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Abstract
We prove a sharp general inequality estimating the distance of two probability mea-
sures on a compact Lie group in the Wasserstein metric in terms of their Fourier
transforms. We use a generalized form of the Wasserstein metric, related by Kan-
torovich duality to the family of functions with an arbitrarily prescribed modulus of
continuity. The proof is based on smoothing with a suitable kernel, and a Fourier decay
estimate for continuous functions. As a corollary, we show that the rate of convergence
of randomwalks on semisimple groups in theWasserstein metric is necessarily almost
exponential, even without assuming a spectral gap. Applications to equidistribution
and empirical measures are also given.

Keywords Transport metric · Fourier transform · Compact group · Random walk ·
Spectral gap · Erdős–Turán inequality · Equidistribution

Mathematics Subject Classification 43A77 · 60B15

1 Introduction

If the Fourier transform of two Borel probability measures on R are equal, then the
measures themselves are also equal. The celebrated Berry–Esseen smoothing inequal-
ity is a quantitative form of this fundamental fact of classical Fourier analysis. Given
two Borel probability measures ν1 and ν2 on R, let Fj (x) = ν j ((−∞, x]), j = 1, 2,
and define

δunif(ν1, ν2) = sup
x∈R

|F1(x) − F2(x)| .
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Theorem A (Berry–Esseen smoothing inequality) Assume that |F2(x) − F2(y)| ≤
K |x − y| for all x, y ∈ R with some constant K > 0. Then for any real number
T > 0,

δunif(ν1, ν2) � K

T
+
∫ T

−T

|ν̂1(t) − ν̂2(t)|
|t | dt

with a universal implied constant.

In the terminology of probability theory, Fj (x) is the distribution function of ν j ;
the Fourier transform ν̂ j (t) = ∫

R
eitx dν j (x) is the characteristic function of ν j ;

finally, δunif is the uniform metric (or Kolmogorov metric) on the set of probability
distributions. For somewhat sharper forms of TheoremA see Petrov [28, Chapter 5.1].
Throughout the paper A � B and A = O(B) mean that A ≤ CB with some implied
constant C > 0.

Similar smoothing inequalities are known for several other probability metrics on
R, see Bobkov [4] for a survey. Some, but not all require a smoothness assumption
on one of the distributions; for instance, Theorem A is usually formulated under the
assumption that F2 is differentiable and |F ′

2(x)| ≤ K . A common feature of such
results is that the distance of ν1 and ν2 in some probability metric is bounded above
by the sum of two terms depending on a free parameter T > 0: one term decays as T
increases, and the other term depends on the Fourier transforms of ν1 and ν2 only on
the interval [−T , T ].

Berry–Esseen type smoothing inequalities are known in other spaces as well.
The first multidimensional version, an upper bound for the uniform metric on R

d

is due to von Bahr [36]. Niederreiter and Philipp proved an analogous result for two
Borel probability measures ν1 and ν2 on the torus R

d/Z
d . By identifying R

d/Z
d

with the unit cube [0, 1)d , we can define the uniform metric as δunif(ν1, ν2) =
supx∈[0,1]d |ν1(B(x))− ν2(B(x))|, where B(x) = [0, x1)×· · ·× [0, xd). The Fourier
transform is now ν̂ j (m) = ∫

Rd/Zd e−2π i〈m,x〉 dν j (x), m ∈ Z
d . Let μRd/Zd be the

normalized Haar measure, and let ‖m‖∞ = max1≤k≤d |mk |.
Theorem B (Niederreiter–Philipp [25]) Assume that ν2(B) ≤ KμRd/Zd (B) for all

axis parallel boxes B ⊆ [0, 1)d with some constant K > 0. Then for any real number
M > 0,

δunif(ν1, ν2) � K

M
+

∑
m∈Zd

0<‖m‖∞<M

|ν̂1(m) − ν̂2(m)|∏d
k=1 max{|mk |, 1}

with an implied constant depending only on d.

The goal of this paper is to prove a Berry–Esseen type smoothing inequality in
more general compact groups. In this more general setting only those probability
metrics remain meaningful whose definition does not rely on concepts such as axis
parallel boxes and distribution functions. One of the most important such metrics is



Journal of Fourier Analysis and Applications (2021) 27 :13 Page 3 of 23 13

the p-Wasserstein metric Wp. Given a compact metric space (X , ρ) and two Borel
probability measures ν1 and ν2 on X , we define

Wp(ν1, ν2) = inf
ϑ∈Coup(ν1,ν2)

∫
X×X

ρ(x, y)p dϑ(x, y) (0 < p ≤ 1),

and

Wp(ν1, ν2) = inf
ϑ∈Coup(ν1,ν2)

(∫
X×X

ρ(x, y)p dϑ(x, y)

)1/p
(1 < p < ∞).

HereCoup(ν1, ν2) is the set of couplings ofν1 andν2; that is, the set ofBorel probability
measures ϑ on X × X with marginals ϑ(B × X) = ν1(B) and ϑ(X × B) = ν2(B),
B ⊆ X Borel. Recall that for any p > 0,Wp is a metric on the set of Borel probability
measures on X , and it generates the topology of weak convergence. Observe also
the general inequalities Wp(ν1, ν2) ≤ W1(ν1, ν2)

p, 0 < p ≤ 1 and W1(ν1, ν2) ≤
Wp(ν1, ν2), 1 ≤ p < ∞. The Wasserstein metric originates in the theory of optimal
transportation, see Villani [35].

Respecting the philosophy of the Berry–Esseen inequality, we wish to find an upper
bound to Wp(ν1, ν2) depending on the Fourier transform of ν1 and ν2 only up to a
certain “level”. For this reason we chose to work with compact Lie groups, where the
theory of highest weights provides a suitable framework to formalize the meaning of
“level”. More precisely, our main result applies to any compact, connected Lie group
G; classical examples includeR

d/Z
d , U(d), SU(d), SO(d), Sp(d) and Spin(d). Let Ĝ

denote the unitary dual, and let dπ , λπ and κπ denote the dimension, the highest weight
and the negative Laplace eigenvalue of the representationπ ∈ Ĝ, respectively. Further,
let ‖A‖HS = √

tr(A∗A) be the Hilbert–Schmidt norm of amatrix A. For amore formal
setup we refer to Sect. 2.1. In this paper we prove the following Berry–Esseen type
smoothing inequality for Wp on compact Lie groups.

Theorem 1 Let ν1 and ν2 be Borel probability measures on a compact, connected Lie
group G. For any 0 < p ≤ 1 and any real number M > 0,

Wp(ν1, ν2) � 1

Mp
+ M1−p

⎛
⎜⎜⎝

∑
π∈Ĝ

0<|λπ |<M

dπ

κπ

‖ν̂1(π) − ν̂2(π)‖2HS

⎞
⎟⎟⎠

1/2

(1)

with an implied constant depending only on G.

