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Abstract
In a previous paper (Adcock and Huybrechs in SIAM Rev 61(3):443–473, 2019) we
described the numerical approximation of functions using redundant sets and frames.
Redundancy in the function representation offers enormous flexibility compared to
using a basis, but ill-conditioning often prevents the numerical computation of best
approximations.We showed that, in spite of said ill-conditioning, approximations with
regularization may still provide accuracy up to order

√
ε, where ε is a small truncation

threshold. When using frames, i.e. complete systems that are generally redundant but
which provide infinite representations with coefficients of bounded norm, this accu-
racy can actually be achieved for all functions in a space. Here, we generalize that
setting in two ways. We assume information or samples from f from a wide class
of linear operators acting on f , rather than inner products associated with the best
approximation projection. This enables the analysis of fully discrete approximations
based, for instance, on function values only. Next, we allow oversampling, leading to
least-squares approximations. We show that this leads to much improved accuracy on
the order of ε rather than

√
ε. Overall, we demonstrate that numerical function approx-

imation using redundant representations may lead to highly accurate approximations
in spite of having to solve ill-conditioned systems of equations.

1 Introduction

The approximation of functions in a Hilbert space typically assumes a basis for that
space. The non-redundancy of a basis ensures that linear systems associated with
approximation problems are non-singular. In addition, suitable structure—ideally the
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basis is orthonormal, more generally it may be a Riesz basis—renders these systems
well-conditioned. There is a unique solution, it is stably computable, and there is a close
correspondence between properties of the continuous function and of the coefficients
in the representation, for example the Parseval identity.

Instead, for a redundant set of functions the corresponding linear systemsmay be ill-
conditioned or even singular, and uniqueness may be lost. Still, good approximations
may exist in the span of the set. It may even be much easier to ensure that this is
the case than it is for a basis, and in fact this is a popular approach in a wide range
of applications. For example, a basis can be ‘enriched’ by adding a few functions
that capture a singularity [10]. A periodic Fourier basis can be augmented with a few
polynomials to capture the non-periodicity of f [23]. Ill-conditioning and redundancy
also frequently appear in solution methods for partial differential equations (PDEs). In
Trefftzmethods, solutions of a PDEare approximated using other solutions of the same
PDE, and this is often successful yet notoriously ill-conditioned [16]. Several methods
are based on embedding a domain with complicated geometry �, for which a basis
is unknown, into a simple bounding box D. A basis for L2(D) yields a (redundant)
frame for L2(�). Examples include embedded/fictitious domain methods, immersed
boundary methods and others [6,17,24].

As mentioned, redundant representations necessarily lead to ill-conditioning. To
which extent are the corresponding function approximations computable? What con-
vergence behaviour and accuracy can be expected? In this paper, we continue a line of
investigation that commenced in [3] on numerical approximation of functions using
redundant function sets in general and frames in particular. The main contribution of
[3] was a detailed analysis of the accuracy and conditioning of the computation of best
approximations with regularization, with a chosen threshold ε. We now briefly recall
the main results of [3] in Sect. 1.1, followed by an overview of the theoretical results
of this paper in Sect. 1.2.

1.1 Best ApproximationWith Regularization

The main concern of [3] was the computation of the best approximation, i.e. the
orthogonal projection, in the space HN := span(�N ) spanned by a set of N elements
�N := {φn}Nn=1. This approximation is given by PN f = ∑N

n=1 xnφn , where x =
(xn)Nn=1 is a solution of the linear system

GN x = y, (1.1)

where y = {〈 f , φn〉}Nn=1 and GN = {〈φn, φm〉}Nm,n=1 is the Gram matrix of �N .
If the elements of �N are nearly or exactly linearly dependent, then GN is ill-

conditioned or even singular. Moreover, the coefficients x can also grow arbitrarily
large, making them impossible to compute in floating point arithmetic for sufficiently
large N . The remedy proposed in [3] was to regularize (1.1) by using a truncated
Singular Value Decomposition (SVD) of GN with a threshold parameter ε > 0 below
which all the singular values are discarded. This results in a new projection Pε

N f =
∑N

n=1(x
ε)nφn , where xε is the regularized solution of (1.1).
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The main result of [3] concerns the best approximation with regularization as fol-
lows:

Theorem 1.1 [3] The truncated SVD projection Pε
N satisfies

‖ f − Pε
N f ‖ ≤ inf

z∈CN

{∥
∥
∥ f −

N∑

n=1

znφn

∥
∥
∥+ √

ε

∥
∥
∥z
∥
∥
∥
}
. (1.2)

Moreover, the (absolute) condition number of the mapping y �→ Pε
N f is at most

1/
√

ε.

Observe that the right hand side of (1.2) contains two terms. Theorem 1.1 states that
the regularized projection behaves like the best approximation to f in the span of �N

(the first term), as long as the coefficients have sufficiently small norm (second term).
Furthermore, convergence can only be expected to an accuracy up to the order of

√
ε.

Whether or not this accuracy is achieved, depends on the existence of a representation∑N
n=1 znφn in the span of �N with that accuracy and with small norm ‖z‖ of its

coefficients. This question can be studied on a case-by-case basis, as done in [3] for a
variety of examples.

To answer this question more generally, it is natural to impose additional structure
on �N . In [3], this was done via frames. Recall that an indexed family � := {φn}∞n=1
is a frame for a Hilbert space H if it satisfies the frame condition

A‖ f ‖2 ≤
∞∑

n=1

|〈 f , φn〉|2 ≤ B‖ f ‖2, ∀ f ∈ H, (1.3)

where A, B > 0 are positive constants and ‖·‖ is the norm on H. The frame condition
ensures the existence of bounded representations, to any accuracy, for all functions in
the space. In particular, this yields the following:

Corollary 1.2 If � := {φn}∞n=1 is a frame for H, and �N := {φn}Nn=1, then

lim sup
N→∞

‖ f − Pε
N f ‖ ≤

√
ε

A
‖ f ‖, ∀ f ∈ H. (1.4)

Unlike in the general setting, the frame condition imposes sufficient structure so that
accuracy to order

√
ε is nowguaranteed for all functions inH. For this reason, aswell as

the fact that framesoccur in numerous computational problems, one can thinkof frames
as an ideal setting in which to apply Theorem 1.1. Of course function approximation
with redundancy can be successful without a frame property. For example, in the
absence of a frame, one may still use Theorem 1.1 to show accuracy in a subspace
of H consisting of functions with bounded-norm coefficient representations. But this
raises the matter of whether functions of interest to a given problem belong to this
space. In the absence of a frame structure, this question must then be answered on a
case-by-case basis.
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1.2 Main Results

In this paper, we generalize Theorem 1.1 using oversampling and allowing for gener-
alized samples (or indirect data). In doing so, we not only allow a much broader class
of samples, including, for example, pointwise evaluations, we also overcome the

√
ε

bottleneck.

Approximation from generalized samples In Sect. 3, instead of inner products with
the elements φn , as was used in Theorem 1.1 [see (1.1)], the ‘data’ about the function
f is now given by bounded linear functionals �m,M : G → C, m = 1, . . . , M , which
may depend on M and which may be only defined on a dense subspace G of H (e.g.
in the case of pointwise evaluations when H = L2(�) we consider G = C(�)). Very
much reminiscent of the frame condition (1.3), the strongest general statements can
be made when this data is sufficiently ‘rich’ so as to stably recover f , in particular
satisfying

A′‖ f ‖2 ≤ lim inf
M→∞

M∑

m=1

|�m,M ( f )|2 ≤ lim sup
M→∞

M∑

m=1

|�m,M ( f )|2 ≤ B ′‖ f ‖2, ∀ f ∈ G,

(1.5)

for constants A′, B ′ > 0. We refer to this as a Marcinkiewicz-Zygmund condition. A
key ingredient is to allow oversampling, i.e. let M > N , and consider the M × N
linear system

GM,N x ≈ y, y = {�m,M ( f )}Mm=1, (1.6)

where GM,N = {�m,M (φn)}M,N
m,n=1. As we shall subsequently explain, this system

generally remains ill-conditioned for large N , even when M � N . Hence we con-
struct an approximation by singular value thresholding. This leads to a regularized
approximation Pε

M,N f whose coefficients xε are the solution of the SVD-regularized
least-squares problem corresponding to (1.6). Our main result for this setup is the
following:

Theorem 1.3 The truncated SVD projection Pε
M,N f satisfies

‖ f − Pε
M,N f ‖ ≤ inf

z∈CN

{∥
∥
∥
∥
∥
f −

N∑

n=1

znφn

∥
∥
∥
∥
∥

+ κε
M,N

∥
∥
∥
∥
∥
f −

N∑

n=1

znφn

∥
∥
∥
∥
∥
M

+ ελε
M,N‖z‖

}

,

(1.7)

for constants κε
M,N , λε

M,N > 0. The (absolute) condition number of the mapping
y �→ Pε

M,N f is precisely κε
M,N . Moreover, these constants satisfy

κε
M,N ≤

√
BN

ε
, λε

M,N ≤
√
BN

ε
,
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for all M and N, M ≥ N, where BN is the Bessel constant of �N over HN =
span(�N ). If the sampling functionals satisfy (1.5) then, for fixed N,

lim sup
M→∞

κε
M,N ≤ 1√

A′ , lim sup
M→∞

λε
M,N ≤ 1√

A′ .

