,, 1| < p < oo also satisfies the same estimates as
W1. For a detailed proof in the case 1 < p < oo see Kloeckner [22]; the proof for
0 < p < 1 and for more general g is identical. We refer to the same paper for far
reaching generalizations (e.g. to more general measures on Riemannian manifolds).
Lubotzky, Phillips and Sarnak [23,24] considered the problem of finding well
distributed finite sets in SO(3), and consequently, on the sphere S2. For any N
such that 2N — 1 is a prime congruent to 1 modulo 4, they constructed a sym-
metric set {aj, az,...,axy} C SO(3) for which the probability measure vy =
@2N)~! Z,%Z | 84, satisfies g,, = /2N — 1/N; this spectral gap is in fact optimal
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among all symmetric sets of size 2N. Since SO(3) has dimension n = 3, (6) yields
that forany 0 < p <1,

W,y so@) < NP3

with a universal implied constant; by (9), this is optimal. This proves Corollary 3.
Note that the trivial estimate (4) only yields W, (vy, uso@) < N —r/G+2p) More
generally, we have W, (vy, uso3)) < g(N~1/3),

Clozel [16] proved a similar optimal (up to a constant factor) spectral gap estimate
in terms of the size of a finite set in U(d). Less precise estimates on more general
compact homogeneous spaces were obtained by Oh [26].

2.3.3 Empirical Measures

Finally, we address the sharpness of Theorems 1 and 4; we do so by deducing a simple
estimate on the mean rate of convergence of empirical measures. Let v be an arbitrary
Borel probability measure on G, and let {1, &2, ..., {y be independent, identically
distributed G-valued random variables with distribution v. The probability measure
Ty = N1 Z,ivzl d¢, is called the corresponding empirical measure. Theorem 1 gives
an estimate for W, (V, v) — a random variable! — as follows. Let £; = Ex (¢1) =
V(r)*. With vi = Dy and v, = v we then have

_ _ 1<
Vl(ﬂ)—vz(ﬂ)=ﬁg (k) — Ex)*,
k=1

and by independence, the “variance” satisfies

N
E|I5i (1) = B(m)llfs = 73 D_Etr (1@ 7 (@) — ExEx) < -
k=1

In the last step we used that 7 (x) is unitary. Following the steps in (5), in dimension
n > 3 Theorem 1 gives that forany 0 < p < 1 and any M > 0,

— _ ) 1 - Mn—2
EW,(wy,v) < /EW,(wy, ) <<W+M P T

Optimizing the value of M > 0, we finally obtain that in dimension n > 3, for any
0<p<l,

EW, Wy, v) < N~P/" (10)

with an implied constant depending only on G; more generally, EW,(Vy,v) <
g(N~!/™) These are sharp by (9); in particular, Theorems 1 and 4 are also sharp
up to a constant factor depending on G. Note that the only compact, connected Lie
groups in dimension n = 1 and n = 2 are R/Z and R?/Z?, and the sharpness of
Theorem 1 on these groups follows from results in [8].
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The rate of convergence of empirical measures in W, p > 1 on more general metric
spaces was studied by Bach and Weed [2], and by Boissard and Le Gouic [7]. Instead of
Fourier methods, they used a sequence of partitions of the metric space, each refining
its predecessor to construct transport plans. It follows e.g. from [7, Corollary 1.2] that
our estimate (10) can be improved to EW,(Vy, v) K N=Vnforalll < p <n/2. We
refer to [2] for improvements for measures v supported on sets of lower dimension
than the ambient space.

3 Proof of Theorem 4

The proof of Berry—Esseen type inequalities are usually based on smoothing with an
approximate identity whose Fourier transform has bounded support. For instance, in
the proof of Theorem A this Fourier transform is the “rooftop function” max{l —
[t|/T, 0}, supported on [T, T]. The proof of Theorem B uses the discrete version
]_[Z:1 max{1 — |my|/(M + 1), 0}, supported on [—M, M1%; in the setting of the torus
this is known as the Fejér kernel.

