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Abstract

In a previous paper (Adcock and Huybrechs in SIAM Rev 61(3):443—473, 2019) we
described the numerical approximation of functions using redundant sets and frames.
Redundancy in the function representation offers enormous flexibility compared to
using a basis, but ill-conditioning often prevents the numerical computation of best
approximations. We showed that, in spite of said ill-conditioning, approximations with
regularization may still provide accuracy up to order /€, where € is a small truncation
threshold. When using frames, i.e. complete systems that are generally redundant but
which provide infinite representations with coefficients of bounded norm, this accu-
racy can actually be achieved for all functions in a space. Here, we generalize that
setting in two ways. We assume information or samples from f from a wide class
of linear operators acting on f, rather than inner products associated with the best
approximation projection. This enables the analysis of fully discrete approximations
based, for instance, on function values only. Next, we allow oversampling, leading to
least-squares approximations. We show that this leads to much improved accuracy on
the order of ¢ rather than /€. Overall, we demonstrate that numerical function approx-
imation using redundant representations may lead to highly accurate approximations
in spite of having to solve ill-conditioned systems of equations.

1 Introduction

The approximation of functions in a Hilbert space typically assumes a basis for that
space. The non-redundancy of a basis ensures that linear systems associated with
approximation problems are non-singular. In addition, suitable structure—ideally the
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basis is orthonormal, more generally it may be a Riesz basis—renders these systems
well-conditioned. There is a unique solution, it is stably computable, and there is a close
correspondence between properties of the continuous function and of the coefficients
in the representation, for example the Parseval identity.

Instead, for a redundant set of functions the corresponding linear systems may be ill-
conditioned or even singular, and uniqueness may be lost. Still, good approximations
may exist in the span of the set. It may even be much easier to ensure that this is
the case than it is for a basis, and in fact this is a popular approach in a wide range
of applications. For example, a basis can be ‘enriched’ by adding a few functions
that capture a singularity [10]. A periodic Fourier basis can be augmented with a few
polynomials to capture the non-periodicity of f [23]. Ill-conditioning and redundancy
also frequently appear in solution methods for partial differential equations (PDEs). In
Trefftz methods, solutions of a PDE are approximated using other solutions of the same
PDE, and this is often successful yet notoriously ill-conditioned [16]. Several methods
are based on embedding a domain with complicated geometry €2, for which a basis
is unknown, into a simple bounding box D. A basis for L%(D) yields a (redundant)
frame for L2(2). Examples include embedded/fictitious domain methods, immersed
boundary methods and others [6,17,24].

As mentioned, redundant representations necessarily lead to ill-conditioning. To
which extent are the corresponding function approximations computable? What con-
vergence behaviour and accuracy can be expected? In this paper, we continue a line of
investigation that commenced in [3] on numerical approximation of functions using
redundant function sets in general and frames in particular. The main contribution of
[3] was a detailed analysis of the accuracy and conditioning of the computation of best
approximations with regularization, with a chosen threshold ¢. We now briefly recall
the main results of [3] in Sect. 1.1, followed by an overview of the theoretical results
of this paper in Sect. 1.2.

1.1 Best Approximation With Regularization

The main concern of [3] was the computation of the best approximation, i.e. the
orthogonal projection, in the space Hy := span(®y) spanned by a set of N elements
by = {d)n}flvzl. This approximation is given by Py f = Z,Ilvzl Xn¢Pn, Where x =
(xn)flv=1 is a solution of the linear system

Gyx =y, (1.1)

where y = {(f, ¢,,)}”1V:1 and Gy = {(¢n, ¢m>}fZ,n:1 is the Gram matrix of ®y.

If the elements of ®y are nearly or exactly linearly dependent, then Gy is ill-
conditioned or even singular. Moreover, the coefficients x can also grow arbitrarily
large, making them impossible to compute in floating point arithmetic for sufficiently
large N. The remedy proposed in [3] was to regularize (1.1) by using a truncated
Singular Value Decomposition (SVD) of G y with a threshold parameter € > 0 below
which all the singular values are discarded. This results in a new projection Py, f =

Zfl\/:l (x€)p b, where x€ is the regularized solution of (1.1).
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The main result of [3] concerns the best approximation with regularization as fol-
lows:

Theorem 1.1 [3] The truncated SVD projection Py, satisfies

||f—7>;f||sziergN[Hf—ézn¢n + ez} (1.2)

Moreover, the (absolute) condition number of the mapping y ~ Py, f is at most

1/ /e

Observe that the right hand side of (1.2) contains two terms. Theorem 1.1 states that
the regularized projection behaves like the best approximation to f in the span of @y
(the first term), as long as the coefficients have sufficiently small norm (second term).
Furthermore, convergence can only be expected to an accuracy up to the order of /€.
Whether or not this accuracy is achieved, depends on the existence of a representation
Z,],V:l Zn®n in the span of ®p with that accuracy and with small norm ||z|| of its
coefficients. This question can be studied on a case-by-case basis, as done in [3] for a
variety of examples.

To answer this question more generally, it is natural to impose additional structure
on ®y. In [3], this was done via frames. Recall that an indexed family ® := {qb,,}ff; 1
is a frame for a Hilbert space H if it satisfies the frame condition

AlFIP <Y 1 o) < BIFIP, VS eH, (1.3)

n=1

where A, B > 0 are positive constants and ||-|| is the norm on H. The frame condition
ensures the existence of bounded representations, to any accuracy, for all functions in
the space. In particular, this yields the following:

Corollary 1.2 If @ := {¢,}> | is a frame for H, and Oy := (o}, then

n=1’

limsup || f =Py fIl < \/gllfll, Vf eH. (1.4)

N—o0

Unlike in the general setting, the frame condition imposes sufficient structure so that
accuracy to order /€ is now guaranteed for all functions in H. For this reason, as well as
the fact that frames occur in numerous computational problems, one can think of frames
as an ideal setting in which to apply Theorem 1.1. Of course function approximation
with redundancy can be successful without a frame property. For example, in the
absence of a frame, one may still use Theorem 1.1 to show accuracy in a subspace
of H consisting of functions with bounded-norm coefficient representations. But this
raises the matter of whether functions of interest to a given problem belong to this
space. In the absence of a frame structure, this question must then be answered on a
case-by-case basis.
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1.2 Main Results

In this paper, we generalize Theorem 1.1 using oversampling and allowing for gener-
alized samples (or indirect data). In doing so, we not only allow a much broader class
of samples, including, for example, pointwise evaluations, we also overcome the /e
bottleneck.

Approximation from generalized samples In Sect. 3, instead of inner products with
the elements ¢,,, as was used in Theorem 1.1 [see (1.1)], the ‘data’ about the function
f is now given by bounded linear functionals £,, s : G - C,m =1, ..., M, which
may depend on M and which may be only defined on a dense subspace G of H (e.g.
in the case of pointwise evaluations when H = L2(2) we consider G = C(RQ)). Very
much reminiscent of the frame condition (1.3), the strongest general statements can
be made when this data is sufficiently ‘rich’ so as to stably recover f, in particular
satisfying

M M
AIFI? < lim inf > lwn(HP <limsup Y [€um(F)I* < B'IfI> Vf €G,
- m=1 M—o0 m=1
(1.5)

for constants A’, B’ > 0. We refer to this as a Marcinkiewicz-Zygmund condition. A
key ingredient is to allow oversampling, i.e. let M > N, and consider the M x N
linear system

Gunx~y, y={Lluu(HI_,, (1.6)

where Gy v = {{m, M(¢,,)},A,Z ’nNzl. As we shall subsequently explain, this system
generally remains ill-conditioned for large N, even when M > N. Hence we con-
struct an approximation by singular value thresholding. This leads to a regularized
approximation Pzéu, n.f whose coefficients x€ are the solution of the SVD-regularized
least-squares problem corresponding to (1.6). Our main result for this setup is the
following:

Theorem 1.3 The truncated SVD projection PIEVI, ~ [ satisfies

f-= Z ZnPn

n=1

+ Ky N

I/ =Py /Il < inf {Hf Zznqsn

+ em,ann] :

(1.7)

M

for constants ky; . A5y y > 0. The (absolute) condition number of the mapping
y = Py y f is precisely ky, . Moreover, these constants satisfy

~/ BN G <\/BN
s M.N = ’

€ ’ €

€
Kyn =

Birkhauser



Journal of Fourier Analysis and Applications (2020) 26:87 Page50f34 87

for all M and N, M > N, where By is the Bessel constant of ®y over Hy =
span(®y). If the sampling functionals satisfy (1.5) then, for fixed N,

limsupky, vy < limsupA§, vy <

1 1
M—00 \/A/’ M—00 \/A/'

Here, ||g||,2W = an/lzl |£m,M(g)|2 is the discrete semi-norm defined by the data.
We recall that @ is a Bessel sequence, since it is finite, and therefore it has a finite
Bessel constant By > 0, defined as the smallest constant for which Zf,v:l I(f, dn)]? <
BNIfIP Vf € H.

