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Abstract
Suppose that G is a finite Abelian group and write W(G) for the set of cosets of
subgroups of G. We show that if f : G → Z satisfies the estimate ‖ f ‖A(G) ≤ M with
respect to the Fourier algebra norm, then there is some z : W(G) → Z such that

f =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) = exp(M4+o(1)).

1 Introduction

This paper is about quantitative aspects of Cohen’s idempotent theorem [8, Theorem
3] (stated here as Theorem 12.1). To state our results precisely we shall need some
notation and basic results.

Suppose that G is a finite Abelian group. We write Ĝ for its dual group, that is the
finite Abelian group of homomorphisms G → S1 where S1 := {z ∈ C : |z| = 1}. We
regard G as endowed with a Haar probability measure mG (this is simply the measure
assigning mass |G|−1 to each element of G) so that we can then define the Fourier
transform of a function f ∈ L1(mG) to be

f̂ : Ĝ → C; γ �→
∫

f (x)γ (x)dmG(x).

We shall be interested in the Fourier algebra norm of functions, and this is defined by

‖ f ‖A(G) := ‖ f̂ ‖�1(Ĝ) =
∑

γ

| f̂ (γ )|.

It is an easy calculation to see that if H ≤ G then
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1̂H (γ ) =
{
mG(H) if γ (h) = 1 for all h ∈ H

0 otherwise,

and it follows from this and Parseval’s theorem (see (6.1) in §6 if unfamiliar) that

‖1H‖A(G) =
∑

γ∈Ĝ
|1̂H (γ )| = 1

mG(H)

∑

γ∈Ĝ
|1̂H (γ )|2

= 1

mG(H)

∫
12HdmG = 1. (1.1)

WriteW(G) := ⋃
H≤G G/H and suppose that z : W(G) → Z. Then

f :=
∑

W∈W(G)

z(W )1W

is integer-valued and has

Im f ⊂ Z and ‖ f ‖A(G) ≤ ‖z‖�1(W(G)).

Our main result is the following weak converse.

Theorem 1.1 Suppose that M ≥ 1. Then for all finite Abelian groups G and functions
f : G → Z with ‖ f ‖A(G) ≤ M there is some z : W(G) → Z such that

f =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) ≤ exp
(
M4+o(1)

)
.

This may be compared with [16, Theorem 1.3] which gives a bound of
exp(exp(O(M4))). On the other hand long arithmetic progressions show that we can-
not do much better1:

Proposition 1.2 Suppose that M ≥ 1. Then there is a finite Abelian group G and a
function f : G → Z with ‖ f ‖A(G) ≤ M such that if z : W(G) → Z has

f =
∑

W∈W(G)

z(W )1W then ‖z‖�1(W(G)) = �

(
exp

(
π2

4
M

))
.

Proof The characters on G = Z/NZ are exactly the functions of the form x �→
exp(2π i j x/N ) for 1 ≤ j ≤ N and so for N , n > 1 writing IN := {m + NZ : −n ≤
m ≤ n} and inserting the computation of the Lebesgue constants due to Fejér [11,
(16.)] we have

1 Notational warning: here and elsewhere we follow Knuth’s definition [19, p. 19] of � rather than Hardy
and Littlewood’s [17, p. 225]. Specifically, for us f = �(g) is equivalent to g = O( f ).
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lim
N→∞ ‖1IN ‖A(Z/NZ) = lim

N→∞
1

N

N∑

j=1

∣∣∣∣∣

n∑

m=−n

exp

(
2π i

m j

N

)∣∣∣∣∣

=
∫ 1

0

∣∣∣∣∣

n∑

m=−n

exp(2π imθ)

∣∣∣∣∣ dθ = 4

π2 log n + O(1).

Since there are infinitely many primes it follows that for all n ∈ N there is some
prime N ≥ 4n + 2 such that G := Z/NZ contains a set A of size 2n + 1 with
‖1A‖A(G) ≤ 4

π2 log n + O(1). Since N is prime we see that any representation of 1A
in terms of a function z of the required type must have ‖z‖�1(W(G)) ≥ |A| from which
we get the result. 
�

In fact Fejér’s calculation in [11, (17.)] includes a determination of the O(1) term
in the form c0 + c1

n + on→∞(n−1) so that the constant behind the � can be computed
rather accurately if desired, and Watson in [39] went even further with the asymptotic
expansion using Szegő’s beautiful formula for the Lebesgue constants in [34].

Proving our main result in the setting of general finite Abelian groups rather than
Abelian groups of bounded exponent adds a number of difficulties. To help understand
the overarching method we have presented Theorem 1.1 in the case when G is a group
of exponent 2 in [30], where the simplifications also lead to a better bound. We state
this result explicitly in §11 along with some results from other classes of group where
more can be said.

1.1 Applications and Connections

Although some similarity may already be clear at this stage, we explicitly connect
our work to Cohen’s idempotent theorem in §12. One of the applications of this is
to describe the algebra homomorphisms L1(G1) → M(G2) where G1 and G2 are
locally compact Abelian groups. The rough idea is to note that such a map must arise
as the pullback of a function between the dual groups whose graph has small algebra
norm. The details may be found in [26, §4.1.3].

Wojciechowski [40], and then Czuron and Wojciechowski [9], made use of quan-
titative information from the idempotent theorem to strengthen consequences of the
results above about non-existence of algebra homomorphisms into ‘local’ results about
the norms of maps between finite dimensional subspaces. Stronger quantitative infor-
mation in the present paper can be inserted directly to give stronger information there.

As a last connection to other work we mentioned that there is a quantitative con-
nection between the coset ring (defined just before Theorem 12.1) and the stability
ring of Terry and Wolf [36,37].

1.2 Outline of the Paper

Before moving on to the rest of the paper we should discuss the structure and notation,
and a little about the contribution. The overarching structure is the same as that of [16].
In §2, §3, §4, §5 and §6, we set up the basic background theory we shall need which is
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for much the same purpose as in [16]. Notation and definitions are set up and made as
needed. In particular, the two different types of covering number we use are defined in
§2; Bohr sets and their various types of dimension are defined in §3; notation for mea-
sures and convolutions at the start of §4; and approximate annihilators at the start of §5.

There were three main parts to the argument in [16], and essentially the first two
of them introduce a need for a doubly (rather than singly) exponential bound in [16,
Theorem 1.3]. Themain contribution of this paper is to note how these can be removed.

The first part of the argument in [16] was a sort of quantitative continuity result
developed from the work of Green and Konyagin in [14]. Our analogue of this is in
§7 and is closely related to their work, although here we make use of an advance due
to Croot et al. [7] to get a sort of L p version.

The second ingredient was a Freiman-type theorem. Freiman’s theorem has been
improved since then to have quasi-polynomial dependencies and our work simply
takes advantage of this. We record a suitable Freiman-type theorem in §8.

The third ingredient is the concept of arithmetic connectivity. We refine this in
§9, but the improvement it leads to is polynomial rather than exponential. (Without
any change to the notion of arithmetic connectivity from [16] our arguments lead to
Theorem 1.1 with the 4 + o(1) replaced by some larger constant.)

These three main ingredients are combined in the argument in §10 to give Theorem
10.1 which has Theorem 1.1 as a special case.

1.3 Limitations of the Argument

As with the argument in [16], though for different reasons, the argument for Theorem
1.1 has two separate points, both of which force bounds of the shape we get. The first
point is in Proposition 7.1, the core of which goes back to Green and Konyagin [14].
Whilst we improve one dependency, the other dependencies have not been touched
since their work.

The second point is in Proposition 8.1. Here there is a well-known conjectural
improvement—the polynomial Freiman–Ruzsa conjecture—although it doesn’t seem
like such an improvement is altogether necessary. In particular, it seems quite realistic
to hope to improve Lemma 9.1 directly.

2 Covering Numbers

Given two sets S, T ⊂ G with T non-empty, the covering number of S by T is

CG(S; T ) := min {|X | : S ⊂ X + T } .

We often omit the subscript if the underlying group is clear.
Since T is non-empty and G is finite this minimum is well-defined. Moreover, if S

is also non-empty then C(S; T ) ≥ 1 whatever the set T .
Covering numbers enjoy the following simple properties.
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Lemma 2.1 (Behaviour of covering numbers) Suppose that G and H are Abelian
groups.

(i) (Restrictions and extensions) For all U ⊃ S and T ⊃ V 
= ∅ we have

C(S; T ) ≤ C(U ; V ).

(ii) (Products) For all S, T ⊂ G and U , V ⊂ H with T , V 
= ∅ we have

CG×H (S ×U ; T × V ) ≤ CG(S; T )CH (U ; V ).

(iii) (Compositions) For all S, T ,U with T ,U 
= ∅ we have

C(S;U ) ≤ C(S; T )C(T ;U ).

(iv) (Pullbacks) For all U , V ⊂ H with V 
= ∅ and homomorphisms φ : G → H
we have

CG(φ−1(U );φ−1(V − V )) ≤ CH (U ; V ).

Proof First, if U ⊂ X + V and U ⊃ S and T ⊃ V then certainly S ⊂ X + T from
which (i) follows.

Secondly, if S ⊂ X + T and U ⊂ Y + V then S × U ⊂ X × Y + T × V and (ii)
follows.

Thirdly, if S ⊂ X + T and T ⊂ Y + U then S ⊂ X + Y + U and hence
C(S,U ) ≤ |X + Y | ≤ |X ||Y | from which (iii) follows.

Finally, ifU ⊂ X+V thenwrite X ′ for the set of x ∈ X such that (x+V )∩φ(G) 
= ∅
and let z : X ′ → G be a choice function such that φ(z(x)) ∈ x + V . Put Z := {z(x) :
x ∈ X ′}. If y ∈ φ−1(U ) then

φ(y) ∈ (X + V ) ∩ φ(G) ⊂ X ′ + V ⊂ φ(Z) − V + V .

It follows that y ∈ Z + φ−1(V − V ) and we have (iv) since |Z | ≤ |X ′| ≤ |X |. 
�
Covering numbers are closely related to doubling as the following lemma captures.

Lemma 2.2 Suppose that A, B, S, T ⊂ G with B, T 
= ∅. Then

mG(A + S) ≤ C(A; B)C(S; T )mG(B + T ).

Proof Let X be such that A ⊂ X+B and |X | = C(A, B), andY be such that S ⊂ Y+T
and |Y | = C(S, T ). Then A + S ⊂ X + Y + B + T and hence

mG(A + S) ≤ mG(X + Y + B + T ) ≤ |X ||Y |mG(B + T )

≤ C(A, B)C(S, T )mG(B + T ),

and the lemma is proved. 
�



25 Page 6 of 64 Journal of Fourier Analysis and Applications (2020) 26 :25

Conversely we have Ruzsa’s covering lemma.

Lemma 2.3 (Ruzsa’s covering lemma) Suppose that A, B ⊂ G for some B 
= ∅. Then

C(A; B − B) ≤ mG(A + B)

mG(B)
.

Proof Suppose that X ⊂ A is maximal such that for every distinct x, x ′ ∈ X we have
(x + B) ∩ (x ′ + B) = ∅. It then follows that if x ∈ A \ X , there is some x ′ ∈ X
such that (x + B) ∩ (x ′ + B) 
= ∅, and hence A \ X ⊂ X + B − B. Of course, since
0G ∈ B − B we certainly have X ⊂ X + B − B and so A ⊂ X + B − B. On the
other hand, the sets {x + B : x ∈ X} are disjoint subsets of A + B and there are |X |
of them. The lemma follows. 
�

In the light of Lemma 2.1 part (iv) above, for sets S, T ⊂ G with 0G ∈ T it is
natural to define the difference covering number of S by T to be

C�
G (S; T ) := min

{
CH (U ; V ) : H ∈ Ab, H finite, φ ∈ Hom(G, H),

S ⊂ φ−1(U ), φ−1(V − V ) ⊂ T

}
,

whereAb denotes the category of Abelian groups and Hom(G, H) is the set of homo-
morphisms between G and H . As before we often omit the subscript if the underlying
group is clear.

Again, since 0G ∈ T the minimum above is well-defined, and if S is non-empty
then C�

G (S; T ) ≥ 1.
For our purposes difference covering numbers turn out to behave slightly better

than covering numbers.

Lemma 2.4 (Behaviour of difference covering numbers)

(i) (Restrictions and extensions) For all S′ ⊃ S and T ⊃ T ′ � 0G we have

C�(S; T ) ≤ C�(S′; T ′).

(ii) (Intersections) For all S, S′, T , T ′ with T , T ′ � 0G we have

C�
(
S ∩ S′; T ∩ T ′) ≤ C� (S; T ) C�

(
S′; T ′) .

(iii) (Domination by coverings numbers) For all S, T we have

C�(S; T − T ) ≤ C(S; T ).

(iv) (Domination of coverings numbers) For all S, T with T � 0G we have

C(S; T ) ≤ C�(S; T ).
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Proof First, (i) follows immediately from the definition of the difference covering
number.

Secondly, suppose that φ ∈ Hom(G, H) and ψ ∈ Hom(G, H ′), and U , V ⊂ H
have CH (U ; V ) = C�

G (S; T ) andU ′, V ′ ⊂ H have CH ′(U ′; V ′) = C�
G (S′; T ′), are all

such that

S ⊂ φ−1(U ), φ−1(V − V ) ⊂ T , S′ ⊂ ψ−1(U ′), and ψ−1(V ′ − V ′) ⊂ T ′.

The map φ × ψ is a group homomorphism G → H × H ′ (defined by x �→
(φ(x), ψ(x))). Moreover,

S ∩ S′ ⊂ φ−1(U ) ∩ ψ−1(U ′) = (φ × ψ)−1(U ×U ′)

and

(φ × ψ)−1(V × V ′ − V × V ′) = (φ × ψ)−1((V − V ) × (V ′ − V ′))
= φ−1(V − V ) ∩ ψ−1(V ′ − V ′) ⊂ T ∩ T ′.

By the definition of the difference covering number and Lemma 2.1 (ii) we have that

C�
G (S ∩ S′; T ∩ T ′) ≤ CH×H ′(U ×U ′; V × V ′)

≤ CH (U ; V )CH ′(U ′; V ′) = C�
G (S; T )C�

G (S′; T ′).

Part (ii) is proved.
Thirdly, let φ : G → G be the identity homomorphism, U := S and V := T so

that S ⊂ φ−1(U ) and φ−1(V − V ) ⊂ T − T . It follows that

C�(S; T − T ) ≤ CG(U ; V ) = CG(S; T )

and (iii) is proved.
Finally, let φ ∈ Hom(G, H) and U , V ⊂ H be such that S ⊂ φ−1(U ) and

φ−1(V − V ) ⊂ T and CH (U ; V ) = C�
G (S; T ). Then by Lemma 2.1 (i) and (iv) we

see that

CG(S; T ) ≤ CG(φ−1(U );φ−1(V − V )) ≤ CH (U ; V ) = C�
G (S; T ).

This gives (iv). 
�
It will also be useful to have a version of Ruzsa’s covering lemma for difference

covering numbers.

Lemma 2.5 (Ruzsa’s covering lemma, revisited) Suppose that A, B, X ⊂ G with both
X 
= ∅ and 0G ∈ B. Then

C�(A; B) ≤ mG(A + X)

mG(X)
C�(X − X; B).
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Proof Let H be an Abelian group, φ ∈ Hom(G, H) and U , V ⊂ H be such that
φ−1(U ) ⊃ X − X and φ−1(V − V ) ⊂ B. By Ruzsa’s covering lemma (Lemma 2.3)
we see that there is some set T with

|T | ≤ mG(A + X)

mG(X)
and A ⊂ T + X − X .

LetU ′ := φ(T )+U so thatCH (U ′; V ) ≤ |T |CH (U ; V ).On the other handφ−1(U ′) ⊃
T + X − X ⊃ A and the result follows. 
�

3 Bohr Systems

Bohr sets interact particularly well with covering numbers and difference covering
numbers. We write ‖ · ‖ for the map S1 → [0, 1

2 ] defined by

‖z‖ := min{|θ | : z = exp(2π iθ)}.

It is easy to check that this is well-defined and that the map (z, w) �→ ‖zw−1‖ is a
translation-invariant metric on S1. Given a set of characters 
 on G, and a function
δ : 
 → R>0, then we write

Bohr(
, δ) := {x ∈ G : ‖γ (x)‖ < δ(γ ) for all γ ∈ 
} ,

and call such a set a (generalised2) Bohr set.
In fact we shall not so much be interested in Bohr sets as families of Bohr sets. A

Bohr system is a vector B = (Bη)η∈(0,1] for which there is a set of characters 
 and
a function δ : 
 → R>0 such that

Bη = Bohr(
, ηδ) for each η ∈ (0, 1].

We say that B is generated by (
, δ) and, of course, the same Bohr system may be
generated by different pairs.

This definition is motivated by that of Bourgain systems [16, Definition 4.1],
although it is in some sense ‘smoother’. (In this paper what wemean by this is captured
by Lemma 3.4 which does not hold for Bourgain systems.)

We first record some trivial properties of Bohr systems; their proof is left to the
reader.