Our proof of Theorem 4 follows the same idea. We will choose akernel K3 : G —
C whose Fourier transform satisﬁesﬂ(n) = 0 whenever || > M. Clearly,
[ran= [ ran|<onr - rekitt| [ rekian = [ ki

G G G G (n

where f * Kjs denotes convolution. Our goal is to find an upper estimate of the right
hand side whichis uniformin f € F,; by Kantorovich duality, the same upper estimate
will hold for W, (v1, v2). A possible choice for Ky could be a Fejér-like kernel

)

2

1
|BM|‘ 2
7eCG

Ar€By

with some set Byy € {A € T*NC™ : |A| < M/2}.For convergence properties of such
Fejér kernels on compact Lie groups we refer to [12] and [33]. We mention that using
these kernels it is possible to deduce upper bounds to W, 0 < p < 1 sharp up to a
constant factor depending on p, butin the case p = 1 we necessarily lose a logarithmic
factor in M ; the reason is that the Fejér kernel does not approximate Lipschitz functions
optimally in the supremum norm. Fixing this shortcoming is easy on the torus; we
simply need to use the normalized square of the Fejér kernel instead. By Jackson’s
theorem we then have the optimal rate of approximation || f — f * Ky |lco < g(1/M),
and a sharp Berry—Esseen smoothing inequality on the torus follows [8]. Similar
modifications of the Fejér kernel are known to yield Jackson type theorems on certain
classical groups, see Gong [20]; however, this approach seems not to have been worked
out in full generality. An elegant proof of Jackson’s theorem on an arbitrary compact,
connected Lie group was nevertheless found by Cartwright and Kucharski [15], and
in this paper we will use their kernel.
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For the sake of completeness, we include the construction of the kernel in Sect. 3.1;
we carry out the smoothing procedure in Sect. 3.2; finally, prove a decay estimate for
the Fourier transform of f and finish the proof of Theorem 4 in Sect. 3.3.

3.1 Construction of the Kernel

Recall that the Weyl integral formula [9, p. 338] states that for any central function
NS LY(G, LG) we have

1
deG=—/<P-5GdMT,
fG IW(G, )| Jr

where the function 8 : T — R is defined as

. . 2
s6(exp2r X)) = [[@ ™ — 1= T] ’eh’“(")—l) . Xet

a€R aeRt

In particular, g > 0 and fT dgdur = |W(G, T)|. Expanding the product in its
definition, ¢ is thus a W (G, T)-invariant trigonometric polynomial on 7" of the form

SG(exprX)) = Y e Xet (12)
rer*

root

The constant term is ¢ = |W (G, T)|, and all coefficients satisfy |c;| < |[W(G, T)|.
Observe also that for any ¢ € L (T, nur),

/<P(t)dltT(t)=/ @ (exp2r X)) dpgy r (X)), (13)
T t/T

where ¢, is the normalized Haar measure on t/ I". Note that p¢/r = m/Vol(t/I'),
where Vol(t/I') is the Lebesgue measure of the fundamental domain of I".
Following [15] with minor modifications, we now construct a kernel Kj;. Let
n(X) and F(X) be as in Sect. 2.2, and recall the notation a = minkerr*om [A]/2. Let
M > |2p™| + a be arbitrary, and set My = |[M/(|]2p"| +a)]. Define P : T — C as

P(exp(2 X)) = Vol(t/ T)(aMy)" Z FaMy(X +7Y)), Xet
Yell

Note that P is well-defined, smooth and W (G, T')-invariant. By (13‘_), its Fourier coef-
ficient with respect to A € I'* (i.e. the character exp(2r X) — ¢>"*X) on T) is

