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Abstract
The admittable Sobolev regularity is quantified for a function, w, which has a zero
in the d-dimensional torus and whose reciprocal u = 1/w is a (p, q)-multiplier.
Several aspects of this problem are addressed, including zero-sets of positive Haus-
dorff dimension, matrix valued Fourier multipliers, and non-symmetric versions of
Sobolev regularity. Additionally, we make a connection between Fourier multipliers
and approximation properties ofGabor systems and shift-invariant systems.We exploit
this connection and the results on Fourier multipliers to refine and extend versions of
the Balian–Low uncertainty principle in these settings.
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1 Introduction

Let F denote the Fourier transform on L1(Td). Given 2 ≤ q ≤ ∞, a function
u ∈ L2(Td) is called a (2, q)-Fourier multiplier, or (2, q)-multiplier for short, if the
operator Tu defined by

Tua = F(uF−1a) (1)

is a bounded operator from �2(Zd) to �q(Zd). The family of all (2, q)-multipliers
is denoted by Mq

2 and is a Banach space when endowed with the operator norm
‖u‖Mq

2
= ‖Tu‖�2(Zd )→�q (Zd ). Fourier multipliers are a classical subject in analysis

(see e.g. [32,33]). The study of Fouriermultipliers from a p-normed space to a different
q-normed space goes back to Devinatz andHirschman [17,24] and to Hörmander [29].
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A function u ∈ L∞(Td) is clearly a (2, q)-multiplier for every value of q ≥ 2. In
fact, it is readily checked thatM2

2 = L∞(Td). However, if u is not bounded then the
situation becomes more delicate, and one may suspect that if u ‘grows rapidly’ near
its ‘singularities’ then u will not be a (2, q)-multiplier, at least for certain values of q.

All results in this paper are joint work with Shahaf Nitzen and Alex Powell. The
goals of this paper are twofold. First, as described above, we study growth restrictions
on a (2, q)-multiplier u. More precisely, we assume that u = 1/w for some function
w with a zero in the d-dimensional torus, and we quantify how smooth w can be in
the sense of Sobolev regularity. Our results extend in several directions including:
zero sets of positive Hausdorff dimension, general (p, q)-multipliers, non-symmetric
versions of Sobolev regularity, and matrix valued Fourier multipliers.

Our second goal is to develop a machinery by which one can relate such results on
Fourier multipliers to problems on the uncertainty principle in time–frequency analy-
sis. We investigate trade-offs between the time–frequency localization of the window
function g and the approximation properties of the associated Gabor system, that is,
the collection of integer translates and modulates of g. Our motivation comes from the
classical Balian–Low theorem [6,7,16,31] which quantifies the time–frequency local-
ization of generators of Gabor systems that are Riesz bases for L2(R). We use our
results on Fourier multipliers to provide sharp refinements of Balian–Low theorems
obtained in [35]. Our approach also yields newBalian–Low type theorems for systems
of translates in shift-invariant spaces.

1.1 Restrictions on (2, q)-Multipliers

Given s ≥ 0, recall that w ∈ L2(Td) belongs to the Sobolev space W s,2(Td) if and
only if ŵ ∈ �2(Zd) satisfies

∑

k∈Zd |k|2s |ω̂(k)|2 < ∞.

1.1.1 The Case of a Single Zero

Our first result is the following.

Theorem 1.1 (Nitzan, Northington, Powell) Let d
2 < s ≤ d and w ∈ W s,2(Td).

Suppose that w has a zero.

i. If s < d
2 + 1, then u = 1

w
/∈ Mq

2 for any q satisfying 2 ≤ q ≤ d
d−s . Conversely,

for any q > d
d−s , there exists w ∈ W s,2(Td) such that w has a zero and u =

1
w

∈ Mq
2 .

ii. If s = d
2 + 1, then u = 1

w
/∈ Mq

2 for any q satisfying 2 ≤ q < 2d
d−2 .

The assumption s > d
2 in Theorem 1.1 implies that W s,2(Td) embeds into C(Td)

(see e.g. Sect. 2), and so the assumption that ‘w has a zero’ should be interpreted to
mean that the continuous representative of w has a zero. Further, the relation M2

2 =
L∞(Td) implies that Theorem 1.1 also holds in the case s = d

2 , wherew need not have
a continuous representative and where the condition ‘w has a zero’ requires suitable
interpretation, see Sect. 1.1.2.
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Remark 1.2 A version of Theorem 1.1 holds when the more general Sobolev spaces
W s,r (Td), with 1 < r < ∞, are considered. See Theorem 3.1. (See also Sect. 2 for
the definition of the spaces W s,r (Td)).

Remark 1.3 A version of Theorem 1.1 holds when the assumption w ∈ W s,2(Td) is
replaced by non-symmetric smoothness conditions where the function has different
Sobolev regularities in each variable, see Theorem 3.4. (See Sect. 2 for the definition
of these spaces)

Remark 1.4 For 1 ≤ p ≤ q ≤ 2, or 2 ≤ p ≤ q ≤ ∞, Theorem 1.1 can be extended
to the more general (p, q)-multipliers, see the discussion in Sect. 4.2.

1.1.2 Zero Sets of Positive Hausdorff Dimension

Recall that for S ⊂ R
d and σ > 0 the σ -dimensional Hausdorff measure of S is

defined by

Hσ (S) = lim
δ→0

inf

{

∑

i

diam(Ui )
σ : S ⊂

⋃

Ui where the sets Ui satisfy diam(Ui ) < δ

}

.

(2)

Our next result extends Theorem 1.1 to zero sets of positive Hausdorff dimension.
To allow the consideration of non-continuous functions, we define the zero set of a
function w ∈ L1(Td) to be

�(w) =
{

x ∈ T
d : lim sup

τ→0

1

|Iτ (x)|
∫

Iτ (x)

|w(y)|dy = 0

}

, (3)

where Iτ (x) is the cube of width 2τ centered at x . We note that part (ii) of Theorem 1.5
follows from the main results of [30,39].

Theorem 1.5 (Nitzan, Northington, Powell) Let (d − σ)/2 < s ≤ 1 and w ∈
W s,2(Td). Suppose that Hσ (�(w)) > 0.

(i) If s < d − σ , then u = 1
w

/∈ Mq
2 for any q satisfying 2 ≤ q ≤ d

d−s− σ
2

.

(ii) If s = d − σ , then u = 1
w

/∈ L2(Td), and thus u /∈ Mq
2 for any q ≥ 2.

Remark 1.6 A version of Theorem 1.5 holds for s ≥ 1, under some mild additional
requirements. See Remark 2.7 and Theorem 3.3.

Remark 1.7 Remarks 1.2 and 1.4 hold also for Theorem 1.5. See Theorem 3.3 and the
discussion in Sect. 4.2.

Theorems1.5 and3.3 shouldbe compared to themain results in [30,39]. There, Jiang
et al. relate the Hausdorff dimension of the zero set of a function to the integrability
properties of its inverse. More precisely, for 0 ≤ s ≤ 1, they prove that if w ∈
W s,2(Td) and Hσ (�(w)) > 0 then 1/w /∈ L

2q
q−2 (Td) whenever q ≤ d−σ

d−σ−s . The
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conditions 1/w /∈ Mq
2 and 1/w /∈ L

2q
q−2 (Td) are related in one direction via the

Hausdorff–Young inequality. Indeed, it is readily proved that L
2q

q−2 (Td) ⊂ Mq
2(T

d).
The reverse inclusion does not hold (see e.g. Theorem 1.2.13 in [22]).

In contrast to Theorem 1.1, Theorem 1.5 does not appear to be sharp, and it is
reasonable to ask if the range of the parameter q in Theorem 1.5 can be extended to
the range q ≤ d−σ

d−σ−s that appears in [30,39]. For further discussion on this, see Sect.
7.

1.1.3 Matrix Valued Fourier Multipliers

Given a Banach space B and K ∈ N, let [B]K denote the space of all K -tuples with
elements from B, and let [B]K×K denote the space of all K ×K matriceswith elements
from B. That is, [B]K = {G = (gk)

K
k=1 : gk ∈ B} and similarly for [B]K×K . In the

cases where B is an L p or �p space, we endow the spaces [B]K with the natural norms

‖G‖[Lq ]K =
(

K
∑

k=1

‖gk‖q
Lq

)1/q

and ‖G‖[�q ]K =
(

K
∑

k=1

‖gk‖q
�q

)1/q

.

The Fourier transform FK on [L1(Td)]K is defined coordinate-wise by FK G =
(Fgk)

K
k=1. Note that ‖G‖[L2]K = ‖FK G‖[�2]K .

Given 2 ≤ q ≤ ∞, we say that U ∈ [L2(Td)]K×K is a matrix valued (2, q)-
multiplier if the operator TU : [�2(Zd)]K → [�q(Zd)]K defined by

TU A = FK (UF−1
K A) (4)

is bounded. We denote by M
q
2(K ) the family of all matrix valued (2, q)-multipliers.

For a Hermitian matrix valued function U ∈ [L2(Td)]K×K , there exist matrix
valued functions V and � such that U = V ∗�V , where the entries of V and � are
measurable functions, V is unitary, and � is a diagonal matrix with diagonal entries
satisfying λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x) for almost every x ∈ T

d , (see e.g. Lemma
2.3.5 in [38]). Throughout the paper, when we write U = V ∗�V , we mean that V
and � satisfy the conditions described above.

Our next result relates scalar valued multipliers and matrix valued multipliers.

Theorem 1.8 (Nitzan, Northington, Powell) Let U ∈ [L2(Td)]K×K be Hermitian
with eigenvalues λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x). Then, U ∈ M

q
2(K ) if and only if

λk ∈ Mq
2 for each 1 ≤ k ≤ K .

Theorem 1.8 allows the extension of Theorems 1.1 and 1.5 to matrix valued mul-
tipliers.

Corollary 1.9 (Nitzan, Northington, Powell) Let d
2 < s ≤ d and let W ∈

[L1(Td)]K×K be Hermitian with eigenvalues λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x). If
λk ∈ W s,2(Td) for every k = 1, . . . , K , and det(W ) has a zero, then conclusions
(i) and (ii) of Theorem 1.1 hold with U = W −1 replacing u = 1/w and with
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M
q
2(K ) replacing Mq

2 . In particular, the condition ‘λk ∈ W s,2(Td) for every k’ may
be replaced by the condition ‘W is a nonnegative matrix valued function satisfying
W ∈ [W s,2(Td)]K×K ’.

Corollary 1.10 (Nitzan, Northington, Powell) Let (d − σ)/2 < s ≤ 1 and let W ∈
[L1(Td)]K×K be Hermitian with eigenvalues given by λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x).
If λk ∈ W s,2(Td) for every k = 1, . . . , K , and Hσ (�(det(W )) > 0, then conclusions
(i) and (ii) of Theorem 1.5 hold with U = W −1 replacing u = 1/w and with M

q
2(K )

replacing Mq
2 . In particular, the condition ‘λk ∈ W s,2(Td) for every k’ may be

replaced by the condition ‘W is a nonnegative matrix valued function satisfying W ∈
[W s,2(Td)]K×K ’.

1.2 Applications to Time–Frequency Analysis

We now turn to discuss applications of the above stated results to time–frequency
analysis.

Recall that a system { fn} in a separable Hilbert space H is a Riesz basis if it is the
image of an orthonormal basis under a bounded and invertible operator, that is, if it
is complete in H and there exist positive constants A and B such that for all finite
sequences {an},

A
∑

|an|2 ≤
∥

∥

∥

∑

an fn

∥

∥

∥

2

H
≤ B

∑

|an|2. (5)

Note that { fn} is a Riesz basis if and only if every f ∈ H can be decomposed in
a unique way into a series f = ∑

an fn with a norm equivalence between the �2

norm of the coefficients {an} and the norm of f . Any system for which the right hand
inequality in (5) holds is called a Bessel system.

Further, a system {hn} ∈ H is called minimal if each of its elements lies outside the
closed linear span of the remaining elements. A system which is both complete and
minimal is called exact. Every Riesz basis is exact, but the converse is not true. For
further background on Riesz bases, Bessel systems and exact systems see [14,27].

1.2.1 Generators of Gabor Systems

Given g ∈ L2(R), the Gabor system generated by g over the lattice Z
2 is defined by

G(g) = {e2π imx g(x − n)}(m,n)∈Z2 .