Here, ‖g‖2M = ∑M
m=1 |�m,M (g)|2 is the discrete semi-norm defined by the data.

We recall that �N is a Bessel sequence, since it is finite, and therefore it has a finite
Bessel constant BN > 0, defined as the smallest constant forwhich

∑N
n=1 |〈 f , φn〉|2 ≤

BN‖ f ‖2, ∀ f ∈ H.
This result is very general, but its main conclusion is the following. Provided M is

sufficiently large and the samples satisfy (1.5) then the approximation error depends
on f −∑N

n=1 znφn (measured in some norm) and ε‖z‖. The constants κε
M,N and λε

M,N

can be large when M is insufficiently large (behaving like
√
BN/ε in the worse case),

but they can be made arbitrarily close to 1/
√
A′ by taking M large, i.e. by increasing

oversampling. Furthermore, on comparison with Theorem 1.1, we notice that
√

ε in
the error bound has been replaced by ε. Hence, under suitable assumptions on f , �N

and M , we expect order ε accuracy in the limit, as opposed to order
√

ε accuracy.
This result raises the question of how large M needs to be in comparison to N .

Later, we quantify this via the so-called stable sampling rate. Unsurprisingly, the ques-
tion ‘how large is sufficiently large’ depends completely on system �N and samples
{�m,M }, and thus must be analyzed on a case-by-case basis. In Sect. 5, we illustrate an
example for which the stable sampling rate is provably linear, i.e. there exists a C ≥ 1
such that setting M ≥ CN implies that the constants κε

M,N and λε
M,N are bounded

independently of ε. Alternatively, this rate can also be computed numerically, as we
explain in Sect. 3.6.
Frame approximation from frame samples Theorem 1.3 applies for arbitrary �N

and any samples satisfying (1.5). In order to make statements about the limiting
behaviour as M, N → ∞ we need two ingredients. First, a sequence z for which∑N

n=1 znφn converges to f in theHilbert space normand forwhich the coefficient norm
‖z‖ does not blow up. Second, additional regularity of the samples and/or f so that the
M-norm can be controlled by a suitable norm in which one also has

∑N
n=1 znφn → f .

Whether or not such conditions hold could be answered on a case-by-case basis for
particular types of sampling and approximation systems. But instead, we now address
them in a general scenario where both the sampling functionals and the approximation
system �N are endowed with a frame structure. Specifically, let � = {φn}∞n=1 and
	 = {ψm}∞m=1 be frames for H and set �N = {φn}NN=1 and �m,M = 〈·, ψm〉 for
m = 1, . . . , M . Note that (1.5) now automatically holds with G = H, with A′ and B ′
being the frame bounds for 	.

Our main result in this case is the following:

Theorem 1.4 In the above setting, the truncated SVD projection Pε
M,N f satisfies

‖ f − Pε
M,N f ‖ ≤ inf

z∈CN

{

(1 + √
B ′κε

M,N )

∥
∥
∥
∥
∥
f −

N∑

n=1

znφn

∥
∥
∥
∥
∥

+ ελε
M,N‖z‖

}

,
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for certain constants κε
M,N , λε

M,N > 0. The (absolute) condition number of the map-
ping y �→ Pε

M,N f is precisely κε
M,N . These constants satisfy

κε
M,N , λε

M,N ≤
{√

B/ε 	 �= �

1/
√

ε 	 = �,
,

for all M and N, M ≥ N, and

lim sup
M→∞

κε
M,N ≤ 1√

A′ , lim sup
M→∞

λε
M,N ≤ 1√

A′ .

Moreover, for each 1 < θ < ∞ and N ∈ N there exists an integer �ε(N , θ) ∈ N

such that

lim sup
M,N→∞

M≥�ε(N ,θ)

‖ f − Pε
M,N f ‖ ≤ ε

θ√
AA′ ‖ f ‖. (1.8)

The quantity �ε(N , θ) is what we term the stable sampling rate. As noted above, it
can be computed numerically. Observe that in the special case 	 = �, the setting of
Theorem 1.1 (i.e. sampling and approximating with the same functions) is restored.
However, oversampling according to (1.8) overcomes the

√
ε bottleneck in (1.4), thus

improving the limiting accuracy to order ε.

1.3 Relation to OtherWork

This paper is a continuation of [3], in which the systematic study of numerical frame
approximation was commenced. This study had its origins in earlier work on so-
called Fourier extensions [5,15], which are particular frames arising as restrictions of
the Fourier basis on a box to a subdomain.

Our use of oversampling here is inspired by earlier work on generalized sampling in
Hilbert spaces by the first author and Hansen [1,2,4]. That work considered both
sampling and approximation using orthonormal bases and frames, introducing the
stable sampling rate as well, but did not address the ill-conditioning issue for approx-
imation in the latter. Note that the matrices GM,N (in the case of Theorem 1.4 with
	 = �) and GN are so-called uneven and finite sections respectively of the infinite
Gram matrix of the full frame �. Using uneven as opposed to finite sections is a
well-known trick in computational spectral theory [13,14,18].

For a more in-depth discussion of relations between this work and standard frame
theory, we refer to [3].

Our focus in this paper is accuracy and conditioningof the regularized frameapprox-
imations. We do not consider efficiency, i.e. computational time, which is very much
dependent on the particular frame under consideration. There are efficient numerical
methods for solving (1.6) for certain frames and sampling functionals [8,9,20–22]. In
the absence of a more efficient method, the cost of computing the SVD of an M × N
matrix with M > N scales asO(MN 2). However, based in particular on [9], some of
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the examples at the end of this paper can be implemented inO(N (log N )2) operations.
We refer to [9] for more examples.

2 Preliminaries

We first introduce some notation and useful concepts from frame theory.

2.1 Bases and Frames

For the remainder of this paper, H is a separable Hilbert space over the field C. We
write 〈·, ·〉 and ‖·‖ for the inner product and norm on H respectively. Recall that � is
a Riesz basis if span(�) is dense in H, and there exist constants A, B > 0 such that

A‖x‖2 ≤
∥
∥
∥
∥
∥

∑

n∈I
xnφn

∥
∥
∥
∥
∥

2

≤ B‖x‖2, ∀x = {xn}n∈I ∈ �2(I ). (2.1)

Here and throughout, �2(I ) denotes the space of square-summable sequences indexed

over I , and ‖·‖ denotes its norm, i.e. ‖x‖ =
√∑

n∈I |xn|2. In this paper, we assume
that the constants appearing in (2.2) are the optimal constants such that the inequality
holds.Wenote that aRiesz basis is an orthonormal basis if (2.1) holdswith A = B = 1.
In general, we may view (2.1) as a relaxed version of Parseval’s identity.

An indexed family � is a frame if

A‖ f ‖2 ≤
∑

n∈I
|〈 f , φn〉|2 ≤ B‖ f ‖2, ∀ f ∈ H, (2.2)

for positive constants A, B > 0. A frame is tight if A = B. We refer to (2.2) as the
frame condition. Note that (2.2) implies that � is dense in H. It follows from (2.1)
that a Riesz basis is also a frame with the same constants A, B [7, Prop. 3.6.4]. But,
in general, a frame need not be a Riesz basis.

2.2 Operators on Frames

Associated to any frame � (and therefore any Riesz basis) is the so-called synthesis
operator

T : �2(I ) → H, y = {yn}n∈I �→
∑

n∈I
ynφn .

Its adjoint, the analysis operator, is given by

T ∗ : H → �2(I ), f �→ {〈 f , φn〉}n∈I ,
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and the composition S = T T ∗, known as the frame operator, is

S : H → H, f �→
∑

n∈I
〈 f , φn〉φn .

This operator is self-adjoint, bounded, invertible and positive with

A‖ f ‖2 ≤ 〈S f , f 〉 ≤ B‖ f ‖2. (2.3)

See [7, Lemma 5.1.5]. Note that this inequality is equivalent to the frame condition
(2.2). Note also that S = I is the identity operator for an orthonormal basis. Similarly,
S = AI for a tight frame. However, for a general Riesz basis or frame, S �= I.

2.3 Dual Frames

A frame 	 = {ψn}n∈I ⊆ H is a dual frame for a given frame � if

f =
∑

n∈I
〈 f , ψn〉φn =

∑

n∈I
〈 f , φn〉ψn, ∀ f ∈ H. (2.4)

If a frame � is also a Riesz basis then it has a unique dual frame 	, which is also a
Riesz basis. In this case, the pair (�,	) is biorthogonal:

〈φn, ψm〉 = δn,m, n,m ∈ I .

Note that an orthonormal basis is self-dual, i.e. 	 = �. Conversely, a frame and any
of its duals are typically not biorthogonal. A frame may also have more than one dual.
The so-called canonical dual frame of � is the frame 	 = {S−1φn}n∈I . This is a
frame [7, Lemma 5.1.5], and its frame bounds are B−1 and A−1 respectively. In this
case, (2.4) reads

f =
∑

n∈I
〈 f ,S−1φn〉φn =

∑

n∈I
〈S−1 f , φn〉φn . (2.5)

We refer to the coefficients a = {〈 f ,S−1φn〉}n∈I as the canonical frame coefficients
of f . These coefficients have the property that, amongst all possible representa-
tions of f in �, they have the smallest norm [7, Lemma 5.4.2]. Specifically, if
f = ∑

n∈I anφn = ∑
n∈I cnφn for some c = {cn}n∈I , then ‖c‖ ≥ ‖a‖. Moreover,

from the frame condition of the dual we have ‖a‖ ≤ 1√
A
‖ f ‖.

