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Abstract
We consider the pointwise convergence problem for the solution of Schrödinger-type
equations along directions determined by a given compact subset of the real line. This
problem contains Carleson’s problem as the simplest case and was studied in general
by Cho et al. We extend their result from the case of the classical Schrödinger equation
to a class of equations which includes the fractional Schrödinger equations. To achieve
this, we significantly simplify their proof by completely avoiding a time localization
argument.
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1 Introduction

Let d ≥ 1, a > 0 and consider the fractional Schrödinger equation

{
∂t u(x, t) = i(−�x )

a
2 u(x, t) (x, t) ∈ R

d × R

u(x, 0) = f (x) x ∈ R
d .

It is well-known that for a sufficiently nice initial data f , the solution can be written
as
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u(x, t) = eit(−�)
a
2 f (x) :=

(
1

2π

)d ∫
Rd

ei(x ·ξ+t |ξ |a) f̂ (ξ) dξ,

where f̂ (ξ) := ∫
Rd e−i x ·ξ f (x) dx . When a = 2, this is the standard Schrödinger

equation from quantum mechanics. The general case arose in recent years in physical
models and turns out to be a fundamental equation in fractional quantum mechanics
(fQM), and may be traced back to work of Laskin [20,21]. Motivated by this, the
fractional Schrödinger equation and related nonlinear models have been the subject of
numerous recent papers (see, for example, [5,7,13–16,18,23]). From a rather different
viewpoint, certain nonlinear equations were the subject of study in recent work of
Ionescu and Pusateri [17] and arise from models of water waves. In addition, the
fractional Schrödinger equation is a model case in studies of more general dispersive
equations; see, for example, [8,19].

Associated with the fractional Schrödinger equation, it is natural to try to determine
the minimum level of regularity s which guarantees that the limit

lim
(y,t)→(x,0)

(y,t)∈�x

eit(−�)
a
2 f (y) = f (x) a.e. (1)

holds whenever f ∈ Hs(Rd). Here, Hs(Rd) is the Sobolev space of order s whose
norm is given by

‖ f ‖Hs (Rd ) = ‖(1 − �)
s
2 f ‖L2(Rd )

and �x ⊂ R
d × [−1, 1] is a convergence domain corresponding to each x ∈ R

d .
The classical case, knownwidely as Carleson’s problem, is concerned with the case

of vertical lines �x = {x} × {0}. Here, when d = 1 and a > 1 it is known that (1)
holds if and only if s ≥ 1

4 ; see the work of Carleson [3] and Dahlberg and Kenig [10]
for the case a = 2, and also see the work of Sjölin [27] for general a > 1. The higher
dimensional case d ≥ 2 has been subject to a recent flurry of activity. When a = 2,
Bourgain [2] showed that s ≥ 1

2 − 1
2(d+1) is necessary for (1) for d ≥ 2, and Du et

al. [11] and Du and Zhang [12] have shown s > 1
2 − 1

2(d+1) is sufficient for (1) for
d = 2 and d ≥ 3, respectively (for important earlier contributions see, for example,
papers by Vega [29], Lee [22] and Bourgain [1]). For, a > 1, Cho and Ko [4] proved
analogous result that (1) holds if s > 1

2 − 1
2(d+1) and d ≥ 2. In addition, we also note

that Prestini [24] showed that for d ≥ 2, a > 1 and f radial, (1) holds if and only if
s ≥ 1

4 . Results are also available for 0 < a ≤ 1 (see, for example, [9,25,30]) but these
cases are of a rather different nature and from now on we focus entirely on the case
a > 1.

Non-tangential convergence corresponds to the case

�x = {(x + tθ, t) : t ∈ [−1, 1] and θ ∈ B},

where B ⊂ R
d is a given euclidean ball which is centered at the origin, that is, �x is

a conical region with vertex at (x, 0) and aperture determined by the radius of B. In
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this case, it is known that (1) with a > 1 holds if and only if s > d
2 . The sufficiency

part of this claim follows easily by a well-known argument using Sobolev embedding
and the delicate necessity part has been proved by Sjögren and Sjölin in [26] (strictly
speaking, the case a = 2 was considered in [26] but their argument extends to a > 1
without difficulty).