ﬁ(x):/ P(expr X))e X dp 1 (X)
/T

= /(aMo)’F(aMOX)e—Zﬂ"W) dm(X)
t
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=n(1"/(@Mo)),

where A* is the unique element in t with A(X) = (1*, X). By the construction of 7,
P(A) = 0 whenever || > aMy; consequently, P is a W(G, T)-invariant trigonomet-
ric polynomial on 7 with degree < a M. Observe also that

SG(IMO) eZ]TiMoa(X) -1

= — t= 2 X
sg(t) o p €0 —1 ¢ = exp(2n X))

is a W(G, T)-invariant trigonometric polynomial on T of degree < [2p™|(Mo — 1).
Hence P (1)8G(tM0)/8¢(t) isa W (G, T)-invariant trigonometric polynomial on 7 of
degree < aMy + [2pT (Mo — 1) < M. It follows (see e.g. [15, Lemma 1]), that

there exists a central trigonometric polynomial Kj3; on G of degree < M — that s, a
function Kps : G — C of the form Ky = Y G |5 |<m @r Xz — such that

3 (t™0)

6 (1)

Ky(@) = P(1) forallr € T.

3.2 The Smoothing Procedure

First, we estimate the coefficients in Ky = Znea Phnl<M G X Let W () denote

the set of weights of a representation 77 € G. Since there exists a unitary matrix U
such that U (exp(2r X))U* = diag (e*'*X) . 1 € W(r)), X € t, we have

Xz (exp(2r X)) = Z X X e,
weWw ()

Therefore

Aarx Z/ Kyxz dug
G

1
WG, D) Jyr

- Cu i —2mi
/t(aMo) F(aMoX)< Z mez MWX))( Z e 2 MX)) dm(X)

reTE o neW ()

P (exp(2m X))dc (exp(2mr Mo X)) xx (exp(27 X)) djiey 1 (X)

Z Z |W(Z;ikT)lrl(—)h*/a + u*/(aMp)),

neW(m) rel’k
where A* € tis such that A(X) = (1*, X). By the construction of 7, for any given
u € W(mr) there is at most one A € I'} , for which n(—A*/a + p*/(aMp)) # 0.
Recalling that |c;| < |W(G,T)| and 0 < n < 1, it follows that the coefficients of
K satisty |ay | < d. For the trivial character the only nonvanishing term is A = 0;
in particular, [ Ky dug = (co/IW(G, T)n(0) = 1.
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Remark 1In fact, the only nonvanishing termis A = O whenever A, | < aMjy. Assuming
in addition, that n(X) = 1 for all |X| < 1/2, we thus have a; = d; whenever
[Az| < aMy/2.Inother words, f * Ky = f for any central trigonometric polynomial
of the form f = Zne@,lxn |<aMo)2 bx x=. Thus Ky is an analogue of the de la Vallée
Poussin kernel, although its construction is not based on the Fejér kernel.

Proposition 5 For any f € F, and any real M > 207 +a,

fcfdvl—fodvz

where \r is as in Theorem 4.

<YM+ Y. dell F s - 171 () — B0 s,
-

[Arx|<M

Proof Recall (11). We first show that 2|| f — f * Kylleo < ¥ (M); with somewhat
weaker constant factors this was proved in [15]. Since the geodesic metric p is trans-
lation invariant both from the left and from the right, from the Weyl integral formula,
(13) and (12) we deduce

ILf = f* Kmllo

fG () — FGy™) K () dua(y)'

= sup
xeG

S/Gg(p(e, INIKy (M dpe(y)

= WG T r 8(p(e, exp(2m X)))| P (exp(27 X))|8G (exp(2m Mo X)) djuy r (X)

; r 2riMoa(X) _ 2)
= W(G.T)| /tg(2N|X|)(aM0) IF(aMOX)|< 1_[ |27iMo 112) dm(x)

a€RT

=y (M)/2.