The Balian–Low theorem, [6,7,16,31], states that if G(g) is a Riesz basis for L2(R),
then g must have much worse time–frequency localization then what the uncertainty
principle permits. More precisely, for t ≥ 2

∫

R

|x |t |g(x)|2dx = ∞ or
∫

R

|ξ |t |̂g(ξ)|2dξ = ∞. (6)
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This result is sharp in the sense that the conclusion (6) fails if t < 2, see [10].
The Balian–Low theorem has inspired a large body of work during the last 25 years

and has been extended inmany directions. In particular, Daubechies and Janssen prove
in [15] that if G(g) is merely an exact system then (6) holds whenever t ≥ 4, and this
is sharp. Further, in [35] Nitzan and Olsen give a collection of Balian–Low theorems
which interpolate the results for Riesz bases and for exact systems, by considering the
intermediate class of the so called exact (Cq )-systems.

Given q ≥ 2, a system { fn} in a Hilbert space H is called a (Cq )-system if there
exists C > 0 such that every f ∈ H can be approximated arbitrarily well by a
finite linear combination

∑

an fn with ‖an‖�q ≤ C‖ f ‖H . The study of (Cq )-systems
originated in [36], where Nitzan and Olevskii studied possible density restrictions
on exponential systems of this type. The name ‘(Cq )-system’ emphasizes that such
systems are ‘complete with �q control on the coefficients’. We note that { fn} is an
exact (Cq )-system if and only if it is complete and there exists D > 0 such that

D
(
∑

|an|q
) 1

q ≤
∥

∥

∥

∑

an fn

∥

∥

∥

H
, (7)

for any finite sequence {an}, [37] (see also Theorem 3 in [35]). This condition should
be compared with (5).

It is readily checked that if q̃ > q then every (Cq̃)-system is also a (Cq)-system,
and that an exact system is a Bessel (C2)-system if and only if it is a Riesz basis.
Finally, we note that a Gabor system G(g) is an exact system if and only if it is an
exact (C∞)-system. With this we conclude that for Gabor systems, the family of exact
(Cq )-systems provides a family of systems that range between Riesz bases and exact
systems as q ranges between two and infinity.

In [35], Nitzan and Olsen prove that if 2 ≤ q ≤ ∞ and G(g) is an exact (Cq )-
system, then (6) holds for t > 4/q ′ where q ′ = q/(q − 1). The result obtained in
[35] is almost sharp in the sense that for every t < 4/q ′ there exists g ∈ L2(R) for
which G(g) is an exact (Cq )-system and both integrals in (6) converge. However, the
critical-exponent case of t = 4/q ′ remained unsettled. We resolve this critical case
with the following theorem.

Theorem 1.11 (Nitzan, Northington, Powell) Fix q > 2. Let g ∈ L2(R). If G(g) is an
exact (Cq)-system for L2(R), then (6) holds whenever t ≥ 4/q ′, where q ′ = q/(q−1).
This result is sharp in the sense that it fails when t < 4/q ′.

Remark 1.12 Following [35] (see also [20], [26]), in Theorem 5.3 we prove a
non-symmetric extension of Theorem 1.11 that replaces (6) by non-symmetric time–
frequency constraints

∫

R

|x |r |g(x)|2dx = ∞ or
∫

R

|ξ |t |̂g(ξ)|2dξ = ∞. (8)

This theorem provides critical-exponent versions of a large portion of the non-
symmetric results in [35].
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1.2.2 Generators of Shift-Invariant Spaces

Fix K ∈ N and F = { fk}K
k=1

⊂ L2(Rd). The shift-invariant space generated by F ,
denoted V (F), is the closed linear span of the integer translates of the elements of F ,
that is

V (F) = span T (F), T (F) = { fk(x − n) : n ∈ Z
d , k = 1, .., K }. (9)

We say that a shift-invariant spaceV (F) has extra invariance if there existsγ ∈ R
d\Z

d

such that for every h ∈ V (F) we have also h(x − γ ) ∈ V (F). We say that this extra
invariance is non-trivial if Jγ /∈ Z

d , where J is the minimal cardinality of a set
H ⊂ L2(R) which satisfies V (F) = V (H). Indeed, in this case the extra invariance
is not a trivial consequence of the functions in F being shifts of one another. For more
information on extra invariance in shift-invariant spaces, see [2,4,5,12].

Analogues of the Balian–Low theorem for shift-invariant spaces were studied in
[3,25,40]. Specifically, in [25]Hardin, Powell, and the author prove that if V (F) admits
non-trivial extra invariance, and T (F) is a Riesz basis for V (F), then for t ≥ 1 there
exists at least one fk ∈ F which satisfies

∫

Rd
|x |t | fk(x)|2dx = ∞. (10)

This theorem is sharp and the non-triviality of the extra invariance is necessary, [25].
Our next results extend the Balian–Low theorem for shift-invariant spaces from the
setting of Riesz bases to the settings of exact systems and exact (Cq)-systems. Similar
to Gabor systems, we note that the system of translates T (F) is exact in V (F) if and
only if it is an exact (C∞)-system there. We first formulate our results over R.

Theorem 1.13 (Nitzan, Northington, Powell) Let 2 ≤ q ≤ ∞ and let F = { fk}K
k=1 ⊂

L2(R). If V (F) admits non-trivial extra invariance, and T (F) is an exact (Cq)-system
for V (F), then (10) holds for some fk ∈ F whenever t ≥ 2/q ′, where q ′ = q/(q −1).
The condition t ≥ 2/q ′ is sharp.

Next, we extend Theorem 1.13 to higher dimensions.

Theorem 1.14 (Nitzan, Northington, Powell) Let 2 ≤ q ≤ ∞ and let F = { fk}K
k=1 ⊂

L2(Rd). If V (F) admits non-trivial extra invariance, and T (F) is an exact (Cq)-
system for V (F), then (10) holds for some fk ∈ F and t ≥ min

(

2d/q ′ − d + 1, 2
)

,
where q ′ = q/(q − 1). This result is sharp for q = 2 and q = ∞.

Theorem 1.13 and the cases q = 2,∞ of Theorem 1.14 are both sharp. In contrast,
the cases 2 < q < ∞ of Theorem 1.14 do not appear to be sharp, and it is reasonable
to ask if the condition t ≥ min

(

2d/q ′ − d + 1, 2
)

can be replaced by t ≥ 2/q ′ for all
2 ≤ q ≤ ∞, and all dimensions d, see the discussion in Sect. 7.
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1.3 Outline of the Paper

The paper is organized as follows. In Sect. 2, we provide necessary background and
preliminary results regarding Sobolev spaces. In Sect. 3, we study the zero-sets of
reciprocals of Fourier multipliers. We begin by proving Theorems 3.1 and 3.3, and
thereby obtaining Theorems 1.1 and 1.5 as special cases. We next prove Theorem 3.4
which addresses non-symmetric Sobolev spaces.

In Sect. 4, we extend the results of Sect. 3 to (p, q)-multipliers and to matrix valued
multipliers. In particular, we prove Theorem 1.8 and Corollaries 1.9 and 1.10. In Sect.
5, we discuss the relation to Gabor systems and use the results obtained in Sect. 3 to
prove Theorem 1.11. In Sect. 6 we consider shift-invariant spaces and use the results
from Sects. 3 and 4 to prove Theorems 1.13 and 1.14. We conclude by formulating
some open problems and possible research directions in Sect. 7.

2 Sobolev Spaces

Throughout this paper the smoothness of a function is quantified by the function
belonging to certain Sobolev spaces. In this section we collect basic definitions and
properties of these spaces.

2.1 Notations

We denote the d-dimensional torus by T
d = R

d/Z
d and identify it with the interval

[−1/2, 1/2)d . The Fourier transform of f ∈ L1(Rd) and the Fourier coefficients of
g ∈ L1(Td) are normalized as follows,

̂f (ξ) =
∫

Rd
f (x)e−2π i〈x,ξ〉dx, ĝ(k) =

∫

Td
g(x)e−2π i〈k,x〉dx,

so that the extension of the Fourier transform to L2(R), as well as the restriction of
the Fourier coefficients to L2(Td), are unitary operators.

We denote the cube of sidelength 2τ centered at x ∈ R
d by Iτ (x) = x + [−τ, τ ]d ,

and the ball of radius τ centered at the same point by Bτ (x). For a real number s, 
s�
denotes the integer part of s, that is, the largest integer less than or equal to s, and
{s} = s − 
s� denotes the fractional part of s. For vectors x, y ∈ C

d , 〈x, y〉 denotes
the standard inner product, and |x | denotes the corresponding Euclidean norm. For a
vector of nonnegative integers α = (α1, . . . , αd), we denote |α|1 = α1 + · · · + αd

and Dα = Dα1
1 · · · Dαd

d , where D j is the distributional partial derivative operator with
respect to the j th variable.

For a finite set R, #R denotes the cardinality of the set R. For a set E in either R
d or

T
d , |E | denoted the Lebesgue measure of E . The σ -dimensional Hausdorff measure

of E is denoted byHσ (E) and defined as in (2), and for w ∈ L1(Td), the generalized
zero set of w is denoted by �(w) and defined as in (3).



Journal of Fourier Analysis and Applications (2020) 26 :76 Page 9 of 38 76

For 0 < α ≤ 1 and an open subset E ⊂ R
d , a function f is α-Hölder continuous

on E if f ∈ L∞(E) and there exists a positive constant C so that | f (x) − f (y)| ≤
C |x − y|α for every x, y ∈ E . Similarly, a periodic function g is α-Hölder continuous
on T

d if its periodic extension is α-Hölder continuous on R
d .

We use the notation A � B to imply that there exists a constant c such that A ≤ cB.
Similarly, A � B means A � B and B � A.

2.2 The Bessel Potential Spaces and Sobolev–Slobodeckij Spaces

We recall the definitions of the following related classes of Sobolev spaces.

Definition 2.1 Given s > 0, the Bessel potential space Hs(Td) consists of all f ∈
L2(Td) for which the following semi-norm is finite

‖ f ‖2
Ḣ s (Td )

=
∑

k∈Zd

|k|2s |̂f (k)|2.

When endowed with the norm ‖ f ‖2
Hs (Td )

= ‖ f ‖2
L2(Td )

+ ‖ f ‖2
Ḣ s (Td )

, Hs(Td) is a
Hilbert space.

Definition 2.2 Let 1 ≤ r < ∞ and d ∈ N. For f ∈ Lr (Td) denote

i. For n ∈ N,

‖ f ‖r
W n,r (Td )

=
∑

|α|1≤n

‖Dα f ‖r
Lr (Td )

.

ii. For 0 < s < 1,

‖ f ‖r
Ẇ s,r (Td )

=
∫

Td

∫

Td

| f (x + y) − f (x)|r
|y|d+sr

dydx .

For s > 0, the Sobolev–Slobodeckij space W s,r (Td) is the family of all functions
f ∈ Lr (Td) for which the norm

‖ f ‖r
W s,r (Td )

= ‖ f ‖r
W 
s�,r (Td )

+
∑

|α|1=
s�
‖Dα f ‖r

Ẇ {s},r (Td )
,

is finite.

With this norm W s,r (Td) is a Banach space and a Hilbert space when r = 2. In the
latter case the spaces Hs(Td) and W s,2(Td) are equal and have equivalent norms (see
e.g. [9]).

Remark 2.3 For an open subset � ⊂ R
d , W s,r (�) is defined similarly, but with the

semi-norm given by

‖ f ‖r
Ẇ s,r (�)

=
∫

�

∫

�

| f (x) − f (y)|r
|x − y|d+sr

dydx,
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for 0 < s < 1. Note that the main difference between this definition and the definition
over the torus, is that Sobolev spaces on the torus enforce smoothness across the
boundary of [−1/2, 1/2]d in its identification with T

d , whereas this is not so on
Euclidean domains.

2.3 Sobolev Embeddings

Given d ∈ N, s > 0 and 1 ≤ r < ∞, the number α = s − d/r is an important
quantitative measure of smoothness for the space W s,r (Td). The next theorem shows
that α determines Sobolev embeddings for W s,r (Td).

Theorem 2.4 (Theorem 7.58 in [1]) Suppose that X = T
d or that X = B is a ball in

R
d . Given 0 < s′ ≤ s < ∞ and 1 < r ≤ r ′ < ∞, let α = s −d/r and α′ = s′ −d/r ′.

If α ≥ α′ then

W s,r (X) ⊂ W s′,r ′
(X),

and the embedding is continuous.

