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Abstract
Phase retrieval refers to the problem of recovering some signal (which is often mod-
elled as an element of aHilbert space) fromphaselessmeasurements. It has been shown
that in the deterministic setting phase retrieval from frame coefficients is always unsta-
ble in infinite-dimensional Hilbert spaces (Cahill et al. in Trans Am Math Soc Ser B
3(3):63–76, 2016) and possibly severely ill-conditioned in finite-dimensional Hilbert
spaces (Cahill et al. in Trans Am Math Soc Ser B 3(3):63–76, 2016). Recently, it
has also been shown that phase retrieval from measurements induced by the Gabor
transform with Gaussian window function is stable under a more relaxed semi-global
phase recovery regime based on atoll functions (Alaifari in Found Comput Math
19(4):869–900, 2019). In finite dimensions, we present first evidence that this semi-
global reconstruction regime allows one to do phase retrieval from measurements of
bandlimited signals induced by the discrete Gabor transform in such a way that the
corresponding stability constant only scales like a low order polynomial in the space
dimension. To this end, we utilise reconstruction formulae which have become com-
mon tools in recent years (Bojarovska andFlinth in JFourierAnalAppl 22(3):542–567,
2016; Eldar et al. in IEEE Signal Process Lett 22(5):638–642, 2014; Li et al. in IEEE
Signal Process Lett 24(4):372–376, 2017; Nawab et al. in IEEE Trans Acoust Speech
Signal Process 31(4):986–998, 1983).
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1 Introduction

Phase retrieval generally alludes to the non-linear inverse problem of recovering some
signal (which in this paper will be modelled by x ∈ C

L ) from phaseless measure-
ments. Some of its more well-known applications include ptychography for coherent
diffraction imaging [16,20,24,29] and audio processing [12,14,18]. It has been shown
that the phase retrieval problem for frames in finite-dimensional Hilbert spaces [7]
and a forteriori in finite-dimensional reflexive Banach spaces [2] is always stable,
which elicits the question: Why are we concerned with stability estimates for phase
retrieval fromdiscreteGabormeasurements at all? The reason is that phase retrieval for
frames in infinite-dimensional spaces is always unstable [2,7] and in addition one can
construct sequences of finite-dimensional subspaces of infinite-dimensional Hilbert
spaces along with frames for which the stability constant of phase retrieval increases
exponentially in the dimension of the constructed subspaces [7]. Recent research [1]
into the infinite-dimensional phase retrieval problem has however led us to believe that
the instability of phase retrieval is not an insurmountable obstacle to reconstruction. It
was shown that stability can be restored for examples that exhibit a disconnectedness in
the measurements by only reconstructing the phase semi-globally or in an atoll sense.
Furthermore, it was shown in [15] that such disconnectedness in the measurements is
the only source of instabilities for phase retrieval.

A simple example of instability can be obtained by considering the Gaussian func-
tions g(t) := e−π t2 in conjunction with the signals

f +
λ (t) := g(t − λ) + g(t + λ) and f −

λ (t) := g(t − λ) − g(t + λ)

depicted in Fig. 1. When λ increases, the Gaussian bumps in the signals f ±
λ start

to move further apart effectively generating what we call a time gap whose length
depends linearly on λ. It can be shown, see [3], that the measurements generated
by the continuous Gabor transform with Gaussian window of the signals f ±

λ have

distance on the order of e−λ2 in the standard Sobolev space W 1,2(R2) and that one
can therefore not stably retrieve f ±

λ from continuous Gabor transform measurements.
Similar phenomena can be observed for the discrete setting considered in this paper
and we do therefore propose a similar paradigm as in [1] and try to recover signals
in a semi-global fashion that is not common in the phase retrieval literature up to this
point. Note that in audio processing, it is natural to consider (audio) signals up to
semi-global phase as human listeners are not able to distinguish between two signals
which differ by semi-global phase [1].

One should note that in recent years a variety of stability result for phase retrieval
have been proven. Some highlights of this research include:

i. The PhaseLift method [8,11] which guarantees stable recovery from O(L) ran-
domly chosen Gaussian measurements with high probability [9].

ii. The research on polarisation for phase retrieval [4,5,22,26] in which the authors
supplement an existing measurement ensemble in order to obtain a phase retrieval
problem that is efficiently and stably solvable.
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Fig. 1 A simple example for instability of phase retrieval with continuous Gabor measurements

iii. Wirtinger flow and related methods [10,27,28] which offer stability guarantees for
sufficiently many randomly chosen Gaussian measurements.

iv. The eigenvector-based angular synchronisation approach [17] which relies on a
certain weak form of invertibility of the phase retrieval problem to prove a stability
result for deterministic measurement systems.

v. The very recent work [25] in which the stability of phase retrieval from (random)
frames whose frame vectors are uniformly distributed on the unit sphere (but not
necessarily independent) is considered.

In some way or another, all of these results are based on different setups than ours:
As opposed to the papers referenced in item i., iii. and v. we will not work with
a probabilistic measurement system but with a deterministic one. We will also not
supplement our measurement ensemble as is done in the results referenced in item
ii. and we will not work with the weak form of invertibility that is present in the paper
referenced in item iv. In fact, we will consider the two well-known Formulae (1) and
(2) presented in Sect. 2 which are heavily used to develop methods for exact phase
retrieval from Gabor measurements in the literature [13,19,21]. We show that through
further analysis of the Formulae (1) and (2), one can derive stability results for some
of those methods and therefore also for phase retrieval in general. Our stability results
are designed for bandlimited signals and come with constants that scale in the square
root of the space dimension at the cost of relaxing the notion of stability to resemble
the one proposed in [1].
Outline In Sect. 2, we present the reader with the uniqueness results and the formulae
on which our stability results hinge. In Sect. 3, we utilise the ambiguity function
relation (2) in order to show that phase retrieval can be stably done for bandlimited
signals based on the considerations in [6,23]. In Sect. 4, we use the autocorrelation
relation (1) in order to show that phase retrieval can be done stably for bandlimited
signals utilising results from [13,19]. As the proofs of our main results are a bit
technical, they appear separately in Sect. 5.
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2 Prerequisites

Throughout this paper, we fix the dimension L ∈ N and let x, φ ∈ C
L . We define the

discrete Gabor transform (DGT) of x with window function φ to be

Vφ[x](m, n) := 1√
L

·
L−1∑

�=0

x(�)φ(� − m)e−2π i �nL , m, n = 0, . . . , L − 1.

Here and throughout this paper, the indexing is understood to be periodic. In particular,
we use the convention φ(�) = φ(� mod L), for � ∈ Z. A helpful way of looking at
the DGT is to view it as a collection of windowed Fourier transforms. For this purpose,
we denote xm(�) := x(�)φ(� − m), for �,m ∈ {0, . . . , L − 1}, and obtain

Vφ[x](m, n) = F [xm] (n), m, n = 0, . . . , L − 1,

where F : CL → C
L denotes the discrete Fourier transform (DFT)

F[x](k) := 1√
L

·
L−1∑

�=0

x(�)e−2π i �kL , k = 0, . . . , L − 1,

with inverse

F−1[x](�) = 1√
L

·
L−1∑

k=0

x(k)e2π i
k�
L , � = 0, . . . , L − 1.

We will frequently use the two-dimensional discrete Fourier transform which is the
composition of two DFTs as defined above. Additionally, we define the ambiguity
function of a signal x via A[x] := Vx [x]. We are interested in the recovery of signals
x ∈ C

L from the measurements

Mφ[x](m, n) := ∣∣Vφ[x](m, n)
∣∣2 , m, n = 0, . . . , L − 1.

