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Abstract
A method for constructing non-uniform filter banks is presented. Starting from a uni-
form system of translates, generated by a prototype filter, a non-uniform covering of
the frequency axis is obtained by composition with a warping function. The warping
function is a C1-diffeomorphism that determines the frequency progression and can
be chosen freely, apart from minor technical restrictions. The resulting functions are
interpreted as filter frequency responses. Combined with appropriately chosen dec-
imation factors, a non-uniform analysis filter bank is obtained. Classical Gabor and
wavelet filter banks are special cases of the proposed construction. Beyond the state-
of-the-art, we construct a filter bank adapted to a frequency scale derived from human
auditory perception and families of filter banks that can be interpreted as an interpo-
lation between linear (Gabor) and logarithmic (wavelet) frequency scales. We derive
straightforward conditions on the prototype filter decay and the decimation factors,
such that the resulting warped filter bank forms a frame. In particular, a simple and
constructive method for obtaining tight frames with bandlimited filters is derived by
invoking previous results on generalized shift-invariant systems.
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1 Introduction

In this contribution, we introduce a class of non-uniform time-frequency systems
optimally adapted to non-linear frequency scales. The central paradigm of our con-
struction, and what distinguishes it from previous approaches, is to provide uniform
frequency resolution on the target frequency scale. Invertible time-frequency systems
are of particular importance, since they allow for stable recovery of signals from the
time-frequency representation coefficients. Therefore, we also derive necessary and
sufficient conditions for the resulting systems to form a frame.

To demonstrate the flexibility and importance of our construction, illustrative exam-
ples recreating (or imitating) classical time-frequency representations such as Gabor
[30,31,33,35], wavelet [16,49] or α-transforms [13,32,52] are provided. While this
paper considers the setting of (discrete) Hilbert space frames, the properties of contin-
uous warped time-frequency systems are investigated in the related contribution [43].
Whenever a time-frequency filter bank adapted to a given frequency progression and
with linear time-progression in each channel is desired, we believe that the proposed
warped filter banks provide the right framework for its design.

Generalized shift-invariant (GSI) systems [3,11,38,44,63] over L2(R) are families
(gm,n)m,n∈Z with gm,n = g̃m(· − nam), for filters (g̃m)m∈Z ⊂ L2(R) and decimation
factors (am)m∈Z ⊂ R

+. In the proposed method, GSI systems are constructed from a
prototype frequency response θ via composition with a warping function � that spec-
ifies the desired frequency scale/progression. Applying the inverse Fourier transform
F−1, we obtain g̃m = F−1(θ(·−m)◦�) up to normalization. To highlight the relation
of the resulting warped time-frequency systems to non-uniform filter banks, we use
terminology from filter bank theory and refer to GSI systems as filter banks.

Contribution. We connect the frame theory of abstract GSI systems with warped
filter banks. In particular, we use the structure of warped filter banks to show the
following:

(i) Undermild restrictions,warped filter banks satisfy the important local integrability
condition for GSI systems, see [11,38].

(ii) The application of results from [11,40] provides intuitive necessary Bessel and
frame conditions for warped filter banks that are easy to verify.

(iii) If θ is compactly supported and the decimation factors (am)m∈Z ⊂ R
+ are small

enough, these necessary conditions are also sufficient, we are in the painless case
[3]. In this setting, the canonical dual of a warped filter bank frame is a warped
filter bank as well.

(iv) If θ has sufficient decay, but not necessarily compact support, then there exist
decimation factors (am)m∈Z ⊂ R

+ that yield warped filter bank frames. It is
discussed how the notion of sufficient decay depends on the warping function �.

Most of the above results are made possible by choosing (am)m∈Z ⊂ R
+ majorized

by a set of natural decimation factors. Natural decimation factors are obtained by
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observing that the bandwidth (or essential Fourier domain support) of the gm,n is
intrinsically linked to the derivative of the warping function�. For natural decimation
factors, the selection of a single parameter ã > 0 determines all decimation factors
am in a way that respects the bandwidth of the warped filters. We further provide
examples for tight warped filter banks from compactly supported θ and a construction
of discrete warped filter banks for digital signals in �2(Z). The latter is adapted from
[42],wherewarpedfilter banks for �2(Z)were first presented. For discretewarpedfilter
banks we experimentally verify that the frame bound ratio deteriorates slowly when
the decimation requirements of the painless case are violated. Our results indicate that
a frame bound ratio below 10 can be achieved with very little oversampling.

Adapted time-frequency systems.Time-frequency (or time-scale) representations
are an indispensable tool for signal analysis and processing. The most widely used
and most thoroughly explored such representations are certainly Gabor and wavelet
transforms and their variations, e.g. windowed modified cosine [60,61] or wavelet
packet [12,71] transforms. The aforementioned transforms unite two very important
properties: There are various, well-known necessary and/or sufficient conditions for
stable inversion from the transform coefficients, i.e., for the generating function system
to form a frame. In addition to the perfect reconstruction property, the frame property
ensures stability of the synthesis operation after coefficient modification, enabling
controlled time-frequency processing. Furthermore, efficient algorithms for the com-
putation of the transform coefficients and the synthesis operation exist for each of the
mentioned transforms [49,67].

While providing a sound and well-understood mathematical foundation, Gabor
and wavelet transforms are designed to follow two specified frequency scales: lin-
ear, respectively logarithmic. A wealth of approaches exists to soften this restriction,
e.g. decompositions using filter banks [6,14,15,69], for example based on perceptive
frequency scales [37,59,66]. Adaptation over time is considered in approaches such
as modulated lapped transforms [50], adapted local trigonometric transforms [70]
or (time-varying) wavelet packets [62]. Techniques that jointly offer flexible time-
frequency resolution and variable redundancy, the perfect reconstruction property and
efficient computation are scarce however. The setting of so-called nonstationaryGabor
transforms [3], a recent generalization of classical Gabor transforms, provides the
latter 2 properties while allowing for freely chosen time progression and varying reso-
lution. In this construction, the frequency scale is still linear, but the sampling density
may be changed over time. The properties of nonstationary Gabor systems have been
investigated in, e.g., [19,20,40]. When desiring increased flexibility along frequency,
generalized shift-invariant systems [8,9,11,38,63], or equivalently (non-uniform) fil-
ter banks [2], provide the analogous concept. They offer full flexibility in frequency,
with a linear time progression in each filter, but flexible sampling density across the
filters. Analogous, continuously indexed systems are considered in [44,65]. Indeed,
nonstationary Gabor systems are equivalent to filter banks via an application of the
(inverse) Fourier transform to the generating functions. Note that all the widely used
transforms mentioned in the previous paragraph can be interpreted as filter banks.

Adaptation to non-linear frequency scales through warping. There have been
previous attempts to construct adapted filter banks by frequency warping. In our
approach, a warping operator is simply a coordinate change and not unitary in general.
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In contrast, all previous methods consider unitary warping following the change of
variables formula for integration. Thus, they introduce an additional weight function
depending on � and modify the filter values beyond a simple coordinate change.
Consequently, the properties of both types of warping, the resulting systems and the
challenges faced in their construction are quite different.

For example, Braccini and Oppenheim [57], as well as Twaroch and Hlawatsch
[68], propose a unitary warping of a system of translates, interpreted as filter frequency
responses. In [57] only spectral analysis is desired, while time-frequency distributions
are constructed in [68], without considering signal reconstruction.

The application of unitary warping to an entire Gabor or wavelet system has also
been investigated [4,5,24,25]. Although unitary transformation bequeaths basis (or
frame) properties to the warped atoms, the resulting system is not anymore a filter
bank. Instead, the warped system produces undesirable, dispersive time-shifts and the
resulting representation is not easily interpreted, see [24]. Only for the continuous
short-time Fourier transform, or under quite strict assumptions on a Gabor system, a
redressing procedure can be applied to recover aGSI system [22]. In all other cases, the
combination of unitary warping with redressing complicates the efficient, exact com-
putation of redressed warped Gabor frames, such that approximate implementations
are considered [23].

Finally, it should be noted that the idea of a (non-unitary) logarithmic warping of
the frequency axis to obtain wavelet systems from a system of translates was already
used in the proof of the so called painless conditions for wavelets systems [17]. Recent
parallel work by Christensen and Goh [10] focuses on exposing the duality between
Gabor and wavelet systems via the mentioned logarithmic warping. However, the idea
has never been relaxed to other frequency scales so far. In the presentwork,we generate
time-frequency transformations beyond wavelet and Gabor systems by allowing more
general warping functions. The proposedwarping procedure has already proven useful
in the area of graph signal processing [64].

2 Preliminaries

We use the following normalization of the Fourier transform f̂ (ξ) := F f (ξ) =
∫

R
f (t)e−2π i tξ dt , for all f ∈ L1(R) and its unitary extension to L2(R). The inverse

Fourier transform is denoted by qf = F−1 f . For an open interval D ⊂ R, typically
D = R or D = R

+, we use the convention that L2(D) := { f ∈ L2(R) : f (t) = 0
for almost every t ∈ R \ D}, such that the Fourier transform and its inverse restrict
naturally to L2(D). Following this convention, we denote by

F−1(L2(D)) ⊆ L2(R)

the space of functions whose Fourier spectrum is restricted to D.
Further, we frequently use the translation operator defined by Tx f = f (· − x),

for all f ∈ L2(R), and the composition f ◦ g := f (g(·)) of two functions f and g.
The standard Lebesgue measure is denoted by μ.
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When discussing the properties of the constructed function systems in the following
sections, we will repeatedly use the notions of weight functions and weighted Lp-
spaces, 1 ≤ p ≤ ∞. Weighted Lp-spaces are defined as

Lp
w(R) := {

f : R �→ C : w f ∈ Lp(R)
}

.

with a continuous, positive function w : R �→ R
+ called weight function. The associ-

ated norm is ‖ f ‖Lp
w
:= ‖w f ‖Lp . In the following, when the term weight function is

used, continuity and positivity are always implied.
Two special classes of weight functions are of particular interest: Let v : R → R

+
and w : R → R

+ be continuous, positive weight functions. We call v : R → R
+

submultiplicative and w : R → R
+ v-moderate respectively if they satisfy, for some

C > 0,

v(x + y) ≤ v(x)v(y), and w(x + y) ≤ Cv(x)w(y), for all x, y ∈ R. (1)

In particular, we can (and will) always choose v such that 1 is a valid choice for
the constant in the latter inequality (max{C, 1}v is submultiplicative whenever v is).
Submultiplicative and moderate weight functions play an important role in the theory
of function spaces, as they are closely related to the translation-invariance of the
correspondingweighted spaces [26,35], see also [36] for an in-depth analysis ofweight
functions and their role in harmonic analysis.

