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Abstract
In-homogeneous self-similar measures can be viewed as special cases of nonlinear
self-similar measures. In this paper, we study the asymptotic behaviour of the Fourier
transforms of nonlinear self-similar measures. Some typical examples are exhibited,
and we show that the Fourier transforms of those measures are usually localized, i.e.,
the Fourier transforms decay rapidly at ∞. We also discuss the infinity lower Fourier
dimension of in-homogeneous self-similar measures and obtain its non-trivial bounds.
The result confirms Conjecture 2.3 in Olsen and Snigireva (Math Proc Camb Philos
Soc 144:465–493, 2008).

Keywords Nonlinear self-similar measure · In-homogenous self-similar measure ·
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1 Introduction

Let S j : Rd → R
d for j = 1, . . . , N be contracting similarities and let (p1, . . . , pN )

be a probability vector. Then there exits a unique probability measure μ on R
d such

that

μ =
N∑

j=1

p jμ ◦ S−1
j (1.1)
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by Hutchinson [9]. The measure μ is called the self-similar measure with respect
to the iterated function system (IFS) {S j }Nj=1 and probability vector (p1, . . . , pN ).
Self-similar measures have been studied intensively for the past 30 years and many
literatures investigated various aspects of them (see [6] and references therein). There
are many generalizations of self-similar measures, for example self-affine measures,
self-conformal measures, and statistical self-similar measures. All of them paly an
important role in fractal geometry.

It is natural to write Eq. (1.1) as

μ −
N∑

j=1

p jμ ◦ S−1
j = 0.

This viewpoint suggests to investigate the equation with nonlinear or in-homogeneous
term. In [4], Clickenstein and Strichartz studied nonlinear self-similar measures on
R
d which satisfy the equation (involving convolutions)

μ =
N∑

j=1

p jμ ◦ S−1
j +

M∑

j=1

q j (μ ∗ μ) ◦ T−1
j ,

where {S j }Nj=1 and {Tj }Mj=1 are two classes of contracting similarities, nonnegative

numbers p j ’s and q j ’s satisfy the equation
∑N

j=1 p j +∑M
j=1 q j = 1, and Lip Tj < 1

2
for all j . Under condition that nonlinear self-similar measures are not degenerate,
they investigated the decay rate at ∞ of the Fourier transforms of these measures.
Specifically speaking, they found that such measures are usually absolutely continu-
ous, and the density has regularity properties that get stronger as the the linear terms
get smaller. In [14], Olsen and Snigireva studied in-homogenous self-similar measures
on Rd satisfying the equation

μ =
N∑

j=1

p jμ ◦ S−1
j + p ν,

where ν is a Borel probability measure on R
d with compact support, {S j }Nj=1 is a

class of contracting similarities, and (p1, . . . , pN , p) is a probability vector. They
discussed the Fourier transforms of the measures whose properties are affected by
the in-homogenous term ν to a large extent. More precisely, they obtained the lower
bounds for infinity lower Fourier dimension and 2’nd lower Fourier dimension of the
in-homogenous self-similar measures. Besides, other aspects of in-homogenous self-
similar measures are also investigated by many authors, for example Lq spectra and
Rényi dimensions [11–13], lower and upper quantization dimensions [15,17,18], and
box dimensions of in-homogeneous self-similar sets [1,7].

In this paper, we generalize the definition of nonlinear self-similar measures and
then use Fourier transform methods to study such measures.
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We begin by introducing some notations that will be used throughout this work.
Let (Rd , ρ) be the d-dimensional Euclidean space with Euclidean metric. The open
ball centered at x with radius r is denoted by B(x, r) := {y ∈ R

d : ρ(x, y) < r},
and B(x, r) is its closure. We denote the set of all nonempty compact sets of Rd

by H(Rd). Let P(Rd) denote the set of all Borel probability measures on R
d with

compact support. For ϕ ∈ P(Rd), the Fourier transform of ϕ is defined by

ϕ̂(x) =
∫

eix ·ydϕ(y).

Here x · y = ∑d
i=1 xi yi for x, y ∈ R

d . The infinity lower Fourier dimension of ϕ is
defined by

�∞(ϕ) = lim inf
R→∞

log sup|x |≥R |ϕ̂(x)|
− log R

.

Remark For ϕ ∈ P(Rd), if �∞(ϕ) > C > 0, then we could find some R > 0 such
that |ϕ̂(x)| ≤ |x |−C for all |x | ≥ R. Alternatively we could find some constant D ≥ 1
such that |ϕ̂(x)| ≤ D|x |−C for all x . On the other hand, if there are C ′ > 0, D′ ≥ 1
such that |ϕ̂(x)| ≤ D′|x |−C ′

for all x , we have �∞(ϕ) ≥ C ′.

For D ∈ H(Rd), letP(D) denote the set of probability measures on D. For ϕ,ψ ∈
P(D), we set

LD(ϕ, ψ) := sup
{∣∣

∫

D
f dϕ −

∫

D
f dψ

∣∣ : f ∈ Lip1(D)
}
,

where Lip1(D) := { f : D → R : | f (x)− f (y)| ≤ ρ(x, y) for any x, y ∈ D}. LD is
called Hutchinson metric. Note that (P(D), LD) is a complete metric space (refer to
[2, Chapter 9, Theorem 5.1]). We denote the Hausdorff metric of H(Rd) by dH . For
E, F ∈ H(Rd), it is well-known that

dH (E, F) = sup{ρ(x, F), ρ(y, E) : x ∈ E, y ∈ F},

and (H(Rd), dH ) is also a complete metric space (refer to [2, Chapter 2, Theorem
7.1]).

We say that a map φ : H(Rd) → H(Rd) is a monotone transformation if φ(A) ⊂
φ(B) for A, B ∈ H(Rd) with A ⊂ B.

Definition 1 For a transformation � : P(Rd) → P(Rd), we say that � satisfies
condition (H) if there exists a monotone transformation φ : H(Rd) → H(Rd) such
that for any ϕ ∈ P(Rd), spt�(ϕ) = φ(spt ϕ), where spt ϕ is the support of ϕ.