It is immediately obvious that x ∈ C
L and any signal eiαx , with α ∈ R, yield the

same measurements Mφ[eiαx] = Mφ[x]. Therefore, to have any chance of recovery,
we will actually view Mφ as an operator defined on the quotient space CL/S1, where
S1 denotes the unit circle. Under various assumptions, which we will lay out in the
following, one can show that Mφ : CL/S1 → R

L×L+ is an injective operator and that
phase retrieval is therefore possible up to a global phase factor. In addition, it was
shown in [7] that

inf
α∈R‖x − eiα y‖2 � ‖∣∣Vφ[x]∣∣ − ∣∣Vφ[y]∣∣‖F,



Journal of Fourier Analysis and Applications (2021) 27 :6 Page 5 of 31 6

for all x, y ∈ C
L , where ‖·‖F denotes the Frobenius norm and the estimate depends on

a constant which might increase exponentially in the space dimension L . Our phase
retrieval problem is therefore possibly ill-conditioned.

As mentioned before, the number of known uniqueness results has seen a stark rise
in the past few years. In the following, we want to mention those that inspired our
stability estimates. Let us start by remarking that almost all uniqueness results can
be traced back to two consequential formulae which are well-known in the literature.
The first of these relates the Gabor measurements to the autocorrelation of xm . In what
follows, time-reversal of a signal will be denoted by x#(�) = x(−�).

Lemma 2.1 For any x ∈ C
L ,

F−1 [Mφ[x](m, ·)] (n) = 1√
L

·
(
xm ∗ x#m

)
(n), m, n = 0, . . . , L − 1. (1)

Proof See Appendix B. ��
The right-hand side in the above result is the aforementioned autocorrelation of

xm :

(
xm ∗ x#m

)
(n)=

L−1∑

�=0

x(�)x(� − n)φ(� − n − m)φ(� − m), m, n=0, . . . , L − 1.

The second of these formulae relates the Gabor measurements to the ambiguity func-
tion of x and the ambiguity function of φ.

Lemma 2.2 For any x ∈ C
L , the following holds:

F [
Mφ[x]] (m, n) = A[x](−n,m)A[φ](−n,m), for m, n = 0, . . . , L − 1. (2)

Proof See Appendix B. ��
Next, we will consider the uniqueness results from [6,23] which are based on

equation (2).

Corollary 2.3 (Theorem 2.2 in [6], p. 547) Suppose that φ satisfies

A[φ](m, n) 	= 0, for m, n = 0, . . . , L − 1.

Then, x is uniquely determined by the measurements Mφ[x] up to global phase.

While this result is exceptionally nice in the sense that it does not impose any
requirements on the signal, it is quite restrictive in its requirements on the window
function φ. For instance, windows φ with support length |suppφ| smaller than L/2
will always have zero entries in their ambiguity function.
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Corollary 2.4 (Theorem 2.4 in [6, p. 549]) Let x ∈ C
L be nowhere-vanishing,

i.e. supp x = {0, . . . , L − 1}, and

A[φ](m, n) 	= 0, for m = 0, 1, n = 0, . . . , L − 1.

Then, x is uniquely determined by the measurements Mφ[x] up to global phase.

This result is in some sense orthogonal to Corollary 2.3: Its requirements on the
window function are moderate while its requirements on the signal are rather restric-
tive. Of course, we might also infer a variety of results that are based on different
trade-offs between restrictions on the window and restrictions on the signal. For this
purpose, we introduce the parameter � ∈ N0. It corresponds to the maximum number
of adjacent zeroes across which we may propagate phase in the reconstruction proce-
dure used in the proof of the following corollary. Stated a bit more precisely: If x is a
signal of whichwe only know itsmeasurementsMφ[x], then it follows fromA[φ](0, ·)
being nowhere-vanishing (and the use of the ambiguity function relation) that we can
reconstruct the magnitudes of x . Therefore, it suffices to propagate phase between the
entries of x to reconstruct x up to global phase. When we assume that A[φ](m, ·) is
nowhere-vanishing, for some m, then we allow (according to the ambiguity function
relation) the phase propagation from the entry with index � to the entry with index
� +m (and to the entry with index � −m). Whether this allows us to reconstruct x up
to global phase depends on the set of m for which A[φ](m, ·) is nowhere-vanishing
and on the support set of x . This is the central idea on which the following corollary
is built:

Corollary 2.5 Let � ∈ N0 and let x, y, φ ∈ C
L be such that Mφ[x] = Mφ[y] and

A[φ](m, n) 	= 0, for m ∈ {0, . . . ,� + 1}, n ∈ {0, . . . , L − 1}.

Furthermore, let G = (V , E) denote the graph with vertex set V = supp x and edge
set E ⊂ V × V such that

(�, k) ∈ E ⇔ |� − k| ∈ (0,� + 1] ∪ [L − � − 1, L),

i.e. two vertices are connected if and only if they are atmost�+1 apart. If {Vk}Kk=1 con-
stitute the vertex sets of the connected components of G, then for each k ∈ {1, . . . , K }
there exists an αk ∈ R such that

x(�) = eiαk y(�), � ∈ Vk .

Proof See Sect. 5. ��
Remark 2.6 The corollary above is more general than Corollaries 2.3 and 2.4. Indeed,
if � ≥ L

2 −1, then G is connected. In fact, one can see from the definition of the edge
set that G is the complete graph on the vertex set supp x . In particular, Corollary 2.3
follows. If� = 0 and x is nowhere-vanishing, then G is the circle graph on L vertices
and is thus connected. In this way, we recover Corollary 2.4.
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Finally, we will work with a uniqueness result first proven in [13] and later gener-
alised in [19] based mostly on Eq. (1). Consider the following statement.

Corollary 2.7 (Theorem 1 in [13, p. 639]) Let n0, �φ ∈ {0, . . . , L − 1} be such that
�φ < L/2 and suppose that �φ − 1 and L are coprime. If

suppφ = {n0, . . . , n0 + �φ}

and F[|φ|2] and x are nowhere-vanishing, then x is uniquely determined by the mea-
surements Mφ[x] up to global phase.

The work in [19] shows that one can also derive this result as part of a graph-
theoretical formulation for phase retrieval.

Corollary 2.8 (Theorem 3.1 in [19, p. 373]) Let n0, �φ ∈ {0, . . . , L − 1} be such that
�φ < L/2 and suppose that

suppφ = {n0, . . . , n0 + �φ}

and F[|φ|2] is nowhere-vanishing. Let the graph G = (V , E) defined by having the
vertex set V = supp x and an edge between �, k ∈ V if

|� − k| ∈ {�φ, L − �φ}

be connected. Then, x is uniquely determined by the measurements Mφ[x] up to global
phase.

3 Stability Estimates Based on the Ambiguity Function Relation

3.1 Stability for a Single Island

First, we derive stability estimates by employing equation (2) and Corollaries 2.3–2.5.
In doing this, we want to start with the very simple setup of Corollary 2.4.

One can immediately see that there are some intricacies to the phase retrieval
problem for signals x ∈ C

L . One of those is dealing with entries x(�) of x which have
small (or even vanishing) magnitude. For these entries, extracting the phase of x(�) is
unstable (or even impossible). See Fig. 2 for a depiction of this situation. Because of
this, we will mostly work with a graph capturing only the larger entries of the signals.

Definition 3.1 Let � ∈ N0 and δ > 0. We call the graph Gδ = (Vδ, E) defined by
having the vertex set

Vδ = {� ∈ {0, . . . , L − 1} | |x(�)| ≥ δ}

and an edge between �, k ∈ V if

|� − k| ∈ (0,� + 1] ∪ [L − � − 1, L),
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Fig. 2 For x(�), η ∈ C, the
difference in absolute values
satisfies
||x(�)| − |x(�) + η|| ≤ |η| such
that the map |·| : C → R+ can
be seen to be stable. On the other
hand, the function which maps
complex numbers to their phase
is unstable at the origin: To see
this, we can choose
x(�) = (−1 + i)ε, η = 2ε such
that
|α − β| = π/2 ≥ π/(4ε) · |η|,
where α, β ∈ (−π, π ] denote
the principal values of the
arguments of
x(�), x(�) + η ∈ C, respectively

R

iR

x(�) x(�) + η

β
α

the essential support graph of x with time separation parameter �. We will also
simply call the essential support graph of x with time separation parameter zero the
essential support graph of x .