A generalized shift-invariant (GSI) system on L2(R) is a union of shift-invariant
systems {Tnam hm ∈ L2(R) : n ∈ Z}, with hm ∈ L2(R) and am ∈ R

+, for all m in
some index set. The representation coefficients of a function f ∈ L2(R) with respect
to the GSI system are given by the inner products

c f (n,m) := 〈 f ,Tnam hm〉 =
(

f ∗ hm(−·)
)

(nam),

for all n,m. Here, we denote by hm(−·) the map t �→ hm(−t). The above representa-
tion of the coefficients in terms of a convolution of f with the conjugate, time-inverse
of hm alludes to the fact that c f (·,m) is a filtered, and sampled, version of f . This
relation justifies our use of filter bank terminology when discussing GSI systems.

Definition 2.1 Let (gm)m∈Z ⊂ L2(D) and (am)m∈Z ⊂ R
+. We call the system

(

gm,n
)

m,n∈Z , gm,n := TnamF−1(gm), for all n,m ∈ Z, (2)

a (non-uniform) filter bank for F−1(L2(D)). The elements of (gm)m∈Z and (am)m∈Z
are called frequency responses and decimation factors, respectively.

Such filter banks can be used to analyze signals in F−1(L2(D)) and, for a given
signal f ∈ F−1(L2(D)), we refer to the sequence c f := (c f (n,m))n,m∈Z =
(〈 f , gm,n〉

)

m,n∈Z as the filter bank (analysis) coefficients. A uniform filter bank is
a filter bank with am = a for all m ∈ Z.
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For many applications it is of great importance that all the considered signals can
be reconstructed from these coefficients, in a stable fashion. It is a central observation
of frame theory that this is equivalent to the existence of constants 0 < A ≤ B < ∞,
such that

A‖ f ‖22 ≤ ‖c f ‖2�2(Z2)
≤ B‖ f ‖22, for all f ∈ F−1(L2(D)). (3)

A system
(

gm,n
)

m,n∈Z that satisfies this condition is called filter bank frame [8,21]. A
(filter bank) frame is called tight if equality can be achieved in (3) and snug if B/A ≈ 1
is possible. If at least the upper inequality in (3) is satisfied, then

(

gm,n
)

m,n∈Z is aBessel
sequence. In that case, the frame operator is defined by

S : F−1(L2(D)) → F−1(L2(D)),

S f =
∑

m,n∈Z
c f (m, n)gm,n, for all f ∈ F−1(L2(D)). (4)

If
(

gm,n
)

m,n∈Z is a frame, then the frame operator is invertible. It is the key component

in the construction of the canonical dual frame
(

g̃m,n
)

m,n∈Z, obtained by applying the
inverse of the frame operator to the frame elements, i.e., g̃m,n := S−1(gm,n), for all
m, n ∈ Z. The canonical dual frame facilitates perfect reconstruction from the analysis
coefficients:

f =
∑

m,n∈Z
c f (m, n)g̃m,n, for all f ∈ F−1(L2(D)). (5)

Note that, in contrast to short-time Fourier or uniform filter bank frames, there is
no guarantee that the canonical dual frame, or indeed any dual frame, of a general
filter bank frame is of the form (TnamF−1(g̃m))n,m∈Z, for some (g̃m)m∈Z ⊂ L2(D)

and the same sequence of decimation factors (am)m∈Z. Abstract filter bank frames
[6] have received considerable attention, as (generalized) shift-invariant systems in
[11,38,44,45,63] and as (frequency-side) nonstationaryGabor systems in [3,19,20,40].
In contrast, this contribution is concerned with a specific, structured family of filter
bank systems and how the superimposed structure can be used to construct filter bank
frames.

3 Warped Filter Banks

In signal analysis, the usage of different frequency scales has a long history. Linear and
logarithmic scales arise naturally when constructing a filter bank through modulation
or dilation of a single prototype filter, respectively. In this way, the classical Gabor and
wavelet transforms are obtained. The consideration of alternative frequency scales can
be motivated, for example, from (a) theoretical interest in a family of time-frequency
representations that serve as an interpolation between the two extremes, as is the case
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for the α-transform [13,32,52] (which can be related to polynomial scales), or (b) spe-
cific applications and/or signal classes. A prime example for the second case is audio
signal processing with respect to an auditory frequency scale, e.g. in gammatone filter
banks [59,66] adapted to the ERB scale [34], the latter modeling the frequency pro-
gression and frequency-bandwidth relationship in the human cochlea. The mentioned
methods have several things in common: They are all based on a single prototype
filter and possess the structure of a GSI system (or filter bank). The bandwidth of their
filters is directly linked to the filter center frequencies and their spacing, induced by
the frequency scale.

The filter banks we propose in this section have the property that they are designed
as a system of translates on a given frequency scale. This scale determines a conversion
from frequency to a new unit (e.g. ERB) with respect to which the designed filters
provide a uniform resolution. In the next sections, we will show that this construction
admits a special class of non-uniform filter banks with a simplified structure compared
to general filter banks.

Formally, a frequency scale is specified by a continuous, bijective function
� : D → R and the transition between the non-linear scale � and the linear scale
is achieved by � and �−1. Hence, we construct filter frequency responses from a
prototype function θ : R �→ C by means of translation, followed by deforma-
tion,

((Tmθ) ◦ �)m∈Z . (6)

This general formulation provides tremendous flexibility for frequency scale design.
Furthermore, choosing � as �(ξ) �→ aξ or �(ξ) �→ loga(ξ), for a > 0, yields
systems of translates Tm/a (θ(a·)) and dilates (θ ◦ loga)(·/am), respectively. Such �

will provide the starting point for recovering Gabor and wavelet filter banks in our
framework.

Definition 3.1 Let D ⊆ R be any open interval. A C1-diffeomorphism � : D → R is
called warping function, if

(i) the derivative �′ of � is positive, i.e., �′ > 0, and
(ii) there is a submultiplicative weight v, such that the weight function

w :=
(

�−1
)′ = 1

�′ (�−1(·)) (7)

is v-moderate, i.e., w(τ0 + τ1) ≤ v(τ0)w(τ1), for all τ0, τ1 ∈ R.

Given a warping function �, w and v will from now on always denote weights as
specified in Definition 3.1.

Remark 3.2 While moderateness and invertibility of � will prove essential for our
results, there are no technical obstructions preventing us from allowing warping func-
tions � ∈ C0(D) \ C1(D), such that �′ is only piecewise continuous. However, this
implies that some (or all) of the elements of the warped family given in (6) can have
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at most piecewise continuous derivative, independent of the smoothness of θ and with
the implied negative effects to their Fourier localization. Moreover, � is easily lifted
to C1 with minor, arbitrarily local changes. Therefore, we only see limited value in
generalizing the notion of a warping function beyond diffeomorphisms.

Proposition 3.3 If � : D → R is a warping function as per Definition 3.1, then
�̃ := c�(·/d) is a warping function with domain dD, for all positive, finite constants
c, d ∈ R

+. If w = (�−1)′ is v-moderate, then w̃ = (�̃−1)′ is v(·/c)-moderate.
Proof The result is easily obtained by elementary manipulation. ��

Several things should be noted when considering the definition and proposition
above.

• Proposition 3.3 shows that it really is sufficient to consider integer translates of the
prototype θ when constructing the frequency responses θ�,m . If a > 0 is arbitrary,
then with θa := θ(·/a), we have

(Tmθa) ◦ (a�) = θa (a�(·) − m) = θ (�(·) − m/a) = (Tm/aθ) ◦ �. (8)

• Moderateness of w = (

�−1
)′

ensures translation invariance of the associated
weighted Lp-spaces. In particular, identifying (Tmθ) ◦� with its trivial extension
to the whole real line, we have

‖(Tmθ) ◦ �‖2L2(D)
= ‖Tmθ‖2

L2√
w

(R)
≤
⎧

⎨

⎩

v(m)‖θ‖2
L2√

w
(R)

, if θ ∈ L2√
w
(R)

w(m)‖θ‖2
L2√

v
(R)

, if θ ∈ L2√
v
(R).

(9)

• L2√
v
(R) ⊆ L2√

w
(R), since (9), withm = 0, implies ‖θ‖2

L2√
w

(R)
≤ w(0)‖θ‖2

L2√
v
(R)

.

A warped filter bank can now be constructed easily. To do so, after selecting the
warping function �, one simply chooses an appropriate prototype frequency response
θ and positive decimation factors (am)m∈Z.

Definition 3.4 Let � : D → R be a warping function and θ ∈ L2√
v
(R). Furthermore,

let a := (am)m∈Z ⊂ R
+ be a set of decimation factors. Then the warped filter bank

with respect to the triple (�, θ, a) is given by

G(�, θ, a) := (

Tnam |gm
)

m,n∈Z =
(

TnamF−1(gm)
)

m,n∈Z , (10)

with

gm(ξ) :=
{√

am(Tmθ) ◦ �(ξ) if ξ ∈ D,

0 else.
(11)

If am = ã/w(m), for all m ∈ Z and some ã > 0, then we say that a is a set of natural
decimation factors (for �).
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Although, in theory, the choice of decimation factors is arbitrary, it is worth empha-
sizing the importance of natural decimation factors: If a set of decimation factors a
is majorized by some natural decimation factors, then the frequency responses gm
are uniformly L2-bounded, recall (9). Uniform L2-boundedness is easily seen to be a
necessary condition for the Bessel property, i.e., the existence of an upper bound in
(3). Moreover, we will see in Sect. 4 that natural decimation factors play an essential
role in the creation of warped filter bank frames.

In Gabor theory, the set of lattices that provide certain properties, e.g., the frame
property, is often studied for a fixed window. Similarly, for warped filter banks, we
might fix the warping function � and the prototype filter θ . Then, we can attempt to
determine decimation factors a, such that G(�, θ, a) is a frame or possess some other
property of interest. In that sense, the decimation factors a should be interpreted as
parameters of the warped filter bank that are chosen and tuned post-hoc to achieve the
desired properties.

Remark 3.5 Note that the condition θ ∈ L2√
w
(R) is sufficient to ensure that

G(�, θ, a) ⊂ F−1(L2(D)). In that setting, a set of natural decimation factors would
have the form am = ã/v(m) for all m ∈ Z and some ã > 0, instead. All results in this
contribution also hold in this case and are proven with the same techniques. Since a
decay condition on θ is usually considered less severe than a restriction of the sampling
density, our results are presented for the configuration given in Definition 3.4.

However, depending on how much the submultiplicative weight v deviates from
w = (�−1)′, the two sets of natural decimation factors, and the spaces of eligible pro-
totype functions, may differ significantly. Therefore, we shortly discuss the necessary
changes in the case θ /∈ L2√

v
(R) in Sect. 4.3.