Lemma 3.1 (Properties of Bohr systems) Suppose that B is a Bohr system. Then

(i) (Identity) 0G ∈ Bη for all η ∈ (0, 1];
(ii) (Symmetry) Bη = −Bη for all η ∈ (0, 1];

2 We call these generalised Bohr sets because usually (e.g. [35, Definition 4.6]) Bohr sets are defined using
only the constant functions; we use this more general definition to ensure that the intersection of two Bohr
sets is a Bohr set, but quite apart from being a natural extension this is by no means the first time this has
been done (see e.g. [4, (0.11)] and [28, Definition 5.1]).
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(iii) (Nesting) Bη ⊂ Bη′ whenever 0 < η ≤ η′ ≤ 1;
(iv) (Sub-additivity) Bη + Bη′ ⊂ Bη+η′ for all η, η′ ∈ (0, 1] with η + η′ ≤ 1.

[16, Definition 4.1] took the approach of axiomatising these properties along with
something called dimension. In that vein we define the doubling dimension of a Bohr
system B to be

dim∗ B = sup
{
log2 C

(
Bη; B 1

2 η

)
: η ∈ (0, 1]

}
.

It may be instructive to consider two examples.

Lemma 3.2 (Bohr systems of very low doubling dimension)

(i) Suppose that B is a Bohr system with dim∗ B < 1. Then there is a subgroup
H ≤ G such that Bη = H for all η ∈ (0, 1].

(ii) Conversely, suppose that H ≤ G. Then the constant vector B with Bη = H for
all η ∈ (0, 1] is a Bohr system and dim∗ B = 0.

Proof First, since dim∗ B < 1 we see that for each η ∈ (0, 1] there is a set Xη with
|Xη| < 21 = 2 such that Bη ⊂ Xη + B 1

2 η. Since Bη is non-empty we see that
0 < |Xη| < 2 and so |Xη| = 1. Write X1 = {x1}. Then

B1 − B1 ⊂
(
x1 + B 1

2

)
−
(
x1 + B 1

2

)
= B 1

2
− B 1

2
⊂ B1,

and so for all x, y ∈ B1 we have x − y ∈ B1 and so there is some subgroup H ≤ G
such that B1 = H . We show by induction that for each i ∈ N0 the set B2−i contains a
translate of H , from which the result follows since 0G ∈ B2−i .

Turning to the induction: the base case of i = 0 holds trivially. Suppose that B2−i

contains a translate of H . Then there is some set X2−i = {x2−i } such that B2−i ⊂
x2−i + B2−(i+1) , whence B2−(i+1) contains a translate of H as required and the first
result is proved.

In the other direction, simply let 
 := {γ : γ (x) = 1 for all x ∈ H} and let δ be
the constant function 1/|G|. Writing B for the Bohr system generated by 
 and δ we
see that H ⊂ Bη for all η ∈ (0, 1]. On the other hand if x ∈ B1 then |G|‖γ (x)‖ < 1
and

cos(2π |G|‖γ (x)‖) = 1

2
(exp(2π i |G|‖γ (x)‖) + exp(−2π i |G|‖γ (x)‖))

= 1

2

(
γ (x)|G| + γ (x)|G|

)
= 1.

It follows that 2π |G|‖γ (x)‖ ∈ 2πZ and hence |G|‖γ (x)‖ ∈ Z. We conclude that
‖γ (x)‖ = 0 and hence γ (x) = 1 for all x ∈ B1 and γ ∈ 
. It follows that B1 = H
and hence B is a constant vector by nesting. It remains to note that C(H ; H) = 1 and
so dim∗ B = log2 1 = 0 as claimed. 
�

We say that a Bohr system B has rank k if it can be generated by a pair (
, δ) with
|
| = k.
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Lemma 3.3 (Rank 1 Bohr systems) Suppose that B is a rank 1 Bohr system. Then
dim∗ B ≤ log2 3.

Proof Let (
, δ) generate B where 
 = {γ } and write δ = δ(γ ). Suppose that η ∈
(0, 1]. We shall show that there is some x ∈ G such that

Bη ⊂ {−x, 0, x} + B 1
2 η. (3.1)

If Bη = B 1
2 η then we may take x = 0G and be done; if not let x ∈ Bη \ B 1

2 η be such

that ‖γ (x)‖ is minimal. Let ψ ∈ (− 1
2 ,

1
2

]
be such that γ (x) = exp(2π iψ); note that

‖γ (x)‖ = |ψ |.
Suppose that y ∈ Bη \ B 1

2 η and let θ ∈ (− 1
2 ,

1
2

]
be such that γ (y) = exp(2π iθ);

note that ‖γ (y)‖ = |θ |. Since x /∈ B 1
2 η, |ψ | is minimal, and y ∈ Bη we have

1

2
ηδ ≤ ‖γ (x)‖ = |ψ | ≤ |θ | = ‖γ (y)‖ < ηδ.

Thus if ψ and θ have the same sign then

|θ − ψ | = ||θ | − |ψ || = |θ | − |ψ | < ηδ − 1

2
ηδ = 1

2
ηδ,

and hence ‖γ (y − x)‖ < 1
2ηδ (since γ (y − x) = exp(2π i(θ − ψ))), so y ∈ x + B 1

2 η.

Similarly if ψ and θ have opposite signs then |θ +ψ | < 1
2ηδ and ‖γ (y + x)‖ < 1

2ηδ,
and so y ∈ −x + B 1

2 η. The claimed inclusion (3.1) follows and the result is proved. 
�
We define the width of a Bohr system B to be

w(B) := inf
{‖δ‖�∞(
) : (
, δ) generates B

}
.

Lemma 3.4 Suppose that B is a Bohr system and w(B) < 1
4 . Then

dim∗ B ≤ log2 C
(
B1; B 1

8

)
≤ 3 dim∗ B

To prove this we shall use the following trivial observation.

Observation Suppose that γ is a character, x ∈ G, and n ∈ N. Then

‖γ (nx)‖ = n‖γ (x)‖ provided ‖γ (x)‖ <
1

2n
.

Proof Let θ, ψ be such that ‖γ (x)‖ = |θ |, ‖γ (nx)‖ = |ψ |, γ (x) = exp(2π iθ), and
γ (nx) = exp(2π iψ). Since γ is a homomorphism, γ (nx) = γ (x)n = exp(2π iθn),
and so nθ − ψ ∈ Z. However, |nθ − ψ | < n|θ | + |ψ | < 1 (since |θ | < 1

2n and
|ψ | ≤ 1

2 ) and so ψ = nθ and the result is proved. 
�



Journal of Fourier Analysis and Applications (2020) 26 :25 Page 11 of 64 25

Proof of Lemma 3.4 The right hand inequality is easy from Lemma 2.1 part (iii) and
the definition of doubling dimension:

log2 C
(
B1; B 1

8

)
≤ log2 C

(
B1; B 1

2

)
+ log2 C

(
B 1

2
; B 1

4

)

+ log2 C
(
B 1

4
; B 1

8

)
≤ 3 dim∗ B.

In the other direction, since w(B) < 1
4 there is a pair (
, δ) generating B such that

‖δ‖�∞(
) < 1
4 .

Suppose that η ∈ (0, 1] and let X ⊂ Bη be B 1
2 η-separated i.e. if x, y ∈ X have

x − y ∈ B 1
2 η then x = y. Let k ∈ N be a natural number such that 1

2 ≤ ηk ≤ 1 (the
reason for which choice will become clear). Then by nesting of Bohr sets and Lemma
2.1 part (i) we have

C
(
Bηk; B 1

4 ηk

)
≤ C

(
B1; B 1

8

)

and so there is a set Z such that Bηk ⊂ Z + B 1
4 ηk and |Z | ≤ C

(
B1; B 1

8

)
.

Since ηk ≤ 1 and each x ∈ X has x ∈ Bη we conclude (by sub-additivity) that
kx ∈ Bηk , and hence there is some z(x) ∈ Z such that kx ∈ z(x) + B 1

4 ηk . Suppose
that z(x) = z(y) for x, y ∈ X . By sub-additivity and nesting we have

x − y ∈ B2η ⊂ B 2
k
and k(x − y) ∈ B 1

4 ηk − B 1
4 ηk ⊂ B 1

2 ηk .

Suppose that γ ∈ 
. Then we have just seen that ‖γ (x − y)‖ < 2
k δ(γ ) < 1

2k (since
δ(γ ) < 1

4 ) and so by the Observation we see that

k‖γ (x − y)‖ = ‖γ (k(x − y))‖ <
1

2
ηkδ(γ ).

Dividingby k andnoting thatγ was an arbitrary element of
 it follows that x−y ∈ B 1
2 η

and hence x = y. We conclude that the function z is injective and hence |X | ≤ |Z | ≤
C(B1; B 1

8
).

Finally, if X is maximal with the given property then for any y ∈ Bη either y ∈ X
and so y ∈ X + B 1

2 η or else there is some x ∈ X such that y ∈ x + B 1
2 η. It follows

that

Bη ⊂ X + B 1
2 η,

and the left hand inequality is proved given the upper bound on |X |. 
�
We can make new Bohr systems from old by taking intersections: given Bohr

systems B and B ′ we define their intersection to be

B ∧ B ′ := (Bη ∩ B ′
η)η∈(0,1].
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Writing B(G) for the set of Bohr systems on G we then have a lattice structure as
captured by the following trivial lemma.

Lemma 3.5 (Lattice structure) The pair (B(G),∧) is a meet-semilattice, meaning that
is satisfies

(i) (Closure) B ∧ B ′ ∈ B(G) for all B, B ′ ∈ B(G);
(ii) (Associativity) (B ∧ B ′) ∧ B ′′ = B ∧ (B ′ ∧ B ′′) for all B, B ′, B ′′ ∈ B(G);
(iii) (Commutativity) B ∧ B ′ = B ′ ∧ B for all B, B ′ ∈ B(G);
(iv) (Idempotence) B ∧ B = B for all B ∈ B(G).

Proof The only propertywith any content is the first, the truth of which is dependent on
the slightly more general definition of Bohr set we made. Suppose that B is generated
by (
, δ) and B ′ is generated by (
′, δ′). Then consider the Bohr system B ′′ generated
by (
 ∪ 
′, δ ∧ δ′) where

δ ∧ δ′ : 
 ∪ 
′ → R>0; γ �→

⎧
⎪⎨

⎪⎩

δ(γ ) if γ ∈ 
 \ 
′

δ′(γ ) if γ ∈ 
′ \ 


min{δ(γ ), δ′(γ )} if γ ∈ 
 ∩ 
′
.

It is easy to check that B ′′ = B ∧ B ′ and hence B ∧ B ′ ∈ B(G). The remaining
properties are inherited pointwise from the meet-semilattice (P(G),∩), where P(G)

is the power-set of G, that is the set of all subsets of G. 
�

As usual this structure gives rise to a partial order on B(G) where we write B ′ ≤ B
if B ′ ∧ B = B ′.

Another way we can produce newBohr systems is via dilation: given a Bohr system
B and a parameter λ ∈ (0, 1], we write λB for the λ-dilate of B, and define it to be
the vector

λB = (Bηλ)η∈(0,1].

We then have the following trivial properties.

Lemma 3.6 (Basic properties of dilation)

(i) (Order-preserving action) The map

(0, 1] × B(G) → B(G); (λ, B) �→ λB

is a well-defined order-preserving action of the monoid ((0, 1],×) on the set of
Bohr systems.

(ii) (Distribution over meet) We have

λ(B ∧ B ′) = (λB) ∧ (λB ′) for all B, B ′ ∈ B(G), λ ∈ (0, 1].
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The doubling dimension interacts fairly well with intersection and dilation and it
can be shown that

dim∗ λB ≤ dim∗ B and dim∗ B ∧ B ′ = O(dim∗ B + dim∗ B ′)

for Bohr systems B, B ′ and λ ∈ (0, 1]. (The first of these is trivial; the second requires
a little more work.)

The big-O here is inconvenient in applications and to deal with this we define a
variant which is equivalent, but which behaves a little better under intersection. The
dimension of a Bohr system B is defined to be

dim B = sup
{
log2 C�

(
Bη; B 1

2 η

)
: η ∈ (0, 1]

}
.

Lemma 3.7 (Basic properties of dimension)

(i) (Sub-additivity of dimension w.r.t. intersection) For all B, B ′ ∈ B(G) we have

dim B ∧ B ′ ≤ dim B + dim B ′.

(ii) (Monotonicity of dimension w.r.t. dilation) For all B ∈ B(G) and λ ∈ (0, 1] we
have

dim λB ≤ dim B.

(iii) (Equivalence of dimension and doubling dimension) For all B ∈ B(G) we have

dim∗ B ≤ dim B ≤ 2 dim∗ B.

Proof First, from Lemma 2.4, part (ii) we have

C�
(
(B ∧ B ′)η; (B ∧ B ′) 1

2 η

)
= C�

(
Bη ∩ B ′

η; B 1
2 η ∩ B ′

1
2 η

)

≤ C�
(
Bη; B 1

2 η

)
C�

(
B ′

η; B ′
1
2 η

)

for all η ∈ (0, 1]. Taking logs the sub-additivity of dimension follows since suprema
are sub-linear.

Secondly, monotonicity follows immediately since

dim λB = sup
{
log2 C�

(
(λB)η; (λB) 1

2 η

)
: η ∈ (0, 1]

}

= sup
{
log2 C�

(
Bη; B 1

2 η

)
: η ∈ (0, λ]

}
≤ dim B.
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Finally, it follows from Lemma 2.4 part (iv) that dim∗ B ≤ dim B. On the other
hand from the sub-additivity and symmetry of Bohr sets we have B 1

2 η ⊃ B 1
4 η − B 1

4 η,
and so by Lemma 2.4 parts (i) and (iii) we get

C�
(
Bη; B 1

2 η

)
≤ C�

(
Bη; B 1

4 η − B 1
4 η

)
≤ C

(
Bη; B 1

4 η

)
.

Hence by Lemma 2.1 part (iii) and the definition of doubling dimension we have

C
(
Bη; B 1

4 η

)
≤ C

(
Bη; B 1

2 η

)
C
(
B 1

2 η; B 1
4 η

)
≤ 22 dim

∗ B,

and so dim B ≤ 2 dim∗ B as claimed. 
�
As well as the various notion of dimension, Bohr systems also have a notion of size

relative to some ‘reference’ set. Very roughly we think of the ‘size’ of a Bohr system
B relative to some reference set A as being C�(A; B1). This quantity is then governed
by the following lemma.

Lemma 3.8 (Size of Bohr systems) Suppose that B is a Bohr system and A ⊂ G. Then
the following hold.

(i) (Size of dilates) For all λ ∈ (0, 1] we have

C�(A; (λB)1) ≤ C� (A; B1) (4λ−1)dim B .

(ii) (Size and non-triviality) If C�(A; B1) < |A| then there is some x ∈ B1 with
x 
= 0G.

Proof By symmetry and sub-additivity of Bohr sets we see that (λB)1 ⊃ B 1
2λ − B 1

2λ

and so by Lemma 2.4 parts (i) and (iii) we have

C�(A; (λB)1) ≤ C�
(
A; B 1

2λ − B 1
2λ

)
≤ C

(
A; B 1

2λ

)
.

Write r for the largest natural number such that 2rλ ≤ 1. By Lemma 2.1 part (iii) we
see that

C
(
A; B 1

2λ

)
≤ C (A; B2rλ)

r∏

i=0

C (B2iλ; B2i−1λ

)

≤ C (A; B1) C (B1; B2rλ)

r∏

i=0

C (B2iλ; B2i−1λ

)

≤ C (A; B1) 2
(r+2) dim∗ B ≤ C� (A; B1) 2

(r+2) dim B,

where the last inequality is by Lemma 2.4 part (iv) and the first inequality in Lemma
3.7 part (iii). The first part follows.
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By Lemma 2.4 part (iv) we then see that C(A; B1) ≤ C�(A; B1) < |A|. It follows
that there is some set X with |X | < |A| such that A ⊂ X + B1 whence |A| ≤
|X ||B1| < |A||B1| which implies that |B1| > 1 and hence contains a non-trivial
element establishing the second part. 
�

4 Measures, Convolution and Approximate Invariance

Given a finite set X we write C(X) for the complex-valued functions on X . (We think
of X as a discrete topological space and these functions as continuous with an eye to
§12, hence the notation.) Further, given a probability measure μ on X and a set S with
μ(S) > 0, we write μS for the probability measure induced by

C(X) → C; f �→ 1

μ(S)

∫
f 1Sdμ.

Moreover, if S is a non-empty subset of G then we write mS for (mG)S . (Note that
this notation is consistent since mG = (mG)G .)

Below we shall define various notation for functions and for measures. Since G is
finite we can associate to any measure μ on G a function y �→ μ({y}). The notational
choices we make are designed to be compatible between these two different ways of
thinking about measures hence the slightly unusual choice in (4.1).

Given f ∈ C(G) and an element x ∈ G we define

τx ( f )(y) := f (y − x) for all y ∈ G.

WewriteM(G) for the space of complex-valuedmeasures onG and to eachμ ∈ M(G)

associate the linear functional

C(G) → C; f �→ 〈 f , μ〉 :=
∫

f (x)dμ(x). (4.1)

The functionals defined above are all linear functionals by the Riesz Representation
Theorem [26, E4], though of course it is rather simple in our setting of finite G.

Given μ ∈ M(G) we define τx (μ) to be the measure induced by,

C(G) → C; f �→
∫

τ−x ( f )dμ.

and μ̃ to be the measure induced by

C(G) → C; f �→
∫

f (−x)dμ(x).
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Given f ∈ L∞(G) and μ ∈ M(G) we define

μ ∗ f (x) = f ∗ μ(x) =
∫

f (y)dμ(x − y),

and for a further measure ν ∈ M(G) we define the convolution of μ and ν, denoted
μ ∗ ν, to be the measure induced by

C(G) → C; f �→
∫

f (x + y)dμ(x)dν(y)

This operation makes M(G) into a commutative Banach algebra with unit; for details
see [26, §1.3.1].