3 Approximation from Indirect Data

In this section, we describe the general setup, which will lead eventually to The-
orem 1.3. Throughout this section, the approximation system is defined by �N =
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{φn}n∈IN ⊂ H. It is an an indexed family of N elements in H, where IN is an index
set of cardinality N . For convenience, we now make a mild generalization over Sect.
1, allowing IN to be an arbitrary index set rather than just {1, . . . , N }. As noted, �N

is a Bessel sequence, since it is finite. We write BN > 0 for its Bessel constant, i.e.
the smallest constant for which

∑N
n=1 |〈 f , φn〉|2 ≤ BN‖ f ‖2, ∀ f ∈ H.We also define

the operators

TN : CN → H, z = (zn)n∈IN �→
∑

n∈IN
znφn

T ∗
N : H → C

N , f �→ (〈 f , φn〉)n∈IN
SN = TNT ∗

N : H → H, f �→
∑

n∈IN
〈 f , φn〉φn .

3.1 Indirect Data

Let G be a dense subspace of the Hilbert space H endowed with a norm |||·|||. Suppose
that f , the function we seek to approximate, and �N both belong to G. For each
M ∈ N, let JM be an index set of cardinality |JM | = M , and

�m,M : G → C, m ∈ JM ,

be a set of linear functionals which are bounded with respect to |||·|||, i.e.

|�m,M ( f )| ≤ cm,M ||| f |||, f ∈ G. (3.1)

The data of f is given by

y = {�m,M ( f )}m∈JM .

Write MM : G → C
M for the mapping MM f = {�m,M ( f )}m∈JM . Our goal is to

compute an approximation to f in �N for some N ≤ M from this data.
In order to make meaningful general statements about the subsequent approxima-

tions we define, we require the data to be sufficiently rich. In analogy to the frame
bounds (2.2), we shall often assume that there exist constants A′, B ′ > 0 such that

A′‖ f ‖2 ≤ lim inf
M→∞

∑

m∈JM

|�m,M ( f )|2 ≤ lim sup
M→∞

∑

m∈JM

|�m,M ( f )|2 ≤ B ′‖ f ‖2, ∀ f ∈ G.

(3.2)

We term this a Marcinkiewicz–Zygmund condition, because it is similar (although
not identical) to the classical Marcinkiewicz–Zygmund inequality in approximation
theory [19]; see also [12]. We comment further on this assumption and the constants
involved in Sect. 3.5.

Before going any further, let us mention several examples of this framework:
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Example 3.1 Suppose that M = N and the samples of f are inner products with
respect to the functions φm , i.e. �m,M ( f ) = 〈 f , φm〉, m = 1, . . . , M . Then this is
precisely the setting of Theorem 1.1, and is a special case of the present setup with
G = H, |||·||| = ‖·‖. Note that (3.2) is precisely the frame condition (2.2); in particular,
it holds with A′ = A and B ′ = B.

Example 3.2 Let 	 = {ψm}m∈J be another frame (or Riesz/orthonormal basis) of H
and consider samples of the form �m,M ( f ) = 〈 f , ψm〉, m ∈ JM , where {JM }M∈N
are nested index sets with |JM | = M and

⋃∞
M=1 JM = J . This problem corresponds

to sampling according to the frame 	 and reconstructing in �, as in the original
framework of generalized sampling [1,2]. We also have G = H and |||·||| = ‖·‖ in
this case, and (3.2) holds with A′, B ′ being the frame bounds for 	. In fact, it is
straightforward to see that the the upper bound holds for any M in this case, i.e.

‖ f ‖M ≤ √
B ′‖ f ‖, ∀ f ∈ H. (3.3)

Example 3.3 Consider a frame for the Hilbert space H = L2(−1, 1) of square-
integrable functions on (−1, 1). Suppose that the samples are pointwise evaluations
at equispaced points. In this case, we may take G = C([−1, 1]) with its usual norm,
and �m,M ( f ) = √

2/M f (−1 + 2(m − 1)/M), m = 1, . . . , M . Then (3.2) holds
with A′ = B ′ = 1, since

∑M
m=1 |�m,M ( f )|2 is a Riemann sum approximation to

∫ 1
−1 | f (x)|2 dx . More generally, if −1 ≤ t1,M < . . . < tM,M ≤ 1 are (not necessarily
equispaced) sample points, then (3.2) can be achieved with A′ = B ′ = 1 if

hM = max
0,...,M

{tm+1,M − tm,M } → 0, M → ∞,

where t0,M = tM,M − 2 and tM+1,M = t1,M + 2. Indeed, in this case choosing the
linear functionals as

�m,M ( f ) =
√
1

2
(tm+1,M − tm−1,M ) f (tm,M )

gives a convergent approximation
∑M

m=1 |�m,M ( f )|2 to ‖ f ‖2 as M → ∞.

3.2 Best Approximation with Regularization from Indirect Data

Given f ∈ G and data MM f , we construct the approximation Pε
M,N f as follows.

Let

GM,N = MMTN = {�m,M (φn)}m∈JM ,n∈IN ∈ C
M×N .

As we explain below, much like in the setting of Theorem 1.1, this matrix is generally
ill-conditioned. This arises from the inherent redundancy of �N , independently of the
samples—in particular, it cannot be avoided by taking M � N . Hence we need to
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regularize. Suppose that GM,N has singular value decomposition

GM,N = U�V ∗, (3.4)

and let ε > 0 be fixed. Then we set

xε = (Gε
M,N )† y = V (�ε)†U∗ y, (3.5)

where † denotes the pseudoinverse and �ε is the diagonal matrix with nth entry σn if

σn > ε, (3.6)

and zero otherwise. The corresponding approximation to f is

f ≈ Pε
M,N f = TN xε .

Observe that both the solution vector xε and the approximation Pε
M,N f are uniquely

defined by construction, even if the family �N happens to be linearly dependent. For
convenience, we now define the mapping

Lε
M,N : CM → HN , y �→ TN (Gε

M,N )† y,

so that

Pε
M,N f = TN xε = Lε

M,NMM f . (3.7)

Remark 3.4 To see why GM,N is generally ill-conditioned, consider the setting of
Example 3.2 and suppose that 	 is a tight frame, i.e. A′ = B ′. This assumption is
made for convenience: the following argument readily extends to general frames. Let
S̃M : f �→ ∑

m∈JM 〈 f , ψm〉ψm be the partial frame operator for 	. Since 	 is tight,
SM → A′I strongly as M → ∞, and therefore, for fixed N ,

(GM,N )∗GM,N → A′GN , M → ∞,

where GN is the Grammatrix of�N . Hence, whenever GN is ill-conditioned (i.e.�N

is near-redundant), we expect GM,N to inherit the same ill-conditioning for large M .

Remark 3.5 This argument gives some insight into the advantage of oversampling. For
a tight frame, (GM,N )∗GM,N is an approximate factorization of GN . Thus, solving the
linear system (1.1) is akin to solving the normal equations of the least-squares problem
GM,N x ≈ y. In this sense it is not surprising that oversampling yieldsO (ε) accuracy,
whereas solving (1.1) yields only O

(√
ε
)
accuracy. Indeed, this is reminiscent of the

typical squaring of the condition number incurred when forming the normal equations
of a least-squares problem [11, §5.3].
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3.3 The Solution as an Orthogonal Projection

A key element of our subsequent analysis is the reinterpretation of the operator Pε
M,N

as a projection with respect to a semi-definite sesquilinear form. Specifically, we now
define the data-dependent sesquilinear form 〈·, ·〉M on G × G as

〈 f , g〉M = 〈MM f ,MMg〉 =
∑

m∈JM

�m,M ( f )�m,M (g), f , g ∈ G,

with corresponding discrete semi-norm ‖ f ‖M = √〈 f , f 〉M = ‖MM f ‖. Note that
in general 〈·, ·〉M is semi-definite on GN × GN as well, since

〈g, g〉M = ‖g‖2M =
∑

m∈JM

|�m,M (g)|2 ≥ 0, ∀g ∈ HN , g �= 0.

In particular, for poorly chosen functionals it may be that ‖g‖M = 0 for some non-
trivial function g ∈ HN . However, with assumption (3.2) we do have the limiting
behaviour

lim inf
M→∞ 〈g, g〉M = lim inf

M→∞ ‖g‖2M ≥ A′‖g‖2 > 0, ∀g ∈ HN , g �= 0.

This means that, ultimately, the sesquilinear form becomes an inner product on all of
HN .

Recall the singular value decomposition (3.4), and let u1, . . . , uM , v1, . . . , vN

and σ1, . . . , σN be the left and right singular vectors and singular values of GM,N

respectively, with σn ≥ 0, n = 1, . . . , N . To the right singular vectors, we associate
the functions

ξn = TNvn ∈ HN , n = 1, . . . , N . (3.8)

By construction, these functions are orthogonal with respect to 〈·, ·〉M . Indeed, by
orthogonality of the singular vectors, we have

〈ξm, ξn〉M = 〈MMTNvn,MMTNvn〉 = σnσm〈um, un〉 = σnσmδm,n, m, n ∈ IN .