In the penultimate step we used that g(p(e, exp(2r X))) < g(2m|X]|), as the expo-
nential map is a geodesic of unit speed. Finally, using |a,| < d, we get

Vf*KMdvl—/f*KMdvz < Y do /f*XndVI_/f*XndVZ
G G = G G

|Ar | <M
= D de|o (fO)* Gilr) - 53(1)))]

reG
[Arl<M
< Y el f)lus - 151 (r) = B2l -
e
[Arl<M

which proves the claim. O
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3.3 Decay of the Fourier Transform

We prove a decay estimate for the Fourier transform in somewhat greater generality
than what we need, and then finish the proof of Theorem 4.

Proposition 6 Assume that f € L' (G, ug) satisfies

12
( fG \f ey — f(X)IZdMG(x)) < g(o(h, )

for all h € G with some nondecreasing function g : [0, 00) — [0, 00). Then for any
real number M > 0,

SN n 8 (L)z
drir | f(m)lfs < inf L0
Z S HS 0<c<2(v/n%+n—n) l—c— 62/(4,1) (ﬁ)z

eG
[Ar|<M

If g(t) = t? with some 0 < p < 1, we can choose e.g. ¢ = (+/17 — 3)/2 (this is
optimal in the worst case p — 0, n = 1) yielding

D dakall F()llfys < 907 MPT (14)
7eG Az |<M

In the special case p = 1 the factor 9 can be removed, since the optimal choice is then
toletc — 0 (and M — 00). An estimate similar to (14) has recently been proved
by Daher, Delgado and Ruzhansky [18], with an unspecified implied constant in the
place of 97°~27. Our main improvement is that this implied constant does not depend
on f; a crucial feature in the study of the p-Wasserstein metric.

Proof of Proposition 6 We follow ideas in [18]. For the sake of simplicity, we shall think
about 7 € G as a dyn X dn unitary matrix-valued function on G. For any matrix A €
Cxdx Jet | Allop = sup{|Av| : v € C, |v| = 1} and || Allus = +/tr (A*A) denote
the operator norm and the Hilbert—Schmidt norm, respectively. The operator norm is
submultiplicative; further, forall A, B € C4 <% we have || AB|lus < | Allop- | Bllus,
and the Cauchy—Schwarz inequality |tr (A*B)| < ||Allgs - || Bllus-

One readily verifies the identity

(m(h) = Ia,) Fx) = /G (f(xh) = f(0) m(x)* dug (x),

where [, denotes the d; x d, identity matrix. By the Parseval formula and the
assumption on f, for any & € G we have

> dptr ((7(h) = 1a,)" () — Ia,) Fm) f(7)*) = /G |f(xh) = FOF dug (x)

reG

< g(p(h, e))*.
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Since the exponential map is a geodesic, we have p(exp(uX), e) < |uX|forall X € g
and u € R. For any & = exp(uX) the previous estimate thus yields

D datr ((w(h) = 1a,)" () — Lay) TGO F(0)*) < g(uXD>. (15)
neG

Next, we wish to find a lower estimate. For any X € g let

d
dr(X) = -7 (exp(uX)) lu=0€ CAnxdx

denote the derived representation of 7.

Lemma 1 (Taylor expansion of degree 1) For any X € g and any u € R,
|7 (expuX)) — 14, —u - dm(X) ||op < 7||dn(X)||op.

Proof of Lemma 1 We simply apply the usual Taylor formula to the matrix-valued
function F(u) = m(exp(uX)). Since 7 is a homomorphism, we have F'(u) =
m(exp(uX))dm (X). First, note that for any u € R,

|7 (expX)) — I, Hop = ” /O 7 (exp(yX))dm(X)dy
op

Jul
ffo [l (exp(y X)) llop - lld7w (X)[lop dy

= |ul - [|d7w (X)lop-

We used the fact that 7w (exp(yX)) is a unitary matrix and thus has operator norm 1.
Therefore

|7 (expX)) — 14, — u - dm(X) ||0p = H/O (w(exp(yX)) — Ia, ) dmr(X) dy
op

Jue]
= fo 7 exp(rX)) = Lay [ 4, - 17 (XD llop dy

|u]
5/0 91 I COI2, dy

= 5 Ild7 (Ol O

Lemma 2 (Sugiura) For any X € g, we have ||dm(X)|lop < [Az| - |X].