Theorem 2.4 is stated for X = R
d in [1], but it also extends tomore general domains

such as balls X = B. The case X = T
d in Theorem 2.4 follows from the case X = R

d

since for Z
d -periodic f , if ψ ∈ C∞(Rd) satisfies ψ(x) = 1 for x ∈ [−1, 1)d , and

supp(ψ) ⊂ [−2, 2)d , then

‖ f ‖W s,r (Td ) � ‖ψ f ‖W s,r (Rd ), (11)

where the implicit constants in (11) do not depend on f . Due to the complexity of the
seminorms in the definition of W s,r (Td), it is often easier to prove results for Sobolev
spaces under the additional assumption that 0 < s ≤ 1. Theorem 2.4 then allows to
extend these results to cases where s > 1.

The next result embeds W s,r (Td) into the space of α-Hölder continuous functions
for 0 < α < 1, where as above α = s − d/r . In fact, it implies that functions in
W s,r (Td) are slightly smoother then functions in the corresponding Hölder space, as it
shows that for f ∈ W s,r (Td)wehave the estimate | f (x)− f (y)| � |x−y|αh(|x−y|),
where h(u) = o(1) as u tends to 0. The proof of this theorem follows closely the proof
of Theorem 8.2 in [18].

Theorem 2.5 For 1 < r < ∞ and s > 0, let α = s − d
r . If 0 < α < 1, then there

exists a constant C = C(d, s, r) such that for all f ∈ W s,r (Td) and for any x, y ∈ T
d

we have,

| f (x) − f (y)| ≤ C‖ f ‖Ẇ s,r (B2τ (z))|x − y|α, (12)

where z is the midpoint between x and y, and |x − y| = τ .

Proof Wefirst consider the case 0 < s < 1. Asmentioned above, in this case the result
follows the proof of Theorem 8.2 in [18] with minor changes. We give a sketch of the
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proof and leave the details to the reader. For a measurable set U , let 〈 f 〉U := 1
|U |

∫

U f

be the average of f over U . For any two points x, y ∈ T
d we have

| f (x) − f (y)| ≤ | f (x) − 〈 f 〉Bτ (x)| + |〈 f 〉Bτ (x) − 〈 f 〉Bτ (y)| + |〈 f 〉Bτ (y) − f (y)|.
(13)

The first and third terms in the right hand side can be bounded similarly. Lemma 2.2
in [21] (see also Lemma 8.1 in [18]) implies that if both x and y are Lebesgue points
of f , then each of these terms can be bounded by Cτα�(τ) where,

�(τ) :=
(

sup
0<ρ<τ

ρ−sr
∫

Bρ(x)

| f (u) − 〈 f 〉Bρ(x)|r du

)1/r

. (14)

Moreover, it follows from the proof of this estimate that the constantC depends only on
s, d, and r . Further, Eq. (8.3) of [18] implies that �(τ) � sup0<ρ<τ ‖ f ‖Ẇ s,r (Bρ(x)) ≤
‖ f ‖Ẇ s,r (B2τ (z)) which provides the required bound.

Similarly, using Hölder’s inequality and multiplying and dividing by |u − v|d+sr ,
the middle term of (13) may be bounded by a constant multiplying,

τ rα

∫

Bτ (x)

∫

Bτ (y)

| f (u) − f (v)|r
|u − v|d+sr

dudv � |x − y|rα‖ f ‖r
Ẇ s,r (B2τ (z))

, (15)

where again the implied constants only depend on s, d, and r . Therefore, the result
holds when 0 < s < 1.

The case s ≥ 1 follows from a reduction to the case 0 < s < 1. To see this, note that
since 0 < s − d

r < 1, there exist 0 < s′ < 1 and 1 < r ′ < ∞ such that s − d
r = s′− d

r ′ .

Since Theorem 2.4 gives W s,r (Td) ⊂ W s′,r ′
(Td), the result now follows. ��

Theorem2.5 implies that,whenever 0 < α < 1, if f ∈ W s,r (Td) satisfies f (y) = 0
for some y ∈ T

d , then for τ > 0,

‖ f ‖Lr (Bτ (y)) ≤ Cτ s‖ f ‖Ẇ s,r (B2τ (y)). (16)

The work in [30] and [39] shows that similar bounds as in (16) hold also in the case
where α < 0, if the Hausdorff dimension of the zero set of the function is large enough.

Theorem 2.6 [30,39] Fix 1 < r < ∞ and let d, σ , and s satisfy, 0 ≤ (d − σ)/r <

s ≤ 1.
If f ∈ W s,r (Td) satisfies Hσ (�( f )) > 0 then there exist a constant C > 0, and a

closed set T ⊂ �( f ) with Hσ (T ) > 0 such that the following holds. For every ε > 0
one can find a collection of pairwise disjoint balls B = {Bk}∞k=1 = {Bτk (xk)}∞k=1 with
xk ∈ T such that

(i) T ⊂ ⋃∞
k=1 B5τk (xk).

(ii) |⋃∞
k=1 Bk | < ε.

(iii) ‖ f ‖Lr (Bk ) ≤ Cτk
s‖ f ‖Ẇ s,r (Bk )

∀k ∈ N.
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Remark 2.7 Theorem 2.6 also holds for f ∈ W s,r (Td)when s > 1 with the condition

d

r
− σ

d − σ
< s <

d

r
+ 1

replacing the condition (d − σ)/r < s ≤ 1. The upper bound shows that there
exists an r ′ > r such that s − d/r = 1 − d/r ′, and so Theorem 2.4 implies that
f ∈ W 1,r ′

(Td). Rearranging the lower bound and applying the previous equality
gives d/r ′ < 1 + σ/(d − σ) = d/(d − σ), which is equivalent to (d − σ)/r ′ < 1.
Thus, Theorem 2.6 can be applied to the space W 1,r ′

(Td). Clearly, (i) and (ii) continue
to hold. To see that (iii) still holds, Hölder’s inequality gives,

‖ f ‖Lr (Bk ) � τ d/r−d/r ′ ‖ f ‖Lr ′
(Bk)

� τ 1+d/r−d/r ′ ‖ f ‖Ẇ 1,r ′
(Bk )

� τ s‖ f ‖Ẇ s,r (Bk )
.

Proof of Theorem 2.6 The proof is a combination of results from [30] and [39]. The-
orem 2.1 of [30] and Theorem 1.3 of [39] provide sufficient conditions on T and Bk

for condition (iii) to hold in the case that s ≤ d/r , and Eq. (16) provides the same for
s > d/r . The proof of Theorem 1.1 in [30] shows how to construct T and choose B so
that these sufficient conditions are met for each ball in B and such that the conditions
(i) and (ii) are also satisfied. ��

2.4 Restrictions of Sobolev Functions Over Lines

For x = (x1, . . . , xd−1) ∈ R
d−1 and 1 ≤ i ≤ d denote by Li (x) the line parallel

to the i th coordinate axis passing through the point (x1, . . . , xi−1, 0, xi , . . . , xd−1),
that is, Li (x) = {(x1, . . . , xi−1, t, xi , . . . , xd−1)}. An equivalent, definition to the
Sobolev–Slobodeckij spaces is given in the following proposition.

Proposition 2.8 (e.g. [1,11]) Fix d ∈ N, 0 < s ≤ 1 and 1 ≤ r < ∞. Then, for
f ∈ W s,r (Td) we have,

‖ f ‖r
Ẇ s,r (Td )

�
d

∑

k=1

∫

Td−1
‖ f |Li (x)‖r

Ẇ s,r (T)
dx, (17)

where the implied constants do not depend on f .

Theorems 2.4 and 2.5 imply that if α = s − d
r > 0 then every f ∈ W s,r (Td) has

a Hölder continuous representative. This is not necessarily true when α ≤ 0, but the
next result shows that for non-negative functions there exist representatives which are
Hölder continuous on almost every line parallel to a coordinate axis, and their zero set
is exactly equal to the set �( f ) defined in (3).

For a non-negative function f ∈ W s,r (Td) denote

f ∗(x) = lim sup
τ→0

fτ (x) ; fτ (x) = 1

|Iτ (x)|
∫

Iτ (x)

f (u)du, (18)
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and note that by the Lebesgue differentiation theorem f ∗ is equal to f almost every-
where.

Proposition 2.9 Let s > 0, d ∈ N, and 1 < r < ∞ be such that 0 < s − 1/r ≤ 1.
Then, for a nonnegative function f ∈ W s,r (Td), the representative f ∗ of f satisfies
f ∗|L is (s − 1/r)-Hölder continuous on almost every line L in T

d which is parallel
to an axis, and its zero set is exactly �( f ).

Proof It suffices to prove the proposition for lines parallel to the first coordinate axis,
therefore for fixed y0 ∈ T

d−1 we consider the function of one variable f (x, y0), with
x ∈ T. By (17) we have f (x, y0) ∈ W s,r (T) for almost every y0 ∈ T

d−1, in what
follows we assume y0 to satisfy this condition. It follows from Theorem 2.5 that for
almost every x1, x2 ∈ T,

| f (x1, y0) − f (x2, y0)| ≤ C‖ f (·, y0)‖Ẇ s,r (T)|x1 − x2|s−1/r ,

where C = C(d, s, r). Therefore, for τ > 0, the function φτ (x, y0) =
(2τ)−1

∫ x+τ

x−τ
f (t, y0)dt satisfies the same inequality everywhere on T, as can be

checked by noting that φτ (x, y) = (2τ)−1
∫ τ

−τ
f (t + x, y)dt . Next, since

| fτ (x1, y0) − fτ (x2, y0)| ≤ (2τ)−(d−1)
∫

Iτ (y0)

∣

∣φτ (x1, z) − φτ (x2, z)
∣

∣ dz,

we conclude that

| f ∗(x1, y0) − f ∗(x2, y0)| ≤ lim sup
τ→0

| fτ (x1, y0) − fτ (x2, y0)|

≤ C lim sup
τ→0

(2τ)−(d−1)
∫

Iτ (y0)
‖ f (·, z)‖Ẇ s,r (T)dz · |x1 − x2|s−1/r .

Now, (17) implies that the function G(z) = ‖ f (·, z)‖Ẇ s,r (T) ∈ L1(Td−1) and there-
fore, by the Lebesgue Differentiation Theorem the last limit is finite for almost every
y0 ∈ T

d−1. The result follows. ��

2.5 Anisotropic Bessel Potential Spaces

Next we define anisotropic Bessel potential spaces and prove an embedding similar
to Theorem 2.5 for these spaces. Similar spaces were studied in Chapter 5 of [41] and
the references therein.

For �s = (s1, . . . , sd) ∈ (0,∞)d the anisotropic Bessel potential space, H �s(Td), is
defined as the space consisting of all functions f ∈ L2(Td) for which the following
semi-norm is finite

‖ f ‖2
Ḣ �s (Td )

=
∑

k∈Zd

(

|k1|2s1 + · · · + |kd |2sd
)

|̂f (k)|2. (19)
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When endowed with the norm ‖ f ‖2
H �s (Td )

= ‖ f ‖2
L2(Td )

+ ‖ f ‖2
Ḣ �s (Td )

, H �s(Td) is a
Hilbert space.

Lemma 2.10 Suppose �s satisfies
∑d

j=1
1
s j

< 2. If f ∈ H �s(Td) then ̂f ∈ �1(Zd). In

particular, f is continuous.

Proof We first note that

S =
∑

k∈Zd

1

1 + |k1|2s1 + · · · + |kd |2sd
< ∞. (20)

Indeed, estimating the sum S by an integral, and making an appropriate change of
variables, we find that

S �
∫

[0,∞]d

∏d
j=1 t

1
s j

−1

j

1 + t21 + · · · + t2d
d�t .

Converting to spherical coordinates, and integrating away the angular terms, gives

S �
∫ ∞

0

r

(

∑d
j=1

1
s j

)

−d

1 + r2
rd−1dr ,

which is finite as
∑d

j=1
1
s j

< 2. The lemma now follows from a standard application
of the Cauchy Schwartz inequality. ��

Next, we show that the conditions of Lemma 2.10 imply that a function in H �s(Td) is
not only continuous, but in fact satisfies a stronger mixed-Hölder continuity property.
For this goal, given �s ∈ (0,∞)d , denote

α� = s�

⎛

⎝1 − 1

2

d
∑

j=1

1

s j

⎞

⎠ , � = 1, . . . , d. (21)

The quantities α� play a similar role as α from Sect. 2.3. In particular, if s� = s for all
�, and r = 2, then α� = s − d

2 = α.
We are now ready to prove an anisotropic analogue of Theorem 2.5.