(3.9)

Here, too, it may be that ‖ξn‖M = 0. This is the case if σn = 0.
We shall, for convenience, let x = x0 be the solution of the unregularized problem,

given by

x = (GM,N )† y.

We also write PM,N = P0
M,N so that PM,N f = TN x. Using the expression for the

pseudoinverse in terms of the SVD, we can write both x and xε in terms of the left
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and right singular vectors:

x =
∑

σn>0

〈 y, un〉
σn

vn, xε =
∑

σn>ε

〈 y, un〉
σn

vn . (3.10)

Furthermore, for σn > 0 we also have

〈 y, un〉 = 〈MM f , GM,Nvn〉
σn

= 〈MM f ,MMTNvn〉
σn

= 〈 f , ξn〉M
σn

,

where in the last step we use (3.8). In particular, this gives

Pε
M,N f = TN xε =

∑

σn>ε

〈 y, un〉
σn

TNvn =
∑

σn>ε

〈 f , ξn〉M
σ 2
n

ξn . (3.11)

Similarly, we have

PM,N f = TN x =
∑

σn>0

〈 f , ξn〉M
σ 2
n

ξn .

Finally, we define the regularized spaces

Hε
M,N = span {ξn : σn > ε} .

Since {vn}n∈IN is a basis of CN , we see that the functions {ξn}σn>0 are an orthogonal
basis of H0

M,N with respect to 〈·, ·〉M . We can conclude that PM,N is the orthogonal

projection onto H0
M,N ⊆ HN ⊂ G. In turn, Pε

M,N is the orthogonal projection onto

the subspace Hε
M,N ⊆ H0

M,N .
A relevant property in the analysis that follows, is that these orthogonal projections

imply a reduction in the M-norm:

Lemma 3.6 For any ε ≥ 0, we have

‖Pε
M,N f ‖M ≤ ‖ f ‖M , ∀ f ∈ G. (3.12)

3.4 Theoretical Results

We now define the constants

κε
M,N = max

y∈Ran(MM )
‖ y‖=1

‖Lε
M,N y‖, λε

M,N = ε−1 max
z∈CN

‖z‖=1

‖TN z − Pε
M,NTN z‖.

(3.13)

Note that κε
M,N is precisely the operator norm of Lε

M,N : Ran(MM ) → HN . Since
Lε
M,N is linear, it is also its absolute condition number, i.e. κε

M,N measures the absolute
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effect of perturbations in the data y on the final approximation. The constant λε
M,N

measures how close Pε
M,N is to being a projection on the subspace HN = TN (CN ).

Our first result concerns the approximation error of Pε
M,N f :

Theorem 3.7 Let f ∈ G. The truncated SVD approximation Pε
M,N f satisfies

‖ f − Pε
M,N f ‖ ≤ inf

z∈CN

{‖ f − TN z‖ + κε
M,N‖ f − TN z‖M + ελε

M,N‖z‖} .

(3.14)

This result differs from Theorem 1.1 in several respects. On the one hand, if the
constants κε

M,N and λε
M,N are order one, the error depends on ε‖z‖, not √ε‖z‖, thus

overcoming the
√

ε bottleneck.Wewill discusswhen this occurs in the next subsection.
On the other hand, the error bound involves the discrete data norm ‖ f − TN z‖M . In
general, this cannot be bounded by ‖ f − TN z‖. However, one clearly has

‖ f − TN z‖M ≤ CM ||| f − TN z|||, CM =
√ ∑

m∈JM

(cm,M )2,

where cm,M are the norms of the functionals �m,M ; recall (3.1). In particular, for
Example 3.3 it follows that ‖ f − TN z‖M ≤ √

2‖ f − TN z‖L∞ .

Proof of Theorem 3.7 For any z ∈ C
N ,

‖ f − Pε
M,N f ‖ ≤ ‖ f − TN z‖ + ‖Pε

M,N ( f − TN z)‖ + ‖TN z − Pε
M,NTN z‖.

Consider the second term. We have

‖Pε
M,N ( f − TN z)‖ = ‖Lε

M,NMM ( f − TN z)‖ ≤ κε
M,N‖MM ( f − TN z)‖

= κε
M,N‖ f − TN z‖M ,

which gives the corresponding term in (3.14). Now consider the third term. It follows
immediately from the definition of λε

M,N that ‖TN z − Pε
M,NTN z‖ ≤ ελε

M,N‖z‖, as
required. ��

We now consider the coefficients xε :

Theorem 3.8 Let f ∈ G. The coefficients xε of the truncated SVD projection Pε
M,N

satisfy

‖xε‖ ≤ inf
z∈CN

{
1

ε
‖ f − TN z‖M + ‖z‖

}

. (3.15)

Moreover, if � = {φn}n∈I is a frame, �N = {φn}n∈IN and if a = {〈 f ,S−1φn〉}n∈I
are the canonical frame coefficients of f and aε

M,N ∈ �2(I ) is the extension of xε by
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zero, then

‖a − aε
M,N‖ ≤

√ ∑

n∈I\IN
|an|2 + 1

ε
‖(S − SN )S−1 f ‖M + ε

λε
M,N√
A

‖a‖. (3.16)

For general measurements, (3.16) does not imply convergence of the coefficients
aε
M,N to the canonical frame coefficients a since the term ‖(S − SN )S−1 f ‖M can-

not typically be bounded by ‖(S − SN )S−1 f ‖. There is also no guarantee that∣
∣
∣
∣
∣
∣(S − SN )S−1 f

∣
∣
∣
∣
∣
∣ → 0 as N → ∞. This does hold, however, when the data arises

from sampling with another frame {ψn}n∈I , as in Example 3.2, due to (3.3). We will
discuss this case further in Sect. 4.

Proof of Theorem 3.8 For the first part, we use (3.10) to write

xε =
∑

σn>ε

〈 f , ξn〉M
σ 2
n

vn =
∑

σn>ε

〈 f − TN z, ξn〉M
σ 2
n

vn +
∑

σn>ε

〈TN z, ξn〉M
σ 2
n

vn .

(3.17)

Consider the first term on the right-hand side. Since the vn are orthonormal, we have

∥
∥
∥
∥
∥

∑

σn>ε

〈 f − TN z, ξm〉M
σ 2
n

vn

∥
∥
∥
∥
∥

2

=
∑

σn>ε

|〈 f − TN z, ξm〉M |2
σ 4
m

≤ 1

ε2

∑

σn>ε

|〈 f − TN z, ξm〉M |2
σ 2
m

.

It follows from (3.9) and (3.11) that

∑

σn>ε

|〈g, ξm〉M |2
σ 2
m

= ∥
∥Pε

M,N g
∥
∥2
M

, g ∈ G.

Hence

∥
∥
∥
∥
∥

∑

σn>ε

〈 f − TN z, ξm〉M
σ 2
n

vn

∥
∥
∥
∥
∥

2

≤ 1

ε2

∥
∥Pε

M,N ( f − TN z)
∥
∥
M

≤ 1

ε2
‖ f − TN z‖2M ,

where in the second step we use the fact that Pε
M,N is the orthogonal projection with

respect to 〈·, ·〉M (recall Lemma 3.6). This gives the first term of (3.15). Next, consider
the second term of the right-hand side of (3.17). Since

〈TN z, ξm〉M = 〈TN z, TNvn〉M = σ 2
n 〈z, vn〉, (3.18)

it follows that

∥
∥
∥
∥
∥

∑

σn>ε

〈TN z, ξm〉M
σ 2
n

vn

∥
∥
∥
∥
∥

2

=
∑

σn>ε

|〈z, vn〉|2 ≤ ‖z‖,
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This gives the second term of (3.15).
For (3.16), of course the canonical frame coefficients are well defined since we now

assume that � is a frame. We first note that

‖a − aε
M,N‖ ≤

√ ∑

n∈I\IN
|an|2 + ‖aN − xε‖,

where aN = {an}n∈IN . Therefore it suffices to consider ‖aN − xε‖. Observe that

aN =
∑

n∈IN
〈aN , vn〉vn =

∑

n∈IN
〈S−1 f , ξn〉vn .

Now 〈 f , ξn〉M = 〈SS−1 f , ξn〉M and therefore

〈 f , ξn〉M = 〈SNS−1 f , ξn〉M + 〈(S − SN )S−1 f , ξn〉M
= σ 2

n 〈T ∗
NS−1 f , vn〉 + 〈(S − SN )S−1 f , ξn〉M .

Notice that SNS−1 f ∈ G and (S − SN )S−1 f = f − SNS−1 f ∈ G. Therefore all
the terms above are well defined. Hence, by (3.17),

xε =
∑

σn>ε

〈S−1 f , ξn〉vn +
∑

σn>ε

〈(S − SM )S−1 f , ξm〉N
σ 2
n

vn,

which gives

∥
∥aN − xε

∥
∥ ≤

∥
∥
∥
∥
∥

∑

σn≤ε

〈S−1 f , ξn〉vn
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

∑

σn>ε

〈(S − SM )S−1 f , ξn〉M
σ 2
n

vn

∥
∥
∥
∥
∥
.