The stability estimates we derive hold for bandlimited signals defined as follows:

Definition 3.2 Let B ∈ N0. We call x ∈ C
L B-bandlimited if

suppF[x] ⊂ {−B, . . . , B} mod L.

One important property of bandlimited signals is that their ambguity function does
not have full support (when 4B < L).

Proposition 3.3 Let x ∈ C
L be B-bandlimited, for some B ∈ N0. Then, it holds for

all m ∈ {0, . . . , L − 1} that

suppA[x](m, ·) ⊂ {−2B, . . . , 2B} mod L.

We included a proof of this basic proposition in Appendix B. In the following, we
will work with the �2-norm on subsets S of {0, . . . , L − 1}. For such sets, we define

‖x‖�2(S) :=
(
∑

�∈S
|x(�)|2

) 1
2

.

We may now prove the following result on the stability of magnitude retrieval:
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Lemma 3.4 (Stability of magnitude retrieval) Let δ > 0 and let x, y ∈ C
L be B-

bandlimited, for some B ∈ N0. Define Gδ = (Vδ, E) to be the essential support graph
of x and let φ ∈ C

L be such that

min
n∈{−2B,...,2B}|A[φ](0, n)| ≥ 1

c
,

for some c > 0. Then,

‖|x | − |y|‖�2(Vδ)
≤ c

δ

∥∥Mφ[x] − Mφ[y]∥∥F .

Proof Let us start with the simple fact that for � ∈ Vδ (cf. Definition 3.1),

||x(�)| − |y(�)|| =
∣∣|x(�)|2 − |y(�)|2∣∣
||x(�)| + |y(�)|| ≤ 1

δ

∣∣∣|x(�)|2 − |y(�)|2
∣∣∣ .

Thus, we have

‖|x | − |y|‖�2(Vδ)
≤ 1

δ

∥∥∥|x |2 − |y|2
∥∥∥

�2(Vδ)
≤ 1

δ

∥∥∥|x |2 − |y|2
∥∥∥
2
.

Next, suppose that 4B < L . Employing Plancherel’s theorem, the ambiguity function
relation and Proposition 3.3, we find

∥∥∥|x |2 − |y|2
∥∥∥
2

2
= ‖A[x](0, ·) − A[y](0, ·)‖22 =

L−1∑

n=0

|A[x](0, n) − A[y](0, n)|2

=
2B∑

n=−2B

|A[x](0, n) − A[y](0, n)|2 =
2B∑

n=−2B

∣∣∣∣∣
F [

Mφ[x] − Mφ[y]] (n, 0)

A[φ](0, n)

∣∣∣∣∣

2

≤ c2
2B∑

n=−2B

∣∣F [
Mφ[x] − Mφ[y]] (n, 0)

∣∣2 ≤ c2
∥∥F [

Mφ[x] − Mφ[y]]∥∥22

= c2
∥∥Mφ[x] − Mφ[y]∥∥22 .

The proof for 4B ≥ L is even simpler: In this case A[φ](0, ·) is lower bounded
everywhere. ��
Remark 3.5 Note that we need to restrict our stability result to the essential support
Vδ of x because the square root t �→ √

t is not Lipschitz continuous. For this reason,
we obtain the dependence of our stability result on δ. We note that in the above proof,
we derive

∥∥∥|x |2 − |y|2
∥∥∥
2

≤ c
∥∥Mφ[x] − Mφ[y]∥∥2 .
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Hence, magnitude retrieval is, in fact, stable even when we consider small entries as
long as we compare the squared magnitudes of the signals with the squared absolute
values of the Gabor transform.

Next, we turn to the retrieval of the phases. First, in accordance with Corollary 2.4,
we will only use the entries of A[x](1, ·) (and of A[x](0, ·)) for our recovery which
allows us to do phase propagation on adjacent entries. To be precise, we can propagate
the phase from x(�) to x(�+1) (or back), for any � ∈ {0, . . . , L −1}. Mathematically
this fact can be captured with the help of the essential support graphGδ of x with time-
separation parameter zero, i.e. � = 0. In the following, we will call the connected
components of Gδ temporal islands.

Theorem 3.6 (Stability of phase retrieval on a single temporal island) Let δ > 0 and
let x, y ∈ C

L be B-bandlimited, for B ∈ N0. For Gδ = (Vδ, E) the essential support
graph of x, assume that the subgraph induced by the vertex set Sδ = Vδ ∩ supp y is
connected. If φ ∈ C

L is such that

min
m∈{0,1}

n∈{−2B,...,2B}
|A[φ](m, n)| ≥ 1

c
,

for some c > 0, then

inf
α∈R

∥∥∥x − eiα y
∥∥∥

�2(Vδ)
≤ c

δ

(
1 +

√
2|Sδ|‖x‖�2(Sδ)

δ

)
∥∥Mφ[x] − Mφ[y]∥∥F .

Proof See Sect. 5. ��
Remark 3.7 The stability constant derived in the above result is

c

δ

(
1 +

√
2|Sδ|‖x‖�2(Sδ)

δ

)

and consists of a contribution from the magnitude retrieval estimate in Lemma 3.4
and the phase retrieval estimate presented in Sect. 5. The contribution from the phase
retrieval estimate contains a factor

√
2|Sδ| which can be interpreted as a mild ill-

conditioning of phase retrieval as it might scale like L
1
2 . Additionally, the phase

retrieval estimate contains a factor 1/δ which captures the dependence on the size
of the magnitudes of x .

For a visualisation, we plot the magnitudes ambiguity functions of four commonly
used window functions φ ∈ C

L in Fig. 3. For reference, we use L = 1024 and the
windows

φgauss(�) = e−π
(�−512)2

322 , φhamming(�) :=
{

25
46− 21

46 cos
( 2π�

63

)
if �=0, . . . , 63,

0 else,
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(a) The ambiguity function of the Gaussian window. (b) The ambiguity function of the Hamming window.

(c) The ambiguity function of the Hann window.
(d) The ambiguity function of the rectangular win-
dow.

Fig. 3 Visualisation of themagnitudes of the ambiguity functions of some commonly usedwindow functions
in a logarithmic scale (we plot 20 log10|A[φ]|)

φhann(�) :=
{

1
2 − 1

2 cos
( 2π�

63

)
if � = 0, . . . , 63,

0 else,

φrectangular(�) :=
{
1 if � = 0, . . . , 63,

0 else.

Example 3.8 We want to present an example to clarify the statement of Theorem 3.6.
For this purpose, we let L ∈ N, with L ≥ 6, be arbitrary but fixed and consider the
rectangular window of length two

φ(�) :=
{
1 if � = 0, 1,

0 else.

Note that the choice of the rectangular window of length two is rather arbitrary. One
could, in fact, perform similar calculations withmost other commonwindow functions
as long as one picks the window in such a way that its time support is small enough.
We observe that, for large L , the rectangular window of length two will have a small
time support (by which we mean that |suppφ| = 2 is small compared to L) and a large
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frequency support (by which we mean that |suppF[φ]|, which is readily seen to be L
or L − 1 depending on whether L is even or odd, is comparable to L). This property
of the rectangular window of length two will carry over to its ambiguity function in
the sense that even for large B, we find that

min
m∈{0,1}

n∈{−2B,...,2B}
|A[φ](m, n)|

is rather large and thereby the constant c in Theorem 3.6 is rather small. So let c̃ > 1
and B ∈ N0 be such that L

c̃ ≤ 6B ≤ L . Then, we find that

min
m∈{0,1}

n∈{−2B,...,2B}
|A[φ](m, n)| = 1√

L
.

Therefore, it follows that Theorem3.6 holdswith c = √
L , i.e. for δ > 0 and x, y ∈ C

L

B-bandlimited such that the subgraph of the essential support graph of x induced by
the vertex set Sδ = Vδ ∩ supp y is connected, we have

inf
α∈R

∥∥∥x − eiα y
∥∥∥

�2(Vδ)
≤

√
L

δ

(
1 +

√
2|Sδ|‖x‖�2(Sδ)

δ

)
∥∥Mφ[x] − Mφ[y]∥∥F .