Remark For any D ∈ H(Rd), there exists a Borel probability measure ϕ such that
spt ϕ = D. Hence if � satisfies condition (H), the monotone transformation φ is
unique. Because of this fact, we also say φ is determined by �.
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Definition 2 Let {S j }Nj=1 be a class of contracting similarities on R
d such that

S j (x) = r j R j x + a j , j = 1, . . . , N ,

where R j is an orthogonalmatrix, 0 < r j < 1, and a j ∈ R
d . Let� : P(Rd) → P(Rd)

be a transformation satisfying condition (H) and (p1, . . . , pN , p) a probability vector.
Assume φ is determined by �. We obtain a nonlinear self-similar identity

μ =
N∑

j=1

p jμ ◦ S−1
j + p�(μ). (1.2)

If the solutions of this equation exist, we call them nonlinear self-similar measures.
If �(μ) ≡ ν for some ν ∈ P(Rd), the solution of the equation exists and is unique,
which was called in-homogeneous self-similar measure (refer to [3,13,14]).

We consider nonlinear self-similar measures in Sect. 2. At the beginning of the
section, we give a necessary condition and a sufficient condition for the existence of
nonlinear self-similarmeasures. The proofs are based onBanach’s fixed-point theorem
and rather standard, but to the best of our knowledge, no literature supplied complete
and clear proofs for existence of nonlinear self-similar measures. After that we shall
exhibit some typical nonlinear self-similar measures, and study the decay rate of the
Fourier transforms of them. We find that the Fourier transforms of these measures
are usually localized and that the decay rate at ∞ is dependent on the probability
vector and the contraction ratios of contracting similarities. Moreover, let t be the
positive constant such that

∑N
j=1 p jr

−t
j = 1, we prove that the infinity lower Fourier

dimension of these measures is not less than t . Afterwards we give a example to show
that the lower bound t is the best possible.

In Sect. 3, we study the infinity lower Fourier dimension of in-homogeneous self-
similar measures. Themain result is Theorem 7.We obtain the lower and upper bounds
for infinity lower Fourier dimension, which are dependent on the infinity lower Fourier
dimension of the in-homogeneous term. The result improves the works of Olsen and
Snigireva (see [14, Theorem 2.1]). In [14, Conjecture 2.3] the authors proposed the
following conjecture:

Conjecture 1 For equation (1.2), we assume�(μ) ≡ ν for some compactly supported
probability measure ν and let μ be the in-homogeneous self-similar measure that
satisfies this equation. Let t be the positive constant that satisfies

∑N
j=1 p jr

−t
j = 1.

Then, for all choices of r1, . . . , rN we have

�∞(μ) ≥ min(t , �∞(ν)).

Our result also confirms this conjecture.
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2 Nonlinear Self-similar Measures

2.1 Existence of Nonlinear Self-similar Measures

Now, we consider the existence of nonlinear self-similar measures. First of all, we
claim that if μ is the solution of Eq. (1.2), the support sptμ of μ must satisfy the
following condition.

Lemma 1 If μ is a solution of Eq. (1.2), then

sptμ =
N⋃

j=1

S j (sptμ) ∪ φ(sptμ).

Proof It is easy to see that

μ ◦ S−1
j

⎛

⎝
N⋃

j=1

S j (sptμ) ∪ φ(sptμ)

⎞

⎠ = 1 for all j,

�(μ)

⎛

⎝
N⋃

j=1

S j (sptμ) ∪ φ(sptμ)

⎞

⎠ = 1.

Hence sptμ ⊂ ⋃N
j=1 S j (sptμ) ∪ φ(sptμ).

On the other hand, since μ(sptμ) = 1 and (p1, . . . , pN , p) is a probability vector,
we have

�(μ)(sptμ) = 1 and μ ◦ S−1
j (sptμ) = 1 for all j .

Hence

φ(sptμ) ⊂ sptμ and S j (sptμ) ⊂ sptμ for all j .

That is
⋃N

j=1 S j (sptμ) ∪ φ(sptμ) ⊂ sptμ. We complete the proof. 
�
Lemma 1 gives a necessary condition for the existence of solutions of Eq. (1.2), i.e.,

there exists K ∈ H(Rd) such that K = ⋃N
j=1 S j (K ) ∪ φ(K ). We give an example to

illustrate this.

Example 1 We define � : P(R) → P(R) by

�(ϕ) = (ϕ ∗ ϕ ∗ ϕ) ◦ T−1, ϕ ∈ P(R),

where T (x) = x
2 . Assume that S(x) = x

2 + 1. We obtain a nonlinear self-similar
identity

μ = 1

2
μ ◦ S−1 + 1

2
(μ ∗ μ ∗ μ) ◦ T−1. (2.1)
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If the above equation has a solution, we could find K ∈ H(R) such that

K =
(
1

2
K + 1

)
∪ 1

2
(K + K + K ) .

Since K \ {0} �= ∅, we assume x1 ∈ K \ {0}. One can verify that (3/2)nx1 ∈ K for
all n ∈ N. But K is a compact set, which is a contradiction. Thus Eq. (2.1) has no
solution.

Nowwe present a sufficient condition for the existence of the solutions of Eq. (1.2).
In what follows, for D ∈ H(Rd) and ψ ∈ P(D), we define the measure ψD ∈ P(Rd)

by

ψD(E) = ψ(E ∩ D) for Borel sets E . (2.2)

If ϕ ∈ P(Rd) and spt ϕ ⊂ D, ϕ can be regarded as a member of P(D) of course.

Theorem 1 Assume that there exists K ∈ H(Rd) such that K = ⋃N
j=1 S j (K )∪φ(K ).

If for any f ∈ Lip1(K ) and any ϕ,ψ ∈ P(K ), we have

∣∣
∫

K
f d�(ϕK ) −

∫

K
f d�(ψK )

∣∣ ≤ LK (ϕ, ψ).

Then there exists a unique measure μ ∈ P(Rd) satisfying Eq. (1.2) with sptμ ⊂ K.
Moreover, if the set K ∈ H(Rd) satisfying K = ⋃N

j=1 S j (K ) ∪ φ(K ) is unique, then
the solution of Eq. (1.2) is unique too.

Proof Define a map M : P(K ) → P(Rd) by

M(ϕ) =
N∑

j=1

p jϕK ◦ S−1
j + p�(ϕK ).