Theorem 2.11 Let G ∈ H �s(Td) where
∑d

j=1
1
s j

< 2. For � = 1, . . . , d, let α� be as

in (21), and assume that 0 < α� < 1. Then, there exists a constant C such that if
x1, x2 ∈ T

d are equal in all but their �’th coordinate then

|G(x1) − G(x2)| ≤ C R(|x (�)
1 − x (�)

2 |)|x (�)
1 − x (�)

2 |α�,

where limτ→0 R(τ ) = 0, and x (�)
j is the �’th coordinate of x j , j = 1, 2.
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Proof To avoid cumbersome notations, we present the proof in the case of two vari-
ables. The general case can be proved in much the same way, we leave the details to
the reader. Without loss of generality, we may assume that � = 1.

Fix N ∈ N. Since
∑2

j=1
1
s j

< 2, the Fourier series of G converges absolutely and
so for x1, x2, y ∈ T and τ = |x2 − x1|, we may apply the Cauchy Schwartz inequality
and find that,

|G(x1, y) − G(x2, y)| �
∑

(k,n)∈Z2

|̂G(k, n)|| sin(πτk)| ≤ L
1
2
1 + L

1
2
2 , (22)

where

L1 =
⎛

⎝

∑

(k,n)∈Z2;|k|≤N

(|k|2s1 + |n|2s2)|̂G(k, n)|2
⎞

⎠

⎛

⎝

∑

(k,n)∈Z2;|k|≤N

| sin(πτk)|2
|k|2s1 + |n|2s2

⎞

⎠ ,

and L2 is the similar expression with the restriction |k| > N replacing that of |k| ≤ N .
To estimate L1 we first note that for a fixed k �= 0, since 2s2 > 1, we have

∑

n∈Z

1

|k|2s1 + |n|2s2
�

∫ ∞

0

dt

|k|2s1 + |t |2s2
�

∫ ∞

0

dt
(|k|

s1
s2 + t

)2s2
� |k|−2s1+ s1

s2 . (23)

Combining with the definition of the anisotropic Bessel norm, and the estimate
| sin θ | ≤ |θ |, we therefore obtain,

L1 � ‖G‖2
Ḣ �s (Td )

τ 2
N
∑

k=1

k
2−2s1+ s1

s2

� ‖G‖2
Ḣ �s (Td )

τ 2N 2−2α1 .

We turn to the estimate of L2. First, we denote

�(N ) =
⎛

⎝

∑

(k,n)∈Z2;|k|>N

(|k|2s1 + |n|2s2)|̂G(k, n)|2
⎞

⎠

1
2

.

Applying (23) once again we obtain,

L2 � �(N )2
∑

|k|≥|N |
|k|−2s1+ s1

s2 � �(N )2|N |1−2s1+ s1
s2 � �(N )2|N |−2α1 .

Plugging these estimates into (22) we therefore find that,

|G(x1, y) − G(x2, y)| � τ N 1−α1 + �(N )|N |−α1

= N 1−α1 (τ + �(N )/N ) ,

with the implied constant depends on ‖G‖Ḣ �s , but not on x1, x2, y.
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If �(N ) is equal to zero for some N , then G is a trigonometric polynomial in the
first variable, and the claim trivially follows. We can therefore assume that �(N ) is
different from zero for every N , and we note that, since G ∈ H �s(Td), this function is
decreasing to zero as N tends to ∞. For small enough τ , choose N = N (τ ) to be the
integer satisfying �(N )/N ≤ τ < �(N − 1)/(N − 1). Note that as τ tends to zero,
the corresponding N (τ ) tends to infinity, and therefore �(N (τ ) − 1) tends to zero.
Plugging N = N (τ ) into the above estimate we get

|G(x1, y) − G(x2, y)| � N 1−α1τ = τα1(Nτ)1−α1

≤ τα1(2�(N − 1))1−α1 .

As �(N (τ ) − 1) tends to zero when τ tends to zero, and α1 < 1, the result follows.
��

2.6 Sobolev Spaces OverRRRd

Most of the results listed above hold when the Sobolev spaces over T
d are replaced

by their analog over R
d . For 0 < s < 1, the seminorm for W s,r (Rd) is defined by

‖ f ‖r
Ẇ s,r (Rd )

=
∫

Rd

∫

Rd

| f (x) − f (y)|r
|x − y|d+sr

dydx,

and the space W s,r (Rd) is defined analogously to Definition 2.2. Theorems 2.4, 2.5,
and 2.6, and Proposition 2.8 all hold when T

d is replaced by R
d .

The anisotropic Bessel potential spaces can also be considered over R
d instead of

T
d (See [41]). With a nearly identical proof, it can be shown that Theorem 2.11 holds

when H �s(Rd) replaces H �s(Td).

2.7 Auxiliary Constructions

In this subsection we construct some examples of functions which belong to certain
Sobolev spaces. These functions will be used in our proofs for different sharpness
statements.

2.7.1

We start with the following construction. Let η ∈ C∞(Rd) be a nonnegative function
satisfying η(x) = 1 for x ∈ B1/8(0), η(x) = 0 for x /∈ B1/4(0), and η(x) positive
for x ∈ B1/4(0). For β > 0, let wβ be the Z

d -periodic function defined by wβ(x) =
(1 − η(x)) + η(x)|x |β for x ∈ [−1/2, 1/2)d .

Proposition 2.12 Fix 0 < β < 1. Then,

i. wβ(0) = 0, and w has no other zero in T
d .

ii. uβ = 1/wβ ∈ L
2q

q−2 (Td) ⊂ Mq
2 whenever q > 2d/(d − 2β).
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iii. wβ ∈ W s,r (Td) for any s and r satisfying 0 < s ≤ d, 1 < r < ∞, and
s − d

r < β.

Proof Part (i) is clearly true by the definition ofwβ . For part (ii), it suffices to consider
wβ in B1/8(0), as the function is bounded away from zero outside of this region. We
have,

∫

B1/8(0)
|wβ(x)| −2q

q−2 dx =
∫

B1/8(0)
|x |− 2qβ

q−2 dx,

and this is finite if and only if 2qβ
q−2 < d, which is equivalent to q > 2d/(d − 2β). The

inclusion, L
2q

q−2 (Td) ⊂ Mq
2 follows from the discussion after Theorem 1.5.

We turn to part (iii). It is enough to prove it for s = d, as Theorem 2.4 would then
imply that the result holds for all 0 < s ≤ d. Note that away from 0, wβ is smooth,
and so it suffices to consider a neighborhood of 0. Let D denote some dth order partial
derivative operator (in the sense of distribution). A straightforward induction argument
shows that |Dwβ(x)| � |x |β−d for x ∈ B1/8(0), and thus,

∫

B1/8(0)
|Dwβ(x)|r dx �

∫

B1/8(0)
|x |(β−d)r dx < ∞,

whenever (β − d)r > −d. This is equivalent to d − d
r < β. ��

2.7.2

Fix 0 < β < 1, and denote hβ ∈ L2(R) by

hβ(x) =
{

0 : x ≥ 1
2

( 12 − |x |)β/2 : − 1
2 ≤ x ≤ 1

2

We have the following.

Proposition 2.13 We have hβ ∈ W s,2(R) for all s <
1+β
2 .

Proof We will use the fact that as sets W s,2(R) = Hs(R). Let fβ = ̂hβ . A direct
calculation shows

fβ(ξ) = 2
∫ 1

2

0
cos(2πxξ)(

1

2
− x)β/2dx = ξ−1−β/22−β/2

∫ ξ

0
cos(π y)(ξ − y)β/2dy

(24)
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Now we show that | ∫ ξ

0 cos(π y)(ξ − y)β/2dy| is bounded by a constant for all ξ > 1.
First,

∣

∣

∣

∣

∫ ξ

ξ−1
cos(π y)(ξ − y)β/2dy

∣

∣

∣

∣

≤ 1 (25)

Second, after two steps of integration by parts, we find,

∣

∣

∣

∣

∫ ξ−1

0
cos(π y)(ξ − y)β/2dy

∣

∣

∣

∣

� 1 +
∣

∣

∣

∣

∫ ξ−1

0
cos(π y)(ξ − y)β/2−2dy

∣

∣

∣

∣

� 1, (26)

where the implied constants only depend on β. It follows from Eqs. (24), (25), and
(26) that for any |ξ | > 1, | fβ(ξ)|2 � |ξ |−2−β and so

∫

R

|ξ |2s |̂hβ(ξ)|2dξ =
∫

R

|ξ |2s | fβ(ξ)|2dξ < ∞

whenever s <
1+β
2 .

��

3 Proofs for theMultiplier Results

3.1 A Proof for Theorem 1.1

Here we prove the following more general version of Theorem 1.1.

Theorem 3.1 (Nitzan, Northington, Powell) Let 1 < r < ∞ and d
r < s ≤ d(1/2 +

1/r). Suppose w ∈ W s,r (Td) and w has a zero.

i. If s < d
r + 1, then u = 1

w
/∈ Mq

2 for any q satisfying 2 ≤ q ≤ d
d(1/2+1/r)−s .

Conversely, for any 0 < s ≤ d and q > d
d(1/2+1/r)−s , there exists w ∈ W s,r (Td)

such that w has a zero and u = 1
w

∈ Mq
2 .

ii. If s = d
r + 1, then u = 1

w
/∈ Mq

2 for any q satisfying 2 ≤ q < 2d
d−2 .

Proof To prove the implication in part (i), suppose for contradiction that u = 1
w

∈ Mq
2

for a function w satisfying the condition of the theorem and q ≤ d
d(1/2+1/r)−s . In

particular, we will assume without loss of generality that w(0) = 0.
Let α = s − d

r be the quantity discussed in Sect. 2.3, and note that the condition
on q and s implies that,

d

(

1

2
− 1

q

)

≤ α < 1. (27)



Journal of Fourier Analysis and Applications (2020) 26 :76 Page 19 of 38 76

The (2, q)-multiplier condition on u = 1
w

can be rewritten as follows: For any
function g over T

d which satisfies wg ∈ L2(Td) we have:

‖ĝ‖�q (Zd ) ≤ C‖wg‖L2(Td ). (28)

For τ > 0, denote Iτ = Iτ (0). Substituting g = χIτ into (28) and using standard
bounds on the �q norm of its Fourier transform, we have

τ d(1−1/q) � ‖χ̂Iτ ‖�q (Zd ) � ‖w‖L2(Iτ ), (29)

with constants not depending on τ .
To estimate ‖w‖L2(Iτ ), we use the fact that w(0) = 0, (12), and (27). We get,

∫

Iτ
|w(x)|2dx � ‖w‖2

Ẇ s,r (B2
√

dτ
)
|Iτ |τ 2α � ‖w‖2

Ẇ s,r (B2
√

dτ
)
τ 2d(1−1/q). (30)

Combining this estimate with (29), we find that

1 � ‖w‖Ẇ s,r (B2
√

dτ
), (31)

which is absurd as ‖w‖Ẇ s,r (B2
√

dτ
) tends to zero when τ tends to zero.

To prove part (ii) we recall that if w ∈ W d/r+1,r (Td), then w ∈ W s,r for
all s < d/r + 1. Thus, we can apply part (i) to find that u /∈ Mq

2 for any
q < d

d(1/2+1/r)−(d/r+1) = 2d
d−2 .

The sharpness in part (i) follows from Proposition 2.12. Indeed, for ε > 0 let
β = s − d/r + ε and wβ be as in 2.12. Then we have wβ ∈ W s,r (Td), wβ(0) = 0,
and uβ = 1/wβ ∈ Mq

2 for q > d/(d(1/2+ 1/r) − s − ε). This completes the proof.
��

Remark 3.2 Note that due to the local nature of the proof above, Theorem 3.1 holds
also when the condition w ∈ W s,r (Td) is replaced by the condition w ∈ W s,r (B)

for some ball B ⊂ T
d containing a zero of w. Similar local versions hold for all the

results regarding multipliers appearing in the paper.

3.2 A Proof for Theorem 1.5

Here we prove the following more general version of Theorem 1.5, part (ii) of which
follows essentially from the main results in [30,39].