When d = 1, the classical case and the non-tangential case were unified in a natural
way by Cho et al.[6] who proved that (1) holds in the case

�x = {(x + tθ, t) : t ∈ [−1, 1] and θ ∈ �}

when a = 2 and s > 1
4 + β(�)

4 . Here, � ⊂ R is a given compact set and β(�) denotes
the upper Minkowski dimension of �. We note that establishing the necessity of the
condition s > 1

4 + β(�)
4 is an interesting but still open problem. Our main goal in this

paper is to improve the result in [6] by extending to a class of equations which includes
the fractional Schrödinger equation for a > 1. We define the evolution operator St on
appropriate input functions by

St f (x) = 1

2π

∫
R

ei(xξ+t
(ξ)) f̂ (ξ) dξ.

Here, 
 : R → R is a C2 function which satisfies for some C1 > 0,

|ξ ||
′′(ξ)| ≥ C1 (2)

for all |ξ | ≥ 1. Moreover, for some C2 > 0,

|ξ ||
′′(ξ)| ≥ C2|
′(ξ)| (3)

for all |ξ | ≥ 1. It is trivial to verify that 
(ξ) = |ξ |a satisfies these conditions when
a > 1.

Our main result is the following.

Theorem 1 Let � ⊂ R be compact and suppose 
 ∈ C2(R) satisfies (2) and (3). For
any q ∈ [1, 4] and s > 1

4 + β(�)
4 , there exists a constant Cq,s such that

∥∥∥∥∥ sup
(t,θ)∈[−1,1]×�

|St f (· + tθ)|
∥∥∥∥∥
Lq (−1,1)

≤ Cq,s‖ f ‖Hs (R)

whenever f ∈ Hs(R).

By standard arguments, we thus obtain the associated pointwise convergence.

Corollary 2 Let � ⊂ R be compact and suppose 
 ∈ C2(R) satisfies (2) and (3). If
s > 1

4 + β(�)
4 , then

lim
(y,t)→(x,0)
y−x∈t�

St f (y) = f (x) a.e. (4)

whenever f ∈ Hs(R).
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Theorem1 improves the result in [6] in two respects; the class of evolution operators
has been widened from the case 
(ξ) = |ξ |2 to those satisfying (2) and (3), and our
maximal estimates are valid for q ∈ [1, 4] (the estimate in [6] was proved in only the
cases q ∈ [1, 2]). While the proof in [6] may be modified in a straightforward way
to go beyond the classical case 
(ξ) = |ξ |2 to a certain extent, it seems to us to be
difficult to handle case 
(ξ) = |ξ |a with a close to 1. Indeed, the argument in [6]
rests on a certain widely used time localization argument which becomes increasingly
weak as a approaches 1. To overcome this significant obstacle, we remove the use of
the time localization lemma; this simplification to the proof has allowed us to handle
the case 
(ξ) = |ξ |a for any a > 1. Further explanation of this point will follow our
proof of Theorem 1 in Sect. 3. Prior to that, we prepare for the proof of Theorem 1 in
Sect. 2.

2 Preliminaries

Notation

Associated with the operator St given above by

St f (x) = 1

2π

∫
R

ei(xξ+t
(ξ)) f̂ (ξ) dξ

and a fixed compact set � ⊂ R, we define the maximal operator M� by

M� f (x) = sup{|St f (x + tθ)| : −1 ≤ t ≤ 1, θ ∈ �}.

Also, we recall that the upper Minkowski dimension of � is defined by

β(�) = inf{r > 0 : lim sup
δ→0

N (�, δ)δr = 0},

where N (�, δ) denotes the smallest number of δ-intervals which cover �.
We will use the following notation frequently:

• I = [−1, 1].
• q ′ = q

q−1 : Hölder conjugate of q ∈ [1,∞].
• A � B: A ≤ CB for some constant C > 0.
• A � B: A ≥ CB for some constant C > 0.
• A ∼ B: C−1B ≤ A ≤ CB for some constant C > 0.
• L p

x L
q
t L

r
θ : The Lebesgue space with norm

‖F‖L p
x L

q
t L

r
θ

=
⎛
⎝∫ (∫ (∫

|F(x, t, θ)|r dθ

) q
r

dt

) p
q

dx

⎞
⎠

1
p

,

where the domains of integration will be clear from the context.
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Useful Lemmas

The following lemmas will be crucial for the oscillatory integral estimates in the proof
of Theorem 1. Applying these lemmas appropriately essentially allows us to avoid the
time localization lemma, which is used in [6].