Note that spt ϕK = spt ϕ ⊂ K , we obtain that
⋃N

j=1 S j (spt ϕK ) ∪ φ(spt ϕK ) ⊂ K .
But

M(ϕ)
( N⋃

j=1

S j (spt ϕK ) ∪ φ(spt ϕK )
) = 1,

hence sptM(ϕ) ⊂ K . Thus it is proper to regard M as a map from P(K ) to itself.
Now we show M is a contraction from P(K ) to itself with respect to the metric

LK . For any ϕ,ψ ∈ P(K ) and for any f ∈ Lip1(K ), we have

∣∣
∫

K
f dM(ϕ) −

∫

K
f dM(ψ)

∣∣
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≤
N∑

j=1

p j
∣∣
∫

K
f dϕK ◦ S−1

j −
∫

K
f dψK ◦ S−1

j

∣∣ + p
∣∣
∫

K
f d�(ϕK )

−
∫

K
f d�(ψK )

∣∣

≤
N∑

j=1

p j
∣∣
∫

S−1
j (K )

f ◦ S jdϕK −
∫

S−1
j (K )

f ◦ S jdψK
∣∣ + pLK (ϕ, ψ)

=
N∑

j=1

p jr j
∣∣
∫

K

1

r j
f ◦ S jdϕ −

∫

K

1

r j
f ◦ S jdψ

∣∣ + pLK (ϕ, ψ)

≤ ( N∑

j=1

p jr j + p
)
LK (ϕ, ψ).

By the arbitrariness of f , we have

LK
(M(ϕ),M(ψ)

)

≤ ( N∑

j=1

p jr j + p
)
LK (ϕ, ψ) <

⎛

⎝
N∑

j=1

p j + p

⎞

⎠ LK (ϕ, ψ) = LK (ϕ, ψ).

By Banach’s fixed-point theorem, there exists a unique ω ∈ P(K ) such thatM(ω) =
ω. Set μ = ωK . μ is actually a solution of Eq. (1.2).

If ν1 ∈ P(Rd) satisfies Eq. (1.2) and spt ν1 ⊂ K , there is a unique λ1 ∈ P(K )

such that ν1 = (λ1)K .M(λ1) = λ1 obviously. Still by Banach’s fixed-point theorem,
λ1 = ω, that is ν1 = μ.

Now assume the set K ∈ H(Rd) satisfying K = ⋃N
j=1 S j (K ) ∪ φ(K ) is unique.

If ν2 ∈ P(Rd) satisfies Eq. (1.2), we have spt ν2 = ⋃N
j=1 S j (spt ν2) ∪ φ(spt ν2) by

Lemma 1. Thus spt ν2 = K . By the above argument, we have ν2 = μ of course. The
proof is complete. 
�

Inspired by Theorem 1, Eq. (1.2) may have more than one solution. We give an
example to illustrate this.

Example 2 We define � : P(R) → P(R) by

�(ϕ) =
{

ϕ ◦ S−1 if 0 /∈ spt ϕ,
1
2ϕ ◦ S−1 + 1

2δ0 if 0 ∈ spt ϕ.

where S(x) = x
3 + 1

3 and δ0 is the Dirac measure supported at {0}. φ is determined by
� and we have

φ(E) =
{
S(E) if 0 /∈ E,

S(E) ∪ {0} if 0 ∈ E .
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We obtain a nonlinear self-similar identity

μ = 1

2
μ ◦ S−1 + 1

2
�(μ). (2.3)

Since there exist two compact set that satisfy K = S(K ) ∪ φ(K ), i.e., K = {1/2} or
K is the unique compact set satisfying K = ( 1

3K + 1
3

) ∪ {0}, the uniqueness of the
solution may break down. Actually, Eq. (2.3) has two solutions, one of which is δ 1

2

and the other is the unique Borel probability measure satisfying μ = 3
4μ◦ S−1 + 1

4δ0.

2.2 SomeTypical Examples

Inwhat follows,we focus on some typical nonlinear self-similarmeasures. Let {Si }Ni=1,
{Tj }Mj=1 and {Qk}Mk=1 be three classes of contracting similarities on R

d with

Si (x) = ri Ri x + ai , Tj (x) = ρ j Pj x + b j and Qk(x) = γkOkx + ck,

where Ri , Pj , Ok are orthogonal matrices, ri , ρ j , γk ∈ (0, 1), and ai , b j , ck ∈ R
d . Let

(p1, . . . , pN , q1, . . . , qM ) be a probability vector. Assume ν j is a Borel probability
measure with compact support C j for all j . Set p = ∑M

j=1 q j . We could define three

transformations from P(Rd) to itself:

�1 : ϕ �→
M∑

j=1

q j

p
(ϕ ◦ T−1

j ) ∗ (ϕ ◦ Q−1
j ), �2 : ϕ �→

M∑

j=1

q j

p
(ϕ ◦ T−1

j ) ∗ ν j ,

�3 : ϕ �→
M∑

j=1

q j

p
(ϕ ∗ · · · ∗ ϕ︸ ︷︷ ︸

k j times

) ◦ T−1
j .

In addition, we assume ρ j + γ j < 1 for all j when talking about �1, and assume
ρ j < 1

k j
≤ 1

2 for all j when talking about �3. Suppose φi is determined by �i . For

D ∈ H(Rd), it is easy to obtain that φ1(D) = ⋃M
j=1

(
Tj (D) + Q j (D)

)
, φ2(D) =

⋃M
j=1

(
Tj (D) + C j

)
, and φ3(D) = ⋃M

j=1 Tj
(
D + · · · + D︸ ︷︷ ︸

k j times

)
.

By Definition 2, we obtain three nonlinear self-similar equations, that is

μ =
N∑

j=1

p jμ ◦ S−1
j +

M∑

j=1

q j (μ ◦ T−1
j ) ∗ (μ ◦ Q−1

j ), (2.4)

μ =
N∑

j=1

p jμ ◦ S−1
j +

M∑

j=1

q j (μ ◦ T−1
j ) ∗ ν j , (2.5)
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μ =
N∑

j=1

p jμ ◦ S−1
j +

M∑

j=1

q j (μ ∗ · · · ∗ μ︸ ︷︷ ︸
k j times

) ◦ T−1
j . (2.6)

The existence and uniqueness of solutions of Eqs. (2.4–2.6) is stated below.

Lemma 2 There exists a unique Ki ∈ H(Rd) such that Ki = ⋃N
j=1 S j (Ki ) ∪ φi (Ki )

for i = 1, 2, 3.