The result holds without any smoothness assumption on ν1 and ν2. As the applications
in Sect. 2.3 will show, the inequality is sharp up to a constant factor depending on G.
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In the simplest case of the torus G = R
d/Z

d equation (1) reads

Wp(ν1, ν2) � 1

Mp
+ M1−p

⎛
⎜⎜⎝

∑
m∈Zd

0<|m|<M

|ν̂1(m) − ν̂2(m)|2
|m|2

⎞
⎟⎟⎠

1/2

(2)

with an implied constant depending on d, where |m| is the Euclidean norm of m; this
should be compared to Theorem B. For a detailed proof with explicit constants we
refer to our earlier paper [8, Proposition 3] and to Bobkov and Ledoux [5,6].

Our methods do not work when p > 1; the reason is that the proof is based on
Kantorovich duality for Wp. Recall that the Kantorovich duality theorem states that
for any 0 < p ≤ 1,

Wp(ν1, ν2) = sup
f ∈Fp

∣∣∣∣
∫
G

f dν1 −
∫
G

f dν2

∣∣∣∣ ,

where, with ρ denoting the geodesic distance on G,

Fp = { f : G → R : | f (x) − f (y)| ≤ ρ(x, y)p for all x, y ∈ G
}

is the set of p-Hölder functions onG, withHölder constant 1. Theorem1 thus estimates
the difference of the integrals of f with respect to ν1 and ν2 uniformly in f ∈ Fp.
From our methods it also follows that for any f ∈ Fp,

∣∣∣∣
∫
G

f dν1 −
∫
G

f dν2

∣∣∣∣� 1

Mp
+

∑
π∈Ĝ

0<|λπ |<M

dπ‖ f̂ (π)‖HS · ‖ν̂1(π) − ν̂2(π)‖HS

with an implied constant depending only on G; see Proposition 5. Hence for a given
f ∈ Fp whose Fourier transform decays fast enough, the results of Theorem 1 can
be improved. Fast Fourier decay follows e.g. from suitable smoothness assumptions
on f , see Sugiura [32]. We mention that by prescribing a higher order modulus of
continuity for f , the term 1/Mp can also be improved. Note that Fourier decay rates
play a role in classical Berry–Esseen type inequalities as well: the coefficient |t |−1

(resp.
∏d

k=1 max{|mk |, 1}−1) in TheoremA (resp. Theorem B) is explained by the fact
that the Fourier transform of the indicator function of an interval (resp. axis parallel
box) decays at this rate.

The most straightforward application of Theorem 1 is estimating the rate of con-
vergence of random walks in the Wp metric. Let ν∗k denote the k-fold convolution
power of ν, and let μG be the Haar measure on G. Recall that ν∗k → μG weakly
as k → ∞ if and only if the support of ν is contained neither in a proper closed
subgroup, nor in a coset of a proper closed normal subgroup ofG; see Stromberg [31].
Using a nonuniform spectral gap result of Varjú, we prove the following application
of Theorem 1.
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Corollary 2 Let ν be a Borel probability measure on a compact, connected, semisimple
Lie group G. If ν∗k → μG weakly as k → ∞, then

W1(ν
∗k, μG) � e−ck1/3 ,

where the constant c > 0 and the implied constant depend only on G and ν.

The condition of semisimplicity cannot be removed. The rate of convergence Wp �
exp(−pck1/3), 0 < p ≤ 1 immediately follows. The main motivation came from our
recent paper [8] on quantitative ergodic theorems for random walks. Given indepen-
dent, identically distributed G-valued random variables ζ1, ζ2, . . . with distribution ν,
we showed that for any f ∈ Fp the sum

∑N
k=1 f (ζ1ζ2 · · · ζk) satisfies the central limit

theorem and the law of the iterated logarithm, provided that
∑∞

k=1 Wp(ν
∗k, μG) < ∞.

Corollary 2 thus provides a large class of examples of random walks with fast enough
convergence in Wp, and consequently to which our quantitative ergodic theorems

apply. We do not know whether Wp(ν
∗k, μG) � e−ck1/3 remains true for p > 1.

Another possible application is in uniform distribution theory, where the goal
is finding finite sets {a1, a2, . . . , aN } ⊂ G which make the integration error
|N−1∑N

k=1 f (ak) − ∫G f dμG | small for a suitable class of test functions. Apply-

ing Theorem 1 to ν1 = N−1∑N
k=1 δak (where δa is the Dirac measure concentrated at

a ∈ G) and ν2 = μG , we can quantitatively measure how well distributed a finite set
is with respect to test functions f ∈ Fp. Note that in this case we have

‖ν̂1(π) − ν̂2(π)‖2HS = 1

N 2

N∑
k,
=1

χπ(a−1
k a
), (3)

where χπ(x) = tr π(x) is the character of the representation π ∈ Ĝ. Theorem 1 thus
becomes an abstract version of the Erdős–Turán inequality, estimating the distance of
a finite set from uniformity in terms of character sums. As an illustration, consider the
classical construction of Lubotzky, Phillips and Sarnak [23,24] of a finite point set in
SO(3) with optimal spectral gap. We will prove that this point set is also optimally
close to the Haar measure in the Wp metric up to a constant factor; see Sect. 2.3.2 for
a more precise formulation.

Corollary 3 The finite point set {a1, a2, . . . , aN } ⊂ SO(3) with optimal spectral gap
constructed in [23,24] satisfies, for all 0 < p ≤ 1,

Wp

(
1

N

N∑
k=1

δak , μSO(3)

)
� N−p/3

with a universal implied constant.

EstimatingWp is more difficult in the p > 1 case, when Kantorovich duality is not
available.Graham [21] gave an analogue of (2) for all p ≥ 1 onR/Z and on the interval
[0, 1]. His arguments do not generalize to higher dimensions; see, however, [30] for
connections between Wp, p ≥ 1 and Fourier analysis on R

d/Z
d . Fourier methods

were used to estimate Wp, p ≥ 1 in the optimal matching problem in [1,5,6,14].
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Brown and Steinerberger [13,29] considered the more abstract setting of compact
Riemannian manifolds, and estimated the distance in W2 from N−1∑N

k=1 δak to the
Riemannian volume in terms of character sums (3), and also in terms of the Green
function of the Laplace–Beltrami operator. A similar Erdős–Turán inequality on com-
pact Riemannian manifolds with respect to sufficiently nice test sets was proved by
Colzani, Gigante and Travaglini [17]. Numerical results for certain finite point sets
on the orthogonal group O(d) and on Grassmannian manifolds were obtained by
Pausinger [27].

For probability distributions onR, Esseen [19], [4, Corollary 8.3] used a smoothing
inequality forW1(ν1, ν2) to estimate the rate of convergence inW1 in the central limit
theorem; our Theorem 1 and Corollary 2 are far reaching analogues of these classical
results in the compact setting. In the p > 1 case the only known smoothing inequality
on R applies to W2(ν1, ν2) with ν2 a Gaussian distribution [4, Theorem 11.1].