It follows that for the rectangular window of size two and for 6B ≤ L , the stability
constant scales linearly in L . The dimension of the space of B-bandlimited signals is
d := 2B + 1 and therefore it follows from L

c̃ ≤ 6B that

inf
α∈R

∥∥∥x − eiα y
∥∥∥

�2(Vδ)

≤
√
6(d − 1)

δ

(
1 +

√
6̃c(d − 1)‖x‖�2(Sδ)

δ

)
∥∥Mφ[x] − Mφ[y]∥∥F .

Example 3.9 We also want to give an example which elaborates on the dependence of
the stability constant on δ−1. On first glance, it might look like this dependence is only
due to our analysis (the propagation of phases between adjacent entries.) However,
this is not the case. Consider the rectangular window φ of length two along with the
signals

x(�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if � = 0,

δ if � = 1,

1 if � = 2,

0 else,

y(�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if � = 0,

δ if � = 1,

−1 if � = 2,

0 else,
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where δ ∈ (0, 1). Then, we have

inf
α∈R

∥∥∥x − eiα y
∥∥∥
2

= 2.

In addition, we have

∥∥Mφ[x] − Mφ[y]∥∥F = 2
√
2

δ√
L

.

Therefore, it follows that

infα∈R
∥∥x − eiα y

∥∥
2∥∥Mφ[x] − Mφ[y]∥∥F

=
√

L

2
· δ−1 (3)

is a lower bound for the stability constant. Note that this example is independent of
the reconstruction technique we have chosen.

3.2 Multiple Islands and Frequency Gaps

The phase propagation procedure presented as part of the proof of Theorem 3.6 carries
over quite naturally to the case where the graph Gδ = (Vδ, E) is disconnected rather
than connected. We say the graph Gδ has multiple temporal islands. It is of course
interesting to consider this case, as there is a wide range of signals for which G will
be disconnected. For instance, recordings of human speech will typically consist of
multiple temporal islands as speakers tend to leave short gaps (i.e. modes of silence)
in between words. In addition, a discretisation of the signal f +

λ from the introduction
(see Fig. 4) will yield two temporal islands.

Theorem 3.10 (Stability of phase retrieval on multiple temporal islands) Let δ > 0
and let x, y ∈ C

L be B-bandlimited, for B ∈ N0. For the essential support graph
Gδ = (Vδ, E)of x, assume that the subgraph inducedby the vertex set Sδ = Vδ∩supp y
has K connected components whose vertex sets are denoted by {Sk}Kk=1. If φ ∈ C

L is

�δ

Fig. 4 The function f +
λ from the introduction after discretisation. Entries of the resulting signal that fall

below a certain threshold δ > 0 are coloured in grey. The remaining entries are coloured in black and make
up the vertex set Vδ . In this picture, we can clearly see the two temporal islands
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such that

min
m∈{0,1}

n∈{−2B,...,2B}
|A[φ](m, n)| ≥ 1

c
,

for some c > 0, then

inf
α1,...,αK∈R

K∑

k=1

∥∥∥x − eiαk y
∥∥∥

�2(Sk )
≤ c

√
K

δ

(
1+

√
2|Sδ|‖x‖�2(Sδ)

δ

)
∥∥Mφ[x]−Mφ[y]∥∥F .

Proof See Theorem 3.11. ��
Furthermore, one should note that until now we have only worked with minimal

restrictions on the ambiguity functionA[φ] of the window φ, i.e. we have only utilised
the ambiguity function form = 0, 1. In the following, we want to generalise our result
to be able to use A[φ](m, n) for m = 0, . . . ,� + 1. In particular, we may be able to
harness Corollary 2.5 in order to propagate phase stably across a section of the signal
in which the entries consistently fall below a threshold δ. To precisely describe this
phase propagation procedure, we make use of the essential support graph of signals x
with time-separation parameter �.

Theorem 3.11 (Main theorem) Let � ∈ N0, let δ > 0 and suppose that x, y ∈ C
L

are B-bandlimited, for B ∈ N0. Let Gδ = (Vδ, E) be the essential support graph of x
with time-separation parameter� and assume that the subgraph induced by the vertex
set Sδ = Vδ ∩ supp y has K connected components whose vertex sets are denoted by
{Sk}Kk=1. If φ ∈ C

L is such that

min
m∈{0,...,�+1}
n∈{−2B,...,2B}

|A[φ](m, n)| ≥ 1

c
, (4)

for some c > 0, then

inf
α1,...,αK∈R

K∑

k=1

∥∥∥x − eiαk y
∥∥∥

�2(Sk )

≤ c
√
K

δ

(
1 + 2

√
L + �

2 + �

‖x‖�2(Sδ)

δ

)
∥∥Mφ[x] − Mφ[y]∥∥F .

Proof See Sect. 5. ��
Remark 3.12 Alternatively, one can show

inf
α1,...,αK∈R

K∑

k=1

∥∥∥x − eiαk y
∥∥∥

�2(Sk )
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≤ c

δ

(√
K +

K∑

k=1

√
2|Sk |‖x‖�2(Sk)

δ

)
∥∥Mφ[x] − Mφ[y]∥∥2

under the assumptions laid out in Theorem 3.11. We prefer the result above as it is
more compact. Note that neither of these results is stronger or weaker than the other.

We note that one can obtain dual results to the above by considering F[x] instead
of x . A straight-forward calculation (see proof of Proposition 3.3) yields

A[x](m, n) = e−2π imn
L A[F[x]](n,−m), m, n = 0, . . . , L − 1.

In this light, it is not surprising that we can derive stability results for recovering F[x]
from the measurements Mφ[x] resembling the theorems derived above. Note that in
this way, one can also show the following dual of the ambguity function relation:

F [
Mφ[x]] (m, n) = A[F[x]](m, n)A[F[φ]](m, n), m, n = 0, . . . , L − 1.

Theorem 3.13 (Stability for frequency gaps) Let B,� ∈ N0, let δ > 0 and suppose
that x, y ∈ C

L have their support contained in {−B, . . . , B} mod L. Let Gδ =
(Vδ, E) be the essential support graph of F[x] with time-separation parameter �

and assume that the subgraph induced by the vertex set Sδ = Vδ ∩ suppF[y] has K
connected components whose vertex sets are denoted by {Sk}Kk=1. If φ ∈ C

L is such
that

min
m∈{−2B,...,2B}
n∈{0,...,�+1}

|A[φ](m, n)| ≥ 1

c
,

for some c > 0, then

inf
α1,...,αK∈R

K∑

k=1

∥∥∥F[x] − eiαkF[y]
∥∥∥

�2(Sk )

≤ c
√
K

δ

(
1 + 2

√
L + �

2 + �

‖x‖2
δ

)
∥∥Mφ[x] − Mφ[y]∥∥2 .

Remark 3.14 In the preceding pages, we have presented approaches for phase retrieval
for signals withmultiple temporal or frequency islands. Unfortunately, it is not so clear
how to extend this work to the more general case of time-frequency atolls considered
in [1,15]. It is likely that one has to come up with a different approach that allows one
to do phase propagation in frequency and time direction simultaneously to actually
handle time-frequency atolls.

We want to end this section by remarking that from our proof strategy for the
frequency result a straight-forward dual version of Corollary 2.5 follows.
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Corollary 3.15 Let � ∈ N0 and let x, y, φ ∈ C
L be such that Mφ[x] = Mφ[y].

Assume that the window φ satisfies

A[φ](m, n) 	= 0, for m ∈ {0, . . . , L − 1}, n ∈ {0, . . . ,� + 1}.

Define G = (V , E) as the graph with vertex set V = suppF[x] and edge set E ⊂
{0, . . . , L − 1} × {0, . . . , L − 1} given by

(�, k) ∈ E ⇔ |� − k| ∈ (0,� + 1] ∪ [L − � − 1, L).

If {Vk}Kk=1 are the vertex sets of the connected components of G, then for all k ∈
{1, . . . , K } there exists an αk ∈ R such that

F[x](�) = eiαkF[y](�), � ∈ Vk .