(3.19)

Consider the first term. Let z ∈ C
N be given by z = ∑

σn≤ε〈S−1 f , ξn〉vn , so that the
first term is merely ‖z‖. By the definition of λε

M,N , we have ελε
M,N‖z‖ ≥ ‖TN z −

Pε
M,NTN z‖. Now, since TN z ⊥ Hε

M,N , we have that Pε
M,NTN z = 0. Hence

ελε
M,N‖z‖ ≥ ‖TN z‖ = sup

g∈H
g �=0

|〈TN z, g〉|
‖g‖ .

Set g = S−1 f . Then 〈TN z, g〉 = ∑
σn≤ε |〈S−1 f , ξm〉|2 = ‖z‖2 and therefore we

obtain ελε
M,N‖z‖ ≥ ‖z‖2/‖S−1 f ‖. It follows that

‖z‖ =
∥
∥
∥
∥
∥

∑

σn≤ε

〈S−1 f , ξm〉vn
∥
∥
∥
∥
∥

≤ ελε
M,N

∥
∥
∥S−1 f

∥
∥
∥ ≤ ελε

M,N/
√
A‖a‖. (3.20)
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Now consider the second term of (3.19). We have

∥
∥
∥
∥
∥

∑

σn>ε

〈(S − SM )S−1 f , ξn〉M
σ 2
n

vn

∥
∥
∥
∥
∥

2

=
∑

σn>ε

|〈(S − SN )S−1 f , ξn〉M |2
σ 4
n

≤ 1

ε2
‖Pε

M,N (S − SN )S−1 f ‖2M
≤ 1

ε2
‖(S − SN )S−1 f ‖2M .

In the last line, we used Lemma 3.6 again. Combining this with (3.20) now gives the
result. ��
Remark 3.9 These results extend to the setting of noisy measurements. Suppose the
measurements are y+ n where y = MM f and n is a vector of noise. We assume that
n ∈ Ran(MM ), in other words it takes the form n = MMg for some g ∈ G. Then,
by linearity, the reconstruction is

f̃ = Pε
M,N f + Lε

M,Nn,

where Pε
M,N f is the standard reconstruction from the noiseless data y. Hence, by

Theorem 3.7, the error satisfies

‖ f − f̃ ‖ ≤ inf
z∈CN

{‖ f − TN z‖ + κε
M,N‖ f − TN z‖M + ελε

M,N‖z‖}+ κε
M,N‖n‖.

(3.21)

In particular, when κε
M,N is order one, the effect of the noise is proportional to its

�2-norm.

3.5 Behaviour of the Constants

We now consider the behaviour of the constants κε
M,N and λε

M,N . To do so, we define
the constant A′

M,N as follows:

A′
M,N = inf

g∈HN‖g‖=1

‖g‖2M . (3.22)

In general, with a poor choice of sampling functionals, it may be that A′
M,N = 0.

However, even in that case, with assumption (3.2) we have that lim infM→∞ A′
M,N ≥

A′ for any fixed N .

Proposition 3.10 The constants κε
M,N and λε

M,N defined in (3.13) satisfy

κε
M,N ≤

√
BN

ε
, λε

M,N ≤
√
BN

ε
, (3.23)
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for all M and N, M ≥ N, where BN is the Bessel bound for �N . Moreover,

κε
M,N ≤ 1

√
A′
M,N

, λε
M,N ≤ 1

√
A′
M,N

, (3.24)

and if the sampling functionals satisfy (3.2) then, for fixed N,

lim sup
M→∞

κε
M,N ≤ 1√

A′ and lim sup
M→∞

λε
M,N ≤ 1√

A′ .

Proof Let y ∈ Ran(MM ) be given and write y = MM f for some f ∈ G. Then, by
(3.11),

‖Lε
M,N y‖ = ‖Pε

M,N f ‖ =
∥
∥
∥
∥
∥
TN

∑

σn>ε

〈 y, un〉
σn

vn

∥
∥
∥
∥
∥
.

Notice that ‖TN x‖ ≤ √
BN‖x‖. This follows since any frame automatically satisfies

the upper Riesz basis condition with constant equal to the Bessel bound. Hence

‖Pε
M,N f ‖2 ≤ BN

∑

σn>ε

|〈 y, un〉|2
σ 2
n

≤ BN

ε2
‖ y‖2,

which gives (3.23) for κε
M,N . For (3.24), we let y ∈ Ran(MM ) and write y = MM f

for some f ∈ G once more. From the definition (3.22) of A′
M,N and by Lemma 3.6

we find

‖Pε
M,N f ‖ ≤ 1

√
A′
M,N

‖Pε
M,N f ‖M ≤ 1

√
A′
M,N

‖ f ‖M = 1
√
A′
M,N

‖ y‖.

This gives (3.24).
We now consider λε

M,N . Let z ∈ C
M be arbitrary. Using (3.11) and (3.18) we have

TN z − Pε
M,NTN z = TN

∑

σn≤ε

〈z, vn〉vn .

Arguing as above, this implies that ‖TN z − Pε
M,NTN z‖2 ≤ BN‖z‖2, which gives

(3.23). For (3.24), we again let z ∈ C
M be arbitrary. Then

∥
∥TN z − Pε

M,NTN z
∥
∥2
M

=
∑

σn≤ε

σ 2
n |〈z, vn〉|2 ≤ ε2‖z‖2.
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Moreover, since TN z − Pε
M,NTN z ∈ HN we obtain

‖TN z − Pε
M,NTN z‖2 ≤ 1

A′
M,N

‖TN z − Pε
M,N‖2M ≤ ε2

A′
M,N

‖z‖2,

as required. ��

3.6 The Stable Sampling Rate

Suppose that the sampling functionals satisfy (3.2). Motivated by Proposition 3.10 we
now introduce the following concept:

Definition 3.11 For 1 < θ < ∞ and N ∈ N, the stable sampling rate is

�ε(N , θ) = min

{

M ∈ N : M ≥ N , κε
M,N ≤ θ√

A′ , λε
M,N ≤ θ√

A′

}

.

For a fixed N , suppose that M is chosen so that M ≥ �ε(N , θ). Then this guarantees
an error bound of the form

‖ f − Pε
M,N f ‖ ≤ inf

z∈CN

{

‖ f − TN z‖ + θ√
A′ ‖ f − TN z‖M + ε

θ√
A′ ‖z‖

}

.

Hence, sampling according to the stable sampling rate, ensures that the error decays
down to roughly ε as N → ∞. This holds on the additional condition that the term
‖ f − TN z‖M → 0; see the discussion after Theorem 3.7. Furthermore, sampling
according to �ε(N , θ) means that the rate of decay of the error for finite N depends
completely on how well f can be approximated by elements of HN with bounded
coefficients. As discussed, this depends completely on the frame � and the element
f being approximated. For estimates in certain cases, see [3].

Remark 3.12 If the data is noisy as in Remark 3.9 and M ≥ �ε(N , θ) then (3.21)
becomes

‖ f − f̃ ‖ ≤ inf
z∈CN

{

‖ f − TN z‖ + θ√
A′ ‖ f − TN z‖M + ε

θ√
A′ ‖z‖

}

+ θ√
A′ ‖n‖.

Note that ε does not enter into the noise term. Recall that the first term will decrease
down to a limiting accuracy of at best O(ε). Hence, in the noisy case the limiting
accuracy will depend on the maximum of ε and ‖n‖. In particular, this yields a simple
strategy for choosing ε in the noisy case, simply as proportional to the noise level.

The behaviour of �ε(N , θ) as a function of N depends completely on � and
the sampling functionals. Thus, theoretical estimates for this quantity can only be
established on a case-by-case basis. We shall consider this issue further in Sect. 5 for
a particular class of problems. However, there is no general recipe for providing such
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estimates, andmoreover, when possible, doing so typically only reveals the asymptotic
growth rate of �ε(N , θ) with N and not the precise constant.

On the other hand, �ε(N , θ) can always be computed. To see this, we observe the
following:

Lemma 3.13 The constant κε
M,N satisfies

κε
M,N ≤

√

λmax

(
(Bε

M,N )∗GN Bε
M,N

)
,

where Bε
M,N = (Gε

M,N )† andGN ∈ C
N×N is theGrammatrix of�N . IfRan(MM ) =

C
M this holds with equality. The constant λε

M,N satisfies

λε
M,N = ε−1

√

λmax

(
(Cε

M,N )∗GNCε
M,N

)
,

where Cε
M,N = V (I − Iε)V ∗ and Iε is the diagonal matrix with nth entry 1 if σn ≥ ε

and zero otherwise.

Proof Let y ∈ Ran(MM ) with ‖ y‖ = 1. Then

∥
∥Lε

M,N y
∥
∥2 = ∥

∥TN Bε
M,N y

∥
∥2 = y∗(Bε

M,N )∗GN Bε
M,N y ≤ λmax

(
(Bε

M,N )∗GN Bε
M,N

)
,

since GN = T ∗
NTN . This gives the first result.

Let z ∈ C
N , ‖z‖ = 1. Then

∥
∥TN z − Pε

M,NTN z
∥
∥2 =

∥
∥
∥TN

(
I − (Gε

M,N )†GM,N

)
z
∥
∥
∥
2 = ∥

∥TN
(
I − V IεV ∗) z

∥
∥2

= ∥
∥TNCε

M,N z
∥
∥2 = z∗(Cε

M,N )∗GNCε
M,N z.

Maximizing over z now gives the result. ��
This result implies that κε

M,N and λε
M,N can be computed, and therefore so can

�ε(N ; θ), provided the matrix GN has been computed.