This result is very general, but its main conclusion is the following. Provided M is
sufficiently large and the samples satisfy (1.5) then the approximation error depends
on f — Z,],V:l Zn ¢, (measured in some norm) and €|z ||. The constants wa’  and )wa‘ N
can be large when M is insufficiently large (behaving like /By /€ in the worse case),
but they can be made arbitrarily close to 1/+/A’ by taking M large, i.e. by increasing
oversampling. Furthermore, on comparison with Theorem 1.1, we notice that /€ in
the error bound has been replaced by €. Hence, under suitable assumptions on f, @y
and M, we expect order € accuracy in the limit, as opposed to order +/€ accuracy.

This result raises the question of how large M needs to be in comparison to N.
Later, we quantify this via the so-called stable sampling rate. Unsurprisingly, the ques-
tion ‘how large is sufficiently large’ depends completely on system @ and samples
{€,n.m}, and thus must be analyzed on a case-by-case basis. In Sect. 5, we illustrate an
example for which the stable sampling rate is provably linear, i.e. there existsa C > 1
such that setting M > CN implies that the constants way » and )L;,L  are bounded
independently of €. Alternatively, this rate can also be computed numerically, as we
explain in Sect. 3.6.

Frame approximation from frame samples Theorem 1.3 applies for arbitrary @y
and any samples satisfying (1.5). In order to make statements about the limiting
behaviour as M, N — oo we need two ingredients. First, a sequence z for which
> ,1,\7:1 Zn ¢y convergesto f in the Hilbert space norm and for which the coefficient norm
Iz|| does not blow up. Second, additional regularity of the samples and/or f so that the
M -norm can be controlled by a suitable norm in which one also has Zflvzl Zndn — f.

Whether or not such conditions hold could be answered on a case-by-case basis for
particular types of sampling and approximation systems. But instead, we now address
them in a general scenario where both the sampling functionals and the approximation
system @y are endowed with a frame structure. Specifically, let ® = {¢,};°, and
¥ = {5, be frames for H and set dy = {qﬁn}%:l and £, = (-, Ym) for
m =1,..., M. Note that (1.5) now automatically holds with G = H, with A’ and B’
being the frame bounds for W.

Our main result in this case is the following:

Theorem 1.4 In the above setting, the truncated SVD projection Pﬁ,l’ N [ satisfies

N
f- Zzn¢n

n=1

If = Pynfll < inf {(1 + \/?K;LN)
zeCN

+ emanu} :
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for certain constants "5/1, N )\;,1’ ~ > 0. The (absolute) condition number of the map-
ping y > Py y [ is precisely ky; . These constants satisfy

€ e - VBje W £ &
M,N°>"*M,N — 1/\/;\112(1),7

forall M and N, M > N, and

. . 1
limsup«j, v < limsup Ay, y <

1
M—00 \/A/’ M—00 \/A/'

Moreover, for each 1 < 6 < 0o and N € N there exists an integer ©°(N,0) € N
such that

0
limsup || f =P vfll <€
M,N—oco M.N VAA

M=>0¢(N,0)

A1 (1.8)

The quantity ®€(N, 0) is what we term the stable sampling rate. As noted above, it
can be computed numerically. Observe that in the special case ¥ = @, the setting of
Theorem 1.1 (i.e. sampling and approximating with the same functions) is restored.
However, oversampling according to (1.8) overcomes the /€ bottleneck in (1.4), thus
improving the limiting accuracy to order €.

1.3 Relation to Other Work

This paper is a continuation of [3], in which the systematic study of numerical frame
approximation was commenced. This study had its origins in earlier work on so-
called Fourier extensions [5,15], which are particular frames arising as restrictions of
the Fourier basis on a box to a subdomain.

Our use of oversampling here is inspired by earlier work on generalized sampling in
Hilbert spaces by the first author and Hansen [1,2,4]. That work considered both
sampling and approximation using orthonormal bases and frames, introducing the
stable sampling rate as well, but did not address the ill-conditioning issue for approx-
imation in the latter. Note that the matrices Gy n (in the case of Theorem 1.4 with
VU = &) and Gy are so-called uneven and finite sections respectively of the infinite
Gram matrix of the full frame ®. Using uneven as opposed to finite sections is a
well-known trick in computational spectral theory [13,14,18].

For a more in-depth discussion of relations between this work and standard frame
theory, we refer to [3].

Our focus in this paper is accuracy and conditioning of the regularized frame approx-
imations. We do not consider efficiency, i.e. computational time, which is very much
dependent on the particular frame under consideration. There are efficient numerical
methods for solving (1.6) for certain frames and sampling functionals [8,9,20-22]. In
the absence of a more efficient method, the cost of computing the SVD of an M x N
matrix with M > N scales as O(M N?). However, based in particular on [9], some of
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the examples at the end of this paper can be implemented in O (N (log N')?) operations.
We refer to [9] for more examples.

2 Preliminaries

We first introduce some notation and useful concepts from frame theory.

2.1 Bases and Frames

For the remainder of this paper, H is a separable Hilbert space over the field C. We
write (-, -) and ||-|| for the inner product and norm on H respectively. Recall that @ is
a Riesz basis if span(®) is dense in H, and there exist constants A, B > 0 such that

2

Allx|*> < < Blx|?, Vx = {xu}uer € (D). 2.1)

an¢n

nel

Here and throughout, £2(1) denotes the space of square-summable sequences indexed

over /, and |-|| denotes its norm, i.e. x|l = />, c; |x|2. In this paper, we assume

that the constants appearing in (2.2) are the optimal constants such that the inequality
holds. We note that a Riesz basis is an orthonormal basis if (2.1) holds withA = B = 1.
In general, we may view (2.1) as a relaxed version of Parseval’s identity.

An indexed family @ is a frame if

AIFIZ <Y 1f o) < BIFIP. VS €H, (2.2)

nel
for positive constants A, B > 0. A frame is tight if A = B. We refer to (2.2) as the
frame condition. Note that (2.2) implies that ® is dense in H. It follows from (2.1)

that a Riesz basis is also a frame with the same constants A, B [7, Prop. 3.6.4]. But,
in general, a frame need not be a Riesz basis.

2.2 Operators on Frames

Associated to any frame & (and therefore any Riesz basis) is the so-called synthesis
operator

7 : 52(1) —H, y={ylner Zyn¢n-

nel

Its adjoint, the analysis operator, is given by

T*:H— ), > {{fson)lnel,
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and the composition S = 77 *, known as the frame operator, is

S:H— H, f [and Z(fv¢zz)¢n

nel

This operator is self-adjoint, bounded, invertible and positive with

AlfIP <(Sf. f) < BISIP. 2.3)

See [7, Lemma 5.1.5]. Note that this inequality is equivalent to the frame condition
(2.2). Note also that S = T is the identity operator for an orthonormal basis. Similarly,
S = AZ for a tight frame. However, for a general Riesz basis or frame, S # 7.