Theorem 3.3 (Nitzan, Northington, Powell) Let 2 ≤ r < ∞, 0 < σ < d, and

d/r − σ/max(r , d − σ) < s ≤ (d − σ)(1/2 + 1/r).

Suppose w ∈ W s,r (Td) and Hσ (�(w)) > 0
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i. If s < d/r + 1, then u = 1
w

/∈ Mq
2 for any q satisfying

2 ≤ q ≤ d

d(1/2 + 1/r) − σ/r − s
.

ii. If s = (d − σ)(1/2 + 1/r) < d/r + 1, then u = 1
w

/∈ L2(Td), and thus
u = 1

w
/∈ Mq

2 for any q.
iii. If s = d/r + 1 ≤ (d − σ)(1/2 + 1/r), then u = 1

w
/∈ Mq

2 for and q satisfying
2 ≤ q < d

d/2−σ/r−1 .

Proof We first note that part (ii) of this theorem follows from the main result in [30]
and [39]. Indeed, in the case that s = (d − σ)( 12 + 1

r ) ≤ 1, it is stated there that if
u = 1/w ∈ L2(Td) and w ∈ W s,r (Td) thenHσ (�(w)) = 0. Since for every value of
2 ≤ q we haveMq

2 ⊂ M∞
2 = L2(Td), part (ii) follows. Now, for the case s > 1, we

point out that an application of Theorem 2.6, as in the proof of Remark 2.7, allows one
to easily extended the main result of [30] and [39] to the claimed range of parameters.

To prove part (i), suppose for a contradiction that u = 1
w

∈ Mq
2 for a function w

satisfying the conditions of the theorem. Note that the condition on q implies that

σ ≥ r

[

d

(

1

2
+ 1

r
− 1

q

)

− s

]

. (32)

Since d/r − σ/max(r , d − σ) < s < d/r + 1, we can apply Theorem 2.6 and the
remark following it, to obtain a set T withHσ (T ) > 0, and a constantC , which satisfy
the conditions of the theorem.

For ε > 0 let B(ε) = {Bk}∞k=1 = {Bτk (xk)}∞k=1 be the collection of disjoint balls
guaranteed by Theorem 2.6 and denote V (ε) = ⋃∞

k=1 Bk (we suppress the superscript
“ε” from the balls to avoid cumbersome notations). For Bk = Bτk (xk) ∈ B, let Ik =
Iτk/

√
d(xk) so that Ik ⊂ Bk . As in the proof of Theorem 3.1, the Fourier multiplier

property implies that for each such ball Bk we have,

τ
d(1− 1

q )

k � ‖χ̂Ik ‖�q (Zd ) � ‖w‖L2(Ik )
� ‖w‖L2(Bk )

.

Hölders inequality and part (iii) of Theorem 2.6 now imply that

τ
d(1− 1

q )

k � τ
d(r−2)

2r
k ‖w‖Lr (Bk ) � τ

s+ d(r−2)
2r

k ‖w‖Ẇ s,r (Bk )
.

Rearranging this inequality and plugging it in (32), we find that

τσ
k ≤ τ

r
[

d( 12+ 1
r − 1

q )−s
]

k � ‖w‖r
Ẇ s,r (Bk )

. (33)

It follows that,
∑

k

(τ
(ε)
k )σ �

∑

k

‖w‖r
Ẇ s,r (Bk )

= ‖w‖r
Ẇ s,r (V (ε))

,
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and so, due to part (ii) of Theorem 2.6

lim
ε→0

∑

k

(τ
(ε)
k )σ = 0.

This, combined with part (i) of Theorem 2.6, contradicts the fact that Hσ (T ) > 0.
Part (i) follows.

For part (iii), since w ∈ W d/r+1,r (Td), we also have w ∈ W s,r for all s < d/r +1.
Part (i) shows that u /∈ Mq

2 for any q < d
d(1/2+1/r)−σ/r−(d/r+1) = d

d/2−σ/r−1 . ��

3.3 The Anisotropic Case

Next, we formulate and prove a version of our results for functions in the anisotropic
Bessel potential spaces H �s(Td), which were defined in Sect. 2.5. Given a d-tuple,
{s j }d

j=1, we denote �(�s) = ∑d
j=1

1
s j

and recall the notation α j = s j (1 − 1
2�(�s)).

Theorem 3.4 (Nitzan, Northington, Powell) Let {s j }d
j=1 be such that 0 < s j and

0 < α j < 1 for every j = 1, 2, . . . , d. Suppose w ∈ H �s(Td) and w has a zero, then
u = 1

w
/∈ Mq

2 for any q satisfying 2 ≤ q ≤ �(�s)/(�(�s) − 1).

Proof of Theorem 3.4 Suppose for a contradiction that u = 1
w

∈ Mq
2 for some function

w satisfying the conditions of the theorem.Without loss of generality, we may assume
that w(0) = 0, and that smin = s1 ≤ s2 ≤ · · · ≤ sd .

Since 0 < α j < 1 for every j = 1, 2, . . . , d we have, in particular, that �(�s) < 2
and therefore, by Lemma 2.10, that w is continuous. Moreover, by Theorem 2.11, we
have

|w(x)| = |w(x) − w(0)| ≤ R(|x |)�d
j=1|x j |α j , (34)

where limτ→0 R(τ ) = 0.
For τ > 0, let Iτ,�s be the rectangle defined by Iτ,�s = �d

j=1[−τ j/2, τ j/2], where
τ j = τ s1/s j . The inequality in (34) implies that

∫

Iτ,�s
|w(x)|2dx ≤ max

x∈Iτ,�s
(R(|x |))2

d
∑

j=1

∫

Iτ,�s
|x j |2α j dx .

Since,

d
∑

j=1

∫

Iτ,�s
|x j |2α j dx ≤

d
∑

j=1

τ
2α j
j

d
∏

k=1

τk =
d

∑

j=1

τ

2s1α j
s j τ s1�(�s) = dτ 2s1 ,

we conclude that
∫

Iτ,�s
|w(x)|2dx ≤ dτ 2s1 max

x∈Iτ,�s
(R(|x |))2.
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On the other hand, we have

τ s1(1−1/q)�(�s) =
d
∏

j=1

τ s1(1−1/q)/s j =
d
∏

j=1

τ
1−1/q
j � ‖F(χIτ,�s )‖�q (Zd ).

Since u = 1/w ∈ Mq
2 we therefore have, for any τ > 0,

τ s1(1−1/q)�(�s) � ‖F(χIτ,�s )‖�q (Zd ) � ‖w‖L2(Iτ,�s ) � τ s1 max
x∈Iτ,�s

R(|x |).

However, the condition on q implies that (1 − 1/q)�(�s) ≤ 1, and maxx∈Iτ,�s R(|x |)
tends to zero as τ tends to zero, so this bound cannot hold. ��
Remark 3.5 Note that due to the local nature of the proof above, Theorem 3.4 holds
if the condition w ∈ H �s(Td) is replaced by the condition that w has a zero at 0, and
(34) holds for all x in a neighborhood of 0.

4 Further Extensions of theMultiplier Results

In this section we discuss some further extensions of our multiplier results. First, we
extend these results to matrix valued multipliers, and then we remark on the extension
of these results to (p, q)-multipliers by means of interpolation.

4.1 Matrix ValuedMultipliers

Recall that for K ∈ N and 2 ≤ q ≤ ∞ a matrix valued function U ∈ [L2(Td)]K×K

is a matrix valued (2, q)-multiplier if the operator TU : [�2(Zd)]K → [�q(Zd)]K ,
defined by

TU A = FK (UF−1
K A),

is bounded, and that the family of all such matrix valued multipliers is denoted by
M

q
2(K ). Further, recall that for a Hermitian matrix valued function U we write U =

V ∗�V where the entries of V and � are measurable functions, V is unitary, and � is
a diagonal matrix with diagonal entries satisfying λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x) for
almost every x ∈ T

d .
We now turn to a proof of Theorem 1.8, which asserts that we can frequently

consider scalar valued multipliers instead of matrix valued multipliers.

Proof First, assume that U ∈ M
q
2(K ). We need to show that if λ(x) := λk(x) is

some eigenvalue of U then λ(x) ∈ Mq
2 . Let v(x) = (v j (x))K

j=1 be an eigenvector

of U corresponding to the eigenvalue λ(x) and such that
∑ |v j (x)|2 = 1 for almost

every x ∈ T
d . Note that such a measurable vector valued function v exists due to the

decompositionU = V ∗�V recalled above. For a function g ∈ L2(Td) the last equality
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implies that
∑ |v j |2λg = λg almost everywhere, and so, by Hölder inequality, that

there exists some 1 ≤ j0 ≤ K which satisfies

1

K
‖F(λg)‖�q ≤ ‖F(|v j0 |2λg

)‖�q ≤ ‖FK
(

(λgv j0)v
)‖[�q ]K .

Since v is an eigenvector of U corresponding to the eigenvalue λ and U is a matrix
valued (2, q)-multiplier, the right hand side in the last displayed inequality satisfies

‖FK
(

(λgv j0)v
)‖[�q ]K = ‖FK

(

U (gv j0v)
)‖[�q ]K ≤ C‖gv j0v‖[L2(Td )]K .

Recalling that
∑ |v j |2 = 1, we conclude that ‖F(λg)‖�q � ‖g‖L2(Td ) and therefore

that λ ∈ Mq
2 .

Next we prove the reverse inclusion. Suppose that for each k = 1, . . . , K we have,
λk ∈ Mq

2 . In particular, this implies that if ψ = (ψ j )
K
j=1 ∈ [L2(Td)]K then

‖FK (λkψ)‖[�q ]K ≤ C‖ψ‖[L2(Td )]K , k = 1, . . . , K . (35)

For every fixed x , let v1(x), . . . , vK (x) be an orthonormal basis of eigenvectors
corresponding to the eigenvalues λ1, .., λK . Given φ ∈ [L2(Td)]K there exist measur-
able functions b1(x), . . . , b2(x) so that φ(x) = ∑K

k=1 bk(x)vk(x) and
∑ |φk(x)|2 =

∑ |bk(x)|2 for almost every x. Since the vectors vk are eigenvectors, it now follows
that

‖FK (Uφ)‖[�q ]K ≤
K
∑

k=1

‖FK
(

λk(x)bk(x)vk(x)
)‖[�q ]K .

The inequality in (35) now implies that the right hand side of the last displayed equation
is less then a constant multiplying,

K
∑

k=1

‖bk(x)vk(x)‖[L2(Td )]K ≤ K
1
2

(
K
∑

k=1

‖bk(x)vk(x)‖2[L2(Td )]K

) 1
2 = K

1
2 ‖φ‖[L2(Td )]K ,

where the last step is due to the fact that for almost every x ∈ T
d wehave

∑ |φk(x)|2 =
∑ |bk(x)|2, and, for every fixed k,

∑

j |vk
j (x)| = 1. The result follows. ��

Next we formulate and prove a more general version of Corollaries 1.9 and 1.10.

Corollary 4.1 (Nitzan, Northington, Powell) Let 1 < r < ∞, d/r < s ≤ d(1/2+1/r)

and let W ∈ [L1(Td)]K×K be a Hermitian matrix valued function whose eigenvalues
are given by λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x). If λk ∈ W s,r (Td) for every k = 1, ...K ,
and det(W ) has a zero, then conclusions (i) and (ii ) of Theorem 3.1 hold with U =
W −1 replacing u = 1/w and with M

q
2(K ) replacing Mq

2 . In particular, this result
holds for a nonnegative matrix valued function satisfying W ∈ [W s,r (Td)]K×K .
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Proof We will prove part (i) and remark that part (ii) follows from part (i) with the
same argument as part (ii) of Theorem 3.1.

Since s > d/r , we have, by Theorem 2.5, that each λk is continuous. Thus,
det(W ) = λ1 · · · λK has a zero if and only if for at least one k, λk has a zero. However,
since U = W −1 ∈ M

q
2(K ), Theorem 1.8 implies that λ−1

k ∈ Mq
2 . Therefore, it must

be that q > d
d(1/2+1/r)−s or else the function λk contradicts Theorem 3.1.