Assume for now that θ ∈ L2√
v
(R)∩L1

w(R). If we rewrite the elements ofG(�, θ, a)
as a Fourier integral, i.e.,

F−1(gm)(t) =
∫

R

gm(ξ)e2π iξ t dξ = √
am

∫

D
θ(�(ξ) − m)e2π iξ t dξ

= √
am

∫

R

w(τ + m)θ(τ )e2π i�
−1(τ+m)t dτ,

with the change of variable ξ = �−1(τ + m), we can see that decay (smoothness)
of θ implies smoothness (decay) for the elements of G(�, θ, a), provided that � is
smooth enough as well. This behavior is crucial for the construction of systems with
good time-frequency localization and in fact central for the results presented in [43],
where the above Fourier integrals are studied in more detail.

We now provide some examples of warping functions that are of particular interest,
e.g., because they encompass important frequency scales. In Proposition 3.11 at the end
of this section, we show that the presented examples indeed define warping functions
in the sense of Definition 3.1. Some instances of the warping functions in the following
examples can be seen in Fig. 1.
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Fig. 1 (Left) Warping functions from Examples 3.6 and 3.7: This plot shows logarithmic (wavelet) warping
function (black) and �l = l−1(ξ l − ξ−l ), for l = 0.5 (dark gray), l = 0.8 (medium gray) and l = 1 (light
gray). Note that the horizontal axis is logarithmic. (Right) Warping functions from Examples 3.8 and 3.9.
This plot shows the ERBlet warping function (black), with c = d = 1, and �α = (1− α)−1 sgn(ξ)((1+
|ξ |)(1−α) − 1), for α = 0.5 (dark gray), α = 0.2 (medium gray) and α = 0 (light gray). The horizontal
axis is linear

Example 3.6 (Wavelets) Choosing � = log, with D = R
+ leads to a system of the

form

gm(ξ) = √
amθ(log(ξ) − m) = √

amθ(log(ξe−m)) =
√

am
a0

g0(ξe
−m).

This warping function therefore leads to gm being a dilated version of some
g0 = θ ◦log. The natural decimation factors are given by am = ã/w(m) = ãe−m . This
shows that G(log, θ, ãe−m) is indeed a wavelet system, with the minor modification
that our scales are reciprocal to the usual definition of wavelets.

Example 3.7 The family of warping functions �l(ξ) = c
(

(ξ/d)l − (ξ/d)−l
)

, for
some c, d > 0 and l ∈ (0, 1], is an alternative to the logarithmic warping for the
domain D = R

+. The logarithmic warping in the previous example can be interpreted
as the limit of this family for l → 0 in the sense that for any fixed ξ ∈ R

+,

�′
l(ξ)/l = c

d

(

(ξ/d)−1+l + (ξ/d)−1−l
)

l→0→ 2c

ξ
= 2c

d
log′(ξ/d). (12)

This type of warping provides a frequency scale that approaches the limits 0 and
∞ of the frequency range D in a slower fashion than the wavelet warping. In other
words, gm is less deformed for m > 0, but more deformed for m < 0 than in the case
� = log. Furthermore, the property that gm can be expressed as a dilated version of
g0 is lost.

Example 3.8 (ERBlets) In psychoacoustics, the investigation of filter banks adapted to
the spectral resolution of the human ear has been subject to a wealth of research, see
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[51] for an overview. We mention here the Equivalent Rectangular Bandwidth scale
(ERB-scale) described in [34], which introduces a set of bandpass filters modeling
human perception, see also [53] for the construction of an invertible filter bank adapted
to the ERB-scale. In our terminology the ERB warping function is given by

�ERB(ξ) = sgn (ξ) c log

(

1+ |ξ |
d

)

,

where the constants are given by c = 9.265 and d = 228.8. Using this function, we
obtain a filter bank with uniform bandwidth on the ERB-scale. This property is the
key feature of the filter banks proposed in [53] or more traditional Gammatone filter
banks on the ERB-scale, see e.g. [66]. However, in contrast to these previous methods,
it is very easy to construct tight warped filter bank frames, see Sect. 4. The warped
ERB filter bank has potential applications in audio signal processing, as it provides
an invertible transform adapted to the human perception of sound.

Example 3.9 Filter banks obtained from the warping functions �α(ξ) = sgn(ξ)
(

(|ξ | + 1)1−α − 1
)

, for some α ∈ [0, 1) can serve as a substitute for the α-transform,
see [13,27,32,52]. The latter is a filter bank constructed from a single prototype
frequency response by translation and dilation, leading to filters with bandwidth pro-
portional to (1 + |ξ |)α , where ξ ∈ R is the center frequency of the filter frequency
response. Varying α, one can interpolate between the Gabor transform (α = 0, con-
stant bandwidth) and a wavelet-like (or more precisely ERB-like) transform with the
bandwidth depending linearly on the center frequency (α → 1). It is easy to confirm
that thewarping function�α(ξ) yields filters with bandwidth proportional to (1+|ξ |)α
as well. We will see in subsequent sections that, in stark contrast to the α-transform, it
is easy to construct tight frames using the warping function�α . Note as well that study
of the α-transform usually excludes the limiting case α = 1, which is also not captured
by the above warping construction. However, the logarithmic warping considered in
Example 3.8 yields filters with bandwidth proportional to (1 + |ξ |) and can thus be
considered as substitute for the limiting case. A limit argument on the derivative of
�α (α → 1), similar to (12), provides another approach to confirm this assertion.

Example 3.10 Finally, we propose a warping function for representing functions band-
limited to the interval D = (−π, π). For this purpose set�(ξ) = tan(ξ). Necessarily,
the frequency responses gm , given by (11), are all compactly supported on D and
increasingly peaky and concentrated at the upper and lower borders of D, asm tends to
∞ and−∞, respectively. By using the equivalence of GSI systems and nonstationary
Gabor systems [3] through application of the Fourier transform, we can thus construct
time-frequency systems on arbitrary open intervals. Frames for intervals have been
proposed previously by Abreu et al. [1].

Proposition 3.11 The following are valid triples of warping functions, weights w and
moderating submultiplicative weights v, as per Definition 3.1:

(i) � : R
+ → R, ξ �→ log(ξ), with w = v = e(·).
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(ii) � : R
+ → R, ξ �→ (

(ξ)l − (ξ)1−l
)

, for l ∈ (0, 1], with

w = 2−1/l

l
· ((·) +√

(·)2 + 4)1/l
√

(·)2 + 4
and v =

√

2(·)2 + 8 ·
(
√

5

4
·
(

2+ | · |
2

)

)2/l

.

(iii) � : R → R, ξ �→ sgn(ξ) log(1+ |ξ |) with w = v = e|·|.
(iv) � : R → R, ξ �→ sgn(ξ)

(

(1+ |ξ |)1−α − 1
)

, for some α ∈ [0, 1), with
w = v/(1− α) = (1− α)−1(1+ | · |)α/(1−α).

(v) � : (−π, π) → R, ξ �→ tan(ξ), with w = (1+ (·)2)−1 and v = 2(1+ (·)2).
Proof Items (i), (iii) and (iv) are easily shown through elementary calculations. It
remains to prove items (ii) and (v).

Ad (ii): � is in C∞(R+) with �−1(τ0) = 2−1/l(τ0 +
√

τ 20 + 4)1/l , such that

w(τ0) =
(

�−1
)′

(τ0) = 2−1/l

l
·
(τ0 +

√

τ 20 + 4)1/l
√

τ 20 + 4
= �−1(τ0)

l
(τ 20 + 4)−1/2.

Thus, w is v-moderate with v = v0v1, if �−1 is v0-moderate and ((·)2 + 4)−1/2

is v1-moderate. It is straightforward to show that the latter is true with v1(τ0) =√
2
√

τ 20 + 4. We now proceed to show that �−1 is v0-moderate with v0(τ0) =
(5/4)1/l(2+ |τ0|/2)2/l . Observe that

(

�−1(τ0 + τ1)

�−1(τ0)

)l

− 1 =
τ1 +√

(τ1 + τ0)2 + 4−
√

τ 20 + 4

τ0 +
√

τ 20 + 4

≤
⎧

⎨

⎩

0 for all τ1 ≤ 0,
τ1

√

τ 21 /4+4−τ1/2
else,

since the left hand side attains its global maximum at τ0 = −τ1/2, for fixed τ1 > 0.

By the fundamental theorem of calculus (with f =
√

τ 21 /4+ (·)),

τ1
√

τ 21 /4+ 4− τ1/2
≤ τ 21 + 16

4
≤ (2+ |τ1|/2)2,

valid for all τ1 > 0. Hence,

(

�−1(τ0 + τ1)

�−1(τ0)

)l

≤ 1+ (2+ |τ1|/2)2 ≤ 5/4 · (2+ |τ1|/2)2
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and the right hand side is a submultiplicative weight. Consequently, �−1 is indeed
v0-moderate and we obtain that w is v-moderate with

v(τ0) = v0(τ0)v1(τ0) =
√

2τ 20 + 8 ·
(
√

5

4
·
(

2+ |τ0|
2

)

)2/l

,

as desired.
Ad (v): The crucial step is to show that arctan′ = (1 + (·)2)−1 can be moderated

by a submultiplicative weight. But since (τ0 + τ1)
2 ≤ 2(τ 20 + τ 21 ) for all τ0, τ1 ∈ R,

it is easy to see that v = 2(1+ (·)2) is submultiplicative and that w = (1+ (·)2)−1 is
v-moderate. The other required properties of � = tan are elementary. ��

4 Warped Filter Bank Frames

Although this contribution is concerned onlywithwarpedfilter bank frames, our results
are derived from structural properties and results obtained in the general, abstract filter
bank (or GSI) setting. As such, the structure imposed on warped filter banks can be
seen as a constructive means to satisfy, or simplify, the conditions of these abstract
results. Our results rely on the simple, but crucial identity

∑

m∈Z
a−1
m |gm(ξ)|2 =

∑

m∈Z
|(Tmθ) ◦ �(ξ)|2, for all ξ ∈ D, (13)

a direct consequence of the definition of the warped filter bank G(�, θ, a). As a
consequence of the above equality, we can find upper and lower bounds for (13), by
instead determining upper and lower bounds on the simpler quantity

∑

m∈Z
|Tmθ |2. (14)

To exclude pathological cases from the study of filter bank frames, it has proven
useful to assume that a filter bank (gm,n)m,n∈Z satisfies the so-called local integrability
condition [11,38,44]. This enables the generalization of numerous important results,
e.g. a characterization of dual frames, from the frame theory of Gabor systems [35]
and uniform filter banks [45].