Lemma 3 (van der Corput’s lemma) Let −∞ < a < b < ∞, φ be a sufficiently
smooth real-valued function and ψ be a bounded smooth complex-valued function.
Suppose we have |φ(k)(x)| ≥ 1 for all x ∈ [a, b]. If k = 1 and φ′ is monotonic on
(a, b), or simply k ≥ 2, then there exists a constant Ck such that

∣∣∣∣
∫ b

a
eiλφ(x)ψ(x) dx

∣∣∣∣ ≤ Ckλ
− 1

k

(∫ b

a
|ψ ′(x)| dx + ‖ψ‖L∞

)

for all λ > 0.

For a proof of van der Corput’s lemma, we refer the reader to [28].

Lemma 4 Let 1 ≤ q ≤ 4. There exists a constant Cq such that

∣∣∣∣
∫∫∫∫

g(x, t)h(x ′, t ′)|x − x ′|− 1
2 dxdtdx ′dt ′

∣∣∣∣ ≤ Cq‖g‖Lq′
x L1

t
‖h‖

Lq′
x L1

t
,

where the integrals are taken over (x, t), (x ′, t ′) ∈ I × I .

Proof Denoting G(x) = ‖g(x, ·)‖L1 and H(x ′) = ‖h(x ′, ·)‖L1 ,

∣∣∣∣
∫∫∫∫

g(x, t)h(x ′, t ′)|x − x ′|− 1
2 dxdx ′dtdt ′

∣∣∣∣ ≤
∫ 1

−1

∫ 1

−1
G(x)H(x ′)|x − x ′|− 1

2 dxdx ′.

By the Hardy et al. inequality,

∫ 1

−1

∫ 1

−1
G(x)H(x ′)|x − x ′|− 1

2 dxdx ′ � ‖G‖
L

4
3 (I )

‖H‖
L

4
3 (I )

� ‖g‖
Lq′
x L1

t
‖h‖

Lq′
x L1

t
,

where the last inequality is obtained by Hölder’s inequality since 4
3 ≤ q ′ from our

assumption. ��

3 Proof of Theorem 1

Proof of Theorem 1 We fix q ∈ [2, 4]. The case q ∈ [1, 2) follows immediately by
Hölder’s inequality.

The proof begins with a reduction to the case where f is frequency-localised to
a large annulus and θ belongs to an interval of an appropriately small length. This
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reduction to the forthcoming Proposition 5 essentially follows the argument in [6];
our main novelty is the proof of Propositon 5.

Suppose ψ0 ∈ C∞
0 (I ) and ψ ∈ C∞

0 ((−2,− 1
2 ) ∪ ( 12 , 2)) give rise to a standard

dyadic partition of unity ψ0(ξ) + ∑
k≥1 ψk ≡ 1, where ψk = ψ( ·

2k−1 ). For each

0 ≤ k ∈ Z, the frequency localization operator Pk is defined by P̂k f (ξ) = ψk(ξ) f̂ (ξ).
Then,

‖M� f ‖Lq (I ) � ‖M�P0 f ‖Lq (I ) +
∑
k≥1

‖M�Pk f ‖Lq (I ) . (5)

The first term is relatively easy to estimate. In fact,

‖M�P0 f ‖Lq (I ) �
∫
R

ψ0(ξ)| f̂ (ξ)| dξ � ‖ f ‖L2 � ‖ f ‖Hs

for s ≥ 0, and thereby this term can be easily handled.
For the remaining terms, first note that for each k ≥ 1, there exists a finite collection

of intervals {�k, j }Nk
j=1 which satisfies

� ⊂
Nk⋃
j=1

�k, j ,

where |�k, j | ≤ 2− qk
4 for each j and Nk = N (�, 2− qk

4 ) is the smallest number of

2− qk
4 -intervals which cover �. (The reason for the choice of scale 2− qk

4 will become
clear as we proceed.) For x ∈ I ,

M�Pk f (x)
q ≤

Nk∑
j=1

sup
t∈I

θ∈�k, j

|St Pk f (x + tθ)|q ,

therefore

∑
k≥1

‖M�Pk f ‖Lq (I ) ≤
∑
k≥1

⎛
⎝ Nk∑

j=1

∥∥M�k, j Pk f
∥∥q
Lq (I )

⎞
⎠

1
q

.

Now, we shall introduce the following crucial proposition.