To prove the particular case of W ∈ [W s,2(Td)]K×K we may, without loss of
generality, assume that 0 < s < 1, since Theorem 2.4 allows us to replace W s,r with
W s̃,r̃ where s̃ < 1 and s − d/r = s̃ − d/r̃ . It is straightforward to check that the
assumptions on s and r and the restriction on q are all invariant under this change.
Since we assume 0 < s < 1, Lemma 4.3 of [25] implies that the eigenvalue functions
{λk}K

k=1 of W each satisfy λk ∈ W s,r (Td). (In fact, this lemma is given for the space
W s,2(Td), but the calculations remain unchanged when replacing the seminorm for
W s,2(Td) by that of W s,r (Td).) The result now follows from the general statement of
the corollary. ��

Corollary 4.2 (Nitzan, Northington, Powell) Let 2 ≤ r < ∞, 0 < σ < d, (d −σ)/r <

s ≤ 1, and let W ∈ [L1(Td)]K×K be a Hermitian matrix valued function whose
eigenvalues are given by λ1(x) ≥ λ2(x) ≥ · · · ≥ λK (x). If λk ∈ W s,r (Td) for every
k = 1, ...K , and det(W ) has a zero, then conclusions (i) and (ii ) of Theorem 3.3 hold
with U = W −1 replacing u = 1/w and withMq

2(K ) replacingMq
2 . In particular, this

result holds for a nonnegative matrix valued function satisfying W ∈ [W s,r (Td)]K×K .

Proof It suffices to prove that ifHσ (�(det(W ))) > 0, then for the smallest eigenvalue
λK of W we have Hσ (�(λK ))) > 0, for then the result follows from Theorems 1.8
and 3.3. For τ > 0 and x0 ∈ T consider Iτ := Iτ (x0). We have,

1

|Iτ |
∫

Iτ
|λK (x)|dx ≤

(

1

|Iτ |
∫

Iτ
|λK (x)|K dx

)1/K

≤
(

1

|Iτ |
∫

Iτ
| det(W )(x)|dx

)1/K

,

and therefore, �(det W ) ⊂ �(λK ).
When 0 < s < 1, the particular case of W ∈ [W s,r (Td)]K×K follows by directly

applying Lemma 4.3 of [25], as was described in the proof of the previous corollary.
For s = 1, the same lemma gives the bound

|λk(x) − λk(y)| ≤
√

∑

i, j

|Wi j (x) − Wi, j (y)|2.

Theorem 5.8.3 of [19], which equates L p-norms of difference quotients to L p-norms
of distributional derivatives, combined with the equation above, implies that λk ∈
W 1,r (Td). ��
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4.2 A Remark Regarding (p, q)-Multipliers

Given 1 ≤ p ≤ q ≤ ∞, we say that a distribution u is a (p, q)-multiplier if the
operator Tu , defined by

Tua = F(uF−1a), (36)

is a bounded operator from �p(Zd) to �q(Zd). The family of all such multipliers is
denoted byMq

p. Endowed with the operator normMq
p is a Banach space. Such spaces

were studied by Devinatz and Hirschman [17], and their analog over R
d was studied

by L. Hörmander [29]. The space Mq
p(K ) of matrix valued (p, q)-multipliers can be

defined similarly.
Part (i) of the following proposition is a special case of Theorem 1.3 in [29]. In part

(ii) of the proposition we extend this result to the matrix valued multiplier setting. As
the proof in both cases is similar, we omit it.

Proposition 4.3 (Part (i) appears in [29]) Suppose that p and q satisfy either 1 ≤ p ≤
q ≤ 2 or 2 ≤ p ≤ q ≤ ∞ and denote q̃ = (1/2 − 1/p + 1/q)−1. Then,

i. If u ∈ Mq
p, then u ∈ Mq̃

2 .

ii. If U ∈ M
q
p(K ), then U ∈ M

q̃
2(K ).

It follows from this lemma that if 1 ≤ p ≤ q ≤ 2 or 2 ≤ p ≤ q ≤ ∞ then
Mq

p ⊂ L2(Td) and, in particular, contains only functions. We therefore focus our
attention on these cases. Combining Proposition 4.3 with theorems 3.1 and 3.3, as
well as with corollaries 1.9 and 1.10, one can obtain (p, q)-multiplier versions of
these results. To illustrate, we give in the corollary below a (p, q)-multiplier version
of Theorem 3.1.

Corollary 4.4 (Nitzan, Northington, Powell) Let 2 ≤ r < ∞, d/r < s ≤ d(1/p +
1/r). Suppose w ∈ W s,r (Td) and w has a zero.

i. If s < d
r + 1, then u = 1

w
/∈ Mq

p for any q satisfying 2 ≤ q ≤ d
d(1/p+1/r)−s .

Conversely, for any 0 < s ≤ d and q > d
d(1/p+1/r)−s , there exists w ∈ W s,r (Td)

such that w has a zero and u = 1
w

∈ Mq
p.

ii. If s = d
r + 1, then u = 1

w
/∈ Mq

p for any q satisfying 2 ≤ q <
pd

d−p .

5 Applications to Time–Frequency Analysis: Gabor Systems

In this section, we first relate the Fourier multiplier property to basis properties of
exponential systems in weighted spaces. Then, we use the Zak transform to connect
between Gabor systems and such exponential systems, and prove Balian–Low type
theorems in this setting.
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5.1 Exponential Systems inWeighted Spaces

Let w ∈ L1(Td) be a nonnegative function. The corresponding weighted space
L2

w(Td), is the Hilbert space which consists of all functions f satisfying ‖ f ‖2
L2

w
:=

∫

Td | f |2wdx < ∞. Consider the set of exponentials with integer frequencies

E = {en}n∈Zd := {e2π i〈n,x〉}n∈Zd ,

and note that, since w ∈ L1(Td), it both belongs to the space L2
w(Td) and is complete

there. In fact, many other basis properties of E can be characterized in terms of the
weight function w. The following proposition lists a few of these.

Proposition 5.1 (e.g. Theorem 10.10 in [27]) Let L2
w(Td) and E be as above. Then,

i. E is a Riesz basis if and only if w, 1/w ∈ L∞(Td).
ii. E is exact (complete and minimal) if and only if 1/w ∈ L1(Td).

Recall that for q ≥ 2, a system { fn} in a Hilbert space H is a (Cq )-system if there
exists C > 0 such that every f ∈ H can be approximated arbitrarily well by a finite
linear combination

∑

an fn with ‖an‖�q ≤ C‖ f ‖H . Further, recall that { fn} is an
exact (Cq )-system if and only if it is complete and there exists D > 0 such that

D
(
∑

|an|q
) 1

q ≤
∥

∥

∥

∑

an fn

∥

∥

∥

H
, (37)

for any finite sequence {an}. We note that the system E is exact in L2
w(Td) if and

only if it is an exact (C∞)-system, while it is a Riesz basis in the space if and only if
it is a (Bessel) exact (C2)-system there. In the following proposition, we extend the
characterizations from Proposition 5.1 to exact (Cq)-systems for all 2 ≤ q ≤ ∞.

Proposition 5.2 Let L2
w(Td) and E be as above. Then, E is an exact (Cq)-system for

L2
w(Td) if and only if w−1/2 ∈ Mq

2 .

Proof Wefirst note, aswehave seen in previous proofs, that the conditionw−1/2 ∈ Mq
2

can be reformulated as follows: w �= 0 almost everywhere and,

D‖̂f ‖�q (Zd ) ≤ ‖ f ‖L2
w(Td ), ∀ f ∈ L2

w(Td) (38)

where D is some positive constant. Now, assume first that w−1/2 ∈ Mq
2 . Then, for

sums of the form f = ∑

anen , the conditions in (38) is exactly the same as the
condition in (37). Since the system E is complete in the space, it follows that it is
an exact (Cq)-system there. Conversely, assume that E is an exact (Cq)-system in
the space then, in particular, Proposition 5.1 implies that w �= 0 almost everywhere.
Moreover, for sums of the form f = ∑

anen the condition in (38) is implied by the
condition in (37). By a usual limiting procedure (38) holds for all f ∈ L2

w(Td), which
implies that w−1/2 ∈ Mq

2 . This completes the proof. ��
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5.2 Gabor Systems

In this subsection we prove the following nonsymmetric generalization of Theo-
rem 1.11. Its novelty is in obtaining end point results for conditions previously found
in [35] (see Theorem 2 there).

Theorem 5.3 (Nitzan, Northington, Powell) Let 2 < q < ∞, q ′ = q/(q − 1), and
t ≥ r > 4(q − 1)/(q + 2) be such that 1/r + 1/t ≤ q ′/2. If G(g) is an exact
(Cq)-system for L2(R), then either

∫

R

|x |r |g(x)|2dx = ∞ or
∫

R

|ξ |t |̂g(ξ)|2dξ = ∞. (39)

The theorem also holds with r and t interchanged in (39).

In [20], Gautam showed that the above result holds when “exact (Cq)-system” is
replaced by “Riesz basis”where q is replaced by 2 in the parameters restrictions above.
Similarly, in [26], Heil and Powell proved that the above result holds for exact systems
where the range of parameters corresponds to q = ∞ in the inequalities above.

It follows from Theorem 2 in [35] that (39) holds when (r , t) falls into a certain
region in the plane. Theorem 5.3 extends this result to include part of the boundary of
this region (which corresponds to the interval GF in Fig. 1 in [35]). Theorem 2 in [35]
shows also that this result is sharp in the sense that it doesn’t hold for 1/r +1/t > q ′/2.
Note that when r = t , we have r = 4/q ′, which is exactly the result in Theorem 1.11.

Our proof of Theorem5.3 relies on properties of theZak transform. For a continuous
function g with sufficient localization the Zak transform is defined by

Zg(x, y) =
∑

k∈Z
g(x − k)e2π iky,

and extended to a unitary operator from L2(R) to L2([0, 1]2) in the standard way.
Note that Zg is quasi-periodic in the sense that

Zg(x, y + 1) = Zg(x, y), Zg(x + 1, y) = e2π iy Zg(x, y). (40)

In particular, |Zg| is a periodic function. This quasi-periodicity property implies that
if Zg is continuous, then it must have a zero (see e.g. [23]).

It is readily checked that if g ∈ L2(R) and G(g) is complete in L2(R), then the
mapping Ug : L2(R) → L2

|Zg|2(T
2) defined by

Ugh = Zh

Zg

is an isometric isomorphism, and the image of G(g) under Ug is the system E (see
e.g. [35]). Combining this with Proposition 5.2 yields the following.

Proposition 5.4 Let q ≥ 2 and g ∈ L2(R). Then G(g) is an exact (Cq)-system in
L2(R) if and only if 1

|Zg| ∈ Mq
2 .
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The next proposition relates time–frequency properties of a function g ∈ L2(R) to
smoothness properties of its Zak transform. This proposition is proved in [35] (Lemma
5), though stated there in a different terminology. In particular, in [35], Sobolev condi-
tions over R

2 were considered, the corresponding conditions over T
2 may be obtained

by means of the Parseval equality.

Proposition 5.5 [35] Let g ∈ L2(R) be such that both integrals in (39) are finite for
g. Denote s1 = r/2 and s2 = t/2. Then, for every x ∈ R

2 there exist τ > 0 and
u ∈ H (s1,s2)(Td) (considered as a periodic function over R

2) so that Zg = u over
Bτ (x).

Proof of Theorem 5.3 First, we note that it is enough to prove the theorem for t ≥ r >

4(q − 1)/(q + 2) satisfying

1

r
+ 1

t
= q ′

2
. (41)

As the lines u + v = q ′/2 and u + 3v = 1 intersect at u = (q + 2)/4(q − 1), we have
that for all r and t at the prescribed range:

1

r
+ 3

t
> 1. (42)

Now, suppose for a contradiction that both integrals in (39) are finite, and denote
r = 2s1 and t = 2s2. It follows from Proposition 5.5 and Theorem 2.11 that Zg
is continuous and therefore that |Zg| has a zero in [−1/2, 1/2)2. Without loss of
generality, we may assume that Zg(0) = 0. Note that condition (41) implies that
� := 1/s1 + 1/s2 = q ′, while condition (42) implies that 0 < α j = s j (1 − �/2) < 1
for j = 1, 2. It therefore follows from Proposition 5.5 and Theorem 2.11 that in a
neighbourhood of 0,

|Zg(x, y)| ≤ R(|(x, y)|)(|x |α1 + |y|α2
)

, (43)

where R(τ ) tends to zero as τ tends to zero.
As G(g) is an exact (Cq)-system, Proposition 5.4 implies that 1

|Zg| ∈ Mq
2(T

d).
This, combined with the conditions in (43), contradicts the conclusion of Remark 3.5.