Definition 4.1 Denote by D the set of all functions f ∈ L∞(D) with compact sup-
port. We say that the filter bank (gm,n)m,n∈Z, generated from (gm)m∈Z ⊂ L2(D) and
(am)m∈Z ⊂ R

+, satisfies the local integrability condition (LIC), if

L( f ) :=
∑

m∈Z

∑

l∈Z
a−1
m

∫

supp( f )

∣

∣

∣ f (ξ + la−1
m )gm(ξ)

∣

∣

∣

2
dξ < ∞, (15)

for all f ∈ D.
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The LIC might seem intimidating and opaque at first, but once we impose some
structure on (gm,n)m,n∈Z, it can often be substituted by mild conditions on the fre-
quency responses gm and decimation factors am . In the case of warped filter banks,
boundedness of (14) and a being majorized by a set of natural decimation factors is
already sufficient for G(�, θ, a) to satisfy the LIC.

Theorem 4.2 Let � : D → R be a warping function and θ ∈ L2√
v
(R). If

sup
m∈Z

amw(m) < ∞ and ess sup
τ∈R

∑

m∈Z
|Tmθ(τ )|2 < ∞, (16)

then G(�, θ, a) satisfies the LIC (15). In particular, if a is a set of natural decimation
factors and the second condition in (16) holds, then G(�, θ, a) satisfies the LIC.

Proof First note that, instead of considering all compactly supported and essentially
bounded functions f ∈ L2(D), it is sufficient to verify the LIC (15) only for the
characteristic functions 1I on compact intervals I ⊂ D. These functions are clearly
contained in L2(D) and it is easy to see that

supp( f ) ⊆ I �⇒ L( f ) ≤ ‖ f ‖2∞L(1I ).

For 1I , the LIC reads

L(1I ) =
∑

m∈Z
a−1
m

∑

l∈Z

∫

I
1I+la−1

m
(ξ) |gm(ξ)|2 dξ. (17)

If the right hand side of (17) is finite, then it converges absolutely and we can inter-
change sums and integrals freely. Hence,

L(1I ) =
∑

m∈Z
a−1
m

∫

I
|gm(ξ)|2

∑

l∈Z
1I+la−1

m
(ξ) dξ

<
∑

m∈Z

amμ(I ) + 1

am

∫

I
|gm(ξ)|2 dξ

=
∑

m∈Z
(amμ(I ) + 1)

∫

I
|(Tmθ) ◦ �(ξ)|2 dξ,

where we used that
∑

l∈Z 1I+la−1
m

(ξ) ≤ �amμ(I )� < amμ(I )+1 for arbitrary ξ ∈ D.
We split the upper estimate into two terms and interchange integration and summation
once more to obtain

L(1I ) <

∫

I

∑

m∈Z
|(Tmθ) ◦ �(ξ)|2 dξ +

∑

m∈Z
amμ(I ) ·

∫

I
|(Tmθ) ◦ �(ξ)|2 dξ.
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By assumption, there is some constant B > 0, such that
∑

m∈Z |Tmθ(τ )|2 < B almost
everywhere and we can conclude that

∫

I

∑

m∈Z
|(Tmθ) ◦ �(ξ)|2 dξ ≤ μ(I )B.

To estimate the second term, note that the change of variable ξ = �−1(τ +m) yields

∑

m∈Z
am ·

∫

I
|(Tmθ) ◦ �(ξ)|2 dξ =

∑

m∈Z
am ·

∫

�(I )−m
w(τ + m) |θ(τ )|2 dτ = (∗).

By assumption supm∈Z amw(m) < ∞ and θ ∈ L2√
v
(R). To estimate the right hand

side of the above equation, we can use v-moderateness of w:

(∗) ≤
∑

m∈Z
amw(m) ·

∫

�(I )−m
v(τ) |θ(τ )|2 dτ

=
∑

m∈Z
amw(m) ·

∫

R

1�(I )−mv(τ) |θ(τ )|2 dτ

= sup
m∈Z

amw(m) ·
∫

R

v(τ) |θ(τ )|2
∑

m∈Z
1�(I )−m dτ

< (1+ μ(�(I ))) · sup
m∈Z

amw(m) ·
∫

R

v(τ) |θ(τ )|2 dτ

= (1+ μ(�(I ))) · sup
m∈Z

amw(m) · ‖θ‖2
L2√

v

< ∞.

Altogether, we obtain

L(1I ) < μ(I ) ·
(

B + (1+ μ(�(I ))) · sup
m∈Z

amw(m) · ‖θ‖2
L2√

v

)

< ∞,

which establishes the desired result. If a is a set of natural decimation factors, then
amw(m) = ã < ∞ for all m ∈ Z, yielding the second claim. ��

The previous result shows that a large class of warped filter banks satisfies the
LIC. In that case, the results presented in [11,38,44], many of which require the LIC,
are fully applicable. Moreover, we will see in Theorem 4.4 that the second condition
in (16) is in fact necessary for G(�, θ, a) to be a Bessel sequence. In other words,
for a warped filter bank with the Bessel property, the LIC can always be satisfied
by choosing appropriate decimation factors. Our next result relies on some previous
results from the literature, which we now recall. Their application will yield necessary
and sufficient conditions for a warped filter bank to form a Bessel sequence or even a
frame.

Proposition 4.3 Let (gm,n)m,n∈Z the filter bank generated from (gm)m∈Z ⊂ L2(D)

and (am)m∈Z ⊂ R
+.
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(i) [40, Prop. 3] If (gm,n)m,n∈Z is a Bessel sequence with bound B < ∞, then

∑

m∈Z

1

am
|gm(ξ)|2 ≤ B, for almost all ξ ∈ D. (18)

(ii) [11, Cor. 3.4] If (gm,n)m,n∈Z is a frame with lower frame bound A > 0 satisfying
the LIC (15), then

A ≤
∑

m∈Z

1

am
|gm(ξ)|2, for almost all ξ ∈ D. (19)

(iii) [3, Cor. 1]Assume that there are some constants cm, dm ∈ R, such that supp(gm) ⊆
[cm, dm] and am satisfies a−1

m ≥ dm − cm, for all m ∈ Z. Then (gm,n)m,n∈Z forms
a frame, with frame bounds A, B, for F−1(L2(D)) if and only if

0 < A ≤
∑

m∈Z

1

am
|gm(ξ)|2 ≤ B < ∞, for almost all ξ ∈ D. (20)

Furthermore, the filter bank generated from (g̃m)m∈Z ⊂ L2(D) and (am)m∈Z ⊂
R

+, with

g̃m = gm
∑

l∈Z 1
al
|gl |2

, for all m ∈ Z, (21)

is the canonical dual frame for (gm,n)m,n∈Z.

With the above results in place, we obtain the following necessary and sufficient
conditions for warped filter bank frames.

Theorem 4.4 Let G(�, θ, a) be a warped filter bank for F−1(L2(D)).

(i) If G(�, θ, a) is a Bessel sequence with bound B < ∞, then

∑

m∈Z
|Tmθ(τ )|2 ≤ B < ∞, for almost all τ ∈ R. (22)

(ii) If G(�, θ, a) is a frame with lower bound A > 0 and supm∈Z amw(m) < ∞, then

0 < A ≤
∑

m∈Z
|Tmθ(τ )|2, for almost all τ ∈ R. (23)

(iii) Assume that there are constants c < d, such that supp(θ) ⊆ [c, d] and a−1
m ≥

�−1(d + m) − �−1(c + m), for all m ∈ Z. The warped filter bank G(�, θ, a)
forms a frame for F−1(L2(D)), with frame bounds A, B, if and only if 0 < A ≤
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∑

m∈Z |Tmθ |2 ≤ B < ∞ almost everywhere. Furthermore, the canonical dual
frame for G(�, θ, a) is given by G(�, θ̃ , a), with

θ̃ = θ
∑

l∈Z |Tlθ |2 . (24)

Proof Part (i) is a direct consequence of Proposition 4.3(i) and (13). Part (ii) follows
similarly from Proposition 4.3(ii) and (13), after noting that the assumptions of (ii)
imply (i) and thus supm∈Z amw(m) < ∞ yields the LIC by Theorem 4.2. Finally, (iii)
is obtained by inserting (13) into Proposition 4.3(iii). ��

Note that the canonical dual frame in Theorem 4.4(iii) is a warped filter bank
as well, obtained with the warping function � and decimation factors a. The dual
prototype filter θ̃ is easily computed using Eq. (24). Theorem 4.4(iii) is the natural
generalization of the classical painless nonorthogonal expansions [17] to warped filter
banks and extremely useful when strictly bandlimited filters are required. Thewhole of
Theorem 4.4 serves as a strong indicator that for any snug frame, i.e., with B/A ≈ 1,
the sum

∑

m∈Z |Tmθ |2 must necessarily be close to constant. It is thus imperative
that the translates of the original window θ have good summation properties. We
established an intimate relationship between stability of the filter bank G(�, θ, a) and
the extrema of

∑

m∈Z |Tmθ |2.
Sometimes, when we would like to work in the setting of Theorem 4.4(iii) it can

be more efficient to estimate the support of the gm instead of calculating it exactly.
The following result and its discussion below show that this can easily be done using
natural decimation factors that satisfy the conditions of Theorem 4.4(iii). The derived
natural decimation factors often satisfy a−1

m ≈ �−1(d + m) − �−1(c + m).
For the purpose of the following result and for later use, we define the function

V : R × R → R by

V (τ0, τ1) :=
∫ τ1

τ0

v(τ) dτ, for all τ0, τ1 ∈ R. (25)

Corollary 4.5 Let G(�, θ, a) be a warped filter bank with compactly supported proto-
type θ ∈ L2(R). Define

c0 := inf supp(θ) and d0 := sup supp(θ)

and ãw := V (c0, d0)−1. Assume furthermore that

am ≤ ãw/w(m), for all m ∈ Z.

The warped filter bank G(�, θ, a) forms a frame with frame bounds A, B, if and only
if 0 < A ≤ ∑

m∈Z |Tmθ |2 ≤ B < ∞ almost everywhere. In that case, the canonical
dual frame is given by G(�, θ̃, a), with θ̃ as in (24).
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Note that V (c0, d0) can be bounded from above by (d0−c0)maxτ∈[c0,d0] v(τ). This
coarser estimate can be used for an even simpler computation of decimation factors
appropriate for Corollary 4.5, e.g. if v is nondecreasing away from zero.