2.3 Dual Frames

A frame W = {Vr,}ne; € H is a dual frame for a given frame & if

F=D A Unbn =) (frbu)m. VfeH (2.4)

nel nel

If a frame @ is also a Riesz basis then it has a unique dual frame W, which is also a
Riesz basis. In this case, the pair (®, V) is biorthogonal:

(¢n7 Iﬂm) = 87!,}”15 n,mel.

Note that an orthonormal basis is self-dual, i.e. ¥ = ®. Conversely, a frame and any
of its duals are typically not biorthogonal. A frame may also have more than one dual.
The so-called canonical dual frame of ® is the frame W = {S~'¢,},cs. This is a
frame [7, Lemma 5.1.5], and its frame bounds are B~! and A~} respectively. In this
case, (2.4) reads

F=Y (8" ¢)bn =) (ST f. u)tn. 2.5)

nel nel

We refer to the coefficients @ = {(f, S~ '¢,)}nes as the canonical frame coefficients
of f. These coefficients have the property that, amongst all possible representa-
tions of f in @, they have the smallest norm [7, Lemma 5.4.2]. Specifically, if
f =2 nern®n = Y pc; Cnbn for some ¢ = {cy}ner, then |ic|| > |lall. Moreover,
from the frame condition of the dual we have |a| < \/LX £

3 Approximation from Indirect Data

In this section, we describe the general setup, which will lead eventually to The-
orem 1.3. Throughout this section, the approximation system is defined by &y =
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{¢n}nery C H. Itis an an indexed family of N elements in H, where Iy is an index
set of cardinality N. For convenience, we now make a mild generalization over Sect.
1, allowing I to be an arbitrary index set rather than just {1, ..., N}. As noted, ®y
is a Bessel sequence, since it is finite. We write By > 0 for its Bessel constant, i.e.
the smallest constant for which Z,Ilvzl [(f, dn)|* < By ||f||2, V f € H. We also define
the operators

TN : (CN — H, z = (Zn)nelN = Z Zn¢n

nely

Ty :H=CY, f> ((f, dn)nery,
Sy =TTy :H—H, f> Y (f.¢u)¢n-

nely

3.1 Indirect Data

Let G be a dense subspace of the Hilbert space H endowed with a norm |||-|||. Suppose
that f, the function we seek to approximate, and ®y both belong to G. For each
M € N, let Jys be an index set of cardinality |Jy/| = M, and

ﬁm,M:G—>(C, mGJM,
be a set of linear functionals which are bounded with respect to |||-|||, i.e.

mm (DI < cmmllfIl,  feG. (3.1

The data of f is given by

y= {Km,M(f)}meJA,p

Write My : G — CM for the mapping My, f = (€, (f)mery, - Our goal is to
compute an approximation to f in @y for some N < M from this data.

In order to make meaningful general statements about the subsequent approxima-
tions we define, we require the data to be sufficiently rich. In analogy to the frame
bounds (2.2), we shall often assume that there exist constants A’, B’ > 0 such that

ANFIP < liminf D (0 p ()P <limsup 3 e (NP < B'IfIP, ¥f €G.

M— o0

medy meJy

(3.2)

We term this a Marcinkiewicz—Zygmund condition, because it is similar (although
not identical) to the classical Marcinkiewicz—Zygmund inequality in approximation
theory [19]; see also [12]. We comment further on this assumption and the constants
involved in Sect. 3.5.

Before going any further, let us mention several examples of this framework:

Birkhauser
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Example 3.1 Suppose that M = N and the samples of f are inner products with
respect to the functions ¢y, i.e. £y pu(f) = (f, ¢m), m = 1,..., M. Then this is
precisely the setting of Theorem 1.1, and is a special case of the present setup with
G =H, Il = |I-]l. Note that (3.2) is precisely the frame condition (2.2); in particular,
it holds with A’ = A and B’ = B.

Example 3.2 Let ¥ = {y,,}mes be another frame (or Riesz/orthonormal basis) of H
and consider samples of the form €, p(f) = (f, ¥m), m € Jyu, where {Jy}men
are nested index sets with |Jy| = M and | J§;_; Ju = J. This problem corresponds
to sampling according to the frame W and reconstructing in @, as in the original
framework of generalized sampling [1,2]. We also have G = H and |||-||| = ||| in
this case, and (3.2) holds with A’, B’ being the frame bounds for W. In fact, it is
straightforward to see that the the upper bound holds for any M in this case, i.e.

Iflle < VBIfI,  VfeH, (3-3)

Example 3.3 Consider a frame for the Hilbert space H = L?*(—1, 1) of square-
integrable functions on (—1, 1). Suppose that the samples are pointwise evaluations
at equispaced points. In this case, we may take G = C([—1, 1]) with its usual norm,
and £y p(f) = V2/Mf(—1 4+ 2(m — 1)/M), m = 1,..., M. Then (3.2) holds
with A = B’ = 1, since fozl [€m. 1 (f)|? is a Riemann sum approximation to
f_ll | £ (x)]? dx. More generally, if —1 <11y < ... <ty m <1 are (not necessarily
equispaced) sample points, then (3.2) can be achieved with A’ = B’ = 1 if

hM = max {tm+l,M . tm,M} — 0, M — o0,
0,...M

where 10,y = tm.m — 2 and ty11,m = t1,m + 2. Indeed, in this case choosing the
linear functionals as

1
L (f) = \/z(tm+l,M — tm—1,mM) [ (tm, 1)

gives a convergent approximation Z%Zl |£,,,,M(f)|2 to ||f||2 as M — oo.

3.2 Best Approximation with Regularization from Indirect Data

Given f € G and data My, f, we construct the approximation Py, , f as follows.
Let

Gu.n = MyuTy = st (D) ymeiy nery € TN,
As we explain below, much like in the setting of Theorem 1.1, this matrix is generally
ill-conditioned. This arises from the inherent redundancy of @y, independently of the

samples—in particular, it cannot be avoided by taking M > N. Hence we need to

Birkhauser



Journal of Fourier Analysis and Applications (2020) 26:87 Page 110f34 87

regularize. Suppose that Gz, y has singular value decomposition
Gyny=UZV* (3.4
and let € > 0 be fixed. Then we set
x€ = (Gy 'y =V(E)UYy, (3.5)
where 1 denotes the pseudoinverse and X¢ is the diagonal matrix with n™ entry o, if
0, > €, 3.6)
and zero otherwise. The corresponding approximation to f is
[~ Pynf=Tnx
Observe that both the solution vector x€ and the approximation P},  f are uniquely

defined by construction, even if the family ® 5 happens to be linearfy dependent. For
convenience, we now define the mapping

Ly n: CM S Hy, y+— TN(GfW’N)%y,
so that
P;,,’Nf =Tyx¢ = E;,I’NMMf. (3.7

Remark 3.4 To see why Gy n is generally ill-conditioned, consider the setting of
Example 3.2 and suppose that W is a tight frame, i.e. A’ = B’. This assumption is
made for convenience: the following argument readily extends to general frames. Let
Su =2 e Iy {S> ¥m)¥m be the partial frame operator for W. Since W is tight,
Sy — A'T strongly as M — o0, and therefore, for fixed N,

(GuN)'Gyun — AGy, M— oo,

where Gy is the Gram matrix of ® . Hence, whenever G y is ill-conditioned (i.e. ®
is near-redundant), we expect G,y to inherit the same ill-conditioning for large M.

Remark 3.5 This argument gives some insight into the advantage of oversampling. For
atight frame, (G y, n)* G y, y is an approximate factorization of G y. Thus, solving the
linear system (1.1) is akin to solving the normal equations of the least-squares problem
Gy nx ~ y. Inthis sense it is not surprising that oversampling yields O (¢) accuracy,
whereas solving (1.1) yields only O (\/E) accuracy. Indeed, this is reminiscent of the
typical squaring of the condition number incurred when forming the normal equations
of a least-squares problem [11, §5.3].
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3.3 The Solution as an Orthogonal Projection

A key element of our subsequent analysis is the reinterpretation of the operator Py, ,,
as a projection with respect to a semi-definite sesquilinear form. Specifically, we now
define the data-dependent sesquilinear form (-, -)»s on G x G as

(f,&m = Muf, Mug)= Y Lum(HNbnu(@, f.g<G,

meJy

with corresponding discrete semi-norm || fll,; = /(f, f)m = [IMu fll. Note that
in general (-, -) 7 is semi-definite on Gy x Gy as well, since

(g.&m =gl = D Wwmu(@*>0, VgeHy, g#0.

meJy

In particular, for poorly chosen functionals it may be that ||g||ps = O for some non-
trivial function g € Hy. However, with assumption (3.2) we do have the limiting
behaviour

liminf (g, g)y = liminf [[g|[}, > A'llg|* > 0, Vg € Hy, g #0.
M—o0 M— o0

This means that, ultimately, the sesquilinear form becomes an inner product on all of
Hy.