Proposition 5 Let 2 ≤ q ≤ 4, k ≥ 1 and � be an interval with |�| ≤ 2− qk
4 . Then,

there exists a constant Cq such that

‖M�Pk f ‖Lq (I ) ≤ Cq2
k
4 ‖ f ‖L2 (6)

holds for all f ∈ L2(R).
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Proof of Proposition 5 Set λ = 2k and

T f (x, t, θ) := χ(x, t, θ)

∫
R

ei((x+tθ)ξ+t
(ξ)) f (ξ)ψ(
ξ
λ
) dξ,

where χ = χI×I×�. Then (6) follows from

‖T f ‖Lq
x L∞

t L∞
θ

� λ
1
4 ‖ f ‖L2 (λ � 1) (7)

since
‖M�Pk f ‖Lq (I ) ∼ ‖T f̂ ‖Lq

x L∞
t L∞

θ
� λ

1
4 ‖ f̂ ‖L2 � λ

1
4 ‖ f ‖L2

by Plancherel’s theorem. Let us consider the dual form of (7), which is

‖T ∗F‖L2 � λ
1
4 ‖F‖

Lq′
x L1

t L
1
θ

(8)

where

T ∗F(ξ) = ψ(
ξ
λ
)

∫∫∫
χ(x ′, t ′, θ ′)e−i((x ′+t ′θ ′)ξ+t ′
(ξ))F(x ′, t ′, θ ′) dx ′dt ′dθ ′.

Then,

‖T ∗F‖2L2

= λ

∫
ψ2(ξ)

∫∫∫ ∫∫∫
χ(x, t, θ)χ(x ′, t ′, θ ′)

× ei(λ(x−x ′+tθ−t ′θ ′)ξ+(t−t ′)
(λξ)) F̄(x, t, θ)F(x ′, t ′, θ ′) dxdtdθdx ′dt ′dθ ′dξ

= λ

∫
W

∫
W ′

χ(w)χ(w′)F̄(w)F(w′)Kλ(w,w′) dwdw′

=
3∑

�=1

λ

∫∫
V�

χ(w)χ(w′)F̄(w)F(w′)Kλ(w,w′) dwdw′

=: A1 + A2 + A3.

Here, we denotew = (x, t, θ) ∈ W andw′ = (x ′, t ′, θ ′) ∈ W , whereW := I× I×�.
Also,

Kλ(w,w′) =
∫
R

eiφ(λξ,w,w′)ψ2(ξ) dξ,

φ(ξ,w,w′) = (x − x ′ + tθ − t ′θ ′)ξ + (t − t ′)
(ξ),
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and ⎧⎪⎨
⎪⎩
V1 = {(w,w′) ∈ W × W : |x − x ′| < 4|t − t ′|},
V2 = {(w,w′) ∈ W × W : |x − x ′| ≥ 4|t − t ′| and |x − x ′| ≥ 4λ− q

4 },
V3 = {(w,w′) ∈ W × W : |x − x ′| ≥ 4|t − t ′| and |x − x ′| < 4λ− q

4 }.

Thus, (8) follows from

A� � λ
1
2 ‖F‖2

Lq′
x L1

t L
1
θ

for each � = 1, 2, 3.

The Term A1

Let us start with an estimate of A1. Since

|φ′′(λξ)| = λ2|t − t ′||
′′(λξ)| � λ|x − x ′|

holds from (2), we are allowed to apply Lemma 3 to get

|Kλ(w,w′)| � (λ|x − x ′|)− 1
2 .

By using Lemma 4, it follows that

A1 ≤ λ
1
2

∫∫
V1

χ(w′)|F(w′)|χ(w)|F̄(w)||x − x ′|− 1
2 dwdw′

� λ
1
2 ‖F‖2

Lq′
x L1

t L
1
θ

.

The Term A2

Next, we shall consider A2. In this case, we firstly observe the following key relation-
ship:

|x − x ′ + tθ − t ′θ ′| ∼ |x − x ′|. (9)

Indeed,

|x − x ′ + tθ − t ′θ ′| ≥ |x − x ′| − |t − t ′| − |θ − θ ′|
≥ 3

4
|x − x ′| − λ− q

4

≥ 1

2
|x − x ′|.

Similarly, the other way holds, too.
Now, let us observe that for all (w,w′) ∈ V2, we have

|Kλ(w,w′)| � (λ|x − x ′|)− 1
2 . (10)
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Before proving (10), we note that

A2 � λ
1
2 ‖F‖2

Lq′
x L1

t L
1
θ

immediately follows by using Lemma 4 as before.
To see (10), let us split Kλ into B1 and B2 as follows

Kλ(w,w′) =
∫
U1

eiφ(λξ,w,w′)ψ2(ξ) dξ +
∫
U2

eiφ(λξ,w,w′)ψ2(ξ) dξ

=: B1 + B2,

where

U1 = {ξ ∈ suppψ : |x − x ′ + tθ − t ′θ ′| ≥ 2|t − t ′||
′(λξ)|}

and

U2 = {ξ ∈ suppψ : |x − x ′ + tθ − t ′θ ′| < 2|t − t ′||
′(λξ)|}.