Proofof Lemma2 In [32, Theorem 2] Sugiura stated and proved the estimate
ldm (X)) |lus < /dr|Ax| - |X]|. His proof is based on the fact that with some d; X dr
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unitary matrix U, we have Udn (X)U™* = diag (iA(X) : A € W(rr)), where W () is
the set of weights of 7. Further, we have |A| < |A;|forall A € W(ir). Hence Sugiura’s
proof in fact yields the slightly stronger claim of Lemma 2. O

Lemma3 Let Xy, ..., X, be an orthonormal base in g. For any u € R, the points
hi = exp(uXy) satisfy

n

D () = 1a,)" (we) — 1a,) = w’knla, + E
k=1

with some E € C4 ¥ || E|lop < nlul? Az | + nu*/4)|hr|*.
Proof of Lemma 3 By Lemma 1 we can write
7 (hi) — 1a, = u - dm(Xy) + E

with some error matrix Ej satisfying || Ex |lop < w?/2) ||d7'[(Xk)||gp. Therefore

n

Z ((he) — 1a,)" (7w (he) — La, ) = u® Zdrr(Xk)*dn(Xk) +E

k=1 k=1

where
n

I Ellop = (u - dm (Xp)*Ex + Eju - dm (Xy) + Ej Ex)

k=1 op
n

2 4
u u
<> (2|u| ldm (X lop + = Il (X, + anmxk)nép) :
k=1

By Lemma 2, the previous estimate yields || E[lop < nlul*|Az|*> + n(u*/4)|Az|*. On
the other hand, we have d7(X)* = —dn(X), and by the definition of the Laplace—
Beltrami operator,

D dr(Xp)dr(X) = — Y dr(Xp)dm (Xp) = —(An)(e) = krla,. O
k=1 k=1

We now finish the proof of Proposition 6. Recall that |A;|?> < k. From Lemma 3
we deduce that for any u € R,

n

tr(Z (m(he) — 1a,)" ((hi) — 1y f(n)f(n)*) (16)

k=1
= tr (1 f0) o)) + e (EF ) o))

> uwPier | F () s — 1E F O llus - 170 s
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> uPier | F () s — 1 Ellop - 11700 I 3s

4
o~ u
> 1 F (s (uzxn —nlul e = n;mr‘)

2
o~ u
> 1 F (s - u?kn (1 —nlul - Al —nZMnF) :

Let M > 0and 0 < ¢ < 2(+/n% 4+ n — n) be arbitrary, and choose u = c¢/(nM). For
any |Ar| < M we then have

2 2
L= nful - P —ne P >l—c— S 50
4 - 4n ’

and thus (15) and (16) imply

2 n * = Yy
ng (ﬁ) > Z dntr (Z (w(hi) = 1a,)" (7w (hp) — Ia,) f(JT)f(JT)*>

7eG k=1
|[Az|<=M
~ c \2 c?
= Y dal Tl (7)) % (1 —c- E) :
TeG
[Az|<=M
Since 0 < ¢ < 2(+/n? + n — n) was arbitrary, the claim follows. O

Proof of Theorem 4 From Propositions 5 and 6 and the Cauchy—Schwarz inequality
we get that for any f € F, and any real number M > 1207 + a,

‘/Gfdvl—/Gfdvz

A dy Y
Sy + | D derll F s Y IFie =Bl

= bd

1/2 172

reG reG
O<|Ar|<M O<|Ag|<M
1/2

de
Sy +en | 3 IR - Bl

reG "
O<|Ay|<M

By Kantorovich duality, the same upper bound holds for W, (v1, v2). O
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