Proof For each i , we define amapNi : H(Rd) → H(Rd) byNi (E) := ⋃N
j=1 S j (E)∪

φi (E). It is easy to see that Ni is a contraction mapping from H(Rd) to itself. By
Banach’s fixed-point theorem, there is a unique nonempty compact set Ki such that
Ki = ⋃N

j=1 S j (Ki ) ∪ φi (Ki ). We complete the proof. 
�
Theorem 2 Equations (2.4–2.6) all have a unique solution and we denote them by
μ1, μ2, μ3 respectively. Moreover, sptμi = Ki for i = 1, 2, 3.

Proof We just prove this theorem for i = 1while you could use very similar arguments
to prove the rest. For j = 1, 2, . . . , M , f ∈ Lip1(K1) and ϕ ∈ P(K1), by Fubini’s
theorem, we have

∫

K1

f d(ϕK1 ◦ T−1
j ) ∗ (ϕK1 ◦ Q−1

j ) =
∫

f (Tj (x) + Q j (y))dϕK1 × ϕK1(x, y).

We define

h j (y) = 1

γ j

∫

K1

f (Tj (x) + Q j (y))dϕK1(x) and

g j (x) = 1

ρ j

∫

K1

f (Tj (x) + Q j (y))dψK1(y).

Note that h j , g j are members of Lip1(K1). For ϕ,ψ ∈ P(K1), still by Fubini’s
theorem, we obtain

∣∣
∫

f (Tj (x) + Q j (y))dϕK1 × ϕK1(x, y)

−
∫

f (Tj (x) + Q j (y))dψK1 × ψK1(x, y)
∣∣

≤ γ j
∣∣
∫

h j (y)dϕK1(y) −
∫

h j (y)dψK1(y)
∣∣ + ρ j

∣∣
∫

g j (x)dϕK1(x)

−
∫

g j (x)dψK1(x)
∣∣

≤ (γ j + ρ j )LK1(ϕ, ψ).

In conclude, we have

∣∣
∫

K1

f d�1(ϕK1) −
∫

K1

f d�1(ψK1)
∣∣ ≤ LK1(ϕ, ψ).
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Then the result is an easy consequence of Theorem 1. 
�

Now we discuss the decay rate at ∞ of μ̂1, μ̂2, μ̂3. Observe that the Fourier trans-
form versions of Eqs. (2.4–2.6) are

μ̂1(x) =
N∑

j=1

p j e
ix ·a j μ̂1(r j R

∗
j x) +

M∑

j=1

q j e
ix ·(b j+c j )μ̂1(ρ j P

∗
j x)μ̂1(γ j O

∗
j x),(2.7)

μ̂2(x) =
N∑

j=1

p j e
ix ·a j μ̂2(r j R

∗
j x) +

M∑

j=1

q j e
ix ·b j μ̂2(ρ j P

∗
j x)ν̂ j (x), (2.8)

μ̂3(x) =
N∑

j=1

p j e
ix ·a j μ̂3(r j R

∗
j x) +

M∑

j=1

q j e
ix ·b j μ̂3(ρ j P

∗
j x)

k j . (2.9)

We also assume μ1 and μ3 are not degenerate in the rest of this subsection. For
ϕ ∈ P(Rd), if there exists an affine hyperplane {x : x · ω1 = l1} for ω1 a unit vector
such that spt ϕ ⊂ {x : x · ω1 = l1}, we say that ϕ is degenerate. Otherwise ϕ is not
degenerate.

Lemma 3 If μ1 is not degenerate, then μ̂1 vanishes at infinity. The same holds true
for μ̂3.

Remark The conclusion of Lemma 3 is similar to [4, Lemmas 2.1, 3.1], but our proof
is different and simpler.

Proof We just prove this lemma for μ̂1. Firstly, we prove |μ̂1(x)| < 1 for x �= 0.
Suppose |μ̂1(x0)| = 1 for some x0 �= 0. Since

∑N
j=1 p j + ∑M

j=1 q j = 1, we have
|μ̂1(r j R∗

j x0)| = 1 for some j . By iteration we obtain a sequence of points xl =
(r j R∗

j )
l x0 tending to zero with |μ̂1(xl)| = 1. Because μ1 is not degenerate, for any

xl , l ∈ Z+, there exist ξl , ηl ∈ sptμ1 such that xl · (ξl − ηl) �= 0. Since sptμ1 is
compact and the sequence of points xl tends to zero, there exists k ∈ Z+ such that
0 < |xk · (ξk − ηk)| < π . For some sufficiently small δ > 0, if y ∈ B(ξk, δ) =: B1,
x ∈ B(ηk, δ) =: B2, we have |xk · (y − x)| ∈ (0, π). Note that

1 =
∫

eixk ·(x−y)dμ1 × μ1(x, y) =
∫

B2×B1
eixk ·(x−y)dμ1 × μ1(x, y)

+
∫

Rd×Rd−B2×B1
eixk ·(x−y)dμ1 × μ1(x, y).

Thus

∫

B2×B1
eixk ·(x−y)dμ1 × μ1(x, y) = μ1

(
B(ηk, δ)

)
μ1

(
B(ξk, δ)

)
> 0.
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Hence

∫

B2×B1
cos

(
xk · (x − y)

)
dμ1 × μ1(x, y) = μ1

(
B(ηk, δ)

)
μ1

(
B(ξk, δ)

)
,

which is a contradiction.
We have proved |μ̂1(x)| < 1 for x �= 0. Thus there exists c < 1 such that

|μ̂1(x)| ≤ c for 1 ≤ |x | ≤ A, (2.10)

where A is chosen larger than all 1
r j
, 1

ρ j
, 1

γ j
. Take a number B > 1 such that B is

less than all 1
r j
, 1

ρ j
, 1

γ j
. Thus for A ≤ |x | ≤ BA, by Eqs. (2.7) and (2.10) we have

|μ̂1(x)| ≤ ∑N
j=1 p j c+∑M

j=1 q j c2 ≤ c. Similarly, we can prove that Eq. (2.10) holds
for all A ≤ |x | ≤ Bn A, where n = 1, 2, . . .. That is, Eq. (2.10) holds for all |x | ≥ 1.
Since each time we apply Eq. (2.10) we square the values of μ̂1(x) in the second
sum, so |μ̂1(x)| ≤ (

∑N
j=1 p j )c + (

∑M
j=1 q j )c2 = (1 − ε)c for ε = (1 − c)

∑M
j=1 q j

provided |x | ≥ A. By iterating this argument we obtain |μ̂1(x)| ≤ (1 − ε)kc if
|x | ≥ Ak . 
�

Theorem 3 Let t denote the positive constant satisfying the equation
∑N

j=1 p jr
−t
j = 1.