Recall the singular value decomposition (3.4), and let uy, ..., upy, v1,..., 0N
and o1, ..., on be the left and right singular vectors and singular values of Gy v
respectively, with o, > 0, n = 1,..., N. To the right singular vectors, we associate
the functions

£, =Tyvn €Hy, n=1,...,N. (3.8)

By construction, these functions are orthogonal with respect to (-, -)». Indeed, by
orthogonality of the singular vectors, we have

Em, Endm = (MMTans MMTan> = 0O iy, Up) = O‘rz(Tm(Sm,rzs m,n € ly.
3.9)

Here, too, it may be that ||&,||3s = O. This is the case if 0}, = 0.
We shall, for convenience, let x = x© be the solution of the unregularized problem,
given by
x=(Gun)'y.

We also write Py nv = 731?,1 y so that Py y f = Tyx. Using the expression for the
pseudoinverse in terms of the SVD, we can write both x and x€ in terms of the left
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and right singular vectors:

Y %vn, =Y (¥, ta) (3.10)

0y
0,>0 n Op>€ 4

Furthermore, for o;, > 0 we also have

oy = Mu S Gunvn) My S My Tvon) _ (- Snom

On On On
where in the last step we use (3.8). In particular, this gives

Phnf =Tnvx =) U(’j—u”)Tan = U’aﬂ&. (3.11)

op>€ n op>€ n

Similarly, we have

Punf=Tvx =) @&-

0, >0 n

Finally, we define the regularized spaces
Hj, y = spani{&, : 0, > €}.

Since {v, },er, 1s a basis of CN, we see that the functions {&41}0,>0 are an orthogonal
basis of Hg,,’ n With respect to (-, -) 3. We can conclude that Py y is the orthogonal
projection onto Hg,[ v € Hy C G.Inturn, Pj,  is the orthogonal projection onto
the subspace H;,I’N C HOMN . . o

A relevant property in the analysis that follows, is that these orthogonal projections
imply a reduction in the M-norm:

Lemma 3.6 Forany € > 0, we have
1Py nSliln <1 fllm,  YfeG. (3.12)

3.4 Theoretical Results

We now define the constants

-1
KX,[,N =  max ||/~‘7v1,1vy||» )»i,,)N =€ max ||Tyz — P;,,’NTNzH.
yelianu(/\;lM) zeCN
yl= llzll=1

(3.13)

Note that Kfv[ 18 precisely the operator norm of Cfvi y - Ran(My) — Hy. Since
L;,I  is linear, itis also its absolute condition number, i.e. wa  measures the absolute
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effect of perturbations in the data y on the final approximation. The constant )‘71/1, N

measures how close 77;,,’ w is to being a projection on the subspace Hy = 7Ty (CM).
Our first result concerns the approximation error of P},  f:

Theorem 3.7 Let f € G. The truncated SVD approximation 79;,17 N [ satisfies

1f =Py I = inf {1F = Twvell+ x5yl f = Tzl +exfyylz)
J4S]
(3.14)

This result differs from Theorem 1.1 in several respects. On the one hand, if the
constants K;,I)N and )»fW,N are order one, the error depends on €| z]|, not 1/€||z||, thus

overcoming the /€ bottleneck. We will discuss when this occurs in the next subsection.
On the other hand, the error bound involves the discrete data norm || f — Zyz|la. In
general, this cannot be bounded by || f — 7y z||. However, one clearly has

If = Tnzlm < Cullf =Tzl Cu= [ Y (ema)?
meJy

where ¢, » are the norms of the functionals £,, y; recall (3.1). In particular, for
Example 3.3 it follows that || f — Ty zllm < V2| f — TnzllLee.

Proof of Theorem 3.7 For any z € CV,
If =Py nfl < If =TInzl + 1Py n(f = InOI + 1Tvz — Py yInzll

Consider the second term. We have

1Py n(f =IOl = 1Ly yMu(f = Tn2)| < ky N IMu(f = Tn2)|
=k yllf — Tzl
which gives the corresponding term in (3.14). Now consider the third term. It follows
immediately from the definition of )L;,LN that || 7yz — P&,NTNZ” < 6)\'5W,N||z||’ as

required. o

We now consider the coefficients x€:

Theorem 3.8 Let f € G. The coefficients x€ of the truncated SVD projection 77;[’ N
satisfy

) 1
€] < HgN {2 If = Inzlim + IIZII} : (3.15)
H4S

Moreover, if © = {¢u}ner is a frame, Dy = {¢n}n€IN and if a = {{f, Sil¢n>}n€1
are the canonical frame coefficients of f and afvl’N € 02(I) is the extension of x€ by
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zero, then

€

1 _ AN
la—aSy ylIl < | D7 lanl> + =S = SWS™! fllu + e—F
nel\ly € ﬂ

lall. (3.16)

For general measurements, (3.16) does not imply convergence of the coefficients
ajw’  to the canonical frame coefficients a since the term [|(S — Sy)S ! fllm can-
not typically be bounded by [(S — Sy)S™! f|l. There is also no guarantee that
[|(S —Sv)S™'f||| = 0as N — oo. This does hold, however, when the data arises
from sampling with another frame {y, }, ¢/, as in Example 3.2, due to (3.3). We will
discuss this case further in Sect. 4.

Proof of Theorem 3.8 For the first part, we use (3.10) to write

xe_Z ffn n—Zf TNZé;_n n+Z TNzaé:n) 0.
oy >€ n oy >€ " oy >€ n

(3.17)

Consider the first term on the right-hand side. Since the v,, are orthonormal, we have

—7) 7 7a
Z (f szv$m>M ol = Z (f — Ni Em)M - Z {f — sz En)m)? '
oy >€ % oy >€ Om o, >€ Om

It follows from (3.9) and (3.11) that

(g, Em)m
Z gn; = ”PM Ng”M’ g€G.
Hence
- Tvz.gm |1 |
Yt < [P = Tealy, = 51 = Tzl
op>€ n

where in the second step we use the fact that Py, . 1s the orthogonal projection with
respect to (-, -) 7 (recall Lemma 3.6). This gives the first term of (3.15). Next, consider
the second term of the right-hand side of (3.17). Since

TNz, Em)m = (Tnz, Tnva)m = 072 (2, V), (3.18)
it follows that
(Inz, &m)
> vz niw,, = > 1z va)l? < Iz,
op>€ On op>€

Birkhauser



87 Page 16 of 34 Journal of Fourier Analysis and Applications (2020) 26:87

This gives the second term of (3.15).
For (3.16), of course the canonical frame coefficients are well defined since we now
assume that @ is a frame. We first note that

la—a$; Il < [ D lanl? + llay — x€II.
nel\Iy

where ay = {an},cry - Therefore it suffices to consider ||ay — x€||. Observe that

ayN = Z(aNy V)V = Z(S_lf’§n>vn-

nely nely

Now (f, &) m = (SS™' f, &)y and therefore

(f &dm = <$N8—1f Em+ (S =SS, &) m
= ST o)+ (S —SNST f & m

Notice that SyS~! f € G and (S — Sy)S™'f = f — SyS~! f € G. Therefore all
the terms above are well defined. Hence, by (3.17),

_ .
_ Z(Silf,fnwn n Z (S SM)S2 fwfm)Nvm

Oy
op>€ oy >€

which gives

3 (S=Sm)S7 &

2
On

D ASTH Evn

op <€

Jay -] <

0y >€

(3.19)