Remark 3.14 In practice, it may be difficult to compute GN , since its entries are inner
products which may for instance be integrals. This may be overcome by a further
approximation, e.g. a quadrature. Specifically, let K ≥ 1 and jk,K be a family of
linear functionals such that

lim
K→∞

K∑

k=1

jk,K ( f )jk,K (g) = 〈 f , g〉, ∀ f , g ∈ G.

Let HK ,N = {jk,K (φn)}Kk=1,n∈IN ∈ C
K×N . Then (HK ,N )∗HK ,N ≈ GN for large K .

Hence, by the previous lemma (assuming Ran(MM ) = C
M for ease of presentation),
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we have

κε
M,N ≈ ∥

∥HK ,N Bε
M,N

∥
∥
2

=
∥
∥
∥HK ,NV (�ε)†

∥
∥
∥
2
, λε

M,N ≈ ∥
∥HK ,NV (I − Iε)

∥
∥
2,

for sufficiently large K . If, for instance, the functionals jk,K correspond to pointwise
evaluations as part of a quadrature, this gives a means of numerically approximating
κε
M,N and λε

M,N .

4 Frame Approximation from Frame Samples

In this section, we discuss Example 3.2, in which both the approximation system
and sampling functionals arise from frames of H. We write � = {φn}n∈I for the
approximation frame (with bounds A and B) and 	 = {ψm}m∈J for the sampling
frame (with bounds A′ and B ′). We assume that {IN }N∈N is a sequence of nested
index sets with

IN ⊂ I , |IN | = N , ∀N ∈ N,

∞⋃

N=1

IN = I ,

and similarly, we assume that {JM }M∈N is a sequence of nested index sets with

JM ⊂ I , |JM | = M, ∀M ∈ N,

∞⋃

M=1

IM = J .

As before, we writePε
M,N f for the truncated SVD approximation of f ∈ H (note that

G = H in this case, since the sampling functionals arise from a frame of H). We write
xε for its coefficients.

4.1 Error and Coefficient Bounds

Theorem 4.1 In the above setting, the truncated SVD projection Pε
M,N f of f ∈ H

satisfies

‖ f − Pε
M,N f ‖ ≤ inf

z∈CN

{(
1 + √

B ′κε
M,N

)
‖ f − TN z‖ + ελε

M,N‖z‖
}

. (4.1)

Its coefficients xε satisfy

‖xε‖ ≤ inf
z∈CN

{√
B ′
ε

‖ f − TN z‖ + ‖z‖
}

, (4.2)
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and, if aε
M,N ∈ �2(I ) the extension of xε by zero,

‖a − aε
M,N‖ ≤

(

1 +
√
BB ′
ε

)√ ∑

n∈I\IN
|an|2 + ε

λε
M,N√
A

‖a‖, (4.3)

where a = {〈 f ,S−1φn〉}n∈I are the canonical frame coefficients of f ∈ H.

Proof Recall (3.3). The first two bounds now follow immediately from Theorems 3.7
and 3.8 respectively. For the third bound, we use use (3.16) and then observe that

∥
∥
∥(S − SN )S−1 f

∥
∥
∥
2 =

∥
∥
∥
∥
∥
∥

∑

n∈I\IN
anφn

∥
∥
∥
∥
∥
∥

2

≤ B
∑

n∈I\IN
|an|2,

where for the final step we recall that a frame with upper frame bound B satisfies the
upper Riesz basis condition with constant B. The result now follows immediately.

��

4.2 Behaviour of the Coefficients andO (�) Accuracy

We now consider the constants κε
M,N and λε

M,N and the stable sampling rate:

Proposition 4.2 The constants κε
M,N and λε

M,N satisfy

κε
M,N , λε

M,N ≤
{√

B/ε 	 �= �

1/
√

ε 	 = �,
, (4.4)

for all M and N, M ≥ N. Moreover, for fixed N,

lim sup
M→∞

κε
M,N ≤ 1√

A′ and lim sup
M→∞

λε
M,N ≤ 1√

A′ ,

This result is essentially a special case of Proposition 3.10, except in the case where
	 = � where we have a slightly improved worst-case behaviour, with the right-hand
side of (4.4) scaling like 1/

√
ε as opposed to 1/ε. As is made clear by the proofs, this

discrepancy is due to the fact that in the latter case the measurements are just inner
products with respect to the same frame. We prove this in a moment. First, however,
we consider its implications for limiting accuracy:

Corollary 4.3 For each1 < θ < ∞ the truncated SVDapproximationPε
M,N f satisfies

lim sup
M,N→∞

M≥�ε(N ,θ)

‖ f − Pε
M,N f ‖ ≤ ε

θ√
AA′ ‖ f ‖,
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where �ε(N , θ) is as in Definition 3.11. Moreover, the coefficients xε satisfy

lim sup
M,N→∞

M≥�ε(N ,θ)

∥
∥xε

∥
∥ ≤ 1√

A
‖ f ‖, lim sup

M,N→∞
M≥�ε(N ,θ)

∥
∥a − aε

M,N

∥
∥ ≤ ε

θ√
AA′ ‖a‖.

Proof The proof is based on the canonical frame coefficients a = {〈 f ,S−1φn〉}n∈I .
Let z = {an}n∈IN . Then ‖z‖ ≤ ‖a‖ ≤ 1/

√
A‖ f ‖ since the dual frame has upper

frame bound A−1 (see Sect. 2.3). Therefore (4.1) and Proposition 4.2 gives

‖ f − Pε
M,N f ‖ ≤

(

1 +
√

B

A
θ

)∥∥
∥
∥
∥
∥
f −

∑

n∈IN
〈 f ,S−1φn〉φn

∥
∥
∥
∥
∥
∥

+ ε
θ

A
‖ f ‖.

As N → ∞ (2.5) gives that the first term vanishes. Hence we obtain the result for f .
For the other results, we use (4.2) and (4.3) instead. ��
In summary, provided M is chosen above the stable sampling rate �ε(N , θ), the
approximation Pε

M,N f converges to within roughly ε of f and the coefficients con-
verge to within roughly ε of the frame coefficients a, and in particular are small in
norm for large N . As a consequence, in the setting of Theorem 1.1 where 	 = �,
we overcome the

√
ε bottleneck, with the limiting accuracy bounded by εθ‖ f ‖/A as

opposed to
√

ε‖ f ‖/√A (see Corollary 1.2).
This result also illuminates the role that the frame structure plays in both the approx-

imation and the sampling. Indeed, the limiting error depends on both of the lower frame
bounds A and A′, while the limiting size of the coefficients depends only on A. This
is as expected. The existence of small norm coefficients depends only on the approx-
imation frame �, a small limiting error depends on both the sampling frame 	 and
the approximation frame �.

Proof of Proposition 4.2 All results follow immediately from Proposition 3.10, except
for (4.4) in the case 	 = � for which we require a different argument.

Consider κε
M,N first. Let y ∈ Ran(MM ) be given and notice that we may write

y = T ∗
M f for some f ∈ H so that ‖Lε

M,N y‖ = ‖Pε
M,N f ‖. By (3.10) we have

‖Pε
M,N f ‖2 =

∑

σm ,σn>ε

〈 y, um〉〈 y, un〉
σmσn

〈ξm, ξn〉.

Recall that MMTNvm = σmum . Since MM = T ∗
M in this case, we have T ∗

NTNvm =
σm ũm , where where ũm ∈ C

N is the vector with entries (ũm)k = (um)k for k ∈ IN .
Hence 〈ξm, ξn〉 = 〈T ∗

NTNvm, vn〉 = σm〈ũm, vn〉 and this gives

‖Pε
M,N f ‖2 =

〈
∑

σn>ε

〈 y, um〉ũm ,
∑

σn>ε

〈 y, un〉
σn

vn

〉

≤
∥
∥
∥
∥
∥

∑

σn>ε

〈 y, um〉ũm
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∑

σn>ε

〈 y, un〉
σn

vn

∥
∥
∥
∥
∥
.



87 Page 24 of 34 Journal of Fourier Analysis and Applications (2020) 26 :87

By orthogonality, the second term satisfies

∥
∥
∥
∥
∥

∑

σn>ε

〈 y, un〉
σn

vn

∥
∥
∥
∥
∥

=
√
√
√
√
∑

σn>ε

|〈 y, un〉|2
σ 2
n

≤ ‖ y‖
ε

.

Consider the first term. LetQN : CM → C
M be the projection defined by (QN x)m =

xm , m ∈ IN and (QN x)m = 0, m ∈ IM\IN . Then
∥
∥
∥
∥
∥

∑

σn>ε

〈 y, um〉ũm
∥
∥
∥
∥
∥

=
∥
∥
∥
∥
∥
QN

(
∑

σn>ε

〈 y, um〉um
)∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

∑

σn>ε

〈 y, um〉um
∥
∥
∥
∥
∥

≤ ‖ y‖.

Therefore, we deduce that

‖Pε
M,N f ‖2 ≤ ‖ y‖/ε,

and the result for κε
M,N now follows from its definition.

Now consider λε
M,N . Let z ∈ C

N be arbitrary and recall that

TN z − Pε
M,NTN z =

∑

σn≤ε

〈z, vn〉ξn .

Hence

∥
∥TN z − Pε

M,NTN z
∥
∥2 =

∑

σm ,σn≤ε

〈z, vn〉〈z, vn〉〈ξm, ξn〉.