(i) For any positive constant ε < t , there exists a positive constant c such that

|μ̂1(x)| ≤ c|x |−ε. (2.11)

The same holds true for μ̂3.
(ii) Assume lim|x |→∞ |ν̂ j (x)| = 0 for all j . Then for any positive constant ε < t ,

there exists a positive constant c such that

|μ̂2(x)| ≤ c|x |−ε.

Proof We just prove this theorem for μ̂1. Choose a positive δ such that

N∑

j=1

p jr
−ε
j + δ

M∑

j=1

q jρ
−ε
j < 1. (2.12)

Then by Lemma 3, we can find B such that

|μ̂1(x)| ≤ δ for |x | ≥ B.

We choose a constant A such that A is larger than all 1
γ j

and then we choose a c such
that Eq. (2.11) holds for |x | ≤ BA. Set ρ = max{r j , ρ j }.
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If BA ≤ |x | ≤ ρ−1BA, then |r j R∗
j x |, |ρ j P∗

j x | ≤ BA and |γ j O∗
j x | ≥ B. Thus we

obtain

|μ̂1(x)| ≤
N∑

j=1

p j c|r j x |−ε +
M∑

j=1

q jδc|ρ j x |−ε ≤ c|x |−ε.

By iterating this argument we obtain Eq. (2.11) holds for BA ≤ |x | ≤ ρ−k BA for all
k, hence it holds for all x . 
�

Theorem 3 implies that μ̂1, μ̂2, μ̂3 decay rapidly at ∞ and they all have a decay
rate of O(|x |−ε), where 0 < ε < t . In other words, �∞(μ j ) ≥ t for j = 1, 2, 3. A
simple example in next subsection shows t is the best possible. Next theorem shows
if we add some restrictions on contracting similarities, they will have a decay rate of
O(|x |−t ).

Theorem 4 For Eqs. (2.4–2.6), we assume Si (x) = r Rx + ai and Tj (x) = r Rx + b j

in addition. Let t = log
( ∑N

j=1 p j
)
/ log r . Then

(i) |μ̂i (x)| = O(|x |−t ) as |x | → ∞ for i = 1, 3.
(ii) If �∞(ν j ) > 0 all j , then |μ̂2(x)| = O(|x |−t ) as |x | → ∞.

Proof Set q = ∑N
j=1 p j , p

′
j = p j

q and q
′
j = q j

q . For i = 1, 2, 3, we define

gi (x) =
N∑

j=1

p
′
j e

i x ·a j +
M∑

j=1

q
′
j e

i x ·b j hi, j (x),

where h1, j (x) = eix ·c j μ̂1(γ j O∗
j x), h2, j (x) = ν̂ j (x) and h3, j (x) = μ̂3(r R∗x)k j−1.

By Theorem 3 and Assumption (ii) of Theorem 4, there exist s > 0 and Dj > 0
such that for i = 1, 2, 3, we have |hi, j (x)| ≤ Dj |x |−s for x ∈ R

d . Hence for
x ∈ R

d , |gi (x)| ≤ 1 + ( ∑M
j=1 q

′
j D j

)|x |−s =: 1 + D|x |−s . Take Fourier transforms
of Eqs. (2.4–2.6), we obtain μ̂i (x) = qgi (x)μ̂i (r R∗x) for i = 1, 2, 3. Iterating these
functions, we have

μ̂i (x) = qn

⎛

⎝
n−1∏

j=0

gi
(
r j (R∗) j x

)
⎞

⎠ μ̂i
(
rn(R∗)nx

)
. (2.13)

For any x with |x | > 1
r , there exists n(x) ∈ N such that |rn(x)x | ∈ [1, r−1]. If we

write |μ̂i (x)| = ∣∣μ̂i (r−n(x)rn(x)x)
∣∣, then

|μ̂i (x)| = qn(x)

⎛

⎝
n(x)−1∏

j=0

∣∣gi (r j (R∗) j r−n(x)rn(x)x)
∣∣

⎞

⎠ ∣∣μ̂i ((R
∗)n(x)rn(x)x)

∣∣
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≤ r tn(x)
n(x)∏

k=1

∣∣gi (r−k(R∗)n(x)−krn(x)x)
∣∣

≤ r tn(x)
n(x)∏

k=1

(1 + Drsk) ≤ r tn(x) D̃

≤ D̃r tn(x)r−t |rn(x)x |−t = D̃r−t |x |−t ,

where D̃ := �∞
k=1(1 + Drsk) < +∞. The proof is complete. 
�

2.3 A Simple Example

In this subsection we shall construct a nonlinear self-similar measure μ4 under the
hypothesis of Theorem 4 and compute the exact decay rate of μ̂4. Let μ4 ∈ P(R) be
the solution of following identity

μ = 1

4
μ ◦ S−1

1 + 1

8
μ ◦ S−1

2 + 1

8
μ ◦ S−1

3 + 1

2
(μ ◦ T−1) ∗ ν. (2.14)

Here S1(x) = ρx , S2(x) = ρx+2π , S3(x) = ρx−2π and T (x) = ρx for 0 < ρ < 1.
ν ∈ P(R) with �∞(ν) > 0. Before stating our results it is useful to introduce the
following terminology and notations.

Definition 3 An algebraic integer β > 1 is called a PV-number if all its conjugate
roots have modulus strictly less than 1

For any real number a, we denote ‖a‖ = min{|a−n| : n ∈ Z}. If k is the integer nearest
to a, we write a = k+〈a〉 (If ‖a‖ = 1

2 , we let 〈a〉 > 0). It is well known that if ρ−1 is
not a PV-number, then for any s ∈ R−{0}, we have ∑∞

j=1 ‖sρ− j‖2 = ∞. Otherwise

if ρ−1 is a PV-number, then for every integer k, we have
∑∞

j=1 ‖kρ− j‖2 < ∞. For
more details about PV-number, we refer to [16]. For j ∈ Z, we define d j (x) =
1
2 (1 + cos(2πρ j x)). In this example, note that t = − log 2

log ρ
.