Consider the first term. Let z € CV be given by z = ZU <l (S71f, £,)v,, so that the
first term is merely [|z]|. By the definition of A9, 5, we have €Ay, vzl > [ 7yz —
77;,1 ~ZInzll. Now, since Tyz L HM ~» We have that PM NInz = 0. Hence

(Tnz, 8)
ey vzl = 1 Tvzll = sup ===
geH lgll
g#0

Set g = S7'f. Then (Tyz.8) = Y, - (S7' f.&n)|* = lz]* and therefore we
obtain €Af, vzl = [Iz[I*/IS~" f|I. It follows that

Izl =

D (ST Endun

oy <€

< || ST | = exsyn/ VANl 320)
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Now consider the second term of (3.19). We have

n

3 (S—Sm)S7 . &) m ,

2
On

" 5 IS =SS

4
an

0y >€ op>¢€

1 _
< SIPH NS =SS I
1 _
< SIS =SmS™ Iy
In the last line, we used Lemma 3.6 again. Combining this with (3.20) now gives the
result. -

Remark 3.9 These results extend to the setting of noisy measurements. Suppose the
measurements are y +n where y = M, f and n is a vector of noise. We assume that
n € Ran(Myy), in other words it takes the form n = M ;g for some g € G. Then,
by linearity, the reconstruction is

f=Pynf+Lyyn

where P},  f is the standard reconstruction from the noiseless data y. Hence, by
Theorem 3.7, the error satisfies

1f = 7= inf {1F = Tzl + il f = Tzl +exfy iz} + iy ylnl.
(3.21)

In particular, when «j, , is order one, the effect of the noise is proportional to its
£2-norm.

3.5 Behaviour of the Constants

We now consider the behaviour of the constants wa N and )‘71/1 N+ To do so, we define
the constant A§w N as follows:

Ay vy = inf llgl?,. 3.22
M,N glerll{N ||g||M ( )
ligll=1
In general, with a poor choice of sampling functionals, it may be that A§V1, Ny = 0.

However, even in that case, with assumption (3.2) we have that lim inf 3, » A?w N =
A’ for any fixed N.

Proposition 3.10 The constants k), y and Xy, y defined in (3.13) satisfy

VBN By
< EN, Myn < GN, (3.23)

€
Kp,n
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forall M and N, M > N, where By is the Bessel bound for ®y. Moreover,
1 1
Ky N < — Myn = —
. AM,N v AM,N

and if the sampling functionals satisfy (3.2) then, for fixed N,

(3.24)

1
limsupky, y < and limsupAfy, y <

1
M— o0 ’ VA M—00 ’ «/A"

Proof Let y € Ran(Myy) be given and write y = M, f for some f € G. Then, by
(3.11),

Ty Z <y;un>vn .

op>¢€

1Ly Y1 = I1Py N fll =

Notice that || 7y x| < «/Bn|lx||. This follows since any frame automatically satisfies
the upper Riesz basis condition with constant equal to the Bessel bound. Hence

2
1y, un) |~ BN
1PN fI* < By Y < yl%,

op>€ n

which gives (3.23) for «j; . For (3.24), we let y € Ran(M ) and write y = My f
for some f € G once more. From the definition (3.22) of A/M, n and by Lemma 3.6
we find

1Py n fII < 1Py nflm < —— IIfIIM

1 1
— ——Iyll
VAMN \/ V AmN
This gives (3.24).

We now consider )\E,I’N. Let z € CM be arbitrary. Using (3.11) and (3.18) we have

Inz =Py nInz =Ty Z (z, vy)Vp

op <€

Arguing as above, this implies that ||Z7yz — P;LNTNsz < By|lz||>, which gives
(3.23). For (3.24), we again let z € CM be arbitrary. Then

| Tz — Py yTvzls, = > 021z va)? < 2zl

op <€
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Moreover, since Tyz — PS, vInz € Hy we obtain
M,N

1
2 2
175z = Piy Tzl = 11Tz = Piy Iy <
M,N

as required. O

3.6 The Stable Sampling Rate

Suppose that the sampling functionals satisfy (3.2). Motivated by Proposition 3.10 we
now introduce the following concept:

Definition 3.11 For 1 < 6 < co and N € N, the stable sampling rate is

0 %
@e(N,G)zmin{MeN:MzN, Ky v < ——, A§ S—}.
M,N \/? M,N \/?

For a fixed N, suppose that M is chosen so that M > @¢(N, 6). Then this guarantees
an error bound of the form

. 0 0
If =Pyunfll < HgN{”f_TNz”+_||f_TNZ||M+€_”Z”}~
zZ€

N7y Nz

Hence, sampling according to the stable sampling rate, ensures that the error decays
down to roughly € as N — oo. This holds on the additional condition that the term
lf — Inzlls — O; see the discussion after Theorem 3.7. Furthermore, sampling
according to ®¢ (N, 6) means that the rate of decay of the error for finite N depends
completely on how well f can be approximated by elements of Hy with bounded
coefficients. As discussed, this depends completely on the frame & and the element
f being approximated. For estimates in certain cases, see [3].

Remark 3.12 If the data is noisy as in Remark 3.9 and M > ©¢(N, ) then (3.21)
becomes

O \f - Tuzllu + 9||||}+9
—If —1nz e—lz —
A/ N M A/ A/

Note that € does not enter into the noise term. Recall that the first term will decrease
down to a limiting accuracy of at best O(¢). Hence, in the noisy case the limiting
accuracy will depend on the maximum of € and ||z||. In particular, this yields a simple
strategy for choosing € in the noisy case, simply as proportional to the noise level.

If — fll < inf {||f—TNz||+ n]l.
zeCN

The behaviour of ®¢(N, 0) as a function of N depends completely on & and
the sampling functionals. Thus, theoretical estimates for this quantity can only be
established on a case-by-case basis. We shall consider this issue further in Sect. 5 for
a particular class of problems. However, there is no general recipe for providing such
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estimates, and moreover, when possible, doing so typically only reveals the asymptotic
growth rate of ®€(N, 6) with N and not the precise constant.

On the other hand, ®€(N, 0) can always be computed. To see this, we observe the
following:

Lemma 3.13 The constant K;{’N satisfies

K1€\/I,N =< \/)\max ((Bi/I,N)*GNB;/I,N>v

where BZ,I,N = (G;,LN)T and Gy € CN*N jsthe Grammatrix of ®n. IfRan(M yy) =
CM this holds with equality. The constant )‘71/1, N satisfies

Ay = e—l\/,\max ((CMN)*GNCMN),

where CZ/I’N =V —I°)V*and I is the diagonal matrix with nth entry 1 if o,, > €
and zero otherwise.

Proof Let y € Ran(M ;) with ||y|| = 1. Then

125w P = |1 Tu By = ¥ (B x) Gy By < Amax (B x)* GBSy )

since Gy = 7y 7y. This gives the first result.
Letz € CV, |z|| = 1. Then

2
[7vz = P Tvzl’ = |Tv (1= @3y G 2| = |Tw (1= VIV 2’
= HTI\’Cva,NZ“2 =2 (Ciy N GNCiy y2-
Maximizing over z now gives the result. O

This result implies that wa’ y and )L;,I’ y can be computed, and therefore so can
®¢(N; 0), provided the matrix G y has been computed.

Remark 3.14 In practice, it may be difficult to compute G y, since its entries are inner
products which may for instance be integrals. This may be overcome by a further
approximation, e.g. a quadrature. Specifically, let K > 1 and j; x be a family of
linear functionals such that

K
Klgloo];]k,K(f)]k,K(g) =(f.g), Vf.geG.

Let Hg vy = {]k,[(((ﬁn)}]{(:l,nel}v € CK*N Then (Hg n)*Hg n ~ Gy for large K.
Hence, by the previous lemma (assuming Ran(M ) = CM for ease of presentation),
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we have

Ko ~ | Hxn Byl = [Hewv |

My = [Hg vV —I9)|

2’ 2

for sufficiently large K. If, for instance, the functionals jx x correspond to pointwise
evaluations as part of a quadrature, this gives a means of numerically approximating
Ky and Afy y.