As above, we note that 〈ξm, ξn〉 = σm〈ũm, vn〉, and therefore

∥
∥TN z − Pε

M,NTN z
∥
∥2 =

〈
∑

σn≤ε

σm〈z, vm〉ũm,
∑

σn≤ε

〈z, vn〉vn
〉

≤ ε‖z‖2.

Since z was arbitrary, we now obtain the result for λε
M,N . ��

5 ONB+1 and ONB+K Frames

We conclude this paper with several examples to illustrate the stable sampling rate.
First, let {ϕn}n∈N be an orthonormal basis of H and ψ ∈ H, ‖ψ‖ = 1, be such that

〈ψ, ϕn〉 �= 0 for infinitely-many n ∈ N. Then the indexed family

� = {φ0, φ1, . . .} = {ψ, ϕ1, ϕ2, . . .},

is a frame for � with frame bounds A = 1 and B = 2. We refer to this frame as the
ONB+1frame. Note that it was previously used in [3] to show that theGrammatrix of a
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frame can be arbitrarily badly conditioned. It is motivated by the idea of ‘enriching’ an
orthonormal basis to better capture a certain feature of a function under approximation
(e.g. a singularity or oscillation).

Throughout this section, we let QN denote the projection onto span{ϕ1, . . . , ϕN },
i.e.

QN f =
N∑

n=1

〈 f , ϕn〉ϕn .

5.1 The Stable Sampling Rate for the ONB+1 Frame

A problem of interest is that where the samples are inner products with respect to the
orthonormal basis {ϕm}m∈N. That is,

�m,M ( f ) = �m( f ) = 〈 f , ϕm〉, m = 1, . . . , M, M ∈ N. (5.1)

For instance, these are Fourier coefficients if {ϕm}m∈N is the Fourier basis, and hence
the goal would be to compute a better approximation in the frame � from the given
Fourier data. Note that this is an instance of Sect. 4 with A′ = B ′ = 1. Note also that
‖g‖M = ‖QMg‖. Recalling Proposition 3.10, to determine the stable sampling rate
we note that it suffices to estimate

A′
M,N = inf

g∈HN‖g‖=1

‖QMg‖2 = 1 − sup
g∈HN‖g‖=1

‖g − QMg‖2, (5.2)

where HN = span{ψ, ϕ1, . . . , ϕN−1}.
Lemma 5.1 For M ≥ N, we have

sup
g∈HN‖g‖=1

‖g − QMg‖ = ‖ψ − QMψ‖
‖ψ − QN−1ψ‖ .

Proof Let g ∈ HN and write g = x0ψ +∑N−1
n=1 xnϕn . Then

〈g, ϕn〉 = x0〈ψ, ϕn〉 + xn, n = 1, . . . , N − 1,

and hence

g = x0ψ +
N−1∑

n=1

(〈g, ϕn〉 − x0〈ψ, ϕn〉) ϕn = x0(ψ − QN−1ψ) + QN−1g.

Rearranging gives

g − QN−1g = x0(ψ − QN−1ψ),
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and taking the norm of both sides, we find that

|x0| = ‖g − QN−1g‖
‖ψ − QN−1ψ‖ ≤ ‖g‖

‖ψ − QN−1ψ‖ = 1

‖ψ − QN−1ψ‖ .

Also, we have

〈g, ϕn〉 = x0〈ψ, ϕn〉, n ≥ N .

Therefore

‖g − QMg‖ = |x0|‖ψ − QMψ‖.

Combining this with the bound for |x0| gives that

sup
g∈HN‖g‖=1

‖g − QMg‖ ≤ ‖ψ − QMψ‖
‖ψ − QN−1ψ‖

Toshowequality,wedivide into twocases. Supposefirst thatψ ⊥ span{ϕ1, . . . , ϕN−1}.
Then QN−1ψ = 0 and so we may take g = ψ/‖ψ‖ to obtain equality. On the
other hand, if ψ �⊥ span{ϕ1, . . . , ϕN−1} then there exists a g ∈ HN , ‖g‖ = 1,
with QN−1g = 0. In this case, the above arguments give that ‖g − QMg‖ =
‖ψ − QMψ‖/‖ψ − QN−1ψ‖, which implies the result. ��

This leads us to the following result:

Theorem 5.2 Suppose that ψ is such that |〈ψ, ϕn〉| ∼ cn−α as n → ∞ for some
c > 0 and α > 1/2. Then the stable sampling rate

�ε(N , θ) ≤ CN ,

for some constantC > 0 depending on c,α and θ only. Conversely, if |〈ψ, ϕn〉| ∼ cρ−n

as n → ∞ for some c > 0 and ρ > 1 then

�ε(N , θ) ≤ N + C,

where C > 0 depends on c, ρ and θ only.

Proof In the first case, the condition on the coefficients gives

‖ψ − QNψ‖2 =
∑

n≥N

|〈ψ, ϕn〉|2 ∼ c′N 1−2α, N → ∞,

where c′ depends on c and α. Hence Lemma 5.1 and the bound (5.2) give

A′
M,N ≥ 1 − c′′

(
M1/2−α

N 1/2−α

)2

,
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for some constant c′′ depending on c and α. Recalling that B ′ = A′ = A = 1 and
B = 2 for this frame and using Proposition 3.10 gives the first result. For the second
result, we notice that

‖ψ − QNψ‖2 ∼ c
ρ−N

1 − ρ
.

We now argue as in the previous case. ��
This result shows that the stable sampling rate is linear whenψ has algebraically or

exponentially-decaying coefficients in the orthonormal basis {ϕn}n∈N. Furthermore,
the better ψ is approximated in this basis, the smaller the stable sampling rate is,
as evidenced by the case of exponentially-decaying coefficients. In fact, Lemma 5.1
demonstrates the connection between the stable sampling rate and how well approx-
imated ψ is in the orthonormal basis {ϕn}n∈N. Specifically, the faster the projection
errors ‖ψ − QMψ‖ decay, the smaller M ≥ N needs to be so that ‖ψ−QMψ‖

‖ψ−QN−1ψ‖ ≤ δ

for constant 0 < δ < 1. This is intuitive. The better ψ is approximated by this basis,
themore information the data, i.e. inner products with the ϕn , carries about the element
g.

On the other hand, the worse g is approximated the higher the stable sampling
rate. Indeed, if ‖ψ − QMψ‖ � (log(N ))−1 then it is a simple exercise to show
that the stable sampling rate is algebraic in N with the power depending on θ , i.e.
�ε(N , θ) = O

(
Nh(θ)

)
for some function h(θ) ≥ 1 with h(θ) → ∞ as θ → 1+.

Remark 5.3 One can also determine a bound on the stable sampling rate for special
case � = 	, also discussed in Sect. 4. In this case, the data is given by the inner
products

〈 f , ψ〉, 〈 f , ϕm〉, m = 1, . . . , M − 1.

Indeed, observe that

A′
M,N = inf

g∈HN‖g‖=1

(
|〈g, ψ〉|2 + ‖QM−1g‖2

)
≥ inf

g∈HN‖g‖=1

‖QM−1g‖2.

The right-hand side is precisely the constant in (5.2) withM replaced byM−1. Hence,
up to an additive factor of one, the stable sampling rate for this problem satisfies the
same bounds as those of Theorem 5.2.

5.2 The Approximation of Functions with Logarithmic Singularities

Let H = L2(0, 1). The scaled Legendre polynomials, ϕn(x) = √
2n − 1Pn−1(2x−1),

n ∈ N, form an orthonormal basis for H. Here Pn(x) is the usual Legendre polynomial,
with normalization Pn(1) = 1. This basis is extremely good at approximating smooth
functions. However, many functions that may arise in applications, such as Green’s
functions or solutions to PDEs on domains with corners, fail to be smooth at a point
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x , yet posses a known type of singularity there. That is, in these applications we may
want to approximate functions of the form

f (x) = g(x) + w(x)h(x), x ∈ (0, 1) (5.3)

where g, h are smooth functions, andw ∈ L2(0, 1) is a known function which may be
singular at, say, x = 0. Such functions cannot generally be accurately approximated
using polynomials alone. However, they can be more accurately captured by enriching
the polynomial basis with the function w. This gives a frame

� = {ϕn}∞n=1 ∪ {w}, (5.4)

for H. Indeed, since the ϕn are an orthonormal basis, it quickly follows that

‖ f ‖22 =
∞∑

n=1

|〈 f , ϕn〉|2 ≤
∞∑

n=1

|〈 f , ϕn〉|2 + |〈 f , w〉|2 ≤ ‖ f ‖2 + ‖ f ‖2‖w‖2.