Proof of Corollary 4.5 By the fundamental theorem of calculus,

�−1(d0 + m) − �−1(c0 + m) =
∫ d0+m

c0+m
w(τ) dτ

≤ w(m) ·
∫ d0

c0
v(τ) dτ = V (c0, d0)w(m),

for all m ∈ Z. Therefore,

�−1(d0 + m) − �−1(c0 + m) ≤ w(m)/ãw ≤ a−1
m ,

as per the assumption. Since θ ∈ L2(R) with compact support implies θ ∈ L2√
v
(R),

we can apply Theorem 4.4(iii) to finish the proof. ��
Without additional assumptions on the warping function �, the condition am ≤

ãw/w(m) in Corollary 4.5 cannot be improved. To see this we construct a warping
function, such that any choice am > ãw/w(m) yields a−1

m < �−1(d) − �−1(c), for
all nonempty, closed intervals [c, d]. Hence, the conditions of Theorem 4.4(iii) are
violated. Choose � = log and note �−1(τ ) = eτ = w(τ) for all τ ∈ R. We can
choose v = w and obtain

ed0+m − ec0+m = em
∫ d0

c0
eτdτ = V (c0, d0)w(m) = (�−1(d0) − �−1(c0))v(m),

to show that for a logarithmic warping function the natural decimation factors are
indeed the coarsest possible decimation factors that satisfy the conditions Theo-
rem 4.4(iii).

4.1 On TightWarped Filter Bank Frames

In the following, we will demonstrate how the definition of warped filter banks leads
to straightforward constructions of tight frames with compactly supported prototype
θ , following the decimation conditions in Theorem 4.4(iii). Specifically, the tight
frame property is achieved by selecting a prototype θ that is compactly supported and
equalizes the inequality (22). Tight frames are important for various reasons. They
provide a perfect reconstruction system in which analysis and synthesis frame are
equal up to a constant. Hence, there is no need for computing and/or storing a dual
frame, which might be highly inefficient. By equalizing the frame inequality (3), they
provide optimal norm stability. Furthermore, the usage of tight frames guarantees that
the synthesis shares the properties of the analysis, e.g. in terms of time-frequency
localization.
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Under the conditions of Theorem 4.4(iii), i.e., θ is compactly supported and the am
are small enough, a warped filter bank G(�, θ, a) is a tight frame if and only if, for
some C > 0,

∑

m∈Z
|Tmθ |2 = C, a.e. (26)

However, even if the conditions of Theorem 4.4(iii) are not satisfied, (26) is still
necessary for the filter bank to be tight, at least if the decimation factors a aremajorized
by a set of natural decimation factors. Therefore, θ that satisfy (26) are the optimal
starting point when aiming to construct snug warped filter bank frames, i.e., frames
with small frame bound ratio.

Although surely not the only methods for obtaining functions satisfying (26), we
highlight here two classical methods that provide both compact support, which is
required to apply Theorem 4.4(iii), and a prescribed smoothness: B-splines [18] and
windows constructed as a superposition of truncated cosine waves of different fre-
quency [55]. The second class contains classical window functions such as the Hann,
Hamming and Blackman windows. We now recall a procedure to construct such func-
tions that also satisfy (26). The method has previously been reported and proven as
[64, Theorem 1]:

Let K ∈ N and ck ∈ R for k ∈ {0, 1, . . . , K }, and define

ϑ(τ) :=
K
∑

k=0

ck cos(2πkτ)1[−1/2,1/2). (27)

Then for any integer R > 2K

∑

m∈Z

∣

∣

∣

∣

ϑ

(

τ − m

R

)∣

∣

∣

∣

2

= Rc20 + R

2

K
∑

k=1

c2k , ∀τ ∈ R; (28)

i.e., the sum of squares of a system of regular translates (Tmθ)m∈Z, with θ = ϑ(·/R),
is constant.

ConsideringTheorem4.4(iii), the construction above can be used to easily construct
tight frames by choosing the decimation factors am to satisfy

a−1
m ≥ �−1(m + R/2) − �−1(m − R/2). (29)

In the following, we will demonstrate this for some of the examples given in Sect. 3.
For the purpose of all the following examples, we choose ϑ according to (27) with

K = 1 and c0 = c1 = 1/2, i.e., we can choose R ≥ 3. This function is often called the
Hann or raised cosine window. The Hann window is among the most popular finitely
supported Gabor windows or filters for time-frequency signal analysis.

Example 4.6 (�(ξ) = sgn(ξ) log(1+ |ξ |)) For this choice of �, (29) takes the form

a−1
m ≥ sgn(m + R/2)(e|m+R/2| − 1) − sgn(m − R/2)(e|m−R/2| − 1),
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or equivalently

a−1
m ≥

{

(e|m|+R/2 − 1) − (e|m|−R/2 − 1) = e|m|(eR/2 − e−R/2) for |m| ≥ R/2,

(em+R/2 − 1) + (e−m+R/2 − 1) = eR/2(e|m| + e−|m|) − 2 else,

where the latter case concerns the filters where supp(Tmθ) is not contained in either
[0,∞) or (−∞, 0].We see that in both cases, a−1

m is majorized by e|m|, up to a constant
depending solely on R. If we set R = 3, then a tight frame is obtained by choosing

am =

⎧

⎪

⎨

⎪

⎩

e−|m|(e3/2 − e−3/2)−1 ≥ 1
4.26e|m| for |m| ≥ 2,

(e3/2(e1 + e−1) − 2)−1 > 1
11.84 for |m| = 1,

(2e3/2 − 2)−1 > 1
6.97 for m = 0.

On the other hand, Corollary 4.5 yields ãw = (2e3/2−2)−1 andw(m) = v(m) = e|m|,
i.e., am = 2e−|m|(e3/2 − 1)−1 for all m ∈ Z, which is slightly more conservative.

Example 4.7 (�α(ξ) = sgn(ξ)((1+|ξ |)1−α −1)) Let p := 1/(1−α) ∈ N. Then (29)
can be rewritten as

a−1
m ≥

{

(1+ |m| + R/2)p − (1+ |m| − R/2|)p for |m| ≥ R/2,

(1+ R/2+ m)p + (1+ R/2− m)p − 2 else.

If α = 1/2, i.e., p = 2, and R = 3, evaluation of the above conditions yields a tight
warped filter bank with

am =

⎧

⎪

⎨

⎪

⎩

1
6+6|m| for |m| ≥ 2,
2
25 for |m| = 1,
2
21 for m = 0.

In this setting, Corollary 4.5 yields ãw = 4
21 and w(m) = 2 + 2|m|, see also Exam-

ple 3.9.

Example 4.8 (�(ξ) = tan(ξ)) With w and v as in Proposition 3.11(v), Corollary 4.5
yields ãw = (R3/6+2R−4)−1 and, with R = 3, the following set of almost optimal
natural decimation factors

am = ãw/w(m) = 2+ 2m2

13
.

The above examples show the ease with which tight warped filter bank frames
are constructed when the prototype filter θ is compactly supported. In the following
section, we show that warped filter bank frames for fully supported prototype filters
exist as well.



Journal of Fourier Analysis and Applications (2020) 26 :22 Page 21 of 37 22

4.2 Prototype Decay Implies Existence ofWarped Filter Bank Frames

Our final set of sufficient Bessel and frame conditions is concerned with the case that
θ is sufficiently localized, but not necessarily compactly supported. In this setting, the
verification of the frame property becomes substantially harder. To obtain a sufficient
condition, it is possible to estimate the alias terms

∑

l �=0 |gmTla−1
m
gm |, m ∈ Z, in

the Walnut representation of the frame operator of G(�, θ, a), see [44, Proposition
3.7], a variant of which we state in Proposition 4.14. The main result of this section,
Theorem 4.11 provides a decay condition on θ and a density condition on the decima-
tion factors a, such that the conditions of [44, Proposition 3.7] are satisfied. Note that
these conditions were recently improved by Lemvig et al. [47], under the additional
assumption of the so-called α-local integrability condition. However, our results do
not benefit from the sharper condition.

One would be tempted to apply [19, Corollary 3.5], which uses decay of the fre-
quency responses gm to determine a density condition on the decimation factors am .
Adapted to our setting, that result is as follows:

Proposition 4.9 ([19, Corollary 3.5]) Let (gm)m∈Z ⊂ L2(D) satisfying

0 < Ã ≤
∑

m∈Z
|gm(ξ)|2 ≤ B̃ < ∞ a.e. on D, (30)

for some constants Ã, B̃. Assume that there exist a δ-separated sequence (bm)m∈Z and
constants p > 2 and C > 0, such that

|gm(ξ)| ≤ C(1+ |ξ − bm |)−p a.e. on D. (31)

There exists a sequence (a(0)
m )m∈Z ⊂ R

+ such that the filter bank (gm,n)m,n∈Z gener-
ated from (gm)m∈Z ⊂ L2(D) and (am)m∈Z ⊂ R

+ forms a frame for F−1(L2(D)), if
am ≤ a(0)

m , for all m ∈ Z.

Note that we took the liberty of simplifying the conditions of [19, Corollary 3.5]:
In particular, the assumption that the gm be in the Wiener spaceW (L∞, �1) is implied
by (31). Moreover, the constants C and p were allowed to vary with m ∈ Z, but
only within a compact interval. It is straightforward to confirm that the two results are
equivalent if D = R, except for the actual values of the sequence (a(0)

m )m∈Z ⊂ R
+.

The required restriction in the case D � R is straightforward as well.
The conditions of Proposition 4.9 pose severe restrictions for warped filter banks.

In fact, under reasonable assumptions on G(�, θ, a), they imply that w = (�−1)′ is
bounded above and thus � must have at least linear asymptotic growth.

Proposition 4.10 LetG(�, θ, a)beawarpedfilter bank forF−1(L2(D)), with nonzero
prototype θ , and set bm = �−1(m), for all m ∈ Z.

(i) If the open interval D is a true subset of R, i.e., D � R, then for any δ > 0, there
is an m ∈ Z, such that |bm+1 − bm | ≤ δ.
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(ii) Assume that θ ≤ C0(1 + | · |)−p0 , for C0 > 0, p0 > 1/2, and that (30) holds
for gm = √

am(Tmθ) ◦ �, m ∈ Z. Then supm∈Z am < ∞ and lim supm→∞ am �=
0 �= lim supm→−∞ am.

(iii) If the assumptions of (ii) hold and there are constants p,C > 0, such that |gm | ≤
C(1+|(·)−bm |)−p almost everywhere, for all m ∈ Z, thenw = (�−1)′ ∈ L∞(R).

Proof Ad (i): Assume without loss of generality that D is bounded below with
inf{ξ : ξ ∈ D}=c ∈ R. Clearly, since �′ is is continuous and positive,
limξ→c �′(ξ)=∞, implying limτ→−∞(�−1)′(τ ) = 0 and (i) easily follows.