4 Frame Approximation from Frame Samples

In this section, we discuss Example 3.2, in which both the approximation system
and sampling functionals arise from frames of H. We write ® = {¢;,},c; for the
approximation frame (with bounds A and B) and ¥ = {¥;,};nes for the sampling

frame (with bounds A’ and B’). We assume that {Iy}ycy is a sequence of nested
index sets with

o
Iy C I, |Iy| =N, VN €N, U Iy =1,
N=1
and similarly, we assume that {Jjs} N is a sequence of nested index sets with
o0
v ClI |Iyl=M, VM eN, | JIn=1.
M=1

As before, we write Pj, , f for the truncated SVD approximation of f € H (note that
G = H in this case, since the sampling functionals arise from a frame of H). We write
x€ for its coefficients.

4.1 Error and Coefficient Bounds

Theorem 4.1 In the above setting, the truncated SVD projection Py, \ f of f € H
satisfies

1f =P sl = inf [(1+ VB0 ) 1f = Tzl + exgyplizl} . @)
zeCN

Its coefficients x€ satisfy

. VB’
€]l < lr(lch { P Inzll + Nzl ¢ (4.2)
€
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and, ifa$, \ € 02(I) the extension of x€ by zero,

/BB’ A
la — a, Il < <1 + D lanl +e f/l_N lall, (4.3)
nel\Iy A

where a = {(f, S~ ¢n)}ner are the canonical frame coefficients of f € H.

Proof Recall (3.3). The first two bounds now follow immediately from Theorems 3.7
and 3.8 respectively. For the third bound, we use use (3.16) and then observe that

2
[s-sns [ =] X an) <8 Yt
nel\Iy nel\ly

where for the final step we recall that a frame with upper frame bound B satisfies the
upper Riesz basis condition with constant B. The result now follows immediately.

]
4.2 Behaviour of the Coefficients and O (€) Accuracy
We now consider the constants wa’ y and )‘71/1, » and the stable sampling rate:
Proposition 4.2 The constants ky,  and 15, y satisfy
VBje W £ ®
N Ay N S 4.4
KM,N’ M’N_{l/\/g\llsz,, ( )

forall M and N, M > N. Moreover, for fixed N,

1
limsupxy, y < and limsupA§y, y <

1
M— o0 VA M— 00 ’ \/A/’

This result is essentially a special case of Proposition 3.10, except in the case where
W = ® where we have a slightly improved worst-case behaviour, with the right-hand
side of (4.4) scaling like 1/+/€ as opposed to 1/¢. As is made clear by the proofs, this
discrepancy is due to the fact that in the latter case the measurements are just inner
products with respect to the same frame. We prove this in a moment. First, however,
we consider its implications for limiting accuracy:

Corollary 4.3 Foreachl < 6 < oo the truncated SVD approximation 7);,1’ N [ satisfies

. 0
limsup |f =Py yfll <e€ A1

M ,N— o0 \/AA/

M>®¢(N.,0)
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where ©€(N, 0) is as in Definition 3.11. Moreover, the coefficients x€ satisfy

L o
1i € 7 i e .
limsup [ = —= 71, limsup - —afy | < e =—llal
M=>®¢(N,0) M=O¢(N,0)

Proof The proof is based on the canonical frame coefficients @ = {(f, S~ ¢,)}ner.
Let z = {an}nery- Then |Iz]| < [la] < 1/\/2||f|| since the dual frame has upper
frame bound A~ (see Sect. 2.3). Therefore (4.1) and Proposition 4.2 gives

B 0
1f = Pign Sl < <1+\/;9) f= Y F. 87 0ngu| + e IFL

nely

As N — o0 (2.5) gives that the first term vanishes. Hence we obtain the result for f.
For the other results, we use (4.2) and (4.3) instead. O

In summary, provided M is chosen above the stable sampling rate ®€(N, 0), the
approximation P;,I, ~f converges to within roughly € of f and the coefficients con-
verge to within roughly € of the frame coefficients @, and in particular are small in
norm for large N. As a consequence, in the setting of Theorem 1.1 where W = @,
we overcome the /€ bottleneck, with the limiting accuracy bounded by €6| f||/A as
opposed to \/Ellfll/\/x (see Corollary 1.2).

This result also illuminates the role that the frame structure plays in both the approx-
imation and the sampling. Indeed, the limiting error depends on both of the lower frame
bounds A and A’, while the limiting size of the coefficients depends only on A. This
is as expected. The existence of small norm coefficients depends only on the approx-
imation frame &, a small limiting error depends on both the sampling frame ¥ and
the approximation frame ®.

Proof of Proposition 4.2 All results follow immediately from Proposition 3.10, except
for (4.4) in the case W = & for which we require a different argument.

Consider ky,  first. Let y € Ran(M ) be given and notice that we may write
y =Ty, f forsome f € Hso that | £, vyl = IP), v fIl. By (3.10) we have

1Py Sl = 3 0ot ey

OO >€ OmOn
Recall that My Ty vy, = optty. Since My, = T, in this case, we have 737N v, =
Oy, Where where @i, € CV is the vector with entries (&) = ()i for k € Iy.
Hence (5, &:) = (T3 INVm, Vn) = Op(lhy, v,) and this gives

op>€

1Py fI? = <Z<y, )i, Y <ya“>v> <

op>€ oy >€ n

Z (y;jun) v, . .

op>€ n
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By orthogonality, the second term satisfies

op>€

Consider the first term. Let Q : CM — CM be the projection defined by (Qnx),, =
Xm,m € Iy and (Qnx),, =0, m € Iy \Iy. Then

D Ay wm)iim | = H O (Z (¥, um>um)

oy >€ oy >€

<

Z (¥, um)um

oy >€

< Iyl

Therefore, we deduce that

1P5 v FI7 < Dyll/e,

and the result for x5, ,, now follows from its definition.
Now consider 19, . Letz € CN be arbitrary and recall that

vz — Py yInz = Y _ (2. va)én.

op <€

Hence

| Tvz =Py aTvz = Y (2 vn) (2 v (6 ).

Om,0p =€
As above, we note that (§,,, &,) = 0, (i, V), and therefore
2 - 2
| vz — Py vy Inz|” = <Z O (2, Vm)iim, D (2, vn>vn> < ellz*.
op =€ Op <€

Since z was arbitrary, we now obtain the result for 19, . O

5 ONB+1 and ONB+K Frames

We conclude this paper with several examples to illustrate the stable sampling rate.
First, let {¢, },en be an orthonormal basis of H and ¥ € H, ||| = 1, be such that
(¥, @n) # 0O for infinitely-many n € N. Then the indexed family

D = {po, 1,...} ={¥, 01,02, ...},

is a frame for @ with frame bounds A = 1 and B = 2. We refer to this frame as the
ONB+-1frame. Note that it was previously used in [3] to show that the Gram matrix of a
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frame can be arbitrarily badly conditioned. It is motivated by the idea of ‘enriching’ an
orthonormal basis to better capture a certain feature of a function under approximation
(e.g. a singularity or oscillation).

Throughout this section, we let Qx denote the projection onto span{¢gy, ..., ox},
ie.

N
ONS =) (f+ 0n)n

n=1
5.1 The Stable Sampling Rate for the ONB+1 Frame

A problem of interest is that where the samples are inner products with respect to the
orthonormal basis {¢@, }men. That is,

b (f) =tm(f)=(f ¢m), m=1,....M, M eN. (5.1

For instance, these are Fourier coefficients if {¢,, },seN is the Fourier basis, and hence
the goal would be to compute a better approximation in the frame ® from the given
Fourier data. Note that this is an instance of Sect. 4 with A’ = B” = 1. Note also that
gl = 19mgll. Recalling Proposition 3.10, to determine the stable sampling rate
we note that it suffices to estimate

Ay oy = inf [Qugll>=1— sup [lg— Qugl?* (5.2)
geHy geHy
lgll=1 lel=1

where Hy = span{y, ¢1, ..., on—1}.