The discussion above can be generalized from Fp to the class of functions with
an arbitrarily prescribed modulus of continuity, and we will actually work out the
details in this generality. In particular, our results apply to any given f ∈ C(G). The
formal setup and notation are given in Sect. 2.1; we state the general form of Theorem
1 with explicit constants in Sect. 2.2; applications to random walks and to uniform
distribution theory are discussed in more detail, and the proofs of Corollaries 2 and 3
are given in Sect. 2.3. The proof of the main result, Theorem 4 is given in Sect. 3.

2 Results

2.1 Notation

For the general theory of compact Lie groups we refer to Bourbaki [9, Chapter 9].
Throughout the paperG denotes a compact, connected Lie groupwith identity element
e ∈ G and Lie algebra g. Let exp : g → G and n = dimG denote the exponential
map and the dimension of G as a real smooth manifold. Fix an Ad-invariant inner
product (·, ·) on g, and let |X | = √

(X , X), X ∈ g. This inner product defines a
Riemannian metric on G; let ρ denote the corresponding geodesic metric on G. The
Laplace–Beltrami operator on G is � =∑n

k=1 Xk Xk (as an element of the universal
enveloping algebra of g), where X1, . . . , Xn is an orthonormal base in g with respect
to (·, ·); this does not depend on the choice of the orthonormal base.

Let r denote the rank of G, and fix a maximal torus T in G with Lie algebra t. Let
t∗ = Hom(t, R) denote the dual vector space. The sets

 = {X ∈ t : exp(2πX) = e} ,

∗ = {λ ∈ t∗ : λ(X) ∈ Z for all X ∈ 
}

are dual lattices of full rank in t and t∗, respectively. The inner product on g naturally
defines an inner product on t∗, which we also denote by (·, ·); we also write |λ| =√

(λ, λ), λ ∈ t∗. The inner product defines a normalized Lebesgue measure m on t.
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The weights will be considered elements of ∗; the character of T corresponding
to λ ∈ ∗ is exp(2πX) �→ e2π iλ(X), X ∈ t. Let R be the set of roots, and choose a set
of positive roots R+; we have |R| = n − r and |R+| = (n − r)/2. Let ∗

root ⊆ ∗ be
the lattice spanned by the roots. Further, let

C+ = {λ ∈ t∗ : (λ, α) ≥ 0 for all α ∈ R+}

be the dominant Weyl chamber; the set of dominant weights is thus ∗ ∩ C+. The
Weyl group of G with respect to T will be denoted by W (G, T ) = NG(T )/T .

Let Ĝ be the unitary dual of G. For any π ∈ Ĝ, let dπ and λπ denote the dimension
and the highest weight of π . The map π �→ λπ is a bijection from Ĝ to the set of
dominant weights ∗ ∩C+. Let κπ ≥ 0 denote the negative Laplace eigenvalue of π ;
that is, �π = −κππ where � acts entrywise. Recall that

κπ = |λπ |2 + 2(λπ , ρ+) and dπ =
∏

α∈R+(λπ + ρ+, α)∏
α∈R+(ρ+, α)

,

where ρ+ =∑α∈R+ α/2 is the half-sum of positive roots; in particular,

|λπ |2 ≤ κπ ≤ |λπ |2 + O(|λπ |) and dπ � |λπ |(n−r)/2.

LetμG (resp.μT ) denote the normalized Haar measure onG (resp. T ). The Fourier
transform of a function f : G → C is f̂ (π) = ∫G f (x)π(x)∗ dμG(x), π ∈ Ĝ; that
of a Borel probability measure ν on G is ν̂(π) = ∫G π(x)∗ dν(x), π ∈ Ĝ. Here π(x)∗
denotes the adjoint of π(x), and the integrals are taken entrywise.

Let g : [0,∞) → [0,∞) be a nondecreasing and subadditive1 function such that
limt→0+ g(t) = 0, and define

Wg(ν1, ν2) = inf
ϑ∈Coup(ν1,ν2)

∫
G×G

g(ρ(x, y)) dϑ(x, y),

where Coup(ν1, ν2) is the set of couplings, as before. Letting

Fg = { f : G → R : | f (x) − f (y)| ≤ g(ρ(x, y)) for all x, y ∈ G} ,

the Kantorovich duality theorem states

Wg(ν1, ν2) = sup
f ∈Fg

∣∣∣∣
∫
G

f dν1 −
∫
G

f dν2

∣∣∣∣ .

Note thatWg is a metric on the set of Borel probability measures onG and it generates
the topology of weak convergence, unless g is constant zero. In the special case

1 That is, g(t + u) ≤ g(t) + g(u) for all t, u ≥ 0.
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g(t) = t p, 0 < p ≤ 1 we write Wp (resp. Fp) instead of Wg (resp. Fg). We mention
that given f ∈ C(G), the function

g f (t) = sup{| f (x) − f (y)| : x, y ∈ G, ρ(x, y) ≤ t}

is nondecreasing and subadditive, and limt→0+ g f (t) = 0; in fact, g f is the smallest
g for which f ∈ Fg .

Remark Kantorovich duality is usually stated for g(t) = t , i.e. for Lipschitz functions.
To see the general case, note that g(ρ(x, y)) is another metric on G generating the
topology ofG, unless g is constant zero; the subadditivity of g is needed for the triangle
inequality. Kantorovich duality for Lipschitz functions in the g(ρ(x, y)) metric thus
implies Kantorovich duality forWg as claimed. Further, since the usual 1-Wasserstein
metric with respect to g(ρ(x, y)) generates the topology of weak convergence, so does
Wg .

2.2 Berry–Esseen Inequality on Compact Lie Groups

Let η : t → R be a W (G, T )-invariant smooth function such that η(X) = 0 for all
|X | ≥ 1, and 0 ≤ η(X) ≤ η(0) = 1 for all X ∈ t. Since W (G, T ) acts by orthogonal
transformations on t, W (G, T )-invariance can be ensured e.g. if η(X) depends only
on |X |. For instance, we can use the “bump function”

η(X) =
{
exp
(
− |X |2

1−|X |2
)
if |X | < 1,

0 if |X | ≥ 1.

Let F : t → C, F(X) = ∫
t η(Y )e2π i(X ,Y ) dm(Y ); note that F(X) is a Schwarz

function, thus |F(X)| decays at an arbitrary polynomial rate as |X | → ∞. The main
result of the paper is the following Berry–Esseen type inequality.