The Fourier transform version of Eq. (2.14) is

μ̂4(x) = 1

4
μ̂4(ρx) + 1

4
cos(2πx)μ̂4(ρx) + 1

2
ν̂(x)μ̂4(ρx)

= 1

2

(
d0(x) + ν̂(x)

)
μ̂4(ρx).

Iterating the above equation, we get

μ̂4(x) = 1

2n

⎛

⎝
n−1∏

j=0

(
d j (x) + ν̂(ρ j x)

)
⎞

⎠ μ̂4(ρ
nx). (2.15)
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Replacing x by ρ−nx , we get

μ̂4(ρ
−nx) = 1

2n

⎛

⎝
n∏

j=1

(
d− j (x) + ν̂(ρ− j x)

)
⎞

⎠ μ̂4(x). (2.16)

Next lemma derives some properties of {d j (x)} j∈Z, and we omit the simple proof
here.

Lemma 4 For any integer j and x ∈ R, we have

(2 − √
2)〈ρ− j x〉2 ≤ 1 − d− j (x) ≤ π2〈ρ− j x〉2. (2.17)

Theorem 5 If ρ−1 is not a PV-number, then |μ̂4(x)| = o(|x |−t ) as |x | → ∞.

We need the following lemma in order to prove Theorem 5.

Lemma 5 If ρ−1 is not a PV-number, then for any x �= 0, limn→∞ 2nμ̂4(ρ
−nx) = 0.

Proof We fix a x �= 0 and take s ∈ (
0,�∞(ν)

)
. Then there exists C ≥ 1 such that

|ν̂(ρ− j x)| ≤ Cρs j for all j ∈ N. Since ρ−1 is not a PV-number, by Eq. (2.17), we
have

∞∑

j=1

1 − d− j (x) ≥ (2 − √
2)

∞∑

j=1

〈ρ− j x〉2 = ∞. (2.18)

Take strictly increasing positive integer sequence {ak}mk=1 for m = ∞ or is finite,
where {ak}mk=1 includes all the numbers such that d−ak (x) + |ν̂(ρ−ak x)| ≥ 1. Note
that

m∏

k=1

∣∣d−ak (x) + ν̂(ρ−ak x)
∣∣ ≤

m∏

k=1

(1 + Cρsak ) < ∞ (2.19)

and

m∑

k=1

1 − d−ak (x) ≤
m∑

k=1

|ν̂(ρ−ak x)| ≤
m∑

k=1

Cρsak < ∞. (2.20)

Let {bk}∞k=1 be the strictly increasing positive integer sequence such that {bk}∞k=1 ∪
{ak}mk=1 = N and {bk}∞k=1 ∩ {ak}mk=1 = ∅. By Eqs. (2.18) and (2.20), we have

∞∑

k=1

1 − ∣∣d−bk (x) + ν̂(ρ−bk x)
∣∣ ≥

∞∑

k=1

(
1 − d−bk (x) − |ν̂(ρ−bk x)|) = ∞.
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Since d−bk (x) + |ν̂(ρ−bk x)| < 1, we obtain that

∞∏

k=1

(
d−bk (x) + ν̂(ρ−bk x)

) = 0. (2.21)

Here we use the fact that if positive sequence {dk}∞k=1 has the property dk < 1, then∑∞
k=1(1 − dk) = ∞ implies that �∞

k=1dk = 0.
Combining Eqs. (2.19) and (2.21), we have

∞∏

j=1

(
d− j (x) + ν̂(ρ− j x)

) = 0.

Hence by Eq. (2.16), we have

lim
n→∞ 2nμ̂4(ρ

−nx) = lim
n→∞

⎛

⎝
n∏

j=1

(
d− j (x) + ν̂(ρ− j x)

)
⎞

⎠ μ̂4(x) = 0.

The proof is complete. 
�
Proof of Theorem 5 Assume the conclusion is false. Without loss of generality, we
assume there are δ > 0 and a strictly increasing positive sequence {xn}∞n=1 with
limn→∞ xn = +∞ such that |xn|t |μ̂4(xn)| ≥ δ. Fix some s ∈ (

0,�∞(ν)
)
. Then

there exists C
′
> 0 such that |ν̂(x)| ≤ C

′ |x |−s for x ∈ R. Take a constant C such that
C >

∏∞
k=1(1 + C

′
ρ−sρks).

For every xn , there exists kn ∈ Z such thatρkn xn ∈ [ρ, 1].Without loss of generality,
we assume limn→∞ ρkn xn = x0 ∈ [ρ, 1]. By Lemma 5, for any ε ∈ (0, δ

C ), there
exists n0 ∈ N such that 2n0 |μ̂4(ρ

−n0x0)| < ε. Since 2n0 |μ̂4(ρ
−n0x)| is a continuous

function, if n is sufficiently large, we have

2n0 |μ̂4(ρ
−n0ρkn xn)| < ε.

If kn > n0 and n is sufficiently large, we write 2kn |μ̂4(xn)| = 2kn |μ̂4(ρ
−knρkn xn)|,

thus

2kn |μ̂4(xn)| = 2n0 |μ̂4(ρ
−n0ρkn xn)| ×

∣∣∣∣∣∣

kn∏

k=n0+1

(
d−k(ρ

kn xn) + ν̂(ρ−kρkn xn)
)
∣∣∣∣∣∣

≤ 2n0C |μ̂4(ρ
−n0ρkn xn)| < δ.

By previous assumption, we also have

|xn|t |μ̂4(xn)| = |ρ−knρkn xn|t |μ̂4(xn)| = 2kn |μ̂4(xn)||ρkn xn|t ≥ δ.
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Hence 2kn |μ̂4(xn)| ≥ δ, which is a contradiction. 
�
Assume ρ−1 is a PV-number. By Eq. (2.17) it follows that

∞∑

j=1

1 − d− j (1) ≤
∞∑

j=1

π2〈ρ− j 〉2 < ∞.

Thus lim j→∞ d− j (1) = 1, andwemay a find positive integerM such that d− j (1) > 1
2

for all j ≥ M . Nowwe fix some ν = ν(ρ−1, M) ∈ P(R) in the rest of this subsection.