��

6 Applications to Time–Frequency Analysis: Shift-Invariant Spaces

6.1 Exponentials in Multi-variableWeighted Spaces

Let W be a Z
d -periodic, K × K matrix valued function, which is positive-definite for

almost every x ∈ T
d and for which

tr(W ) ∈ L1(Td). (44)
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We refer to such a W as a matrix valued weight function. We denote by L2
W (Td) the

space of all vector-valued functions ψ = (ψ1, ψ2, . . . , ψK )T , with ψk defined on T
d ,

which satisfy

‖ψ‖2
L2

W (Td )
=

∫

Td
〈Wψ,ψ〉dx < ∞.

With the implied inner product, L2
W (Td) is a Hilbert space.

Let ek denote the kth canonical (column) basis vector in C
d , and define

E(K ) = {eke2π i〈n,x〉}k∈{1,...,K },n∈Zd = {ek,n}k∈{1,...,K },n∈Zd .

It is readily checked that condition (44) is both necessary for E(K ) to be a subset
of L2

W (Td) and sufficient for E(K ) to be complete in L2
W (Td). Such spaces were

previously studied in [28].
Part (i) of Proposition 5.1 is extended in [38] to themulti-variable case (see Theorem

2.3.6). It is proved there that E(K ) forms a Riesz basis in L2
W (Td) if and only if each

eigenvalue function, ζk , of W satisfies 0 < A ≤ ζk(x) ≤ B < ∞ for almost every
x ∈ T

d . Keeping Theorem 1.8 in mind, we conclude that E(K ) forms a Riesz basis
in L2

W (Td) if and only if W (x) is uniformly bounded in norm, invertible for almost
every x , and W −1/2 ∈ M2

2(K ). Our next goal is to obtain a similar extension of
Proposition 5.2. We will use the following lemma.

Lemma 6.1 Let W be a K × K matrix valued weight function. If E(K ) is exact in
L2

W (Td) then W −1(x) is defined for almost every x, and is a measurable matrix valued
function.

Proof Assume that E(K ) is exact in L2
W (Td). For every k = 1, . . . , K let hk ∈

L2
W (Td) be the vector valued function satisfying

〈hk, e j,�〉L2
W (Td ) =

{

1 ( j, �) = (k, 0)
0 otherwise

Since E(K ) is an orthonormal basis in [L2(Td)]K , it follows that W (x)hk(x) =
ek,0(x) for every k = 1, .., K and almost every x . We conclude that W H = I almost
everywhere, where I is the constant identity matrix and H is the matrix whose k’th
column is hk . ��

Applying Lemma 6.1, the following proposition can be proved in exactly the same
way as Proposition 5.2. We omit the proof.

Proposition 6.2 Let W be a K × K weight function. Then, E is an exact (Cq)-system
for L2

W (Td) if and only if W is invertible almost everywhere and W −1/2 ∈ Mq
2(K )
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6.2 The Gramian

For a vector valued function H = (h1, . . . , hK )T ∈ [L2(Rd)]K , we denote by P(H)

the following Z
d -periodic, positive-semidefinite K × K matrix valued function,

P(H)(x) =
∑

k∈Zd

H(x + k)H(x + k)∗,

where A∗ is the adjointmatrix to A. Note that in the case of a single function P(h)(x) =
∑

k∈Zd |h(x + k)|2.
For F = { f1, .., fK } ∈ L2(R) recall the notations,

V (F) = span T (F), T (F) = { fk(x − n) : n ∈ Z
d , k = 1, .., K }. (45)

With a slight abuse of notation,we denote ̂F(x) = (̂f1(x), ̂f2(x), ..., ̂fK (x))T . Similar
to the Zak transform for Gabor systems, many properties of T (F) as a system in the
space V (F)may be characterized in terms of P(̂F), which we refer to as the Gramian
of F . Indeed, define the mapping IF : L2

P(̂F)
(Td) → V (F) by,

ÎF M = M ̂F = m1 ̂f1 + · · · mK ̂fK .

Then, (e.g. [28]) IF is an isometric isomorphism between L2
P(̂F)

(Td) and V (F). Note

that IF e2π i〈n,ξ〉ek = fk(x − n). Therefore, the set T (F) in V (F) corresponds to the
set of exponentials E(K ) = {eke2π i〈n,ξ〉}k∈{1,...,K },n∈Zd in the space L2

P(̂F)
(Td). Thus,

we have the following from Proposition 5.2.

Proposition 6.3 Fix q ≥ 2 and let F ⊂ L2(Rd). Then, T (F) forms an exact (Cq)-
system for V (F) if and only if P−1/2(̂F) ∈ M

q
2(K ).

6.3 Smoothness Properties of the Gramian

The following proposition relates smoothness properties of a vector-valued function,
H , to smoothness properties of the corresponding matrix, P(H).

Proposition 6.4 (Nitzan, Northington, Powell) Fix 0 < s ≤ 1. Suppose H ∈
[W s,2(Rd)]K and ζ1(x) ≥ · · · ≥ ζK (x) ≥ 0 are the eigenvalues of P(H)(x), then√

ζk ∈ W s,2(Td) for every k = 1, . . . , K .

Proof For H = (h1, . . . , hK ), let A(x) be the operator mapping C
K into sequences

on Z
d , defined by

(A(x)c)� = c1h1(x − �) + c2h2(x − �) + ... + cK hK (x − �).

Note that A(x) may be viewed as an ∞ × K matrix, and that

P(x) := P(H)(x) = A(x)∗ A(x),



Journal of Fourier Analysis and Applications (2020) 26 :76 Page 31 of 38 76

which implies the equality 〈P(x)c, c〉 = ‖A(x)c‖22 for every c ∈ C
K . The min–max

theorem (see e.g., Corollary III.1.2 in [8]), shows that the eigenvalues ζk of P(H)

satisfy

√

ζk(x) = max{min{‖A(x)c‖2 : c ∈ M, |c| = 1} : dim(M) = k}.

From this equation we immediately obtain the bound

ζk(x) ≤
∑

�∈Zd

K
∑

j=1

|h j (x − �)|2 k = 1, . . . , K .

In particular,
√

ζk ∈ L2(Td) for every k = 1, . . . , K .
We will now obtain a similar estimate for |√ζk(x) − √

ζk(y)|. Without loss of
generality, we may assume ζk(x) ≥ ζk(y). Choose a subspace M0 which realizes the
maximum for ζk(x). Then, we have
∣

∣

∣

√

ζk(x) − √

ζk(y)

∣

∣

∣ ≤ min{‖A(x)c‖2 : c ∈ M0, |c| = 1} − min{‖A(y)b‖2 : b ∈ M0, |b| = 1}.

Next, choose b0 ∈ M0 with ‖b0‖ = 1 such that the minimum in the right term is
achieved at b0. It follows that,

∣

∣

∣

√

ζk(x) − √

ζk(y)

∣

∣

∣ ≤ ‖A(x)b0‖2 − ‖A(y)b0‖2 ≤ ‖(A(x) − A(y))b0‖2

≤
⎛

⎝

K
∑

j=1

∑

�∈Zd

|h j (x − �) − h j (y − �)|2
⎞

⎠

1/2

. (46)

Case 1 : s < 1 Using Equation (46), we find

‖√ζk‖2Ẇ s,2(Td )
≤ C

∫

[− 1
2 , 12 ]d

∫

[− 1
2 , 12 ]d

∑K
j=1

∑

�∈Zd |h j (x + y − �) − h j (x − �)|2
|y|d+2s

dydx

= C
K
∑

j=1

∫

Rd

∫

[− 1
2 , 12 ]d

|h j (x + y) − h j (x)|2
|y|d+2s

dydx ≤ C
K
∑

j=1

‖h j ‖2Ẇ s,2(Rd )
,

and the right hand side is finite by the assumptions on H .
Case 2 : s = 1 Here we use the equivalence between the spaces W s,2 and the

spaces Hs . For notational simplicity, let g = √
ζk . Equation (46) implies that for any

i ∈ {1, . . . , K }
∫

Td
|g(x + tei ) − g(x)|2 dx ≤

∫

Td

K
∑

j=1

∑

�∈Zd

∣

∣h j (x + tei − �) − h j (x − �)
∣

∣

2
dx

=
K
∑

j=1

∫

Rd

∣

∣h j (x + tei ) − h j (x)
∣

∣

2
dx .
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Parseval’s equality for L2(Rd) and L2(Td) allows us to reformulate this inequality as

∑

n∈Zd

|̂g(n)|2|e2π ini t − 1|2 ≤
K
∑

j=1

∫

Rd
|̂h j (ξ)|2|e2π iξi t − 1|2dξ.

Standard bounds on |e2π iξi t − 1| now imply that,

∑

|n|≤ 1
4|t |

|̂g(n)|2|ni |2 �
∑

n∈Zd

|̂g(n)|2
∣

∣

∣

∣

e2π ini t − 1

t

∣

∣

∣

∣

2

�
K
∑

j=1

∫

Rd
|̂h j (ξ)|2|ξi |2dξ

and the right hand side is uniformly bounded in t . Thus, taking the limit as t → 0,
and summing over i ∈ {1, . . . , K } we find that

‖g‖2
Ḣ1(Td )

�
K
∑

j=1

‖h j‖2Ḣ1(Rd )
< ∞.

��

6.4 Extra Invariance

In this subsection we show that if a shift-invariant space V (F) has non-trivial extra
invariance then the determinant of P(̂F) has a ’large’ zero set.

We will require some preliminary definitions and results. Throughout this section
the term full-rank lattice, or in short lattice, refers to a set � = BZ

d , where B is a
d × d real invertible matrix. For such a lattice �, the dual lattice �∗ is defined by

�∗ = {y ∈ R
d : ∀x ∈ �, 〈x, y〉 ∈ Z},

and satisfies �∗ = (BT )−1
Z

d .
Let F = { f1, . . . , fK } ⊂ R

d and consider the shift-invariant space V (F) and the
Gramian P(̂F). For a lattice Z

d
� � ⊂ R

d , let R ⊂ Z
d be a set of representatives of

the quotient Z
d/�∗. By rearranging terms in the sum we can rewrite the Gramian as

P(̂F)(x) =
∑

k∈R

∑

γ∈�∗
̂F(x + γ + k)̂F(x + γ + k)∗ =

∑

k∈R

P�∗(̂F)(x + k),

where we define P�∗(̂F)(x) = ∑

γ∈�∗ ̂F(x + γ )̂F(x + γ )∗.
Recall that the space V (F) has extra invariance if there exists γ ∈ R

d \ Z
d such

that for every h ∈ V (F) we have also h(x − γ ) ∈ V (F). The space V (F) has extra
invariance if and only if there exists a latticeZ

d
� � ⊂ R

d such that V (F) is invariant
under translates of all elements in �. Indeed, if V (F) is invariant to translates by γ

then it is invariant to translates by all elements in the closed additive group generated
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by Z
d and γ , see Proposition 2.1 of [5]. Now, if γ is a rational point one can choose

� to be this group, while if γ has an irrational component, then there exists a rational
point γ̃ which belongs to this group but not to Z

d , and � may be chosen to be the
additive group generated by γ̃ and Z

d .
For a lattice � � Z

d the �-invariance of V (F) is characterized in terms of P(̂F)

by Aldroubi et al. in dimension one, [2], and by Anastasio et al. in higher dimensions,
[5]. The space V (F) is �-invariant if and only if

rank
[

P(̂F)(x)
] =

∑

k∈R

rank
[

P�∗(̂F)(x + k)
]

, a.e. x ∈ R
d . (47)

In particular, this identity combined with the following observation of Tessera and
Wang, which is a simple application of the min–max theorem, implies an estimate on
the eigenvalues of the corresponding matrices.

Lemma 6.5 (Lemma 3.1 in [40]) Let A1, . . . , AK and B be nonnegative matrices
and denote by ηk and μ the smallest positive eigenvalue of Ak and B, 1 ≤ k ≤ K ,
respectively. If B = ∑

Ak and rank(B) = ∑

rank(Ak) then μ ≤ min1≤k≤K ηk .