Theorem 4 Let ν1 and ν2 be Borel probability measures on a compact, connected Lie
group G, and let g : [0,∞) → [0,∞) be nondecreasing and subadditive such that
limt→0+ g(t) = 0. Let

ψ(t) = 2

|W (G, T )|
∫
t
g

(
2π |X |

�t/(|2ρ+| + a)�
)
ar |F(aX)|

( ∏
α∈R+

|e2π iα(X) − 1|2
)
dm(X)

where a = minλ∈∗
root

|λ|/2 = minα∈R |α|/2 and ρ+ =∑α∈R+ α/2, and let

φ(t) = inf
0<c<2(

√
n2+n−n)

√
n

1 − c − c2/(4n)
· g
( c
nt

)
c
nt

.
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Then for any real number M ≥ |2ρ+| + a,

Wg(ν1, ν2) ≤ ψ(M) + φ(M)

⎛
⎜⎜⎝

∑
π∈Ĝ

0<|λπ |<M

dπ

κπ

‖ν̂1(π) − ν̂2(π)‖2HS

⎞
⎟⎟⎠

1/2

.

Observe that ψ(M) � g(1/M) and φ(M) � Mg(1/M) with implied constants
depending only on G. Theorem 1 thus follows from Theorem 4 with g(t) = t p,
0 < p ≤ 1.

2.3 Applications

2.3.1 Spectral Gaps and RandomWalks

Given Borel probability measures ν1 and ν2 on G, let ν1 ∗ ν2 denote their convolution,
and let ν∗

1 (B) = ν1(B−1), B ⊆ G Borel. If ζ1 and ζ2 are independent G-valued
random variables with distribution ν1 and ν2, then ν1 ∗ ν2 (resp. ν∗

1 ) is the distribution
of ζ1ζ2 (resp. ζ

−1
1 ).

Let L2
0(G, μG) be the orthogonal complement of the space of constant functions in

L2(G, μG); that is, the set of all f ∈ L2(G, μG) with
∫
G f dμG = 0. Given a Borel

probability measure ν on G, let Tν : L2
0(G, μG) → L2

0(G, μG),

(Tν f )(x) =
∫
G

f (xy) dν(y)

be its associated Markov operator. Observe that Tν1∗ν2 = Tν1Tν2 and Tν∗ = T ∗
ν ; in

particular, Tν is self-adjoint (resp. normal) if and only if ν = ν∗ (resp. ν ∗ν∗ = ν∗ ∗ν).
We start with a trivial estimate for Wp(ν, μG) in terms of Tν . It is not difficult to

see that

qν := ‖Tν‖op = sup
π∈Ĝ
π �=π0

‖̂ν(π)‖op,

where π0 ∈ Ĝ denotes the trivial representation, and ‖ · ‖op is the operator norm. Let
f ∈ Fp with

∫
G f dμG = 0 be arbitrary, and note that Tν f ∈ Fp. Since |Tν f | ≥

|(Tν f )(e)|/2 on the ball centered at e with radius r = (|(Tν f )(e)|/2)1/p, we have

‖Tν f ‖22 ≥
(

(Tν f )(e)

2

)2
μG (B(e, r)) � |(Tν f )(e)|2+n/p,

‖Tν f ‖22 ≤ ‖Tν‖2op · ‖ f ‖22 � ‖Tν‖2op.
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Therefore | ∫G f dν| = |(Tν f )(e)| � q2p/(n+2p)
ν , and consequently

Wp(ν, μG) � q2p/(n+2p)
ν . (4)

We now deduce a sharp improvement on the trivial estimate (4). Recall that
‖A‖HS ≤ √

dπ‖A‖op for any dπ × dπ matrix A. With ν1 = ν and ν2 = μG ,

∑
π∈Ĝ

0<|λπ |<M

dπ

κπ

‖ν̂1(π) − ν̂2(π)‖2HS ≤
∑
π∈Ĝ

0<|λπ |<M

d2π
κπ

‖̂ν(π)‖2op

�
∑
π∈Ĝ

0<|λπ |<M

|λπ |n−r−2q2ν

�
⎧⎨
⎩
q2ν if n = 1,
(log(M + 2))q2ν if n = 2,
Mn−2q2ν if n ≥ 3.

(5)

Optimizing the value of the free parameter M > 0, in dimension n ≥ 3 Theorem 1
thus gives that for any 0 < p ≤ 1,

Wp(ν, μG) � q2p/nν (6)

with an implied constant depending only on G. Using Theorem 4 instead, we get
Wg(ν, μG) � g(q2/nν ). Similar estimates can be deduced in dimensions n = 1 and 2.
Clearly qν ≤ 1, and qν1∗ν2 ≤ qν1qν2 ; in particular, (6) gives the upper bound for the
rate of convergence of random walks Wp(ν1 ∗ · · · ∗ νN , μG) �∏N

k=1 q
2p/n
νk .

We say that ν has a spectral gap, if the spectral radius of Tν is strictly less than 1;
note that this is a direct generalization of Cramér’s condition in classical probability
theory. Assuming Tν is normal, having a spectral gap is equivalent to qν < 1; for
general Tν , it is equivalent to qν∗m < 1 for some integer m ≥ 1. Deciding whether
a given ν has a spectral gap is a highly nontrivial problem. Generalizing results of
Bourgain and Gamburd [10,11] on SU(2) and SU(d), Benoist and Saxcé considered
a Borel probability measure ν on a compact, connected, simple Lie group G. They
proved [3, Theorem 3.1] that if the support of ν is not contained in any proper closed
subgroup, and each element of the support (as a matrix) has algebraic entries, then ν

has a spectral gap. The same authors also conjectured that the condition that the matrix
entries are algebraic can be dropped.

Using (6) (or even just (4)), Wp(ν
∗k, μG) → 0 exponentially fast as k → ∞

whenever ν has a spectral gap. Corollary 2 is thus basically an unconditional (i.e. not
assuming the conjecture of Benoist and Saxcé), weaker form of this fact. In contrast
to the (semi)simple case, Wp(ν

∗k, μG) → 0 polynomially fast for certain finitely
supported measures ν on the torus R

d/Z
d [8].

So far we have only discussed the relationship betweenWp(ν, μG) and the spectral
gap of ν. Theorem1, however, provides a quantitative relationship betweenWp(ν, μG)

and the spectrum of the self-adjoint operator T ∗
ν Tν itself. Indeed, by the Peter–Weyl
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theorem L2
0(G, μG) = ⊕π∈Ĝ,π �=π0

Vπ , where Vπ is the vector space spanned by the
entries of π(x). Since (Tνπ)(x) = π(x )̂ν(π)∗, the action of Tν on Vπ is determined
by ν̂(π); in particular, dπ ‖̂ν(π)‖2HS is simply the sum of all spectrum points of T ∗

ν Tν

on Vπ . The proof of Corollary 2 is based on this quantitative relationship.

Proof of Corollary 2 Varjú [34, Theorem 6] proved that for any Borel probability mea-
sure ϑ on G and any M > 0,

1 − max
π∈Ĝ

0<|λπ |≤M

‖ϑ̂(π)‖op ≥ c0

⎛
⎝1 − max

π∈Ĝ
0<|λπ |≤M0

‖ϑ̂(π)‖op
⎞
⎠ 1

logA(M + 2)
, (7)

where the constants c0, M0 > 0 and 1 ≤ A ≤ 2 depend only on the group G;
in fact, the exact value of A was also given. Since ν∗k → μG weakly, we have
ν̂(π)k = ν̂∗k(π) → 0 for all π �= π0, and hence the spectral radius of ν̂(π) is less
than 1. It follows that for any π ∈ Ĝ with 0 < |λπ | ≤ M0, we have ‖̂ν(π)m‖op < 1
with some positive integer m = m(G, ν); in particular,

b = b(G, ν) := c0

⎛
⎝1 − max

π∈Ĝ
0<|λπ |≤M0

‖̂ν(π)m‖op
⎞
⎠ > 0.