Lemma 5.1 For M > N, we have

sup |lg — Qugll = MY = Quéll
ﬁ)e”HN Iy — Qv
gll=1

Proof Let g € Hy and write g = xo¥ + Z,’:’;l] Xn¢@n. Then

(g’(le):'xO(w’gDn)—}_'xn’ nzlv"'7N_17

and hence

N-1

g=x00 + Y _ (2 @) — X0, @n) @0 = X0(¥ — Qv_1¥) + Q18-

n=1

Rearranging gives
g— 9On-18 =x0(Y — Qn-1¥),

Birkhauser



87 Page 26 of 34 Journal of Fourier Analysis and Applications (2020) 26:87

and taking the norm of both sides, we find that

lg — On—18ll _ lgll _ 1
Iy — Qn-1¥ll = I = Qv—1vll Iy — Qv

|xo| =

Also, we have

<gﬂ(pn>:x0<qu)n)v nZN

Therefore

llg — Qumgll = Ixollly — Qu .

Combining this with the bound for |x¢| gives that

IV — Quyll
sup llg —OQmgll <+ —
geHy ¥ — QN1
ligll=1
To show equality, we divide into two cases. Suppose firstthat ¥ L span{¢y, ..., on—_1}.

Then Qy_1¥ = 0 and so we may take g = v/||¥| to obtain equality. On the
other hand, if ¢ L span{ei,...,on—1} then there exists a g € Hy, |gll = 1,
with Qy_1g¢ = 0. In this case, the above arguments give that ||g — Qugll =
v — Qu /Iy — On—1v¥ ||, which implies the result. O

This leads us to the following result:

Theorem 5.2 Suppose that v is such that |{{r, ¢,)| ~ cn™% as n — oo for some
¢ > 0and a > 1/2. Then the stable sampling rate

O°(N,0) < CN,

for some constant C > 0depending on c, @ and 0 only. Conversely, if |(¥, )| ~ cp™"
asn — oo for some ¢ > 0 and p > 1 then

O°(N,0) <N +C,

where C > 0 depends on ¢, p and 6 only.

Proof In the first case, the condition on the coefficients gives

Iy — QNP = D 1, @a) P ~ N2, N — o,

n>N

where ¢’ depends on ¢ and «. Hence Lemma 5.1 and the bound (5.2) give

/ , M1/2—aN 2
Ayn=l-c N )
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for some constant ¢” depending on ¢ and «. Recalling that B = A’ = A = 1 and
B = 2 for this frame and using Proposition 3.10 gives the first result. For the second
result, we notice that

o~

L—p

Iy — QN> ~ ¢

We now argue as in the previous case. O

This result shows that the stable sampling rate is linear when v has algebraically or
exponentially-decaying coefficients in the orthonormal basis {¢,},en. Furthermore,
the better v is approximated in this basis, the smaller the stable sampling rate is,
as evidenced by the case of exponentially-decaying coefficients. In fact, Lemma 5.1
demonstrates the connection between the stable sampling rate and how well approx-
imated ¥ is in the orthonormal basis {¢, },en. Specifically, the faster the projection

errors || — Q|| decay, the smaller M > N needs to be so that IIUK_Q—% <34

for constant 0 < § < 1. This is intuitive. The better v is approximated by this basis,
the more information the data, i.e. inner products with the ¢, , carries about the element
g
On the other hand, the worse g is approximated the higher the stable sampling
rate. Indeed, if ||y — Quv| = (log(N))_1 then it is a simple exercise to show
that the stable sampling rate is algebraic in N with the power depending on 6, i.e.
O¢(N, ) = O (N"®) for some function /1(9) > 1 with h(6) — oo as§ — 1F.

Remark 5.3 One can also determine a bound on the stable sampling rate for special
case ® = W, also discussed in Sect. 4. In this case, the data is given by the inner
products

(faw>s (f»@m)» m:l,,M—l

Indeed, observe that

Ay = inf (e )P +1Qu-1gl?) = inf 1Qu-18]>
’ geHy g€Hy
llgll=1 lgll=1

The right-hand side is precisely the constant in (5.2) with M replaced by M — 1. Hence,
up to an additive factor of one, the stable sampling rate for this problem satisfies the
same bounds as those of Theorem 5.2.

5.2 The Approximation of Functions with Logarithmic Singularities

LetH = L?(0, 1). The scaled Legendre polynomials, ¢, (x) = +/2n — 1 P,_1(2x—1),
n € N, form an orthonormal basis for H. Here P, (x) is the usual Legendre polynomial,
with normalization P, (1) = 1. This basis is extremely good at approximating smooth
functions. However, many functions that may arise in applications, such as Green’s
functions or solutions to PDEs on domains with corners, fail to be smooth at a point
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X, yet posses a known type of singularity there. That is, in these applications we may
want to approximate functions of the form

fx)=gx) +wkx)h(x), xe(@0,1) (5.3)

where g, h are smooth functions, and w € LZ(O, 1) is a known function which may be
singular at, say, x = 0. Such functions cannot generally be accurately approximated
using polynomials alone. However, they can be more accurately captured by enriching
the polynomial basis with the function w. This gives a frame

D = {p, )52, U{w}, (5.4)

for H. Indeed, since the ¢, are an orthonormal basis, it quickly follows that

LFIE =D 1 o) < Y o) P+ 1w P < IFIP+ 1A 1P wl
n=1

n=1

Hence this is a frame with bounds A > 1 and B < 1 + ||w||%.

The case of a logarithmic singularity, i.e. w(x) = log(x), is an important instance
of the problem. Figure 1 gives an illustration of the benefits of this frame over just the
polynomial basis for approximating the simple yet singular function

f(x) =" +1log(x) cos(x). (5.5)

The polynomial interpolation to f converges poorly, as expected. However, adding
just the single element w(x) = log(x) to the basis results in significantly faster con-
vergence rates, shown in Fig. 1b. Importantly, note that the approximation scheme
does not evaluate the smooth parts of f separately. They are implicitly approximated

100-° 100-0
10-25 |- 10-25
10-50 |- 10-5:0
sl —_— x=0.01 s
10 s x=0.1 10
10-10.0 | — x=0.9 10-10.0
s [L2-nOTM
L L Ll I L L L . L
0 25 50 75 100 0 25 50 75 100
N N
(a) Normalized Legendre polynomials (b) ONB+1: Legendre polynomials + logz

Fig. 1 Pointwise error as a function of the polynomial degree N for the approximation of the logarithmi-
cally singular function (5.5) on [0, 1] using Legendre polynomials (left panel) and Legendre polynomials
augmented with log x (right panel). The error is shown in four points in the interval [0, 1]. In both cases,
the approximation problem is solved using generalized sampling (5.1) with M = 2N. The generalized
samples ({f, (pm))%:] were evaluated using adaptive numerical integration. The regularization threshold

ise =2e13

Ao . .
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simultaneously when approximating f from its samples. Indeed, if the smooth parts
of f were known separately in an application, the approximation problem simplifies
and there would be no need to construct a frame. Note also that the evaluation of the
generalized samples (5.1) requires the evaluation of integrals, and this step is computa-
tionally demanding because the integrals are weakly singular. In subsequent examples,
we shall consider a fully-discrete approximation based on function samples.

Using Theorem 5.2, we may estimate the stable sampling rate for this problem:

Proposition 5.4 Ler H = L2(0, 1), w(x) = log(x), {¢n} be the Legendre basis on H,
® be as in (5.4) and consider the sampling functionals (5.1). Then the stable sampling
rate for this problem is linear in N, and specifically,

N -1

J1=1/62

Proof The Legendre polynomials satisfy

@e(N,O)fmax{N, }, Vo > 1, N > 2.