4 Stability Estimates Based on the Autocorrelation Relation

The goal of this section is to apply the techniques we have developed thus far to
the setup proposed in [19]. Our approach will be designed to work for bandlimited
signals x ∈ C

L which potentially have very small entries. In doing so, we do not need
to require that the Fourier transform of the absolute value squared of the window is
nowhere-vanishing.We emphasise these particularities as the stability result developed
in [19] (Theorem 4.2 on p. 375) relies on window functions for which F[|φ|2] is
nowhere-vanishing, and while one may apply it to signals x ∈ C

L with very small
entries, the resulting stability constant will be ill-behaved as it depends inversely on
min�∈supp x |x(�)|2.

Recall from Sect. 2 that the authors of [19] consider the graph G = (V , E) with
vertex set V := supp(x) and an edge between �, k ∈ V if

|� − k| ∈ {�φ, L − �φ},

where �φ +1 denotes the support length of the window function. They do then propose
to reconstruct the magnitude of a signal x ∈ C

L using the ambiguity function relation
(2) (as in Sect. 3) and propagate phase from one entry of x to another if their indices
have distance �φ using Eq. (1). As before, we will work with local lower bounds on
the ambiguity function of the window and the signal in order to ensure that all the
aforedescribed steps can be carried out stably.

In order to introduce the local lower bounds on the signal, we will have to modify
the graphs presented in [19] slightly: Let us consider a signal x ∈ C

L , a tolerance
parameter δ > 0 and a window function φ ∈ C

L such that

supp(φ) = {n0, . . . , n0 + �φ} mod L,
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for n0, �φ ∈ {0, . . . , L − 1} such that 2�φ < L . Introduce the graph Gδ = (Vδ, E)

with vertex set

Vδ := {� ∈ {0, . . . , L − 1} | |x(�)| ≥ δ}

and an edge between �, k ∈ V if

|� − k| ∈ {�φ, L − �φ}.

Under these assumptions, we can state the following stability estimate whose proof is
inspired by the proof of Corollary 2.8:

Theorem 4.1 Let �φ, n0 ∈ N0 such that 2�φ < L. Furthermore, let δ > 0 and let
x, y ∈ C

L be B-bandlimited, for B ∈ N0. Suppose that the subgraph induced by the
vertex set Sδ = Vδ ∩ supp y is connected and that the window φ satisfies

supp(φ) = {n0, . . . , n0 + �φ} mod L

as well as

min
k∈{−2B,...,2B}

∣∣∣F
[
|φ|2

]
(k)

∣∣∣ ≥ 1

c
,

for some c > 0. Then,

inf
α∈R

∥∥∥x − eiα y
∥∥∥

�2(Vδ)
≤ 1

δ

(
c + 2

√|Sδ|L‖x‖�2(Sδ)

δ|φ(n0)φ(n0 + �φ)|

)
∥∥Mφ[x] − Mφ[y]∥∥F .

Proof See Sect. 5. ��
Remark 4.2 The stability constant in this result is

1

δ

(
c + 2

√|Sδ|L‖x‖�2(Sδ)

δ|φ(n0)φ(n0 + �φ)|

)
.

The part of the constant due to magnitude retrieval is exactly the same as in the
results in Sect. 3. The part of the constant stemming from phase retrieval is a slight
modification from the constants in Sect. 3. It is mostly the term |φ(n0)φ(n0 + �φ)| in
the denominator that deserves some attention. It is clear that phase propagation based
on the relation

F−1 [Mφ[x](n, ·)] (�φ) = x(n0 + �φ + n)x(n0 + n)φ(n0)φ(n0 + �φ)

will be unstable whenever the ends of the window φ(n0) and φ(n0 + �φ) are close
to zero. In particular, the reconstruction method proposed by the authors of [13,19]
benefits from windows for which |φ(n0)φ(n0 + �φ)| is large such as the Hamming or
rectangular window.
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As remarked before, in contrast to the stability result in [19], our result is applicable
even when the Fourier transform of the magnitude squared of the window function
F[|φ|2] has vanishing entries at the cost of only being applicable to bandlimited sig-
nals. We should also note that in [19] the stability constant for the phase retrieval
estimate scales like

√|supp x | · L3 (which becomes L7/2 for nowhere-vanishing sig-
nals) whereas our stability constant merely scales like

√|Sδ|L (which becomes L for
signals whose entries have absolute values in excess of the threshold δ).

Remark 4.3 (On disconnected graphs and duality results) Finally, we would like to
note that one can prove a result resembling Theorem 4.1 in the case where Sδ has
K ∈ N connected components whose vertex sets are denoted by S1, . . . , SK ⊂ Sδ .

Similarly, we may utilise Lemma 2.1 in order to deduce that

F [
Mφ[x](·, n)

]
(m)= 1√

L
·
L−1∑

k=0

F[x](k)F[x](k − m)F[φ](k−m−n)F[φ](k − n)

holds, for x, φ ∈ C
L and m, n = 0, . . . , L − 1. This in turn can be used to deduce a

stability result which is essentially the Fourier-dual of Theorem 4.1.

5 Proofs of theMain Results

Proof of Corollary 2.5 By the ambiguity function relation and our assumptions, we find
that

A[x](m, n) = A[y](m, n), for m ∈ {0, . . . ,� + 1}, n ∈ {0, . . . , L − 1}.

Therefore,

x(�)x(� − m) = y(�)y(� − m), for � ∈ {0, . . . , L − 1}, m ∈ {0, . . . , � + 1},
(5)

and in particular x and y have the same magnitudes. Let us now consider k ∈
{1, . . . , K } as well as some �0 in Vk . We have |x(�0)| = |y(�0)| and hence
x(�0) = eiαk y(�0), for some αk ∈ R. As Vk is the vertex set of a connected com-
ponent of G, it follows that for all � ∈ Vk \ {�0}, there exists a (simple) path from
�0 to �. Therefore, we can consider � ∈ Vk \ {�0} and let (u0, . . . , un) be the vertex
sequence of the path from u0 = �0 to un = �. For j ∈ {0, . . . , n − 1} one has, by
definition of the edge set, that

|u j+1 − u j | ∈ (0,� + 1] ∪ [L − � − 1, L).

Thus, there exists an m j ∈ {1, . . . ,� + 1} such that u j+1 − u j = m j mod L or
u j − u j+1 = m j mod L . In either case, it follows from Eq. (5) that x(u j+1)x(u j ) =
y(u j+1)y(u j ). By induction on j , we find that x(�) = eiαk y(�). ��
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Proof of Theorem 3.6 The case 4B ≤ L is similar to the case 4B > L but simpler:
Indeed consider 4B ≤ L . In this case, we have

min
m∈{0,1}

n∈{0,...,L−1}
|A[φ](m, n)| ≥ 1

c

by assumption. Therefore, we can replace all sums over {−2B, . . . , 2B} by sums over
{0, . . . , L − 1} in this proof. So let us consider 4B > L: Let α ∈ R be arbitrary.
Employing Proposition A.1, we have

∥∥∥x − eiα y
∥∥∥

�2(Vδ)
≤‖|x | − |y|‖�2(Vδ)

+
⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| −eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

. (6)

The magnitude difference is estimated as in Lemma 3.4. For the estimate of the phase
difference, we develop inequalities in the following. Let �, k ∈ Sδ . According to
Proposition A.2, we have

∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣ ≤

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|
∣∣∣∣ +

2
∣∣∣x(�)x(k) − y(�)y(k)

∣∣∣
|x(�)x(k)| .

Using the above inequality recursively, one obtains that for all M ∈ N and
u0, u1, . . . , uM ∈ Sδ:

∣∣∣∣
x(uM )

|x(uM )| − eiα
y(uM )

|y(uM )|
∣∣∣∣ ≤

∣∣∣∣
x(u0)

|x(u0)| − eiα
y(u0)

|y(u0)|
∣∣∣∣

+ 2
M−1∑

j=0

∣∣∣x(u j+1)x(u j ) − y(u j+1)y(u j )

∣∣∣
|x(u j+1)x(u j )| . (7)

Suppose now that �0 is chosen such that any other vertex � ∈ Sδ has graph distance
(in the induced subgraph) at most |Sδ|/2 from �0. Then, for any � ∈ Sδ \ {�0}, there
exists M(�) ∈ N, with M(�) ≤ |Sδ|/2, and a sequence u�

0 = �0, u�
1, . . . , u

�
M(�) = �

in Sδ such that (cf. Definition 3.1 with � = 0)

|u�
j+1 − u�

j | ∈ {1, L − 1}, for j = 0, . . . , M(�) − 1.