Applying (7) to ϑ = ν∗m , we get that for any positive integer k and any M > 0,

max
π∈Ĝ

0<|λπ |≤M

‖ν̂∗k(π)‖op ≤
⎛
⎝ max

π∈Ĝ
0<|λπ |≤M

‖̂ν(π)m‖op
⎞
⎠

�k/m�
≤
(
1 − b

logA(M + 2)

)(k−m)/m

≤ e−b(k−m)/(m logA(M+2)).

Hence

∑
π∈Ĝ

0<|λπ |<M

dπ

κπ

‖ν̂∗k(π)‖2HS ≤
∑
π∈Ĝ

0<|λπ |<M

d2π
κπ

‖ν̂∗k(π)‖2op

�
∑
π∈Ĝ

0<|λπ |<M

|λπ |n−r−2e−b(k−m)/(m logA(M+2))

� Mne−b(k−m)/(m logA(M+2)).

The first factor is actually 1, log(M + 2), Mn−2 in the cases n = 1, n = 2, n ≥ 3, but
this will not play an important role. Theorem 1 thus gives that for any M > 0,

W1(ν
∗k, μG) � 1

M
+ Mn/2e−b(k−m)/(2m logA(M+2)).
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Choosing logA+1 M = b(k − m)/(2mn), we deduce

W1(ν
∗k, μG) � k

1
A+1 exp

(
−n

2

(
b(k − m)

2mn

) 1
A+1
)

.

In particular, W1(ν
∗k, μG) � exp

(
−ck

1
A+1

)
with any 0 < c < n

2 · ( b
2mn )

1
A+1 . ��

Remark Using Theorem 4 instead of Theorem 1, we deduce the general form of the
conclusion of Corollary 2 as Wg(ν

∗k, μG) � g(e−ck1/3).

2.3.2 Uniform Distribution Theory

Next, we consider applications in uniform distribution theory. It is not difficult to see
e.g. directly from the definition of Wg , that for any given nonempty finite set A ⊂ G
and any g as in Sect. 2.1,

inf
supp ν⊆A

Wg(ν, μG) =
∫
G
g(dist (A, x)) dμG(x), (8)

where the infimum is over all probability measures ν whose support is contained in A,
and dist (A, ·) denotes distance from the set A. Indeed, the infimum is attained when
for any a ∈ A, ν({a}) is the Haar measure of the Voronoi cell

{x ∈ G : dist (A, x) = ρ(a, x)}.

In this case the optimal transport plan from ν to μG is to simply spread ν({a}) evenly
over the given Voronoi cell. Recall that open balls B(x, r) in G of radius 0 < r <

diamG satisfy rn � μG(B(x, r)) � rn . A standard ball packing argument (using e.g.
the “3r covering lemma” of Vitali) shows that the optimal distance from a probability
measure supported on at most N points to the Haar measure is

g(N−1/n) � inf|supp ν|≤N
Wg(ν, μG) � g(N−1/n) (9)

with implied constants depending only on G. In particular, (8) and (9) hold for Wp,
0 < p ≤ 1. We mention that Wp, 1 ≤ p < ∞ also satisfies the same estimates as
W1. For a detailed proof in the case 1 ≤ p < ∞ see Kloeckner [22]; the proof for
0 < p < 1 and for more general g is identical. We refer to the same paper for far
reaching generalizations (e.g. to more general measures on Riemannian manifolds).

Lubotzky, Phillips and Sarnak [23,24] considered the problem of finding well
distributed finite sets in SO(3), and consequently, on the sphere S2. For any N
such that 2N − 1 is a prime congruent to 1 modulo 4, they constructed a sym-
metric set {a1, a2, . . . , a2N } ⊂ SO(3) for which the probability measure νN =
(2N )−1∑2N

k=1 δak satisfies qνN = √
2N − 1/N ; this spectral gap is in fact optimal
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among all symmetric sets of size 2N . Since SO(3) has dimension n = 3, (6) yields
that for any 0 < p ≤ 1,

Wp(νN , μSO(3)) � N−p/3

with a universal implied constant; by (9), this is optimal. This proves Corollary 3.
Note that the trivial estimate (4) only yields Wp(νN , μSO(3)) � N−p/(3+2p). More
generally, we have Wg(νN , μSO(3)) � g(N−1/3).

Clozel [16] proved a similar optimal (up to a constant factor) spectral gap estimate
in terms of the size of a finite set in U(d). Less precise estimates on more general
compact homogeneous spaces were obtained by Oh [26].

2.3.3 Empirical Measures

Finally, we address the sharpness of Theorems 1 and 4; we do so by deducing a simple
estimate on the mean rate of convergence of empirical measures. Let ν be an arbitrary
Borel probability measure on G, and let ζ1, ζ2, . . . , ζN be independent, identically
distributed G-valued random variables with distribution ν. The probability measure
νN := N−1∑N

k=1 δζk is called the corresponding empirical measure. Theorem 1 gives
an estimate for Wp(νN , ν) — a random variable! — as follows. Let Eπ = Eπ(ζ1) =
ν̂(π)∗. With ν1 = νN and ν2 = ν we then have

ν̂1(π) − ν̂2(π) = 1

N

N∑
k=1

(π(ζk) − Eπ )∗ ,

and by independence, the “variance” satisfies

E ‖ν̂1(π) − ν̂2(π)‖2HS = 1

N 2

N∑
k=1

E tr
(
π(ζk)

∗π(ζk) − E∗
π Eπ

) ≤ dπ

N
.

In the last step we used that π(x) is unitary. Following the steps in (5), in dimension
n ≥ 3 Theorem 1 gives that for any 0 < p ≤ 1 and any M > 0,

EWp(νN , ν) ≤
√

EWp(νN , ν)2 � 1

Mp
+ M1−p

√
Mn−2

N
.

Optimizing the value of M > 0, we finally obtain that in dimension n ≥ 3, for any
0 < p ≤ 1,

EWp(νN , ν) � N−p/n (10)

with an implied constant depending only on G; more generally, EWg(νN , ν) �
g(N−1/n). These are sharp by (9); in particular, Theorems 1 and 4 are also sharp
up to a constant factor depending on G. Note that the only compact, connected Lie
groups in dimension n = 1 and n = 2 are R/Z and R

2/Z
2, and the sharpness of

Theorem 1 on these groups follows from results in [8].
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The rate of convergence of empiricalmeasures inWp , p ≥ 1 onmore generalmetric
spaceswas studied byBach andWeed [2], and byBoissard andLeGouic [7]. Instead of
Fourier methods, they used a sequence of partitions of the metric space, each refining
its predecessor to construct transport plans. It follows e.g. from [7, Corollary 1.2] that
our estimate (10) can be improved to EWp(νN , ν) � N−1/n for all 1 ≤ p < n/2. We
refer to [2] for improvements for measures ν supported on sets of lower dimension
than the ambient space.