Ad (ii): Without loss of generality, assume ess supτ∈R θ(τ ) = 1. Then
supm∈Z am = ∞ or limm→−∞ am = ∞ easily imply that a finite upper bound for
∑

m∈Z |gm |2 = ∑

m∈Z am |θ(�(·)−m)|2 cannot exist. Let a := supm∈Z am < ∞. For
every ε > 0, there is mε ∈ Z, such that

∑

m≤(k−mε )

am |θ(τ − m)|2 ≤ C2
0

∑

m≤(k−mε )

a(1+ |τ − m|)−2p0

≤ ε/2, for almost every τ ≥ k, k ∈ Z.

If lim supm→∞ am = 0, then there is a kε ∈ Z, such that sup
m>(kε−mε )

am ≤ ε/(2B),

where the constant B is defined as

B := ess sup
τ∈R

∑

m∈Z
|θ(τ − m)|2 ≤ ess sup

τ∈R
C2
0

∑

m∈Z
(1+ |τ − m|)−2p0 < ∞.

Together, we obtain

∑

m∈Z
am |θ(τ − m)|2 ≤ ε, for almost every τ ≥ kε .

Since ε > 0 is arbitrary, the desired lower bound Ã cannot exist. lim supm→−∞ am �= 0
is proven by the same steps.

Ad (iii): We show that under the assumptions of (iii), w /∈ L∞(R) implies
θ ≡ 0, which contradicts the assumption that θ is nonzero. Begin by noting that
|gm | ≤ C(1+ |(·) − �−1(m)|)−p is equivalent to

θ ≤ C√
am(1+ |�−1(· + m) − �−1(m)|)p , almost everywhere.

Moreover, for all τ0 ∈ R,

�−1(τ0 + m) − �−1(m) =
∫ τ0

0
w(m + τ) dτ ≥

∫ τ0

0

w(m)

v(−τ)
dτ,
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where we used v-moderateness of w. If τ ≥ τ1 > 0, then with Cτ1 := ∫ τ1
0

1
v(−τ)

dτ ,
we obtain by positivity of v that

θ(τ ) ≤ C√
am(1+ |�−1(τ + m) − �−1(m)|)p ≤ C√

am(1+ Cτ1w(m)|)p ,

for almost all τ ≥ τ1. (32)

Now, if w /∈ L∞(R), then either limm→∞ w(m) = ∞ or limm→−∞ w(m) = ∞, by
continuity ofw. For the right hand side of (32) to be bounded below, this implies either
limm→∞ am = 0 or limm→−∞ am = 0, which is prohibited by (ii). Since τ1 > 0 was
arbitrary, we obtain that necessarily θ(τ ) = 0 for almost every τ > 0. An analogous
argument shows that θ(τ ) = 0 for almost every τ < 0. Therefore, θ ≡ 0, completing
the proof by contradiction. ��

Considering Proposition 4.10, a quick glance at Examples 3.6–3.9 shows that the
requirements of Proposition 4.9 are highly undesirable for warped filter banks. Instead,
we only establish a decay condition on θ . This condition ensures the Bessel property
and, when complemented by sufficiently small decimation factors, even the frame
property. The given result is of central interest, as it shows that warped filter banks
also admit the construction of frames for many prototype filters θ with full support.

Theorem 4.11 Let � : D → R be a warping function with θ ∈ L2√
v
(R), fix an

arbitrary ε > 0 and let w1, w2 denote the following weights

w1 = (1+ | · |)1+ε and w2 = (1+ |V (0, ·)|)1+ε,

where V is as defined in (25). If
θ ∈ L∞

w1
(R) ∩ L∞

w2
(R) and am ≤ ã/w(m), for all m ∈ Z and some ã > 0, (33)

then G(�, θ, a) is a Bessel sequence. If (33) holds and

0 < A1 ≤
∑

m∈Z
|Tmθ |2 almost everywhere,

then there is a constant ã0 > 0 such that G(�, θ, a) is a frame, whenever
am ≤ ã0/w(m), for all m ∈ Z.

Wewould like to emphasize that (33) is only amild additional restriction on θ , given
that θ ∈ L2√

v
(R) is already required. Clearly, θ ∈ L∞

w1
(R) enforces just enough decay

to ensure θ ∈ L1(R), while simple calculations show that, similarly, θ ∈ L∞
w2

(R)

provides just enough decay to ensure θ ∈ L1
v(R).

Before we proceed to prove Theorem 4.11, we require two auxiliary results.

Lemma 4.12 Let � : D → R be a warping function such that w is v-moderate. There
is a bijective, increasing function Av : R → R, such that Av(0) = 0 and for all
c ∈ R

+, we have
∣

∣

∣�
−1(τ1) − �−1(τ0)

∣

∣

∣ ≥ cw(τ0) �⇒ |τ1 − τ0|
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≥
{

|A−1
v (c)| if τ1 ≥ τ0

|A−1
v (−c)| else

, for all τ0, τ1 ∈ R.

Proof If τ1 ≥ τ0, then the assumptions yield

cw(τ0) ≤ �−1(τ1) − �−1(τ0) =
∫ τ1

τ0

w(τ)dτ ≤ w(τ0)(τ1 − τ0) sup
τ∈[0,τ1−τ0]

v(τ).

Analogous, we obtain for τ1 < τ0 that cw(τ0) ≤ w(τ0)(τ0 − τ1) supτ∈[τ1−τ0,0] v(τ).
The function Av : R → R, τ �→ τ supτ0∈[τ,0]∪[0,τ ] v(τ0) is continuous and strictly

increasing and thus invertible. Moreover, the above derivations show that, for all
τ0, τ1 ∈ R,

c ≤ sgn(τ1 − τ0)Av(τ1 − τ0),

as desired. ��

Lemma 4.12 allows us to derive the following result which will be crucial for
proving Theorem 4.11.

Lemma 4.13 For a given warped filter bank G(�, θ, a), with a sequence a = (am)m∈Z
of decimation factors, define

P(ξ) := P�,θ,a(ξ) :=
∑

m∈Z

⎛

⎜

⎜

⎜

⎝

|θ(�(ξ) − m)| ·
∑

k∈Z\{0}
ξ+ka−1

m ∈D

∣

∣

∣θ(�(ξ + ka−1
m ) − m)

∣

∣

∣

⎞

⎟

⎟

⎟

⎠

,

for all ξ ∈ D. (34)

If θ ∈ L∞
w1

(R)∩L∞
w2

(R), with w1, w2 as in Theorem 4.11, and am ≤ ã/w(m), for all
m ∈ Z and some ã > 0, then

ess sup
ξ∈D

P(ξ) < ∞ and ess sup
ξ∈D

P(ξ)
ã→0−→ 0.

Proof In the derivations below, sums of the kind
∑

k∈N0
(q + k)−s , for q > 0, s > 1

appear repeatedly. These sums are finite and their value is given by Hurwitz’ zeta
function [56], ζ(q, s). In the following, we will use the upper estimate

q−s +
∑

k∈N
(q + k)−s < q−s +

∫

R+
(q + t)−s dt = q−s + (s − 1)−1q1−s, (35)
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which also shows that the left hand side tends towards zero for s fixed and q → ∞ or
vice versa. Note that v-moderateness of w implies, for t ∈ D,

∣

∣

∣t − �−1(m)

∣

∣

∣ =
∣

∣

∣�
−1(�(t)) − �−1(m)

∣

∣

∣ =
∣

∣

∣

∣

∣

∫ �(t)

m
w(τ) dτ

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∫ �(t)−m

0
w(τ + m) dτ

∣

∣

∣

∣

∣

≤ w(m)

∣

∣

∣

∣

∣

∫ �(t)−m

0
v(τ) dτ

∣

∣

∣

∣

∣

= w(m)|V (0,�(t) − m)|. (36)

Moreover, with C1 := ‖θ‖L∞
w1

(R) < ∞,

ess sup
τ∈R

∑

m∈Z
|Tmθ(τ )| ≤ 2C1

∑

m∈N0

1

(1+ m)1+ε
< 2C1(1+ ε−1) =: B̃ < ∞, (37)

by (35). We proceed to estimate the inner sum in (34). To that end, define

Pm(ξ) :=
∑

k∈Z\{0}
ξ+ka−1

m ∈D

∣

∣

∣θ(�(ξ + ka−1
m ) − m)

∣

∣

∣ , for all ξ ∈ D, m ∈ Z.

Assuming θ ∈ L∞
w2

(R) with C2 := ‖θ‖L∞
w2

(R) > 0, we obtain

Pm(ξ) ≤ C2

∑

k∈Z\{0}
ξ+ka−1

m ∈D

∣

∣

∣(1+ |V (0,�(ξ + ka−1
m ) − m))|)−1−ε

∣

∣

∣

≤ C2

∑

k∈Z\{0}

(

1+
∣

∣

∣

∣

ξ + ka−1
m − �−1(m)

w(m)

∣

∣

∣

∣

)−1−ε

,

for almost every ξ ∈ D. Here, we used (36) with t = ξ + ka−1
m to obtain the second

inequality.
For any pair (ξ,m), there is a unique k(ξ,m) ∈ Z such that ξ+k(ξ,m)a−1

m −�−1(m) ∈
[−(2am)−1, (2am)−1). Let

Mξ := {m ∈ Z : k(ξ,m) = 0} and M†
ξ := Z \ Mξ .
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First assume that m ∈ Mξ , i.e., ξ − �−1(m) ∈ [−(2am)−1, (2am)−1). We can split
the sum by the sign of k to obtain

∑

k∈Z\{0}

(

1+
∣

∣

∣

∣

ξ + ka−1
m − �−1(m)

w(m)

∣

∣

∣

∣

)−1−ε

≤
∑

k∈N0

(

1+
∣

∣

∣

∣

(2am)−1 + ka−1
m

w(m)

∣

∣

∣

∣

)−1−ε

+
∑

k∈N0

(

1+
∣

∣

∣

∣

− (2am)−1 + ka−1
m

w(m)

∣

∣

∣

∣

)−1−ε

= 2
∑

k∈N0

(

w(m) + (2am)−1 + ka−1
m

w(m)

)−1−ε

= (∗).

If am ≤ ã/w(m), then |(2am)−1 + ka−1
m | ≥ |(1/2+ k)w(m)/ã| and

(∗) ≤ 2
∑

k∈N0

(

ã + 1/2+ k

ã

)−1−ε

= 2ã1+ε
∑

k∈N0

(ã + 1/2+ k)−1−ε .