For B1, we have

|φ′(λξ)| ≥ λ|x − x ′ + tθ − t ′θ ′| − λ|t − t ′||
′(λξ)|
≥ λ

2
|x − x ′ + tθ − t ′θ ′|

≥ λ

4
|x − x ′|

> λ1−
q
4

≥ 1,

where we have used the fact that q ≤ 4. From (2) and the intermediate value theorem,

′′(ξ) is single-signed on (−∞,−1] and [1,∞), which guarantees that 
′(ξ) is
monotone on these intervals. Hence, U1 consists of at most two intervals. Invoking
Lemma 3,

B1 � (λ|x − x ′|)−1 � (λ|x − x ′|)− 1
2 .

On the other hand, for B2, it follows from (3) that

|φ′′(λξ)| = λ2|t − t ′||
′′(λξ)|
� λ|t − t ′||
′(λξ)|
� λ|x − x ′ + tθ − tθ ′|
� λ|x − x ′|.
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Then, by using Lemma 3, we obtain

B2 � (λ|x − x ′|)− 1
2 .

Therefore, (10) holds.

The Term A3

It remains to show

A3 � λ
1
2 ‖F‖2

Lq′
x L1

t L
1
θ

.

Trivially,

|Kλ(w,w′)| � 1

so by the dual form of Young’s convolution inequality

∫ 1

−1

∫ 1

−1
‖F(x, ·, ·)‖L1

t L
1
θ
‖F(x ′, ·, ·)‖L1

t L
1
θ
χ[−4λ− q

4 ,4λ− q
4 ](x − x ′) dxdx ′

� ‖F‖2
Lq′
x L1

t L
1
θ

‖χ[−4λ− q
4 ,4λ− q

4 ]‖L q
2

∼ λ− 1
2 ‖F‖2

Lq′
x L1

t L
1
θ

.

Here, we have used the fact that q ≥ 2. Therefore, we conclude that

A3 � λ
1
2 ‖F‖2

Lq′
x L1

t L
1
θ

as claimed. ��
By the definition of the upper Minkowski dimension, for small ε > 0 there is a

constant Cε > 0 depending on ε such that

N (�, 2− qk
4 ) ≤ Cε2

qk
4 (β(�)+ε).

Thus, if we also let̂̃Pk f = ψ̃k f̂ , where ψ̃ ∈ C∞
0 ((−4,− 1

4 ) ∪ ( 14 , 4)) with ψ̃ ≡ 1 on
(−2,− 1

2 ) ∪ ( 12 , 2), then

∑
k≥1

⎛
⎝ Nk∑

j=1

‖M�k, j Pk f ‖qLq (I )

⎞
⎠

1
q

=
∑
k≥1

⎛
⎝ Nk∑

j=1

‖M�k, j Pk P̃k f ‖qLq (I )

⎞
⎠

1
q
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�
∑
k≥1

⎛
⎝ Nk∑

j=1

2
qk
4 ‖P̃k f ‖qL2

⎞
⎠

1
q

�
∑
k≥1

2k(
1
4+ β(�)

4 + ε
4 )‖P̃k f ‖L2

∼
∑
k≥1

2− 3
4 kε

(∫
supp ψ̃k

22k(
1
4+ β(�)

4 +ε)| f̂ (ξ)|2 dξ

) 1
2

� ‖ f ‖
H

1
4+ β(�)

4 +ε
.

Therefore, for arbitrary ε > 0,

‖M� f ‖Lq (I ) � ‖ f ‖
H

1
4+ β(�)

4 +ε

holds, which ends the proof. ��
Remarks The crucial component in the above proof of Theorem 1 is Proposition 5.
The corresponding result in [6] (Lemma 3.1), stated for q = 2 and 
(ξ) = |ξ |2, is
established through the following steps: T T ∗ argument, the time localization lemma,
Schur’s lemma and then an oscillatory integral argument. Following this approach in
the case 
(ξ) = |ξ |a , one may extend by simple modification to the range a ≥ 3

2 .
However, the time localization lemma reduces to the case of time intervals of length
λ1−a , and for a close to 1 this causes certain technical difficulties in the estimation of
the oscillatory integrals which arise; in particular, the relationship (9) breaks down if
we follow their argument as it stands. In order to overcome the significant technical
difficulty, we removed the use of the time localization lemma and replaced this with
appropriate decompositions of the domain W × W .
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