Let f (x) = 1
2π e

− x2
4π . Then ω := f dx is a Borel probability measure and ω̂(x) =

e−πx2 . Let φ(x) : R → R be a C∞ function with the following properties:

1. φ(x) = 1 if |x | ≤ 1; 2. φ(x) = 0 if |x | ≥ 2; 3. 0 ≤ φ(x) ≤ 1.

Define φk(x) = φ( xk ) for k ∈ N. Set ck = (
∫

φk(x) f (x)dx)−1 for k ∈ N and

c0 = (
∫ 1
−1 f (x)dx)−1. Note that 1 < ck ≤ c0 and that limk→∞ ck = 1. We define

νk := ckφk f dx . Then νk ∈ P(R) with �∞(νk) = ∞ and ν̂k ∈ C∞. A very standard

argument shows ν̂k(x) uniformly converges to e−πx2 as k → ∞. So we could find
some k ∈ N such that ‖ν̂k − ω̂‖∞ < 1

2e
−πρ−2M

. Set ν = νk which is the measure we
need.

Theorem 6 Assume ρ−1 is a PV-number and ν = ν(ρ−1, M) is the measure con-
structed above, then limn→∞ 2n|μ̂4(ρ

−n)| > 0. Hence |μ̂4(x)| = O(|x |−t ) and t is
the best possible.

We need the following lemma in order to prove Theorem 6.

Lemma 6 Assumeρ−1 is a PV-number and ν = ν(ρ−1, M) is themeasure constructed
above, then

(i) d j (1) + ν̂(ρ j ) �= 0 for all j ∈ Z;
(ii) μ̂4(1) �= 0;
(iii)

∏∞
j=1 |d− j (1) + ν̂(ρ− j )| > 0.

Proof (i) If j ≥ −M , note that |ν̂(ρ j ) − e−πρ2 j | < 1
2e

−πρ−2M
, we have Re(ν̂(ρ j )) >

1
2e

−πρ−2M
. Since d j (1) ≥ 0, we have d j (1) + ν̂(ρ j ) �= 0.

If j ≤ −M , |d j (1) + ν̂(ρ j )| ≥ |d j (1)| − |ν̂(ρ j )| > 1
2 − 3

2e
−πρ−2M

> 0.
(ii) We define G(x) = 1

2

( 1+cos 2πx
2 + ν̂(x)

)
. It is obvious that G ∈ C1. Thus there

exists L > 0 such that

|G(ρ j ) − 1| =
∣∣∣∣
1

2
(d j (1) + ν̂(ρ j )) − 1

∣∣∣∣ ≤ Lρ j for j ≥ 0.

By Eq. (2.15) we have μ̂4(1) = ∏∞
j=0 G(ρ j ), where 0 < |G(ρ j )| ≤ 1. But
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∞∑

j=0

1 − |G(ρ j )| ≤
∞∑

j=0

|G(ρ j ) − 1| ≤
∞∑

j=0

Lρ j < ∞,

thus |μ̂4(1)| > 0.
(iii) Note that

∞∑

j=1

∣∣∣log |d− j (1) + ν̂(ρ− j )|
∣∣∣ =

∞∑

j=1

∣∣∣log(1 + |d− j (1) + ν̂(ρ− j )| − 1)
∣∣∣

�
∞∑

j=1

∣∣∣|d− j (1) + ν̂(ρ− j )| − 1
∣∣∣

≤
∞∑

j=1

|1 − d− j (1)| + |ν̂(ρ− j )|

< ∞.

Hence
∏∞

j=1 |d− j (1) + ν̂(ρ− j )| ∈ (0,+∞). 
�
Proof of Theorem 6 By Eq. (2.16) we have

lim
n→∞ 2n|μ̂4(ρ

−n)| = lim
n→∞

∣∣∣∣∣∣

n∏

j=1

(
d− j (1) + ν̂(ρ− j )

)
∣∣∣∣∣∣
|μ̂4(1)| > 0.

The proof is complete. 
�

3 Infinity Lower Fourier Dimension of In-homogenous Self-similar
Measures

In the section, we fix an in-homogenous self-similar measure μ ∈ P(Rd) satisfying

μ =
N∑

j=1

p jμ ◦ S−1
j + pν, (3.1)

where ν is a Borel probability measure on R
d with compact support V . S j (x) =

r j R j x + a j , where 0 < r j < 1, R j is an orthogonal matrix and a j ∈ R
d , for all j .

The support of μ satisfies the equation

sptμ =
N⋃

j=1

S j (sptμ) ∪ V .
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Olsen and Snigireva derived a connection between �∞(μ) and �∞(ν) (see [14,
Theorem 2.1]). Now we continue their work with following theorem.

Theorem 7 Let t be the positive constant satisfying the equation
∑N

j=1 p jr
−t
j = 1.

Then

(1) If �∞(ν) ≤ t , then �∞(μ) = �∞(ν);
(2) If �∞(ν) > t , then t ≤ �∞(μ) ≤ �∞(ν).

Proof (1) Firstly, we prove�∞(ν) ≥ �∞(μ). Taking Fourier transforms in both sides
of Eq. (3.1), we have

μ̂(x) =
N∑

j=1

p j e
ix ·a j μ̂(r j R

∗
j x) + pν̂(x). (3.2)

We could assume �∞(μ) > 0. For any ε ∈ (
0,�∞(μ)

)
, there exits C1 ≥ 1 such that

|μ̂(x)| ≤ C1|x |−(�∞(μ)−ε) for all x . Besides, by Eq. (3.2), for all |x | ≥ 1, we have

|ν̂(x)| = 1

p

∣∣μ̂(x) −
N∑

j=1

p j e
ix ·a j μ̂(r j R

∗
j x)

∣∣

≤ C1

p

⎛

⎝1 +
N∑

j=1

p jr
−(�∞(μ)−ε)

j

⎞

⎠ |x |−(�∞(μ)−ε).

Thus �∞(ν) ≥ �∞(μ) − ε. By arbitrariness of ε, we have the desired result.
(2) If �∞(ν) ≤ t , for proving �∞(μ) ≥ �∞(ν), we may assume �∞(ν) > 0.