Therefore, there exists a sequence σ�
1 , . . . , σ �

M(�) in {−1, 1} such that

u�
j+1 − u�

j = σ�
j+1 mod L, for j = 0, . . . , M(�) − 1.

Now, let α ∈ R be such that
∣∣∣∣
x(�0)

|x(�0)| − eiα
y(�0)

|y(�0)|
∣∣∣∣ = 0.
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Then, we have for any � ∈ Sδ , according to the above considerations (and inequality
(7)), that

∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣ ≤ 2

M(�)∑

j=1

∣∣∣x(u�
j )x(u

�
j − σ�

j ) − y(u�
j )y(u

�
j − σ�

j )

∣∣∣

|x(u�
j )x(u

�
j − σ�

j )|
.

For the second term of the right-hand side of inequality (6) this yields

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ 2

⎛

⎜⎝
∑

�∈Sδ

|x(�)|2
⎛

⎝
M(�)∑

j=1

∣∣∣x(u�
j )x(u

�
j − σ�

j ) − y(u�
j )y(u

�
j − σ�

j )

∣∣∣

|x(u�
j )x(u

�
j − σ�

j )|

⎞

⎠
2⎞

⎟⎠

1
2

.

Applying Jensen’s inequality on the square of the inner sum and noting that M(�) ≤
|Sδ|/2, we obtain

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ √
2|Sδ|

⎛

⎝
∑

�∈Sδ

M(�)∑

j=1

|x(�)|2
|x(u�

j )x(u
�
j − σ�

j )|2
∣∣∣x(u�

j )x(u
�
j − σ�

j ) − y(u�
j )y(u

�
j − σ�

j )

∣∣∣
2

⎞

⎠

1
2

.

Since u�
j ∈ Sδ , for j ∈ {1, . . . , M(�)}, we can further estimate

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|
δ2

⎛

⎝
∑

�∈Sδ

M(�)∑

j=1

|x(�)|2
∣∣∣x(u�

j )x(u
�
j − σ�

j ) − y(u�
j )y(u

�
j − σ�

j )

∣∣∣
2

⎞

⎠

1
2

and with σ�
j ∈ {±1}, for j ∈ {1, . . . , M(�)}, we also get
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⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|
δ2

⎛

⎝
∑

σ∈{−1,1}

∑

�∈Sδ

M(�)∑

j=1

|x(�)|2
∣∣∣x(u�

j )x(u
�
j − σ) − y(u�

j )y(u
�
j − σ)

∣∣∣
2

⎞

⎠

1
2

.

There are no repetitions in the sequences u�
1, u

�
2, . . . , u

�
M(�) and hence

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|
δ2

⎛

⎝
∑

σ∈{−1,1}

∑

�∈Sδ

∑

u∈Sδ

|x(�)|2
∣∣∣x(u)x(u − σ) − y(u)y(u − σ)

∣∣∣
2

⎞

⎠

1
2

.

Therefore, we have

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|‖x‖�2(Sδ)

δ2

⎛

⎝
∑

σ∈{−1,1}

L−1∑

u=0

∣∣∣x(u)x(u − σ) − y(u)y(u − σ)

∣∣∣
2

⎞

⎠

1
2

.

Suppose now that 4B < L . By Plancherel’s theorem, it holds that

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|‖x‖�2(Sδ)

δ2

⎛

⎝
∑

σ∈{−1,1}

L−1∑

n=0

|A[x](σ, n) − A[y](σ, n)|2
⎞

⎠

1
2

=
√
2|Sδ|‖x‖�2(Sδ)

δ2

⎛

⎝
∑

σ∈{−1,1}

2B∑

n=−2B

|A[x](σ, n) − A[y](σ, n)|2
⎞

⎠

1
2

.
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It follows from the ambiguity function relation and the lower bound on the ambiguity
function of the window on {0, 1} × {−2B, . . . , 2B} that

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ c ·
√
2|Sδ|‖x‖�2(Sδ)

δ2

⎛

⎝
∑

σ∈{−1,1}

2B∑

n=−2B

∣∣F [
Mφ[x] − Mφ[y]] (n,−σ)

∣∣2
⎞

⎠

1
2

≤ c ·
√
2|Sδ|‖x‖�2(Sδ)

δ2
· ∥∥F [

Mφ[x] − Mφ[y]]∥∥F

= c ·
√
2|Sδ|‖x‖�2(Sδ)

δ2
· ∥∥Mφ[x] − Mφ[y]∥∥F ,

where we have used Plancherel’s theorem in the last equality. ��
Proof of Theorem 3.11 Let k ∈ {1, . . . , K } and αk ∈ R. As in the proof of Theo-
rem 3.6, we start by splitting the estimate into a phase and a magnitude estimate using
Proposition A.1:

∥∥∥x − eiαk y
∥∥∥

�2(Sk )
≤ ‖|x | − |y|‖�2(Sk ) +

⎛

⎝
∑

�∈Sk
|x(�)|2

∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

.

As the connected components {Sk}Kk=1 are disjoint subsets of Vδ , we can use Jensen’s
inequality to see that

K∑

k=1

‖|x | − |y|‖�2(Sk ) ≤ √
K

(
K∑

k=1

‖|x | − |y|‖2
�2(Sk )

) 1
2

= √
K ‖|x | − |y|‖

�2(
⋃K

k=1 Sk )

≤ √
K ‖|x | − |y|‖�2(Vδ)

.

Employing Lemma 3.4, we obtain for the magnitude retrieval estimate

‖|x | − |y|‖�2(Vδ)
≤ c

δ

∥∥Mφ[x] − Mφ[y]∥∥F .

The phase difference is estimated just like in Theorem 3.6: First, observe that there
must exist a vertex �0 ∈ Sk such that any other vertex � ∈ Sk has graph distance M(�)

at most L+�
2+�

from �0. Indeed, consider the following argument: The worst case which
could happen is that we need to connect the vertex 0 to the vertex �L/2�. By definition
of the graph, it will take us exactly one step to go from 0 to any � ∈ {1, . . . , �+1}∩Sk ;
it will take us exactly two steps to go from 0 to � + 2, if the latter is in Sk ; and it
will take us at most three steps to go from 0 to � ∈ {� + 3, 2� + 3} ∩ Sk . Following
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this logic, it is not too hard to see that it will take us at most 2n steps to go from 0 to
n(� + 2), if the latter is in Sk , and it will take us at most 2n + 1 steps to go from 0
to � ∈ {n(� + 2) + 1, . . . , (n + 1)(� + 2) − 1} ∩ Sk . So, if there exists an element
n ∈ N such that n(� + 2) = �L/2�, then it will take us at most

2n = 2�L/2�
� + 2

≤ L

� + 2
≤ L + �

2 + �

steps to connect 0 and �L/2�. Similarly, if there is an element n ∈ N0 such that
�L/2� ∈ {n(� + 2) + 1, . . . , (n + 1)(� + 2) − 1}, then there is a β ∈ {1, . . . , � + 1}
such that

2n + 1 = 2�L/2� − 2β

� + 2
+ 1 ≤ L − 2

� + 2
+ 1 = L + �

� + 2
.

So for any � ∈ Sk \ {�0}, there exists a path u�
0 = �0, u�

1, . . . , u
�
M(�) = � from �0 to �.

By definition, this path satisfies

∣∣∣u�
j+1 − u�

j

∣∣∣ ∈ (0,� + 1] ∪ [L − � − 1, L), for j = 0, . . . , M(�) − 1.