This notation all extends in the expected way to functions so that if f ∈ L1(mG)

then f̃ is defined point-wise by

f̃ (x) := f (−x) for all x ∈ G,

and given a further g ∈ L1(mG) we define the convolution of f and g to be f ∗ g
which is determined point-wise by

f ∗ g(x) =
∫

f (y)g(x − y)dmG(y) for all x ∈ G.

This can be written slightly differently using the inner product on L2(mG). If g, f ∈
L2(mG) then

〈 f , g〉L2(mG ) =
∫

f (x)g(x)dmG(x),

and

f ∗ g(x) = 〈 f , τx (g̃)〉L2(mG ) for all x ∈ G.

Given a Bohr system B we say that a probability measure μ on G is B-
approximately invariant if for every η ∈ (0, 1] there are probability measures μ+

η

and μ−
η such that

(1 − η)μ−
η ≤ τx (μ) ≤ (1 + η)μ+

η for all x ∈ Bη.

It may be worth remembering at that for two measures ν and κ we say ν ≥ κ if and
only if ν − κ is non-negative.

To motivate the name in this definition we have the following lemma where we
recall that ‖μ‖ := ∫

d|μ|.



Journal of Fourier Analysis and Applications (2020) 26 :25 Page 17 of 64 25

Lemma 4.1 Suppose that B is a Bohr system and μ is B-approximately invariant.
Then for all η ∈ (0, 1] we have

‖μ − τx (μ)‖ ≤ η for all x ∈ B 1
2 η.

Proof Suppose that x ∈ B 1
2 η. Then

(
1 − 1

2
η

)
μ−

1
2 η

≤ τx (μ) ≤
(
1 + η

2

)
μ+

1
2 η

and

(
1 − 1

2
η

)
μ−

1
2 η

≤ μ ≤
(
1 + η

2

)
μ+

1
2 η

.

It follows that

τx (μ) − μ ≤
(
1 + 1

2
η

)
μ+

1
2 η

−
(
1 − 1

2
η

)
μ−

1
2 η

,

and

τx (μ) − μ ≥
(
1 − 1

2
η

)
μ−

1
2 η

−
(
1 + 1

2
η

)
μ+

1
2 η

.

The Jordan decomposition theorem tells us that there are twomeasurable sets P and N
(which together form a partition of G) such that τx (μ) − μ is a non-negative measure
on P and a non-positive measure on N . We conclude that

‖τx (μ) − μ‖ = (τx (μ) − μ)(P) − (τx (μ) − μ)(N )

≤
(
1 + 1

2
η

)
μ+

1
2 η

(P) −
(
1 − 1

2
η

)
μ−

1
2 η

(P)

+
(
1 + 1

2
η

)
μ+

1
2 η

(N ) −
(
1 − 1

2
η

)
μ−

1
2 η

(N )

=
(
1 + 1

2
η

)
−
(
1 − 1

2
η

)
= η,

since μ+
η and μ−

η are probability measures and N � P = G. The result is proved. 
�
This can be slightly generalised in the following convenient way.

Lemma 4.2 Suppose that B is a Bohr system and μ is a B-approximately invariant
probability measure. Then

‖τx ( f ∗ μ) − f ∗ μ‖L∞(G) ≤ η‖ f ‖L∞(G) for all x ∈ B 1
2 η.
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Proof Simply note that

| f ∗ μ(y − x) − f ∗ μ(y)| ≤
∫

| f (z)|d|τx (μ) − μ|(z) ≤ η‖ f ‖L∞(G)

by the triangle inequality and Lemma 4.1. 
�
Approximately invariant probability measures are closed under convolution with

probability measures.

Lemma 4.3 Suppose that B is a Bohr system, μ is a B-approximately invariant prob-
ability measure, and ν is a probability measure. Then μ ∗ ν is a B-approximately
invariant probability measure.

Proof Sinceμ is B-approximately invariant there are probabilitymeasures (μ−
η )η∈(0,1]

and (μ+
η )η∈(0,1] such that

(1 − η)μ−
η ≤ τx (μ) ≤ (1 + η)μ+

η for all x ∈ Bη.

Since ν is a probability measure we can integrate the above inequalities to get

(1 − η)μ−
η ∗ ν ≤ τx (μ) ∗ ν ≤ (1 + η)μ+

η ∗ ν for all x ∈ Bη.

But then since τx (μ) ∗ ν = τx (μ ∗ ν) we can put (μ ∗ ν)−η := μ−
η ∗ ν and (μ ∗ ν)+η :=

μ+
η ∗ ν to get the required family of measures for μ ∗ ν. 
�
The last result of this section is essentially [3, Lemma 3.0] and ensures a plentiful

supply of approximately invariant probability measures.

Proposition 4.4 Suppose that B is a Bohr system, and X is a non-empty set with
mG(X + B1) ≤ KmG(X). Then there is a λB-approximately invariant probability
measure with support contained in X + B1 for some 1 ≥ λ ≥ 1

24 log 2K .

Proof Let C := 24 and λ := 1/C log 2K . Note that K ≥ 1 and so λ < 1/4. Suppose
that for all κ ∈ [ 14 , 3

4

]
there is some δκ ∈ (0, λ] such that

mG(X + Bκ+δκ )

mG(X + Bκ−δκ )
> exp

(
1

2
λ−1δκ

)
.

Write Iκ := [κ − δκ , κ + δκ ], and note that
⋃

κ Iκ ⊃ [ 1
4 ,

3
4

]
. By the Vitali covering

lemma3 we conclude that there is a sequence κ1 < · · · < κm such that the intervals
(Iκi )

m
i=1 are disjoint and

m∑

i=1

2δκi =
m∑

i=1

μ(Iδκi
) ≥ 1

3
μ

([
1

4
,
3

4

])
= 1

6
.

3 One can also proceed directly here.
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Since the intervals (Iκi )
m
i=1 are disjoint, (κi )

m
i=1 is an increasing sequence, and

δκ1, δκm ≤ λ < 1
4 we see that

0 < κ1 − δκ1 < κ1 + δκ1 < · · · < κi + δκi < κi+1 − δκi+1 < · · · < κm + δκm < 1,

and hence

K = exp(1/24λ) ≤ exp

(
1

4
λ−1

m∑

i=1

2δκi

)

=
m∏

i=1

exp

(
1

2
λ−1δκi

)

<

m∏

i=1

mG(X + Bκi+δκi
)

mG(X + Bκi−δκi
)

= mG(X + Bκm+δκm
)

mG(X + Bκ1−δκ1
)

·
m−1∏

i=1

mG(X + Bκi+δκi
)

mG(X + Bκi+1−δκi+1 )

≤ mG(X + B1)

mG(X)
≤ K .

This is a contradiction and so there is some κ ∈ [ 14 , 3
4

]
such that

mG(X + Bκ+δ)

mG(X + Bκ−δ)
≤ exp

(
1

2
λ−1δ

)
for all δ ∈ (0, λ] .

Let μ be the uniform probability measure on X + Bκ , and for each η ∈ (0, 1] let μ−
η

be the uniform probability measure on X + Bκ−λη and μ+
η be the uniform probability

measure on X + Bκ+λη. If x ∈ (λB)η then x ∈ Bλη and so

τx (μ) ≤ mG(X + Bκ+λη)

mG(X + Bκ)
μ+

η ≤ exp

(
1

2
λ−1λη

)
μ+

η ≤ (1 + η)μ+
η ,

since 1 + x ≥ exp(x/2) whenever 0 ≤ x ≤ 1. Similarly

τx (μ) ≥ mG(X + Bκ−λη)

mG(X + Bκ)
μ−

η ≥ exp

(
−1

2
λ−1λη

)
μ−

η ≥ (1 − η)μ−
η ,

since 1 − x ≤ exp(−x/2) whenever 0 ≤ x ≤ 1. The result is proved. 
�
For applications it will often be useful to have the following corollary.
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Corollary 4.5 Suppose that B is aBohr systemwithdim B ≤ d for someparameter d ≥
1. Then there is some λ ∈ (�(d−1), 1] and a λB-approximately invariant probability
measure μ supported on B1.

Proof Put X := B 1
2
and B ′ := 1

2 B. By Lemma 2.2 we know that

mG(X + B ′
1) = mG(B 1

2
+ B 1

2
) ≤ C

(
B 1

2
; B 1

4

)2
mG(B 1

4
+ B 1

4
).

However, by sub-additivity ofBohr sets B 1
4
+B 1

4
⊂ B 1

2
= X . Thus given the definition

of doubling dimension and the first inequality in Lemma 3.7 part (iii) we see that

mG(X + B ′
1)

mG(X)
≤ C

(
B 1

2
; B 1

4

)2 ≤ 22 dim
∗ B ≤ 22d .

By Proposition 4.4 applied to X and B ′ there is a λB ′-approximately invariant proba-
bility measure μ with support in X + B ′

1 = B 1
2

+ B 1
2

⊂ B1. The result follows since

λ ≥ 1/24 log 22d+1 and λB ′ = λ
2 B. 
�

5 Approximate Annihilators

We shall understand the dual group of G through what we call ‘approximate annihi-
lators’, though this nomenclature is non-standard.

Given a set S ⊂ G and aparameterρ > 0wedefine theρ-approximate annihilator
of S to be the set

N (S, ρ) := {γ ∈ Ĝ : |1 − γ (x)| < ρ for all x ∈ S}.

Approximate annihilators enjoy many of the same properties as Bohr sets as we
record in the following trivial lemma (an analogue of Lemma 3.1).

Lemma 5.1 (Properties of approximate annihilators) Suppose that S is a set. Then

(i) (Identity) 0Ĝ ∈ N (S, ρ) for all ρ > 0;
(ii) (Symmetry) N (S, ρ) = −N (S, ρ) for all ρ > 0;
(iii) (Nesting) N (S, ρ) ⊂ N (S, ρ′) whenever 0 < ρ ≤ ρ′;
(iv) (Sub-additivity) N (S, ρ) + N (S, ρ′) ⊂ N (S, ρ + ρ′) for all ρ, ρ′ > 0.

Approximate annihilators and approximately invariantmeasures interact ratherwell
as is captured by the following version of [14, Lemma 3.6]. To state it we require the
Fourier transform extended to measures: for μ ∈ M(G) we define

μ̂ : Ĝ → C; γ �→
∫

γ (x)dμ(x).
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Lemma 5.2 (Majorising annihilators) Suppose that B is a Bohr system with μ a B-
approximately invariant probability measure, and κ, η ∈ (0, 1] are parameters. Then

{γ ∈ Ĝ : |μ̂(γ )| ≥ κ} ⊂ N (B 1
2 κη, η).

Proof Suppose that |μ̂(γ )| ≥ κ and y ∈ B 1
2 κη. Then −y ∈ B 1

2 κη by symmetry and so
by Lemma 4.1 we have

|1 − γ (y)|κ <

∣∣∣∣
∫

γ (x)dμ(x) −
∫

γ (x + y)dμ(x)

∣∣∣∣ ≤ ‖μ − τ−y(μ)‖ ≤ ηκ.

The result follows on dividing by κ . 
�
In the more general topological setting where G is not assumed finite, approximate

annihilators form a base for the topology of the dual group [26, Theorem 1.2.6]. [26,
Theorem 1.2.6] also captures the natural duality between our approximate annihilators
and sets of the form

{x ∈ G : |1 − γ (x)| < ρ for all γ ∈ 
} for 
 ⊂ Ĝ. (5.1)

A number of elements of this paper would be neater if our Bohr sets were replaced
by (a suitable generalisation of) sets of the form given in (5.1). The only benefit we
know of arising from our choice is that the proof of Lemma 3.4 is slightly easier for
vectors of Bohr sets.

For us the duality in [26, Theorem 1.2.6] is captured in the following lemma.

Lemma 5.3 (Duality of Bohr sets and approximate annihilators)

(i) If X is a non-empty subset of G and ε ∈ (0, 1] then

X ⊂ Bohr (N (X , ε), δ) where δ := ε

4
· 1N (X ,ε);

(ii) if 
 is a non-empty set of characters of G and δ : 
 → R>0 then


 ⊂ N (Bohr (
, δ) , ε) where ε = 2π‖δ‖�∞(
).

Proof First note that

1 − θ2

2
≤ cos θ ≤ 1 − 2θ2

π2 whenever |θ | ≤ π.

On the other hand ‖z‖ ≤ 1
2 for all z ∈ S1 and

√
2 − 2 cos 2π‖z‖ = |z − 1|.
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It follows that

4‖γ (x)‖ ≤ |γ (x) − 1| ≤ 2π‖γ (x)‖ for all x ∈ G, γ ∈ Ĝ.

The result is proved once we disentangle the meaning of the two claims. 
�
The following is [35, Proposition 4.39] extended to two sets. The proof is the same.

Lemma 5.4 Suppose that S, T are non-empty sets such that mG(S + T ) ≤ KmG(S)

and ε ∈ (0, 1] is a parameter. Then

{γ ∈ Ĝ : |1̂S+T (γ )| > (1 − ε)mG(S + T )} ⊂ N (T − T , 2
√
2εK ).

Proof For each γ ∈ Ĝ let ωγ ∈ S1 be such that ωγ 1̂S+T (γ ) = |1̂S+T (γ )|. For all
t, t ′ ∈ T we then have

|γ (t) − γ (t ′)|2mG(S) =
∫

S
|γ (t + s) − γ (t ′ + s)|2dmG(s)

≤ 2

(∫

S
|γ (t + s) − ωγ |2dmG(s)

+
∫

S
|γ (t ′ + s) − ωγ |2dmG(s)

)

≤ 4
∫

S+T
|γ (x) − ωγ |2dmG(x) = 8(mG(S+T ) − |1̂S+T (γ )|).

It follows that if |1̂S+T (γ )| > (1 − ε)mG(S + T ) then

|γ (t − t ′) − 1| = |γ (t) − γ (t ′)| < 2
√
2εK ,

and the result is proved. 
�

6 Fourier Analysis

In this section we turn our attention to the Fourier transform itself. First we have the
Fourier inversion formula [26, Theorem 1.5.1]: if f ∈ A(G) then

f (x) =
∑

γ∈Ĝ
f̂ (γ )γ (x) for all x ∈ G.

Since G is finite this is a purely algebraic statement which can be easily checked. It
can be used to prove Parseval’s theorem [26, Theorem 1.6.2] that if f , g ∈ L2(mG)

then

〈 f , g〉L2(mG ) = 〈 f̂ , ĝ〉�2(Ĝ) =
∑

γ∈Ĝ
f̂ (γ )ĝ(γ ). (6.1)
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One of the key uses of Bohr sets is as approximate invariant sets for functions.

Lemma 6.1 Suppose that
 is a set of k characters. Then there is a Bohr system B with
C�(G; B1) ≤ 1 and dim B = O(k), such that for every f ∈ A(G) with supp f̂ ⊂ 


we have

‖τx ( f ) − f ‖L∞(G) ≤ ε‖ f ‖A(G) whenever x ∈ B 1
π

ε.

Proof For each γ ∈ 
 let B(γ ) be the Bohr system with frequency set {γ } and width
function the constant function 1

2 and put B := ∧
γ∈
 B(γ ). (Equivalently, let B be the

Bohr system with frequency set 
 and width function the constant function 1
2 .)

Since ‖z‖ ≤ 1
2 for all z ∈ S1 we see that B1 = G. It follows from Lemma 2.4 part

(iii) that C�(G; B1) = C�(G;G −G) ≤ C(G;G). On the other hand G ⊂ {0G} +G
and so C(G;G) ≤ 1 as claimed.

By Lemma 3.3 (and the second inequality in Lemma 3.7 part (iii)) we have
dim B(γ ) = O(1) and by Lemma 3.7 part (i) we conclude that dim B = O(k).

Now, suppose that f is of the given form, meaning supp f̂ ⊂ 
 and f ∈ A(G).
Then by Fourier inversion we have

|τx ( f )(y) − f (y)| =
∣∣∣∣∣∣

∑

γ∈


f̂ (γ )(γ (x + y) − γ (y))

∣∣∣∣∣∣
≤ ‖ f ‖A(G) sup{|γ (x) − 1| : γ ∈ 
}.

On the other hand the second part of Lemma 5.3 tells us that this supremum is at most
ε when x ∈ B 1

π
ε and the result is proved. 
�

The next result is a variant of [7, Lemma 3.2] proved using their beautiful method.

Lemma 6.2 Suppose that B is a Bohr system, μ is B-approximately invariant, g ∈
A(G), and p ∈ [1,∞) and ε ∈ (0, 1] are parameters. Then there is a Bohr system
B ′ ≤ B such that for any A ⊂ G we have

C�(A; B ′
1) ≤ (2ε−1)O(pε−2)C�(A; B1) and dim B ′ ≤ dim B + O(pε−2),

and

‖τx (g) − g‖L p(μ) ≤ ε‖g‖A(G) for all x ∈ B ′
1.

Proof We may certainly suppose that g 
≡ 0 so that ‖g‖A(G) > 0 (or else simply
take B ′ := B and we are trivially done). Consider independent identically distributed
random variables X1, . . . , Xl taking values in L∞(G) with

P

(
Xi = ĝ(γ )

|̂g(γ )|γ
)

= 1

‖g‖A(G)

|̂g(γ )| for all γ ∈ Ĝ such that |̂g(γ )| 
= 0.