3 Proof of Theorem 4

The proof of Berry–Esseen type inequalities are usually based on smoothing with an
approximate identity whose Fourier transform has bounded support. For instance, in
the proof of Theorem A this Fourier transform is the “rooftop function” max{1 −
|t |/T , 0}, supported on [−T , T ]. The proof of Theorem B uses the discrete version∏d

k=1 max{1− |mk |/(M + 1), 0}, supported on [−M, M]d ; in the setting of the torus
this is known as the Fejér kernel.

Our proof of Theorem 4 follows the same idea. We will choose a kernel KM : G →
C whose Fourier transform satisfies K̂M (π) = 0 whenever |λπ | ≥ M . Clearly,

∣∣∣∣
∫
G

f dν1 −
∫
G

f dν2

∣∣∣∣ ≤ 2‖ f − f ∗ KM‖∞ +
∣∣∣∣
∫
G

f ∗ KM dν1 −
∫
G

f ∗ KM dν2

∣∣∣∣ ,
(11)

where f ∗ KM denotes convolution. Our goal is to find an upper estimate of the right
hand sidewhich is uniform in f ∈ Fg; byKantorovich duality, the sameupper estimate
will hold for Wg(ν1, ν2). A possible choice for KM could be a Fejér-like kernel

1

|BM |
∣∣∣∣
∑
π∈Ĝ

λπ∈BM

χπ

∣∣∣∣
2

with some set BM ⊆ {λ ∈ ∗∩C+ : |λ| < M/2}. For convergence properties of such
Fejér kernels on compact Lie groups we refer to [12] and [33]. We mention that using
these kernels it is possible to deduce upper bounds to Wp, 0 < p < 1 sharp up to a
constant factor depending on p, but in the case p = 1we necessarily lose a logarithmic
factor inM ; the reason is that the Fejér kernel does not approximate Lipschitz functions
optimally in the supremum norm. Fixing this shortcoming is easy on the torus; we
simply need to use the normalized square of the Fejér kernel instead. By Jackson’s
theoremwe then have the optimal rate of approximation ‖ f − f ∗KM‖∞ � g(1/M),
and a sharp Berry–Esseen smoothing inequality on the torus follows [8]. Similar
modifications of the Fejér kernel are known to yield Jackson type theorems on certain
classical groups, seeGong [20]; however, this approach seems not to have beenworked
out in full generality. An elegant proof of Jackson’s theorem on an arbitrary compact,
connected Lie group was nevertheless found by Cartwright and Kucharski [15], and
in this paper we will use their kernel.
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For the sake of completeness, we include the construction of the kernel in Sect. 3.1;
we carry out the smoothing procedure in Sect. 3.2; finally, prove a decay estimate for
the Fourier transform of f and finish the proof of Theorem 4 in Sect. 3.3.

3.1 Construction of the Kernel

Recall that the Weyl integral formula [9, p. 338] states that for any central function
ϕ ∈ L1(G, μG) we have

∫
G

ϕ dμG = 1

|W (G, T )|
∫
T

ϕ · δG dμT ,

where the function δG : T → R is defined as

δG(exp(2πX)) =
∏
α∈R

(e2π iα(X) − 1) =
∏

α∈R+

∣∣∣e2π iα(X) − 1
∣∣∣2 , X ∈ t.

In particular, δG ≥ 0 and
∫
T δG dμT = |W (G, T )|. Expanding the product in its

definition, δG is thus aW (G, T )-invariant trigonometric polynomial on T of the form

δG(exp(2πX)) =
∑

λ∈∗
root

cλe
2π iλ(X), X ∈ t. (12)

The constant term is c0 = |W (G, T )|, and all coefficients satisfy |cλ| ≤ |W (G, T )|.
Observe also that for any ϕ ∈ L1(T , μT ),

∫
T

ϕ(t) dμT (t) =
∫
t/

ϕ(exp(2πX)) dμt/(X), (13)

where μt/ is the normalized Haar measure on t/. Note that μt/ = m/Vol(t/),
where Vol(t/) is the Lebesgue measure of the fundamental domain of .

Following [15] with minor modifications, we now construct a kernel KM . Let
η(X) and F(X) be as in Sect. 2.2, and recall the notation a = minλ∈∗

root
|λ|/2. Let

M ≥ |2ρ+| + a be arbitrary, and set M0 = �M/(|2ρ+| + a)�. Define P : T → C as

P(exp(2πX)) = Vol(t/)(aM0)
r
∑
Y∈

F(aM0(X + Y )), X ∈ t.

Note that P is well-defined, smooth andW (G, T )-invariant. By (13), its Fourier coef-
ficient with respect to λ ∈ ∗ (i.e. the character exp(2πX) �→ e2π iλ(X) on T ) is

P̂(λ) =
∫
t/

P(exp(2πX))e−2π iλ(X) dμt/(X)

=
∫
t
(aM0)

r F(aM0X)e−2π iλ(X) dm(X)
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= η(λ∗/(aM0)),

where λ∗ is the unique element in t with λ(X) = (λ∗, X). By the construction of η,
P̂(λ) = 0 whenever |λ| ≥ aM0; consequently, P is a W (G, T )-invariant trigonomet-
ric polynomial on T with degree < aM0. Observe also that

δG(t M0)

δG(t)
=
∏
α∈R

e2π iM0α(X) − 1

e2π iα(X) − 1
(t = exp(2πX))

is a W (G, T )-invariant trigonometric polynomial on T of degree ≤ |2ρ+|(M0 − 1).
Hence P(t)δG(t M0)/δG(t) is a W (G, T )-invariant trigonometric polynomial on T of
degree < aM0 + |2ρ+|(M0 − 1) < M . It follows (see e.g. [15, Lemma 1]), that
there exists a central trigonometric polynomial KM on G of degree < M — that is, a
function KM : G → C of the form KM =∑π∈Ĝ,|λπ |<M aπχπ — such that

KM (t) = P(t)
δG(t M0)

δG(t)
for all t ∈ T .

3.2 The Smoothing Procedure

First, we estimate the coefficients in KM = ∑
π∈Ĝ,|λπ |<M aπχπ . Let W (π) denote

the set of weights of a representation π ∈ Ĝ. Since there exists a unitary matrix U
such that Uπ(exp(2πX))U∗ = diag (e2π iμ(X) : μ ∈ W (π)), X ∈ t, we have

χπ(exp(2πX)) =
∑

μ∈W (π)

e2π iμ(X), X ∈ t.