Next, denote by J the cardinality of the smallest set H ⊂ L2(Rd) such that V (H) =
V (F). Proposition 4.1 in [40] implies that

J = ess sup
x∈Rd

(

rank
[

P(̂F)(x)
])

. (48)

Recall that the extra invariance by γ of a space V (F) is non-trivial if Jγ /∈ Z
d . It

follows from the discussion above that V (F) has non-trivial extra invariance if and
only if there exists a lattice Z � � ⊂ R

d such that V (F) is invariant under translates
of all elements in� and the size of the quotient group�/Z

d , denoted by [� : Z
d ], does

not divide J . Indeed, to see this note that the smallest integer m for which mγ ∈ Z
d

is equal to [� : Z
d ] where � is the closed group generated by γ and Z

d .
We will require also the following simple geometric observation. For x ∈ R

d−1

recall the notation Li (x) for the line Li (x) = {(x1, . . . , xi−1, t, xi , . . . , xd−1)}. (See
Sect. 2.4)

Lemma 6.6 Let d ≥ 2 and S ⊂ R
d be a measurable set which satisfies |S|, |Sc| > 0.

Then, for some i0 ∈ {1, . . . , d}, there exists a set of positive (d − 1)-dimensional
Lebesgue measure A ⊂ R

d−1 so that for every x ∈ A we have

S ∩ Li0(x) �= ∅ and S ∩ Li0(x) �= Li0(x). (49)

Proof Throughout this proof we refer to the Lebesgue measure in R
n as the n-dim

measure. Denote S1 = {x ∈ R
d−1 : S ∩ L1(x) = L1(x)}. Note that if (49) does

not hold for i = 1, then S = R × S1 d-dim almost everywhere, and that in this case
the assumption on S implies that both S1 and R

(d−1) \ S1 have positive (d − 1)-dim
measure.

We first consider the case d = 2. If (49) does not hold for i = 1 then for almost
every x ∈ R the restriction of S to L2(x) is equal to S1 1-dim almost everywhere, and
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therefore (49) holds for i = 2. We proceed by induction and assume the Lemma holds
for d − 1. If (49) does not hold for i = 1 then, as observed above, S1 satisfies the
conditions of the Lemma in R

d−1. It follows that there exists i0 ∈ {2, . . . , d} and a
set A′ ⊂ R

d−2 of positive (d − 2)-dim measure, so that in R
d−1 condition (49) holds

for S1 and A′. Since S = R × S1 d-dim almost everywhere, we conclude that in R
d

condition (49) holds for S and almost every x ∈ A := R × A′. The fact that A′ has
positive (d − 2)-dim measure implies that A has positive (d − 1)-dim measure, and
the conclusion of the lemma follows. ��

We are now ready to prove the following proposition which generalizes previous
one-dimensional results of [3,40] to higher dimensions.

Proposition 6.7 Fix 1/2 < s ≤ 1. Let F = { f1, . . . , fK } ⊂ R
d and let J be the

cardinality of the smallest set G ⊂ L2(Rd) such that V (G) = V (F). If V (F)

has a non-trivial extra invariance and ̂fk ∈ W s,2(Rd) for k = 1, . . . , K , then
Hd−1(�(ζJ )) > 0 for the eigenvalue ζJ of P(̂F).

Proof Let Zd
� � be a lattice such that V (F) is invariant under shifts by the elements

of �, and let �∗ be its dual. Such a lattice exists due to the discussion above. To
simplify notations we denote H = ̂F , P = P(H) and P�∗ = P�∗(H). Let ζ1(x) ≥
· · · ≥ ζK (x) ≥ 0 denote the eigenvalues of P(x) and γ1(x) ≥ · · · ≥ γK (x) ≥ 0
denote the eigenvalues of P�∗(x). Proposition 6.4 implies that

√
ζk ∈ W s,2(Td) for

all k. Moreover, it implies also that the �∗ periodic functions
√

γk are locally in
W s,2(Rd) for each k ∈ {1, . . . , K }. Indeed, if we let A be the full rank matrix so
that �∗ = AZ

d then we have P�∗(Ax) = P(H ◦ A)(x), where H ◦ A is defined
by H ◦ A(x) = H(Ax). If H ⊂ W s,2(Rd), then H ◦ A ⊂ W s,2(Rd) and the claim
follows from applying Proposition 6.4 to P(H ◦ A)(x).

Next, Eq. (47) may be reformulated as

max{ j : ζ j (x) > 0} =
∑

k∈R

max{� : γ�(x + k) > 0}, a.e. x ∈ R
d .

By Eq. (48), J is the largest index such that ζ j is not equal to zero almost everywhere.
We can assume without loss of generality that ζJ > 0 almost everywhere, or else the
proposition follows trivially. Thus, we have,

J =
∑

k∈R

max{� : γ�(x + k) > 0}, a.e. x ∈ R
d .

Let M be the largest index such that γM is not identically equal to zero. Note that
γM cannot be positive almost everywhere, or else we would have J = M[� : Z

d ],
and [� : Z

d ] would divide J .
Wefirst consider the case d = 1. The following argumentwas given for a single gen-

erator in [3] and extended to several generators in [40], we repeat it for completeness.
Since s > 1/2, Theorem 2.4 implies that γM and ζJ both have continuous representa-
tives, and can therefore be assumed to be continuous. Let S� = {x ∈ R : γM (x) > 0}
and note that S� is open. By the observations above 0 < |S�|, |Sc

�| and so there
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exists x0 ∈ R in the boundary of S� such that γM (x0) = 0. Lemma 6.5 implies that
0 ≤ ζJ (x) ≤ γM (x) on S� and due to the continuity of both functions, it follows
that ζJ (x0) = 0 as well. By the periodicity of ζJ , we can assume that this zero is in
[−1/2, 1/2) which implies that H0(�(ζJ )) > 0.

Next, we consider the case where d > 1. We assume that for k = 1, . . . , K we
have γM (x) = γ ∗

M (x) and ζJ (x) = ζ ∗
J (x) for every x ∈ R

d , where γ ∗
M , ζ ∗

J are the
representatives of γM and ζJ given in (18). In particular this implies that ζJ and γM

are well defined for every x ∈ R
d and that they satisfy Proposition 2.9.

Let S� = {x ∈ R
d : γM (x) > 0}. Note that S� are well defined. We have

0 < |S�|, |Sc
�| and so Lemma 6.6 may be applied. Let A and i0 be as in the Lemma.

By Proposition 2.9, ζJ and γM are continuous on almost every line parallel to the
i0 coordinate axis. We can therefore assume that these functions are continuous on
every line L = Li0(x) with x ∈ A and, by Lemma 6.5, that 0 ≤ ζJ (x) ≤ γM (x) on
L . Repeating the same considerations as in the case d = 1, we conclude that on every
such line there exists a point x0 such that ζJ (x0) = 0. Since ζJ is periodic, we can
further assume that A ⊂ [−1/2, 1/2)d−1 and the points x0 belong to [−1/2, 1/2)d .

As the zero set of ζJ = ζ ∗
J in [−1/2, 1/2)d is exactly �(ζJ ), we conclude that the

projection of �(ζJ ) onto the hyperplane perpendicular to the i0 coordinate axis con-
tains A, and therefore that it has positive (d −1)-Lebesgue measure. Since projections
can only decrease distances, the Hausdorff dimension of �(ζJ ) must be greater than
or equal to d − 1. ��

6.5 Proofs for Theorems 1.13 and 1.14

In this subsection, we give a proof of Theorems 1.13 and 1.14. The q = 2 case of these
theorems is given by Theorem 1.3 of [25], and so we will only consider 2 < q ≤ ∞.

Proof First, we prove the necessary condition for Theorem 1.14 as this implies the
same for Theorem 1.13. Then, we prove sharpness of the two results separately.

Let d ≥ 1 and F = { fk}K
k=1 be as in the corresponding Theorem. Suppose for a

contradiction that for t = min(2d/q ′ − d + 1, 2) we have

∫

R

|x |t | fk(x)|2dx < ∞ ∀k ∈ {1, . . . , K }, (50)

that is, suppose that ̂F ∈ [W s,2(Rd)]K for s = min(d/q ′ − d/2 + 1/2, 1). By
Proposition 6.4 it follows that the eigenvalues ζi of P := P(̂F) satisfy

√
ζi ∈

W s,2(Td) for all i ∈ {1, . . . , K }. On the other hand, Proposition 6.7 implies that
Hd−1(�(det(P1/2))) > 0. Finally, since T (F) is a minimal (Cq)-system, Propo-
sition 6.3 implies that P−1/2 ∈ M

q
2(K ). So, by corollary 1.10 we must have

s > min(d/q ′ − d/2 + 1/2, 1), which is a contradiction.
Wenow turn to prove the sharpness ofTheorem1.13. For 2 < q ≤ ∞, letβ < 1− 2

q ,
and let fβ be the function defined in Proposition 2.13. Then, in particular, fβ satisfies
(50) for all t < 1 + β. Note that taking β arbitrarily close to 1 − 2

q , allows 1 + β to
become arbitrarily close to the critical exponent 2/q ′. Consider the family F containing
the single function F = { fβ} and note that P(̂fβ) is a scalar valued function which
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is equal to (̂fβ)2 on [− 1
2 ,

1
2 ]. By applying the Fourier transform it is readily checked

that V ( fβ) is translation invariant, that is, that it is invariant under any real shift.
We claim that P(̂fβ)−1/2 ∈ Mq

2 , so that T ( fβ) is an exact (Cq)-system for
V ( fβ). Indeed, by the discussion following Theorem 1.5 it is enough to check that

P(̂fβ)−1/2 ∈ L
2q

q−2 (T). We have

∫

T

P(̂fβ)(ξ)
− q

q−2 dx = 2
∫ 1/2

0

(

1

2
− ξ

)− βq
q−2

dx,

and this integral is finite since β < 1 − 2
q .

Finally, we use the construction above to demonstrate the sharpness of the case q =
∞ in Theorem 1.14. For any d ∈ N and β < 1, let Fβ(x) = fβ(x1) fβ(x2) · · · fβ(xd).
Then, by Proposition 2.13, Fβ satisfies (50) for all t < 2. Consider the family F
containing the single function F = {Fβ} andnote that as above P(̂Fβ) is a scalar valued
functionwhich is equal to (̂Fβ)2 on [− 1

2 ,
1
2 ]d . As above, V (Fβ) is translation invariant,

that is, that it is invariant under any real shift. Since P(̂Fβ)−1/2 ∈ L2(Td) = M∞
2 , it

follows that T (Fβ) is an exact (C∞)-system for V (Fβ). The proof is complete.
��

7 Further Directions of Study and Open Problems

In this section we outline some questions related to this work.

1. As mentioned in the introduction, it is likely that the results in theorems 1.5
and 1.14 are not sharp (see also Theorem 3.3 and its corollaries). Following the
approach developed above, any refinement of Theorem 1.5 will imply in turn
an improvement of the result in Theorem 1.14. In particular, as discussed in the
introduction, it is natural to ask whether the upper bound in part i of Theorem 1.5
can be replaced by the bound q ≤ (d − σ)/(d − σ − s). If such a result holds
then Theorem 1.14 will remain true with the bound t ≥ 2/q ′. With a similar
argument to that of the sharpness of Theorem 1.13, one can show that no bigger
bound is possible in Theorem 1.14.

2. The parameters of the Sobolev space W s,r (Td) considered in this paper are
restricted to satisfy α = s − d/r < 1, which implies that this space is embedded
into the space of α-Hölder continuous functions. To obtain sharp bounds in the
case of α = 1, some refinement of the results is expected. In particular, such a
refinement in Theorem2.11will allow to extend Theorem5.3 to the full boundary
of the region described in [35].
Next, it is interesting to compare the case α > 1 to the case α = 1. Since the
zeros considered in this paper are in general assumed to be of order one, it is not
clear if the added regularity will make any change to the results.

3. The range of (p, q) multipliers considered in Sect. 4.2 guarantees that Mq
p ⊂

L2(Td). However, when 1 ≤ p ≤ 2 ≤ q ≤ ∞, the spaceMq
p contains distribu-

tions which cannot be represented by functions. However, it seems natural to ask
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whether there exists a version of our multiplier results also for L1(Td) functions
which belong to such spaces.

4. We list shortly some additional settings in which our approach may be applied:

i. Does a sharp version of the Balian–Low results in [35] exist in higher dimen-
sions?

ii. Can the condition of ’non trivial extra invariance’ inTheorem1.14be replaced
by the condition that the system of translates is not minimal in the space?We
note that it is not hard to show that this is indeed the case in Theorem 1.13.
(See also Theorem 1.5 in [25]).

iii. Does there exist a version of our results in the case where the Gabor system
G(Z) is not complete in L2(R), but is a Cq system in its closed linear span?
(See e.g. [13] for the case q = 2).
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