Note that this is well-defined since 0 < ‖g‖A(G) < ∞. Moreover, by the Fourier
inversion formula, we have
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EXi (x) =
∑

γ∈Ĝ
γ (x)

ĝ(γ )

|̂g(γ )| · |̂g(γ )|
‖g‖A(G)

= g(x)

‖g‖A(G)

for all x ∈ G.

Regarding the variables Xi (x) − g(x)‖g‖−1
A(G) as elements of L p(P

l) and noting,
further, that

∥∥∥∥Xi (x) − g(x)

‖g‖A(G)

∥∥∥∥
L∞(Pl )

≤ ‖Xi (x)‖L∞(Pl )

+
∥∥∥∥

g(x)

‖g‖A(G)

∥∥∥∥
L∞(Pl )

= 1 + |g(x)|
‖g‖A(G)

≤ 2,

we can apply the Marcinkiewicz-Zygmund inequality (see e.g. [7, Lemma 3.1]) to get

E

∣∣∣∣∣

l∑

i=1

Xi (x) − g(x)l

‖g‖A(G)

∣∣∣∣∣

p

= O (pl)p/2 .

We integrate the above againstμ+
1 (recall this is one of the family ofmeasures provided

by the hypothesis that μ is B-approximately invariant) and rearrange so that

E

∥∥∥∥∥‖g‖A(G)

1

l

l∑

i=1

Xi − g

∥∥∥∥∥

p

L p(μ
+
1 )

= O
(
pl−1‖g‖2A(G)

)p/2
.

Now, take l = O(ε−2 p) such that the right hand side rescaled is at most
(

ε‖g‖A(G)

8

)p
.

It follows that there are characters γ1, . . . , γl such that

‖ f − g‖L p(μ
+
1 ) ≤ ε‖g‖A(G)

8
where f := ‖g‖A(G) · 1

l

l∑

i=1

ĝ(γi )

|̂g(γi )|γi .

Since ‖ f ‖A(G) ≤ ‖g‖A(G) (by the triangle inequality) we may apply Lemma 6.1 to
the set of character {γ1, . . . , γl} to get a Bohr system B ′′ with C�(G; B ′′

1 ) ≤ 1 and
dim B ′′ = O(l) = O(ε−2 p) such that

‖τx ( f ) − f ‖L∞(G) ≤ ε‖g‖A(G)

2
for all x ∈ B ′

1
2π ε

.

If x ∈ B1 then by the approximate invariance of μ we have τx (μ) ≤ 2μ+
1 and

μ ≤ 2μ+
1 , and so by the triangle inequality we have

‖τx (g) − g‖L p(μ) ≤ ‖τx (g) − τx ( f )‖L p(μ) + ‖τx ( f ) − f ‖L p(μ) + ‖ f − g‖L p(μ)

= ‖g − f ‖L p(τ−x (μ)) + ‖τx ( f ) − f ‖L p(μ) + ‖ f − g‖L p(μ)

≤ 2 · 2 1
p ‖g − f ‖L p(μ

+
1 ) + ‖τx ( f ) − f ‖L∞(G).
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We conclude that

‖τx (g) − g‖L p(μ) ≤ 2 · 21/p · ε‖g‖A(G)

8
+ ε‖g‖A(G)

2
≤ ε‖g‖A(G) whenever x ∈ B1 ∩ B ′′

1
2π ε

.

Put B ′ := B ∧ (( 1
2π ε)B ′′) and note by Lemma 3.7 parts (i) and (ii), and the earlier

bound on dim B ′′ that

dim B ′ ≤ dim B + dim

((
1

2π
ε

)
B ′′
)

≤ dim B + dim B ′′ = dim B + O(pε−2);

and by Lemma 2.4 part (ii) and Lemma 3.8 part (i) and the bounds on B ′′ we have

C�(A; B ′
1) = C�

(
A ∩ G; B1 ∩

((
1

2π
ε

)
B ′′
)

1

)

≤ C� (A; B1) C�

(
G;
((

1

2π
ε

)
B ′′
)

1

)

≤ C� (A; B1) (8πε−1)dim B′′C�
(
G; B ′′

1

)

≤ C� (A; B1) (2ε−1)O(pε−2).

The result is proved. 
�

7 Quantitative Continuity

It is well known that if G is a locally compact Abelian group and f ∈ A(G) then
f is uniformly continuous. If G is finite then this statement has no content—every
function on G is uniformly continuous—but in the paper [14], Konyagin and Green
proved a statement which can be thought of as a quantitative version of this fact which
still has content for finite Abelian groups. The main purpose of this section is to prove
the following result of this type using essentially their method.

Proposition 7.1 Suppose that B is a Bohr system of dimension at most d (for some
d ≥ 1), f ∈ A(G), and δ, κ ∈ (0, 1] and p ≥ 1 are parameters. Then there is a Bohr
system B ′ ≤ B such that for any A ⊂ G we have

C�(A; B ′
1) ≤ exp(O(δ−1d log 2κ−1d + pδ−3 log3 2pκ−1δ−1))C�(A; B1)

and

dim B ′ ≤ d + O(pδ−2 log2 2δ−1),
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and a B ′-approximately invariant probability measure μ and a probability measure ν

supported on B ′
κ such that

sup
x∈G

‖ f − f ∗ μ‖L p(τx (ν)) ≤ δ‖ f ‖A(G).

We shall prove Proposition 7.1 iteratively using the following lemma (which is,
itself, proved iteratively).

Lemma 7.2 Suppose that B is a Bohr system of dimension at most d (for some d ≥ 1),
ν is a B-approximately invariant probability measure, μ is a probability measure
supported on a set X, f ∈ A(G) and δ, η ∈ (0, 1] and p ≥ 1 are parameters. Then
at least one of the following is true:

(i) we have

sup
x∈G

‖ f − f ∗ μ‖L p(τx (ν)) ≤ δ‖ f ‖A(G);

(ii) there is some 1 ≥ ρ = �(δ) and a Bohr system B ′ ≤ B such that for any A ⊂ G
we have

C�(A; B ′
1) ≤ exp(O(pρ2δ−2 log3 2pδ−1 + d log d))C�(A; B1)

and

dim B ′ ≤ dim B + O(pρ2δ−2 log2 2δ−1),

such that

∑

γ∈N
(
B′
2−7δη

,η
)
\N(X ,2−5δ)

| f̂ (γ )| ≥ ρ‖ f ‖A(G).

Proof Since the hypotheses and conclusions are invariant under translation by x it
suffices to prove that if

‖ f − f ∗ μ‖L p(ν) > δ‖ f ‖A(G), (7.1)

then we are in the second case of the lemma.
Let κ := �log2 8δ−1�−1 for reasons which will become clear later; at this stage it

suffices to note thatκ ∈ (0, 1/2]. Define δi := (1−κ)iδ for integers i with 0 ≤ i ≤ κ−1

and put g0 := f − f ∗ μ. Suppose that we have defined a function gi such that

‖gi‖L p(ν) > δi‖ f ‖A(G), ‖gi‖A(G) ≤ 21−i‖ f ‖A(G) and gi = g0 ∗ μi

for some probability measure μi . By taking μ0 to be the delta probability measure
assigning mass 1 to 0G , we see from (7.1) that gi satisfies these hypotheses for i = 0.
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By Lemma 6.2 applied to the function gi , the Bohr system B and measure ν with
parameters p and εi := κ‖gi‖L p(ν)‖gi‖−1

A(G), there is a Bohr system B(i) with

C�(A; B(i)
1 ) ≤ exp(O(pε−2

i log 2ε−1
i ))C�(A; B1) for any A ⊂ G (7.2)

and

dim B(i) ≤ dim B + O(pε−2
i ) (7.3)

such that

‖τx (gi ) − gi‖L p(ν) ≤ κ‖gi‖L p(ν) for all x ∈ B(i)
1 .

By Corollary 4.5 applied to B(i) there is some 1 ≥ λi = �((1 + dim B(i))−1) and a
λi B(i)-approximately invariant probabilitymeasure ν(i) supported on B(i)

1 . Integrating
(and applying the integral triangle inequality) we conclude that

‖gi − gi ∗ ν(i)‖L p(ν) ≤ κ‖gi‖L p(ν),

and so by the triangle inequality and hypothesis on gi we have

‖gi ∗ ν(i)‖L p(ν) ≥ ‖gi‖L p(ν) − κ‖gi‖L p(ν) > δi+1‖ f ‖A(G).

Put gi+1 := gi ∗ ν(i) and μi+1 = μi ∗ ν(i). If ‖gi+1‖A(G) ≤ 21−(i+1)‖ f ‖A(G)

then repeat; otherwise terminate the iteration. Since κ ≤ 1
2 and x �→ (1 − x)x

−1
is

monotonically decreasing for all x ∈ (0, 1] we see that if i ≤ κ−1 then

1

4
δ‖ f ‖A(G) ≤ (1 − κ)κ

−1
δ‖ f ‖A(G) ≤ (1 − κ)iδ‖ f ‖A(G)

≤ δi‖ f ‖A(G) < ‖gi‖L p(ν) ≤ ‖gi‖A(G). (7.4)

Given our choice of κ we see that 21−κ−1‖ f ‖A(G) ≤ 1
4δ‖ f ‖A(G) and so it follows

from (7.4) that there is some minimal i ≤ κ−1 such that ‖gi‖A(G) > 21−i‖ f ‖A(G). In
particular 2−i ≥ 2−4δ.

By choice of i , construction of μi , and definition of g0 we have (where we use the
fact that f̂ ∗ μ(γ ) = f̂ (γ )μ̂(γ ))

21−i‖ f ‖A(G) ≤ ‖gi‖A(G) = ‖g0 ∗ μi−1 ∗ ν(i−1)‖A(G)

=
∑

γ∈Ĝ
| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )||μ̂i−1(γ )|

≤
∑

γ∈Ĝ
| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )|.
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Hence

∑

| ̂ν(i−1)(γ )|>2−6δ

|1−γ (x)|≥2−5δ for some x∈X

| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )|

+
∑

|1−γ (x)|<2−5δ for all x∈X
| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )|

+
∑

| ̂ν(i−1)(γ )|≤2−6δ

| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )|

≥
∑

γ∈Ĝ
| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )|.

If γ ∈ Ĝ is such that |1− γ (x)| < 2−5δ for all x ∈ X , then by the triangle inequality
|1 − μ̂(γ )| ≤ 2−5δ, and hence the second sum on the left is at most 2−5δ‖ f ‖A(G).
Since |1 − μ̂(γ )| ≤ 2 by the triangle inequality, the third sum on the left is at most
2‖ f ‖A(G) · 2−6δ, and so by the triangle inequality we have

∑

| ̂ν(i−1)(γ )|>2−6δ

|1−γ (x)|≥2−5δ for some x∈X

| f̂ (γ )||1 − μ̂(γ )||̂ν(i−1)(γ )|

≥ 21−i‖ f ‖A(G) − 2−4δ‖ f ‖A(G)

≥ 21−i‖ f ‖A(G) − 2−i‖ f ‖A(G) = 2−i‖ f ‖A(G).

Put B ′ := λi−1B(i−1) and apply Lemma 5.2 to ν(i−1) and B ′ with parameters 2−6δ

and η to see that

{γ : |̂ν(i−1)(γ )| > 2−6δ and |1 − γ (x)| ≥ 2−5δ for some x ∈ X}
⊂ N (B ′

2−7δη
, η) \ N (X , 2−5δ).

Writing ρ := 2−i−1 = �(δ) and recalling that |1 − μ̂(γ )||̂ν(i−1)(γ )| ≤ 2 by the
triangle inequality we have

∑

γ∈N
(
B′
2−7δη

,η
)
\N(X ,2−5δ)

| f̂ (γ )| ≥ ρ‖ f ‖A(G).

It remains to note that εi−1 > κδi−12i−2 = �(κδρ−1) and so by Lemma 3.7 part (ii),
and (7.3) we see that dim B ′ satisfies the claimed bound. Finally, by Lemma 3.8 part
(i), (7.2), (7.3), and the lower bound on λi we have

C�(A; B ′
1) = C�(A; B(i−1)

λi−1
)
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≤ (4λ−1
i−1)

dim B(i−1)C�(A; B(i−1)
1 )

≤ (4λ−1
i−1)

dim B(i−1)
exp(O(pε−2

i−1 log 2ε
−1
i−1))C�(A; B1)

≤ dO(d) exp(O(pρ2δ−2 log3 2pδ−1))C�(A; B1),

for any A ⊂ G from which the lemma follows. 
�

Proof of Proposition 7.1 We proceed iteratively constructing Bohr systems (B(i))Ji=0
and reals (ρi )

J
i=1, and (di )Ji=0, such that

(i) dim B(i) ≤ di ;
(ii) B(i+1) ≤ B(i);
(iii) 1 ≥ ρi = �(δ) and

∑

N (B(i+1)
1 ,2−5δ)\N (B(i)

1 ,2−5δ)

| f̂ (γ )| ≥ ρi‖ f ‖A(G);

(iv) for any A ⊂ G we have

C�(A; B(i+1)
1 ) ≤ exp(O(pρ2

i δ
−2 log3 2pδ−1 + di log κ−1di ))C�(A; B(i)

1 );

(v) di+1 ≤ di + O(pρ2
i δ

−2 log2 2δ−1).

We initialise with B(0) := B and d0 := d. Suppose that we are at stage i of the
iteration. Apply Corollary 4.5 to B(i) to get some λi = �((1 + dim B(i))−1) and
a λi B(i)-approximately invariant probability measure μi supported on B(i)

1 . Apply
Corollary 4.5 to κλi B(i) to get some

λ′
i = �((1 + dim κλi B

(i))−1) = �(d−1
i )

and a λ′
iκλi B(i)-approximately invariant probability measure νi supported on κλi B

(i)
1 .

By Lemma 3.7 part (ii) we see that

dim λ′
iκλi B

(i) ≤ dim B(i) ≤ di .

Apply Lemma 7.2 to A, λ′
iκλi B(i), di , νi , μi , B

(i)
1 and f with parameters δ and 2−5δ

(and p).
Suppose the conclusion of the second case of Lemma 7.2 holds. Then there is some

ρi = �(δ) and a Bohr system B(i,1) ≤ λ′
iκλi B(i) such that

dim B(i,1) ≤ dim λ′
iκλi B

(i) + O(pρ2
i δ

−2 log2 δ−1); (7.5)
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and for any A ⊂ G we have

C�(A; B(i,1)
1 ) ≤ exp(O(pρ2

i δ
−2 log3 2pδ−1 + di log di ))C�(A; (λ′

iκλi B
(i))1).

However, for any A ⊂ G we have

C�(A; (λ′
iκλi B

(i))1) = C�(A; B(i)
λ′
iκλi

) ≤ (4λ−1
i (λ′

i )
−1κ−1)dim B(i)C�(A; B(i)

1 ),

by Lemma 3.8 part (i). Thus for any A ⊂ G we have

C�(A; B(i,1)
1 ) ≤ exp(O(pρ2

i δ
−2 log3 2pδ−1 + di log κ−1di ))C�(A; B(i)

1 ).

Additionally we have

∑

N
(
B(i,1)
2−12δ2

,2−5δ
)
\N (B(i)

1 ,2−5δ)

| f̂ (γ )| ≥ ρi‖ f ‖A(G).

Put B(i+1) := (2−12δ2)B(i,1) and we get (iii). Moreover,

B(i+1) = (2−12δ2)B(i,1) ≤ B(i,1) ≤ λ′
iκλi B

(i) ≤ B(i)

by the order preserving nature of dilation and the fact that 2−12δ ≤ 1 and λ′
iκλi ≤ 1;

it follows that we have (ii). Now, Lemma 3.7 part (ii) and (7.5) gives

dim B(i+1) = dim(2−12δ2)B(i,1) ≤ dim B(i,1)

≤ dim λ′
iκλi B

(i) + O(pρ2
i δ

−2 log2 δ−1)

≤ dim B(i) + O(pρ2
i δ

−2 log2 δ−1)

≤ di + O(pρ2
i δ

−2 log2 δ−1),

from which we get (v). Finally, Lemma 3.8 part (i) tells us that for any A ⊂ G we
have

C�(A; B(i+1)
1 ) = C�(A; B(i,1)

2−12δ2
)

≤ (214δ−2)dim B(i,1)C�(A; B(i,1)
1 )

≤ exp(O(pρ2
i δ

−2 log3 2pδ−1 + di log κ−1di ))C�(A; B(i)
1 ), (7.6)

from which we get (iv).
In the light of (ii) we see that B(i+1)

1 ⊂ B(i)
1 and hence

N (B(i+1)
1 , 2−5δ) ⊃ N (B(i)

1 , 2−5δ).
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It follows that after i steps we have

‖ f ‖A(G) ≥
∑

N (B(i)
1 ,2−5δ)

| f̂ (γ )| ≥
∑

j≤i

ρ j‖ f ‖A(G),

and hence

∑

j≤i

ρ j ≤ 1.

Since ρ j = �(δ) we conclude that we must be in the first case of Lemma 7.2 at some
step J = O(δ−1) of the iteration. In light of (v) we see that

di ≤ d + O(pδ−2 log2 2δ−1) for all i ≤ J .

It then follows from (7.6) that for any A ⊂ G we have

C�(A; B(J )
1 ) ≤

⎛

⎝
∏

j<J

exp(O(pρ2
j δ

−2 log3 2pδ−1 + d j log κ−1d j ))

⎞

⎠ C�(A; B1)

≤ exp(O(Jd log 2κ−1d + J pδ−2 log3 2pκ−1δ−1))C�(A; B1).