Therefore, there exist sequences σ�
1 , . . . , σ �

M(�) ∈ {±1} and ��
1, . . . ,�

�
M(�) ∈

{1, . . . ,� + 1} such that
u�
j+1 − u�

j = σ�
j+1�

�
j+1 mod L, for j = 0, . . . , M(�) − 1.

We let αk ∈ R be chosen in such a way that

∣∣∣∣
x(�0)

|x(�0)| − eiαk
y(�0)

|y(�0)|
∣∣∣∣ = 0.

Proceeding as in the proof of Theorem 3.6 (now with M(�) ≤ (L + �)/(2+ �)), we
derive

⎛

⎝
∑

�∈Sk
|x(�)|2

∣∣∣∣
x(�)

|x(�)| − eiαk
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ 2

√
L + �

2 + �

1

δ2

⎛

⎝
∑

�∈Sk

M(�)∑

j=1

|x(�)|2
∣∣∣x(u�

j )x(u
�
j − σ�

j �
�
j ) − y(u�

j )y(u
�
j − σ�

j �
�
j )

∣∣∣
2

⎞

⎠

1
2

.

We first treat the case 2� < L − 2 and use that σ�
j �

�
j ∈ {−� − 1, . . . ,� + 1} to

estimate

⎛

⎝
∑

�∈Sk
|x(�)|2

∣∣∣∣
x(�)

|x(�)| − eiαk
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2
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≤ 2

√
L + �

2 + �

1

δ2

⎛

⎝
�+1∑

m=−�−1

∑

�∈Sk

M(�)∑

j=1

|x(�)|2
∣∣∣x(u�

j )x(u
�
j − m) − y(u�

j )y(u
�
j − m)

∣∣∣
2

⎞

⎠

1
2

.

We may use that there are no repetitions in the sequences u�
1, . . . , u

�
M(�) to obtain

⎛

⎝
∑

�∈Sk
|x(�)|2

∣∣∣∣
x(�)

|x(�)| − eiαk
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ 2

√
L + �

2 + �

1

δ2

⎛

⎝
�+1∑

m=−�−1

∑

�∈Sk

L−1∑

u=0

|x(�)|2
∣∣∣x(u)x(u − m) − y(u)y(u − m)

∣∣∣
2

⎞

⎠

1
2

= 2

√
L + �

2 + �

‖x‖�2(Sk )

δ2

(
�+1∑

m=−�−1

L−1∑

u=0

∣∣∣x(u)x(u − m) − y(u)y(u − m)

∣∣∣
2
) 1

2

.

Suppose furthermore that 4B > L . According to Plancherel’s theorem, we find that

⎛

⎝
∑

�∈Sk
|x(�)|2

∣∣∣∣
x(�)

|x(�)| − eiαk
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ 2

√
L + �

2 + �

‖x‖�2(Sk )

δ2

(
�+1∑

m=−�−1

L−1∑

n=0

|A[x](m, n) − A[y](m, n)|2
) 1

2

= 2

√
L + �

2 + �

‖x‖�2(Sk )

δ2

(
�+1∑

m=−�−1

2B∑

n=−2B

|A[x](m, n) − A[y](m, n)|2
) 1

2

.

Next, we use the ambiguity function relation, inequality (4) as well as the symmetry
of the ambiguity function of the window around the origin to derive

⎛

⎝
∑

�∈Sk
|x(�)|2

∣∣∣∣
x(�)

|x(�)| − eiαk
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ 2c

√
L + �

2 + �

‖x‖�2(Sk )

δ2

(
�+1∑

m=−�−1

2B∑

n=−2B

∣∣F [
Mφ[x] − Mφ[y]] (n,m)

∣∣2
) 1

2

≤ 2c

√
L + �

2 + �

‖x‖�2(Sk )

δ2

∥∥F [
Mφ[x] − Mφ[y]]∥∥2

= 2c

√
L + �

2 + �

‖x‖�2(Sk )

δ2

∥∥Mφ[x] − Mφ[y]∥∥2 .
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Note that we may once again use Jensen’s inequality to show that

K∑

k=1

‖x‖�2(Sk ) ≤ √
K‖x‖2.

Thus, combining the phase and the magnitude estimates yields

inf
α1,...,αK

K∑

k=1

∥∥∥x − eiαk y
∥∥∥

�2(Sk )
≤ c

√
K

δ

(
1 + 2

√
L + �

2 + �

‖x‖2
δ

)
∥∥Mφ[x] − Mφ[y]∥∥2 .

The cases in which 2� ≥ L − 2 or 4B ≥ L are dealt with similarly. ��
Proof of Theorem 4.1 Let α ∈ R. As in the proof of Theorem 3.6, we start by splitting
the estimate into a phase and a magnitude estimate

∥∥∥x − eiαk y
∥∥∥

�2(Vδ)
≤ ‖|x | − |y|‖�2(Vδ)

+
⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

.

First, noting that

F
[
|φ|2

]
(k) = A[φ](0, k), for k = 0, . . . , L − 1,

we can apply Lemma 3.4 to obtain the estimate

‖|x | − |y|‖�2(Vδ)
≤ c

δ

∥∥Mφ[x] − Mφ[y]∥∥F .

For the estimate on the phase retrieval part, we need to consider a new strategy based
on Eq. (1). First, we find that there must exist a vertex �0 ∈ Sδ such that any other
vertex � ∈ Sδ has graph distance M(�) at most |Sδ|/2 from �0. So for any � ∈ Sδ \{�0},
there exists a path u�

0 = �0, u�
1, . . . , u

�
M(�) = � from �0 to �. By definition, this path

satisfies
∣∣∣u�

j+1 − u�
j

∣∣∣ ∈ {�φ, L − �φ}, for j = 0, . . . , M(�) − 1.

Therefore, there exists a sequence σ�
1 , . . . , σ �

M(�) ∈ {±1} such that

u�
j+1 − u�

j = σ�
j+1�φ mod L, for j = 0, . . . , M(�) − 1.

With this at hand, we proceed similarly to the proof of Theorem 3.6. We let α ∈ R be
chosen in such a way that

∣∣∣∣
x(�0)

|x(�0)| − eiα
y(�0)

|y(�0)|
∣∣∣∣ = 0.
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Then, we have that for any � ∈ Sδ

∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣ ≤ 2

M(�)∑

j=1

∣∣∣x(u�
j )x(u

�
j − σ�

j �φ) − y(u�
j )y(u

�
j − σ�

j �φ)

∣∣∣

|x(u�
j )x(u

�
j − σ�

j �φ)|

and

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|
δ2

⎛

⎝
∑

�∈Sδ

M(�)∑

j=1

|x(�)|2
∣∣∣x(u�

j )x(u
�
j − σ�

j �φ) − y(u�
j )y(u

�
j − σ�

j �φ)

∣∣∣
2

⎞

⎠

1
2

,

by Jensen’s inequality, M(�) ≤ |Sδ|/2 and the fact that u�
j , u

�
j − σ�

j �φ ∈ Sδ , for all
j ∈ {1, . . . , M(�)}. As before, we can further employ a crude estimate to derive

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

=
√
2|Sδ|‖x‖�2(Sδ)

δ2

⎛

⎝
∑

σ∈{±1}

∑

u∈Sδ

∣∣∣x(u)x(u − σ�φ) − y(u)y(u − σ�φ)

∣∣∣
2

⎞

⎠

1
2

,

since σ�
j ∈ {±1}, for all j ∈ {1, . . . , M(�)} and all � ∈ Sδ , and because for fixed

� ∈ Sδ , the u�
j are all distinct. Next, we note that due to suppφ = {n0, . . . , n0 + �φ}

mod L , 2�φ < L , and the autocorrelation relation, we have for u ∈ Sδ

x(u)x(u − �φ)φ(n0)φ(n0 + �φ)

=
L−1∑

�=0

x(�)x(� − �φ)φ(� + n0 − u)φ(� + n0 + �φ − u)

= √
LF−1[Mφ[x](u − n0 − �φ, ·)](�φ),

as well as

x(u)x(u + �φ)φ(n0 + �φ)φ(n0)

=
L−1∑

�=0

x(�)x(� + �φ)φ(� + �φ + n0 − u)φ(� + n0 − u)

= √
LF−1[Mφ[x](u − n0, ·)](−�φ).
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This implies

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤
√
2|Sδ|L‖x‖�2(Sδ)

δ2|φ(n0)φ(n0 + �φ)|
( ∑

u∈Sδ

( ∣∣∣F−1[Mφ[x](u − n0 − �φ, ·) − Mφ[y](u − n0 − �φ, ·)](�φ)

∣∣∣
2

+
∣∣∣F−1[Mφ[x](u − n0, ·) − Mφ[y](u − n0, ·)](−�φ)

∣∣∣
2 )) 1

2

.