Therefore

aπ =
∫
G
KMχπ dμG

= 1

|W (G, T )|
∫
t/

P(exp(2πX))δG(exp(2πM0X))χπ (exp(2πX)) dμt/(X)

=
∫
t
(aM0)

r F(aM0X)

( ∑
λ∈∗

root

cλ

|W (G, T )|e
2π iM0λ(X)

)( ∑
μ∈W (π)

e−2π iμ(X)

)
dm(X)

=
∑

μ∈W (π)

∑
λ∈∗

root

cλ

|W (G, T )|η(−λ∗/a + μ∗/(aM0)),

where λ∗ ∈ t is such that λ(X) = (λ∗, X). By the construction of η, for any given
μ ∈ W (π) there is at most one λ ∈ ∗

root for which η(−λ∗/a + μ∗/(aM0)) �= 0.
Recalling that |cλ| ≤ |W (G, T )| and 0 ≤ η ≤ 1, it follows that the coefficients of
KM satisfy |aπ | ≤ dπ . For the trivial character the only nonvanishing term is λ = 0;
in particular,

∫
G KM dμG = (c0/|W (G, T )|)η(0) = 1.
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Remark In fact, the only nonvanishing term isλ = 0whenever |λπ | ≤ aM0.Assuming
in addition, that η(X) = 1 for all |X | ≤ 1/2, we thus have aπ = dπ whenever
|λπ | ≤ aM0/2. In other words, f ∗KM = f for any central trigonometric polynomial
of the form f =∑π∈Ĝ,|λπ |≤aM0/2 bπχπ . Thus KM is an analogue of the de la Vallée
Poussin kernel, although its construction is not based on the Fejér kernel.

Proposition 5 For any f ∈ Fg and any real M ≥ |2ρ+| + a,

∣∣∣∣
∫
G

f dν1 −
∫
G

f dν2

∣∣∣∣ ≤ ψ(M) +
∑
π∈Ĝ|λπ |<M

dπ‖ f̂ (π)‖HS · ‖ν̂1(π) − ν̂2(π)‖HS,

where ψ is as in Theorem 4.

Proof Recall (11). We first show that 2‖ f − f ∗ KM‖∞ ≤ ψ(M); with somewhat
weaker constant factors this was proved in [15]. Since the geodesic metric ρ is trans-
lation invariant both from the left and from the right, from the Weyl integral formula,
(13) and (12) we deduce

‖ f − f ∗ KM‖∞

= sup
x∈G

∣∣∣∣
∫
G

(
f (x) − f (xy−1)

)
KM (y) dμG(y)

∣∣∣∣
≤
∫
G
g(ρ(e, y))|KM (y)| dμG(y)

= 1

|W (G, T )|
∫
t/

g(ρ(e, exp(2πX)))|P(exp(2πX))|δG(exp(2πM0X)) dμt/(X)

≤ 1

|W (G, T )|
∫
t
g(2π |X |)(aM0)

r |F(aM0X)|
( ∏

α∈R+
|e2π iM0α(X) − 1|2

)
dm(X)

= ψ(M)/2.

In the penultimate step we used that g(ρ(e, exp(2πX))) ≤ g(2π |X |), as the expo-
nential map is a geodesic of unit speed. Finally, using |aπ | ≤ dπ we get

∣∣∣∣
∫
G

f ∗ KM dν1 −
∫
G

f ∗ KM dν2

∣∣∣∣ ≤
∑
π∈Ĝ|λπ |<M

dπ

∣∣∣∣
∫
G

f ∗ χπ dν1 −
∫
G

f ∗ χπ dν2

∣∣∣∣

=
∑
π∈Ĝ|λπ |<M

dπ

∣∣tr ( f̂ (π)∗ (ν̂1(π) − ν̂2(π))
)∣∣

≤
∑
π∈Ĝ|λπ |<M

dπ‖ f̂ (π)‖HS · ‖ν̂1(π) − ν̂2(π)‖HS ,

which proves the claim. ��
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3.3 Decay of the Fourier Transform

We prove a decay estimate for the Fourier transform in somewhat greater generality
than what we need, and then finish the proof of Theorem 4.

Proposition 6 Assume that f ∈ L1(G, μG) satisfies

(∫
G

| f (xh) − f (x)|2 dμG(x)

)1/2
≤ g(ρ(h, e))

for all h ∈ G with some nondecreasing function g : [0,∞) → [0,∞). Then for any
real number M > 0,

∑
π∈Ĝ|λπ |≤M

dπκπ‖ f̂ (π)‖2HS ≤ inf
0<c<2(

√
n2+n−n)

n

1 − c − c2/(4n)
· g
( c
nM

)2
( c
nM

)2 .

If g(t) = t p with some 0 < p ≤ 1, we can choose e.g. c = (
√
17 − 3)/2 (this is

optimal in the worst case p → 0, n = 1) yielding

∑
π∈Ĝ,|λπ |≤M

dπκπ‖ f̂ (π)‖2HS ≤ 9n3−2pM2−2p. (14)

In the special case p = 1 the factor 9 can be removed, since the optimal choice is then
to let c → 0 (and M → ∞). An estimate similar to (14) has recently been proved
by Daher, Delgado and Ruzhansky [18], with an unspecified implied constant in the
place of 9n3−2p. Our main improvement is that this implied constant does not depend
on f ; a crucial feature in the study of the p-Wasserstein metric.

Proof of Proposition 6 Wefollow ideas in [18]. For the sake of simplicity,we shall think
about π ∈ Ĝ as a dπ × dπ unitary matrix-valued function on G. For any matrix A ∈
C
dπ×dπ let ‖A‖op = sup{|Av| : v ∈ C

dπ , |v| = 1} and ‖A‖HS = √
tr (A∗A) denote

the operator norm and the Hilbert–Schmidt norm, respectively. The operator norm is
submultiplicative; further, for all A, B ∈ C

dπ×dπ we have ‖AB‖HS ≤ ‖A‖op · ‖B‖HS,
and the Cauchy–Schwarz inequality |tr (A∗B)| ≤ ‖A‖HS · ‖B‖HS.

One readily verifies the identity

(
π(h) − Idπ

)
f̂ (π) =

∫
G

( f (xh) − f (x)) π(x)∗ dμG(x),

where Idπ denotes the dπ × dπ identity matrix. By the Parseval formula and the
assumption on f , for any h ∈ G we have

∑
π∈Ĝ

dπ tr
((

π(h) − Idπ

)∗ (
π(h) − Idπ

)
f̂ (π) f̂ (π)∗

) =
∫
G

| f (xh) − f (x)|2 dμG(x)

≤ g(ρ(h, e))2.
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Since the exponential map is a geodesic, we have ρ(exp(uX), e) ≤ |uX | for all X ∈ g
and u ∈ R. For any h = exp(uX) the previous estimate thus yields

∑
π∈Ĝ

dπ tr
((

π(h) − Idπ

)∗ (
π(h) − Idπ

)
f̂ (π) f̂ (π)∗

) ≤ g(|uX |)2. (15)

Next, we wish to find a lower estimate. For any X ∈ g let

dπ(X) = d

du
π(exp(uX)) |u=0∈ C

dπ×dπ

denote the derived representation of π .