We now put B ′ := λJ B(J ), μ := μJ and ν := νJ , so that

sup
x∈G

‖ f − f ∗ μ‖L p(τx (ν)) ≤ δ‖ f ‖A(G).

By Lemma 3.8 part (i) we see that for any A ⊂ G we have

C�(A; B ′
1) = C�(A; B(J )

λJ
)

≤ (4λ−1
J )dim B(J )C�(A; B(J )

1 ) ≤ exp(O(dJ log 2dJ ))C�(A; B(J )
1 );

and by Lemma 3.7 part (ii) we have

dim B ′ = dim λJ B
(J ) ≤ dim B(J ) ≤ dJ .

The result follows. 
�

8 A Freiman-Type Theorem

The purpose of this section is to prove the following proposition, which is a routine if
slightly fiddly variation on existing material in the literature.
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Proposition 8.1 Suppose that A is non-empty and mG(A + A) ≤ KmG(A). Then
there is a Bohr system B with

C�(A; B1) = exp(O(log3 2K (log(2 log 2K ))4))

and

dim B = O(log3 2K (log(2 log 2K ))4),

such that

‖1A ∗ β‖L∞(G) = exp(−O(log 2K (log(2 log 2K )))) (8.1)

for any probability measure β supported on B1.

The proposition itself is closely related to Freiman’s theorem andwe refer the reader
to [35, Chapt. 5] for a discussion of Freiman’s theorem. For our purposes there are
two key differences:

(i) Freiman’s theorem is usually only statedwith thefirst twoconclusions. It is possible
to infer the fact that

‖1A ∗ β‖L∞(G) = exp(−O(log3 2K (log(2 log 2K ))4))

for any probability measure β supported on B1 from the bound on C�(A; B1), and
the fact that one can do better and get (8.1) in this sort of situation is an unpublished
observation of Green and Tao.

(ii) Freiman’s theorem also produces a coset progression rather than a Bohr system. A
set M is a d-dimensional coset progression if there are arithmetic progressions
P1, . . . , Pd and a subgroup H such that M = P1 + · · · + Pd + H . This definition
was made by Green and Ruzsa in [15] when they gave the first proof of Freiman’s
theorem for Abelian groups. The conclusion of Freiman’s theorem then is that
there is a coset progression M with

C�(A; M) = OK (1) and dim M = OK (1),

and the challenge is to identify good estimates for the OK (1)-terms.

For us it is the quantitative aspects of Proposition 8.1 that are important. The quanti-
tative aspects of Freiman’s theorem are surveyed in [29], and primarily arise from the
quantitative strength of the Croot–Sisask Lemma (in particular the m-dependence in
[6, Proposition 3.3]), but also some combinatorial arguments of Konyagin [21] dis-
cussed just before [29, Corollary 8.4]. Conjecturally all the big-O terms should be
O(log 2K ), though the proof below does not come close to that. It could probably be
tightened up to same on the power of log(2 log 2K ) in the first two estimates above,
at least reducing the 4 to a 3 but quite possible further.
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We shall prove Proposition 8.1 as a combination of the next three results which
we shall show in §8.1, §8.2, and §8.3 respectively. We say that a set X has relative
polynomial growth of order d if

mG(nX) ≤ ndmG(X) for all n ≥ 1.

The first result can be read out of the proof of [29, Proposition 2.5] and essentially
captures the power of the Croot–Sisask Lemma for our purposes.

Lemma 8.2 Suppose that A is non-empty with mG(A + A) ≤ KmG(A). Then there
is a symmetric set X containing the identity of relative polynomial growth of order
O(log3 2K (log(2 log 2K ))3) and

mG(X) ≥ exp(−O(log3 2K (log(2 log 2K ))3))mG(A),

and some naturals m = �(log 2K (log(2 log 2K ))) and r = O(log(2 log 2K )) such
that mX ⊂ r(A − A).

The second result is one we have already touched on and captured a key insight
of Green and Ruzsa in [15] that allows passage from relative polynomial growth to
structure.

Lemma 8.3 Suppose that X is a symmetric non-empty set with relative polynomial
growth of order d ≥ 1. Then there is a Bohr system B with

dim B = O(d) and mG(B1) = dO(d)mG(X).

such that X − X ⊂ B1.

Finally the last lemma is a development of a result of Bogolioùboff [2] revived for
this setting by Ruzsa [27], and then refined by Chang [5].

Lemma 8.4 Suppose that A is a non-empty set, B is a Bohr system and μ is a B-
approximately invariant probability measure, S ⊂ B1 has μ(S) > 0, and L, non-
empty, is such that ‖1L ∗ μS‖2L2(mG ) ≥ εmG(L). Then there is a Bohr system B ′ ≤ B
with

C�(A; B ′
1) ≤ (2ε−1)O(ε−2 log 2μ(S)−1)C�(A; B1)

and

dim B ′ = dim B + O(ε−2 log 2μ(S)−1)

such that B ′
1 ⊂ L − L + S − S.

With these results in hand we can turn to proving the main result of the section.
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Proof of Proposition 8.1 We apply Lemma 8.2 to A to get a non-empty symmetric set
X of relative polynomial growth of order O(log 2K log(2 log 2K ))3 with

mG(X) ≥ exp(−O(log 2K log(2 log 2K ))3)mG(A), (8.2)

and natural numbers m = �(log 2K log(2 log 2K )) and r = O(log(2 log 2K )) such
that mX ⊂ r(A − A). By Lemma 8.3 there is a Bohr system B ′ with X − X ⊂ B ′

1
such that

dim B ′ = O(log 2K log(2 log 2K ))3 and mG(B ′
1)

≤ exp(O(log3 2K (log(2 log 2K ))4))mG(X).

By nesting of Bohr we have that

C�(X − X; B ′
1) ≤ C�

(
B ′
1; B ′

1

) ≤ C�
(
B ′
1; B ′

1
2

)

≤ 2dim B′ = exp(O(log 2K log(2 log 2K ))3).

By Corollary 4.5 there is a probability measure μ and a Bohr system B ′′ = λB ′
for some λ = �((1 + dim B ′)−1) such that μ is supported on B ′

1 and μ is B ′′-
approximately invariant. By Lemma 3.8 part (i) (with reference set X − X ) we have

C�(X − X; B ′′
1 ) ≤ (4λ−1)dim B′′C�(X − X; B ′

1)

≤ exp(O(log3 2K (log(2 log 2K ))4)).

By the second inequality in Lemma 3.7 part (iii) and the definition of dimension there
is a set T with

|T | ≤ 22 dim
∗ B′ = exp(O(log 2K log(2 log 2K ))3) and B ′

1 ⊂ T + B ′
1
2
.

It follows from nesting of Bohr sets that

B ′
1 + B ′

1 ⊂ T + T + B ′
1
2

+ B ′
1
2

⊂ T + T + B ′
1.

Now, since suppμ ⊂ B ′
1 we see that 1B′

1+B′
1
∗ μ(x) = 1 for all x ∈ B ′

1 and so (since
0G ∈ X ) we have

mG(X) ≤ 〈1X , 1B′
1+B′

1
∗ μ〉L2(mG )

≤
∑

t∈T−T

〈1X ∗ μ, 1t+B′
1
〉L2(mG ) ≤ |T − T | sup

x∈G
μ(x + X)mG(B ′

1).

Inserting the upper bound for mG(B ′
1) and the upper bound for |T |, it follows that

there is some x such that

μ(x + X) ≥ exp(−O(log3 2K (log(2 log 2K ))4)).
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Now, put S := x + X and note from Plünnecke’s inequality that

m−1∏

l=0

mG(A − A + l S + S)

mG(A − A + l S)
=

m−1∏

i=0

mG(A − A + l X + X)

mG(A − A + l X)

= mG(A − A + mX)

mG(A − A)
≤ K 2(r+1).

Given the lower bound on m and upper bound on r it follows that there is some
0 ≤ l ≤ m − 1 such that

mG(A − A + l S + S) ≤ K
2(r+1)

m mG(A − A + l S) = O(mG(A − A + l S)).

Putting L := A − A + l S it follows by the Cauchy-Schwarz inequality that

‖1L ∗ μS‖2L2(mG ) ≥ mG(L)2

mG(L + S)
= �(mG(L)).

By Lemma 8.4 (with reference set X − X ) we then see that there is a Bohr system
B ≤ B ′′ with

C�(X − X; B1) ≤ exp(O(log3 2K (log(2 log 2K ))4))C�(X − X; B ′′
1 )

≤ exp(O(log3 2K (log(2 log 2K ))4)) (8.3)

and

dim B = dim B ′′ + O(log3 2K (log(2 log 2K ))4) = O(log3 2K (log(2 log 2K ))4),

such that

B1 ⊂ S + L − L − S ⊂ 2(A − A) + (l + 1)(S − S)

= 2(A − A) + 2(l + 1)X ⊂ (2r + 1)(A − A).

Since 0G ∈ X we see that X ⊂ r(A − A) and hence by Lemma 2.5 and Plünnecke’s
inequality (and (8.2) and (8.3)) we have

C�(A; B1) ≤ mG(A + X)

mG(X)
C�(X − X; B1)

≤ Kr+1mG(A)

exp(−O(log 2K log(2 log 2K ))3)mG(A)
exp(O(log3 2K (log(2 log 2K ))4))

= exp(O(log3 2K (log(2 log 2K ))4)).

Finally, if β is supported on B1 then

mG(A) ≤ 〈1A ∗ β, 1A+4r(A−A)〉L2(mG ) ≤ ‖1A ∗ β‖L∞(G)mG(A + 4r(A − A))
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from which the final bound follows by Plünnecke’s inequality. 
�

8.1 Croot–Sisask Lemma Arguments

The aim of this section is to prove the following lemma.

Lemma (Lemma 8.2) Suppose that A is non-empty with mG(A + A) ≤ KmG(A).
Then there is a symmetric set X containing the identity of relative polynomial growth
of order O(log3 2K (log(2 log 2K ))3) and

mG(X) ≥ exp(−O(log3 2K (log(2 log 2K ))3))mG(A),

and some naturals m = �(log 2K (log(2 log 2K ))) and r = O(log(2 log 2K )) such
that mX ⊂ r(A − A).

The material follows the proof of [29, Proposition 8.5] very closely, though we
shall need some minor modifications. We start by recording two results used to prove
that proposition.

Corollary 8.5 ([29, Corollary 5.3]) Suppose that X ⊂ G is a symmetric set and
mG((3k +1)X) < 2kmG(X) for some k ∈ N. Then X has relative polynomial growth
of order O(k).

This is just a variant of Chang’s covering lemma from [5] (see also [35, Lemma
5.31]).

Lemma 8.6 (Croot–Sisask, [29, Lemma 7.1]) Suppose that f ∈ L p(mG) for some
p ∈ [2,∞), S, T ⊂ G are non-empty such that mG(S+T ) ≤ LmG(S), and η ∈ (0, 1]
is a parameter. Then there is a symmetric set X containing the identity with

mG(X) ≥ (2L)−O(η−2 p)mG(T )

such that

‖τx ( f ∗ mS) − f ∗ mS‖L p(mG ) ≤ η‖ f ‖L p(mG ) for all x ∈ X .

This captures the content of the Croot–Sisask Lemma [6, Proposition 3.3] for our
purposes.

We shall also need a slight variant of [29, Proposition 8.3].

Proposition 8.7 Suppose that A, S and T are non-empty with mG(A+S) ≤ KmG(A)

and mG(S + T ) ≤ LmG(S), and m ∈ N is a parameter. Then there is a symmetric set
S containing the identity with

mG(X) ≥ exp(−O(m2(log 2K ) log 2L))mG(T ) and mX ⊂ S + A − A − S.



Journal of Fourier Analysis and Applications (2020) 26 :25 Page 37 of 64 25

Proof Let f := 1A+S and apply the Croot–Sisask lemma (Lemma 8.6) with parame-
ters η and p (to be optimised later) to get a symmetric set X containing the identity
with mG(X) ≥ (2L)−O(η−2 p)mG(T ) such that

‖τx (1A+S ∗ m−S) − 1A+S ∗ m−S‖L p(mG ) ≤ η‖1A+S‖L p(mG ) for all x ∈ X .

It follows by the triangle inequality that

‖τx (1A+S ∗ m−S) − 1A+S ∗ m−S‖L p(mG ) ≤ ηm‖1A+S‖L p(mG ) for all x ∈ mX .

Taking an inner product with mA we see that for all x ∈ X we have

|〈τx (1A+S ∗ m−S),mA〉 − 〈1A+S ∗ m−S,mA〉| ≤ ηm‖1A+S‖L p(mG )‖mA‖L p′ (mG )

where p′ is the conjugate exponent to p. Now

〈1A+S ∗ m−S,mA〉 = 〈1A+S,mA ∗ mS〉 = 1.

Thus

|mA ∗ 1−(A+S) ∗ mS(x) − 1| ≤ ηmK 1/p for all x ∈ X .

We take p = 2 + log K , and then η = �(m−1) such that the term on the right is at
most 1/2 to get the desired conclusion. 
�

The above proposition is almost all we need for our main argument and it can be
used in the proof of Lemma 8.2 below to give a result with only slightlyweaker bounds.
However, we shall want a slight strengthening proved using the aforementioned idea
of Konyagin [21].

Proposition 8.8 Suppose that A is non-empty with mG(A+ A) ≤ KmG(A) and r , s ∈
N are parameters with r ≥ 3. Then there is an integer m = �(sr log1−O(r−1) 2K )

and a symmetric set T such that

mT ⊂ r(A − A) and mG(T ) ≥ exp(−O(s2r3 log3 2K ))mG(A).

Proof Define sequences

ri := 3 × 2i − 2 and Ki := mG(ri (A − A))

mG(A)
;

by Plünnecke’s inequality we have Ki ≤ K 2ri .
We proceed inductively to define sequences of non-empty sets (Si )i≥0 and (Ti )i≥0

with

Li := mG(Si + Ti )

mG(Si )
and mi := s

⌈
log 2Ki+1√
log 2Li

⌉
.
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We shall establish the following properties inductively for all i ≥ 0.

(i) Si and Ti are symmetric sets containing the identity such that

(A − A) ⊂ Si ⊂ ri (A − A);

(ii) and

Li ≤ exp(4 log2
−i
2K );

(iii) and

miTi+1 ⊂ Si + A − A − Si ;

(iv) and

mG(Ti+1) ≥ exp

⎛

⎝−O

⎛

⎝s2

⎛

⎝
i∑

j=0

r3j+1

⎞

⎠ log3 2K

⎞

⎠

⎞

⎠mG(T0).

We initialise with S0 := A− A and T0 := A− A so that S0 and T0 are symmetric sets
containing the identity (since A is non-empty) and

(A − A) = S0 = A − A = 1(A − A) = r0(A − A),

whence (i) holds. Moreover, by Plünnecke’s inequality we have

L0 = mG(S0 + T0)

mG(S0)
= mG((A − A) + (A − A))

mG(A − A)
≤ K 4 ≤ exp(4 log 2K ),

so that (ii) holds.
Suppose that we are at stage i of the iteration. Apply Proposition 8.7 to the sets

A, Si , and Ti with parameter mi . This produces a symmetric set Ti+1 containing the
identity such that

mG(Ti+1) ≥ exp(−O(m2
i (log 2Ki ) log 2Li ))mG(Ti )

and miTi+1 ⊂ Si + A − A − Si . (8.4)

First note that given the definition of mi , ri and ri+1 we have

mG(Ti+1) ≥ exp(−O(s2(log2 2Ki+1) log 2Ki ))mG(Ti )

= exp(−O(s2r3i+1 log
3 2K ))mG(Ti ),
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and so we get (iv). The second part of (8.4) ensures (iii). Moreover, we have

miTi+1 + (A − A) ⊂ Si + A − A − Si + A − A

⊂ ri (A − A) + (A − A) − ri (A − A) + (A − A)

= (2ri + 2)(A − A) = ri+1(A − A).

By the pigeon-hole principle there is some non-negative integer li ≤ mi/s − 1 such
that

mG(sTi+1 + sli Ti+1 + (A − A))

mG(sli Ti+1 + (A − A))
≤ mG(ri+1(A − A))

mG(A − A)

s
mi

. (8.5)

Set Si+1 := sli Ti+1 + (A− A) which is a symmetric set containing the identity since
both Ti+1 and A − A are. Since 0G ∈ Ti+1 and li ≤ mi/s − 1 we have

A − A ⊂ Si+1 ⊂ miTi+1 + (A − A) ⊂ ri+1(A − A)

which gives (i). Moreover, from (8.5) we have

Li+1 = mG(Ti+1 + Si+1)

mG(Si+1)
≤ mG(ri+1(A − A))

mG(A − A)

s
mi

≤ K
s
mi
i+1

≤ (2Ki+1)
s
mi

≤ exp
(√

log 2Li

)

≤ exp

(√
4 log2

−i
2K

)
≤ exp(4 log 2−(i+1)2K ),

so that (ii) holds.
Let i ≥ 1 be maximal such that 2ri−1 + 1 ≤ r (possible since r ≥ 3 = 2r0 + 1, so

that

i∑

j=0

r3i = O(r3) and 2−i = O(r−1),

and put T := Ti . The result follows since

mi−1T ⊂ Si−1 + A − A − Si−1 ⊂ (2ri−1 + 1)(A − A) ⊂ r(A − A),

and mG(T0) ≥ mG(A). 
�
Proof of Lemma 8.2 Let 3 ≤ r = O(log 2 log 2K ) be such that logO(r−1) 2K = O(1)
and apply Proposition 8.8 to the set A with the parameter s to be optimised shortly.
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We get a natural m = �(rs log 2K ) and a symmetric set S containing the identity
such that

mX ⊂ r(A − A) and mG(X) ≥ exp(−O(s2r3 log3 2K ))mG(A).