Yet another crude estimate results in

⎛

⎝
∑

�∈Sδ

|x(�)|2
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣
2
⎞

⎠

1
2

≤ 2
√|Sδ|L‖x‖�2(Sδ)

δ2|φ(n0)φ(n0 + �φ)|

⎛

⎝
L−1∑

m,n=0

∣∣∣F−1[Mφ[x](m, ·) − Mφ[y](m, ·)](n)

∣∣∣
2

⎞

⎠

1
2

= 2
√|Sδ|L‖x‖�2(Sδ)

δ2|φ(n0)φ(n0 + �φ)|
∥∥Mφ[x] − Mφ[y]∥∥F .

��
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A Pointwise Estimates for the Stability Results

Let us start by the typical splitting of signal differences into phase and magnitude part.

Proposition A.1 Let x, y ∈ C
L . Then, we have for all α ∈ R that

|x(�) − eiα y(�)| ≤ ||x(�)| − |y(�)|| + |x(�)|
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣

http://creativecommons.org/licenses/by/4.0/
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holds for all � ∈ {0, . . . , L − 1} for which x(�) 	= 0 and y(�) 	= 0. Moreover,

|x(�) − eiα y(�)| = ||x(�)| − |y(�)||

holds for all � ∈ {0, . . . , L − 1} for which x(�) = 0 or y(�) = 0.

Proof Consider the case x(�) 	= 0 and y(�) 	= 0:

|x(�) − eiα y(�)| =
∣∣∣∣|x(�)|

x(�)

|x(�)| − eiα|y(�)| y(�)

|y(�)|
∣∣∣∣

=
∣∣∣∣(|x(�)| − |y(�)|) e

iα y(�)

|y(�)| + |x(�)|
(

x(�)

|x(�)| − eiα
y(�)

|y(�)|
)∣∣∣∣

≤ ||x(�)| − |y(�)|| + |x(�)|
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣ .

If x(�) = 0, then

|x(�) − eiα y(�)| = |y(�)| = ||x(�)| − |y(�)|| .

��
In addition, a result about phase propagation will be handy.

Proposition A.2 Let x, y ∈ C
L and let α ∈ R. Then, we have that

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|
∣∣∣∣ ≤

∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣ +

2
∣∣∣x(k)x(�) − y(k)y(�)

∣∣∣
|x(k)x(�)|

holds, for all �, k ∈ {0, . . . , L−1} for which x(k), x(�), y(k) and y(�) are all different
from zero.

Proof We compute

∣∣∣∣
x(k)

|x(k)| − eiα
y(k)

|y(k)|
∣∣∣∣ =

∣∣∣∣∣
x(k)x(�)x(�)

|x(k)||x(�)|2 − eiα
y(k)y(�)y(�)

|y(k)||y(�)|2
∣∣∣∣∣

=
∣∣∣∣∣

(
x(�)

|x(�)| − eiα
y(�)

|y(�)|
)

x(k)x(�)

|x(k)x(�)| + eiα
y(�)

|y(�)|

(
x(k)x(�)

|x(k)x(�)| − y(k)y(�)

|y(k)y(�)|

)∣∣∣∣∣

≤
∣∣∣∣
x(�)

|x(�)| − eiα
y(�)

|y(�)|
∣∣∣∣ +

∣∣∣∣∣
x(k)x(�)

|x(k)x(�)| − y(k)y(�)

|y(k)y(�)|

∣∣∣∣∣ .

The claim follows by noting that using the triangle inequality and the reverse triangle
inequality, one has

∣∣∣∣
z0
|z0| − z1

|z1|
∣∣∣∣ =

∣∣z0|z1| − |z0|z1
∣∣

|z0z1| ≤ |z0 − z1| + ∣∣|z0| − |z1|
∣∣

|z0| ≤ 2|z0 − z1|
|z0| ,
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for z0, z1 ∈ C. ��

B Proofs of theMost Fundamental Formulae

For convenience of the reader, we present the proofs of the two formulae presented
in Sect. 2. We note that these formulae are well-known in the literature and have
repeatedly been used to prove uniqueness results in recent years [6,13,19,21]. We start
with Lemma 2.1.

Proof of Lemma 2.1 For m, n ∈ {0, . . . , L − 1}, one can calculate

Mφ[x](m, n) = |F[xm](n)|2 = F[xm](n) · F[xm](n) = F[xm](n) · F[x#m](n)

= 1√
L

· F[xm ∗ x#m](n),

using the convolution theorem for the DFT. Applying the inverse Fourier transform
yields the statement. ��
Proof of Lemma 2.2 According to Lemma 2.1, we have

F−1 [Mφ[x](m, ·)] (n) = 1√
L

·
L−1∑

�=0

x(�)x(� − n)φ(� − n − m)φ(� − m),

for m, n ∈ {0, . . . , L − 1}, and therefore

F [
Mφ[x](m, ·)] (n) = 1√

L
·
L−1∑

�=0

x(�)x(� + n)φ(� + n − m)φ(� − m).

Taking the DFT in m yields

F [
Mφ[x]] (m, n) = 1

L
·

L−1∑

�,k=0

x(�)x(� + n)φ(� + n − k)φ(� − k)e−2π i kmL

= 1

L
·
L−1∑

�=0

x(�)x(� + n)e−2π i �mL

L−1∑

k=0

φ(� + n − k)φ(� − k)e2π i
(�−k)m

L

= A[x](−n,m)A[φ](−n,m).

��
Proof of Proposition 3.3 Let us use the notation x ′

m(�) = x(� − m), for �,m ∈
{0, . . . , L − 1}, and denote the entry-wise product of two vectors via �. For m, n ∈
{0, . . . , L − 1} we apply the convolution theorem for the DFT to see that

A[x](m, n) = F[x � x ′
m](n) = 1√

L

(F[x] ∗ F[x ′
m]) (n).
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Next, we compute

F[x ′
m](k) = 1√

L

L−1∑

�=0

x(� − m)e−2π i �kL = e−2π imk
L√

L

L−1∑

�=0

x(�)e−2π i �kL

= e−2π imk
L F[x]#(k),

for k ∈ {0, . . . , L − 1}. Therefore,

A[x](m, n) = 1√
L

(F[x] ∗ F[x ′
m]) (n) = 1√

L

L−1∑

k=0

F[x](k)F[x](k − n)e2π i
m(k−n)

L

= 1√
L

B∑

k=−B

F[x](k)F[x](k − n)e2π i
m(k−n)

L .

Let us assume that 4B < L and consider k ∈ {−B, . . . , B}. First, suppose that
n ∈ (− L

2 ,−2B) ∩ Z. Then, it follows that

k − n ∈ [−B − n, B − n] ∩ Z ⊂
(
B,

L

2
+ B

)
∩ Z

and since L − B ≥ L
2 + B, it follows that F[x](k − n) = 0. Therefore,

A[x](m, n) = 0.

Secondly, suppose that n ∈ (2B, L
2 ] ∩ Z. Then, one has

k − n ∈ [−B − n, B − n] ∩ Z ⊂
[
− L

2
− B,−B

)
∩ Z

and L
2 − B > B implies F[x](k − n) = 0. Thus,

A[x](m, n) = 0.

What remains is the case 4B ≥ L: Note that by {−2B, . . . , 2B} = {0, . . . , L − 1}
mod L the proposition is trivial in this case. ��
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