For any ε ∈ (
0,�∞(ν)

)
, there exists C2 ≥ 1 such that |ν̂(x)| ≤ C2|x |−(�∞(ν)− ε

2 ) for
all x . Obviously, we have

lim|x |→∞ |x |�∞(ν)−ε|ν̂(x)| = 0. (3.3)

Wedefine A = ∑N
j=1 p jr

−(�∞(ν)−ε)

j . Note that A < 1.Take any δ ∈ (
0, A

(
1−A

))
,

there exists R0 > 0 such that p|x |�∞(ν)−ε|ν̂(x)| < δ for |x | ≥ R0. For any R > R0,
we define

M(R) := max
R0≤|x |≤R

{|x |�∞(ν)−ε|μ̂(x)|}.

We claim that for all R > R0,

M(R) ≤ M(R0r
−1
min) + 1.

Here rmin = min{r1, . . . , rN }.
We prove this by contradiction. Suppose that there is R > R0 such that M(R) >

M(R0r
−1
min) + 1 > 1. Then R > R0r

−1
min obviously, and there is at least one point
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y ∈ {x : R0r
−1
min ≤ |x | ≤ R} such that M(R) = |y|�∞(ν)−ε|μ̂(y)|. By Eq. (3.2), we

have

|y|�∞(ν)−εμ̂(y) =
N∑

j=1

p jr
−(�∞(ν)−ε)

j eiy·a j |r j R∗
j y|�∞(ν)−εμ̂(r j R

∗
j y)

+p|y|�∞(ν)−εν̂(y).

Let M̃(R) = max{|r j R∗
j y|�∞(ν)−ε|μ̂(r j R∗

j y)| : j = 1, · · · , N }, we have
( N∑

j=1

p jr
−(�∞(ν)−ε)

j

)
M̃(R) + δ ≥ M(R). (3.4)

Since y ∈ {x : R0r
−1
min ≤ |x | ≤ R}, thus

R0 ≤ r jr
−1
minR0 ≤ |r j R∗

j y| = r j |y| ≤ R

for all j . Then we have M(R) ≥ M̃(R). Since M(R) > 1 and δ < A(1 − A), we
have

A(1 − A) + AM(R) < M(R).

From inequality (3.4), we have

M(R) > A(1 − A) + AM(R) > δ + AM̃(R) ≥ M(R),

which is a contradiction.
Thus for any R > R0, M(R) ≤ M(R0r

−1
min) + 1. That is for any R > R0, we have

max
R0≤|x |≤R

{|x |�∞(ν)−ε|μ̂(x)|} ≤ max
R0≤|x |≤R0r

−1
min

{|x |�∞(ν)−ε|μ̂(x)|} + 1.

Now take C3 = max|x |≤R0r
−1
min

{|x |�∞(ν)−ε|μ̂(x)|} + 1, we have

|μ̂(x)| ≤ C3|x |−(�∞(ν)−ε) for all x, (3.5)

i.e., �∞(μ) ≥ �∞(ν) − ε. By arbitrariness of ε, we obtain the desired result.
(3) If �∞(ν) > t , we need to prove �∞(μ) ≥ t . In [14], the authors gave a very

detailed proof and we omit the details here. 
�
According to Theorem 7, if �∞(ν) ≥ t , we have �∞(μ) ≥ t . Theorem 6 also

shows the lower bound t is optimal.

Acknowledgements This work was supported by the scientific research fund of the Education Department
of Hunan Province under grant No.19K019.



43 Page 20 of 20 Journal of Fourier Analysis and Applications (2020) 26 :43

References

1. Baker, S., Fraser, J.M., Máthé, Á.: Inhomogeneous self-similar sets with overlaps. Ergodic Theory
Dyn. Syst. 3(9), 1–18 (2019)

2. Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988)
3. Barnsley, M.: Existence and uniqueness of orbital measures. Preprint
4. Clickenstein, D., Strichartz, R.: Nonlinear self-similar measures and their Fourier transforms. Indiana

Univ. Math. J. 45, 205–220 (1996)
5. Falconer, K.: Fract. Geom. Wiley, Chichester (1990)
6. Falconer, K.: Techniques in Fractal Geometry. Wiley, Chichester (1997)
7. Fraser, J.M.: Inhomogeneous self-similar sets and box dimensions. Stud. Math. 213, 133–156 (2012)
8. Hu, T.Y.: Asymptotic behavior of Fourier transforms of self-similar measures. Proc. Am. Math. Soc.

129, 1713–1720 (2000)
9. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

10. Lau,K. S.: Self-Similarity, Lq -Spectrumandmultifractal formalism. In: FractalGeometry andStochas-
tics, Progr. Probab., 37, Birkhäuser, Basel, (1995), pp. 55–90

11. Liszka, P.: On inhomogeneous self-similar measures and their Lq spectra. Ann. Polon. Math. 109(1),
75–92 (2013)

12. Liszka, P.: The Lq spectra and Rényi dimension of generalized inhomogeneous self-similar measures.
Central Eur. J. Math. 12(9), 1305–1319 (2014)

13. Olsen, L., Snigireva, N.: Lq spectra and Rényi dimensions of in-homogeneous self-similar measures.
Nonlinearity 20, 151–175 (2007)

14. Olsen, L., Snigireva, N.: In-homogenous self-similar measures and their Fourier transforms. Math.
Proc. Camb. Philos. Soc. 144, 465–493 (2008)

15. Roychowdhury,M.K.:Quantization dimension estimate of inhomogeneous self-similarmeasures. Bull.
Pol. Acad. Sci. Math. 61, 35–45 (2013)

16. Salem, R.: Algebraic Numbers and Fourier Analysis. Health, Boston (1963)
17. Zhu, S.: The quantization for in-homogeneous self-similar measures with in-homogeneous open set

condition. Int. J. Math. 26, 1–23 (2015)
18. Zhu, S.: Asymptotics of the quantization errors for in-homogeneous self-similar measures supported

on self-similar sets. Sci. China Math. 59, 337–350 (2016)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	On the Fourier Transforms of Nonlinear Self-similar Measures
	Abstract
	1 Introduction
	2 Nonlinear Self-similar Measures
	2.1 Existence of Nonlinear Self-similar Measures
	2.2 Some Typical Examples
	2.3 A Simple Example

	3 Infinity Lower Fourier Dimension of In-homogenous Self-similar Measures
	Acknowledgements
	References