Hence this is a frame with bounds A ≥ 1 and B ≤ 1 + ‖w‖2.
The case of a logarithmic singularity, i.e. w(x) = log(x), is an important instance

of the problem. Figure 1 gives an illustration of the benefits of this frame over just the
polynomial basis for approximating the simple yet singular function

f (x) = ex + log(x) cos(x). (5.5)

The polynomial interpolation to f converges poorly, as expected. However, adding
just the single element w(x) = log(x) to the basis results in significantly faster con-
vergence rates, shown in Fig. 1b. Importantly, note that the approximation scheme
does not evaluate the smooth parts of f separately. They are implicitly approximated

0 25 50 75 100

10−10.0

10−7.5

10−5.0

10−2.5

100.0

N

x=0.01
x=0.1
x=0.9

L2-norm

(a) Normalized Legendre polynomials

0 25 50 75 100

10−10.0

10−7.5

10−5.0

10−2.5

100.0

N

(b) ONB+1: Legendre polynomials + log x

Fig. 1 Pointwise error as a function of the polynomial degree N for the approximation of the logarithmi-
cally singular function (5.5) on [0, 1] using Legendre polynomials (left panel) and Legendre polynomials
augmented with log x (right panel). The error is shown in four points in the interval [0, 1]. In both cases,
the approximation problem is solved using generalized sampling (5.1) with M = 2N . The generalized
samples (〈 f , ϕm 〉)Mm=1 were evaluated using adaptive numerical integration. The regularization threshold

is ε = 2e−13
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simultaneously when approximating f from its samples. Indeed, if the smooth parts
of f were known separately in an application, the approximation problem simplifies
and there would be no need to construct a frame. Note also that the evaluation of the
generalized samples (5.1) requires the evaluation of integrals, and this step is computa-
tionally demanding because the integrals are weakly singular. In subsequent examples,
we shall consider a fully-discrete approximation based on function samples.

Using Theorem 5.2, we may estimate the stable sampling rate for this problem:

Proposition 5.4 Let H = L2(0, 1), w(x) = log(x), {ϕn} be the Legendre basis on H,
� be as in (5.4) and consider the sampling functionals (5.1). Then the stable sampling
rate for this problem is linear in N, and specifically,

�ε(N , θ) ≤ max

{

N ,
N − 1

√
1 − 1/θ2

}

, ∀θ > 1, N ≥ 2.

Proof The Legendre polynomials satisfy

∫ 1

0
Pn(2x − 1) log(x) dx = (−1)n+1

n(n + 1)
, n ≥ 1.

This follows from the differential equation ((1 − x2)P ′
n(x))

′ + n(n + 1)Pn(x) = 0
after two integrations by parts. Let ψ(x) = log(x). Then, for M ≥ 1,

‖ψ − QMψ‖2 =
∑

m>M

|〈ψ, ϕm〉|2 =
∑

m≥M

2m + 1

m2(m + 1)2
=

∑

m≥M

(
1

m2 − 1

(m + 1)2

)

= 1

M2 .

Lemma 5.1 now gives

sup
g∈HN‖g‖=1

‖g − QMg‖ = N − 1

M
.

Therefore

sup
g∈HN‖g‖=1

‖g − QMg‖ ≤
√

1 − 1/θ2,

provided

N − 1

M
≤
√

1 − 1/θ2 ⇔ M ≥ N − 1
√
1 − 1/θ2

,

as required. ��
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5.3 ONB+K Frames

Functions with logarithmic singularities can be more accurately approximately using
the frame (5.4) than the Legendre polynomial basis alone. However, the accuracy
may be limited, due to the presence of weak logarithmic singularities. To increase the
accuracy one may consider a frame of the type

� = {ϕn}∞n=1 ∪ {ψk}Kk=1, (5.6)

for fixed K ≥ 1, where ψk(x) = w(x)ϕk(x).

0 25 50 75 100

10−10.0
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10−5.0

10−2.5

100.0

N

(a) Legendre interpolation

0 25 50 75 100

10−15

10−10

10−5

100

N

x=0.01
x=0.1
x=0.9

L2-norm

(b) Legendre ONB+K frame with K = 5

Fig. 2 Pointwise error as a function of the polynomial degree N for the approximation of the logarithmically
singular function (5.5) on [0, 1], using Legendre interpolation (left panel) and the ONB+K frame � with
Legendre polynomials, K = 5 and w(x) = log x (right panel). The error is shown in three points in the
interval [0, 1] as well as in the L2-norm on [0, 1]. In both cases, the samples are function evaluations in
the Legendre nodes. The left panel is based on interpolation, the right panel corresponds to a discrete least
squares approximation with M = 2N and regularization threshold ε = 2e−13
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(a) Legendre points
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(b) Equispaced points

Fig. 3 Pointwise error as a function of the number of samples M for the ONB+K frame based on Legendre
polynomials, with degree N = 40, K = 5 and w(x) = log x as in Fig. 2b. Similar to regular polynomial
approximation, using Legendre points yields better accuracy than using equispaced points. They also require
less oversampling, i.e., smaller values of M , to achieve the best error
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(a) κM,N , Legendre points
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(b) λM,N , Legendre points
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(c) κM,N , equispaced points
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(d) λM,N , equispaced points

Fig. 4 Thevalues ofκε
M,N andλε

M,N are shownas a function of N with constant oversamplingM = γ N and
varying factors γ . Legendre points (top row) and equispaced points (bottom row) are used for the ONB+K
frame using Legendre polynomials, w(x) = log(x) and K = 5. The threshold used here is ε = 1e−5: the
values are bounded for Legendre points but they approach 1/ε for equispaced points. Equispaced points
require more than linear oversampling

Proposition 5.5 Let {ϕn} be the Legendre basis on H and w ∈ L2(0, 1). Then (5.6) is
a frame for any fixed K ≥ 1, with frame bounds

1 ≤ A ≤ B ≤ 1 + ‖w‖2K 2.

Proof First observe that ψk ∈ L2(0, 1) since w ∈ L2(0, 1) and ϕk ∈ L∞(0, 1).
Second, we have

‖ f ‖2 =
∞∑

n=1

|〈 f , ϕn〉|2 ≤
∞∑

n=1

|〈 f , ϕn〉|2 +
K∑

k=1

|〈 f , ψk〉|2,

and therefore the lower frame condition holds with A ≥ 1. Moreover,
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Fig. 5 The same as Fig. 4 but with threshold ε = 1e−8. For Legendre nodes (top row), the intermediate
peaks are higher, corresponding to the larger upper bounds in (3.23). However, the values settle down for
increasing N , with a clear benefit for larger oversampling factors. This is in agreement with the limit (3.24).
For equispaced samples, linear oversampling is not sufficient and, as in the previous figure, the values seem
to approach 1/ε. This again corresponds to (3.23)

∞∑

n=1

|〈 f , ϕn〉|2 +
K∑

k=1

|〈 f , ψk〉|2 ≤ ‖ f ‖2 + ‖ f ‖2‖w‖2
K∑

k=1

‖ϕk‖2L∞

= ‖ f ‖2
(

1 + ‖w‖2
K∑

k=1

(2k − 1)

)

= ‖ f ‖2
(
1 + ‖w‖2K 2

)
.

Here, in the penultimate step, we use the fact that |ϕn(x)| ≤ ϕn(1) = √
2n − 1 for

0 ≤ x ≤ 1. This completes the proof. ��
In Fig. 2 we demonstrate the benefits of this frame for approximating the singu-

lar function given by (5.5). Here, rather than the inner products (5.1), we take the
sampling functionals to be pointwise evaluations at the Legendre nodes, i.e., at the
roots of a high degree Legendre polynomial, mapped from [−1, 1] to [0, 1]. We also
compare these approximations with the polynomial interpolant at these nodes. As is
evident, polynomial interpolation performs poorly. In contrast, the convergence for
the ONB+K frame is significantly faster. Figure 2 also illustrates the stability of the
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numerical approximation using oversampling with M = 2N . The accuracy reaches
machine precision, in spite of it requiring the solution of an extremely ill-conditioned
linear system of equations, and this high level of accuracy is maintained as N grows.

The influence of the oversampling factor M is illustrated in Fig. 3. Here, the error
is shown as a function of M , for constant N = 40. Best accuracy is only achieved
for M > N , i.e., when using some amount of oversampling. We have used discrete
sampling in this figure using Legendre points (left panel) and equispaced points on
[0, 1] (right panel). It is not unexpected that Legendre points are a better choice: less
oversampling is needed to achieve the best accuracy for the given N .

The behaviour shown in Fig. 3 can be explained by computing the corresponding
constants κε

M,N and λε
M,N . This also serves to illustrate the stable sampling rate for

this problem. Their values are shown in Fig. 4 for several choices of the oversampling
factor γ , with M and N such that M = γ N . The convergence of both values to
constants of modest size, in particular much smaller than 1/ε, suggests that the stable
sampling rate is indeed linear when sampling in the Legendre points. For equispaced
points, as could be expected, this does not seem to be the case.

The results in Fig. 4 correspond to the threshold ε = 1e−5. For comparison, the
experiment is repeated in Fig. 5 for the smaller threshold ε = 1e−8. The latter figure
illustrates the larger upper bound of (3.23), on the order of 1/ε, in the pre-asymptotic
regime. Still, for the case of Legendre nodes, linear oversampling is sufficient to reach
the ε-independent (and small) limit (3.24).

The constants were computed following the approach described in Remark 3.14.
We have run this experiment in higher precision arithmetic, in order to exclude the pos-
sibility of inaccuracies in their computation. An exponentially converging composite
hp-graded quadrature rule was used to approximate the singular integrals that arise
in the elements of the Gram matrix. Furthermore, in this case we also weighted the
discrete samples in Legendre points by the square roots of the corresponding Gauss–
Legendre quadrature weights: this discrete normalization ensures that A′ = B ′ = 1
in (3.2) and leads to slightly smaller values of the constants (and, correspondingly,
smaller error in the approximation).
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