(_l)n+l

1
fo Pn(QJC — l) log(x) dx = m,

This follows from the differential equation ((1 — x%) P, (x))" + n(n + )P, (x) = 0
after two integrations by parts. Let ¥ (x) = log(x). Then, for M > 1,

2m + 1 1 1 1
= Qv = Y M = Y s = Y (W_W>=W'

m>M m>M m>M

Lemma 5.1 now gives

lg — Quel = 21
sup llg — Qugll = ——.
geHy M
lgll=1
Therefore
sup llg — Qugll < /1 —1/62,
g€eHy
lgll=1
provided
N -1 N -1
<./1-1/62 & M>—,
M V1 —1/62
as required. O

Birkhauser



87 Page300f34 Journal of Fourier Analysis and Applications (2020) 26:87

5.3 ONB+K Frames

Functions with logarithmic singularities can be more accurately approximately using
the frame (5.4) than the Legendre polynomial basis alone. However, the accuracy
may be limited, due to the presence of weak logarithmic singularities. To increase the
accuracy one may consider a frame of the type

K
D = {p, ;.zo=1 U {Wk}k=1, (5.6)
for fixed K > 1, where ¥ (x) = w(x)gk(x).
100-0 100 [ — x=0.01
m— x=(.1
10-25 —_— x=0.9
10-5 | e [, 2-n10rmM
10—&0 -
10—7.5 10_10
10—10-0 10-15
0 % 50 7 100

N N

(a) Legendre interpolation (b) Legendre ONB+K frame with K =5

Fig.2 Pointwise error as a function of the polynomial degree N for the approximation of the logarithmically
singular function (5.5) on [0, 1], using Legendre interpolation (left panel) and the ONB+K frame & with
Legendre polynomials, K = 5 and w(x) = logx (right panel). The error is shown in three points in the
interval [0, 1] as well as in the L2-norm on [0, 1]. In both cases, the samples are function evaluations in
the Legendre nodes. The left panel is based on interpolation, the right panel corresponds to a discrete least
squares approximation with M = 2N and regularization threshold € = 20713

100 — x=0.01 1001
o x=0.1
— x=0.9
10-5 | e |, 2-n0TM 1075 |
10— 10 | 10-10 |
10_15 L 1 1 1 1 10_15 L | | 1 | | |
50 60 70 80 60 80 100 120 140 160 180
M M

(a) Legendre points (b) Equispaced points

Fig.3 Pointwise error as a function of the number of samples M for the ONB+K frame based on Legendre
polynomials, with degree N = 40, K = 5 and w(x) = logx as in Fig. 2b. Similar to regular polynomial
approximation, using Legendre points yields better accuracy than using equispaced points. They also require
less oversampling, i.e., smaller values of M, to achieve the best error
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1075 |- 0= =15
==y = 2.0
1050 |- —=y = 4.0
1025 |-
1000 m
10-25 |
| | Il 1 1
20 40 60 80 100
N
(a) Kis,n, Legendre points
1010 |-
108 |
106 |-
10|
102
100 |
10-2|
| | Il Il Il
20 40 60 80 100
N

(c) KSu,n, equispaced points

Fig.4 The values OfKM  and A

1075
1050
1025
100-0

10725

1010 |-
108 -
108 |-
104 -
102 |
100 |+

1072

I
20 40 60 80 100
N

(b) A%, n, Legendre points

| L L L

I
20 40 60 80 100
N

(d) ASs,~, equispaced points

.y are shown as a function of N with constant oversampling M = y N and

varying factors y. Legendre points (top row) and equispaced points (bottom row) are used for the ONB+K

frame using Legendre polynomials, w(x) =

log(x) and K = 5. The threshold used here is € = le™ 5: the

values are bounded for Legendre points but they approach 1/€ for equispaced points. Equispaced points

require more than linear oversampling

Proposition 5.5 Let {¢,} be the Legendre basis on H and w € L2(0, 1). Then (5.6) is
a frame for any fixed K > 1, with frame bounds

1<A<B<I1+|wl|’K>

Proof First observe that ¥ € L?(0, 1) since w € L?(0,1) and ¢ € L>(0, 1).

Second, we have

00 K
LF1? = wan Z (ol + Y 1 vl
n=1 k=1

and therefore the lower frame condition holds with A > 1. Moreover,

) Birkhduser



87 Page32o0f34 Journal of Fourier Analysis and Applications (2020) 26:87

1010.0 |- 10100 |-
—— =15
107-5 ==y = 2.0 1075
0=y = 4.0
10%0 1050
1025 1025
100-0 100-0
10-25 10-25
20 40 60 80 100 20 40 60 80 100
N N
(a) K5s,n, Legendre points (b) A%, n, Legendre points
1010 1010
108 108
106 106
10* 10*
10% 10%
10° 10°
1072 1072
20 40 60 80 100 20 40 60 80 100
N N
(c) KN, equispaced points (d) Ay, N, equispaced points

Fig. 5 The same as Fig. 4 but with threshold € = le~8. For Legendre nodes (top row), the intermediate
peaks are higher, corresponding to the larger upper bounds in (3.23). However, the values settle down for
increasing N, with a clear benefit for larger oversampling factors. This is in agreement with the limit (3.24).
For equispaced samples, linear oversampling is not sufficient and, as in the previous figure, the values seem
to approach 1/e. This again corresponds to (3.23)

9] K K
STUFr@ad P+ D KL < IR+ 111w el oo
n=1 k=1 k=1

K
AP 1+ Twl? ) @k — 1)

k=1

= 1712 (1 + IwlPK?)

Here, in the penultimate step, we use the fact that |¢, (x)| < ¢,(1) = +/2n — 1 for
0 < x < 1. This completes the proof. O

In Fig. 2 we demonstrate the benefits of this frame for approximating the singu-
lar function given by (5.5). Here, rather than the inner products (5.1), we take the
sampling functionals to be pointwise evaluations at the Legendre nodes, i.e., at the
roots of a high degree Legendre polynomial, mapped from [—1, 1] to [0, 1]. We also
compare these approximations with the polynomial interpolant at these nodes. As is
evident, polynomial interpolation performs poorly. In contrast, the convergence for
the ONB+K frame is significantly faster. Figure 2 also illustrates the stability of the

Ao . .
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numerical approximation using oversampling with M = 2N. The accuracy reaches
machine precision, in spite of it requiring the solution of an extremely ill-conditioned
linear system of equations, and this high level of accuracy is maintained as N grows.

The influence of the oversampling factor M is illustrated in Fig. 3. Here, the error
is shown as a function of M, for constant N = 40. Best accuracy is only achieved
for M > N, i.e., when using some amount of oversampling. We have used discrete
sampling in this figure using Legendre points (left panel) and equispaced points on
[0, 1] (right panel). It is not unexpected that Legendre points are a better choice: less
oversampling is needed to achieve the best accuracy for the given N.

The behaviour shown in Fig. 3 can be explained by computing the corresponding
constants iy, » and A5, . This also serves to illustrate the stable sampling rate for
this problem. Their values are shown in Fig. 4 for several choices of the oversampling
factor y, with M and N such that M = y N. The convergence of both values to
constants of modest size, in particular much smaller than 1/e, suggests that the stable
sampling rate is indeed linear when sampling in the Legendre points. For equispaced
points, as could be expected, this does not seem to be the case.

The results in Fig. 4 correspond to the threshold € = le™>. For comparison, the
experiment is repeated in Fig. 5 for the smaller threshold € = 1e~8. The latter figure
illustrates the larger upper bound of (3.23), on the order of 1/¢, in the pre-asymptotic
regime. Still, for the case of Legendre nodes, linear oversampling is sufficient to reach
the e-independent (and small) limit (3.24).

The constants were computed following the approach described in Remark 3.14.
We have run this experiment in higher precision arithmetic, in order to exclude the pos-
sibility of inaccuracies in their computation. An exponentially converging composite
hp-graded quadrature rule was used to approximate the singular integrals that arise
in the elements of the Gram matrix. Furthermore, in this case we also weighted the
discrete samples in Legendre points by the square roots of the corresponding Gauss—
Legendre quadrature weights: this discrete normalization ensures that A’ = B’ = 1
in (3.2) and leads to slightly smaller values of the constants (and, correspondingly,
smaller error in the approximation).
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