Consequently, with (35), we obtain that

Pm(ξ) < 2C2

(

1+ ã + 1/2

ε

)(

ã

ã + 1/2

)1+ε

,

for almost every ξ ∈ D. Now, if m ∈ M†
ξ , then a similar estimation yields

Pm(ξ) ≤
∣

∣

∣θ(�(ξ + k(ξ,m)a
−1
m ) − m)

∣

∣

∣

+ C2

∑

k∈Z\{0,k(ξ,m)}

(

1+
∣

∣

∣

∣

ξ + ka−1
m − �−1(m)

w(m)

∣

∣

∣

∣

)−1−ε

< C2 + 2C2

(

1+ ã + 1/2

ε

)(

ã

ã + 1/2

)1+ε

,

almost everywhere. These estimates can now be inserted into the expression (34) for
P:

P(ξ) =
∑

m∈Z
|θ(�(ξ) − m)| · Pm(ξ)

≤ C2

∑

m∈M†
ξ

|θ(�(ξ) − m)| + 2C2

(

1+ ã + 1/2

ε

)(

ã

ã + 1/2

)1+ε

·
∑

m∈Z
|θ(�(ξ) − m)|,

(38)
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for almost every ξ ∈ D. Applying (37) to estimate both terms yields

ess sup
ξ∈D

P(ξ) < 2C1C2(1+ ε−1)

(

1+ 2

(

1+ ã + 1/2

ε

)(

ã

ã + 1/2

)1+ε
)

< ∞.

For the second assertion, we have to show convergence of the essential supremum to
0 for ã → 0.Bydefinition,m ∈ M†

ξ implies |ξ−�−1(m)| ≥ (2am)−1 ≥ w(m)(2ã)−1.

Hence, we can apply Lemma 4.12, with τ0 = m, τ1 = �(ξ) and c = (2ã)−1 to obtain

|�(ξ) − m| ≥
{

|A−1
v (1/(2ã)) | if �(ξ) − m ≥ 0,

|A−1
v (−1/(2ã)) | else.

We can rewrite, with m− := maxM†
ξ ∩ (−∞,�(ξ)),m+ := minM†

ξ ∩ (�(ξ),∞),
∑

m∈M†
ξ

|θ(�(ξ) − m)| ≤
∑

k∈N0

|θ(�(ξ) − m− + k)| +
∑

k∈N0

|θ(�(ξ) − m+ − k)|

≤ C1

⎛

⎜

⎝

∑

k∈N0

1
(

1+ |A−1
v (1/(2ã)) | + k

)1+ε
+

∑

k∈N0

1
(

1+ |A−1
v (−1/(2ã)) | + k

)1+ε

⎞

⎟

⎠

< C1 ·
1
∑

j=0

⎛

⎝1+
1+ |A−1

v

(

(−1) j /(2ã)
)

|
ε

⎞

⎠

(

1+ |A−1
v

(

(−1) j /(2ã)
)

|
)−1−ε

All in all, we obtain for P the estimate

P�,θ,a(ξ) < C1C2

(

4(1+ ε−1)

(

1+ ã + 1/2

ε

)(

ã

ã + 1/2

)1+ε

+
1
∑

j=0

1+ ε−1(1+ |A−1
v

(

(−1) j/(2ã)
) |)

(1+ |A−1
v

(

(−1) j/(2ã)
) |)1+ε

⎞

⎠ ,

(39)

almost everywhere. Since A−1
v (τ )

τ→±∞−→ ∞, we see that

ess sup
ξ∈D

P�,θ,a(ξ)
ã→0−→ 0,

as desired, finishing the proof. ��
The last term on the right hand side of (39) depends heavily on the moderat-

ing weight v through the function A−1
v and without further specifying v, a useful

estimate for A−1
v is out of reach. For v(τ) = eτ , cf. Example 3.6, we have

Av(τ ) = τ max{1, eτ }. Thus, on R
+, A−1

v equals the product logarithm, such that
the right hand side of (39) will decay very slowly for ã → 0. However, it decays
quickly for increasing ε. In our experiments, performed with compactly supported or
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exponentially decaying θ , we never observed any significant influence of the warping
function � (and therefore of v) on the choice of ã. These observations are reflected
in the results presented in Sect. 5.1, in particular the frame bound ratios reported in
Table 1. On the other hand, the estimate (39) may be rather coarse. For a smooth
bell function θ , e.g. a Gaussian, even the base estimates θ ≤ C0(1 + | · |)−1−ε and
θ ≤ C1(1 + |V (0, ·)|)−1−ε do not allow the simultaneous choice of small constants
C0,C1 and a large decay rate ε.

With Lemma 4.13 in place, proving Theorem 4.11 only requires a few simple steps
and the application of the following variant of [44, Proposition 3.7].

Proposition 4.14 ([44, Proposition 3.7]) Let (gm,n)m,n∈Z ⊂ F−1(L2(D)) be the filter
bank generated from (gm)m∈Z ⊂ L2(D) and (am)m∈Z ⊂ R

+. If

B := ess sup
ξ∈D

[

∑

m∈Z

∑

l∈Z

1

am
|gm(ξ)gm(ξ − l/am)|

]

< ∞, (40)

then (gm,n)m,n∈Z is a Bessel sequence with bound B.
Assume that (40) holds. If

A := ess inf
ξ∈D

⎡

⎣

∑

m∈Z

1

am

⎛

⎝|gm(ξ)|2 −
∑

l∈Z\{0}
|gm(ξ)gm(ξ − l/am)|

⎞

⎠

⎤

⎦ > 0, (41)

then (gm,n)m,n∈Z constitutes a frame for F−1(L2(D)) with frame bounds A, B.

Proof of Theorem 4.11 We will show that, with suitable choices of ã, the conditions of
Theorem 4.11 enable the application of Proposition 4.14. The main observation is the
following: For any given warped filter bank G(�, θ, a), we have

∑

m∈Z
a−1
m |gm(ξ)|2 ±

∑

m∈Z

∑

l∈Z\{0}
a−1
m |gm(ξ)gm(ξ + la−1

m )|

=
∑

m∈Z
|θ(�(ξ)−m)|2 ±

∑

m∈Z

⎛

⎜

⎜

⎜

⎝

|θ(�(ξ)−m)| ·
∑

l∈Z\{0}
ξ+la−1m ∈D

|θ(�(ξ+la−1m ) − m)|

⎞

⎟

⎟

⎟

⎠

=
∑

m∈Z
|θ(�(ξ) − m)|2 ± P�,θ,a(ξ), for almost every ξ ∈ D.

By Lemma 4.13, ess supξ∈D P�,θ,a(ξ) < ∞. Moreover, since θ ∈ L∞
w1

(R), we obtain
the estimate

ess sup
τ∈R

∑

m∈Z
|Tmθ(τ )| ≤ B̃ < ∞
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as per (37). In total, with B as in (40),

B = ess sup
ξ∈D

(

∑

m∈Z
|θ(�(ξ) − m)|2 + P�,θ,a(ξ)

)

≤ B̃2 + ess sup
ξ∈D

P�,θ,a(ξ) < ∞,

and G(�, θ, a) is a Bessel sequence by Proposition 4.14. Similarly, with A as in (41),

A = ess inf
ξ∈D

(

∑

m∈Z
|θ(�(ξ) − m)|2 − P�,θ,a(ξ)

)

≥ A1 − ess sup
ξ∈D

P�,θ,a(ξ).

By Lemma 4.13, there is a constant ã0 > 0, such that am ≤ ã0/w(m), for all m ∈ Z,
implies

ess sup
ξ∈D

P�,θ,a(ξ) < A1.

Thus, by Proposition 4.14, we have that G(�, θ, a) constitutes a frame. ��
Theorem 4.11 is extremely useful for proving (a) the existence of a safe region in

which decimation factors can be chosen freely and (b) that compact support of the
prototype θ is not a necessity for obtaining warped filter bank frames.

4.3 Warped Filter Bank Frames with� ∈ L2√
w
(R)

When going through the results presented in this section, we regularly use the mod-
erateness of w = (�−1)′ to obtain estimates w(τ + m) ≤ w(m)v(τ ). Clearly, we
can exchange the roles of w and v, to obtain estimates in terms of v(m) instead of
w(m). With this simple change, we can recover all the presented results in the setting
where θ ∈ L2√

w
(R) and natural decimation factors take the form am = ã/v(m), for

some ã > 0. Adapting the proofs amounts to simply exchanging the roles of w and v.
Furthermore, V (τ0, τ1) must be exchanged for W (τ0, τ1) := �−1(τ1) − �−1(τ0), in
the statements and proofs of Corollary 4.5, Lemma 4.13 and Theorem 4.11.

5 Warped Filter Banks for Digital Signals

We now turn our attention to discrete signals, i.e., sequences x ∈ �2(Z), the customary
setting for studying filter banks. The discrete time Fourier transform (DTFT) x̂(ξ) :=
Fd x(ξ) = ∑

Z
x(l)e−2π ilξ/ξs is a bijective map between �2(Z) and L2(T), where

T = R/Z is often identified with the interval Dd = (−1/2, 1/2].
One straightforward method to construct warped filter banks on �2(Z) would be

to identify L2(T) with L2(Dd) and consider a warping function � : D → R for
some finite interval D ⊂ Dd . The elements of the warped filterbank are obtained as
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in Definition 3.4, but using the inverse DTFT F−1
d in (10) instead of F−1 and integer

decimation factors a = (am)m∈Z ⊂ N. When constructing warped filter banks in this
fashion, frame-theoretic properties of the discrete warped filter bank are inherited from
its continuous counterpart. Note that rational decimation factors can be achieved [46],
but will not be considered here.

In practice, the construction outlined above has a significant drawback: Despite
the frequency domain being finite, the number of filters gm is still infinite. It is more
common, e.g., in the construction of constant-Q [7] and gammatone [58] filter banks,
to restrict the desired frequency scale to an essential range 
 = [ξmin, ξmax] � Dd ,
outside of which processing, i.e., modification, of the signal content is not desired.
Then, a filter gm is only considered when its essential support has significant overlap
with 
. Filters gm with essential support partially or fully outside Dd are discarded.
However, the filter banks so constructed are badly conditioned, or do not form frames
for L2(T) at all. More specifically the lower bound A in the necessary condition

0 < A ≤
∑

m

1

am
|gm(ξ)|2 ≤ B < ∞, for all ξ ∈ Dd ,

see Proposition 4.3(ii), is very small, such that A � B, or A = 0. The above necessary
condition can be satisfied by designing additional filter(s) to cover the range Dd \ 
,
see [41,54].

In the following, we describe one possible method to obtain discrete warped filter
banks by restricting a warping function � to (a subset of) Dd , a summary and update
of work previously presented in [42]. Although not strictly necessary, we will make
the additional simplification to consider a prototype θ with supp(θ) ⊂ [c, d] and
�−1(
+[c, d]) ⊂ Dd .With this assumption, we can forgo the cumbersome treatment
of discontinuities and other undesired effects at the periodic boundary of T. Let � :
D → R be a warping function and define

mmax = max{m ∈ Z : �−1(m) ∈ 
} + 1

mmin = min{m ∈ Z : �−1(m) ∈ 
} − 1.