Let k := m3. By Plünnecke’s inequality we have

mG((3k + 1)X) ≤ mG(3(m2 + 1)mX)

≤ mG(3(m2 + 1)r(A − A))

≤ K 3m2r exp(O(s2r3 log3 2K ))mG(X) ≤ exp(O(k/s))mG(X).

For s = O(1) sufficiently large the right hand side is strictly less than 2k (since X is
non-empty) and hencewe can apply Corollary 8.5 to see that X has relative polynomial
growth of order O((log(2 log 2K ))3 log3 2K ). The result is proved. 
�

8.2 From Relative Polynomial Growth to Bohr Sets of Bounded Dimension

The next proposition is routine with the core of the argument coming from [15].

Lemma (Lemma 8.3) Suppose that X is a symmetric non-empty set with relative
polynomial growth of order d ≥ 1. Then there is a Bohr system B with

dim B = O(d) and mG(B1) = dO(d)mG(X),

such that X − X ⊂ B1.

Proof Let m = O(d log 2d) be a natural number such that m
d

m−1 ≤ 3
2 . Since X has

relative polynomial growth of order d we see by the pigeonhole principle that there is
some 2 ≤ l ≤ m such that

mG(l X)

mG((l − 1)X)
≤
(
mG(mX)

mG(X)

) 1
m−1 ≤ m

d
m−1 ≤ 3

2
.

Let ε := 1/218d2 (the reason for which choice will become clear later) and write


 := {γ ∈ Ĝ : |1̂l X (γ )| > (1 − ε)mG((l + 1)X)}

so that by Lemma 5.4 (applicable since l ≥ 2) we have that


 ⊂ N (X − X , 2
√
3ε).

Let δ : 
 → R>0 be the constant function taking the value 2−4 and B ′ be the Bohr
system with frequency set 
 and width function δ. By the first part of Lemma 5.3 we
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see that

X − X ⊂ Bohr

(
N (X − X , 2

√
3ε), 1N (X−X ,2

√
3ε)

√
3ε

2

)

⊂ Bohr

(

,

√
3ε

2
1


)
⊂ B ′

1/25d . (8.6)

We now show that this Bohr system is not too large. Let k ∈ N be a natural number
to be optimised shortly. Begin by noting that

∫ (
1(k)
l X

)2
dmG ≥ 1

mG(k(l X))

(∫
1(k)
l X dmG

)2

≥ mG(l X)2k−1

(kl)d
, (8.7)

where 1(k)
l X denotes the k-fold convolution of 1l X with itself, and the inequalities are

Cauchy-Schwarz and then the relative polynomial growth hypothesis. On the other
hand, by Parseval’s theorem

∑

γ /∈


|1̂l X (γ )|2k ≤ ((1 − ε)mG(l X))2k−2
∑

γ∈Ĝ
|1̂l X (γ )|2

≤ exp(−�(kd−2))mG(l X)2k−1 ≤ mG(l X)2k−1

2(kl)d

for some natural k = O(d3 log d). In particular, from (8.7) we have that

∑

γ /∈


|1̂l X (γ )|2k ≤ 1

2

∫ (
1(k)
l X

)2
dmG .

It then follows from Parseval’s theorem and the triangle inequality that

∑

γ∈


|1̂l X (γ )|2k =
∑

γ∈Ĝ
|1̂l X (γ )|2k −

∑

γ /∈


|1̂l X (γ )|2k

≥
∫ (

1(k)
l X

)2
dmG − 1

2

∫ (
1(k)
l X

)2
dmG = 1

2

∫ (
1(k)
l X

)2
dmG .

Write β for the uniform probability measure induced on B ′
1. By the second part of

Lemma 5.3 and the nesting of approximate annihilators we see that


 ⊂ N
(
B ′
1, 2π‖δ‖�∞(
)

) ⊂ N

(
B ′
1,

2π

24

)
⊂ N

(
B ′
1,

1

2

)
.

Thus by the triangle inequality, if γ ∈ 
 then

|1 − β̂(γ )| =
∣∣∣∣
∫

(1 − γ (x))dβ(x)

∣∣∣∣ ≤
∫

|1 − γ (x)|dβ(x) ≤ 1

2
,
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and hence |β̂(γ )| ≥ 1
2 . We conclude that

∑

γ∈Ĝ
|1̂l X (γ )|2k |β̂(γ )|2 ≥ 1

4

∑

γ∈


|1̂l X (γ )|2k ≥ mG(l X)2k−1

8(kl)d
.

But, by Parseval’s theorem and Hölder’s inequality we have that

∑

γ∈Ĝ
|1̂l X (γ )|2k |β̂(γ )|2 =

∫ (
1(k)
l X ∗ β

)2
dmG

=
∫

1(k)
l X ∗ 1(k)

−l X dβ ∗ β̃

= mG(B ′
1)

−1
∫

1(k)
l X ∗ 1(k)

−l X1B′
1
∗ β̃dmG

≤ mG(B ′
1)

−1‖1(k)
l X ∗ 1(k)

−l X‖L1(mG )

∥∥∥1B′
1
∗ β̃

∥∥∥
L∞(G)

= mG(l X)2k

mG(B ′
1)

,

and so

mG(B ′
1) ≤ 8(kl)dmG(l X) ≤ exp(O(d log 2d))mG(X). (8.8)

Now, note by sub-additivity and symmetry of Bohr sets and Ruzsa’s Covering Lemma
(Lemma 2.3) that for i ≥ 1 we have

C (B ′
2−i ; B ′

2−(i+3)

) ≤ C (B ′
2−i ; B ′

2−(i+4) − B ′
2−(i+4)

)

≤
mG

(
B ′
2−i + B ′

2−(i+4)

)

mG

(
B ′
2−(i+4)

)

≤
mG

(
B ′
2−(i−1)

)

mG

(
B ′
2−(i+4)

) .

Let J :=
⌊
log2 d
5

⌋
so that

J∏

j=0

C (B ′
2−(5 j+1); B ′

2−(5 j+4)

) ≤
J∏

j=0

mG

(
B ′
2−5 j

)

mG

(
B ′
2−5( j+1)

)

≤ mG(B ′
1)

mG(B ′
2−5(J+1) )

≤ mG(B ′
1)

mG(B ′
1/25d

)
≤ mG(B ′

1)

mG(X − X)
,

where the last inequality is from (8.6).
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By averaging there is some 0 ≤ j ≤ J such that

C (B ′
2−(5 j+1); B ′

2−(5 j+4)

) ≤
(

mG(B ′
1)

mG(X − X)

) 1
J

= exp(O(d)),

where the last inequality is from (8.8).
Set B := 2−(5 j+1)B ′ and apply Lemma 3.4 (possible since w(B) ≤ 2−5 < 1

4 ) to
see that dim∗ B = O(d). It follows by the second inequality in Lemma 3.7 part (iii)
that dim B = O(d). Moreover, nesting of Bohr sets tells us that X − X ⊂ B1 and

mG(B1) ≤ mG(B ′
1) ≤ exp(O(d log 2d)).

The result is proved. 
�

8.3 Bogolioùboff–Chang

In the paper [2] Bogolioùboff showed how to find Bohr sets inside four-fold sumsets.
The importance of this was emphasised by Ruzsa in [27] and refined by Chang in [5].
We shall need the following result in our work.

Lemma (Lemma 8.4) Suppose that A is a non-empty set, B is a Bohr system and μ

is a B-approximately invariant probability measure, S ⊂ B1 has μ(S) > 0, and L,
non-empty, is such that ‖1L ∗ μS‖2L2(mG ) ≥ εmG(L). Then there is a Bohr system
B ′ ≤ B with

C�(A; B ′
1) ≤ (2ε−1)O(ε−2 log 2μ(S)−1)C�(A; B1)

and

dim B ′ = dim B + O(ε−2 log 2μ(S)−1)

such that B ′
1 ⊂ L − L + S − S.

Proof Since μ is B-approximately invariant and μ̃ is a probability measure, Lemma
4.3 tells us that μ ∗ μ̃ is B-approximately invariant. By Parseval’s theorem we have

‖1L ∗ 1−L‖A(G) =
∑

γ∈Ĝ
|1̂L(γ )|2 =

∫
12LdmG = mG(L).

Apply Lemma 6.2 to B, μ ∗ μ̃, and 1L ∗ 1−L with parameters p ≥ 2 and η ∈ (0, 1]
to be optimised later. This gives us a Bohr system B ′ with

C�(A; B ′
1) ≤ (2η−1)O(pη−2)C�(A; B1) and dim B ′ ≤ dim B + O(pη−2)
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such that

‖τx (1L ∗ 1−L) − 1L ∗ 1−L‖L p(μ∗μ̃) ≤ ηmG(L) for all x ∈ B ′
1.

Since μ is non-negative we have

0 ≤ μS ∗ μ̃S ≤ μ(S)−2μ ∗ μ̃,

and so there is a function f with 0 ≤ f ≤ μ(S)−2 point-wise such that

∫
gdμS ∗ μ̃S =

∫
g f dμ ∗ μ̃ for all g ∈ L1(μS ∗ μ̃S).

( f is the Radon-Nikodym derivative of μS ∗ μ̃S with respect to μ ∗ μ̃.)
Write p′ for the conjugate index of p (so 1

p + 1
p′ = 1) we have

‖ f ‖L p′ (μ∗μ̃) ≤
(∫

μ(S)−2(p′−1) f dμ ∗ μ̃

)1/p′

= μ(S)−2/p.

If we take p = 2 + 2 logμ(S)−1 then we see from Hölder’s inequality that for all
x ∈ B ′

1 we have

|〈1L ∗ 1−L , μS ∗ μ̃S〉 − 〈τx (1L ∗ 1−L), μS ∗ μ̃S〉|
= ∣∣〈1L ∗ 1−L , f 〉L2(μ∗μ̃) − 〈τx (1L ∗ 1−L), f 〉L2(μ∗μ̃)

∣∣

= ∣∣〈1L ∗ 1−L − τx (1L ∗ 1−L), f 〉L2(μ∗μ̃)

∣∣
≤ ‖1L ∗ 1−L − τx (1L ∗ 1−L)‖L p(μ∗μ̃) ‖ f ‖L p′ (μ∗μ̃) ≤ eηmG(L).

By hypothesis

〈1L ∗ 1−L , μS ∗ μ̃S〉 = ‖1L ∗ μS‖2L2(mG ) ≥ εmG(L);

it follows that for η = 1
2e ε we have

〈τx (1L ∗ 1−L), μS ∗ μ̃S〉 ≥ ε

2
mG(L) for all x ∈ B ′

1.

However, the left hand side is 0 if x + L − L ∩ S − S = ∅ i.e. if x /∈ L − L + S − S.
The result is proved. 
�

9 Arithmetic Connectivity

The basic approach of our main argument (captured in Lemma 10.2) is iterative and
to make this work we need to consider not just integer-valued functions, but almost
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integer-valued functions. For ε ∈ (0, 1/2) we say that f : G → C is ε-almost
integer-valued if there is a function fZ : G → Z such that

‖ f − fZ‖L∞(G) ≤ ε.

Since ε < 1/2 this actually means that fZ is uniquely defined.
When a function f has small algebra norm and is close to integer-valued, it turns

out that fZ has a lot of additive structure. This is captured by a concept called arith-
metic connectivity identified by Green in [16, Definition 6.4]. We shall need a slight
refinement of this: for m, l ≥ 2 we say that a set A ⊂ G is (m, l)-arithmetically
connected if for every x ∈ Am there is some σ ∈ Z

m with ‖σ‖�m1
≤ l and |σi | = 1

for at least two is such that

σ · x :=
∑

i

σi xi ∈ A.

The definition is perhaps a little odd. To help we present some simple examples we
leave as exercises.

(i) A is (m, 1)-arithmetically connected for somem if and only if A = ∅. (Of course
this is not a significant example and can easily be removed by simply restricting
to m, l ≥ 2.)

(ii) If every element of A has order 2 then A is (m,m + k)-arithmetically connected
for some k ≥ 0 if and only if it is (m,m)-arithmetically connected.

(iii) If A is a subgroup then x+y ∈ A for all x, y ∈ A and so A is (2, 2)-arithmetically
connected. On the other hand, if G = Z and A = N then A is also (2, 2)-
arithmetically connected (for the same reason) but not ‘close’ to any subgroup.

(iv) If A is a union of k cosets (of possibly different subgroups) then by the pigeonhole
principle for any vector x ∈ A2k+1 there are indices i < j < k such that xi , x j , xk
are all in the same coset. It follows that xi + x j − xk is in that same coset and
hence in A. We conclude that A is (2k + 1, 3)-arithmetically connected.

Arithmetic connectivity is related to additive structure by the following easy adaptation
of [16, Proposition 6.5].

Lemma 9.1 Suppose that A is (m, l)-arithmetically connected (for m, l ≥ 2). Then

‖1A ∗ 1A‖2L2(mG ) ≥ m−O(l)mG(A)3.

Proof First we count the number of σ ∈ Z
m such that ‖σ‖�m1

≤ l. The number of ways

of writing a total of r as a sum of m non-negative integers is
(r+m

m

)
. For each such σ

we can choose the signs of the various integers in at most 2l ways (since at most l of
them are non-zero) and so the total number of σ ∈ Z

m with ‖σ‖�m1
≤ l is at most

l∑

r=0

(
r + m

m

)
2l ≤ l

(
m + l

m

)
2l = l

(
m + l

l

)
2l ≤ l

(
2e(m + l)

l

)l

= mO(l).
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It follows that there is such a σ ∈ Z
m such that for at leastm−O(l)|A|m vectors x ∈ Am

we have σ · x ∈ A. Rewriting this we have

mG(A)mm−O(l) ≤
∫

1A

(
m∑

i=1

σi xi

)
m∏

i=1

1A(xi )dmG(xi )

=
∑

γ

1̂A(γ )

m∏

i=1

1̂A(−σi · γ ).

Since |σi | = 1 for at least two i ∈ [m], |1̂A(γ )| = |1̂A(−γ )|, and |1̂A(−σi · γ )| ≤
mG(A) we conclude that

mG(A)m−2
∑

γ

|1̂A(γ )|3 ≥ mG(A)mm−O(l).

The result now follows from Cauchy-Schwarz and Parseval’s theorem which gives

∑

γ

|1̂A(γ )|3 ≤
⎛

⎝
∑

γ

|1̂A(γ )|4
⎞

⎠
1/2⎛

⎝
∑

γ

|1̂A(γ )|2
⎞

⎠
1/2

=
⎛

⎝
∑

γ

|1̂A(γ )|4
⎞

⎠
1/2 (∫

1A(x)2dmG(x)

)1/2

=
⎛

⎝
∑

γ

|1̂A(γ )|4
⎞

⎠
1/2

mG(A)1/2.


�
On the other hand additive connectivity is related to small algebra norm via the

following result.

Proposition 9.2 There is an absolute constant CMél > 0 such that the following
holds. Suppose that g ∈ A(G) is ε-almost integer-valued for some ε ∈ (0, 1/2) and
has ‖g‖A(G) ≤ M for some M ≥ 1. Then provided ε ≤ exp(−CMélM), the set
supp gZ is (O(M3), O(M))-arithmetically connected.

The proof of this owes a lot to [24, Lemme 1] of Méla, and we are grateful to
Ben Green for directing us to that paper. Indeed, as noted in [16, §9] an example
in Méla’s paper shows that one cannot hope to weaken the requirement that ε ≤
exp(−CM)) to anything with C below a certain absolute threshold. One can also
make use of the auxiliary measures [24, Lemme 4] constructed in Méla’s paper to
show that supp gZ is (O(M2 log 2M), O(M log 2M))-arithmetically connected but
for us this extra logarithm in the second parameter is worse than the benefit of a power
saving in the first when we apply Lemma 9.1.
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Wewrite Tn(x) for the Chebychev polynomial of degree n. Recall (from, for exam-
ple, [43, §6.10.6]) that we have a formula for Tn :

Tn(x) = n

2

�n/2�∑

r=0

(−1)r

n − r

(
n − r

r

)
(2x)n−2r = cos(n arccos x) for |x | ≤ 1;

the last form tells us immediately that ‖Tn‖L∞([−1,1]) ≤ 1.
We shall be particularly interested in the Chebyshev polynomials of odd degree.

Indeed, note from the above formula that if n = 2l + 1 for some non-negative integer
l, then only the coefficients of odd powers of x are non-zero and

T2l+1(x) =
l∑

j=0

c( j, l)x2 j+1,

where

c( j, l) = 22 j (−1)l− j 2l + 1

2 j + 1

(
l + j

l − j

)
= 22 j (−1)l− j 2l + 1

2 j + 1

(
l + j

2 j

)
.

In view of this we have

|c(0, l)| = 2l + 1 and |c( j, l)| = (O(l/ j))2 j+1. (9.1)

Added to this information we shall need the following lemma.

Lemma 9.3 Suppose that m ∈ N, and l ∈ N0 are parameters, g : G → C has support
A and x ∈ Gm is such that if σ ∈ Z

m has ‖σ‖�m1
≤ 2l +1 and σ · x ∈ A then |σi | = 1

for at most one value of i . Then for every ω ∈ �m∞ with ‖ω‖�m∞ ≤ 1 and 0 ≤ r ≤ l we
have
∣∣∣∣∣∣

∑

γ

(
Re

m∑

i=1

ωiγ (xi )

)2r+1

ĝ(γ )

∣∣∣∣∣∣
= exp(O(r + 1))(r + 1)rmr+1‖g‖L∞(G).