Lemma 1 (Taylor expansion of degree 1) For any X ∈ g and any u ∈ R,

∥∥π(exp(uX)) − Idπ − u · dπ(X)
∥∥
op ≤ u2

2
‖dπ(X)‖2op.

Proof of Lemma 1 We simply apply the usual Taylor formula to the matrix-valued
function F(u) = π(exp(uX)). Since π is a homomorphism, we have F ′(u) =
π(exp(uX))dπ(X). First, note that for any u ∈ R,

∥∥π(exp(uX)) − Idπ

∥∥
op =

∥∥∥∥
∫ u

0
π(exp(yX))dπ(X) dy

∥∥∥∥
op

≤
∫ |u|

0
‖π(exp(yX))‖op · ‖dπ(X)‖op dy

= |u| · ‖dπ(X)‖op.

We used the fact that π(exp(yX)) is a unitary matrix and thus has operator norm 1.
Therefore

∥∥π(exp(uX)) − Idπ − u · dπ(X)
∥∥
op =

∥∥∥∥
∫ u

0

(
π(exp(yX)) − Idπ

)
dπ(X) dy

∥∥∥∥
op

≤
∫ |u|

0

∥∥π(exp(yX)) − Idπ

∥∥
op · ‖dπ(X)‖op dy

≤
∫ |u|

0
|y| · ‖dπ(X)‖2op dy

= u2

2
‖dπ(X)‖2op. ��

Lemma 2 (Sugiura) For any X ∈ g, we have ‖dπ(X)‖op ≤ |λπ | · |X |.
Proof of Lemma 2 In [32, Theorem 2] Sugiura stated and proved the estimate
‖dπ(X)‖HS ≤ √

dπ |λπ | · |X |. His proof is based on the fact that with some dπ × dπ
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unitary matrix U , we have Udπ(X)U∗ = diag (iλ(X) : λ ∈ W (π)), where W (π) is
the set of weights of π . Further, we have |λ| ≤ |λπ | for all λ ∈ W (π). Hence Sugiura’s
proof in fact yields the slightly stronger claim of Lemma 2. ��
Lemma 3 Let X1, . . . , Xn be an orthonormal base in g. For any u ∈ R, the points
hk = exp(uXk) satisfy

n∑
k=1

(
π(hk) − Idπ

)∗ (
π(hk) − Idπ

) = u2κπ Idπ + E

with some E ∈ C
dπ×dπ , ‖E‖op ≤ n|u|3|λπ |3 + n(u4/4)|λπ |4.

Proof of Lemma 3 By Lemma 1 we can write

π(hk) − Idπ = u · dπ(Xk) + Ek

with some error matrix Ek satisfying ‖Ek‖op ≤ (u2/2)‖dπ(Xk)‖2op. Therefore

n∑
k=1

(
π(hk) − Idπ

)∗ (
π(hk) − Idπ

) = u2
n∑

k=1

dπ(Xk)
∗dπ(Xk) + E

where

‖E‖op =
∥∥∥∥∥

n∑
k=1

(
u · dπ(Xk)

∗Ek + E∗
k u · dπ(Xk) + E∗

k Ek
)∥∥∥∥∥

op

≤
n∑

k=1

(
2|u| · ‖dπ(Xk)‖op · u

2

2
‖dπ(Xk)‖2op + u4

4
‖dπ(Xk)‖4op

)
.

By Lemma 2, the previous estimate yields ‖E‖op ≤ n|u|3|λπ |3 + n(u4/4)|λπ |4. On
the other hand, we have dπ(X)∗ = −dπ(X), and by the definition of the Laplace–
Beltrami operator,

n∑
k=1

dπ(Xk)
∗dπ(Xk) = −

n∑
k=1

dπ(Xk)dπ(Xk) = −(�π)(e) = κπ Idπ . ��

We now finish the proof of Proposition 6. Recall that |λπ |2 ≤ κπ . From Lemma 3
we deduce that for any u ∈ R,

tr

( n∑
k=1

(
π(hk) − Idπ

)∗ (
π(hk) − Idπ

)
f̂ (π) f̂ (π)∗

)
(16)

= tr
(
u2κπ f̂ (π) f̂ (π)∗

)
+ tr

(
E f̂ (π) f̂ (π)∗

)
≥ u2κπ‖ f̂ (π)‖2HS − ‖E f̂ (π)‖HS · ‖ f̂ (π)‖HS
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≥ u2κπ‖ f̂ (π)‖2HS − ‖E‖op · ‖ f̂ (π)‖2HS
≥ ‖ f̂ (π)‖2HS

(
u2κπ − n|u|3|λπ |3 − n

u4

4
|λπ |4

)

≥ ‖ f̂ (π)‖2HS · u2κπ

(
1 − n|u| · |λπ | − n

u2

4
|λπ |2

)
.

Let M > 0 and 0 < c < 2(
√
n2 + n − n) be arbitrary, and choose u = c/(nM). For

any |λπ | ≤ M we then have

1 − n|u| · |λπ | − n
u2

4
|λπ |2 ≥ 1 − c − c2

4n
> 0,

and thus (15) and (16) imply

ng
( c

nM

)2 ≥
∑
π∈Ĝ|λπ |≤M

dπ tr

(
n∑

k=1

(
π(hk) − Idπ

)∗ (
π(hk) − Idπ

)
f̂ (π) f̂ (π)∗

)

≥
∑
π∈Ĝ|λπ |≤M

dπ‖ f̂ (π)‖2HS
( c

nM

)2
κπ

(
1 − c − c2

4n

)
.

Since 0 < c < 2(
√
n2 + n − n) was arbitrary, the claim follows. ��

Proof of Theorem 4 From Propositions 5 and 6 and the Cauchy–Schwarz inequality
we get that for any f ∈ Fg and any real number M ≥ |2ρ+| + a,

∣∣∣∣
∫
G
f dν1 −

∫
G

f dν2

∣∣∣∣

≤ ψ(M) +

⎛
⎜⎜⎝

∑
π∈Ĝ

0<|λπ |<M

dπκπ‖ f̂ (π)‖2HS

⎞
⎟⎟⎠

1/2⎛
⎜⎜⎝

∑
π∈Ĝ

0<|λπ |<M

dπ

κπ

‖ν̂1(π) − ν̂2(π)‖2HS

⎞
⎟⎟⎠

1/2

≤ ψ(M) + φ(M)

⎛
⎜⎜⎝

∑
π∈Ĝ

0<|λπ |<M

dπ

κπ

‖ν̂1(π) − ν̂2(π)‖2HS

⎞
⎟⎟⎠

1/2

.

By Kantorovich duality, the same upper bound holds for Wg(ν1, ν2). ��
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