For mmin < m < mmax the frequency responses gm ∈ L2(D) are given by the trivial
restriction

gm(ξ) := √
am(Tmθ) ◦ �(ξ), for a.e. ξ ∈ Dd . (42)

Assume that

0 < A ≤
∑

m∈Z
|Tmθ |2 ≤ B < ∞, a.e. on R. (43)
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Then, it is expected that

0 < Ã ≤
mmax−1
∑

m=mmin+1

1

am
|gm |2, a.e. on 
, (44)

for some Ã ≈ A. On Dd \ 
, however, the restricted sum in (44) decays to 0. This
deficiency can be overcome if we define

gmmin(ξ) :=
(

ammin−1

∑

m<mmin

|(Tmθ) ◦ �(ξ)|2
)1/2

and

gmmax(ξ) :=
(

ammax+1

∑

m>mmax

|(Tmθ) ◦ �(ξ)|2
)1/2

, for all ξ ∈ Dd ,

(45)

for some am ∈ N. Then, with the constants A, B as in (43),

0 < A ≤
mmax
∑

m=mmin

1

am
|gm |2 ≤ B < ∞, a.e. on Dd . (46)

As in the continuous case, the decimation factors am , and consequently the normaliza-
tion of filters gm , are often fixed post-hoc. Note that, inserting warped filters in (46),
the decimation factors cancel and thus do not influence the bounds A, B. The role of
gmmin, gmmax is to preserve the signal information in the frequency range Dd \
. The
proposed definition (45) prioritizes (46) over other properties of gmmin, gmmax , e.g.,
smoothness at the periodic boundary of T. Clearly, it is possible to restore the lower
bound in (46) with other filter constructions and/or a refinement of (45). Nonetheless,
(45) provides a straightforward method to preserve the bounds of (43).

After the obvious changes, the necessary and sufficient conditions in Proposition 4.3
translate one-to-one to the discrete case, such that the property (46) is the crucial step
to obtain warped filter bank frames for �2(Z). In particular, we can apply Proposi-
tion 4.3(iii) to find that, whenever (46) holds and

a−1
m ≥ �−1(d + m) − �−1(c + m), for all mmin < m < mmax, (47)

a−1
mmin

≥ �−1(d + mmin) + 1/2, and a−1
mmax

≥ 1/2− �−1(c + mmax), (48)

then the discrete filter bank obtained from (gm)m∈[mmin,mmax] and (am)m∈[mmin,mmax] is
a framewith bounds A, B. If the decimation factors am do not satisfy (47) or (48), then
(46) is no longer a sufficient frame condition. But if θ is continuous, then the frame
bounds depend continuously on the choice of am . This can be seen in the discrete
analogue of Proposition 4.14 (derived again from [44, Proposition 3.7]):
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∞ > B̃ ≥
mmax
∑

m=mmin

1

am
|gm |2 ±

mmax
∑

m=mmin

(

1

am
|gm |

am−1
∑

l=1

|Tl/am gm |
)

≥ Ã

> 0, a.e. on Dd (49)

is sufficient for the frame property. Note that in (49) (and only there),
Tx denotes circular translation on T, such that the inner sum contains exactly
am − 1 shifted terms. If the sampling density is to be reduced, we suggest choosing
am =  β(�−1(d + m) − �−1(c + m))−1!, for some β > 1 and mmin < m < mmax.
This sampling scheme can bemotivated, see Corollary 4.5 and Theorem 4.11, as being
close to natural decimation factors. If 
 � Dd , then increasing the decimation factors
ammin, ammax above the bounds in (48) leads to quickly deteriorating frame bounds and
must be handled with care.

For some exemplary frequency responses, derived from thewarping functions intro-
duced in Examples 3.6–3.9, see Fig. 2a. Note that �sqrt corresponds to Example 3.9
with α = 1/2. In Fig. 2b, we show time-frequency plots of a test signal with respect
to the same warping functions.

5.1 Experiment: Frame Bound Ratio and Estimates for Varying Redundancy

The results in this section, as well as Fig. 2, can be reproduced using the code provided
at http://ltfat.github.io/notes/049/.

The redundancy of a filter bank for �2(Z) is given by Cred = ∑

m a−1
m , where the

sum is over all frequency channels. A filter bank is critically sampled if Cred = 1
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(a) Frequency responses of warped filters (with low-
pass filter gmin, see (45)). The visualization was
restricted to the frequency range 0Hz–1.2 kHz.
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(b) Time-frequency plots of a short piano and vi-
olin excerpt. Color indicates intensity is in dB, the
colorbar is valid for all plots.

Fig. 2 Warped filter bank examples for sampling rate ξs = 44,100: (top-left)�log(ξ) = 10 log(ξ/ξs ), (top-
right) �erb(ξ) = 9.265 sgn(ξ) log(1+ |ξ/ξs |/228.8), (bottom-left) �sqrt(ξ) = sgn(ξ)(

√
1+ |ξ/ξs | − 1),

(bottom-right) �lin(ξ) = ξ/100. Placement applies to subfigures (a) and (b). For subfigure (b), warping
functions were scaled using (8) with a = 4, to increase the filter density

http://ltfat.github.io/notes/049/
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and oversampled if Cred > 1, see [6]. At Cred < 1, the filter bank is undersampled
and can never be a frame [39,45,48]. However, excessive oversampling is usually
undesired, as well. Warped filter bank frames may require considerable oversampling
when decimation factors according to (47) and (48) are chosen. To illustrate this,
assume supp(θ) = [c, d] and θ(τ ) > 0 for all τ ∈ (c, d). It is easy to see that
(47) and (48) imply Cred ≥ ∑

m μ(supp(gm)). Furthermore,
∑

m μ(supp(gm)) quan-
tifies the average number of overlapping filters, since μ(T) = 1. Finally, considering
the construction of gm from integer translates of θ , we obtain

∑

m μ(supp(gm)) ≈
μ(supp(θ)) = d−c, i.e., the redundancy is approximately bounded below by the sup-
port size of the prototype θ . From the examples in Sect. 4.1, we can see that d− c ≥ 3
is not unexpected.

To illustrate that the redundancy can be significantly reduced below
Cred ≈ μ(supp(θ)) without losing the frame property, we computed the frame bound
ratio for different warped filter banks with varying redundancy, see Table 1. Addi-
tionally, frame bound ratio estimates in the style of (49) are provided in parentheses.
For every tested condition, we chose a Hann prototype, see Sect. 4.1, for θ . More
specifically, we chose ϑ as in (27) with c0 = c1 = 1/2 and θ = ϑ(·/3). Hence,
∑

m |Tmθ |2 ≡ 9/8 by (28). The first column represents filter banks with decimation
factors minimizing (47) and (48) (i.e. Cred ≈ 3). Furthermore, we tested at redun-
dancies 2, 3/2, 5/4 and 9/8. Decimation factors for the redundancies below 3 were
chosen according to the sampling scheme introduced after (49), with some β > 1 such
that Cred = ∑

m a−1
m matched the desired redundancy closely. Even for redundancy

as low as 9/8, the frame bound ratio1 is significantly smaller than 10. Considering the
estimate (39) in the proof of Lemma 4.13, it is noteworthy that, for fixed redundancy,
the dependence of the frame bound ratio on the warping function � seems to be quite
limited.

Complementing the numerically obtained ratios in Table 1, we computed the esti-
mates used to prove Theorem 4.11, with �log(ξ) = 10 log(ξ) and θ a Hann prototype
with R = 3 as before. Since θ is compactly supported, ε in the estimate (39) is arbitrary,
but the constantC1C2 changes with ε. We only considered the setting am = ãw/w(m)

with ãw as in Corollary 4.5, where we know that in fact P�,θ,a ≡ 0, see (34) for the
definition of P�,θ,a. For ε = 1, 2, 3, 4, 5, Eq. (39) yields for P�,θ,a the upper bounds
10.2, 6.5, 6.6, 8.2, 11.6 (rounded down to the first decimal), such that Theorem 4.11
would not be sufficient to confirm the frame property, although the considered system
is even tight. It might be interesting to note that, for small ε, the dominant quantity in
(39) is the first term in parentheses, while for larger ε, the constant C1C2 is dominant.
Curiously, the term depending on A−1

v had relatively minor contribution.

6 Conclusion and Outlook

In this contribution, we have introduced a novel, flexible family of structured time-
frequency filter banks. These warped filter banks are able to recreate (or imitate)

1 In fact, due to a bug in older versions of the LTFAT Toolbox (http://ltfat.github.io) used for the frame
bound calculations, the frame bound ratios reported in [42] are too large. In Table 1, corrected values are
shown alongside ratios for lower redundancies not tested before.

http://ltfat.github.io
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Table 1 Frame bound ratios of warped filter banks from Fig. 2a with varying redundancy

Cred(≈) 3 2 3/2 5/4 9/8

�lin 1.000 1.220 (1.234) 1.961 (1.982) 3.880 (4.759) 6.868 (10.042)

�sqrt 1.003 1.237 (1.243) 1.980 (1.997) 3.938 (4.894) 7.315 (11.135)

�erb 1.000 1.240 (1.249) 1.970 (2.134) 3.860 (5.023) 7.122 (11.323)

�log 1.014 1.240 (1.249) 1.973 (2.125) 3.876 (5.019) 7.159 (11.323)

Columns correspond to warped filter banks with approximately equal redundancy. Numbers in parentheses
are estimates obtained by considering the sum and difference, respectively, of the terms in (49)

important classical time-frequency representations, while providing additional design
freedom.Warped filter banks allow for intuitive handling and the application of impor-
tant results from the theory of generalized-shift invariant frames. In particular, the
construction of tight frames of bandlimited filters is easy: It reduces to the selec-
tion of a compactly supported prototype function whose integer translates satisfy a
simple summation condition and sufficiently small decimation factors am . Moreover,
the warping construction induces a natural choice of decimation factors that further
simplifies the design of warped filter bank frames. With several examples, we have
illustrated not only the flexibility of our method when selecting a non-linear frequency
scale, but also the ease with which tight or snug frames can be constructed.

The complementary manuscript [43] discusses warped time-frequency representa-
tions in the context of continuous frames, determines the associated coorbit spaces
and the warped time-frequency representations’ sampling properties in the context
of atomic decompositions and Banach frames [28,29]. Future work will continue
to explore practical applications of warped time-frequency representations and their
discrete equivalents, as well as extending the warping method to multidimensional
signals.
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