Proof We write C for the conjugation operator and note that by Fourier inversion we
have

∑

γ

(
Re

m∑

i=1

ωiγ (xi )

)2r+1

C(ĝ(γ ))

=
∑

γ

(
m∑

i=1

1

2
(ωiγ (xi ) + C(ωi )γ (−xi ))

)2r+1

C(ĝ(γ ))

= 1

22r+1

∑

π :[2r+1]→[m]
ι:[2r+1]→{0,1}

∑

γ

C(ĝ)(γ )γ

(
2r+1∑

i=1

(−1)ιi xπi

)
2r+1∏

i=1

Cιi (ωπi )
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= 1

22r+1

∑

π :[2r+1]→[m]
ι:[2r+1]→{0,1}

C(g)

(
−

2r+1∑

i=1

(−1)ιi xπi

)
2r+1∏

i=1

Cιi (ωπi ).

Applying the triangle inequality we see that

∣∣∣∣∣∣

∑

γ

(
Re

m∑

i=1

ωiγ (xi )

)2r+1

ĝ(γ )

∣∣∣∣∣∣

≤ 1

22r+1

∑

π :[2r+1]→[m]
ι:[2r+1]→{0,1}

‖g‖L∞(G)1A

(
−
∑

i

(−1)ιi xπi

)
. (9.2)

Given π : [2r + 1] → [m] and ι : [2r + 1] → {0, 1} we define σ(π, ι) ∈ Z
m by

σ j (π, ι) := −
∑

i :πi= j

(−1)ιi .

By the triangle inequality we have

‖σ(π, ι)‖�m1
=

m∑

j=1

|σ j | ≤
m∑

j=1

∑

i :πi= j

1 = 2r + 1 ≤ 2l + 1.

Moreover,

σ(π, ι) · x =
m∑

j=1

σ j (π, ι)x j = −
m∑

j=1

x j
∑

i :πi= j

(−1)ιi = −
2r+1∑

i=1

(−1)ιi xπi ,

and so 1A(σ (π, ι) · x) = 0 unless |σ j (π, ι)| = 1 for at most one j ∈ [m]. It remains to
bound fromabove thenumber of functionsπ : [2r+1] → [m] and ι : [2r+1] → {0, 1}
such that |σ j (π, ι)| = 1 for at most one j ∈ [m]. Since |σ j (π, ι)| = 1 for at most one
j it follows that the image of π has size at most r + 1, and hence the number of pairs
(π, ι) is at mosst

(
m

r + 1

)
· (r + 1)2r+1 · 22r+1 = exp(O(r + 1))(r + 1)rmr+1.

Inserting this into (9.2) gives the result. 
�
Proof of Proposition 9.2 Let A := supp gZ, and take l and m to be parameters to be
chosen later. Suppose that A is not (m, 2l + 1)-arithmetically connected, so that there
is some x ∈ Am such that for all σ ∈ Z

m with ‖σ‖�m1
≤ 2l + 1 and |σi | = 1 for at

least two i ∈ [m], we have gZ(σ · x) = 0.
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Our first task is to define ω ∈ �m∞. With ω appropriately defined we shall put

h := |G|
m

m∑

j=1

1

2

(
ω j1{x j } + ω j1{−x j }

)
,

so that

‖h‖L1(mG ) ≤ 1 and ĥ(γ ) = 1

m
Re

m∑

j=1

ω jγ (x j ).

The function gZ is real and since x j ∈ A we see that |gZ(x j )| ≥ 1 for all j ∈ [m].
It follows that

(i) either at least 1/3 of the indices j ∈ [m] have gZ(−x j ) = 0, in which case we
set ω j = sgn gZ(x j ) for all these indices and ω j = 0 for all others, and get

m∑

j=1

1

2

(
ω j gZ(x j ) + ω j gZ(−x j )

) ≥ m

6
;

(ii) or at least 1/3 of the indices j ∈ [m] have sgn gZ(x j ) = sgn gZ(−x j ), in which
case we set ω j = sgn gZ(x j ) for all these indices and ω j = 0 for all others and
get

m∑

j=1

1

2

(
ω j gZ(x j ) + ω j gZ(−x j )

) ≥ m

3
;

(iii) or at least 1/3 of the indices j ∈ [m] have sgn gZ(x j ) = − sgn gZ(−x j ), in
which case we set ω j = i for all these indices and ω j = 0 for all others and get

∣∣∣∣∣∣

m∑

j=1

1

2

(
ω j gZ(x j ) + ω j gZ(−x j )

)
∣∣∣∣∣∣
=
∣∣∣∣∣∣

m∑

j=1

1

2

(
gZ(x j ) − gZ(−x j )

)
∣∣∣∣∣∣
≥ m

3
.

By construction ‖ω‖�m∞ ≤ 1 and

∣∣∣
〈̂
h, ĝZ

〉
�2(Ĝ)

∣∣∣ =
∣∣∣∣∣∣

m∑

j=1

1

2

(
ω j gZ(x j ) + ω j gZ(−x j )

)
∣∣∣∣∣∣
≥ 1

6
.

By Lemma 9.3 for every 1 ≤ r ≤ l we have

∣∣∣〈̂h2r+1, ĝZ〉�2(Ĝ)

∣∣∣ =
∣∣∣∣∣∣

∑

γ

(
Re

m∑

i=1

ωiγ (xi )

)2r+1

ĝZ(γ )

∣∣∣∣∣∣
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= exp(O(r + 1))(r + 1)rmr+1‖gZ‖L∞(G)

= O(r)rmr+1(‖g‖L∞(G) + ε) = O(r)rmr+1M .

On the other hand, by Young’s inequality ‖h(2r+1)‖L1(mG ) ≤ 1 and so by Plancherel’s
theorem we see that

∣∣∣〈̂h2r+1, ĝZ〉�2(Ĝ) − 〈̂h2r+1, ĝ〉�2(Ĝ)

∣∣∣ =
∣∣∣〈(h(2r+1))∧, ĝZ〉�2(Ĝ) − 〈(h(2r+1))∧, ĝ〉�2(Ĝ)

∣∣∣

=
∣∣∣〈(h(2r+1))∧, (gZ − g)∧〉�2(Ĝ)

∣∣∣

=
∣∣∣〈h(2r+1), gZ − g〉L2(mG )

∣∣∣ ≤ ‖g − gZ‖L∞(G) ≤ ε

for all 0 ≤ r ≤ l.
Finally, −1 ≤ ĥ(γ ) ≤ 1, and so |T2l+1(̂h)| ≤ 1 and hence by (9.1) we get

M ≥
∣∣∣〈T2l+1(̂h), ĝ〉�2(Ĝ)

∣∣∣

≥
∣∣∣∣∣

l∑

r=0

c(r , l)〈̂h2r+1, ĝ〉�2(Ĝ)

∣∣∣∣∣

≥ |c(0, l)||〈̂h, ĝ〉�2(Ĝ)| −
l∑

r=1

|c(r , l)||〈̂h2r+1, ĝ〉�2(Ĝ)|

≥ |c(0, l)||〈̂h, ĝZ〉�2(Ĝ)| − ε

l∑

r=0

|c(r , l)| −
l∑

r=0

|c(r , l)||〈̂h2r+1, ĝZ〉�2(Ĝ)|

≥ (2l + 1)
1

6
− ε

l∑

r=1

O

(
l

r

)2r+1

− M
l∑

r=1

O

(
l

r

)2r+1

O(r)rm−r

≥ l

3
− ε exp(O(l)) − M

l3

m
exp(O(l2/m)).

It follows that if ε ≤ exp(−C1l) for some sufficiently large C1 > 0, m = C2l3 for
some sufficiently large C2 > 0 and l = C3M for some sufficiently large C3 > 0 then
we arrive at a contradiction, and we find that A is (m, 2l+1)-arithmetically connected.


�

10 TheMain Argument

We shall prove the following of which Theorem 1.1 is a special case arising from
taking δ := 1 and ε := exp(−C ′

Mél
M).

Theorem 10.1 There is an absolute constant C ′
Mél

> 0 such that if M ≥ 1 and
ε, δ ∈ (0, 1] are such that ε ≤ δ exp(−C ′

Mél
M), and f : G → Z is ε-almost integer-

valued with ‖ f ‖A(G) ≤ M, then there is some non-negative integer l ≤ M(1 + δ),
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subgroups H1, . . . , Hl ≤ G, and functions z1 : G/H1 → Z, . . . , zl : G/Hl → Z

such that

fZ =
l∑

i=1

∑

W∈G/Hi

zi (W )1W

and

‖zi‖�1(G/Hi ) ≤ exp(O(M4 log8 2M + M3 log δ−1(log(2 log 2δ−1)))) for 1 ≤ i ≤ l.

To do this we combine all our previous work into our key iterative lemma.

Lemma 10.2 Suppose that f ∈ A(G) is ε-almost integer-valued, ‖ f ‖A(G) ≤ M for
some M ≥ 1, supp fZ is non-empty and η ∈ (

0, 1
4

]
a parameter. Then provided

we have ε ≤ min{exp(−CMélM), 1/8} there is a function g that is (ε + η)-almost
integer-valued, a subgroup H ≤ G, and a function z : G/H → Z with

‖z‖�1(G/H) ≤ exp(O(M4 log8 2M + M3 log η−1(log(2 log 2η−1)))),

such that

gZ =
∑

W∈G/H

z(W )1W and ‖ f − g‖A(G) ≤ ‖ f ‖A(G) − 1 + (ε + η).

Proof Apply Proposition 9.2 to f to get that the set A := supp fZ is (O(M3), O(M))-
arithmetically connected (provided ε is sufficiently small). By Lemma 9.1 we see that

‖1A ∗ 1A‖2L2(mG ) = exp(−O(M log 2M))mG(A)3.

It follows from the Balog-Szemerédi-Gowers Theorem that there is a set A′ ⊂ A such
that

mG(A′) = exp(−O(M log 2M))mG(A) and mG(A′ + A′) ≤ exp(O(M log 2M))mG(A′).

By Proposition 8.1 there is a Bohr system B with

dim B = O(M3 log7 2M) and C�(A′; B1) = exp(O(M3 log7 2M))

and a constant ψ = exp(−O(M log2 2M)) such that

‖1A′ ∗ β‖L∞(G) ≥ ψ for all probability measures β with suppβ ⊂ B1. (10.1)

Apply Proposition 7.1 to the set A′, the Bohr system B, d := 1 + dim B, and the
function f with parameters

δ := 1/24M and κ := 1/25M,
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and

p := max{100CMélM, 1 + log2 ψ−1, 3 + log3 M + log3 η−1}
= O(max{M log2 2M, log η−1})

to get a Bohr system B ′ ≤ B with

C�(A′; B ′
1) ≤ exp(O(δ−1d log 2κ−1d + pδ−3 log3 2pκ−1δ−1))C�(A′; B1)

≤ exp(O(M4 log8 2M + M3 log η−1(log(2 log 2η−1))))

and

dim B ′ ≤ d + O(pδ−2 log2 2δ−1) = O(M3 log7 2M + M2(log2 2M) log η−1),

and a B ′-approximately invariant probability measure μ and a probability measure ν

supported on B ′
κ such that

sup
x∈G

‖ f − f ∗ μ‖L p(τx (ν)) ≤ δM .

By the integral triangle inequality it follows that

sup
x∈G

‖ f − f ∗ μ‖L p(τx (ν∗̃ν)) ≤ δM .

Since μ is B ′-approximately invariant and κ ≤ 1/2 it follows from Lemma 4.2 that
for all y ∈ supp ν ∗ ν̃ we have

| f ∗ μ(y + x) − f ∗ μ(x)| ≤ 2κ‖ f ‖L∞(G) ≤ 2κM,

and hence

sup
x∈G

‖ f − f ∗ μ(x)‖L p(τx (ν∗̃ν)) ≤ δM + 2κM = (δ + 2κ)M .

By the triangle inequality we then have

sup
x∈G

‖ fZ − f ∗ μ(x)‖L p(τx (ν∗̃ν)) ≤ (δ + 2κ)M + ε ≤ 1

4
, (10.2)

given the choices of δ and κ , and the upper bound on ε. We put k := ( f ∗ μ)Z which
will turn out to be the gZ in the conclusion. We establish the various properties in
order.

Claim f ∗ μ is 1
4 -almost integer-valued i.e. ‖k − f ∗ μ‖L∞(G) ≤ 1

4 .
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Proof Suppose that there is some x ∈ G such that | f ∗ μ(x) − k(x)| > 1
4 . Then

‖ fZ − f ∗ μ(x)‖L p(τx (ν∗̃ν)) ≥ ‖( f ∗ μ)Z − f ∗ μ(x)‖L p(τx (ν∗̃ν))

≥ ‖( f ∗ μ)Z − f ∗ μ(x)‖L p(τx (ν∗̃ν)) >
1

4

which contradicts (10.2). 
�
Claim k is invariant under translation by elements of B ′

κ .

Proof Since μ is B ′-approximately invariant it follows by the triangle inequality and
Lemma 4.2 that for all y ∈ B ′

κ and x ∈ G we have

|k(y + x) − k(x)| ≤ |k(y + x) − f ∗ μ(y + x)|
+ | f ∗ μ(y + x) − f ∗ μ(x)| + | f ∗ μ(x) − k(x)|

≤ 1

2
+ 2Mκ < 1.

It follows that k(y + x) = k(x) as claimed. 
�
The next two claims require the same calculation. Put θx := τx (ν ∗ ν̃)({y : fZ(y) 
=

k(x)}) and note that

‖ fZ − f ∗ μ(x)‖p
L p(τx (ν∗̃ν)) ≥

∫

{z: fZ(z) 
=k(x)}
|| fZ(y) − k(x)| − |k(x) − f ∗ μ(x)||p dτx (ν ∗ ν̃)(y)

≥ θx

(
3

4

)p

.

In light of (10.2) we then have θx ≤ 3−p.

Claim ‖ f ∗ν ∗ ν̃ − k‖L∞(G) ≤ η+ ε so that f ∗ν ∗ ν̃ is (ε +η)-almost integer-valued
and ( f ∗ ν ∗ ν̃)Z = k.

Proof By the triangle inequality we see that

| f ∗ ν ∗ ν̃(x) − k(x)| ≤ | fZ ∗ ν ∗ ν̃(x) − k(x)| + |( f − fZ) ∗ ν ∗ ν̃(x)|
≤ θx‖ fZ‖L∞(G) + ε ≤ (M + ε)θx + ε ≤ 2M3−p + ε.

It follows that f ∗ ν ∗ ν̃ is (η + ε)-almost integer-valued in light of the choice of p.
Since 2M3−p + ε < 1

2 we see that the integer part is unique and so ( f ∗ ν ∗ ν̃)Z = k.

�

Claim k 
≡ 0.
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Proof Since κ ≤ 1/2 and B ′ ≤ B we see that supp ν ∗ ν̃ ⊂ B1, and hence by (10.1)
that

1A′ ∗ ν ∗ ν̃(x) ≥ ψ

for some x ∈ G. If k(x) = 0 then

ψ ≤ 1A′ ∗ ν ∗ ν̃(x) ≤ 1A ∗ ν ∗ ν̃(x) = τx (ν ∗ ν̃)({y : fZ(y) 
= 0}) = θx ≤ 3−p,

which contradicts the choice of p. It follows that k(x) 
= 0. 
�
Claim ‖k‖L1(mG ) ≤ 2MmG(supp fZ).

Proof Note that

|k(x)| − ‖( fZ − f ) ∗ μ‖L∞(G) − ‖ f ∗ μ − k‖L∞(G) ≤ | fZ ∗ μ(x)|,

and so

1

2

∫
|k(x)dmG(x) ≤

∫
| fZ ∗ μ(x)|dmG(x) ≤ (M + ε)mG(supp fZ).


�
Write H for the group generated by B ′

κ so that Lemma 2.2, Lemma 2.4 part (iv),
and Lemma 3.8 part (i) tell us

mG(H) ≥ mG(B ′
κ) ≥ mG(A′)

C(A′; B ′
κ)

≥ mG(A′)
C�(A′; B ′

κ)
≥
(κ

4

)dim B′ mG(A′)
C�(A′; B ′

1)

≥ exp(−O(M4 log8 2M + M3 log η−1(log(2 log 2η−1))))mG(supp fZ).

From the claims, k is H -invariant and so there is awell-defined function z : G/H → Z

such that z(W ) = k(w) for all w ∈ W . Now we have from the claims that

‖z‖�1(G/H)mG(H) = ‖k‖L1(mG ) ≤ 2MmG(supp fZ),

which gives

‖z‖�1(G/H) ≤ exp(O(M4 log8 2M + M3 log η−1(log(2 log 2η−1)))).

It remains to put g := f ∗ ν ∗ ν̃ and note that gZ = k has the required properties.
Moreover, since k is not identically 0 we see that

‖g‖A(G) ≥ ‖g‖L∞(G) ≥ ‖k‖L∞(G) − (ε + η) ≥ 1 − ε − η,
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and

‖ f ‖A(G) =
∑

γ

| f̂ (γ )|

=
∑

γ

| f̂ (γ )|(1 − |̂ν(γ )|2) +
∑

γ

| f̂ (γ )||̂ν(γ )|2

= ‖ f − f ∗ ν ∗ ν̃‖A(G) + ‖ f ∗ ν ∗ ν̃‖A(G)

≥ ‖ f − f ∗ ν ∗ ν̃‖A(G) − (1 − (ε + η)),

from which we get the final inequality. 
�
We are now in a position to prove our main result.

Proof of Theorem 10.1 We produce a sequence of functions fi , reals εi+1, subgroups
Hi+1, and functions zi+1 : G/Hi+1 → Z such that

(i) εi := 2iε + 4i−2M−4δ exp(−CMélM);
(ii) fi is εi -almost integer-valued;
(iii) ‖ fi+1‖A(G) ≤ ‖ fi‖A(G) − 1

1+δ
;

(iv) ( fi+1 − fi )Z = ∑
W∈G/Hi+1

zi+1(W )1W .

Set f0 := f and note that since f is ε-almost integer-valued it is certainly ε0-
almost integer-valued. At stage i ≤ 2M + 1 apply Lemma 10.2 with parameter
η := 4−2M−3δ exp(−CMélM), which is possible (provided ε is sufficiently small)
since

εi ≤ 22M+1ε + 42M+1−2M−4δ exp(−CMélM) ≤ min{exp(−CMélM), δ2−3}.

Either ( fi )Z ≡ 0 and we terminate the iteration, or we get a function fi+1, a group
Hi+1 and a function zi+1 : G/Hi+1 → Z, such that fi+1 − fi is (εi + η)-almost
integer-valued,

( fi+1 − fi )Z =
∑

W∈G/Hi+1

zi+1(W )1W ,

‖zi+1‖�1(G/Hi+1) ≤ exp(O(M4 log8 2M

+M3 log δ−1(log(2 log 2δ−1))))

and

‖ fi+1‖ ≤ ‖ fi‖A(G) − (1 − (εi + η)) ≤ ‖ fi‖A(G) − 1

1 + δ
.

Since fi is εi -almost integer-valued it follows that fi+1 is (2εi + η)-almost integer-
valued. But

(2εi + η) ≤ 2(2iε + 4i−2M−4δ exp(−CMélM)) + 4−2M−3δ exp(−CMélM)

≤ 2i+1ε + 4(i+1)−2M−4δ exp(−CMélM),
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and so fi+1 is εi+1-almost integer-valued.
Since ‖ fi‖A(G) ≥ 0 we must have ( fl)Z ≡ 0 for some l ≤ M(1 + δ). But then

∥∥∥∥∥∥
f − ( fl)Z −

l−1∑

j=0

( f j+1 − f j )Z

∥∥∥∥∥∥
L∞(G)

≤
∥∥∥∥∥∥
f − fl −

l−1∑

j=0

( f j+1 − f j )

∥∥∥∥∥∥
L∞(G)

+ ‖ fl − ( fl)Z‖L∞(G) +
l−1∑

j=0

∥∥( f j+1 − f j ) − ( f j+1 − f j )Z

∥∥
L∞(G)

= 0 + εl +
l−1∑

j=0

(ε j + η) ≤ exp(O(M))ε + 1

4
<

1

2
,

provided ε is sufficiently small. The result follows since fZ is uniquely defined in this
case and ( fi )Z ≡ 0 when the iteration terminates. 
�

11 Specific Classes of Groups

In this section we discuss work for specific classes of groups.

11.1 Groups of Bounded Exponent

In [13] Green set out a model setting for additive combinatorics. (See [41] for a recent
perspective.) In this setting a number of arguments simplify and Theorem 10.1 could
be proved for groups of bounded exponent without the need for any discussion of Bohr
systems.

As mentioned in the introduction [30] carries out this simplification for finite
groups of exponent 2—i.e. groups isomorphic to F

n
2 for some n—thoughmore general

(Abelian) groups of bounded exponent are no harder.

Theorem 11.1 Suppose that G = F
n
2 and f : G → Z has ‖ f ‖A(G) ≤ M. Then there

is some z : W(G) → Z such that

f =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) ≤ exp(M3+o(1)).

In certain regimes there are already stronger results, at least for indicator functions
of sets. Indeed Shpilka, Tal, and Lee Volk established the following in [32].
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Theorem 11.2 ([32, Theorem 1.2]) Suppose that G = F
n
2 and A ⊂ G has ‖1A‖A(G) ≤

M. Then there is some z : W(G) → Z such that

1A =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) ≤ exp(O(M2 + M log log |G|)).

While our aim is to avoid any sort of |G| dependence, it is worth noting that in the
above theorem it is really rather mild.

It is also interesting that for this class of groups arithmetic progressions are no
longer a limiting example—we do not have Proposition 1.2—and it might be that
the bound on ‖z‖�1(W(G)) can be polynomial in M . Some efforts in this direction for
particular classes of function can be found in work of Tsang, Wong, Xie and Zhang,
in particular [38, Corollary 7].

11.2 Cyclic Groups of Prime Order

For cyclic groups of prime order there are a range of results by Konyagin and various
authors. In particular the following is an easy consequence of [14, Theorem 1.3].

Theorem 11.3 Suppose that G = Z/pZ and A ⊂ G has mG(A) = α ∈ (0, 1
2

]
. Then

‖1A‖A(G) = α log
1
3−o(1) p.

The above bound becomes weaker quite quickly as A gets smaller, and Konyagin
and Shkredov [22,23] have the following results to deal with this.

Theorem 11.4 ([22, Theorem 13]) Suppose that G = Z/pZ and A ⊂ G has size
2 ≤ |A| ≤ exp((log p/ log log p)1/3). Then

‖1A‖A(G) = �(log |A|).

Theorem 11.5 ([23, Theorem 3]) Suppose that G = Z/pZ and A ⊂ G has density α

with exp((log p/ log log p)1/3) ≤ |A| ≤ p/3. Then

‖1A‖A(G) = �(logα−1)1/3−o(1).

The arguments behind these results are not restricted to indicator functions of sets
and the results themselves have been extended by Gabdullin in [12]; that paper also
develops some higher dimensional analogues.

In Z/pZ there are no non-trivial subgroups and so these three results can be com-
bined to give the following.

Theorem 11.6 (Green-Konyagin-Shkredov) Suppose that G = Z/pZ and A ⊂ G has
‖1A‖A(G) ≤ M for some M ≥ 1. Then there is some z : W(G) → Z such that

1A =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) ≤ exp(exp(M3+o(1))).
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Note that this is already a strengthening of the main result of [16] in the particular
case of groups of prime order, and this has been further strengthened by Schoen in
[31] who showed the above with a bound of the form exp(M16+o(1)) by combining
Konyagin and Shkredov’s work more effectively.

In fact Konyagin and Shkredov’s results are much sharper if one takes A to be
sparse. For example, they combine to give the following.

Theorem 11.7 (Konyagin-Shkredov) Suppose that G = Z/pZ and A ⊂ G has
‖1A‖A(G) ≤ M for some M ≥ 1 and |A| ≤ p9/10. Then there is some z : W(G) → Z

such that

1A =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) ≤ exp(M3+o(1)).

This is stronger than our main theorem in this particular case of small sets in groups
of prime order.

11.3 Torsion-Free Groups

For a non-vacuous discussion of torsion-free groups we need to have a definition
of A(G) for infinite groups. This is virtually the same, but see the start of §12 for
the formal details. Konyagin [20] and McGehee, Pigno and Smith [25] resolved the
Littlewood conjecture by proving the following in our language.

Theorem 11.8 Suppose that G = Z and f ∈ A(G) is integer-valued. Then there is
some z : W(G) → Z such that

f =
∑

W∈W(G)

z(W )1W and ‖z‖�1(W(G)) ≤ exp(O(‖ f ‖A(G))).

In fact some work has been done on the constant behind the big-O term. Stegeman
[33] and Yabuta [42] independently give a bound of the shape

‖z‖�1(W(G)) ≤ exp

((
c
π3

4
+ o(1)

)
‖ f ‖A(G)

)
.

for some c < 1. It must be that c ≥ π−1 in view of the size of the Lebesgue constants
(see [11, (16.)]).

12 Cohen’s Idempotent Theorem

In this section we extend our work to locally compact Abelian groups; suppose that G
is such. Then we write Ĝ for the (locally compact Abelian group [26, §1.2.6, Theorem
(d)]) of continuous homomorphisms G → S1. We say f is an element of B(G) if
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there is a measure μ ∈ M(Ĝ) such that

f (x) =
∫

γ (x)dμ(γ ) for all x ∈ G,

and f ∈ A(G) if there is a representation of the above form in which μ is absolutely
continuous with respect to the Haar measure on Ĝ. We write ‖ f ‖B(G) := ‖μ‖ which
is well-defined since the choice of μ, if it exists, is unique [26, §1.3.6]. We also put
‖ f ‖A(G) = ‖ f ‖B(G) if f ∈ A(G) and

W(G) :=
⋃

H≤G open

G/H ,

and note that if G is finite these definitions agree with those in the introduction.
A ring of sets onG is a subset ofP(G) includingG, and closed under complements

and finite intersections (and hence finite unions by de Morgan’s laws). P(G) is the
standard example of a ring of sets on G. Another easy example isA(G) := {A ⊂ G :
1A ∈ B(G)}:

A short calculation [26, §3.1.2] shows that if W ∈ W(G) then W ∈ A(G) and
‖1W‖B(G) = 1. It follows from the triangle inequality for ‖ · ‖B(G) that if A ∈ A(G)

then ¬A ∈ A(G) since 1¬A = 1G − 1A; and it follows from the sub-multiplicativity
of ‖ · ‖B(G) that A ∩ B ∈ A(G) if A, B ∈ A(G) since 1A∩B = 1A · 1B .

The coset ring of G is the intersection of all rings of sets on G containingW(G).
This is a ring, and by the above is contained inA(G). Cohen’s idempotent theorem is
the following converse.

Theorem 12.1 ([26, §3.1.3]) Suppose that A ∈ A(G). Then A ∈ L(G).

To give a quantitative version of this we need a more constructive view of L(G). With
an eye to our later results we take a slightly more complicated definition than one
might at first choose.

Given H ≤ G and S ⊂ G/H we write S∗ := S ∪ {¬⋃S}, that is the partition
of G into cells from S and an additional cell that is everything else. We say that A
has a (k, s)-representation if there are open subgroups H1, . . . , Hk ≤ G, and sets
S1 ⊂ G/H1, . . . ,Sk ⊂ G/Hk of size at most s such that A is the (disjoint) union of
some cells in the partition4 S∗

1 ∧ · · · ∧ S∗
k .

We write Wk,s(G) for the set of sets with (k, s)-representations. It can be shown
fairly directly that

⋃
k Wk,s(G) = L(G) for any s ∈ N, but as this also follows from

what we are about to show we omit the details.
The triangle inequality and sub-multiplicativity of ‖ · ‖B(G) gives that each cell in

the partition has algebra norm at most (s + 1)k and there are at most (s + 1)k cells so

‖1A‖B(G) ≤ (s + 1)2k for all A ∈ Ws,k(G). (12.1)

We shall prove the following converse.

4 Recall that if P andQ are partitions of the same set then P ∧ Q := {P ∩ Q : P ∈ P, Q ∈ Q}.
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Theorem 12.2 (Quantitative idempotent theorem) Suppose that ‖1A‖B(G) ≤ M and
δ ∈ (0, 1] is a parameter. Then A ∈ Wk,s(G) where

k ≤ M(1 + δ) and s ≤ exp(O(M4 log8 2M + M2 log δ−1(log 2 log 2δ−1))).

We shall prove this after the proof of the next result.
The earlier work of this paper concerned integer-valued functions, not just {0, 1}-

valued functions, and we now turn to these. We say that f : G → C has an (l, L)-
representation if there are open subgroups H1, . . . , Hl ≤ G and functions z1 :
G/H1 → Z, . . . , zl : G/Hl → Z such that

f =
l∑

i=1

∑

W∈G/Hi

zi (W )1W and max
i

‖zi‖�1(G/Hi ) ≤ L. (12.2)

Note that in this case f is necessarily integer-valued.
By the triangle inequality and the aforementioned calculation [26, §3.1.2], if f has

an (l, L)-representation then ‖ f ‖B(G) ≤ l L . We shall bootstrap our main result to
give the following.

Theorem 12.3 Suppose that G is a locally compact Abelian group and f ∈ B(G)

is integer-valued with ‖ f ‖B(G) ≤ M and δ ∈ (0, 1] is a parameter. Then f has an
(M(1 + δ), L)-representation where

L ≤ exp(O(M4 log8 2M + M2 log δ−1(log 2 log 2δ−1))).

Proof of Theorem 12.3 Our argument proceeds essentially as in [16, Appendix A];
recall that if � ≤ G then �⊥ := {γ ∈ Ĝ : γ (x) = 1 for all x ∈ �}, and μ is
absolutely continuous w.r.t. ν if there is some f ∈ L1(ν) such that dμ = f dν.

We begin with a qualitative variant of our result, [1, Theorem]. This gives open
subgroups S1, . . . , Sk ≤ G; mutually orthogonal measures μ1, . . . , μk ∈ M(Ĝ);
natural numbers Ri ; signs and (εi, j )

Ri
j=1, and elements (xi, j )

Ri
j=1 such that

dμi (γ ) =
Ri∑

j=1

εi, jγ (xi, j )dmi (γ ) for 1 ≤ i ≤ k, (12.3)

where mi := mS⊥
i
is the Haar probability measure on the compact group S⊥

i ; and

f (x) =
k∑

i=1

∫
γ (x)dμi (γ ) for all x ∈ G. (12.4)

Since the μi are mutually orthogonal we have

‖ f ‖B(G) =
k∑

i=1

‖ fi‖B(G).
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In view of (12.3) the functions fi are integer-valued. The argument now proceeds as
in the proof of [16, Proposition A.1]. 
�

If one wished to avoid appealing to Cohen’s theorem in the proof above the key
obstacle comes in §9. The concept of arithmetic connectivity extends easily enough
to locally compact Abelian groups (using, e.g., the definition of B(G) developed by
Eymard [10, (2.14) Lemme] for non-Abelian groups), but this does not lead to a
statement about large energy directly because we do not yet have a natural measure
with respect to which the support of f is positive but finite.

Proof of Theorem 12.2 Apply Theorem 12.3 to get k ≤ M(1 + δ) open subgroups
H1, . . . , Hk and functions z1 : G/H1 → Z, . . . , zl : G/Hl → Z such that

1A =
l∑

i=1

∑

W∈G/Hi

zi (W )1W

and

max
i

‖zi‖�1(G/Hi ) ≤ exp(O(M4 log8 2M + M2 log δ−1(log 2 log 2δ−1))).

Let Si := {W ∈ G/Hi : zi (W ) 
= 0} for 1 ≤ i ≤ k and note that 1A is constant on
cells of the partition S∗

1 ∧ · · · ∧ S∗
k , which gives the required result. 
�

Returning to Theorem 12.3, taking δ = 1
2M (�M + 1� − M) ∈ (0, 1] we have the

following corollary.

Corollary 12.4 Suppose that G is a locally compact Abelian group and f ∈ B(G) is
integer-valued with ‖ f ‖B(G) ≤ M. Then f has an (M, OM (1))-representation.

This is best possible in the first parameter of the representation as can be seen by
considering a disjoint union of cosets of subgroups H1, . . . , Hl ≤ G where |Hi +Hj :
Hi ∩ Hj | = ∞ if i 
= j .

It is important to note that the error term is not monotonic in the M parameter and
this is necessarily the case: consider A := G \ {0G} for G a group whose order is a
large prime. Then ‖1A‖B(G) < 2 and so if we are to write A as a sum of indicator
function of cosets of at most ‖1A‖B(G) subgroups, then there can only be one subgroup
and we can require arbitrarily many cosets of this as the prime p increases.

Apart from Cohen’s original proof [8] of Theorem 12.1, which is the proof on
which Rudin’s [26, Chapter 3] is based, there are proofs of the idempotent theorem
due to Amemiya and Itô [1] (shortening Cohen’s original argument), and Host [18]
also shortening Cohen’s argument, but the main purpose of which is to beautifully
extend it to non-Abelian groups.

As stated these results are trivial for finite groups and the arguments do not seem
to immediately extend to give quantitative information. Both Amemiya and Itô’s and
Host’s are very soft; Cohen’s less so. That being said they do have non-trivial quantita-
tive content in one respect and in particular they can all be used to prove the following
theorem.
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Theorem 12.5 Suppose that G is a locally compact Abelian group and f ∈ B(G) is
integer-valued. Then there are integer-valued functions f1, . . . , fl ∈ B(G) such that
each fi has a (1, O f (1))-representation,

f =
l∑

i=1

fi and ‖ f ‖B(G) =
l∑

i=1

‖ fi‖B(G). (12.5)

Here O f (1) is a finite constant depending on f . This has the following corollary.

Corollary 12.6 Suppose that G is a locally compact Abelian group and f ∈ B(G) is
integer-valued with ‖ f ‖B(G) ≤ M. Then f has an (M, O f (1))-representation.

This is slightly weaker than Corollary 12.4 since there are multiple functions with the
same algebra norm.

It is worth noting that one cannot guarantee equality in the right sum in (12.5) for
finite groups unless l = 1—the example following Corollary 12.4 applies here too.
This means that we have to relax the requirement that the underlying measures—that
is the measuresμi such that fi (x) = ∫

γ (x)dμi (γ ) are mutually orthogonal to simply
a requirement that they are ‘quite’ orthogonal. In some respects this is what happens
in our quantitative continuity argument in §7.
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